Ideal MHD stability of double transport barrier plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.
2008-01-01
The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.
Resistive MHD Stability Analysis in Near Real-time
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen
2017-10-01
We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Trapped particle stability for the kinetic stabilizer
NASA Astrophysics Data System (ADS)
Berk, H. L.; Pratt, J.
2011-08-01
A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.
Resistive Wall Modes Identification and Control in RFX-mod low qedge tokamak discharges
NASA Astrophysics Data System (ADS)
Baruzzo, Matteo; Bolzonella, Tommaso; Cavazzana, Roberto; Marchiori, Giuseppe; Marrelli, Lionello; Martin, Piero; Paccagnella, Roberto; Piovesan, Paolo; Piron, Lidia; Soppelsa, Anton; Zanca, Paolo; in, Yongkyoon; Liu, Yueqiang; Okabayashi, Michio; Takechi, Manabu; Villone, Fabio
2011-10-01
In this work the MHD stability of RFX mode tokamak discharges with qedge < 3 will be studied. The target plasma scenario is characterized by a plasma current 100kA
C-Mod MHD stability analysis with LHCD
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.
2016-10-01
In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.
Study of Second Stability for Global ITG Modes in MHD-stable Equilibria
NASA Astrophysics Data System (ADS)
Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan
1997-11-01
We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.Y. Fu; L.P. Ku; M.H. Redi
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, Scott; Held, Eric
2013-10-01
Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.
Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2016-10-01
The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
Magnetotail dynamics under isobaric constraints
NASA Technical Reports Server (NTRS)
Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael
1994-01-01
Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.
Ideal MHD stability and characteristics of edge localized modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team
2018-01-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R = 5.7 m, B T = 5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a = 1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R = 6.6 m, B T = 6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.
Theory-based model for the pedestal, edge stability and ELMs in tokamaks
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.
2006-04-01
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields
NASA Astrophysics Data System (ADS)
Simakov, Andrei N.; Catto, Peter J.; Ramos, Jesus J.; Hastie, R. J.
2003-04-01
The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study stability of pressure driven Alfvén modes. A point dipole is considered in detail to demonstrate that equilibria exist, which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated next for point dipole equilibria by means of resistive MHD theory.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-07-01
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.
Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, E. C.; Sovinec, C. R.
The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less
Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics
Howell, E. C.; Sovinec, C. R.
2017-09-11
The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.
2017-06-01
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...
2017-06-08
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less
MHD Stability in Compact Stellarators
NASA Astrophysics Data System (ADS)
Fu, Guoyong
1999-11-01
A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-05-12
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO,LL; SNYDER,PB; LEONARD,AW
2003-03-01
A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
Halfmoon, M. R.; Brennan, D. P.
2017-06-05
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfmoon, M. R.; Brennan, D. P.
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.
2009-11-01
The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.
NASA Astrophysics Data System (ADS)
La Haye, Rob
2012-09-01
The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited on control of neoclassical tearing modes (H van den Brand), and an invited talk (P Zanca) and a contributed talk (E Oloffson) on control of the resistive wall mode kink. These are just representative of the broad spectrum of recent work on stability found posted at the web site (https://fusion.gat.com/conferences/mhd11/). We thank PPCF for continuing to have this special issue section. This was the third time the workshop was held at General Atomics. We thank General Atomics for making the site available for an internationally represented workshop in the new era of heightened security and controls. The next workshop (17th) will be held at Columbia University for the (fourth time) (https://fusion.gat.com/conferences/mhd12/) with the theme of 'Addressing the Disruption Challenge for ITER' to be combined with the Joint US-Japan MHD Workshop with a special session on: 'Fundamentals of 3D Perturbed Equilibrium Control: Present & Beyond'.
Stability of DIII-D high-performance, negative central shear discharges
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...
2017-03-20
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
Stability of DIII-D high-performance, negative central shear discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
Nonlinear MHD study on the influence of E×B flow in QH-mode plasma of DIII-D
NASA Astrophysics Data System (ADS)
Liu, Feng; Huijsmans, Guido; Loarte, Alberto; Garofalo, Andrea; Solomon, Wayne; Nkonga, Boniface; Hoelzl, Matthias
2017-10-01
In QH-mode experiments with zero-net NBI torque show that there remains a finite E×B rotation in the pedestal region implying that a minimum E×B flow or flow shear is required for the plasma to develop the Edge Harmonic Oscillation (EHO), which is a saturated KPM (kink-peeling mode) characteristic of the QH-mode. To understand the roles of E×B flow and its shear in the saturation of KPMs, non-linear MHD simulations of DIII-D QH-mode plasmas including toroidal mode numbers n = 0 to 10 with different E×B rotation speed have been performed. These simulation show that ExB rotation strongly stabilizes high-n modes but destabilizes low-n modes (particularly the n =2 mode) in the linear growth phase, which is consistent experimental observations and previous linear MHD modelling. US DOE under DE-FC02-04ER54698.
Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Chu, M. S.; Chance, M. S.; Okabayashi, M.
2000-10-01
The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.
Free boundary resistive modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.
1993-05-01
There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.
2012-03-01
We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.
ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.
2012-10-01
Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.
Global plasma oscillations in electron internal transport barriers in TCV
NASA Astrophysics Data System (ADS)
Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team
2008-12-01
In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.
Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas
NASA Astrophysics Data System (ADS)
Finn, J. M.; Chacon, L.
2002-11-01
We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
ELM Suppression and Pedestal Structure in I-Mode Plasmas
NASA Astrophysics Data System (ADS)
Walk, John
2013-10-01
The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.
Stability of DIII-D high-performance, negative central shear discharges
NASA Astrophysics Data System (ADS)
Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.
2017-05-01
Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
Resistive instabilities in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much moremore » efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.« less
Feedback-assisted extension of the tokamak operating space to low safety factor
Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; ...
2014-07-07
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q( a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q( a) = 2 (limiter plasmas) and q 95 = 2 (divertor plasmas). However, passively stable operation can be attained for q( a) and q 95 values as low as 2.2. RWM damping in the q( a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of themore » damped response does not increase significantly as the q( a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q 95 values reaching as low as 1.9 in DIII-D and q( a) reaching 1.55 in RFX-mod. In addition to being consistent with the q( a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.« less
Mode control using two electrodes on HBT-EP
NASA Astrophysics Data System (ADS)
Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.
2017-10-01
Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.
MHD stability analysis and global mode identification preparing for high beta operation in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.
2017-10-01
H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.
NASA Astrophysics Data System (ADS)
Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.
2000-10-01
The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.
Nonlinear Two Fluid and Kinetic ELM Simulations
NASA Astrophysics Data System (ADS)
Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.
2006-04-01
Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)
Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks
NASA Astrophysics Data System (ADS)
Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.
2016-09-01
A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.
An MHD variational principle that admits reconnection
NASA Technical Reports Server (NTRS)
Rilee, M. L.; Sudan, R. N.; Pfirsch, D.
1997-01-01
The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.
Modeling resistive wall modes and disruptive instabilities with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, Nm; Jardin, Sc; Pfefferle, D.
2016-10-01
Disruptive instabilities pose a significant challenge to the tokamak approach to magnetic fusion energy, and must be reliably avoided in a successful reactor. These instabilities generally involve rapid, global changes to the magnetic field, and electromagnetic interaction with surrounding conducting structures. Here we apply the extended-MHD code M3D-C1 to calculate the stability and evolution of disruptive modes, including their interaction with external conducting structures. The M3D-C1 model includes the effects of resistivity, equilibrium rotation, and resistive walls of arbitrary thickness, each of which may play important roles in the stability and evolution of disruptive modes. The strong stabilizing effect of rotation on resistive wall modes is explored and compared with analytic theory. The nonlinear evolution of vertical displacement events is also considered, including the evolution of non-axisymmetric instabilities that may arise during the current-quench phase of the disruption. It is found that the non-axisymmetric stability of the plasma during a VDE depends strongly on the thermal history of the plasma. This work is supported by US DOE Grant DE-AC02-09CH11466 and the SciDAC Center for Extended MHD Modeling.
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R.F.; Fowler, T.K.; Bulmer, R.
2005-01-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.« less
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F; Fowler, T K; Bulmer, R
2004-07-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M« less
H-mode pedestal stability and ELMs in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Mossessian, Dmitri
2002-11-01
For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, G.Y.; Cooper, W.A.; Gruber, R.
1992-06-01
The TERPSICHORE three-dimensional linear ideal magnetohydrodynamic (MHD) stability code ({ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Chexbres, Switzerland, 1988 (Editrice Compositori, Bologna, Italy, 1989), p. 93; {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Proceedings of the 17th European Conference, Amsterdam, The Netherlands (European Physical Society, Petit-Lancy, Switzerland, 1990), Vol. 14B, Part II, p. 931; {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Valla Monastero, Varenna, Italy, 1990 (Editrice Compositori, Bologna, Italy, 1990), p. 655) has been extended to the full MHD equations.more » The new code is used to calculate the physical growth rates of nonlocal low-{ital n} modes for {ital l}=2 torsatron configurations. A comprehensive investigation of the relation between the Mercier modes and the low-{ital n} modes has been performed. The unstable localized low-{ital n} modes are found to be correlated with the Mercier criterion. Finite growth rates of the low-{ital n} modes correspond to finite values of the Mercier criterion parameter. Near the Mercier marginal stability boundary, the low-{ital n} modes tend to be weakly unstable with very small growth rates. However, the stability of global-type low-{ital n} modes is found to be decorrelated from that of Mercier modes. The low-{ital n} modes with global radial structures can be more stable or more unstable than Mercier modes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachtrieb, R.; Freidberg, J.P.
The newly elucidated strategy for the magnetic fusion program set forth by the Department of Energy calls for increased emphasis on alternate concepts. This strategy is motivated by the recognition that in spite of its many attractive features, a tokamak tends to be a low power density device, ultimately translating into large and corresponding expensive reactor. ITER, as it is currently envisaged, is a good example of a large, expensive, plain vanilla tokamak. In its defense, ITER rightly claims that its base design is very conservative in order to minimize the risk of failure. In order to increase power densitymore » and reduce cost there are two qualitatively different approaches that one can follow: discover advanced modes of tokamak operation or develop near alternate concepts. To decide which path to follow is a difficult task because of the uncertainties involved in making accurate comparisons between different concepts at different stages of development. One area, however, that most would agree is meaningful is ideal MHD stability. For any given concept to be credible as a reactor, it must at least be stable against macroscopic ideal MHD modes. The TPX design, for instance, goes to considerable trouble to obtain stability against external kinks: a close fitting metallic cage, rotation to stabilize the resistive wall version of the external kink, and, if all else fails, feedback. For credibility any other advanced tokamak or alternate concept should be held to the same standards of ideal MHD stability. As a first step in addressing this requirement we have investigated the stability of the RFP since it can be simply and accurately modeled as a straight cylinder. The RFP is well known to have good stability at high P against internal modes but is very unstable to external modes. We have developed a linear stability code which treats the plasma as an ideal compressible fluid, and includes longitudinal flow and a resistive wall.« less
Observation of finite-. beta. MHD phenomena in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1more » internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches
NASA Astrophysics Data System (ADS)
Faghihi, M.
1987-05-01
A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, Edward J.
2014-11-24
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10 -3 to 10 -4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic responsemore » of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. Furthermore, these and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.« less
Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR
NASA Astrophysics Data System (ADS)
Park, Hyeon K.
2013-10-01
In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Peng, X. D.
2018-04-01
The effect of plasma rotation on the linear stability of the resistive magnetohydrodynamic (MHD) instabilities with a nonmonotonic q profile is investigated numerically in the cylindrical geometry. The results have shown that the plasma rotation has a stabilization effect on the double tearing modes (DTMs) depending on the magnitude of the velocity, while the velocity shear has a relatively weak effect. The effect of rotation on DTMs is determined by the velocity at each rational surface. A toroidal velocity imposed on the innermost rational surface has a weak effect on m > 1 DTMs. When the velocity is imposed on the outboard resonant surface, the growth rates of the DTMs are reduced for m > 1 modes; however, it has an obvious destabilizing effect on both m = 1 (with m the poloidal mode number) DTM and single tearing mode branches if the distance between the two rational surfaces is sufficiently small. It is shown that the effect of plasma rotation on the growth rates of the MHD instabilities is in phase with the integrated value of the coupling between potential fluctuation and magnetic flux perturbation.
The Hall-induced stability of gravitating fluids
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2018-05-01
We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team
2011-10-01
We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haverkort, J.W.; Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven; Blank, H.J. de
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. Amore » rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.« less
Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team
2017-10-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
Alpha particle effects in burning tokamak plasmas: overview and specific examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1986-07-01
Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between ..cap alpha..-power driven sawtoothing and idealmore » MHD stability, and direct ..cap alpha..-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional ..cap alpha..-transport including the ambipolar electric field are discussed.« less
Damping Rate Measurements of Medium n Alfv'en Eigenmodes in JET
NASA Astrophysics Data System (ADS)
Klein, Alexander; Testa, Duccio; Snipes, Joseph; Fasoli, Ambrogio; Carfantan, Hervé
2007-11-01
Alfv'en Eigenmodes (AE's) with mode numbers 5 < n < 20 are expected to be unstable in burning tokamaks and may lead to loss of fast particle confinement. The active MHD spectroscopy program at JET has already provided a wealth of information about low n (n <= 2) AE's in the past decade, but a recently installed array of four antennas is capable of driving higher mode numbered (n < 100, 30 < f < 350 kHz) perturbations. In the latest JET campaign, the damping rates for several types of AE's were measured parasitically in a wide range of tokamak scenarios. We review the active MHD diagnostic and present the first measurements of medium-n AE stability on JET, then describe future plans for the active MHD spectroscopy project. The data analysis involves a novel method for resolving multiple AE's that exist at identical frequencies, which uses techniques based on the SparSpec code.
Advances in simulation of wave interactions with extended MHD phenomena
NASA Astrophysics Data System (ADS)
Batchelor, D.; Abla, G.; D'Azevedo, E.; Bateman, G.; Bernholdt, D. E.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Foley, S.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Held, Eric D.
2015-09-01
Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.
2007-09-01
In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.
2017-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Nonlinear asymmetric tearing mode evolution in cylindrical geometry
Teng, Qian; Ferraro, N.; Gates, David A.; ...
2016-10-27
The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w). For a low beta plasma without external heating, Δ'(w) can be approximately described by two terms, Δ' ql(w), Δ'A(w). In this work, we present a simple method to calculate the quasilinear stability index Δ'ql rigorously, for poloidal mode number m ≥ 2. Δ' ql is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ' 0, w, wlnw, and w2.more » Δ' A is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δ' ql and Δ' A is consistent with the more accurate expression calculated perturbatively. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. Lastly, it is also confirmed by the simulation that the Δ' A has to be considered in calculating island saturation.« less
17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER
NASA Astrophysics Data System (ADS)
Buttery, Richard
2013-08-01
This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q < 2 tokamak operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state of the art in 3D modeling, and innovative means of control through application of electromagnetic torques, use of electron cyclotron current drive and even the idea of electrostatic current drive. This concluded with a second panel discussion on the disruption avoidance strategy in ITER, which commented on the important role played by energetic particles in stability, ideas of active stability sensing and ways to progress 3D reconstruction. In this special section of Plasma Physics and Controlled Fusion , we present several of the invited and contributed papers from the 2012 workshop, which have been subject to the normal refereeing procedures of the journal. These give a sense of the exceptional quality of the presentations at this workshop, which may be found at: http://fusion.gat.com/conferences/mhd12/. The Program Committee deeply appreciates the participation and support our community continues to show in this workshop, which provides an unparalleled opportunity for in-depth discussion of MHD issues. We would also like to thank our hosts Columbia University, and in particular Professor Gerald Navratil, for outstanding support and facilities in the face of Hurricane Sandy's adversity. The meeting thanked outgoing Program Chair, Dr Richard Buttery from General Atomics, and welcomed next year's Program Chair, Professor David Maurer from Auburn University. The next meeting will be held in Santa Fe 18-20 November 2013.
Investigation of MHD instabilities and control in KSTAR preparing for high beta operation
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.
2013-08-01
Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically.
Finite-Larmor-radius effects on z-pinch stability
NASA Astrophysics Data System (ADS)
Scheffel, Jan; Faghihi, Mostafa
1989-06-01
The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.
Transport and Dynamics in Toroidal Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, Dalton D
2006-05-16
This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less
Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
García, L.; Ochando, M. A.; Hidalgo, C.
2016-06-15
In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of themore » instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.« less
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Aschwanden, Markus J
2006-02-15
Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO, LL; SNYDER, PB; LEONARD, AW
2002-07-01
OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n {approx} 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P{prime} and the associated large edge bootstrap current density J{sub BS}. the interplay betweenmore » P{prime} and J{sub BS} as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J{sub BS} is reduced.« less
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...
2015-07-01
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less
NASA Astrophysics Data System (ADS)
Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.
2017-10-01
The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.
Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.
Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I
2018-02-12
Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.
Stable Spheromaks Sustained by Neutral Beam Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R; McLean, H S
It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.
Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.
2015-11-01
In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.
Stability of ideal MHD configurations. I. Realizing the generality of the G operator
NASA Astrophysics Data System (ADS)
Keppens, R.; Demaerel, T.
2016-12-01
A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes are organized through the essential spectrum of the G operator. These 6 modes are actually three pairs of modes, in which the Alfvén pair (a shear wave pair in hydro) sits comfortably at the middle. Each pair of modes consists of a leftgoing wave and a rightgoing wave, or equivalently stated, with one type traveling from past to future (forward) and the other type that goes from future to past (backward). The Alfvén pair is special, in its left-right categorization, while there is full degeneracy for the slow and fast pairs when reversing time and mirroring space. The Alfvén pair group speed diagram leads to the familiar Elsässer variables.
Ideal MHD stability and performance of ITER steady-state scenarios with ITBs
NASA Astrophysics Data System (ADS)
Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.
2012-06-01
Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team
2018-01-01
In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.
The Magnetorotational Instability in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Quataert, Eliot; Dorland, William; Hammett, Gregory W.
2002-09-01
We consider the linear axisymmetric stability of a differentially rotating collisionless plasma in the presence of a weak magnetic field; we restrict our analysis to wavelengths much larger than the proton Larmor radius. This is the kinetic version of the magnetorotational instability explored extensively as a mechanism for magnetic field amplification and angular momentum transport in accretion disks. The kinetic calculation is appropriate for hot accretion flows onto compact objects and for the growth of very weak magnetic fields, where the collisional mean free path is larger than the wavelength of the unstable modes. We show that the kinetic instability criterion is the same as in MHD, namely that the angular velocity decrease outward. However, nearly every mode has a linear kinetic growth rate that differs from its MHD counterpart. The kinetic growth rates also depend explicitly on β, i.e., on the ratio of the gas pressure to the pressure of the seed magnetic field. For β~1 the kinetic growth rates are similar to the MHD growth rates, while for β>>1 they differ significantly. For β>>1, the fastest growing mode has a growth rate ~sqrt(3)Ω for a Keplerian disk, larger than its MHD counterpart; there are also many modes whose growth rates are negligible, <~β-1/2Ω<<Ω. We provide a detailed physical interpretation of these results and show that gas pressure forces, rather than just magnetic forces, are central to the behavior of the magnetorotational instability in a collisionless plasma. We also discuss the astrophysical implications of our analysis.
NASA Astrophysics Data System (ADS)
Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team
2013-12-01
In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-04-01
Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.
Characterization of peeling modes in a low aspect ratio tokamak
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.
2014-11-01
Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Charlson C.
2008-07-15
Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the {delta}f particle-in-cell method [S. E. Parker and W. W. Lee,more » Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.« less
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.
2018-03-01
Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...
2017-07-28
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...
2015-09-03
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-02-03
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less
Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges
NASA Astrophysics Data System (ADS)
King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.
2012-10-01
It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...
2016-06-21
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.
2016-07-01
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ⩽ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E × B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2004-12-01
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2005-05-05
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
Effects of Density and Impurity on Edge Localized Modes in Tokamaks
NASA Astrophysics Data System (ADS)
Zhu, Ping
2017-10-01
Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Edge-localized mode avoidance and pedestal structure in I-mode plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walk, J. R., E-mail: jrwalk@psfc.mit.edu; Hughes, J. W.; Hubbard, A. E.
I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to themore » structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle P{sub net}/n{sup ¯}{sub e}, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of P{sub net}/n{sup ¯}{sub e}. This is consistent with targets for increased performance in I-mode, elevating pedestal β{sub p} and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.« less
Edge-localized mode avoidance and pedestal structure in I-mode plasmasa)
NASA Astrophysics Data System (ADS)
Walk, J. R.; Hughes, J. W.; Hubbard, A. E.; Terry, J. L.; Whyte, D. G.; White, A. E.; Baek, S. G.; Reinke, M. L.; Theiler, C.; Churchill, R. M.; Rice, J. E.; Snyder, P. B.; Osborne, T.; Dominguez, A.; Cziegler, I.
2014-05-01
I-mode is a high-performance tokamak regime characterized by the formation of a temperature pedestal and enhanced energy confinement, without an accompanying density pedestal or drop in particle and impurity transport. I-mode operation appears to have naturally occurring suppression of large Edge-Localized Modes (ELMs) in addition to its highly favorable scalings of pedestal structure and overall performance. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Analysis of I-mode discharges prepared with high-resolution pedestal data from the most recent C-Mod campaign reveals favorable pedestal scalings for extrapolation to large machines—pedestal temperature scales strongly with power per particle Pnet/n ¯e, and likewise pedestal pressure scales as the net heating power (consistent with weak degradation of confinement with heating power). Matched discharges in current, field, and shaping demonstrate the decoupling of energy and particle transport in I-mode, increasing fueling to span nearly a factor of two in density while maintaining matched temperature pedestals with consistent levels of Pnet/n ¯e. This is consistent with targets for increased performance in I-mode, elevating pedestal βp and global performance with matched increases in density and heating power. MHD calculations using the ELITE code indicate that I-mode pedestals are strongly stable to edge peeling-ballooning instabilities. Likewise, numerical modeling of the KBM turbulence onset, as well as scalings of the pedestal width with poloidal beta, indicates that I-mode pedestals are not limited by KBM turbulence—both features identified with the trigger for large ELMs, consistent with the observed suppression of large ELMs in I-mode.
Influence of driven current on resistive tearing mode in Tokamaks
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Wang, Sheng; Zhang, Wei
2016-10-01
Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.
NASA Astrophysics Data System (ADS)
Brennan, D. P.; Finn, J. M.
2014-10-01
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xian-Qu; Zhang, Rui-Bin; Meng, Guo
2016-07-15
The destabilization of ideal internal kink modes by trapped fast particles in tokamak plasmas with a “shoulder”-like equilibrium current is investigated. It is found that energetic particle branch of the mode is unstable with the driving of fast-particle precession drifts and corresponds to a precessional fishbone. The mode with a low stability threshold is also more easily excited than the conventional precessional fishbone. This is different from earlier studies for the same equilibrium in which the magnetohydrodynamic (MHD) branch of the mode is stable. Furthermore, the stability and characteristic frequency of the mode are analyzed by solving the dispersion relationmore » and comparing with the conventional fishbone. The results suggest that an equilibrium with a locally flattened q-profile, may be modified by localized current drive (or bootstrap current, etc.), is prone to the onset of the precessional fishbone branch of the mode.« less
Kelvin-Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Zaqarashvili, T. V.; Ofman, L.; Chandra, R.
2018-01-01
We investigate the conditions under which the fluting (m = 2), m = 3 , and m = 12 magnetohydrodynamic (MHD) modes in a uniformly twisted flux tube moving along its axis become unstable in order to model the Kelvin-Helmholtz (KH) instability in a twisting solar coronal hole jet near the northern pole of the Sun. We employed the dispersion relations of MHD modes derived from the linearized MHD equations. We assumed real wavenumbers and complex angular wave frequencies, namely complex wave phse velocities. The dispersion relations were solved numerically at fixed input parameters (taken from observational data) and varying degrees of torsion of the internal magnetic field. It is shown that the stability of the modes depends upon five parameters: the density contrast between the flux tube and its environment, the ratio of the external and internal axial magnetic fields, the twist of the magnetic field lines inside the tube, the ratio of transverse and axial jet's velocities, and the value of the Alfvén Mach number (the ratio of the tube axial velocity to Alfvén speed inside the flux tube). Using a twisting jet of 2010 August 21 by SDO/AIA and other observations of coronal jets we set the parameters of our theoretical model and have obtained that in a twisted magnetic flux tube of radius of 9.8 Mm, at a density contrast of 0.474 and fixed Alfvén Mach number of ≅ 0.76 , for the three MHD modes there exist instability windows whose width crucially depends upon the internal magnetic field twist. It is found that for the considered modes an azimuthal magnetic field of 1.3 - 1.4 G (computed at the tube boundary) makes the width of the instability windows equal to zero, that is, it suppress the KH instability onset. On the other hand, the times for developing KH instability of the m = 12 MHD mode at instability wavelengths between 15 and 12 Mm turn out to be in the range of 1.9 - 4.7 min that is in agreement with the growth rates estimated from the temporal evolution of the observed unstable jet's blobs in their initial stage.
Reimerdes, H; Garofalo, A M; Jackson, G L; Okabayashi, M; Strait, E J; Chu, M S; In, Y; La Haye, R J; Lanctot, M J; Liu, Y Q; Navratil, G A; Solomon, W M; Takahashi, H; Groebner, R J
2007-02-02
Recent DIII-D experiments with reduced neutral beam torque and minimum nonaxisymmetric perturbations of the magnetic field show a significant reduction of the toroidal plasma rotation required for the stabilization of the resistive-wall mode (RWM) below the threshold values observed in experiments that apply nonaxisymmetric magnetic fields to slow the plasma rotation. A toroidal rotation frequency of less than 10 krad/s at the q=2 surface (measured with charge exchange recombination spectroscopy using C VI) corresponding to 0.3% of the inverse of the toroidal Alfvén time is sufficient to sustain the plasma pressure above the ideal MHD no-wall stability limit. The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping.
Theoretical investigation of operation modes of MHD generators for energy-bypass engines
NASA Astrophysics Data System (ADS)
Tang, Jingfeng; Li, Nan; Yu, Daren
2014-12-01
A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.
Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.
2017-10-01
The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
Effects of fast ions on interchange modes in the Large Helical Device plasmas
NASA Astrophysics Data System (ADS)
Pinon, Jonhathan; Todo, Yasushi; Wang, Hao
2018-07-01
Effects of fast ions on the magnetohydrodynamic (MHD) instabilities in a Large Helical Device (LHD) plasma with the central beta value (=pressure normalized by the magnetic pressure) 4% have been investigated with hybrid simulations for energetic particles interacting with an MHD fluid. When fast ions are neglected, it is found that the dominant instability is an ideal interchange mode with the dominant harmonic m/n = 2/1, where m, n are respectively the poloidal and toroidal numbers. The spatial peak location of the m/n = 2/1 harmonic is close to the ι = 1/2 magnetic surface located at r/a = 0.29, where ι is the rotational transform and r/a is the normalized radius. The second unstable mode is a resistive interchange mode with m/n =3/2 that peaks at r/a = 0.65 nearby the ι = 2/3 surface, which grows more slowly than the m/n = 2/1 mode. The nonlinear coupling of the m/n = 3/2 and 2/1 mode results in the growth of the m/n = 5/3 mode and other modes leading to the global reduction and flattening of the pressure profile. When fast ions are considered with the central beta value 0.2% and the total pressure profile is kept the same, the ideal interchange mode with m/n = 2/1 located close to the plasma center is stabilized while the resistive interchange mode with m/n = 3/2 located far from the plasma center is less affected. The stabilization is attributed to the reduction of bulk pressure gradient, which is the dilution of the free energy source, because the energy transfer between the fast ions and the interchange modes is found to be negligible. For higher fast-ion pressure, Alfvén eigenmodes are destabilized by fast ions.
Capabilities of Fully Parallelized MHD Stability Code MARS
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2016-10-01
Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
Real time MHD mode control using ECCD in KSTAR: Plan and requirements
NASA Astrophysics Data System (ADS)
Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.
2014-02-01
For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not occur in laboratory plasmas.
Stable Spheromaks with Profile Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R
A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.
Influence of toroidal rotation on resistive tearing modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team
2016-10-01
Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.
Resistive wall modes in the EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.
2003-10-01
Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villone, F.; Mastrostefano, S.; Calabrò, G.
2014-08-15
One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FASTmore » could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.« less
Nonlinear MHD simulations of QH-mode DIII-D plasmas and implications for ITER high Q scenarios
NASA Astrophysics Data System (ADS)
Liu, F.; Huijsmans, G. T. A.; Loarte, A.; Garofalo, A. M.; Solomon, W. M.; Hoelzl, M.; Nkonga, B.; Pamela, S.; Becoulet, M.; Orain, F.; Van Vugt, D.
2018-01-01
In nonlinear MHD simulations of DIII-D QH-mode plasmas it has been found that low n kink/peeling modes (KPMs) are unstable and grow to a saturated kink-peeling mode. The features of the dominant saturated KPMs, which are localised toroidally by nonlinear coupling of harmonics, such as mode frequencies, density fluctuations and their effect on pedestal particle and energy transport, are in good agreement with the observations of the edge harmonic oscillation typically present in DIII-D QH-mode experiments. The nonlinear evolution of MHD modes including both kink-peeling modes and ballooning modes, is investigated through MHD simulations by varying the pedestal current and pressure relative to the initial conditions of DIII-D QH-mode plasma. The edge current and pressure at the pedestal are key parameters for the plasma either saturating to a QH-mode regime or a ballooning mode dominant regime. The influence of E × B flow and its shear on the QH-mode plasma has been investigated. E × B flow shear has a strong stabilisation effect on the medium to high-n modes but is destabilising for the n = 2 mode. The QH-mode extrapolation results of an ITER Q = 10 plasma show that the pedestal currents are large enough to destabilise n = 1-5 KPMs, leading to a stationary saturated kink-peeling mode.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix
NASA Astrophysics Data System (ADS)
Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET
2018-03-01
We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaing, K. C.
In Part I [Phys. Fluids B 2, 1190 (1990)] and Part II [Phys. Plasmas 12, 082508 (2005)], it was emphasized that the equilibrium plasma viscous forces when applied for the magnetohydrodynamic (MHD) modes are only rigorously valid at the mode rational surface where m-nq=0. Here, m is the poloidal mode number, n is the toroidal mode number, and q is the safety factor. This important fact has been demonstrated explicitly by calculating the viscous forces in the plateau regime in Parts I and II. Here, the effective viscous forces in the banana regime are calculated for MHD modes by solvingmore » the linear drift kinetic equation that is driven by the plasma flows first derived in Part I. At the mode rational surface, the equilibrium plasma viscous forces are reproduced. However, it is found that away from the mode rational surface, the viscous forces for MHD modes decrease, a behavior similar to that observed in the viscous forces for the plateau regime. The proper form of the momentum equation that is appropriate for the modeling of the MHD modes is also discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, D. P.; Finn, J. M.
2014-10-15
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reducedmore » resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.« less
Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Dylan; Miller, G. P.
This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physicsmore » determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.« less
On Kinetic Slow Modes, Fluid Slow Modes, and Pressure-balanced Structures in the Solar Wind
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verscharen, Daniel; Chen, Christopher H. K.; Wicks, Robert T., E-mail: daniel.verscharen@unh.edu, E-mail: christopher.chen@imperial.ac.uk, E-mail: r.wicks@ucl.ac.uk
Observations in the solar wind suggest that the compressive component of inertial-range solar-wind turbulence is dominated by slow modes. The low collisionality of the solar wind allows for nonthermal features to survive, which suggests the requirement of a kinetic plasma description. The least-damped kinetic slow mode is associated with the ion-acoustic (IA) wave and a nonpropagating (NP) mode. We derive analytical expressions for the IA-wave dispersion relation in an anisotropic plasma in the framework of gyrokinetics and then compare them to fully kinetic numerical calculations, results from two-fluid theory, and magnetohydrodynamics (MHD). This comparison shows major discrepancies in the predictedmore » wave phase speeds from MHD and kinetic theory at moderate to high β . MHD and kinetic theory also dictate that all plasma normal modes exhibit a unique signature in terms of their polarization. We quantify the relative amplitude of fluctuations in the three lowest particle velocity moments associated with IA and NP modes in the gyrokinetic limit and compare these predictions with MHD results and in situ observations of the solar-wind turbulence. The agreement between the observations of the wave polarization and our MHD predictions is better than the kinetic predictions, which suggests that the plasma behaves more like a fluid in the solar wind than expected.« less
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
The linear tearing instability in three dimensional, toroidal gyro-kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hornsby, W. A., E-mail: william.hornsby@ipp.mpg.de; Migliano, P.; Buchholz, R.
2015-02-15
Linear gyro-kinetic simulations of the classical tearing mode in three-dimensional toroidal geometry were performed using the global gyro-kinetic turbulence code, GKW. The results were benchmarked against a cylindrical ideal MHD and analytical theory calculations. The stability, growth rate, and frequency of the mode were investigated by varying the current profile, collisionality, and the pressure gradients. Both collisionless and semi-collisional tearing modes were found with a smooth transition between the two. A residual, finite, rotation frequency of the mode even in the absence of a pressure gradient is observed, which is attributed to toroidal finite Larmor-radius effects. When a pressure gradientmore » is present at low collisionality, the mode rotates at the expected electron diamagnetic frequency. However, the island rotation reverses direction at high collisionality. The growth rate is found to follow a η{sup 1∕7} scaling with collisional resistivity in the semi-collisional regime, closely following the semi-collisional scaling found by Fitzpatrick. The stability of the mode closely follows the stability analysis as performed by Hastie et al. using the same current and safety factor profiles but for cylindrical geometry, however, here a modification due to toroidal coupling and pressure effects is seen.« less
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
MHD modeling of DIII-D QH-mode discharges and comparison to observations
NASA Astrophysics Data System (ADS)
King, Jacob
2016-10-01
MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.
Li, Erzhong; Austin, Max E.; White, R. B.; ...
2017-08-21
Intense bursts of electron cyclotron emission (ECE) triggered by magnetohydrodynamic (MHD) instabilities such as edge localized modes (ELMs) have been observed on many tokamaks. On the DIII-D tokamak, it is found that an MHD mode is observed to trigger the ECE bursts in the low collisionality regime at the plasma edge. ORBIT-code simulations have shown that energetic electrons build up due to an interaction between barely trapped electrons with an MHD mode (f = 50 kHz for current case). The energetic tail of the electron distribution function develops a bump within several microseconds for this collisionless case. This behavior dependsmore » on the competition between the perturbing MHD mode and slowing down and pitch angle scattering due to collisions. As a result, for typical DIII-D parameters, the calculated ECE radiation transport predicted by ORBIT is in excellent agreement with ECE measurements, clarifying the electron dynamics of the ECE bursts for the first time.« less
A first look at resistive MHD stability differences between NSTX and NSTX-U high beta discharges
NASA Astrophysics Data System (ADS)
Morton, L. A.; La Haye, R. J.; Berkery, J. W.; Menard, J. E.; Ferraro, N. M.; Brennan, D. P.; Sabbagh, S. A.; Delgado-Aparicio, L. F.; Tritz, K.
2017-10-01
Comparison is made of the onset, growth rate and saturation of m/n = 2/1 tearing modes in NSTX and NSTX-U high beta discharges. NSTX-U has stronger toroidal field, higher electron temperature (thus longer resistive diffusion time) and a larger aspect ratio (due to the expansion of the center stack). Experimental identification of the mode helicity, radial location, and width is accomplished by synergistically combining information from soft x-ray emission, Thomson scattering (Te profile), Charge Exchange Recombination (Ti profile) and Mirnov diagnostics. Fitting the generalized Rutherford equation to the time-evolution of the island width allows evaluation of the different drive and stabilizing terms. Linear stability calculations have also been performed with M3D-C1. The possibility of a reduction in the stabilizing interchange effect due to curvature at somewhat larger aspect ratio in NSTX-U is one focus of the analysis. This work is supported by the US DOE under Grant DE-FG02-99ER54522.
Computation of resistive instabilities by matched asymptotic expansions
Glasser, A. H.; Wang, Z. R.; Park, J. -K.
2016-11-17
Here, we present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces.more » The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.« less
NASA Astrophysics Data System (ADS)
Farmer, William Anthony
The first part of the dissertation investigates the effects of multiple-ions on the propagation of shear Alfven waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A full-wave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identified in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave can explain the observed dissipation. Ray tracing studies for shear Alfven waves are performed in various magnetic geometries of contemporary interest. In a tokamak, it is found that the hybrid resonator can exist in the cold-plasma regime, but that ion-temperature effects combined with curvature effects cause the wave reflection point to shift towards the cyclotron frequency of the heavier ion. A one-dimensional WKB model is applied to a tokamak geometry for conditions corresponding to a burning fusion plasma to characterize the resonator. Instability due to fusion-born alpha particles is assessed. An approximate form of the global eigenmode is considered. It is identified that magnetic field shear combined with large ion temperature can cause coupling to an ion-Bernstein wave, which can limit the instability. Finally, the radiation pattern of shear Alfven waves generated by a burst of charged particles in the presence of two-ion species is considered. The spectral content and spatial patterns of the radiated waves are determined. The second part of the dissertation considers the MHD stability of the plasma near a divertor in a tokamak. Two types of modes are considered: a ballooning mode and an axisymmetric, quasi-flute mode. Instability thresholds are derived for both modes and numerically evaluated for parameters relevant to recent experiments. This is done to determine whether these modes could be responsible for convection of the plasma in the vicinity of the poloidal null point. It is determined that MHD instability about a standard equilibrium is unlikely to explain the experimental results observed on the tokamak, TCV [Reimerdes et al., Plasma Phys. Contr. Fusion 55, 124027 (2013)]. From these results, it is concluded that the most likely explanation for the discrepancy is that the underlying equilibrium assumed in the calculation does not contain all the complexities present in the experiments.
Nonlinear MHD simulations of Quiescent H-mode plasmas in DIII-D
Liu, Feng; Huijsmans, G. T. A.; Loarte, A.; ...
2015-09-04
In the Quiescent H-mode (QH-mode) regime, the edge harmonic oscillation (EHO), thought to be a saturated kink-peeling mode (KPM) driven unstable by current and rotation, is found in experiment to provide sufficient stationary edge particle transport to avoid the periodic expulsion of particles and energy by edge localized modes (ELMs). In this article, both linear and nonlinear MHD modelling of QH-mode plasmas from the DIII-D tokamak have been investigated to understand the mechanism leading to the appearance of the EHO in QH-mode plasmas. For the first time nonlinear MHD simulations with low-n modes both with ideal wall and resistive wallmore » boundary conditions have been carried out with 3-D non-linear MHD code JOREK. The results show, in agreement with the original conjectures, that in the nonlinear phase, kink peeling modes are the main unstable modes in QH-mode plasmas of DIIID and that the kink-peeling modes saturate non-linearly leading to a 3-D stationary state. The characteristics of the kink-peeling modes, in terms of mode structure and associated decrease of the edge plasma density associated with them, are in good agreement with experimental measurements of the EHO in DIII-D. Finally, the effect of plasma resistivity, the role of plasma parallel rotation as well as the effect of the conductivity of the vacuum vessel wall on the destabilization and saturation of kink-peeling modes have been evaluated for experimental QH-mode plasma conditions in DIII-D.« less
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
NASA Astrophysics Data System (ADS)
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U
NASA Astrophysics Data System (ADS)
Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam
2013-10-01
Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Stability of a two-volume MRxMHD model in slab geometry
NASA Astrophysics Data System (ADS)
Tuen, Li Huey
Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.
Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators
NASA Astrophysics Data System (ADS)
Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.
1998-11-01
A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.
Influence of toroidal rotation on resistive tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less
NASA Astrophysics Data System (ADS)
Zhelyazkov, Ivan; Chandra, Ramesh
2018-05-01
We study the conditions under which high mode magnetohydrodynamic (MHD) waves propagating on a rotating jet emerging from the filament eruption on 2013 April 10-11 can became unstable against the Kelvin-Helmholtz instability (KHI). The evolution of jet indicates the blob like structure at its boundary which could be one of the observable features of the KHI development. We model the jet as a twisted rotating axially moving magnetic flux tube and explore the propagation characteristics of the running MHD modes on the basis of dispersion relations derived in the framework of the ideal magnetohydrodynamics. It is established that unstable MHD waves with wavelengths in the range of 12-15 Mm and instability developing times from 1.5 to 2.6 min can be detected at the excitation of high mode MHD waves. The magnitude of the azimuthal mode number m crucially depends upon the twist of the internal magnetic field. It is found that at slightly twisted magnetic flux tube the appropriate azimuthal mode number is m = 16 while in the case of a moderately twisted flux tube it is equal to 18.
NASA Astrophysics Data System (ADS)
Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.
2016-10-01
The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.
NASA Technical Reports Server (NTRS)
Brinkmann, R. P.
1989-01-01
This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.
The effect of plasma beta on high-n ballooning stability at low magnetic shear
NASA Astrophysics Data System (ADS)
Connor, J. W.; Ham, C. J.; Hastie, R. J.
2016-08-01
An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
NASA Astrophysics Data System (ADS)
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K.-L. Wong and S. Zweben, Princeton Plasma Physics Lab. Department of Physics, University of California, Irvine, CA 92717 ^*Work supported by the U.S. Department of Energy DoE Contract No. DE-AC02-76CH03073.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism
NASA Astrophysics Data System (ADS)
King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.
2017-02-01
The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick
2016-10-01
The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.
NASA Astrophysics Data System (ADS)
Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team
2016-10-01
Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.
NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism
King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.; ...
2016-09-30
The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less
NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.
The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less
A Radiation Transfer Solver for Athena Using Short Characteristics
NASA Astrophysics Data System (ADS)
Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei
2012-03-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.
Tobias, B.; Chen, M.; Classen, I. G. J.; ...
2016-04-15
The electromagnetic coupling of helical modes, including those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. Furthermore, with increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lockmore » to each other without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q95, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. Additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor-a key issue for ITER. Published by AIP Publishing.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tobias, B.; Grierson, B. A.; Okabayashi, M.
2016-05-15
The electromagnetic coupling of helical modes, even those having different toroidal mode numbers, modifies the distribution of toroidal angular momentum in tokamak discharges. This can have deleterious effects on other transport channels as well as on magnetohydrodynamic (MHD) stability and disruptivity. At low levels of externally injected momentum, the coupling of core-localized modes initiates a chain of events, whereby flattening of the core rotation profile inside successive rational surfaces leads to the onset of a large m/n = 2/1 tearing mode and locked-mode disruption. With increased torque from neutral beam injection, neoclassical tearing modes in the core may phase-lock to each othermore » without locking to external fields or structures that are stationary in the laboratory frame. The dynamic processes observed in these cases are in general agreement with theory, and detailed diagnosis allows for momentum transport analysis to be performed, revealing a significant torque density that peaks near the 2/1 rational surface. However, as the coupled rational surfaces are brought closer together by reducing q{sub 95}, additional momentum transport in excess of that required to attain a phase-locked state is sometimes observed. Rather than maintaining zero differential rotation (as is predicted to be dynamically stable by single-fluid, resistive MHD theory), these discharges develop hollow toroidal plasma fluid rotation profiles with reversed plasma flow shear in the region between the m/n = 3/2 and 2/1 islands. The additional forces expressed in this state are not readily accounted for, and therefore, analysis of these data highlights the impact of mode coupling on torque balance and the challenges associated with predicting the rotation dynamics of a fusion reactor—a key issue for ITER.« less
MHD and resonant instabilities in JT-60SA during current ramp-up with off-axis N-NB injection
NASA Astrophysics Data System (ADS)
Bierwage, A.; Toma, M.; Shinohara, K.
2017-12-01
The excitation of magnetohydrodynamic (MHD) and resonant instabilities and their effect on the plasma profiles during the current ramp-up phase of a beam-driven JT-60SA tokamak plasma is studied using the MHD-PIC hybrid code MEGA. In the simple scenario considered, the plasma is only driven by one negative-ion-based neutral beam, depositing 500 keV deuterons at 5 MW power off-axis at about mid-radius. The beam injection starts half-way in the ramp-up phase. Within 1 s, the beam-driven plasma current and fast ion pressure produce a configuration that is strongly unstable to rapidly growing MHD and resonant modes. Using MEGA, modes with low toroidal mode numbers in the range n = 1-4 are examined in detail and shown to cause substantial changes in the plasma profiles. The necessity to develop reduced models and incorporate the effects of such instabilities in integrated codes used to simulate the evolution of entire plasma discharges is discussed.
Special Issue on the 20th Workshop on MHD Stability Control
Park, Jong -Kyu
2016-11-08
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
Interchange mode excited by trapped energetic ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp
2015-07-15
The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less
The external kink mode in diverted tokamaks
Turnbull, Alan D.; Hanson, Jeremy M.; Turco, Francesca; ...
2016-06-16
Here, an explanation is provided for the disruptive instability in diverted tokamaks when the safety factor at the 95% poloidal flux surface, q 95, is driven below 2.0. The instability is a resistive kink counterpart to the current-driven ideal mode that traditionally explained the corresponding disruption in limited cross-sections when q edge, the safety factor at the outermost closed flux surface, lies just below a rational value. Experimentally, external kink modes are observed in limiter configurations as the current in a tokamak is ramped up and q edge decreases through successive rational surfaces. For q edge < 2, the instabilitymore » is always encountered and is highly disruptive. However, diverted plasmas, in which q edge is formally infinite in the magnetohydrodynamic (MHD) model, have presented a longstanding difficulty since the theory would predict stability, yet, the disruptive limit occurs in practice when q 95, reaches 2. It is shown from numerical calculations that a resistive kink mode is linearly destabilized by the rapidly increasing resistivity at the plasma edge when q 95 < 2, but q edge >> 2. The resistive kink behaves much like the ideal kink with predominantly kink or interchange parity and no real sign of a tearing component. However, the growth rates scale with a fractional power of the resistivity near the q = 2 surface. The results have a direct bearing on the conventional edge cutoff procedures used in most ideal MHD codes, as well as implications for ITER and for future reactor options.« less
Linear calculations of edge current driven kink modes with BOUT++ code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, G. Q., E-mail: ligq@ipp.ac.cn; Xia, T. Y.; Lawrence Livermore National Laboratory, Livermore, California 94550
This work extends previous BOUT++ work to systematically study the impact of edge current density on edge localized modes, and to benchmark with the GATO and ELITE codes. Using the CORSICA code, a set of equilibria was generated with different edge current densities by keeping total current and pressure profile fixed. Based on these equilibria, the effects of the edge current density on the MHD instabilities were studied with the 3-field BOUT++ code. For the linear calculations, with increasing edge current density, the dominant modes are changed from intermediate-n and high-n ballooning modes to low-n kink modes, and the linearmore » growth rate becomes smaller. The edge current provides stabilizing effects on ballooning modes due to the increase of local shear at the outer mid-plane with the edge current. For edge kink modes, however, the edge current does not always provide a destabilizing effect; with increasing edge current, the linear growth rate first increases, and then decreases. In benchmark calculations for BOUT++ against the linear results with the GATO and ELITE codes, the vacuum model has important effects on the edge kink mode calculations. By setting a realistic density profile and Spitzer resistivity profile in the vacuum region, the resistivity was found to have a destabilizing effect on both the kink mode and on the ballooning mode. With diamagnetic effects included, the intermediate-n and high-n ballooning modes can be totally stabilized for finite edge current density.« less
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
Current/Pressure Profile Effects on Tearing Mode Stability in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Yong-Su
2015-11-01
It is important to understand the onset threshold and the evolution of tearing modes (TMs) for developing a high-performance steady state fusion reactor. As initial and basic comparisons to determine TM onset, the measured plasma profiles (such as temperature, density, rotation) were compared with the calculated current profiles between a pair of discharges with/without n=1 mode based on the database for DIII-D hybrid plasmas. The profiles were not much different, but the details were analyzed to determine their characteristics, especially near the rational surface. The tearing stability index calculated from PEST3, Δ' tends to increase rapidly just before the n=1 mode onset for these cases. The modeled equilibrium with varying pressure or current profiles parametrically based on the reference discharge is reconstructed for checking the onset dependency on Δ' or neoclassical effects such as bootstrap current. Simulations of TMs with the modeled equilibrium using resistive MHD codes will also be presented and compared with experiments to determine the sensibility for predicting TM onset. Work supported by US DOE under DE-FC02-04ER54698 and DE-AC52-07NA27344.
MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations
King, Jacob R.; Kruger, S. E.; Burrell, K. H.; ...
2017-03-07
Extended-MHD modeling of DIII-D tokamak quiescent H-mode (QH-mode) discharges with nonlinear NIMROD simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the n Φ = 1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of n Φ = 1–5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particlemore » transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. As a result, comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.« less
MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, Jacob R.; Kruger, S. E.; Burrell, K. H.
Extended-MHD modeling of DIII-D tokamak quiescent H-mode (QH-mode) discharges with nonlinear NIMROD simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the n Φ = 1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of n Φ = 1–5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particlemore » transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. As a result, comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.« less
Influence of ICRF heating on the stability of TAEs
NASA Astrophysics Data System (ADS)
Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.
2007-11-01
Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.
Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma
NASA Astrophysics Data System (ADS)
Alipour, Ramin; Ghanbari, Mohamad R.
2018-04-01
Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
Garofalo, Andrea M.; Burrell, Keith H.; Eldon, David; ...
2015-05-26
For the first time, DIII-D experiments have achieved stationary quiescent H-mode (QH-mode) operation for many energy confinement times at simultaneous ITER-relevant values of beta, confinement, and safety factor, in an ITER similar shape. QH-mode provides excellent energy confinement, even at very low plasma rotation, while operating without edge localized modes (ELMs) and with strong impurity transport via the benign edge harmonic oscillation (EHO). By tailoring the plasma shape to improve the edge stability, the QH-mode operating space has also been extended to densities exceeding 80% of the Greenwald limit, overcoming the long-standing low-density limit of QH-mode operation. In the theory,more » the density range over which the plasma encounters the kink-peeling boundary widens as the plasma cross-section shaping is increased, thus increasing the QH-mode density threshold. Here, the DIII-D results are in excellent agreement with these predictions, and nonlinear MHD analysis of reconstructed QH-mode equilibria shows unstable low n kink-peeling modes growing to a saturated level, consistent with the theoretical picture of the EHO. Furthermore, high density operation in the QH-mode regime has opened a path to a new, previously predicted region of parameter space, named “Super H-mode” because it is characterized by very high pedestals that can be more than a factor of two above the peeling-ballooning stability limit for similar ELMing H-mode discharges at the same density.« less
NASA Astrophysics Data System (ADS)
Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary
2017-10-01
Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.
High beta and second stability region transport and stability analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1996-01-01
This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.
High beta and second stability region transport and stability analysis: Technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1995-03-01
This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.
NASA Astrophysics Data System (ADS)
Reiman, Allan H.
2016-07-01
In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B ṡ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.
Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F
2005-02-08
The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circularmore » magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the probability of so-called ''temperature-gradient'' instabilities, known to be endemic to closed systems. Finally, the open-ended nature of the field readily allows the control of the radial potential distribution, a circumstance that has been shown, for example in the Gamma 10 tandem-mirror experiment at Tsukuba Japan, to suppress drift-type instability modes. Standing against all of these attractive properties of axisymmetric mirror-based systems is the fact, shown early on, that such systems are prone to MHD ''interchange'' instabilities, one in which the plasma column drifts transversely, at a rate far above classical transport. Observed early on, the ''cure'' that was universally adopted, as first demonstrated in the famous ''Ioffe experiment'', was to abandon axisymmetry and employ so-called ''magnetic-well'' fields, ones in which the field increases radially and axially from its interior, strongly suppressing the MHD interchange mode, up to plasma ''beta'' values approaching unity, observed in the 2X2B experiment. When the tandem mirror concept was introduced in 1976 every experiment that was constructed employed various combinations of non-axisymmetric coil configurations (''Baseball,'' and ''Yin-Yang'' coils) to create the magnetic fields. But it came at a heavy price: non-axisymmetric fields gave rise to new non-classical loss channels, and the complexity of the fields introduced difficult engineering problems. It was well recognized at the time that it would be highly advantageous to preserve axisymmetry of the tandem mirror coils, but there was no apparent way to stabilize the ubiquitous MHD interchange mode. A decade later a way to accomplish this end was analyzed theoretically, and, a few years later successfully demonstrated experimentally, in the Gas Dynamic Trap (GDT) experiment at Novosibirsk. The concept: the presence of a sufficient amount of plasma on the expanding field lines outside the end mirrors of a mirror machine can act as an ''anchor,'' MHD stabilizing the interior, confined, plasma. Moreover, Ryutov's theory showed that the pressure of this anchor plasma could be orders of magnitude smaller than that of the confined plasma, and still be able to stabilize it. In the GDT, which operates in a collision-dominated region (as opposed to the near-collisionless mode of a tandem mirror), the effluent plasma, though much lower in density than that of the confined plasma, is sufficient to stabilize the central plasma, up to plasma beta values of 40 percent. Furthermore, once MHD stabilized, the confined plasma in the GDT exhibited no signs of plasma turbulence or enhanced cross-field transport, even in the presence of a substantial population of high energy ions produced by neutral-beam injection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farmer, William Anthony
2014-01-01
The rst part of the dissertation investigates the e ects of multiple-ions on the propagation of shear Alfv en waves. It is shown that the presence of a second ion-species allows for the formation of an ion-ion hybrid resonator in the presence of a magnetic well. A fullwave description is shown to explain the measured eigenfrequencies and spatial form of the resonator modes identi ed in experiments in the Large Plasma Device (LAPD) at UCLA. However, it is determined that neither electron collisions or radial convection of the mode due to coupling to either the compressional or ion-Bernstein wave canmore » explain the observed dissipation.« less
Generation of Alfvenic Waves and Turbulence in Magnetic Reconnection Jets
NASA Astrophysics Data System (ADS)
Hoshino, M.
2014-12-01
The magneto-hydro-dynamic (MHD) linear stability for the plasma sheet with a localized bulk plasma flow parallel to the neutral sheet is investigated. We find three different unstable modes propagating parallel to the anti-parallel magnetic field line, and we call them as "streaming tearing'', "streaming sausage'', and "streaming kink'' mode. The streaming tearing and sausage modes have the tearing mode-like structure with symmetric density fluctuation to the neutral sheet, and the streaming kink mode has the asymmetric fluctuation. The growth rate of the streaming tearing mode decreases with increasing the magnetic Reynolds number, while those of the streaming sausage and kink modes do not strongly depend on the Reynolds number. The wavelengths of these unstable modes are of the order of the thickness of plasma sheet, which behavior is almost same as the standard tearing mode with no bulk flow. Roughly speaking the growth rates of three modes become faster than the standard tearing mode. The situation of the plasma sheet with the bulk flow can be realized in the reconnection exhaust with the Alfvenic reconnection jet, and the unstable modes may be regarded as one of the generation processes of Alfvenic turbulence in the plasma sheet during magnetic reconnection.
Impact of ideal MHD stability limits on high-beta hybrid operation
NASA Astrophysics Data System (ADS)
Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team
2017-01-01
The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.
Impact of ideal MHD stability limits on high-beta hybrid operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovesan, Paolo; Igochine, V.; Turco, F.
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
Impact of ideal MHD stability limits on high-beta hybrid operation
Piovesan, Paolo; Igochine, V.; Turco, F.; ...
2016-10-27
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
A general MHD formulation for plasmas with flow and resistive walls
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guazzotto, L.; Freidberg, J. P.; Betti, R.
2006-11-30
Toroidal rotation, either induced by means of neutral beams (e.g. in NSTX and DIII-D) or appearing spontaneously (e.g. in Alcator C-Mod, JET and Tore Supra) is routinely observed in modem tokamak experiments. Poloidal rotation is also commonly observed, in particular in the edge region of the plasma. Plasma rotation has a major effect on plasma stability. Flow and flow shear stabilize external modes such as the resistive wall mode (as observed e.g. in DIII-D), suppress turbulence when the flow shear is large enough, and also have a significant influence on the stability and nonlinear evolution of the internal kink andmore » ballooning modes. Flow shear can in particular have both a stabilizing (by breaking up unstable structures) and destabilizing (through the Kelvin-Helmoltz mechanism) effect. A self-consistent analysis of the effect of rotation requires the use of numerical tools. In this work, we present a general eigenvalue formulation based on a variational principle stability analysis, including arbitrary (both toroidal and poloidal) plasma rotation and a thin resistive wall of arbitrary shape and resistivity. It is shown that the problem can always be reduced to a classic eigenvalue formulation of the kind i{omega}A double underbar {center_dot} {zeta}-vector = B double underbar {center_dot} {zeta}-vector, where {zeta}-vector is the unknown eigenvector related to the plasma displacement, and {omega} the (complex) evolution frequency of the perturbation. The formulation is well suited for a finite element analysis.« less
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
Edge-localized-modes in tokamaks
Leonard, Anthony W.
2014-09-11
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less
Edge-localized-modes in tokamaksa)
NASA Astrophysics Data System (ADS)
Leonard, A. W.
2014-09-01
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.
General Relativistic MHD Simulations of Jet Formation
NASA Technical Reports Server (NTRS)
Mizuno, Y.; Nishikawa, K.-I.; Hardee, P.; Koide, S.; Fishman, G. J.
2005-01-01
We have performed 3-dimensional general relativistic magnetohydrodynamic (GRMHD) simulations of jet formation from an accretion disk with/without initial perturbation around a rotating black hole. We input a sinusoidal perturbation (m = 5 mode) in the rotation velocity of the accretion disk. The simulation results show the formation of a relativistic jet from the accretion disk. Although the initial perturbation becomes weakened by the coupling among different modes, it survives and triggers lower modes. As a result, complex non-axisymmetric density structure develops in the disk and the jet. Newtonian MHD simulations of jet formation with a non-axisymmetric mode show the growth of the m = 2 mode but GRMHD simulations cannot see the clear growth of the m = 2 mode.
NASA Astrophysics Data System (ADS)
Stratton, B. C.; Budny, R. V.; Darrow, D. S.; Fisher, R. K.; Fredrickson, E. D.; Fu, G. Y.; Medley, S. S.; Nazikian, R.; Petrov, M. P.; Redi, M. H.; Ruskov, E.; Taylor, G.; White, R. B.; Zweben, S. J.; TFTR Group
1999-09-01
The article reviews the physics of fusion alpha particles and energetic neutral beam ions studied in the final phase of TFTR operation, with an emphasis on observations in reversed magnetic shear (RS) and enhanced reversed shear (ERS) DT plasmas. Energy resolved measurements of the radial profiles of confined, trapped alphas in RS plasmas exhibit reduced core alpha density with increasing alpha energy, in contrast to plasmas with normal monotonic shear. The measured profiles are consistent with predictions of increased alpha loss due to stochastic ripple diffusion and increased first orbit loss in RS plasmas. In experiments in which a short tritium beam pulse is injected into a deuterium RS plasma, the measured DT neutron emission is lower than standard predictions assuming first orbit loss and stochastic ripple diffusion of the beam ions. A microwave reflectometer measured the spatial localization of low toroidal mode number (n), alpha driven toroidal Alfvén eigenmodes (TAEs) in DT RS discharges. Although the observed ballooning character of the n = 4 mode is consistent with predictions of a kinetic MHD stability code, the observed antiballooning nature of the n = 2 mode is not. Furthermore, the modelling does not show the observed strong dependence of mode frequency on n. These alpha driven TAEs do not cause measurable alpha loss in TFTR. Other Alfvén frequency modes with n = 2-4 seen in both DT and DD ERS and RS discharges are localized to the weak magnetic shear region near qmin. In 10-20% of DT discharges, normal low n MHD activity causes alpha loss at levels above the first orbit loss rate.
Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode
NASA Astrophysics Data System (ADS)
Baty, Hubert
2017-03-01
Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.
MHD modeling of a DIII-D low-torque QH-mode discharge and comparison to observations
NASA Astrophysics Data System (ADS)
King, J. R.; Kruger, S. E.; Burrell, K. H.; Chen, X.; Garofalo, A. M.; Groebner, R. J.; Olofsson, K. E. J.; Pankin, A. Y.; Snyder, P. B.
2017-05-01
Extended-MHD modeling of DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] quiescent H-mode (QH-mode) discharges with nonlinear NIMROD [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)] simulations saturates into a turbulent state but does not saturate when the steady-state flow inferred from measurements is not included. This is consistent with the experimental observations of the quiescent regime on DIII-D. The simulation with flow develops into a saturated turbulent state where the nϕ=1 and 2 toroidal modes become dominant through an inverse cascade. Each mode in the range of nϕ=1 -5 is dominant at a different time. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the amplitude and phase of the density and temperature perturbations differ resulting in greater fluctuation-induced convective particle transport relative to the convective thermal transport. Comparison to magnetic-coil measurements shows that rotation frequencies differ between the simulation and experiment, which indicates that more sophisticated extended-MHD two-fluid modeling is required.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.
The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfvén eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up tomore » $$\\gamma /\\omega \\sim 20\\%$$ violating assumptions of perturbative approaches used in NOVA-K code. Lastly, we demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2.« less
Shafer, Morgan W.; Unterberg, Ezekial A.; Wingen, Andreas; ...
2014-12-29
Recent observations on DIII-D have advanced the understanding of plasma response to applied resonant magnetic perturbations (RMPs) in both H-mode and L-mode plasmas. Three distinct 3D features localized in minor radius are imaged via filtered soft x-ray emission: (i) the formation of lobes extending from the unperturbed separatrix in the X-point region at the plasma boundary, (ii) helical kink-like perturbations in the steep-gradient region inside the separatrix, and (iii) amplified islands in the core of a low-rotation L-mode plasma. In this study, these measurements are used to test and to validate plasma response models, which are crucial for providing predictivemore » capability of edge-localized mode control. In particular, vacuum and two-fluid resistive magnetohydrodynamic(MHD) responses are tested in the regions of these measurements. At the plasma boundary in H-mode discharges with n = 3 RMPs applied, measurements compare well to vacuum-field calculations that predict lobe structures. Yet in the steep-gradient region, measurements agree better with calculations from the linear resistive two-fluid MHD code, M3D-C1. Relative to the vacuum fields, the resistive two-fluid MHD calculations show a reduction in the pitch-resonant components of the normal magnetic field (screening), and amplification of non-resonant components associated with ideal kink modes. However, the calculations still over-predict the amplitude of the measuredperturbation by a factor of 4. In a slowly rotating L-mode plasma with n = 1 RMPs, core islands are observed amplified from vacuum predictions. Finally, these results indicate that while the vacuum approach describes measurements in the edge region well, it is important to include effects of extended MHD in the pedestal and deeper in the plasma core.« less
Electromagnetic Torque in Tokamaks with Toroidal Asymmetries
NASA Astrophysics Data System (ADS)
Logan, Nikolas Christopher
Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric coils is often proportional to the energy put into the dominant ideal MHD kink mode. This reduces the control of nonresonant torque to a single mode model, enabling efficient feed forward optimization of applied fields. Initial results including the anisotropic kinetic pressure tensor directly in the plasma eigenmode calculations are presented here, and may eventually provide accurate metrics for multimodal coupling similar to the established single mode metrics.
NASA Astrophysics Data System (ADS)
Bierwage, A.; Todo, Y.
2017-11-01
The transport of fast ions in a beam-driven JT-60U tokamak plasma subject to resonant magnetohydrodynamic (MHD) mode activity is simulated using the so-called multi-phase method, where 4 ms intervals of classical Monte-Carlo simulations (without MHD) are interlaced with 1 ms intervals of hybrid simulations (with MHD). The multi-phase simulation results are compared to results obtained with continuous hybrid simulations, which were recently validated against experimental data (Bierwage et al., 2017). It is shown that the multi-phase method, in spite of causing significant overshoots in the MHD fluctuation amplitudes, accurately reproduces the frequencies and positions of the dominant resonant modes, as well as the spatial profile and velocity distribution of the fast ions, while consuming only a fraction of the computation time required by the continuous hybrid simulation. The present paper is limited to low-amplitude fluctuations consisting of a few long-wavelength modes that interact only weakly with each other. The success of this benchmark study paves the way for applying the multi-phase method to the simulation of Abrupt Large-amplitude Events (ALE), which were seen in the same JT-60U experiments but at larger time intervals. Possible implications for the construction of reduced models for fast ion transport are discussed.
A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Shane W.; Stone, James M.; Jiang Yanfei
2012-03-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiationmore » MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.« less
NASA Astrophysics Data System (ADS)
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-01
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
Wang, Hao; Todo, Yasushi; Ido, Takeshi; Suzuki, Yasuhiro
2018-04-27
Energetic-particle-driven geodesic acoustic modes (EGAMs) observed in a Large Helical Device experiment are investigated using a hybrid simulation code for energetic particles interacting with a magnetohydrodynamic (MHD) fluid. The frequency chirping of the primary mode and the sudden excitation of the half-frequency secondary mode are reproduced for the first time with the hybrid simulation using the realistic physical condition and the three-dimensional equilibrium. Both EGAMs have global spatial profiles which are consistent with the experimental measurements. For the secondary mode, the bulk pressure perturbation and the energetic particle pressure perturbation cancel each other out, and thus the frequency is lower than the primary mode. It is found that the excitation of the secondary mode does not depend on the nonlinear MHD coupling. The secondary mode is excited by energetic particles that satisfy the linear and nonlinear resonance conditions, respectively, for the primary and secondary modes.
Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team
2017-10-01
The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldyrev, Stanislav; Perez, Jean Carlos
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less
The Spectral Web of stationary plasma equilibria. II. Internal modes
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-03-01
The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability (MRI) thought to be operating in accretion disks about black holes. The sequence n =1 ,2 ,… of unstable MRIs is located on one continuous solution path, but also on infinitely many separate loops ("pancakes") of the conjugate path with just one MRI on each of them. For narrow accretion disks, those sequences are connected with the slow magneto-sonic continuum, which is far away though from the marginal stability transition. In this case, the Spectral Web method is the first to effectively incorporate the MRIs into the general MHD spectral theory of equilibria with background flows. Together, the three examples provide compelling evidence of the computational power of the Spectral Web Method.
NASA Astrophysics Data System (ADS)
Bicheng, LI; Zhonghe, JIANG; Jian, LV; Xiang, LI; Bo, RAO; Yonghua, DING
2018-05-01
Nonlinear magnetohydrodynamic (MHD) simulations of an equilibrium on the J-TEXT tokamak with applied resonant magnetic perturbations (RMPs) are performed with NIMROD (non-ideal MHD with rotation, open discussion). Numerical simulation of plasma response to RMPs has been developed to investigate magnetic topology, plasma density and rotation profile. The results indicate that the pure applied RMPs can stimulate 2/1 mode as well as 3/1 mode by the toroidal mode coupling, and finally change density profile by particle transport. At the same time, plasma rotation plays an important role during the entire evolution process.
NASA Astrophysics Data System (ADS)
Logan, Nikolas
2015-11-01
Experiments on DIII-D have demonstrated that multiple kink modes with comparable amplitudes can be driven by applied nonaxisymmetric fields with toroidal mode number n=2, in good agreement with ideal MHD models. In contrast to a single-mode model, the structure of the response measured using poloidally distributed magnetic sensors changes when varying the applied poloidal spectrum. This is most readily evident in that different spectra of applied fields can independently excite inboard and outboard magnetic responses, which are identified as distinct plasma modes by IPEC modeling. The outboard magnetic response is correlated with the plasma pressure and consistent with the long wavelength perturbations of the least stable, pressure driven kinks calculated by DCON and used in IPEC. The models show the structure of the pressure driven modes extends throughout the bad curvature region and into the plasma core. The inboard plasma response is correlated with the edge current profile and requires the inclusion of multiple kink modes with greater stability, including opposite helicity modes, to replicate the experimental observations in the models. IPEC reveals the resulting mode structure to be highly localized in the plasma edge. Scans of the applied spectrum show this response induces the transport that influences the density pump-out, as well as the toroidal rotation drag observed in experiment and modeled using PENT. The classification of these two mode types establishes a new multi-modal paradigm for n=2 plasma response and guides the understanding needed to optimize 3D fields for independent control of stability and transport. Supported by US DOE contract DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
La Haye, R. J.
2015-12-01
ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.
Optimization of DIII-D discharges to avoid AE destabilization
NASA Astrophysics Data System (ADS)
Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori
2017-10-01
The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.
2013-10-01
Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.
Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.
To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less
Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.
2018-03-26
To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less
A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus
NASA Technical Reports Server (NTRS)
Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.
1994-01-01
Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.
NIMROD calculations of energetic particle driven toroidal Alfvén eigenmodes
NASA Astrophysics Data System (ADS)
Hou, Yawei; Zhu, Ping; Kim, Charlson C.; Hu, Zhaoqing; Zou, Zhihui; Wang, Zhengxiong; Nimrod Team
2018-01-01
Toroidal Alfvén eigenmodes (TAEs) are gap modes induced by the toroidicity of tokamak plasmas in the absence of continuum damping. They can be excited by energetic particles (EPs) when the EP drive exceeds other dampings, such as electron and ion Landau damping, and collisional and radiative damping. A TAE benchmark case, which was proposed by the International Tokamak Physics Activity group, is studied in this work. The numerical calculations of linear growth of TAEs driven by EPs in a circular-shaped, large aspect ratio tokamak have been performed using the Hybrid Kinetic-MHD (HK-MHD) model implemented in the NIMROD code. This HK-MHD model couples a δf particle-in-cell representation of EPs with the 3D MHD representation of the bulk plasma through moment closure for the momentum conservation equation. Both the excitation of TAEs and their transition to energetic particle modes (EPMs) have been observed. The influence of EP density, temperature, density gradient, and position of the maximum relative density gradient, on the frequency and the growth rate of TAEs are obtained, which are consistent with those from the eigen-analysis calculations, kinetic-MHD, and gyrokinetic simulations for an initial Maxwellian distribution of EPs. The relative pressure gradient of EP at the radial location of the TAE gap, which represents the drive strength of EPs, can strongly affect the growth rate of TAEs. It is demonstrated that the mode transition due to EP drive variation leads to not only the change of frequency but also the change of the mode structure. This mechanism can be helpful in understanding the nonlinear physics of TAE/EPM, such as frequency chirping.
Excitation of Alfvén modes by energetic particles in magnetic fusion
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.
2012-09-01
Ions with energies above the plasma ion temperature (also called super thermal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma heat source to compensate for energy loss. Sources for super thermal ions are direct injection via neutral beams, RF heating and fusion reactions. Being super thermal, ions have the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD) cavity modes, in particular, various Alfvén and Alfvénacoustic Eigenmodes. It is an area where ideal MHD and kinetic theories can be tested with great accuracy. This paper touches upon key motivations to study the energetic ion interactions with MHD modes. One is the possibility of controlling the heating channel of present and future tokamak reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led to vessel wall damages. This paper reviews some experimental and theoretical advances and the developments of the predictive tools in the area of EP wave interactions. Some recent important results and challenges are discussed. Many predicted instabilities pose a challenge for ITER, where the alpha-particle population is likely to excite various modes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, Z.; Nazikian, R.; Fu, G.Y.
1997-02-01
Alpha-driven toroidal Alfven eigenmodes (TAEs) are observed as predicted by theory in the post neutral beam phase in high central q (safety factor) deuterium-tritium (D-T) plasmas in the Tokamak Fusion Test Reactor (TFTR). The mode location, poloidal structure and the importance of q profile for TAE instability are discussed. So far no alpha particle loss due to these modes was detected due to the small mode amplitude. However, alpha loss induced by kinetic ballooning modes (KBMs) was observed in high confinement D-T discharges. Particle orbit simulation demonstrates that the wave-particle resonant interaction can explain the observed correlation between the increasemore » in alpha loss and appearance of multiple high-n (n {ge} 6, n is the toroidal mode number) modes.« less
NASA Astrophysics Data System (ADS)
Sondak, David; Oberai, Assad
2012-10-01
Novel large eddy simulation (LES) models are developed for incompressible magnetohydrodynamics (MHD). These models include the application of the variational multiscale formulation (VMS) of LES to the equations of incompressible MHD, a new residual-based eddy viscosity model (RBEVM,) and a mixed LES model that combines the strengths of both of these models. The new models result in a consistent numerical method that is relatively simple to implement. A dynamic procedure for determining model coefficients is no longer required. The new LES models are tested on a decaying Taylor-Green vortex generalized to MHD and benchmarked against classical and state-of-the art LES turbulence models as well as direct numerical simulations (DNS). These new models are able to account for the essential MHD physics which is demonstrated via comparisons of energy spectra. We also compare the performance of our models to a DNS simulation by A. Pouquet et al., for which the ratio of DNS modes to LES modes is 262,144. Additionally, we extend these models to a finite element setting in which boundary conditions play a role. A classic problem on which we test these models is turbulent channel flow, which in the case of MHD, is called Hartmann flow.
NASA Astrophysics Data System (ADS)
Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team
2014-10-01
In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Haye, R. J., E-mail: lahaye@fusion.gat.com
2015-12-10
ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after whichmore » assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.« less
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; ...
2016-12-15
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Suzuki, Y.; Sakakibara, S.; Watanabe, K. Y.; Ida, K.; Goto, M.; Du, X. D.; Narushima, Y.; Takemura, Y.; Yamada, H.
In the high beta experiments of the Large Helical Device (LHD), the plasma tends to expand from the last closed flux surface (LCFS) determined by the vacuum magnetic field. The pressure/temperature gradient in the external region is finite. The scale length of the pressure profile does not change so much even when the mean free path of electrons exceeds the connection length of the magnetic field line to the wall. There appear MHD instabilities with amplitude of 10-4 of the toroidal magnetic field. From the mode number of the activities (m/n = 2/3, 1/2, 2/4), the location of the corresponding rational surface is outside the vacuum LCFS. The location of the mode is consistent with the fluctuation measurement, e.g., soft X-ray detector arrays. The MHD mode localized in the magnetic stochastic region is affected by the magnetic field structure estimated by the connection length to the wall using 3D equilibrium calculation.
Tearing mode dynamics and sawtooth oscillation in Hall-MHD
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Zhang, Wei; Wang, Sheng
2017-10-01
Tearing mode instability is one of the most important dynamic processes in space and laboratory plasmas. Hall effects, resulted from the decoupling of electron and ion motions, could cause the fast development and perturbation structure rotation of the tearing mode and become non-negligible. We independently developed high accuracy nonlinear MHD code (CLT) to study Hall effects on the dynamic evolution of tearing modes with Tokamak geometries. It is found that the rotation frequency of the mode in the electron diamagnetic direction is in a good agreement with analytical prediction. The linear growth rate increases with increase of the ion inertial length, which is contradictory to analytical solution in the slab geometry. We further find that the self-consistently generated rotation largely alters the dynamic behavior of the double tearing mode and the sawtooth oscillation. National Magnetic Confinement Fusion Science Program of China under Grant No. 2013GB104004 and 2013GB111004.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenin, V. V.
2010-10-15
It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.
Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
PROGRESS IN THE PEELING-BALLOONING MODEL OF ELMS: TOROIDAL ROTATION AND 3D NONLINEAR DYNAMICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
SNYDER,P.B; WILSON,H.R; XU,X.Q
2004-06-01
Understanding the physics of the H-Mode pedestal and edge localized modes (ELMs) is very important to next-step fusion devices for two primary reasons: (1) The pressure at the top of the edge barrier (''pedestal height'') strongly impacts global confinement and fusion performance, and (2) large ELMs lead to localized transient heat loads on material surfaces that may constrain component lifetimes. The development of the peeling-ballooning model has shed light on these issues by positing a mechanism for ELM onset and constraints on the pedestal height. The mechanism involves instability of ideal coupled ''peeling-ballooning'' modes driven by the sharp pressure gradientmore » and consequent large bootstrap current in the H-mode edge. It was first investigated in the local, high-n limit [1], and later quantified for non-local, finite-n modes in general toroidal geometry [2,3]. Important aspects are that a range of wavelengths may potentially be unstable, with intermediate n's (n {approx} 3-30) generally limiting in high performance regimes, and that stability bounds are strongly sensitive to shape [Fig l(a)], and to collisionality (i.e. temperature and density) [4] through the bootstrap current. The development of efficient MHD stability codes such as ELITE [3,2] and MISHKA [5] has allowed detailed quantification of peeling-ballooning stability bounds (e.g. [6]) and extensive and largely successful comparisons with observation (e.g. [2,6-9]). These previous calculations are ideal, static, and linear. Here we extend this work to incorporate the impact of sheared toroidal rotation, and the non-ideal, nonlinear dynamics which must be studied to quantify ELM size and heat deposition on material surfaces.« less
Varela, Jacobo Rodriguez; Spong, D. A.; Garcia, L.
2017-03-06
Here, energetic particle populations in nuclear fusion experiments can destabilize the Alfvén Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfvén continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfvén mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle β (more » $${{\\beta}_{f}}$$ ) in a range of realistic values, the ratios of the energetic particle thermal/Alfvén velocities ($${{V}_{\\text{th}}}/{{V}_{A0}}$$ ), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n = 1 and n = 2 TAEs are destabilized, although the n = 3 and n = 4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfvén velocity. The frequency range of MHD bursts measured in the LHD are 50–70 kHz for the n = 1 and 60–80 kHz for the n = 2 TAE, which is consistent with the model predictions.« less
Formation and stability of impurity "snakes" in tokamak plasmas.
Delgado-Aparicio, L; Sugiyama, L; Granetz, R; Gates, D A; Rice, J E; Reinke, M L; Bitter, M; Fredrickson, E; Gao, C; Greenwald, M; Hill, K; Hubbard, A; Hughes, J W; Marmar, E; Pablant, N; Podpaly, Y; Scott, S; Wilson, R; Wolfe, S; Wukitch, S
2013-02-08
New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Shweta; Sharma, Prerana; Kaothekar, Sachin
The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modifiedmore » thermal instability and stability are discussed in the different cases of interest.« less
Validating predictive models for fast ion profile relaxation in burning plasmas
Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; ...
2016-07-22
The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfvén eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up tomore » $$\\gamma /\\omega \\sim 20\\%$$ violating assumptions of perturbative approaches used in NOVA-K code. Lastly, we demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2.« less
NASA Astrophysics Data System (ADS)
Rogers, Barrett N.; Zhu, Ben; Francisquez, Manaure
2018-05-01
A gyrokinetic linear stability analysis of a collisionless slab geometry in the local approximation is presented. We focus on k∥=0 universal (or entropy) modes driven by plasma gradients at small and large plasma β. These are small scale non-MHD instabilities with growth rates that typically peak near k⊥ρi˜1 and vanish in the long wavelength k⊥→0 limit. This work also discusses a mode known as the Gradient Drift Coupling (GDC) instability previously reported in the gyrokinetic literature, which has a finite growth rate γ=√{β/[2 (1 +β)] }Cs/|Lp| with Cs2=p0/ρ0 for k⊥→0 and is universally unstable for 1 /Lp≠0 . We show that the GDC instability is a spurious, unphysical artifact that erroneously arises due to the failure to respect the total equilibrium pressure balance p0+B02/(8 π)=constant , which renders the assumption B0'=0 inconsistent if p0'≠0 .
Axisymmetric MHD-stable Mirror as a Neutron Source and a Fusion Reactor
Dr. Dmitri Ryutov
2018-04-17
Dr. Ryutov discusses the concept of axisymmetric mirrors and presents an overview of current experiments and theories. Particular attention is paid to MHD stabilization and the advantages and disadvantages of using mirrors. Future work is identified and further discussed.
Validation of MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.
2017-10-01
Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
Modeling TAE Response To Nonlinear Drives
NASA Astrophysics Data System (ADS)
Zhang, Bo; Berk, Herbert; Breizman, Boris; Zheng, Linjin
2012-10-01
Experiment has detected the Toroidal Alfven Eigenmodes (TAE) with signals at twice the eigenfrequency.These harmonic modes arise from the second order perturbation in amplitude of the MHD equation for the linear modes that are driven the energetic particle free energy. The structure of TAE in realistic geometry can be calculated by generalizing the linear numerical solver (AEGIS package). We have have inserted all the nonlinear MHD source terms, where are quadratic in the linear amplitudes, into AEGIS code. We then invert the linear MHD equation at the second harmonic frequency. The ratio of amplitudes of the first and second harmonic terms are used to determine the internal field amplitude. The spatial structure of energy and density distribution are investigated. The results can be directly employed to compare with experiments and determine the Alfven wave amplitude in the plasma region.
NASA Astrophysics Data System (ADS)
Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.
2017-08-01
We investigate the role of AGN feedback in turbulent heating of galaxy clusters. X-ray measurements of the Perseus Cluster intracluster medium (ICM) by the Hitomi Mission found a velocity dispersion measure of σ ˜ 164 km/s, indicating a large-scale turbulent energy of approximately 4% of the thermal energy. If this energy is transferred to small scales via a turbulent cascade and dissipated as heat, radiative cooling can be offset and the cluster can remain in the observed thermal equilibrium. Using 3D ideal MHD simulations and a plane-parallel model of the ICM, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. Hydrodynamic instabilities shred the bubbles apart before they can excite sufficiently strong g-modes. We examine the role of a large-scale magnetic field which is able to drape around these rising bubbles, preserving them from instabilities. We show that a helical magnetic field geometry is able to better preserve bubbles, driving stronger g-modes; however, the production of turbulence is still inefficient. Magnetic tension acts to stabilize g-modes, preventing the nonlinear transition to turbulence. In addition, the magnetic tension force acts along the field lines to suppress the formation of small-scale vortices. These two effects halt the turbulent cascade. Our work shows that ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. In addition, other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible to account for observed feedback in galaxy clusters.
Overview of NSTX Upgrade initial results and modelling highlights
NASA Astrophysics Data System (ADS)
Menard, J. E.; Allain, J. P.; Battaglia, D. J.; Bedoya, F.; Bell, R. E.; Belova, E.; Berkery, J. W.; Boyer, M. D.; Crocker, N.; Diallo, A.; Ebrahimi, F.; Ferraro, N.; Fredrickson, E.; Frerichs, H.; Gerhardt, S.; Gorelenkov, N.; Guttenfelder, W.; Heidbrink, W.; Kaita, R.; Kaye, S. M.; Kriete, D. M.; Kubota, S.; LeBlanc, B. P.; Liu, D.; Lunsford, R.; Mueller, D.; Myers, C. E.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Reinke, M.; Ren, Y.; Sabbagh, S. A.; Schmitz, O.; Scotti, F.; Sechrest, Y.; Skinner, C. H.; Smith, D. R.; Soukhanovskii, V.; Stoltzfus-Dueck, T.; Yuh, H.; Wang, Z.; Waters, I.; Ahn, J.-W.; Andre, R.; Barchfeld, R.; Beiersdorfer, P.; Bertelli, N.; Bhattacharjee, A.; Brennan, D.; Buttery, R.; Capece, A.; Canal, G.; Canik, J.; Chang, C. S.; Darrow, D.; Delgado-Aparicio, L.; Domier, C.; Ethier, S.; Evans, T.; Ferron, J.; Finkenthal, M.; Fonck, R.; Gan, K.; Gates, D.; Goumiri, I.; Gray, T.; Hosea, J.; Humphreys, D.; Jarboe, T.; Jardin, S.; Jaworski, M. A.; Koel, B.; Kolemen, E.; Ku, S.; La Haye, R. J.; Levinton, F.; Luhmann, N.; Maingi, R.; Maqueda, R.; McKee, G.; Meier, E.; Myra, J.; Perkins, R.; Poli, F.; Rhodes, T.; Riquezes, J.; Rowley, C.; Russell, D.; Schuster, E.; Stratton, B.; Stutman, D.; Taylor, G.; Tritz, K.; Wang, W.; Wirth, B.; Zweben, S. J.
2017-10-01
The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During ten run weeks of operation, NSTX-U surpassed NSTX record pulse-durations and toroidal fields (TF), and high-performance ~1 MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n = 1 no-wall stability limit and with H-mode confinement multiplier H98y,2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the disruption event characterization and forecasting code. Lastly, the materials analysis and particle probe was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.
Overview of NSTX Upgrade Initial Results and Modelling Highlights
Menard, J.E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000312923286); Allain, J.P.; Battaglia, D.J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000188979740); Bedoya, F.; Bell, R.E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000019544498X); Belova, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000215251027); Berkery, J.W. [Columbia University, New York, NY, United States of America; Boyer, M.D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000268459155); Crocker, N.; Diallo, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000020706060X); Ebrahimi, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000331095367); Ferraro, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000263487827); Fredrickson, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Frerichs, H.; Gerhardt, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000225462194); Gorelenkov, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Guttenfelder, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000018181058X); Heidbrink, W.; Kaita, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000285159824); Kaye, S.M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kriete, D.M.; Kubota, S.; LeBlanc, B.P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000314550129); Liu, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000191747078); Lunsford, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000335886801); Mueller, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000224563356); Myers, C.E.; Ono, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Park, J-K. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000324198667); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349750585); Raman, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000220273271); Reinke, M.; Ren, Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000198316035); Sabbagh, S.A.; Schmitz, O.; Scotti, F. [Lawrence Livermore National Laboratory, Livermore, CA, United States of America; Sechrest, Y.; Skinner, C.H. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Smith, D.R. [University of Wisconsin, Madison, WI, United States of America; Soukhanovskii, V.; Stoltzfus-Dueck, T. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000325876298); Yuh, H.; Wang, Z. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Waters, I.; Ahn, J-W.; Andre, R.; Barchfield, R.; Beiersdorfer, P.; Bertelli, N. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000293267585); Bhattacharjee, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000164110178); Boyle, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000180918169); Brennan, D.; Buttery, R.; Capece, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000341477174); Canal, G.; Canik, J.; Chang, C.S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000233465731); Darrow, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Delgado-Aparicio, L. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000167394380); Domier, C.; Ethier, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Evans, T.; Ferron, J.; Finkenthal, M.; Fonck, R.; Gan, K.; Gates, D. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000156793124); Goumiri, I. [University of Wisconsin, Madison, WI, United States of America; Gray, T.; Hosea, J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Humphreys, D.; Jarboe, T.; Jardin, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000163906908); Jaworski, M.A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Koel, B.; Kolemen, E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000342123247); Ku, S. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000299641208); LaHaye, R.J.; Levinton, F.; Luhmann Jr., N.; Maingi, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000312388121); Maqueda, R. [X Science LLC, Plainsboro, NJ, United States of America; McKee, G.; Meier, E.; Myra, J.; Perkins, R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000272160201); Poli, F. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000339594371); Rhodes, T.; Riquezes, J.; Rowley, C. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000290995739); Russell, D.; Schuster, E.; Stratton, B. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Stutman, D.; Taylor, G. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000258487152); Tritz, K. [Johns Hopkins University, Baltimore, MD, United States of America; Wang, W. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Wirth, B.; Zweben, S.J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000217380586)
2017-01-01
The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, H-Mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During 10 run weeks of operation, NSTX-U surpassed NSTX-record pulse-durations and toroidal fields, and high-performance ~1MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n=1 no-wall stability limit and with H-mode confinement multiplier H98y2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven Eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the Disruption Event Characterization and Forecasting (DECAF) code. Lastly, the Materials Analysis and Particle Probe (MAPP) was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.
Overview of NSTX Upgrade initial results and modelling highlights
Menard, J. E.; Allain, J. P.; Battaglia, D. J.; ...
2017-06-20
The National Spherical Torus Experiment (NSTX) has undergone a major upgrade, and the NSTX Upgrade (NSTX-U) Project was completed in the summer of 2015. NSTX-U first plasma was subsequently achieved, diagnostic and control systems have been commissioned, the H-mode accessed, magnetic error fields identified and mitigated, and the first physics research campaign carried out. During ten run weeks of operation, NSTX-U surpassed NSTX record pulse-durations and toroidal fields (TF), and high-performance ~1 MA H-mode plasmas comparable to the best of NSTX have been sustained near and slightly above the n = 1 no-wall stability limit and with H-mode confinement multipliermore » H 98y,2 above 1. Transport and turbulence studies in L-mode plasmas have identified the coexistence of at least two ion-gyro-scale turbulent micro-instabilities near the same radial location but propagating in opposite (i.e. ion and electron diamagnetic) directions. These modes have the characteristics of ion-temperature gradient and micro-tearing modes, respectively, and the role of these modes in contributing to thermal transport is under active investigation. The new second more tangential neutral beam injection was observed to significantly modify the stability of two types of Alfven eigenmodes. Improvements in offline disruption forecasting were made in the areas of identification of rotating MHD modes and other macroscopic instabilities using the disruption event characterization and forecasting code. Finally, the materials analysis and particle probe was utilized on NSTX-U for the first time and enabled assessments of the correlation between boronized wall conditions and plasma performance. These and other highlights from the first run campaign of NSTX-U are described.« less
NASA Astrophysics Data System (ADS)
Todo, Y.; Berk, H. L.; Breizman, B. N.
2012-03-01
A hybrid simulation code for nonlinear magnetohydrodynamics (MHD) and energetic-particle dynamics has been extended to simulate recurrent bursts of Alfvén eigenmodes by implementing the energetic-particle source, collisions and losses. The Alfvén eigenmode bursts with synchronization of multiple modes and beam ion losses at each burst are successfully simulated with nonlinear MHD effects for the physics condition similar to a reduced simulation for a TFTR experiment (Wong et al 1991 Phys. Rev. Lett. 66 1874, Todo et al 2003 Phys. Plasmas 10 2888). It is demonstrated with a comparison between nonlinear MHD and linear MHD simulation results that the nonlinear MHD effects significantly reduce both the saturation amplitude of the Alfvén eigenmodes and the beam ion losses. Two types of time evolution are found depending on the MHD dissipation coefficients, namely viscosity, resistivity and diffusivity. The Alfvén eigenmode bursts take place for higher dissipation coefficients with roughly 10% drop in stored beam energy and the maximum amplitude of the dominant magnetic fluctuation harmonic δBm/n/B ~ 5 × 10-3 at the mode peak location inside the plasma. Quadratic dependence of beam ion loss rate on magnetic fluctuation amplitude is found for the bursting evolution in the nonlinear MHD simulation. For lower dissipation coefficients, the amplitude of the Alfvén eigenmodes is at steady levels δBm/n/B ~ 2 × 10-3 and the beam ion losses take place continuously. The beam ion pressure profiles are similar among the different dissipation coefficients, and the stored beam energy is higher for higher dissipation coefficients.
Hybrid simulation of fishbone instabilities in the EAST tokamak
Shen, Wei; Wang, Feng; Fu, G. Y.; ...
2017-08-11
Hybrid simulations with the global kinetic-magnetohydrodynamic (MHD) code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in the experimental advanced superconducting tokamak (EAST) experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. Our results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a beta-induced Alfvenmore » eigenmode (BAE) with much higher frequency. This BAE is driven by higher energy beam ions. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. Furthermore, for the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution.« less
Manifestations of the MHD and kinetic dynamo through soft x-rays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chartas, G.A.
1991-08-01
The underlying mechanisms that produce and sustain the reversed toroidal field in RFP's are investigated by analyzing 2Dx-ray emissivity reconstruction and by correlating the evolution of the hot electron properties to the reversed toroidal magnetic field. Reconnection of emissivity surfaces as seen in soft x-ray (SXR) reconstructing occur near the predicted resonant surface for the m=1, n=5, 6,-7 resistive tearing modes. Two distinct rates of reversed magnetic field generation are observed. First, in the MHD relaxation phase a sudden increase in B{sub t}(a) is detected. This event coincides with a large increase in the edge hot electron current density. Themore » second mode of flux generation is observed t have a slower rate and occurs during the diffusion phase. A variation of the edge hot electron current density by a factor of four produced only a small change in the measured B{sub t}(a), implying the contributions of the hot electrons to the dynamo during the diffusion phase is small. {tilde T}{sub e}, / was measured to be approximately 60%, which is much larger than the corresponding quantity for the bulk component which is about 30%. Scaling of the magnetic Reynolds number with the diffusion and MHD relaxation time, {tau}{sub MHD} indicated that the {tau}{sub MHD} does not have a strong dependence on the Spitzer resistivity whereas the diffusion time does depend on the classical resistivity. SXR emission mode analysis during the transition from a rotating to a locked plasma shows a decrease in the m=1 Fourier Bastille component of the emissivity. This is due to the flattening of the emissivity profile as seen in the SXR reconstructions.« less
Instabilities in free-surface Hartmann flow at low magnetic Prandtl numbers
NASA Astrophysics Data System (ADS)
Giannakis, Dimitrios
2009-06-01
Free-surface Hartmann flow is the parallel flow of a viscous, electrically conducting, capillary fluid on a planar surface, subject to gravity and a flow- normal magnetic field. This type of flow arises in a variety of industrial and astrophysical contexts, including liquid-metal walls in fusion devices, heavy- ion accelerator targets, and surface layers of white dwarfs and neutron stars. Typically, the Reynolds number, Re >10 4 , is high, and the background magnetic field is strong ( Ha >100, where the Hartmann number, Ha , measures the square root of the ratio of electromagnetic to viscous forces). On the other hand, the magnetic Prandtl number, Pm (the ratio of viscous to magnetic diffusivity), of laboratory fluids is small (e.g., Pm <10 -4 for liquid metals), as is the case in a number of astrophysical models. When the background magnetic field is zero, free-surface Hartmann flow exhibits the so-called soft and hard instability modes; the former being a surface wave destabilized by viscous stresses acting on the free surface, whereas the latter is a shear mode destabilized by positive Reynolds stress associated with an internal critical layer. We study in detail the influence of the external magnetic field on these two instabilities, working in the regime Pm <10^-4. We also consider flows in the inductionless limit, Pr [arrow right]0, where magnetic field perturbations diffuse infinitely fast, and the sole MHD effect is a Lorentz force arising from currents induced by the perturbed fluid motion within the background magnetic field. We have developed a spectral Galerkin method to solve the coupled Orr- Sommerfeld and induction equations, which, in conjunction with suitable stress conditions at the free surface and continuity conditions for the magnetic field, govern the linear stability of free-surface Hartmann flow. Our scheme's discrete bases for the velocity and magnetic fields consist of linear combinations of Legendre polynomials, chosen according to the order of the Sobolev spaces of the continuous problem. The orthogonality properties of the bases solve the matrix-coefficient growth problem of the discrete stability operators, and eigenvalue-eigenfunction pairs can be computed stably at spectral orders at least as large as p =3000 with p -independent roundoff error. We find that, because it is a critical-layer instability (moderately modified by the presence of the free surface), the hard mode exhibits similar behavior to the even unstable mode in the corresponding closed-channel flow, in terms of both the weak influence of Pm on its neutral-stability curve and the monotonic increase of its critical Reynolds number, Re c , with the Hartmann number. In contrast, the soft mode's stability properties exhibit the novel behavior of differing markedly between problems with small, but nonzero, Pm and their counterparts in the inductionless limit. Notably, the critical Reynolds number of the soft mode grows exponentially with Ha in inductionless problems, but when Pm is nonzero that growth is suppressed to either a sublinearly increasing, or a decreasing function of Ha (respectively when the lower wall is an electrical insulator or a perfect conductor). In the insulating-wall case, we also observe pairs of counter-propagating Alfvén waves, the upstream- propagating wave undergoing an instability at high Alfvén numbers. We attribute the observed Pm -sensitivity of the soft instability to the strong-field behavior of the participating inductionless mode, which, even though stabilized by the magnetic field, approaches neutral stability as Ha grows. This near-equilibrium is consistent with a balance between Lorentz and gravitational forces, and renders the mode susceptible to effects associated with the dynamical response of the magnetic field to the flow (which vanishes in the inductionless limit), even when the magnetic diffusivity is large. The boundary conditions play a major role in the magnetic field response to the flow, since they determine (i) the properties of the steady-state induced current, which couples magnetic perturbations to the velocity field, and (ii) the presence or not of magnetic modes in the spectrum (these modes are not part of the spectrum of conducting-wall problems), which interact with the hydrodynamic ones, including the soft mode. In general, our analysis indicates that the inductionless approximation must be used with caution when dealing with free-surface MHD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karami, K.; Bahari, K., E-mail: KKarami@uok.ac.ir, E-mail: K.Bahari@razi.ac.ir
2012-10-01
We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order ofmore » magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.« less
NASA Astrophysics Data System (ADS)
Chacon, L.; Finn, J. M.; Knoll, D. A.
2000-10-01
Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
The energy associated with MHD waves generation in the solar wind plasma
NASA Technical Reports Server (NTRS)
delaTorre, A.
1995-01-01
Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.
MHD control experiments in the Extrap T2R Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.
2004-11-01
We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.
Linear instability regimes in L-mode edges using reduced MHD models in BOUT + +
NASA Astrophysics Data System (ADS)
Bass, Eric; Holland, Chris; Cohen, Bruce; Umansky, Maxim
2016-10-01
We compare linear instabilities in the edge of two DIII-D L-mode discharges using reduced two-fluid MHD models implemented in BOUT + +. Discharge 119919, a case used in a previous BOUT + + validation study, has a cold edge and is dominated by resistive ballooning modes (RBMs). Hotter discharge 128913, an L-mode shortfall benchmark case, is drift-wave (DW) dominant. The model captures essential drift wave physics through the electron pressure parallel gradient drive term in the A| | evolution. At relevant toroidal mode numbers (50-200), the leading DWs in 128913 are flutelike with high kr and require about an order of magnitude greater radial resolution than the leading RBMs in 119919. We quantify when such high kr modes must be resolved in practice. To aid eigenfunction confirmation, and to identify potential subdominant DWs, a companion eigenvalue solver for the BOUT + + models is under development. Prepared by UCSD under Contract Number DE-FG02-06ER54871.
Nonlinear helicons bearing multi-scale structures
NASA Astrophysics Data System (ADS)
Abdelhamid, Hamdi M.; Yoshida, Zensho
2017-02-01
The helicon waves exhibit varying characters depending on plasma parameters, geometry, and wave numbers. Here, we elucidate an intrinsic multi-scale property embodied by the combination of the dispersive effect and nonlinearity. The extended magnetohydrodynamics model (exMHD) is capable of describing a wide range of parameter space. By using the underlying Hamiltonian structure of exMHD, we construct an exact nonlinear solution, which turns out to be a combination of two distinct modes, the helicon and Trivelpiece-Gould (TG) waves. In the regime of relatively low frequency or high density, however, the combination is made of the TG mode and an ion cyclotron wave (slow wave). The energy partition between these modes is determined by the helicities carried by the wave fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takamoto, Makoto; Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: alazarian@facstaff.wisc.edu
2016-11-10
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using three-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfvén) following the procedure of mode decomposition in Cho and Lazarian, and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfvén mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfvén Mach number, but also with the background magnetization, which indicates a strong coupling between the fastmore » and Alfvén modes. It also signifies the appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfvén modes are strongly coupled and, unlike the non-relativistic MHD regime, cannot be treated separately. This finding will affect particle acceleration efficiency obtained by assuming Alfvénic critical-balance turbulence and can change the resulting photon spectra emitted by non-thermal electrons.« less
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
Laboratory Study of MHD Effects on Stability of Free-surface Liquid Metal Flow
NASA Astrophysics Data System (ADS)
Burin, M. J.; Ji, H.; McMurtry, K.; Peterson, L.; Giannakis, D.; Rosner, R.; Fischer, P.
2006-10-01
The dynamics of free-surface MHD shear flows is potentially important to both astrophysics (e.g. in the mixing of dense plasma accreted upon neutron star surfaces) and fusion reactors (e.g. in liquid metal ‘first walls’). To date however few relevant experiments exist. In order to study the fundamental physics of such flows, a small-scale laboratory experiment is being built using a liquid gallium alloy flowing in an open- channel geometry. The flow dimensions are nominally 10cm wide, 1cm deep, and 70cm long under an imposed magnetic field up to 7kG, leading to maximum Hartman number of 2000 and maximum Reynolds number of 4x10^5. Two basic physics issues will ultimately be addressed: (1) How do MHD effects modify the stability of the free surface? For example, is the flow more stable (through the suppression of cross-field motions), or less stable (through the introduction of new boundary layers)? We also investigate whether internal shear layers and imposed electric currents can control the surface stability. (2) How do MHD effects modify free-surface convection driven by a vertical and/or horizontal temperature gradient? We discuss aspects of both of these issues, along with detailed descriptions of the experimental device. Pertinent theoretical stability analyses and initial hydrodynamic results are presented in companion posters. This work is supported by DoE under contract #DE-AC02-76-CH03073.
Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.
2006-10-01
In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.
Understanding the stability of the low torque ITER Baseline Scenario in DIII-D
NASA Astrophysics Data System (ADS)
Turco, Francesca
2017-10-01
Analysis of the evolving current density (J), pedestal and rotation profiles in a database of 200 ITER Baseline Scenario discharges in the DIII-D tokamak sheds light on the cause of the disruptive instability limiting both high and low torque operation of these plasmas. The m =2/n =1 tearing modes, occurring after several pressure-relaxation times, are related to the shape of the current profile in the outer region of the plasma. The q =2 surface is located just inside the current pedestal, near a minimum in J. This well in J deepens at constant betaN and at lower rotation, causing the equilibrium to evolve towards a classically unstable state. Lack of core-edge differential rotation likely biases the marginal point towards instability during the secular trend in J. New results from the 2017 experimental campaign establish the first reproducible, stable operation at T =0 Nm for this scenario. A new ramp-up recipe with delayed heating keeps the discharges stable without the need for ECCD stabilization. The J profile shape in the new shots is consistent with an expansion of the previous ``shallow well'' stable operational space. Realtime Active MHD Spectroscopy (AMS) has been applied to IBS plasmas for the first time, and the plasma response measurements show that the AMS can help sense the approach to instability during the discharges. The AMS data shows the trend towards instability at low rotation, and MARS-K modelling partially reproduces the experimental trend if collisionality and resistivity are included. The modelling results are sensitive to the edge resistivity, and this can indicate that the AMS is measuring the changes in ideal (kink) stability, to which the tearing stability index delta' is correlated. Together these results constitute a crucial step to acquire physical understanding and sensing capability for the MHD stability in the Q =10 ITER scenario. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.
Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas
NASA Astrophysics Data System (ADS)
Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA
2018-01-01
The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
Visco-Resistive MHD Modeling Benchmark of Forced Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Hegna, C. C.; Sovinec, C. R.; Callen, J. D.; Ferraro, N. M.
2016-10-01
The presence of externally-applied 3D magnetic fields can affect important phenomena in tokamaks, including mode locking, disruptions, and edge localized modes. External fields penetrate into the plasma and can lead to forced magnetic reconnection (FMR), and hence magnetic islands, on resonant surfaces if the local plasma rotation relative to the external field is slow. Preliminary visco-resistive MHD simulations of FMR in a slab geometry are consistent with theory. Specifically, linear simulations exhibit proper scaling of the penetrated field with resistivity, viscosity, and flow, and nonlinear simulations exhibit a bifurcation from a flow-screened to a field-penetrated, magnetic island state as the external field is increased, due to the 3D electromagnetic force. These results will be compared to simulations of FMR in a circular cross-section, cylindrical geometry by way of a benchmark between the NIMROD and M3D-C1 extended-MHD codes. Because neither this geometry nor the MHD model has the physics of poloidal flow damping, the theory of will be expanded to include poloidal flow effects. The resulting theory will be tested with linear and nonlinear simulations that vary the resistivity, viscosity, flow, and external field. Supported by OFES DoE Grants DE-FG02-92ER54139, DE-FG02-86ER53218, DE-AC02-09CH11466, and the SciDAC Center for Extended MHD Modeling.
NASA Astrophysics Data System (ADS)
Suttrop, W.; Kirk, A.; Nazikian, R.; Leuthold, N.; Strumberger, E.; Willensdorfer, M.; Cavedon, M.; Dunne, M.; Fischer, R.; Fietz, S.; Fuchs, J. C.; Liu, Y. Q.; McDermott, R. M.; Orain, F.; Ryan, D. A.; Viezzer, E.; The ASDEX Upgrade Team; The DIII-D Team; The Eurofusion MST1 Team
2017-01-01
The interaction of externally applied small non-axisymmetric magnetic perturbations (MP) with tokamak high-confinement mode (H-mode) plasmas is reviewed and illustrated by recent experiments in ASDEX Upgrade. The plasma response to the vacuum MP field is amplified by stable ideal kink modes with low toroidal mode number n driven by the H-mode edge pressure gradient (and associated bootstrap current) which is experimentally evidenced by an observable shift of the poloidal mode number m away from field alignment (m = qn, with q being the safety factor) at the response maximum. A torque scan experiment demonstrates the importance of the perpendicular electron flow for shielding of the resonant magnetic perturbation, as expected from a two-fluid MHD picture. Two significant effects of MP occur in H-mode plasmas at low pedestal collisionality, ν \\text{ped}\\ast≤slant 0.4 : (a) a reduction of the global plasma density by up to 61 % and (b) a reduction of the energy loss associated with edge localised modes (ELMs) by a factor of up to 9. A comprehensive database of ELM mitigation pulses at low {ν\\ast} in ASDEX Upgrade shows that the degree of ELM mitigation correlates with the reduction of pedestal pressure which in turn is limited and defined by the onset of ELMs, i. e. a modification of the ELM stability limit by the magnetic perturbation.
L-H transition and pedestal studies on MAST
NASA Astrophysics Data System (ADS)
Meyer, H.; De Bock, M. F. M.; Conway, N. J.; Freethy, S. J.; Gibson, K.; Hiratsuka, J.; Kirk, A.; Michael, C. A.; Morgan, T.; Scannell, R.; Naylor, G.; Saarelma, S.; Saveliev, A. N.; Shevchenko, V. F.; Suttrop, W.; Temple, D.; Vann, R. G. L.; MAST, the; NBI Teams
2011-11-01
On MAST studies of the profile evolution of the electron temperature (Te), electron density (ne), radial electric field (Er) as well as novel measurements of the ion temperature (Ti) and toroidal current density (jphi) in the pedestal region allow further insight into the processes forming and defining the pedestal such as the H-mode access conditions and MHD stability. This includes studies of fast evolution of Te, ne and Er with Δt = 0.2 ms time resolution and the evolution of pe and jphi through an edge-localized mode (ELM) cycle. Measurements of the H-mode power threshold, PL-H revealed that about 40% more power is required to access H-mode in 4He than in D and that a change in the Z-position of the X-point can change PL-H significantly in single and double null configurations. The profile measurements in the L-mode phase prior to H-mode suggest that neither the gradient nor the value of the mean Te or Er at the plasma edge play a major role in triggering the L-H transition. After the transitions, first the fluctuations are suppressed, then the Er shear layer and the ne pedestal develops followed by the Te pedestal. In the banana regime at low collisionality (νsstarf) ∇Ti ≈ 0 leading to Ti > Te in the pedestal region with Ti ~ 0.3 keV close to the separatrix. A clear correlation of ∇Ti with νsstarf is observed. The measured jphi (using the motional Stark effect) Te and ne are in broad agreement with the common peeling-ballooning stability picture for ELMs and neoclassical calculations of the bootstrap current. The jphi and ∇pe evolution Δt ≈ 2 ms as well as profiles in discharges with counter current neutral beam injection raise questions with respect to this edge stability picture.
Dynamic Behavior of Spicules Inferred from Perpendicular Velocity Components
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rahul; Verth, Gary; Erdélyi, Robertus
2017-05-10
Understanding the dynamic behavior of spicules, e.g., in terms of magnetohydrodynamic (MHD) wave mode(s), is key to unveiling their role in energy and mass transfer from the photosphere to corona. The transverse, torsional, and field-aligned motions of spicules have previously been observed in imaging spectroscopy and analyzed separately for embedded wave-mode identification. Similarities in the Doppler signatures of spicular structures for both kink and torsional Alfvén wave modes have led to the misinterpretation of the dominant wave mode in these structures and is a subject of debate. Here, we aim to combine line- of-sight (LOS) and plane-of-sky (POS) velocity componentsmore » using the high spatial/temporal resolution H α imaging-spectroscopy data from the CRisp Imaging SpectroPolarimeter based at the Swedish Solar Telescope to achieve better insight into the underlying nature of these motions as a whole. The resultant three-dimensional velocity vectors and the other derived quantities (e.g., magnetic pressure perturbations) are used to identify the MHD wave mode(s) responsible for the observed spicule motion. We find a number of independent examples where the bulk transverse motion of the spicule is dominant either in the POS or along the LOS. It is shown that the counterstreaming action of the displaced external plasma due to spicular bulk transverse motion has a similar Doppler profile to that of the m = 0 torsional Alfvén wave when this motion is predominantly perpendicular to the LOS. Furthermore, the inferred magnetic pressure perturbations support the kink wave interpretation of observed spicular bulk transverse motion rather than any purely incompressible MHD wave mode, e.g., the m = 0 torsional Alfvén wave.« less
Quasi-static MHD processes in earth's magnetosphere
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes
1988-01-01
An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.
NASA Astrophysics Data System (ADS)
Varela, J.; Spong, D. A.; Garcia, L.
2017-04-01
Energetic particle populations in nuclear fusion experiments can destabilize the Alfvén Eigenmodes through inverse Landau damping and couplings with gap modes in the shear Alfvén continua. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles. We add the Landau damping and resonant destabilization effects using a closure relation. We apply the model to study the Alfvén mode stability in the inward-shifted configurations of the Large Helical Device (LHD), performing a parametric analysis of the energetic particle β ({βf} ) in a range of realistic values, the ratios of the energetic particle thermal/Alfvén velocities ({{V}\\text{th}}/{{V}A0} ), the magnetic Lundquist numbers (S) and the toroidal modes (n). The n = 1 and n = 2 TAEs are destabilized, although the n = 3 and n = 4 TAEs are weakly perturbed. The most unstable configurations are associated with the density gradients of energetic particles in the plasma core: the TAEs are destabilized, even for small energetic particle populations, if their thermal velocity is lower than 0.4 times the Alfvén velocity. The frequency range of MHD bursts measured in the LHD are 50-70 kHz for the n = 1 and 60-80 kHz for the n = 2 TAE, which is consistent with the model predictions. ).
NASA Astrophysics Data System (ADS)
Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.
2007-09-01
LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.
Nonlinear fishbone dynamics in spherical tokamaks
Wang, Feng [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Dalian Univ Technol, Sch Phys & Optoelect Technol, Minist Educ, Key Lab Mat Modificat Laser Ion & Electron Beams, Dalian 116024, Peoples R China.; Fu, G.Y. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Institute for Fusion Theory and Simulation and Department of Physics Hangzhou, Zhejiang University, Hangzhou, 310027, People's Republic of China; Shen, Wei [Institute of Plasma Physics, Chinese Academy of Science, Hefei 230031, People's Republic of China
2017-01-01
Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. The results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturates due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. A substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.
Nonlinear fishbone dynamics in spherical tokamaks
Wang, Feng; Fu, G. Y.; Shen, Wei
2016-11-22
Linear and nonlinear kinetic-MHD hybrid simulations have been carried out to investigate linear stability and nonlinear dynamics of beam-driven fishbone instability in spherical tokamak plasmas. Realistic NSTX parameters with finite toroidal rotation were used. Our results show that the fishbone is driven by both trapped and passing particles. The instability drive of passing particles is comparable to that of trapped particles in the linear regime. The effects of rotation are destabilizing and a new region of instability appears at higher q min (>1.5) values, q min being the minimum of safety factor profile. In the nonlinear regime, the mode saturatesmore » due to flattening of beam ion distribution, and this persists after initial saturation while mode frequency chirps down in such a way that the resonant trapped particles move out radially and keep in resonance with the mode. Correspondingly, the flattening region of beam ion distribution expands radially outward. Furthermore, a substantial fraction of initially non-resonant trapped particles become resonant around the time of mode saturation and keep in resonance with the mode as frequency chirps down. On the other hand, the fraction of resonant passing particles is significantly smaller than that of trapped particles. Finally, our analysis shows that trapped particles provide the main drive to the mode in the nonlinear regime.« less
Marginal Stability of Sweet–Parker Type Current Sheets at Low Lundquist Numbers
NASA Astrophysics Data System (ADS)
Shi, Chen; Velli, Marco; Tenerani, Anna
2018-06-01
Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number S c exists, hovering around S c ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.
Sub-Alfvénic reduced magnetohydrodynamic equations for tokamaks
NASA Astrophysics Data System (ADS)
Sengupta, W.; Hassam, A. B.; Antonsen, T. M.
2017-06-01
A reduced set of magnetohydrodynamic (MHD) equations is derived, applicable to large aspect ratio tokamaks and relevant for dynamics that is sub-Alfvénic with respect to ideal ballooning modes. This ordering optimally allows sound waves, Mercier modes, drift modes, geodesic-acoustic modes (GAM), zonal flows and shear Alfvén waves. Wavelengths long compared to the gyroradius but comparable to the minor radius of a typical tokamak are considered. With the inclusion of resistivity, tearing modes, resistive ballooning modes, Pfirsch-Schluter cells and the Stringer spin-up are also included. A major advantage is that the resulting system is two-dimensional in space, and the system incorporates self-consistent and dynamic Shafranov shifts. A limitation is that the system is valid only in radial domains where the tokamak safety factor, , is close to rational. In the tokamak core, the system is well suited to study the sawtooth discharge in the presence of Mercier modes. The systematic ordering scheme and methodology developed are versatile enough to reduce the more general collisional two-fluid equations or possibly the Vlasov-Maxwell system in the MHD ordering.
Energy spectrum of tearing mode turbulence in sheared background field
NASA Astrophysics Data System (ADS)
Hu, Di; Bhattacharjee, Amitava; Huang, Yi-Min
2018-06-01
The energy spectrum of tearing mode turbulence in a sheared background magnetic field is studied in this work. We consider the scenario where the nonlinear interaction of overlapping large-scale modes excites a broad spectrum of small-scale modes, generating tearing mode turbulence. The spectrum of such turbulence is of interest since it is relevant to the small-scale back-reaction on the large-scale field. The turbulence we discuss here differs from traditional MHD turbulence mainly in two aspects. One is the existence of many linearly stable small-scale modes which cause an effective damping during the energy cascade. The other is the scale-independent anisotropy induced by the large-scale modes tilting the sheared background field, as opposed to the scale-dependent anisotropy frequently encountered in traditional critically balanced turbulence theories. Due to these two differences, the energy spectrum deviates from a simple power law and takes the form of a power law multiplied by an exponential falloff. Numerical simulations are carried out using visco-resistive MHD equations to verify our theoretical predictions, and a reasonable agreement is found between the numerical results and our model.
NASA Astrophysics Data System (ADS)
Kuzmin, R. N.; Savenkova, N. P.; Shobukhov, A. V.; Kalmykov, A. V.
2018-03-01
The paper deals with investigation of the MHD-stability dependence on the depth of the anode immersion in the process of aluminium electrolysis. The proposed 3D three-phase mathematical model is based on the Navier-Stokes and Maxwell equation systems. This model makes it possible to simulate the distributions of the main physical fields both in horizontal and vertical planes. The suggested approach also allows to study the dynamics of the border between aluminium and electrolyte and the shape of the back oxidation zone.
Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause
NASA Astrophysics Data System (ADS)
Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.
2018-05-01
A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.
NASA Astrophysics Data System (ADS)
Tang, S.; Thome, K.; Pace, D.; Heidbrink, W. W.; Carter, T. A.; Crocker, N. A.; NSTX-U Collaboration; DIII-D Collaboration
2017-10-01
An experimental investigation of the stability of Doppler-shifted cyclotron resonant compressional Alfvén eigenmodes (CAE) using the flexible DIII-D neutral beams has begun to validate a theoretical understanding and realize the CAE's diagnostic potential. CAEs are excited by energetic ions from neutral beams [Heidbrink, NF 2006], with frequencies and toroidal mode numbers sensitive to the fast-ion phase space distribution, making them a potentially powerful passive diagnostic. The experiment also contributes to a predictive capability for spherical tokamak temperature profiles, where CAEs may play a role in energy transport [Crocker, NF 2013]. CAE activity was observed using the recently developed Ion Cyclotron Emission diagnostic-high bandwidth edge magnetic sensors sampled at 200 MS/s. Preliminary results show CAEs become unstable in BT ramp discharges below a critical threshold in the range 1.7 - 1.9 T, with the exact value increasing as density increases. The experiment will be used to validate simulations from relevant codes such as the Hybrid MHD code [Belova, PRL 2015]. This work was supported by US DOE Grants DE-SC0011810 and DE-FC02-04ER54698.
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
Plasma Braking Due to External Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.
2010-11-01
The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.
Resistive MHD Simulation of Quasi-Single-Helicity State on KTX
NASA Astrophysics Data System (ADS)
Luo, Bing; Zhu, Ping; Li, Hong; Liu, Wandong
2016-10-01
The potential formation of quasi-single-helicity (QSH) state on Keda Torus eXperiment (KTX) is evaluated in resistive MHD simulations using the NIMROD code. In this work, we focus on the effects of finite resistivity on the mode structure and characteristics of the dominant linear and nonlinear resistive tearing-mode instability in a finite β, cylindrical reversed field pinch model configuration for KTX. In the typical resistivity regimes of KTX where Lundquist number S =105 , the plasma reaches a steady QSH state after the initial transient phase of multiple helicities. The dominat mode of the QSH state is developed from the dominat linear tearing mode instability. The conditions for and the variations of the formation of QSH states in different resistivity regimes of KTX will be reported and discussed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.
Resistive MHD modelling of the quasi-single helicity state in the KTX regimes
NASA Astrophysics Data System (ADS)
Luo, Bing; Zhu, Ping; Li, Hong; Liu, Wandong; KTX Team
2018-01-01
The potential formation of a quasi-single-helicity (QSH) state in the Keda Torus eXperiment (KTX) is investigated in resistive MHD simulations using the NIMROD code. We focus on the effects of finite resistivity on the mode structure and characteristics of the dominant linear and nonlinear resistive tearing-mode in a finite β, cylindrical configuration of a reversed field pinch model for KTX. In the typical resistive regimes of KTX where the Lundquist number S=5 × 104 , the plasma transitions to a steady QSH state after evolving through an initial transient phase with multiple helicities. The dominant mode of the QSH state develops from the dominant linear tearing mode instability. In the lower β regime, the QSH state is intermittent and short in duration; in the higher β regime, the QSH state persists for a longer time and should be more easily observed in experiments.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-01-01
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346
Flow shear stabilization of rotating plasmas due to the Coriolis effect.
Haverkort, J W; de Blank, H J
2012-07-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.
Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu
2016-03-01
Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Lazarian, A.; Yan, Huirong, E-mail: hryan@pku.edu.cn
We address the problem of the different line widths of coexistent neutrals and ions observed in molecular clouds and explore whether this difference can arise from the effects of magnetohydrodynamic (MHD) turbulence acting on partially ionized gas. Among the three fundamental modes of MHD turbulence, we find that fast and slow modes do not contribute to line width differences. We focus on the Alfvénic component, and consider the damping of Alfvén modes by taking into account both neutral-ion collisions and neutral viscosity. We confirm that the line width difference can be explained by the differential damping of the Alfvénic turbulencemore » in ions and the hydrodynamic turbulence in neutrals, and find it strongly depends on the properties of MHD turbulence. We consider various regimes of turbulence corresponding to different media magnetizations and turbulent drivings. In the case of super-Alfvénic turbulence, when the damping scale of Alfvénic turbulence is below the Alfvénic scale l{sub A}, the line width difference does not depend on magnetic field strength. In other turbulence regimes, however, the dependence is present and evaluation of magnetic field from the observed line width difference is possible.« less
Frequency chirpings in Alfven continuum
NASA Astrophysics Data System (ADS)
Wang, Ge; Berk, Herb; Breizman, Boris; Zheng, Linjin
2017-10-01
We have used a self-consistent mapping technique to describe both the nonlinear wave-energetic particle resonant interaction and its spatial mode structure that depends upon the resonant energetic particle pressure. At the threshold for the onset of the energetic particle mode (EPM), strong chirping emerges in the lower continuum close to the TAE gap and then, driven by strong continuum damping, chirps rapidly to lower frequencies in the Alfven continuum. An adiabatic theory was developed that accurately replicated the results from the simulation where the nonlinearity was only due to the EPM resonant particles. The results show that the EPM-trapped particles have their action conserved during the time of rapid chirping. This adiabaticity enabled wave trapped particles to be confined within their separatrix, and produce even larger resonant structures, that can produce a large amplitude mode far from linearly predicted frequencies. In the present work we describe the effect of additional MHD nonlinearity to this calculation. We studied how the zonal flow component and its nonlinear feedback to the fundamental frequency and found that the MHD nonlinearity doesn't significantly alter the frequency chirping response that is predicted by the calculation that neglects the MHD nonlinearity.
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Broadening of divertor heat flux profile with increasing number of ELM filaments in NSTX
Ahn, J. -W.; Maingi, R.; Canik, J. M.; ...
2014-11-13
Edge localized modes (ELMs) represent a challenge to future fusion devices, owing to cyclical high peak heat fluxes on divertor plasma facing surfaces. One ameliorating factor has been that the heat flux characteristic profile width has been observed to broaden with the size of the ELM, as compared with the inter-ELM heat flux profile. In contrast, the heat flux profile has been observed to narrow during ELMs under certain conditions in NSTX. Here we show that the ELM heat flux profile width increases with the number of filamentary striations observed, i.e., profile narrowing is observed with zero or very fewmore » striations. Because NSTX often lies on the long wavelength current-driven mode side of ideal MHD instabilities, few filamentary structures can be expected under many conditions. Lastly, ITER is also projected to lie on the current driven low-n stability boundary, and therefore detailed projections of the unstable modes expected in ITER and the heat flux driven in ensuing filamentary structures is needed.« less
An Overview of NSTX Research Facility and Recent Experimental Results
NASA Astrophysics Data System (ADS)
Ono, Masayuki
2006-10-01
The 2006 NSTX experimental campaign yielded significant new experimental results in many areas. Improved plasma control achieved the highest elongation of 2.9 and plasma shape factor q95Ip/aBT = 42 MA/m.T. Active feedback correction of error fields sustained the plasma rotation and increased the pulse length of high beta discharges. Active feedback stabilization of the resistive wall mode in high-beta, low-rotation plasmas was demonstrated for ˜100 resistive wall times. Operation at higher toroidal field showed favorable plasma confinement and HHFW heating efficiency trends with the field. A broader current profile, measured by the 12-channel MSE diagnostic in high beta discharges revealed an outward anomalous diffusivity of energetic ions due to the n=1 MHD modes. A tangential microwave scattering diagnostic measured localized electron gyro-scale fluctuations in L-mode, H-mode and reversed-shear plasmas. Evaporation of lithium onto plasma facing surfaces yielded lower density, higher temperature and improved confinement. A strong dependence of the divertor heat load and ELM behavior on the plasma triangularity was observed. Coaxial helicity injection produced a start-up current of 160 kA on closed flux surfaces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joung, M.; Woo, M. H.; Jeong, J. H.
For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration withmore » PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.« less
Time-dependent simulation of oblique MHD cosmic-ray shocks using the two-fluid model
NASA Technical Reports Server (NTRS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu
1995-01-01
Using a new, second-order accurate numerical method we present dynamical simulations of oblique MHD cosmic-ray (CR)-modified plane shock evolution. Most of the calculations are done with a two-fluid model for diffusive shock acceleration, but we provide also comparisons between a typical shock computed that way against calculations carried out using the more complete, momentum-dependent, diffusion-advection equation. We also illustrate a test showing that these simulations evolve to dynamical equilibria consistent with previously published steady state analytic calculations for such shocks. In order to improve understanding of the dynamical role of magnetic fields in shocks modified by CR pressure we have explored for time asymptotic states the parameter space of upstream fast mode Mach number, M(sub f), and plasma beta. We compile the results into maps of dynamical steady state CR acceleration efficiency, epsilon(sub c). We have run simulations using constant, and nonisotropic, obliquity (and hence spatially) dependent forms of the diffusion coefficient kappa. Comparison of the results shows that while the final steady states achieved are the same in each case, the history of CR-MHD shocks can be strongly modified by variations in kappa and, therefore, in the acceleration timescale. Also, the coupling of CR and MHD in low beta, oblique shocks substantially influences the transient density spike that forms in strongly CR-modified shocks. We find that inside the density spike a MHD slow mode wave can be generated that eventually steepens into a shock. A strong layer develops within the density spike, driven by MHD stresses. We conjecture that currents in the shear layer could, in nonplanar flows, results in enhanced particle accretion through drift acceleration.
NASA Astrophysics Data System (ADS)
Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.
2016-04-01
Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.
Emission of magnetosound from MHD-unstable shear flow boundaries
NASA Astrophysics Data System (ADS)
Turkakin, H.; Rankin, R.; Mann, I. R.
2016-09-01
The emission of propagating MHD waves from the boundaries of flow channels that are unstable to the Kelvin-Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave emission are found to be two competing processes. It is shown that the fastest growing modes of the KHI surface waves do not coincide with efficient wave energy transport away from a velocity shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface waves are maximum, which corresponds to the situation where the ambient magnetic field is perpendicular to the flow channel velocity vector. The efficiency of wave emission increases with increasing magnetic field tension, which in Earth's magnetosphere likely dominates along the nightside magnetopause tailward of the terminator, and within earthward Bursty Bulk Flows (BBFs) in the inner plasma sheet. MHD wave emission may also dominate in Supra-Arcade Downflows (SADs) in the solar corona. Our results suggest that efficient emission of propagating MHD waves along BBF and SAD boundaries can potentially explain observations of deceleration and stopping of BBFs and SADs.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT
NASA Astrophysics Data System (ADS)
Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration
2017-10-01
The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).
Hybrid simulation of fishbone instabilities in the EAST tokamak
NASA Astrophysics Data System (ADS)
Shen, Wei; Fu, Guoyong; Wang, Feng; Xu, Liqing; Li, Guoqiang; Liu, Chengyue; EAST Team
2017-10-01
Hybrid simulations with the global kinetic- MHD code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven fishbone in EAST experiment. Linear simulations show that a low frequency fishbone instability is excited at experimental value of beam ion pressure. The mode is mainly driven by low energy beam ions via precessional resonance. The results are consistent with the experimental measurement with respect to mode frequency and mode structure. When the beam ion pressure is increased to exceed a critical value, the low frequency mode transits to a BAE with much higher frequency. Nonlinear simulations show that the frequency of the low frequency fishbone chirps up and down with corresponding hole-clump structures in phase space, consistent with the Berk-Breizman theory. In addition to the low frequency mode, the high frequency BAE is excited during the nonlinear evolution. For the transient case of beam pressure fraction where the low and high frequency modes are simultaneously excited in the linear phase, only one dominant mode appears in the nonlinear phase with frequency jumps up and down during nonlinear evolution. This work is supported by the National Natural Science Foundation of China under Grant Nos. 11605245 and 11505022, and the CASHIPS Director's Fund under Grant No. YZJJ201510, and the Department of Energy Scientific Discovery through Advanced Computing (SciDAC) under Grant No. DE-AC02-09CH11466.
Nonlinear simulation of the fishbone instability
NASA Astrophysics Data System (ADS)
Idouakass, Malik; Faganello, Matteo; Berk, Herbert; Garbet, Xavier; Benkadda, Sadruddin; PIIM Team; IFS Team; IRFM Team
2014-10-01
We propose to extend the Odblom-Breizman precessional fishbone model to account for both the MagnetoHydroDynamic (MHD) nonlinearity at the q = 1 surface and the nonlinear response of the energetic particles contained within the q = 1 surface. This electromagnetic mode, whose excitation, damping and frequency chirping are determined by the self-consistent interaction between an energetic trapped particle population and the bulk plasma evolution, can induce effective transport and losses for the energetic particles, being them alpha-particles in next-future fusion devices or heated particles in present Tokamaks. The model is reduced to its simplest form, assuming a reduced MHD description for the bulk plasma and a two-dimensional phase-space evolution (gyro and bounce averaged) for deeply trapped energetic particles. Numerical simulations have been performed in order to characterize the mode chirping and saturation, in particular looking at the interplay between the development of phase-space structures and the system dissipation associated to the MHD non-linearities at the resonance locations.
NASA Astrophysics Data System (ADS)
Piantschitsch, Isabell; Vršnak, Bojan; Hanslmeier, Arnold; Lemmerer, Birgit; Veronig, Astrid; Hernandez-Perez, Aaron; Čalogović, Jaša
2018-06-01
We performed 2.5D magnetohydrodynamic (MHD) simulations showing the propagation of fast-mode MHD waves of different initial amplitudes and their interaction with a coronal hole (CH), using our newly developed numerical code. We find that this interaction results in, first, the formation of reflected, traversing, and transmitted waves (collectively, secondary waves) and, second, in the appearance of stationary features at the CH boundary. Moreover, we observe a density depletion that is moving in the opposite direction of the incoming wave. We find a correlation between the initial amplitude of the incoming wave and the amplitudes of the secondary waves as well as the peak values of the stationary features. Additionally, we compare the phase speed of the secondary waves and the lifetime of the stationary features to observations. Both effects obtained in the simulation, the evolution of secondary waves, as well as the formation of stationary fronts at the CH boundary, strongly support the theory that coronal waves are fast-mode MHD waves.
Numerical study of MHD supersonic flow control
NASA Astrophysics Data System (ADS)
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
Featured Image: Tests of an MHD Code
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2
Ceramic component for electrodes
Marchant, David D.
1979-01-01
A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.
King, J. R.; Pankin, A. Y.; Kruger, S. E.; ...
2016-06-24
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. The full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong -Kyu
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
Viscous, resistive MHD stability computed by spectral techniques
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.
Claudepierre, S G; Toffoletto, F R; Wiltberger, M
2016-01-01
We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.
Equilibrium, confinement and stability of runaway electrons in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D A
1976-03-01
Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits aremore » analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models. (MOW)« less
Overview of RWM Stabilization and Other Experiments With New Internal Coils in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Jackson, G. L.; Evans, T. E.; La Haye, R. J.; Kellman, A. G.; Schaffer, M. J.; Scoville, J. T.; Strait, E. J.; Szymanski, D. D.; Bialek, J.; Garofalo, A. M.; Navratil, G. A.; Reimerdes, H.; Edgell, D. H.; Okabayashi, M.; Hatcher, R.
2003-10-01
A set of 12 single-turn internal coils (I-coils) has been installed and operated in the DIII-D tokamak. The primary purpose of these coils (A_coil = 1.1 m^2, I ≤,7 kA, d_wall = 1.47 cm) is to improve stabilization of the n=1 resistive wall mode (RWM), compared to the existing external C-coil set, especially for high βN advanced tokamak discharges in low toroidal rotation plasmas. The versatility of the I-coil set and its associated power systems allow for a variety of experiments: fast feedback stabilization of RWMs, dc error field correction, edge stochastic fields, n=1,2, or 3 toroidal magnetic braking, and MHD spectroscopy (0-60 Hz). The resonant field amplification from an applied n=1 field was found to be completely suppressed, demonstrating successfully the controllability with the new system. With the I-coils, the high βN regime (above the no wall limit) has been explored both with RWM feedback and with dynamic error field correction. Experiments on edge ergodization will also be discussed.
Progress in theoretical and numerical modeling of RF/MHD coupling using NIMROD
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, Dalton D.; Hegna, Chris C.; Callen, James D.; Sovinec, Carl R.; Held, Eric D.; Ji, Jeong-Young; Kruger, Scott E.
2007-11-01
Preliminary work relevant to the development of a general framework for the self-consistent inclusion of RF effects in fluid codes is presented; specifically, the stabilization of neoclassical and conventional tearing modes by electron cyclotron current drive is considered. For this particular problem, the effects of the RF drive can be formally captured by a quasilinear diffusion operator which enters the fluid equations on the same footing as the collision operator. Furthermore, a Chapman-Enskog-like method can be used to determine the consequent effects of the RF drive on the fluid closures for the parallel heat flow and stress. We summarize our recent research along these lines and discuss issues relevant to its implementation in the NIMROD code.
Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Carins, Iver H.; Grabbe, Crockett L.
1994-01-01
A magnetohydrodynamic (MHD) theory is developed for the standoff distance a(s) of the bow shock and the thickness Delta(ms) of the magnetosheath, using the empirical Spreiter et al. relation Delta(ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for Delta(ms) and As. In general, however, MHD effects produce major differences from previous models, especially at low Alfev (Ma) and Sonic (Ms) Mach numbers. The magnetic field orientation Ma, Ms and the ratio of specific heats gamma are all important variables of the theory. In contrast, the fast mode Mach number need play no direct role. Three principle conclusions are reached. First the gasdynamic and phenomenological models miss important dependences of field orientation and Ms generally provide poor approximations to the MHD results. Second, changes in field orientation and Ms are predicted to cause factor of approximately 4 changes in Delta(ms) at low Ma. These effects should be important when predicting the shock's location or calculating gramma from observations. Third, using Spreiter et al.'s value for k in the MHD theory leads to maxima a(s) values at low Ma and nominal Ms that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or a breakdown in the Spreiter-like relation at very low Ma.
Toroidal Rotation and 3D Nonlinear Dynamics in the Peeling-Ballooning Model of ELMs
NASA Astrophysics Data System (ADS)
Snyder, P. B.
2004-11-01
Maximizing the height of the edge transport barrier (or ``pedestal'') while maintaining acceptably small edge localized modes (ELMs) is a critical issue for tokamak performance. The peeling-ballooning model proposes that intermediate wavelength MHD instabilities are responsible for ELMs and impose constraints on the pedestal. Recent studies of linear peeling-ballooning stability have found encouraging agreement with observations [e.g. 1]. To allow more detailed prediction of mode characteristics, including eventually predictions of the ELM energy loss and its deposition, we consider effects of sheared toroidal rotation, as well as 3D nonlinear dynamics. An eigenmode formulation for toroidal rotation shear is developed and incorporated into the framework of the ELITE stability code [2], resolving the low rotation discontinuity in previous high-n results. Rotation shear is found to impact the structure of peeling-ballooning modes, causing radial narrowing and mode shearing. The calculated mode frequency is found to agree with observed rotation in the edge region in the early stages of the ELM crash. Nonlinear studies with the 3D BOUT and NIMROD codes reveal detailed characteristics of the early evolution of these edge instabilities, including the impact of non-ideal effects. The expected linear growth phase is followed by a fast crash event in which poloidally narrow, filamentary structures propagate radially outward from the pedestal region, closely resembling observed ELM events. Comparisons with ELM observations will be discussed. \\vspace0.25em [1] P.B. Snyder et al., Nucl. Fusion 44, 320 (2004); P.B. Snyder et al., Phys. Plasmas 9, 2037 (2002). [2] H.R. Wilson et al., Phys. Plasmas 9, 1277 (2002).
Piron, C.; Martin, P.; Bonfiglio, D.; ...
2016-08-11
External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigationmore » in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Finally, numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.« less
Electron Temperature and Density in Local Helicity Injection and High betat Plasmas
NASA Astrophysics Data System (ADS)
Schlossberg, David J.
Tokamak startup in a spherical torus (ST) and an ST-based fusion nuclear science facility can greatly benefit from using non-inductive methods. The Pegasus Toroidal Experiment has developed a non-inductive startup technique using local helicity injection (LHI). Electron temperature, T e(r), and density, ne( r), profiles during LHI are unknown. These profiles are critical for understanding both the physics of the injection and relaxation mechanisms, as well as for extrapolating this technique to larger devices. A new Thomson scattering system has been designed, installed, and used to characterize Te(r, t) and ne(r, t) during LHI. The diagnostic leverages new technology in image intensified CCD cameras, high-efficiency diffraction gratings, and reliable Nd:YAG lasers. Custom systems for stray light mitigation, fast shuttering, and precision timing have been developed and implemented. The overall system provides a low-maintenance, economic, and effective means to explore novel physics regimes in Pegasus. Electron temperature and density profiles during LHI have been measured for the first time. Results indicate Te(r) peaked in the core of plasmas, and sustained while plasmas are coupled to injection drive. Electron densities also peak near the core of the tokamak, up to local values of n e ˜ 1.5 x 1019 m -3. A comparison of Te( r, t) has been made between discharges with dominant drive voltage from induction versus helicity injection. In both cases Te ( r, t) profiles remain peaked, with values for Te ,max > 150 eV in dominantly helicity-driven plasmas using high-field side LHI. Sustained values of betat ˜ 100% have been demonstrated in a tokamak for the first time. Plasmas are created and driven entirely non-solenoidally, and exhibit MHD stability. Measured temperature and density profiles are used to constrain magnetic equilibrium reconstructions, which calculate 80% < betat < 100% throughout a toroidal field ramp-down. For a continued decrease in the toroidal field these plasmas disrupt near the ideal MHD no-wall stability limit predicted by the DCON code. Mode analyses of predicted and measured MHD agree, and suggest discharges terminate by an intermediate-m, n=1 external mode. A localized region of minimum |B| has been identified in these discharges, and modeling shows access to it depends on both plasma pressure and magnetic geometry. This magnetic well is shown to persist over several milliseconds, in both constant toroidal field and ramp-down cases.
Self-consistent modeling of CFETR baseline scenarios for steady-state operation
NASA Astrophysics Data System (ADS)
Chen, Jiale; Jian, Xiang; Chan, Vincent S.; Li, Zeyu; Deng, Zhao; Li, Guoqiang; Guo, Wenfeng; Shi, Nan; Chen, Xi; CFETR Physics Team
2017-07-01
Integrated modeling for core plasma is performed to increase confidence in the proposed baseline scenario in the 0D analysis for the China Fusion Engineering Test Reactor (CFETR). The steady-state scenarios are obtained through the consistent iterative calculation of equilibrium, transport, auxiliary heating and current drives (H&CD). Three combinations of H&CD schemes (NB + EC, NB + EC + LH, and EC + LH) are used to sustain the scenarios with q min > 2 and fusion power of ˜70-150 MW. The predicted power is within the target range for CFETR Phase I, although the confinement based on physics models is lower than that assumed in 0D analysis. Ideal MHD stability analysis shows that the scenarios are stable against n = 1-10 ideal modes, where n is the toroidal mode number. Optimization of RF current drive for the RF-only scenario is also presented. The simulation workflow for core plasma in this work provides a solid basis for a more extensive research and development effort for the physics design of CFETR.
Energetic-particle-modified global Alfvén eigenmodes
NASA Astrophysics Data System (ADS)
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
2018-04-01
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v0/vA and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v0/vA . This unexpected result is present for both counter-propagating GAEs, which are routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. Additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.
Energetic-particle-modified global Alfven eigenmodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less
Energetic-particle-modified global Alfven eigenmodes
Lestz, J. B.; Belova, E. V.; Gorelenkov, N. N.
2018-04-30
Fully self-consistent hybrid MHD/particle simulations reveal strong energetic particle modifications to sub-cyclotron global Alfvén eigenmodes (GAEs) in low-aspect ratio, NSTX-like conditions. Key parameters defining the fast ion distribution function—the normalized injection velocity v 0/v A and central pitch—are varied in order to study their influence on the characteristics of the excited modes. It is found that the frequency of the most unstable mode changes significantly and continuously with beam parameters, in accordance with the Doppler-shifted cyclotron resonances which drive the modes, and depending most substantially on v 0/v A. This unexpected result is present for both counter-propagating GAEs, which aremore » routinely excited in NSTX, and high frequency co-GAEs, which have not been previously studied. Large changes in frequency without clear corresponding changes in the mode structure are signatures of an energetic particle mode, referred to here as an energetic-particle-modified GAE. In conclusion, additional simulations conducted for a fixed MHD equilibrium demonstrate that the GAE frequency shift cannot be explained by the equilibrium changes due to energetic particle effects.« less
Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.
Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar
2015-01-01
Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.
Coupling of sausage, kink, and magneto-Rayleigh-Taylor instabilities in a cylindrical liner
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weis, M. R.; Zhang, P.; Lau, Y. Y., E-mail: yylau@umich.edu
This paper analyzes the coupling of magneto-Rayleigh-Taylor (MRT), sausage, and kink modes in an imploding cylindrical liner, using ideal MHD. A uniform axial magnetic field of arbitrary value is included in each region: liner, its interior, and its exterior. The dispersion relation is solved exactly, for arbitrary radial acceleration (-g), axial wavenumber (k), azimuthal mode number (m), liner aspect ratio, and equilibrium quantities in each region. For small k, a positive g (inward radial acceleration in the lab frame) tends to stabilize the sausage mode, but destabilize the kink mode. For large k, a positive g destabilizes both the kinkmore » and sausage mode. Using the 1D-HYDRA simulation results for an equilibrium model that includes a pre-existing axial magnetic field and a preheated fuel, we identify several stages of MRT-sausage-kink mode evolution. We find that the m = 1 kink-MRT mode has a higher growth rate at the initial stage and stagnation stage of the implosion, and that the m = 0 sausage-MRT mode dominates at the main part of implosion. This analysis also sheds light on a puzzling feature in Harris' classic paper of MRT [E. G. Harris, Phys. Fluids 5, 1057 (1962)]. An attempt is made to interpret the persistence of the observed helical structures [Awe et al., Phys. Rev. Lett. 111, 235005 (2013)] in terms of non-axisymmetric eigenmode.« less
Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2004-01-01
Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Yan, Huirong; Lazarian, A., E-mail: syxu@pku.edu.cn, E-mail: huirong.yan@desy.de, E-mail: lazarian@astro.wisc.edu
2016-08-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of theirmore » propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.« less
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2009-11-01
Recently, the intermittent plasma flow has been observed to be correlated with the fluctuations of the toroidal current It and n=1 mode in the HIST spherical torus device. During the partially driven phase mixed with a resistive decay, the toroidal ion flow velocity (˜ 40 km/s) in the opposite direction of It is driven in the central open flux region, and the oscillations in n=1 mode occur there, while during the resistive decay phase, this flow velocity reverses and results in the same as that of It, and the oscillations in n=1 mode disappear there. The purpose of the present study is to investigate the plasma flow reversal process and the relevant MHD relaxation by using the 3-D nonlinear MHD simulations. The numerical results exhibit that during the driven phase, the toroidal flow velocity (˜ 37 km/s) is in the opposite direction to It, but in the same direction as the ExB rotation induced by an applied voltage. This flow is driven by the magnetic reconnection occurring at the X-point during the repetitive process of the non-axisymmetric magnetized plasmoid ejection from the helicity injector. The oscillations of poloidal flux ψp are out of phase with those of toroidal flux ψt and magnetic energy for the dominant n=1 mode, indicating the flux conversion from ψt to ψp. The effect of the vacuum toroidal field strength on the plasma dynamics is discussed.
Transverse kink oscillations in the presence of twist
NASA Astrophysics Data System (ADS)
Terradas, J.; Goossens, M.
2012-12-01
Context. Magnetic twist is thought to play an important role in coronal loops. The effects of magnetic twist on stable magnetohydrodynamic (MHD) waves is poorly understood because they are seldom studied for relevant cases. Aims: The goal of this work is to study the fingerprints of magnetic twist on stable transverse kink oscillations. Methods: We numerically calculated the eigenmodes of propagating and standing MHD waves for a model of a loop with magnetic twist. The azimuthal component of the magnetic field was assumed to be small in comparison to the longitudinal component. We did not consider resonantly damped modes or kink instabilities in our analysis. Results: For a nonconstant twist the frequencies of the MHD wave modes are split, which has important consequences for standing waves. This is different from the degenerated situation for equilibrium models with constant twist, which are characterised by an azimuthal component of the magnetic field that linearly increases with the radial coordinate. Conclusions: In the presence of twist standing kink solutions are characterised by a change in polarisation of the transverse displacement along the tube. For weak twist, and in the thin tube approximation, the frequency of standing modes is unaltered and the tube oscillates at the kink speed of the corresponding straight tube. The change in polarisation is linearly proportional to the degree of twist. This has implications with regard to observations of kink modes, since the detection of this variation in polarisation can be used as an indirect method to estimate the twist in oscillating loops.
Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.
2015-11-01
Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.
User's manual for the FLORA equilibrium and stability code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freis, R.P.; Cohen, B.I.
1985-04-01
This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.
Stability of Elevated-qmin Steady-State Scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.
2016-10-01
Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.
Modeling Giant Sawtooth Modes in DIII-D using the NIMROD code
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, Thomas; Held, Eric; King, Jacob; NIMROD Team
2014-10-01
Ongoing efforts to model giant sawtooth cycles in DIII-D shot 96043 using NIMROD are summarized. In this discharge, an energetic ion population induced by RF heating modifies the sawtooth stability boundary, supplanting the conventional sawtooth cycle with longer-period giant sawtooth oscillations of much larger amplitude. NIMROD has the unique capability of being able to use both continuum kinetic and particle-in-cell numerical schemes to model the RF-induced hot-particle distribution effects on the sawtooth stability. This capability is used to numerically investigate the role played by the form of the energetic particle distribution, including a possible high-energy tail drawn out by the RF, to study the sawtooth threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior (such as the plasma Lundquist number and hot-particle β-fraction) are also considered. Ultimately, we hope to assess the degree to which NIMROD's extended MHD model correctly simulates the observed linear onset and nonlinear behavior of the giant sawtooth, and to establish its reliability as a predictive modeling tool for these modes. This work was initiated by the late Dr. Dalton Schnack. Equilibria were provided by Dr. A. Turnbull of General Atomics.
NASA Astrophysics Data System (ADS)
King, Jacob; Kruger, Scott
2017-10-01
Flow can impact the stability and nonlinear evolution of range of instabilities (e.g. RWMs, NTMs, sawteeth, locked modes, PBMs, and high-k turbulence) and thus robust numerical algorithms for simulations with flow are essential. Recent simulations of DIII-D QH-mode [King et al., Phys. Plasmas and Nucl. Fus. 2017] with flow have been restricted to smaller time-step sizes than corresponding computations without flow. These computations use a mixed semi-implicit, implicit leapfrog time discretization as implemented in the NIMROD code [Sovinec et al., JCP 2004]. While prior analysis has shown that this algorithm is unconditionally stable with respect to the effect of large flows on the MHD waves in slab geometry [Sovinec et al., JCP 2010], our present Von Neumann stability analysis shows that a flow-induced numerical instability may arise when ad-hoc cylindrical curvature is included. Computations with the NIMROD code in cylindrical geometry with rigid rotation and without free-energy drive from current or pressure gradients qualitatively confirm this analysis. We explore potential methods to circumvent this flow-induced numerical instability such as using a semi-Lagrangian formulation instead of time-centered implicit advection and/or modification to the semi-implicit operator. This work is supported by the DOE Office of Science (Office of Fusion Energy Sciences).
Off-design performance analysis of MHD generator channels
NASA Technical Reports Server (NTRS)
Wilson, D. R.; Williams, T. S.
1980-01-01
A computer code for performing parametric design point calculations, and evaluating the off-design performance of MHD generators has been developed. The program is capable of analyzing Faraday, Hall, and DCW channels, including the effect of electrical shorting in the gas boundary layers and coal slag layers. Direct integration of the electrode voltage drops is included. The program can be run in either the design or off-design mode. Details of the computer code, together with results of a study of the design and off-design performance of the proposed ETF MHD generator are presented. Design point variations of pre-heat and stoichiometry were analyzed. The off-design study included variations in mass flow rate and oxygen enrichment.
Extreme ultraviolet diagnostic upgrades for kink mode control on the HBT-EP tokamak
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Brooks, J. W.; Desanto, S.; Mauel, M. E.; Navratil, G. A.; Page, J. W.; Hansen, C. J.; Delgado-Aparicio, L.
2016-10-01
Optical diagnostics can provide non-invasive measurements of tokamak equilibria and the internal characteristics of MHD mode activity. We present research plans and ongoing progress on upgrading extreme ultraviolet (EUV) diagnostics in the HBT-EP tokamak. Four sets of 16 poloidal views will allow tomographic reconstruction of plasma emissivity and internal kink mode structure. Emission characteristics of naturally-occurring m/n = 2/1, 3/2, and 3/1 tearing and kink modes will be compared with expectations from a synthetic diagnostic. Coupling between internal and external modes leading up to disruptions is studied. The internal plasma response to external magnetic perturbations is investigated, and compared with magnetic response measurements. Correlation between internal emissivity and external magnetic measurements provides a global picture of long-wavelength MHD instabilities. Measurements are input to HBT-EP's GPU-based feedback system, allowing active feedback for kink modes using only optical sensors and both magnetic and edge current actuators. A separate two-color, 16-chord tangential system will be installed next year to allow reconstruction of temperature profiles and their fluctuations versus time. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Neoclassical, semi-collisional tearing mode theory in an axisymmetric torus
NASA Astrophysics Data System (ADS)
Connor, J. W.; Hastie, R. J.; Helander, P.
2017-12-01
A set of layer equations for determining the stability of semi-collisional tearing modes in an axisymmetric torus, incorporating neoclassical physics, in the small ion Larmor radius limit, is provided. These can be used as an inner layer module for inclusion in numerical codes that asymptotically match the layer to toroidal calculations of the tearing mode stability index, \\prime $ . They are more complete than in earlier work and comprise equations for the perturbed electron density and temperature, the ion temperature, Ampère's law and the vorticity equation, amounting to a twelvth-order set of radial differential equations. While the toroidal geometry is kept quite general when treating the classical and Pfirsch-Schlüter transport, parallel bootstrap current and semi-collisional physics, it is assumed that the fraction of trapped particles is small for the banana regime contribution. This is to justify the use of a model collision term when acting on the localised (in velocity space) solutions that remain after the Spitzer solutions have been exploited to account for the bulk of the passing distributions. In this respect, unlike standard neoclassical transport theory, the calculation involves the second Spitzer solution connected with a parallel temperature gradient, because this stability problem involves parallel temperature gradients that cannot occur in equilibrium toroidal transport theory. Furthermore, a calculation of the linearised neoclassical radial transport of toroidal momentum for general geometry is required to complete the vorticity equation. The solutions of the resulting set of equations do not match properly to the ideal magnetohydrodynamic (MHD) equations at large distances from the layer, and a further, intermediate layer involving ion corrections to the electrical conductivity and ion parallel thermal transport is invoked to achieve this matching and allow one to correctly calculate the layer \\prime $ .
Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Makwana, K. D.; Keppens, R.; Lapenta, G.
2017-12-01
We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.
The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izzo, V. A.
Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less
The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D
Izzo, V. A.
2017-02-27
Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less
FORWARD MODELING OF STANDING KINK MODES IN CORONAL LOOPS. I. SYNTHETIC VIEWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, Ding; Doorsselaere, Tom Van, E-mail: DYuan2@uclan.ac.uk
2016-04-15
Kink magnetohydrodynamic (MHD) waves are frequently observed in various magnetic structures of the solar atmosphere. They may contribute significantly to coronal heating and could be used as a tool to diagnose the solar plasma. In this study, we synthesize the Fe ix λ171.073 Å emission of a coronal loop supporting a standing kink MHD mode. The kink MHD wave solution of a plasma cylinder is mapped into a semi-torus structure to simulate a curved coronal loop. We decompose the solution into a quasi-rigid kink motion and a quadrupole term, which dominate the plasma inside and outside of the flux tube, respectively.more » At the loop edges, the line of sight integrates relatively more ambient plasma, and the background emission becomes significant. The plasma motion associated with the quadrupole term causes spectral line broadening and emission suppression. The periodic intensity suppression will modulate the integrated intensity and the effective loop width, which both exhibit oscillatory variations at half of the kink period. The quadrupole term can be directly observed as a pendular motion at the front view.« less
Modeling of Resistive Wall Modes in Tokamak and Reversed Field Pinch Configurations of KTX
NASA Astrophysics Data System (ADS)
Han, Rui; Zhu, Ping; Bai, Wei; Lan, Tao; Liu, Wandong
2016-10-01
Resistive wall mode is believed to be one of the leading causes for macroscopic degradation of plasma confinement in tokamaks and reversed field pinches (RFP). In this study, we evaluate the linear RWM instability of Keda Torus eXperiment (KTX) in both tokamak and RFP configurations. For the tokamak configuration, the extended MHD code NIMROD is employed for calculating the dependence of the RWM growth rate on the position and conductivity of the vacuum wall for a model tokamak equilibrium of KTX in the large aspect-ratio approximation. For the RFP configuration, the standard formulation of dispersion relation for RWM based on the MHD energy principle has been evaluated for a cylindrical α- Θ model of KTX plasma equilibrium, in an effort to investigate the effects of thin wall on the RWM in KTX. Full MHD calculations of RWM in the RFP configuration of KTX using the NIMROD code are also being developed. Supported by National Magnetic Confinement Fusion Science Program of China Grant Nos. 2014GB124002, 2015GB101004, 2011GB106000, and 2011GB106003.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C., E-mail: duffell@berkeley.edu
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less
Nonlinearly driven harmonics of Alfvén modes
NASA Astrophysics Data System (ADS)
Zhang, B.; Breizman, B. N.; Zheng, L. J.; Berk, H. L.
2014-01-01
In order to study the leading order nonlinear magneto-hydrodynamic (MHD) harmonic response of a plasma in realistic geometry, the AEGIS code has been generalized to account for inhomogeneous source terms. These source terms are expressed in terms of the quadratic corrections that depend on the functional form of a linear MHD eigenmode, such as the Toroidal Alfvén Eigenmode. The solution of the resultant equation gives the second order harmonic response. Preliminary results are presented here.
The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows
NASA Astrophysics Data System (ADS)
Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam
1997-06-01
We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around the Cat's Eye vortex, not to disrupt it. The presence of even a very weak field can add substantially to the rate at which flow kinetic energy is dissipated. In all of the cases we studied magnetic field amplification by stretching in the vortex is limited by tearing mode, ``fast'' reconnection events that isolate and then destroy magnetic flux islands within the vortex and relax the fields outside the vortex. If the magnetic tension developed prior to reconnection is comparable to Reynolds stresses in the flow, that flow is reorganized during reconnection. Otherwise, the primary influence on the plasma is generation of entropy. The effective expulsion of flux from the vortex is very similar to that shown by Weiss for passive fields in idealized vortices with large magnetic Reynolds numbers. We demonstrated that this expulsion cannot be interpreted as a direct consequence of steady, resistive diffusion, but must be seen as a consequence of unsteady fast reconnection.
Tearing Instability of a Current Sheet Forming by Sheared Incompressible Flow
NASA Astrophysics Data System (ADS)
Tolman, Elizabeth; Loureiro, Nuno; Uzdensky, Dmitri
2017-10-01
Sweet-Parker current sheets are unstable to the tearing mode, suggesting they will not form in physical systems. Understanding magnetic reconnection thus requires study of the stability of a current sheet as it forms. Such formation can occur as a result of sheared, sub-Alfvénic incompressible flows into and along the sheet. This work presents an analysis of how tearing perturbations behave in a current sheet forming under the influence of such flows, beginning with a phase when the growth rate of the tearing mode is small and the behavior of perturbations is primarily governed by ideal MHD. Later, after the tearing growth rate becomes significant relative to the time scale of the driving flows, the flows cause a slight reduction in the tearing growth rate and wave vector of the dominant mode. Once the tearing mode enters the nonlinear regime, the flows accelerate the tearing growth slightly; during X-point collapse, the flows have negligible effect on the system behavior. This analysis allows greater understanding of reconnection in evolving systems and increases confidence in the application of tools developed in time-independent current sheets to changing current sheets. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship.
Linear MHD stability analysis of post-disruption plasmas in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com; Huijsmans, G. T. A.; Aleynikov, P.
2016-05-15
Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile,more » we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.« less
Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks
NASA Astrophysics Data System (ADS)
Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.
2017-10-01
Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.
Sensitivity of alpha-particle-driven Alfvén eigenmodes to q-profile variation in ITER scenarios
NASA Astrophysics Data System (ADS)
Rodrigues, P.; Figueiredo, A. C. A.; Borba, D.; Coelho, R.; Fazendeiro, L.; Ferreira, J.; Loureiro, N. F.; Nabais, F.; Pinches, S. D.; Polevoi, A. R.; Sharapov, S. E.
2016-11-01
A perturbative hybrid ideal-MHD/drift-kinetic approach to assess the stability of alpha-particle-driven Alfvén eigenmodes in burning plasmas is used to show that certain foreseen ITER scenarios, namely the {{I}\\text{p}}=15 MA baseline scenario with very low and broad core magnetic shear, are sensitive to small changes in the background magnetic equilibrium. Slight variations (of the order of 1% ) of the safety-factor value on axis are seen to cause large changes in the growth rate, toroidal mode number, and radial location of the most unstable eigenmodes found. The observed sensitivity is shown to proceed from the very low magnetic shear values attained throughout the plasma core, raising issues about reliable predictions of alpha-particle transport in burning plasmas.
NASA Astrophysics Data System (ADS)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
NASA Astrophysics Data System (ADS)
1981-09-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
BOUT++ simulations of edge turbulence in Alcator C-Mod's EDA H-mode
NASA Astrophysics Data System (ADS)
Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.; MIT PSFC Team; Atomics Team, General; LLNL Team
2013-10-01
Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.
BOUT++ Simulations of Edge Turbulence in Alcator C-Mod's EDA H-Mode
NASA Astrophysics Data System (ADS)
Davis, E. M.; Porkolab, M.; Hughes, J. W.; Labombard, B.; Snyder, P. B.; Xu, X. Q.
2013-10-01
Energy confinement in tokamaks is believed to be strongly controlled by plasma transport in the pedestal. The pedestal of Alcator C-Mod's Enhanced Dα (EDA) H-mode (ν* > 1) is regulated by a quasi-coherent mode (QCM), an edge fluctuation believed to reduce particle confinement and allow steady-state H-mode operation. ELITE calculations indicate that EDA H-modes sit well below the ideal peeling-ballooning instability threshold, in contrast with ELMy H-modes. Here, we use a 3-field reduced MHD model in BOUT++ to study the effects of nonideal and nonlinear physics on EDA H-modes. In particular, incorporation of realistic pedestal resistivity is found to drive resistive ballooning modes (RBMs) and increase linear growth rates above the corresponding ideal rates. These RBMs may ultimately be responsible for constraining the EDA pedestal gradient. However, recent high-fidelity mirror Langmuir probe measurements indicate that the QCM is an electron drift-Alfvén wave - not a RBM. Inclusion of the parallel pressure gradient term in the 3-field reduced MHD Ohm's law and various higher field fluid models are implemented in an effort to capture this drift wave-like response. This work was performed under the auspices of the USDoE under awards DE-FG02-94-ER54235, DE-AC52-07NA27344, DE-AC52-07NA27344, and NNSA SSGF.
Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.
2013-10-01
The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.
Automated Characterization of Rotating MHD Modes and Subsequent Locking in a Tokamak
NASA Astrophysics Data System (ADS)
Riquezes, Juan; Sabbagh, Steven; Berkery, Jack
2016-10-01
Disruption avoidance in tokamaks is highly desired to maintain steady plasma operation, and is critical for future reactor-scale devices, such as ITER, to avoid potential damage to device components. This high priority research is being conducted at PPPL by analyzing data from NSTX and its upgrade, NSTX-U. A key cause of disruptions is the physical event chain that comprises the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their subsequent locking. The present research aims to define algorithms to automatically find and characterize such physical event chains in the machine database. Characteristics such as identification of a mode locking time based on a loss of torque balance and bifurcation of the mode rotation frequency are examined to determine the reliability of such events in predicting disruptions. A goal is to detect such behavior as early as possible during a plasma discharge, and to further examine potential ways to forecast it. This capability could be used to provide a warning to use active mode control as a disruption avoidance mechanism, or to trigger a controlled plasma shutdown if desired. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Piron, C.; Martin, P.; Bonfiglio, D.; Hanson, J.; Logan, N. C.; Paz-Soldan, C.; Piovesan, P.; Turco, F.; Bialek, J.; Franz, P.; Jackson, G.; Lanctot, M. J.; Navratil, G. A.; Okabayashi, M.; Strait, E.; Terranova, D.; Turnbull, A.
2016-10-01
External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigation in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.
Active control of multiple resistive wall modes
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Yadikin, D.; Gregoratto, D.; Paccagnella, R.; Liu, Y. Q.; Bolzonella, T.; Cecconello, M.; Drake, J. R.; Kuldkepp, M.; Manduchi, G.; Marchiori, G.; Marrelli, L.; Martin, P.; Menmuir, S.; Ortolani, S.; Rachlew, E.; Spizzo, G.; Zanca, P.
2005-12-01
A two-dimensional array of saddle coils at Mc poloidal and Nc toroidal positions is used on the EXTRAP T2R reversed-field pinch (Brunsell P R et al 2001 Plasma Phys. Control. Fusion 43 1457) to study active control of resistive wall modes (RWMs). Spontaneous growth of several RWMs with poloidal mode number m = 1 and different toroidal mode number n is observed experimentally, in agreement with linear MHD modelling. The measured plasma response to a controlled coil field and the plasma response computed using the linear circular cylinder MHD model are in quantitive agreement. Feedback control introduces a linear coupling of modes with toroidal mode numbers n, n' that fulfil the condition |n - n'| = Nc. Pairs of coupled unstable RWMs are present in feedback experiments with an array of Mc × Nc = 4 × 16 coils. Using intelligent shell feedback, the coupled modes are generally not controlled even though the field is suppressed at the active coils. A better suppression of coupled modes may be achieved in the case of rotating modes by using the mode control feedback scheme with individually set complex gains. In feedback with a larger array of Mc × Nc = 4 × 32 coils, the coupling effect largely disappears, and with this array, the main internal RWMs n = -11, -10, +5, +6 are all simultaneously suppressed throughout the discharge (7 8 wall times). With feedback there is a two-fold extension of the pulse length, compared to discharges without feedback.
Dynamic diagnostics of the error fields in tokamaks
NASA Astrophysics Data System (ADS)
Pustovitov, V. D.
2007-07-01
The error field diagnostics based on magnetic measurements outside the plasma is discussed. The analysed methods rely on measuring the plasma dynamic response to the finite-amplitude external magnetic perturbations, which are the error fields and the pre-programmed probing pulses. Such pulses can be created by the coils designed for static error field correction and for stabilization of the resistive wall modes, the technique developed and applied in several tokamaks, including DIII-D and JET. Here analysis is based on the theory predictions for the resonant field amplification (RFA). To achieve the desired level of the error field correction in tokamaks, the diagnostics must be sensitive to signals of several Gauss. Therefore, part of the measurements should be performed near the plasma stability boundary, where the RFA effect is stronger. While the proximity to the marginal stability is important, the absolute values of plasma parameters are not. This means that the necessary measurements can be done in the diagnostic discharges with parameters below the nominal operating regimes, with the stability boundary intentionally lowered. The estimates for ITER are presented. The discussed diagnostics can be tested in dedicated experiments in existing tokamaks. The diagnostics can be considered as an extension of the 'active MHD spectroscopy' used recently in the DIII-D tokamak and the EXTRAP T2R reversed field pinch.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. D.; Strait, Edward J.; Nazikian, Raffi
2015-11-01
Experiments in the DIII-D tokamak show that the plasma responds to resonant magnetic perturbations (RMP) with toroidal mode numbers of n = 2 and n = 3 without field line reconnection, consistent with resistive magnetohydrodynamic predictions (MHD), while a strong nonlinear bifurcation is apparent when edge localized modes (ELM) are suppressed. The magnetic response associated with this bifurcation is localized to the high field side (HFS) of the machine and exhibits a dominant n = 1 component despite the application of a constant amplitude, slowly toroidally rotating, n = 2 applied field. The n = 1 mode is born lockedmore » to the vacuum vessel wall, while the n = 2 mode is entrained to the rotating field. Based on these magnetic response measurements, and Thomson scattering measurements of flattening of the electron temperature profile it is likely that these modes are magnetic island chains near the H-mode pedestal. The reduction in ∇T e occurs near the q = 4 and 5 rational surfaces, suggesting five unique islands are possible (m = 8, 9 or 10 for n = 2) and (m = 4 or 5 for n = 1). In all cases, the island width is estimated to be 2 ~ 3 cm. The Chang-Callen calculated confinement degradation due to the presence of an individual island of this size is 8 ~ 12%, which is close to the 13 ~ 14% measured between the ELMing and suppressed states. This suggests that edge tearing modes may alter the pedestal causing peeling ballooning stability during resonant magnetic perturbation (RMP) induced ELM suppression.« less
Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Austin, M. E.; Collins, C. S.
2015-07-21
We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less
Influence of magnetic flutter on tearing growth in linear and nonlinear theory
NASA Astrophysics Data System (ADS)
Kreifels, L.; Hornsby, W. A.; Weikl, A.; Peeters, A. G.
2018-06-01
Recent simulations of tearing modes in turbulent regimes show an unexpected enhancement in the growth rate. In this paper the effect is investigated analytically. The enhancement is linked to the influence of turbulent magnetic flutter, which is modelled by diffusion terms in magnetohydrodynamics (MHD) momentum balance and Ohm’s law. Expressions for the linear growth rate as well as the island width in nonlinear theory for small amplitudes are derived. The results indicate an enhanced linear growth rate and a larger linear layer width compared with resistive MHD. Also the island width in the nonlinear regime grows faster in the diffusive model. These observations correspond well to simulations in which the effect of turbulence on the magnetic island width and tearing mode growth is analyzed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hager, Robert; Lang, Jianying; Chang, C. S.
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.
Hager, Robert; Lang, Jianying; Chang, C. S.; ...
2017-05-24
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons. Here, two representative long wavelength modes, shear Alfven waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries.
Hu, J S; Sun, Z; Guo, H Y; Li, J G; Wan, B N; Wang, H Q; Ding, S Y; Xu, G S; Liang, Y F; Mansfield, D K; Maingi, R; Zou, X L; Wang, L; Ren, J; Zuo, G Z; Zhang, L; Duan, Y M; Shi, T H; Hu, L Q
2015-02-06
A critical challenge facing the basic long-pulse high-confinement operation scenario (H mode) for ITER is to control a magnetohydrodynamic (MHD) instability, known as the edge localized mode (ELM), which leads to cyclical high peak heat and particle fluxes at the plasma facing components. A breakthrough is made in the Experimental Advanced Superconducting Tokamak in achieving a new steady-state H mode without the presence of ELMs for a duration exceeding hundreds of energy confinement times, by using a novel technique of continuous real-time injection of a lithium (Li) aerosol into the edge plasma. The steady-state ELM-free H mode is accompanied by a strong edge coherent MHD mode (ECM) at a frequency of 35-40 kHz with a poloidal wavelength of 10.2 cm in the ion diamagnetic drift direction, providing continuous heat and particle exhaust, thus preventing the transient heat deposition on plasma facing components and impurity accumulation in the confined plasma. It is truly remarkable that Li injection appears to promote the growth of the ECM, owing to the increase in Li concentration and hence collisionality at the edge, as predicted by GYRO simulations. This new steady-state ELM-free H-mode regime, enabled by real-time Li injection, may open a new avenue for next-step fusion development.
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
NASA Astrophysics Data System (ADS)
Heng, LAN; Guosheng, XU; Kevin, TRITZ; Ning, YAN; Tonghui, SHI; Yongliang, LI; Tengfei, WANG; Liang, WANG; Jingbo, CHEN; Yanmin, DUAN; Yi, YUAN; Youwen, SUN; Shuai, GU; Qing, ZANG; Ran, CHEN; Liang, CHEN; Xingwei, ZHENG; Shuliang, CHEN; Huan, LIU; Yang, YE; Huiqian, WANG; Baonian, WAN; the EAST Team
2017-12-01
A new edge tangential multi-energy soft x-ray (ME-SXR) diagnostic with high temporal (≤ 0.1 ms) and spatial (∼1 cm) resolution has been developed for a variety of physics topics studies in the EAST tokamak plasma. The fast edge electron temperature profile (approximately from r/a∼ 0.6 to the scrape-off layer) is investigated using ME-SXR diagnostic system. The data process was performed by the ideal ‘multi-foil’ technique, with no priori assumptions of plasma profiles. Reconstructed ME-SXR emissivity profiles for a variety of EAST experimental scenarios are presented here for the first time. The applications of the ME-SXR for study of the effects of resonant magnetic perturbation on edge localized modes and the first time neon radiating divertor experiment in EAST are also presented in this work. It has been found that neon impurity can suppress the 2/1 tearing mode and trigger a 3/1 MHD mode.
NASA Technical Reports Server (NTRS)
Wang, S. Y.; Smith, J. M.
1981-01-01
The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).
Nonlinear modeling of forced magnetic reconnection in slab geometry with NIMROD
NASA Astrophysics Data System (ADS)
Beidler, M. T.; Callen, J. D.; Hegna, C. C.; Sovinec, C. R.
2017-05-01
The nonlinear, extended-magnetohydrodynamic (MHD) code NIMROD is benchmarked with the theory of time-dependent forced magnetic reconnection induced by small resonant fields in slab geometry in the context of visco-resistive MHD modeling. Linear computations agree with time-asymptotic, linear theory of flow screening of externally applied fields. The inclusion of flow in nonlinear computations can result in mode penetration due to the balance between electromagnetic and viscous forces in the time-asymptotic state, which produces bifurcations from a high-slip state to a low-slip state as the external field is slowly increased. We reproduce mode penetration and unlocking transitions by employing time-dependent externally applied magnetic fields. Mode penetration and unlocking exhibit hysteresis and occur at different magnitudes of applied field. We also establish how nonlinearly determined flow screening of the resonant field is affected by the square of the magnitude of the externally applied field. These results emphasize that the inclusion of nonlinear physics is essential for accurate prediction of the reconnected field in a flowing plasma.
Pressure profiles of plasmas confined in the field of a dipole magnet
NASA Astrophysics Data System (ADS)
Davis, Matthew Stiles
Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Validation of Extended MHD Models using MST RFP Plasmas
NASA Astrophysics Data System (ADS)
Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.
2016-10-01
Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; Nazikian, R.; Strait, E. J.; Chen, X.; Ferraro, N. M.; King, J. D.; Lyons, B. C.; Park, J.-K.
2016-05-01
The nature of the multi-modal n = 2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (Δ {φ\\text{UL}} ) between upper and lower in-vessel coils demonstrates that different n = 2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, the observed confinement degradation shares the same Δ {φ\\text{UL}} dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the Δ {φ\\text{UL}} dependence of both the global confinement and the n = 2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same Δ {φ\\text{UL}} dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.
Paz-Soldan, C.; Logan, N. C.; Haskey, S. R.; ...
2016-03-31
The nature of the multi-modal n=2 plasma response and its impact on global confinement is studied as a function of the axisymmetric equilibrium pressure, edge safety factor, collisionality, and L-versus H-mode conditions. Varying the relative phase (ΔΦ UL) between upper and lower in-vessel coils demonstrates that different n=2 poloidal spectra preferentially excite different plasma responses. These different plasma response modes are preferentially detected on the tokamak high-field side (HFS) or low-field side (LFS) midplanes, have different radial extents, couple differently to the resonant surfaces, and have variable impacts on edge stability and global confinement. In all equilibrium conditions studied, themore » observed confinement degradation shares the same ΔΦ UL dependence as the coupling to the resonant surfaces given by both ideal (IPEC) and resistive (MARS-F) MHD computation. Varying the edge safety factor shifts the equilibrium field-line pitch and thus the ΔΦ UL dependence of both the global confinement and the n=2 magnetic response. As edge safety factor is varied, modeling finds that the HFS response (but not the LFS response), the resonant surface coupling, and the edge displacements near the X-point all share the same ΔΦ UL dependence. The LFS response magnitude is strongly sensitive to the core pressure and is insensitive to the collisionality and edge safety factor. This indicates that the LFS measurements are primarily sensitive to a pressure-driven kink-ballooning mode that couples to the core plasma. MHD modeling accurately reproduces these (and indeed all) LFS experimental trends and supports this interpretation. In contrast to the LFS, the HFS magnetic response and correlated global confinement impact is unchanged with plasma pressure, but is strongly reduced in high collisionality conditions in both H- and L-mode. This experimentally suggests the bootstrap current drives the HFS response through the kink-peeling mode drive, though surprisingly weak or no dependence on the bootstrap current is seen in modeling. Instead, modeling is revealed to be very sensitive to the details of the edge current profile and equilibrium truncation. Furthermore, holding truncation fixed, most HFS experimental trends are not captured, thus demonstrating a stark contrast between the robustness of the HFS experimental results and the sensitivity of its computation.« less
Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.
2016-10-01
New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Sjögreen, Björn; Yee, H. C.
2018-07-01
The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rewoldt, G.; Tang, W.M.; Lao, L.L.
1997-03-01
The microinstability properties of discharges with negative (reversed) magnetic shear in the Tokamak Fusion Test Reactor (TFTR) and DIII-D experiments with and without confinement transitions are investigated. A comprehensive kinetic linear eigenmode calculation employing the ballooning representation is employed with experimentally measured profile data, and using the corresponding numerically computed magnetohydrodynamic (MHD) equilibria. The instability considered is the toroidal drift mode (trapped-electron-{eta}{sub i} mode). A variety of physical effects associated with differing q-profiles are explained. In addition, different negative magnetic shear discharges at different times in the discharge for TFTR and DIII-D are analyzed. The effects of sheared toroidal rotation,more » using data from direct spectroscopic measurements for carbon, are analyzed using comparisons with results from a two-dimensional calculation. Comparisons are also made for nonlinear stabilization associated with shear in E{sub r}/RB{sub {theta}}. The relative importance of changes in different profiles (density, temperature, q, rotation, etc.) on the linear growth rates is considered.« less
Analysis of JT-60SA operational scenarios
NASA Astrophysics Data System (ADS)
Garzotti, L.; Barbato, E.; Garcia, J.; Hayashi, N.; Voitsekhovitch, I.; Giruzzi, G.; Maget, P.; Romanelli, M.; Saarelma, S.; Stankiewitz, R.; Yoshida, M.; Zagórski, R.
2018-02-01
Reference scenarios for the JT-60SA tokamak have been simulated with one-dimensional transport codes to assess the stationary state of the flat-top phase and provide a profile database for further physics studies (e.g. MHD stability, gyrokinetic analysis) and diagnostics design. The types of scenario considered vary from pulsed standard H-mode to advanced non-inductive steady-state plasmas. In this paper we present the results obtained with the ASTRA, CRONOS, JINTRAC and TOPICS codes equipped with the Bohm/gyro-Bohm, CDBM and GLF23 transport models. The scenarios analysed here are: a standard ELMy H-mode, a hybrid scenario and a non-inductive steady state plasma, with operational parameters from the JT-60SA research plan. Several simulations of the scenarios under consideration have been performed with the above mentioned codes and transport models. The results from the different codes are in broad agreement and the main plasma parameters generally agree well with the zero dimensional estimates reported previously. The sensitivity of the results to different transport models and, in some cases, to the ELM/pedestal model has been investigated.
Modeling ECCD/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.; Elwasif, W. R.
2009-11-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically, we consider the stabilization of resistive tearing modes in tokamak geometry by electron cyclotron current drive. In the fluid equations, ad hoc models for the RF--induced currents have previously been shown to shrink or altogether suppress the nonlinearly saturated magnetic islands generated by tearing modes; progress toward a self--consistent model is reported. The interfacing of the NIMROD [1] code with the GENRAY/CQL3D [2] codes (which calculate RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework [3] is explained, RF-induced rational surface motion and the equilibration of RF--induced currents over plasma flux surfaces are investigated, and the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD is explored. [1] Sovinec et al., JCP 195, 355 (2004) [2]www.compxco.com [3] Both the IPS development and the research presented here are part of the SWIM project. Funded by U.S. DoE.
Modeling of RF/MHD coupling using NIMROD and GENRAY
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2008-11-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations, specifically considering the stabilization of resistive tearing modes in tokamak (DIII--D--like) geometry by electron cyclotron current drive. Previous investigations [T. G. Jenkins et al., Bull. APS 52, 131 (2007)] have demonstrated that relatively simple (though non--self--consistent) models for the RF--induced currents can be incorporated into the fluid equations, and that these currents can markedly reduce the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (which calculate RF propagation and energy/momentum deposition) is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and initial studies exploring the efficient reduction of saturated island widths through time modulation of the ECCD are presented. Conducted as part of the SWIM*** project; funded by U. S. DoE. *www.nimrodteam.org **www.compxco.com ***www.cswim.org
Modeling of RF/MHD coupling using NIMROD, GENRAY, and the Integrated Plasma Simulator
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Schnack, D. D.; Sovinec, C. R.; Hegna, C. C.; Callen, J. D.; Ebrahimi, F.; Kruger, S. E.; Carlsson, J.; Held, E. D.; Ji, J.-Y.; Harvey, R. W.; Smirnov, A. P.
2009-05-01
We summarize ongoing theoretical/numerical work relevant to the development of a self--consistent framework for the inclusion of RF effects in fluid simulations; specifically considering resistive tearing mode stabilization in tokamak (DIII--D--like) geometry via ECCD. Relatively simple (though non--self--consistent) models for the RF--induced currents are incorporated into the fluid equations, markedly reducing the width of the nonlinearly saturated magnetic islands generated by tearing modes. We report our progress toward the self--consistent modeling of these RF--induced currents. The initial interfacing of the NIMROD* code with the GENRAY/CQL3D** codes (calculating RF propagation and energy/momentum deposition) via the Integrated Plasma Simulator (IPS) framework*** is explained, equilibration of RF--induced currents over the plasma flux surfaces is investigated, and studies exploring the efficient reduction of saturated island widths through time modulation and spatial localization of the ECCD are presented. *[Sovinec et al., JCP 195, 355 (2004)] **[www.compxco.com] ***[This research and the IPS development are both part of the SWIM project. Funded by U.S. DoE.
NIMROD Modeling of Sawtooth Modes Using Hot-Particle Closures
NASA Astrophysics Data System (ADS)
Kruger, Scott; Jenkins, T. G.; Held, E. D.; King, J. R.
2015-11-01
In DIII-D shot 96043, RF heating gives rise to an energetic ion population that alters the sawtooth stability boundary, replacing conventional sawtooth cycles by longer-period, larger-amplitude `giant sawtooth' oscillations. We explore the use of particle-in-cell closures within the NIMROD code to numerically represent the RF-induced hot-particle distribution, and investigate the role of this distribution in determining the altered mode onset threshold and subsequent nonlinear evolution. Equilibrium reconstructions from the experimental data are used to enable these detailed validation studies. Effects of other parameters on the sawtooth behavior, such as the plasma Lundquist number and hot-particle beta-fraction, are also considered. The fast energetic particles present many challenges for the PIC closure. We review new algorithm and performance improvements to address these challenges, and provide a preliminary assessment of the efficacy of the PIC closure versus a continuum model for energetic particle modeling. We also compare our results with those of, and discuss plans for a more complete validation campaign for this discharge. Supported by US Department of Energy via the SciDAC Center for Extended MHD Modeling (CEMM).
NASA Astrophysics Data System (ADS)
Hirai, K.; Katoh, Y.; Terada, N.; Kawai, S.
2016-12-01
In accretion disks, magneto-rotational instability (MRI; Balbus & Hawley, 1991) makes the disk gas in the magnetic turbulent state and drives efficient mass accretion into a central star. MRI drives turbulence through the evolution of the parasitic instability (PI; Goodman & Xu, 1994), which is related to both Kelvin-Helmholtz (K-H) instability and magnetic reconnection. The wave number vector of PI is strongly affected by both magnetic diffusivity and fluid viscosity (Pessah, 2010). This fact makes MHD simulation of MRI difficult, because we need to employ the numerical diffusivity for treating discontinuities in compressible MHD simulation schemes. Therefore, it is necessary to use an MHD scheme that has both high-order accuracy so as to resolve MRI driven turbulence and small numerical diffusivity enough to treat discontinuities. We have originally developed an MHD code by employing the scheme proposed by Kawai (2013). This scheme focuses on resolving turbulence accurately by using a high-order compact difference scheme (Lele, 1992), and meanwhile, the scheme treats discontinuities by using the localized artificial diffusivity method (Kawai, 2013). Our code also employs the pipeline algorithm (Matsuura & Kato, 2007) for MPI parallelization without diminishing the accuracy of the compact difference scheme. We carry out a 3-dimensional ideal MHD simulation with a net vertical magnetic field in the local shearing box disk model. We use 256x256x128 grids. Simulation results show that the spatially averaged turbulent stress induced by MRI linearly grows until around 2.8 orbital periods, and decreases after the saturation. We confirm the strong enhancement of the K-H mode PI at a timing just before the saturation, identified by the enhancement of its anisotropic wavenumber spectra in the 2-dimensional wavenumber space. The wave number of the maximum growth of PI reproduced in the simulation result is larger than the linear analysis. This discrepancy is explained by the simulation result that a shear flow created by MRI locally becomes thinner and faster due to interactions between antiparallel vortices induced by K-H mode PI, and this structure induces small scale waves which break the shear flow itself. We report the results of the simulation, and discuss how the saturation amplitude of MRI is determined.
NIMROD simulations of HIT-SI plasmas
NASA Astrophysics Data System (ADS)
Akcay, Cihan; Jarboe, Thomas; Nelson, Brian; Kim, Charlson
2011-10-01
HIT-SI (Steady Inductive Helicity Injected Torus) is a current drive experiment that uses two semi-toroidal helicity injectors driven at 5-15 kHz to generate steady inductive helicity injection (SIHI). All the plasma-facing walls of the experiment are coated with an insulating material to guarantee an inductive discharge. NIMROD is a 3-D extended MHD code that can only model toroidally-uniform geometries. The helicity injectors of the experiment are simulated as flux and voltage boundary conditions with odd toroidal symmetry. A highly resistive, thin edge-layer approximates the insulating walls. The simulations are initial-value calculations that use a zero β resistive MHD (rMHD) model with uniform density. The Prandtl number (Pr = 10), and Lundquist number (S = 5 - 50) closely match the experimental values. rMHD calculations at S ~ 10 show no growth of an n = 0 mode and only a few kA of toroidal current whereas HIT-SI has demonstrated toroidal currents greater than 50 kA with a current amplification of 3. At higher S (>= 20) the simulations exhibit significant n = 0 magnetic energy growth and a current amplification exceeding unity: Itor/Iinj >= 1 . While HIT-SI has shown evidence for separatrix formation, rMHD calculations indicate an entirely stochastic magnetic structure during sustainment. Results will also presented for Hall MHD, anticipated to play a crucial role in the physics of SIHI.
Suppression of MHD fluctuations leading to improved confinement in a gun-driven spheromak.
McLean, H S; Woodruff, S; Hooper, E B; Bulmer, R H; Hill, D N; Holcomb, C; Moller, J; Stallard, B W; Wood, R D; Wang, Z
2002-03-25
Magnetic fluctuations have been reduced to approximately 1% during discharges on the Sustained Spheromak Physics Experiment by shaping the spatial distribution of the bias magnetic flux in the device. In the resulting quiescent regime, the safety factor profile is nearly flat in the plasma and the dominant ideal and resistive MHD modes are greatly reduced. During this period, the temperature profile is peaked at the magnetic axis and maps onto magnetic flux contours. Energy confinement time is improved over previous reports in a driven spheromak.
Resonant interactions between cometary ions and low frequency electromagnetic waves
NASA Technical Reports Server (NTRS)
Thorne, Richard M.; Tsurutani, Bruce T.
1987-01-01
The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.
Resonant interactions between cometary ions and low frequency electromagnetic waves
NASA Astrophysics Data System (ADS)
Thorne, R. M.; Tsurutani, B. T.
1987-12-01
The conditions for resonant wave amplification in a plasma with a ring-beam distribution which is intended to model pick-up ions in a cometary environment are investigated. The inclination between the interplanetary field and the solar wind is found to play a crucial role in governing both the resonant frequency and the growth rate of any unstable mode. It is suggested that the low-frequency MHD mode should experience the most rapid amplification for intermediate inclination. In the frame of the solar wind, such waves should propagate along the field in the direction upstream toward the sun with a phase speed lower than the beaming velocity of the pick-up ions. This mechanism may account for the presence of the interior MHD waves noted by satellites over a region surrounding comets Giacobini-Zinner and Halley.
Magnetic field amplification via protostellar disc dynamos
NASA Astrophysics Data System (ADS)
Dyda, S.; Lovelace, R. V. E.; Ustyugova, G. V.; Koldoba, A. V.; Wasserman, I.
2018-06-01
We numerically investigate the generation of a magnetic field in a protostellar disc via an αΩ-dynamo and the resulting magnetohydrodynamic (MHD) driven outflows. We find that for small values of the dimensionless dynamo parameter αd, the poloidal field grows exponentially at a rate σ ∝ Ω _K √{α _d}, before saturating to a value ∝ √{α _d}. The dynamo excites dipole and octupole modes, but quadrupole modes are suppressed, because of the symmetries of the seed field. Initial seed fields too weak to launch MHD outflows are found to grow sufficiently to launch winds with observationally relevant mass fluxes of the order of 10^{-9} M_{⊙} yr^{-1} for T Tauri stars. This suggests that αΩ-dynamos may be responsible for generating magnetic fields strong enough to launch observed outflows.
Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak
NASA Astrophysics Data System (ADS)
Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team
2018-02-01
A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.
Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Bellan, Paul M.
2008-07-01
Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.
Simulations of initial MHD experiments on the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
O'Connell, R.; Forest, C. B.; Goldwin, J. M.; Kendrick, R. D.; Canary, H. W.; Nornberg, M. D.; Jaun, A.
1999-11-01
Initial experiments for a liquid metal MHD device have been modelled using measurements from geometrically similar water experiments. In the low B limit the water flows are the same as sodium flows. Two codes have been written to predict 1) linear stability of the system and 2) the response of the system to an externally applied vertical magnetic field, using measured velocity profiles. Predictions are made for a first set of MHD experiments, including: a) demonstration of the distortion and amplification of externally applied magnetic fields by sheared flows, b) demonstration of the β-effect by measurement of the turbulent conductivity, c) demonstration of a turbulent α effect and d) characterization of magnetic eigenmodes.
Impact of E × B shear flow on low-n MHD instabilities.
Chen, J G; Xu, X Q; Ma, C H; Xi, P W; Kong, D F; Lei, Y A
2017-05-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al. , Phys. Plasmas 23 , 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the E r shear. Adopting the much more general shape of E × B shear ([Formula: see text]) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.
Impact of E × B shear flow on low-n MHD instabilities
NASA Astrophysics Data System (ADS)
Chen, J. G.; Xu, X. Q.; Ma, C. H.; Xi, P. W.; Kong, D. F.; Lei, Y. A.
2017-05-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear ( ω E = E r / R B θ ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode.
Impact of E × B shear flow on low-n MHD instabilities
Chen, J. G.; Ma, C. H.; Xi, P. W.; Lei, Y. A.
2017-01-01
Recently, the stationary high confinement operations with improved pedestal conditions have been achieved in DIII-D [K. H. Burrell et al., Phys. Plasmas 23, 056103 (2016)], accompanying the spontaneous transition from the coherent edge harmonic oscillation (EHO) to the broadband MHD turbulence state by reducing the neutral beam injection torque to zero. It is highly significant for the burning plasma devices such as ITER. Simulations about the effects of E × B shear flow on the quiescent H-mode (QH-mode) are carried out using the three-field two-fluid model in the field-aligned coordinate under the BOUT++ framework. Using the shifted circular cross-section equilibriums including bootstrap current, the results demonstrate that the E × B shear flow strongly destabilizes low-n peeling modes, which are mainly driven by the gradient of parallel current in peeling-dominant cases and are sensitive to the Er shear. Adopting the much more general shape of E × B shear (ωE=Er/RBθ) profiles, the linear and nonlinear BOUT++ simulations show qualitative consistence with the experiments. The stronger shear flow shifts the most unstable mode to lower-n and narrows the mode spectrum. At the meantime, the nonlinear simulations of the QH-mode indicate that the shear flow in both co- and counter directions of diamagnetic flow has some similar effects. The nonlinear mode interaction is enhanced during the mode amplitude saturation phase. These results reveal that the fundamental physics mechanism of the QH-mode may be shear flow and are significant for understanding the mechanism of EHO and QH-mode. PMID:28579732
Yamada, Masaaki
2016-01-01
This study briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
NASA Astrophysics Data System (ADS)
Yamada, Masaaki
2016-03-01
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactor program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamada, Masaaki
2016-03-25
This paper briefly reviews a compact toroid reactor concept that addresses critical issues for forming, stabilizing and sustaining a field reversed configuration (FRC) with the use of plasma merging, plasma shaping, conducting shells, neutral beam injection (NBI). In this concept, an FRC plasma is generated by the merging of counter-helicity spheromaks produced by inductive discharges and sustained by the use of neutral beam injection (NBI). Plasma shaping, conducting shells, and the NBI would provide stabilization to global MHD modes. Although a specific FRC reactor design is outside the scope of the present paper, an example of a promising FRC reactormore » program is summarized based on the previously developed SPIRIT (Self-organized Plasmas by Induction, Reconnection and Injection Techniques) concept in order to connect this concept to the recently achieved the High Performance FRC plasmas obtained by Tri Alpha Energy [Binderbauer et al, Phys. Plasmas 22,056110, (2015)]. This paper includes a brief summary of the previous concept paper by M. Yamada et al, Plasma Fusion Res. 2, 004 (2007) and the recent experimental results from MRX.« less
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; ...
2018-02-20
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less
Confinement & Stability in MAST
NASA Astrophysics Data System (ADS)
Akers, Rob
2001-10-01
Transition to H-mode has been achieved in the MAST spherical tokamak (ST) for both ohmically and neutral beam heated plasmas (P_NBI ~ 0.5-1.5MW), resulting in double-null diverted discharges containing both regular and irregular edge localised modes (ELMs). The observed L-H power threshold is ~10 times higher than predicted by established empirical scalings. L-H transition in MAST is accompanied by a sharp increase in edge density gradient, the efficient conversion of internal electron Bernstein waves into free space waves, the onset and saturation of edge poloidal rotation and a marked decrease in turbulence. During ELM free periods, a reduction in outboard power deposition width is observed using a Langmuir probe array. A novel divertor structure has been installed to counter the resulting increase in target heat-flux by applying a toroidally varying potential to the divertor plasma, theory suggesting that convective broadening of the scrape off layer will take place. Global confinement in H-mode is found to routinely exceed the international IPB(y,2) scaling, even for discharges approaching the Greenwald density. In an attempt to further extend the density range (densities in excess of Greenwald having been achieved for plasma currents up to 0.8MA) a multi-pellet injector has been installed at the low-field-side. In addition, high field side fuelling can be supplied via a gas-feed located at the centre-column mid-plane, this technique having been found to significantly enhance H-mode accessibility and quality. A range of stability issues will be discussed, including vertical displacement events, the rich variety of high frequency MHD seen in MAST and the physics of the Neoclassical Tearing Mode. This work was funded by the UK Department of Trade and Industry and by EURATOM. The NBI equipment is on loan from ORNL and the pellet injector was provided by FOM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal field (1 T) and plasma current (1.0 - 2.0 MA) in a low aspect ratio geometry (A = 1.6 - 1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes progress in the development of L- and Hmode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supportedmore » the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (BT0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (tpulse > 1.8s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (Ip). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (βN/βN-nowall > 1) compared to NSTX discharges for Ip ≤ 1 MA. High-performance H-mode scenarios require an L-H transition early in the Ip ramp-up phase in order to obtain low internal inductance (li) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.« less
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, D. A.; Lau, Y. Y.; Zhang, P.; Campbell, P. C.; Steiner, A. M.; Jordan, N. M.; McBride, R. D.; Gilgenbach, R. M.
2018-05-01
In this paper, we present experimental results on axially magnetized (Bz = 0.5 - 2.0 T), thin-foil (400 nm-thick) cylindrical liner-plasmas driven with ˜600 kA by the Michigan Accelerator for Inductive Z-Pinch Experiments, which is a linear transformer driver at the University of Michigan. We show that: (1) the applied axial magnetic field, irrespective of its direction (e.g., parallel or anti-parallel to the flow of current), reduces the instability amplitude for pure magnetohydrodynamic (MHD) modes [defined as modes devoid of the acceleration-driven magneto-Rayleigh-Taylor (MRT) instability]; (2) axially magnetized, imploding liners (where MHD modes couple to MRT) generate m = 1 or m = 2 helical modes that persist from the implosion to the subsequent explosion stage; (3) the merging of instability structures is a mechanism that enables the appearance of an exponential instability growth rate for a longer than expected time-period; and (4) an inverse cascade in both the axial and azimuthal wavenumbers, k and m, may be responsible for the final m = 2 helical structure observed in our experiments. These experiments are particularly relevant to the magnetized liner inertial fusion program pursued at Sandia National Laboratories, where helical instabilities have been observed.
Calculation of continuum damping of Alfvén eigenmodes in tokamak and stellarator equilibria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowden, G. W.; Hole, M. J.; Könies, A.
2015-09-15
In an ideal magnetohydrodynamic (MHD) plasma, shear Alfvén eigenmodes may experience dissipationless damping due to resonant interaction with the shear Alfvén continuum. This continuum damping can make a significant contribution to the overall growth/decay rate of shear Alfvén eigenmodes, with consequent implications for fast ion transport. One method for calculating continuum damping is to solve the MHD eigenvalue problem over a suitable contour in the complex plane, thereby satisfying the causality condition. Such an approach can be implemented in three-dimensional ideal MHD codes which use the Galerkin method. Analytic functions can be fitted to numerical data for equilibrium quantities inmore » order to determine the value of these quantities along the complex contour. This approach requires less resolution than the established technique of calculating damping as resistivity vanishes and is thus more computationally efficient. The complex contour method has been applied to the three-dimensional finite element ideal MHD Code for Kinetic Alfvén waves. In this paper, we discuss the application of the complex contour technique to calculate the continuum damping of global modes in tokamak as well as torsatron, W7-X and H-1NF stellarator cases. To the authors' knowledge, these stellarator calculations represent the first calculation of continuum damping for eigenmodes in fully three-dimensional equilibria. The continuum damping of global modes in W7-X and H-1NF stellarator configurations investigated is found to depend sensitively on coupling to numerous poloidal and toroidal harmonics.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, P. T.; Shadid, J. N.; Hu, J. J.
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...
2017-11-06
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU
NASA Astrophysics Data System (ADS)
Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.
1982-06-01
In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
Chen, Xi; Burrell, K. H.; Osborne, T. H.; ...
2016-09-30
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge ExB rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. And at the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ≤60%) and width (by ≤50%). We posit that themore » enhanced edge turbulence-driven transport, enabled by the lower edge ExB flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8≤ρ≤0.9) owing to increased ExB flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. Our findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picologlou, B F; Batenin, V M
1981-01-01
A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for anmore » MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.« less
Shell models of magnetohydrodynamic turbulence
NASA Astrophysics Data System (ADS)
Plunian, Franck; Stepanov, Rodion; Frick, Peter
2013-02-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accurate dissipation rate. Using modern computers it is difficult to attain an inertial range of three decades with direct numerical simulations, whereas eight are possible using shell models. In this review we set up a general mathematical framework allowing the description of any MHD shell model. The variety of the latter, with their advantages and weaknesses, is introduced. Finally we consider a number of applications, dealing with free-decaying MHD turbulence, dynamo action, Alfvén waves and the Hall effect.
Advanced divertor configurations with large flux expansion
NASA Astrophysics Data System (ADS)
Soukhanovskii, V. A.; Bell, R. E.; Diallo, A.; Gerhardt, S.; Kaye, S.; Kolemen, E.; LeBlanc, B. P.; McLean, A.; Menard, J. E.; Paul, S. F.; Podesta, M.; Raman, R.; Ryutov, D. D.; Scotti, F.; Kaita, R.; Maingi, R.; Mueller, D. M.; Roquemore, A. L.; Reimerdes, H.; Canal, G. P.; Labit, B.; Vijvers, W.; Coda, S.; Duval, B. P.; Morgan, T.; Zielinski, J.; De Temmerman, G.; Tal, B.
2013-07-01
Experimental studies of the novel snowflake divertor concept (D. Ryutov, Phys. Plasmas 14 (2007) 064502) performed in the NSTX and TCV tokamaks are reviewed in this paper. The snowflake divertor enables power sharing between divertor strike points, as well as the divertor plasma-wetted area, effective connection length and divertor volumetric power loss to increase beyond those in the standard divertor, potentially reducing heat flux and plasma temperature at the target. It also enables higher magnetic shear inside the separatrix, potentially affecting pedestal MHD stability. Experimental results from NSTX and TCV confirm the predicted properties of the snowflake divertor. In the NSTX, a large spherical tokamak with a compact divertor and lithium-coated graphite plasma-facing components (PFCs), the snowflake divertor operation led to reduced core and pedestal impurity concentration, as well as re-appearance of Type I ELMs that were suppressed in standard divertor H-mode discharges. In the divertor, an otherwise inaccessible partial detachment of the outer strike point with an up to 50% increase in divertor radiation and a peak divertor heat flux reduction from 3-7 MW/m2 to 0.5-1 MW/m2 was achieved. Impulsive heat fluxes due to Type-I ELMs were significantly dissipated in the high magnetic flux expansion region. In the TCV, a medium-size tokamak with graphite PFCs, several advantageous snowflake divertor features (cf. the standard divertor) have been demonstrated: an unchanged L-H power threshold, enhanced stability of the peeling-ballooning modes in the pedestal region (and generally an extended second stability region), as well as an H-mode pedestal regime with reduced (×2-3) Type I ELM frequency and slightly increased (20-30%) normalized ELM energy, resulting in a favorable average energy loss comparison to the standard divertor. In the divertor, ELM power partitioning between snowflake divertor strike points was demonstrated. The NSTX and TCV experiments are providing support for the snowflake divertor as a viable solution for the outstanding tokamak plasma-material interface issues.
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Gong, X. Z.; Ding, S. Y.; Huang, J.; McClenaghan, J.; Pan, C. K.; Qian, J.; Ren, Q. L.; Staebler, G. M.; Chen, J.; Cui, L.; Grierson, B. A.; Hanson, J. M.; Holcomb, C. T.; Jian, X.; Li, G.; Li, M.; Pankin, A. Y.; Peysson, Y.; Zhai, X.; Bonoli, P.; Brower, D.; Ding, W. X.; Ferron, J. R.; Guo, W.; Lao, L. L.; Li, K.; Liu, H.; Lyv, B.; Xu, G.; Zang, Q.
2018-01-01
Experimental and modeling investigations on the DIII-D and EAST tokamaks show the attractive transport and stability properties of fully noninductive, high poloidal-beta (β P ) plasmas, and their suitability for steady-state operating scenarios in ITER and CFETR. A key feature of the high-β P regime is the large-radius (ρ > 0.6) internal transport barrier (ITB), often observed in all channels (ne, Te, Ti, rotation), and responsible for both excellent energy confinement quality and excellent stability properties. Experiments on DIII-D have shown that, with a large-radius ITB, very high β N and β P values (both ≥ 4) can be reached by taking advantage of the stabilizing effect of a nearby conducting wall. Synergistically, higher plasma pressure provides turbulence suppression by Shafranov shift, leading to ITB sustainment independent of the plasma rotation. Experiments on EAST have been used to assess the long pulse potential of the high-β P regime. Using RF-only heating and current drive, EAST achieved minute-long fully noninductive steady state H-mode operation with strike points on an ITER-like tungsten divertor. Improved confinement (relative to standard H-mode) and steady state ITB features are observed with a monotonic q-profile with q min ˜ 1.5. Separately, experiments have shown that increasing the density in plasmas driven by lower hybrid wave broadens the q-profile, a technique that could enable a large radius ITB. These experimental results have been used to validate MHD, current drive, and turbulent transport models, and to project the high-β P regime to a burning plasma. These projections suggest the Shafranov shift alone will not suffice to provide improved confinement (over standard H-mode) without rotation and rotation shear. However, increasing the negative magnetic shear (higher q on axis) provides a similar turbulence suppression mechanism to Shafranov shift, and can help devices such as ITER and CFETR achieve their steady-state fusion goals.
Orszag Tang vortex - Kinetic study of a turbulent plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, T. N.; Servidio, S.; Shay, M. A.
Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of themore » system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.« less
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
NASA Astrophysics Data System (ADS)
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Fully implicit adaptive mesh refinement algorithm for reduced MHD
NASA Astrophysics Data System (ADS)
Philip, Bobby; Pernice, Michael; Chacon, Luis
2006-10-01
In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technology to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite grid --FAC-- algorithms) for scalability. We demonstrate that the concept is indeed feasible, featuring near-optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations in challenging dissipation regimes will be presented on a variety of problems that benefit from this capability, including tearing modes, the island coalescence instability, and the tilt mode instability. L. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) B. Philip, M. Pernice, and L. Chac'on, Lecture Notes in Computational Science and Engineering, accepted (2006)
Lang, Jianying; Ku, S.; Chen, Y.; Parker, S. E.; Adams, M. F.
2017-01-01
As an alternative option to kinetic electrons, the gyrokinetic total-f particle-in-cell (PIC) code XGC1 has been extended to the MHD/fluid type electromagnetic regime by combining gyrokinetic PIC ions with massless drift-fluid electrons analogous to Chen and Parker [Phys. Plasmas 8, 441 (2001)]. Two representative long wavelength modes, shear Alfvén waves and resistive tearing modes, are verified in cylindrical and toroidal magnetic field geometries. PMID:29104419
New MHD feedback control schemes using the MARTe framework in RFX-mod
NASA Astrophysics Data System (ADS)
Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo
2013-10-01
Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.
The 7th Asia-Pacific Transport Working Group (APTWG) meeting
NASA Astrophysics Data System (ADS)
Ida, K.; Kong, D. F.; Fujita, T.; Ido, T.; Ko, W. H.; Maeyama, S.
2018-01-01
This conference report summarizes the contributions to, and discussions at, the 7th Asia-Pacific Transport Working Group Meeting held at Nagoya University, Japan, during 5-8 June 2017. The topics of the meeting were organized under four main headings: (1) turbulence and blob at the boundary of magnetic topology, (2) model reduction and experiments for validation, (3) mode competition in turbulence and MHD driven by energetic particle, (4) mechanism determining plasma flows and their impact on transport and MHD. The Young Researchers Forum which was held in this meeting is also described in this report.
Nonlinear dynamics of toroidal Alfvén eigenmodes in presence of tearing modes
NASA Astrophysics Data System (ADS)
Zhu, Jia; Ma, Zhiwei; Wang, Sheng; Zhang, Wei
2016-10-01
A new hybrid kinetic-MHD code CLT-K is developed to study nonlinear dynamics of n =1 toroidal Alfvén eigenmodes (TAEs) with the m/n =2/1 tearing mode. It is found that the n =1 TAE is first excited by isotropic energetic particles in the earlier stage and reaches the steady state due to wave-particle interaction. After the saturation of the n =1 TAE, the tearing mode intervenes and triggers the second growth of the mode. The modes goes into the second steady state due to multiple tearing mode-mode nonlinear coupling. Both wave-particle and wave-wave interactions are observed in our hybrid simulation.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
NASA Astrophysics Data System (ADS)
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams
2017-07-01
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less
Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas
Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...
2017-04-28
Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less
Study of nonlinear MHD equations governing the wave propagation in twisted coronal loops
NASA Technical Reports Server (NTRS)
Parhi, S.; DeBruyne, P.; Goossens, M.; Zhelyazkov, I.
1995-01-01
The solar corona, modelled by a low beta, resistive plasma slab, sustains MHD wave propagations due to shearing footpoint motions in the photosphere. By using a numerical algorithm the excitation and nonlinear development of MHD waves in twisted coronal loops are studied. The plasma responds to the footpoint motion by sausage waves if there is no twist. The twist in the magnetic field of the loop destroys initially developed sausage-like wave modes and they become kinks. The transition from sausage to kink modes is analyzed. The twist brings about mode degradation producing high harmonics and this generates more complex fine structures. This can be attributed to several local extrema in the perturbed velocity profiles. The Alfven wave produces remnants of the ideal 1/x singularity both for zero and non-zero twist and this pseudo-singularity becomes less pronounced for larger twist. The effect of nonlinearity is clearly observed by changing the amplitude of the driver by one order of magnitude. The magnetosonic waves also exhibit smoothed remnants of ideal logarithmic singularities when the frequency of the driver is correctly chosen. This pseudo-singularity for fast waves is absent when the coronal loop does not undergo any twist but becomes pronounced when twist is included. On the contrary, it is observed for slow waves even if there is no twist. Increasing the twist leads to a higher heating rate of the loop. The larger twist shifts somewhat uniformly distributed heating to layers inside the slab corresponding to peaks in the magnetic field strength.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McNamara, B.
Tandem and stellarator equilibria at high ..beta.. have proved hard to compute and the relaxation methods of Bauer et al., Chodura and Schluter, Hirshman, Strauss, and Pearlstein et al. have been slow to converge. This paper reports an extension of the low-..beta.. analytic method of Pearlstein, Kaiser, and Newcomb to arbitrary ..beta.. for tandem mirrors which converges in 10 to 20 iterations. Extensions of the method to stellarator equilibria are proposed and are very close to the analytic method of Johnson and Greene - the stellarator expansion. Most of the results of all these calculations can be adequately described bymore » low-..beta.. approximations since the MHD stability limits occur at low ..beta... The tandem mirror, having weak curvature and a long central cell, allows finite Larmor radius effects to eliminate most ballooning modes and offers the possibility of really high average ..beta... This is the interest in developing such three-dimensional numerical algorithms.« less
Recent results of the Filippov-type PF experiments at Kurchatov Institute
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauz, V. I.; Karakin, M. A.; Khautiev, E. Yu.
2006-01-15
The experiments with various plasma-producing substances performed recently were the main content at the PF-3 facility studies: (i) The dependence of the wire array compression on the number of wires was investigated with the deuterium as a filling gas. (ii) The neutron output, 5{center_dot}106 neutrons per shot, was registered in experiments with deuterium-polythene fibers when argon was used as a filling gas. Experimental confirmation of fibers pre-heating by radiation of the current sheath compressed to an axis was obtained. (iii) Studies of interaction of dense high-temperature plasma with the condensed disperse substance (dust) were continued. The dependence of the pinchmore » dynamics on the dust target parameters was investigated. In the shots with dust fraction of the fine-disperse Al2O3 powder, modes with increased pinch MHD-stability are found.« less
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).
Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data
Strait, E. J.; King, J. D.; Hanson, J. M.; ...
2016-08-11
An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ~10 -3 to 10 -5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Lastly, applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.
Investigation of Physical Processes Limiting Plasma Density in DIII--D
NASA Astrophysics Data System (ADS)
Maingi, R.
1996-11-01
Understanding the physical processes which limit operating density is crucial in achieving peak performance in confined plasmas. Studies from many of the world's tokamaks have indicated the existence(M. Greenwald, et al., Nucl. Fusion 28) (1988) 2199 of an operational density limit (Greenwald limit, n^GW_max) which is proportional to the plasma current and independent of heating power. Several theories have reproduced the current dependence, but the lack of a heating power dependence in the data has presented an enigma. This limit impacts the International Thermonuclear Experimental Reactor (ITER) because the nominal operating density for ITER is 1.5 × n^GW_max. In DIII-D, experiments are being conducted to understand the physical processes which limit operating density in H-mode discharges; these processes include X-point MARFE formation, high core recycling and neutral pressure, resistive MHD stability, and core radiative collapse. These processes affect plasma properties, i.e. edge/scrape-off layer conduction and radiation, edge pressure gradient and plasma current density profile, and core radiation, which in turn restrict the accessible density regime. With divertor pumping and D2 pellet fueling, core neutral pressure is reduced and X-point MARFE formation is effectively eliminated. Injection of the largest-sized pellets does cause transient formation of divertor MARFEs which occasionally migrate to the X-point, but these are rapidly extinguished in pumped discharges in the time between pellets. In contrast to Greenwald et al., it is found that the density relaxation time after pellets is largely independent of the density relative to the Greenwald limit. Fourier analysis of Mirnov oscillations indicates the de-stabilization and growth of rotating, tearing-type modes (m/n= 2/1) when the injected pellets cause large density perturbations, and these modes often reduce energy confinement back to L-mode levels. We are examining the mechanisms for de-stabilization of the mode, the primary ones being neo-classical pressure gradient drivers. Discharges with a gradual density increase are often free of large amplitude tearing modes, allowing access to the highest density regimes in which off-axis beam deposition can lead to core radiative collapse, i.e. a central power balance limit. The highest achieved barne was 1.5 × n^GW_max with τ_E/τ_E^JET-DIII-D >= 0.9. The highest density obtained in L-mode discharges was 3 × n^GW_max. Implications of these results for ITER will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fitzpatrick, Richard
2007-09-24
Dr. Fitzpatrick has written an MHD code in order to investigate the interaction of tearing modes with flow and external magnetic perturbations, which has been successfully benchmarked against both linear and nonlinear theory and used to investigate error-field penetration in flowing plasmas. The same code was used to investigate the so-called Taylor problem. He employed the University of Chicago's FLASH code to further investigate the Taylor problem, discovering a new aspect of the problem. Dr. Fitzpatrick has written a 2-D Hall MHD code and used it to investigate the collisionless Taylor problem. Dr. Waelbroeck has performed an investigation of themore » scaling of the error-field penetration threshold in collisionless plasmas. Paul Watson and Dr. Fitzpatrick have written a fully-implicit extended-MHD code using the PETSC framework. Five publications have resulted from this grant work.« less
NASA Technical Reports Server (NTRS)
Wang, S. Y.; Smith, J. M.
1982-01-01
It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.
High-beta extended MHD simulations of stellarators
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.
2016-10-01
The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
NASA Astrophysics Data System (ADS)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S.; Mueller, D.; Myers, C. E.; Guttenfelder, W.; Menard, J. E.; Sabbagh, S. A.; Scotti, F.; Bedoya, F.; Bell, R. E.; Berkery, J. W.; Diallo, A.; Ferraro, N.; Kaye, S. M.; Jaworski, M. A.; LeBlanc, B. P.; Ono, M.; Park, J.-K.; Podesta, M.; Raman, R.; Soukhanovskii, V.; NSTX-U Research, the; Operations; Engineering Team
2018-04-01
The National Spherical Torus Experiment Upgrade (NSTX-U) will advance the physics basis required for achieving steady-state, high-beta, and high-confinement conditions in a tokamak by accessing high toroidal fields (1 T) and plasma currents (1.0-2.0 MA) in a low aspect ratio geometry (A = 1.6-1.8) with flexible auxiliary heating systems (12 MW NBI, 6 MW HHFW). This paper describes the progress in the development of L- and H-mode discharge scenarios and the commissioning of operational tools in the first ten weeks of operation that enable the scientific mission of NSTX-U. Vacuum field calculations completed prior to operations supported the rapid development and optimization of inductive breakdown at different values of ohmic solenoid current. The toroidal magnetic field (B T0 = 0.65 T) exceeded the maximum values achieved on NSTX and novel long-pulse L-mode discharges with regular sawtooth activity exceeded the longest pulses produced on NSTX (t pulse > 1.8 s). The increased flux of the central solenoid facilitated the development of stationary L-mode discharges over a range of density and plasma current (I p). H-mode discharges achieved similar levels of stored energy, confinement (H98y,2 > 1) and stability (β N/β N-nowall > 1) compared to NSTX discharges for I p ⩽ 1 MA. High-performance H-mode scenarios require an L-H transition early in the I p ramp-up phase in order to obtain low internal inductance (l i) throughout the discharge, which is conducive to maintaining vertical stability at high elongation (κ > 2.2) and achieving long periods of MHD quiescent operations. The rapid progress in developing L- and H-mode scenarios in support of the scientific program was enabled by advances in real-time plasma control, efficient error field identification and correction, effective conditioning of the graphite wall and excellent diagnostic availability.
Physics Basis for the Advanced Tokamak Fusion Power Plant ARIES-AT
DOE Office of Scientific and Technical Information (OSTI.GOV)
S.C. Jardin; C.E. Kessel; T.K. Mau
2003-10-07
The advanced tokamak is considered as the basis for a fusion power plant. The ARIES-AT design has an aspect ratio of A always equal to R/a = 4.0, an elongation and triangularity of kappa = 2.20, delta = 0.90 (evaluated at the separatrix surface), a toroidal beta of beta = 9.1% (normalized to the vacuum toroidal field at the plasma center), which corresponds to a normalized beta of bN * 100 x b/(I(sub)P(MA)/a(m)B(T)) = 5.4. These beta values are chosen to be 10% below the ideal-MHD stability limit. The bootstrap-current fraction is fBS * I(sub)BS/I(sub)P = 0.91. This leads tomore » a design with total plasma current I(sub)P = 12.8 MA, and toroidal field of 11.1 T (at the coil edge) and 5.8 T (at the plasma center). The major and minor radii are 5.2 and 1.3 m, respectively. The effects of H-mode edge gradients and the stability of this configuration to non-ideal modes is analyzed. The current-drive system consists of ICRF/FW for on-axis current drive and a lower-hybrid system for off-axis. Tran sport projections are presented using the drift-wave based GLF23 model. The approach to power and particle exhaust using both plasma core and scrape-off-layer radiation is presented.« less
DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François
The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field producedmore » by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.« less
Comments on compressible effects on Alfven normal modes in nonuniform plasmas
NASA Technical Reports Server (NTRS)
Mok, Y.; Einaudi, G.
1990-01-01
The paper discusses the regime of validity of the theory of dissipative Alfven normal modes presented by Mok and Einaudi (1985) and Einaudi and Mok (1985), which was based on the incompressible closure of the system of ideal MHD equations. Some simple extensions of the earlier results to the compressible case are described. In addition, certain misunderstandings of this work, which have appeared in other papers, are clarified.
A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong
2018-03-01
A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.
Kelvin-Helmholtz instability in an active region jet observed with Hinode
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Chandra, R.; Srivastava, A. K.
2016-02-01
Over past ten years a variety of jet-like phenomena were detected in the solar atmosphere, including plasma ejections over a range of coronal temperatures being observed as extreme ultraviolet (EUV) and X-ray jets. We study the possibility for the development of Kelvin-Helmholtz (KH) instability of transverse magnetohydrodynamic (MHD) waves traveling along an EUV jet situated on the west side of NOAA AR 10938 and observed by three instruments on board Hinode on 2007 January 15/16 (Chifor et al. in Astron. Astrophys. 481:L57, 2008b). The jet was observed around log Te = 6.2 with up-flow velocities exceeded 150 km s^{-1}. Using Fe xii λ186 and λ195 line ratios, the measured densities were found to be above log Ne = 11. We have modeled that EUV jet as a vertically moving magnetic flux tube (untwisted and weakly twisted) and have studied the propagation characteristics of the kink (m = 1) mode and the higher m modes with azimuthal mode numbers m = 2, 3, 4. It turns out that all these MHD waves can become unstable at flow velocities in the range of 112-114.8 km s^{-1}. The lowest critical jet velocity of 112 km s^{-1} is obtained when modeling the jet as compressible plasma contained in an untwisted magnetic flux tube. When the jet and its environments are treated as incompressible media, the critical jet velocity becomes higher, namely 114.8 km s^{-1}. A weak twist of the equilibrium magnetic field in the same approximation of incompressible plasmas slightly decreases the threshold Alfvén Mach number, MA^{cr}, and consequently the corresponding critical velocities, notably to 114.4 km s^{-1} for the kink mode and to 112.4 km s^{-1} for the higher m modes. We have also compared two analytically found criteria for predicting the threshold Alfvén Mach number for the onset of KH instability and have concluded that one of them yields reliable values for MA^{cr}. Our study of the nature of stable and unstable MHD modes propagating on the jet shows that in a stable regime all the modes are pure surface waves, while the unstable kink (m = 1) mode in untwisted compressible plasma flux tube becomes a leaky wave. In the limit of incompressible media (for the jet and its environment) all unstable modes are non-leaky surface waves.
NASA Astrophysics Data System (ADS)
Kaye, S. M.; Guttenfelder, W.; Bell, R. E.; Gerhardt, S. P.; LeBlanc, B. P.; Maingi, R.
2014-08-01
A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as β e , νe ∗ , the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe ∗ were relatively low, ballooning parity modes were dominant. As time progressed and both βe and νe ∗ increased, microtearing became the dominant low-kθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-kθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.
Reduced model prediction of electron temperature profiles in microtearing-dominated NSTX plasmas
NASA Astrophysics Data System (ADS)
Kaye, S. M.; Guttenfelder, W.; Bell, R.; Gerhardt, S.; Leblanc, B.; Maingi, R.
2014-10-01
A representative H-mode discharge from the National Spherical Torus Experiment (NSTX) is studied in detail as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, νe*, the MHD α parameter and the gradient scale lengths of Te, Ti and ne were examined prior to performing linear gyrokinetic calculations to determine the fastest growing microinstability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early in the discharge, when βe and νe* were relatively low, ballooning parity modes were dominant. As both βe and νe* increased with time, microtearing became the dominant low-kθmode, especially in the outer half of the plasma. There are instances in time and radius where other modes, at higher-kθ, may be important for driving electron transport. The Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant. This work has been supported by U.S. Dept of Energy contracts DE-AC02-09CH11466.
Generation of Magnetohydrodynamic Waves in Low Solar Atmospheric Flux Tubes by Photospheric Motions
NASA Astrophysics Data System (ADS)
Mumford, S. J.; Fedun, V.; Erdélyi, R.
2015-01-01
Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions, small-scale magnetic flux tubes are generated via the interaction of granulation motion and the background magnetic field. This paper studies the effects of these motions on magnetohydrodynamic (MHD) wave excitation from broadband photospheric drivers. Numerical experiments of linear MHD wave propagation in a magnetic flux tube embedded in a realistic gravitationally stratified solar atmosphere between the photosphere and the low choromosphere (above β = 1) are performed. Horizontal and vertical velocity field drivers mimic granular buffeting and solar global oscillations. A uniform torsional driver as well as Archimedean and logarithmic spiral drivers mimic observed torsional motions in the solar photosphere. The results are analyzed using a novel method for extracting the parallel, perpendicular, and azimuthal components of the perturbations, which caters to both the linear and non-linear cases. Employing this method yields the identification of the wave modes excited in the numerical simulations and enables a comparison of excited modes via velocity perturbations and wave energy flux. The wave energy flux distribution is calculated to enable the quantification of the relative strengths of excited modes. The torsional drivers primarily excite Alfvén modes (≈60% of the total flux) with small contributions from the slow kink mode, and, for the logarithmic spiral driver, small amounts of slow sausage mode. The horizontal and vertical drivers primarily excite slow kink or fast sausage modes, respectively, with small variations dependent upon flux surface radius.
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
NASA Astrophysics Data System (ADS)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
Validating predictive models for fast ion profile relaxation in burning plasmas
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.; Heidbrink, W. W.; Kramer, G. J.; Lestz, J. B.; Podesta, M.; Van Zeeland, M. A.; White, R. B.
2016-11-01
The redistribution and potential loss of energetic particles due to MHD modes can limit the performance of fusion plasmas by reducing the plasma heating rate. In this work, we present validation studies of the 1.5D critical gradient model (CGM) for Alfvén eigenmode (AE) induced EP transport in NSTX and DIII-D neutral beam heated plasmas. In previous comparisons with a single DIII-D L-mode case, the CGM model was found to be responsible for 75% of measured AE induced neutron deficit [1]. A fully kinetic HINST is used to compute mode stability for the non-perturbative version of CGM (or nCGM). We have found that AEs show strong local instability drive up to γ /ω ∼ 20% violating assumptions of perturbative approaches used in NOVA-K code. We demonstrate that both models agree with each other and both underestimate the neutron deficit measured in DIII-D shot by approximately a factor of 2. On the other hand in NSTX the application of CGM shows good agreement for the measured flux deficit predictions. We attempt to understand these results with the help of the so-called kick model which is based on the guiding center code ORBIT. The kick model comparison gives important insight into the underlying velocity space dependence of the AE induced EP transport as well as it allows the estimate of the neutron deficit in the presence of the low frequency Alfvénic modes. Within the limitations of used models we infer that there are missing modes in the analysis which could improve the agreement with the experiments.
NASA Astrophysics Data System (ADS)
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping
2018-02-01
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.
A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD
NASA Astrophysics Data System (ADS)
Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team
2017-11-01
The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.
Helioseismic Constraints on New Solar Models from the MoSEC Code
NASA Technical Reports Server (NTRS)
Elliott, J. R.
1998-01-01
Evolutionary solar models are computed using a new stellar evolution code, MOSEC (Modular Stellar Evolution Code). This code has been designed with carefully controlled truncation errors in order to achieve a precision which reflects the increasingly accurate determination of solar interior structure by helioseismology. A series of models is constructed to investigate the effects of the choice of equation of state (OPAL or MHD-E, the latter being a version of the MHD equation of state recalculated by the author), the inclusion of helium and heavy-element settling and diffusion, and the inclusion of a simple model of mixing associated with the solar tachocline. The neutrino flux predictions are discussed, while the sound speed of the computed models is compared to that of the sun via the latest inversion of SOI-NMI p-mode frequency data. The comparison between models calculated with the OPAL and MHD-E equations of state is particularly interesting because the MHD-E equation of state includes relativistic effects for the electrons, whereas neither MHD nor OPAL do. This has a significant effect on the sound speed of the computed model, worsening the agreement with the solar sound speed. Using the OPAL equation of state and including the settling and diffusion of helium and heavy elements produces agreement in sound speed with the helioseismic results to within about +.-0.2%; the inclusion of mixing slightly improves the agreement.
Observations & modeling of solar-wind/magnetospheric interactions
NASA Astrophysics Data System (ADS)
Hoilijoki, Sanni; Von Alfthan, Sebastian; Pfau-Kempf, Yann; Palmroth, Minna; Ganse, Urs
2016-07-01
The majority of the global magnetospheric dynamics is driven by magnetic reconnection, indicating the need to understand and predict reconnection processes and their global consequences. So far, global magnetospheric dynamics has been simulated using mainly magnetohydrodynamic (MHD) models, which are approximate but fast enough to be executed in real time or near-real time. Due to their fast computation times, MHD models are currently the only possible frameworks for space weather predictions. However, in MHD models reconnection is not treated kinetically. In this presentation we will compare the results from global kinetic (hybrid-Vlasov) and global MHD simulations. Both simulations are compared with in-situ measurements. We will show that the kinetic processes at the bow shock, in the magnetosheath and at the magnetopause affect global dynamics even during steady solar wind conditions. Foreshock processes cause an asymmetry in the magnetosheath plasma, indicating that the plasma entering the magnetosphere is not symmetrical on different sides of the magnetosphere. Behind the bow shock in the magnetosheath kinetic wave modes appear. Some of these waves propagate to the magnetopause and have an effect on the magnetopause reconnection. Therefore we find that kinetic phenomena have a significant role in the interaction between the solar wind and the magnetosphere. While kinetic models cannot be executed in real time currently, they could be used to extract heuristics to be added in the faster MHD models.
Symmetry, Statistics and Structure in MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.
NASA Astrophysics Data System (ADS)
Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.
2018-02-01
We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.
The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma
NASA Astrophysics Data System (ADS)
Hillier, A.; Takasao, S.; Nakamura, N.
2016-06-01
The role of slow-mode magnetohydrodynamic (MHD) shocks in magnetic reconnection is of great importance for energy conversion and transport, but in many astrophysical plasmas the plasma is not fully ionised. In this paper, we use numerical simulations to investigate the role of collisional coupling between a proton-electron, charge-neutral fluid and a neutral hydrogen fluid for the one-dimensional (1D) Riemann problem initiated in a constant pressure and density background state by a discontinuity in the magnetic field. This system, in the MHD limit, is characterised by two waves. The first is a fast-mode rarefaction wave that drives a flow towards a slow-mode MHD shock wave. The system evolves through four stages: initiation, weak coupling, intermediate coupling, and a quasi-steady state. The initial stages are characterised by an over-pressured neutral region that expands with characteristics of a blast wave. In the later stages, the system tends towards a self-similar solution where the main drift velocity is concentrated in the thin region of the shock front. Because of the nature of the system, the neutral fluid is overpressured by the shock when compared to a purely hydrodynamic shock, which results in the neutral fluid expanding to form the shock precursor. Once it has formed, the thickness of the shock front is proportional to ξ I-1.2 , which is a smaller exponent than would be naively expected from simple scaling arguments. One interesting result is that the shock front is a continuous transition of the physical variables of subsonic velocity upstream of the shock front (a c-shock) to a sharp jump in the physical variables followed by a relaxation to the downstream values for supersonic upstream velocity (a j-shock). The frictional heating that results from the velocity drift across the shock front can amount to ~2 per cent of the reference magnetic energy.
NASA Lewis Research Center combustion MHD experiment
NASA Technical Reports Server (NTRS)
Smith, J. M.
1982-01-01
The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.
Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacon, L.; Cappello, S.
2008-11-01
Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.
Stationary QH-mode plasmas with high and wide pedestal at low rotation on DIII-D
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Osborne, T. H.; Solomon, W. M.; Barada, K.; Garofalo, A. M.; Groebner, R. J.; Luhmann, N. C.; McKee, G. R.; Muscatello, C. M.; Ono, M.; Petty, C. C.; Porkolab, M.; Rhodes, T. L.; Rost, J. C.; Snyder, P. B.; Staebler, G. M.; Tobias, B. J.; Yan, Z.; the DIII-D Team
2017-02-01
A stationary, quiescent H-mode (QH-mode) regime with a wide pedestal and improved confinement at low rotation has been discovered on DIII-D with reactor relevant edge parameters and no ELMs. As the injected neutral beam torque is ramped down and the edge E × B rotation shear reduces, the transition from standard QH to the wide pedestal QH-mode occurs. At the transition, the coherent edge harmonic oscillations (EHO) that usually regulate the standard QH edge cease and broadband edge MHD modes appear along with a rapid increase in the pedestal pressure height (by ⩽60%) and width (by ⩽50%). We posit that the enhanced edge turbulence-driven transport, enabled by the lower edge E × B flow shear due to lower torque reduces the pedestal gradient and, combined with the high edge instability limit provided by the balanced double-null plasma shape, permits the development of a broader and thus higher pedestal that is turbulence-transport-limited. Even with the significantly enhanced pedestal pressure, the edge operating point is below the peeling ballooning mode stability boundary and thus without ELMs. Improved transport in the outer core region (0.8 ⩽ ρ ⩽0.9) owing to increased E × B flow shear in that region and the enhanced pedestal boost the overall confinement by up to 45%. These findings advance the physics basis for developing stationary ELM-free high-confinement operation at low rotation for future burning plasma where similar collisionality and rotation levels are expected.
Geodesic acoustic modes in noncircular cross section tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P.; Konovaltseva, L. V.
2017-03-15
The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.
Non-Solenoidal Startup via Helicity Injection in the Pegasus ST
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Bodner, G. M.; Burke, M. G.; Fonck, R. J.; Pachicano, J. L.; Perry, J. M.; Pierren, C.; Richner, N. J.; Rodriguez Sanchez, C.; Schlossberg, D. J.; Reusch, J. A.; Weberski, J. D.
2017-10-01
Research on the A 1 . 2 Pegasus ST is developing the physics and technology basis for optimal non-solenoidal tokamak startup. Recent work explores startup via Local Helicity Injection (LHI) using compact, multi-MW current sources placed at the plasma edge in the lower divertor region. This minimizes inductive drive from poloidal fields and dynamic shaping. Plasmas with Ip <= 200 kA, Δtpulse 20 ms and BT <= 0 . 15 T are produced to date, sustained by two injectors with Ainj = 4 cm2 , Vinj 1 . 5 kV, and Iinj 8 kA, facilitated by improvements to the injectors, limiters, and divertor plates that mitigate deleterious PMI. These plasmas feature anomalous, reconnection-driven ion heating with Ti >=Te >= 50 - 100 eV and large-amplitude MHD activity driven by the injectors. Under some conditions, MHD fluctuations abruptly decrease by over an order of magnitude without loss of LHI drive, improving realized Ip , and suggesting short-wavelength modes may relate to the current drive mechanism. The high IN >= 10 , ion heating, and low li driven by LHI, and the favorable stability of A 1 STs allows access to record βt 100 % and high βN 6 . 5 . Such high-βt plasmas have a minimum | B | well spanning 50 % of the plasma volume. Enhancements to the Pegasus facility are considered to increase BT towards NSTX-U levels; establish coaxial helicity injection capabilities; and add auxiliary heating and current drive. Work supported by US DOE Grant DE-FG02-96ER54375.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, L.-N.; Department of Physics, National Central University, Jhongli, Taiwan; Lai, Y.-T.
Harris-type current sheets with the magnetic field model of B-vector=B{sub x}(z)x-caret+B{sub y}(z)y-caret have many important applications to space, astrophysical, and laboratory plasmas for which the temperature or pressure usually exhibits the gyrotropic form of p{r_reversible}=p{sub Parallel-To }b-caretb-caret+p{sub Up-Tack }(I{r_reversible}-b-caretb-caret). Here, p{sub Parallel-To} and p{sub Up-Tack} are, respectively, to be the pressure component along and perpendicular to the local magnetic field, b-caret=B-vector/B. This study presents the general formulation for magnetohydrodynamic (MHD) wave propagation, fire-hose, and mirror instabilities in general Harris-type current sheets. The wave equations are expressed in terms of the four MHD characteristic speeds of fast, intermediate, slow, and cuspmore » waves, and in the local (k{sub Parallel-To },k{sub Up-Tack },z) coordinates. Here, k{sub Parallel-To} and k{sub Up-Tack} are, respectively, to be the wave vector along and perpendicular to the local magnetic field. The parameter regimes for the existence of discrete and resonant modes are identified, which may become unstable at the local fire-hose and mirror instability thresholds. Numerical solutions for discrete eigenmodes are shown for stable and unstable cases. The results have important implications for the anomalous heating and stability of thin current sheets.« less
Fully 3D modeling of tokamak vertical displacement events with realistic parameters
NASA Astrophysics Data System (ADS)
Pfefferle, David; Ferraro, Nathaniel; Jardin, Stephen; Bhattacharjee, Amitava
2016-10-01
In this work, we model the complex multi-domain and highly non-linear physics of Vertical Displacement Events (VDEs), one of the most damaging off-normal events in tokamaks, with the implicit 3D extended MHD code M3D-C1. The code has recently acquired the capability to include finite thickness conducting structures within the computational domain. By exploiting the possibility of running a linear 3D calculation on top of a non-linear 2D simulation, we monitor the non-axisymmetric stability and assess the eigen-structure of kink modes as the simulation proceeds. Once a stability boundary is crossed, a fully 3D non-linear calculation is launched for the remainder of the simulation, starting from an earlier time of the 2D run. This procedure, along with adaptive zoning, greatly increases the efficiency of the calculation, and allows to perform VDE simulations with realistic parameters and high resolution. Simulations are being validated with NSTX data where both axisymmetric (toroidally averaged) and non-axisymmetric induced and conductive (halo) currents have been measured. This work is supported by US DOE Grant DE-AC02-09CH11466.
First results of coupled IPS/NIMROD/GENRAY simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.
2010-11-01
The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.
NASA Astrophysics Data System (ADS)
London, Steven D.
2018-01-01
In a recent paper (London, Geophys. Astrophys. Fluid Dyn. 2017, vol. 111, pp. 115-130, referred to as L1), we considered a perfect electrically conducting rotating fluid in the presence of an ambient toroidal magnetic field, governed by the shallow water magnetohydrodynamic (MHD) equations in a modified equatorial ?-plane approximation. In conjunction with a WKB type approximation, we used a multiple scale asymptotic scheme, previously developed by Boyd (J. Phys. Oceanogr. 1980, vol. 10, pp. 1699-1717) for equatorial solitary hydrodynamic waves, and found solitary MHD waves. In this paper, as in L1, we apply a WKB type approximation in order to extend the results of L1 from the modified ?-plane to the full spherical geometry. We have included differential rotation in the analysis in order to make the results more relevant to the solar case. In addition, we consider the case of hydrodynamic waves on the rotating sphere in the presence of a differential rotation intended to roughly model the varying large scale currents in the oceans and atmosphere. In the hydrodynamic case, we find the usual equatorial solitary waves as found by Boyd, as well as waves in bands away from the equator for sufficiently strong currents. In the MHD case, we find basically the same equatorial waves found in L1. L1 also found non-equatorial modes; no such modes are found in the full spherical geometry.
NASA Astrophysics Data System (ADS)
Hirai, Kenichiro; Katoh, Yuto; Terada, Naoki; Kawai, Soshi
2018-02-01
Magnetic turbulence in accretion disks under ideal magnetohydrodynamic (MHD) conditions is expected to be driven by the magneto-rotational instability (MRI) followed by secondary parasitic instabilities. We develop a three-dimensional ideal MHD code that can accurately resolve turbulent structures, and carry out simulations with a net vertical magnetic field in a local shearing box disk model to investigate the role of parasitic instabilities in the formation process of magnetic turbulence. Our simulations reveal that a highly anisotropic Kelvin–Helmholtz (K–H) mode parasitic instability evolves just before the first peak in turbulent stress and then breaks large-scale shear flows created by MRI. The wavenumber of the enhanced parasitic instability is larger than the theoretical estimate, because the shear flow layers sometimes become thinner than those assumed in the linear analysis. We also find that interaction between antiparallel vortices caused by the K–H mode parasitic instability induces small-scale waves that break the shear flows. On the other hand, at repeated peaks in the nonlinear phase, anisotropic wavenumber spectra are observed only in the small wavenumber region and isotropic waves dominate at large wavenumbers unlike for the first peak. Restructured channel flows due to MRI at the peaks in nonlinear phase seem to be collapsed by the advection of small-scale shear structures into the restructured flow and resultant mixing.
NASA Astrophysics Data System (ADS)
Ofman, Leon; Liu, Wei
2018-06-01
Since their discovery by the Solar Dynamics Observatory/Atmospheric Imaging Assembly (AIA) in the extreme ultraviolet, rapid (phase speeds of ∼1000 km s‑1), quasi-periodic, fast-mode propagating (QFP) wave trains have been observed accompanying many solar flares. They typically propagate in funnel-like structures associated with the expanding magnetic field topology of the active regions (ARs). The waves provide information on the associated flare pulsations and the magnetic structure through coronal seismology (CS). The reported waves usually originate from a single localized source associated with the flare. Here we report the first detection of counter-propagating QFPs associated with two neighboring flares on 2013 May 22, apparently connected by large-scale, trans-equatorial coronal loops. We present the first results of a 3D MHD model of counter-propagating QFPs in an idealized bipolar AR. We investigate the excitation, propagation, nonlinearity, and interaction of the counter-propagating waves for a range of key model parameters, such as the properties of the sources and the background magnetic structure. In addition to QFPs, we also find evidence of trapped fast- (kink) and slow-mode waves associated with the event. We apply CS to determine the magnetic field strength in an oscillating loop during the event. Our model results are in qualitative agreement with the AIA-observed counter-propagating waves and used to identify the various MHD wave modes associated with the observed event, providing insights into their linear and nonlinear interactions. Our observations provide the first direct evidence of counter-propagating fast magnetosonic waves that can potentially lead to turbulent cascade and carry significant energy flux for coronal heating in low-corona magnetic structures.
Dayside Magnetosphere-Ionosphere Coupling and Prompt Response of Low-Latitude/Equatorial Ionosphere
NASA Astrophysics Data System (ADS)
Tu, J.; Song, P.
2017-12-01
We use a newly developed numerical simulation model of the ionosphere/thermosphere to investigate magnetosphere-ionosphere coupling and response of the low-latitude/equatorial ionosphere. The simulation model adapts an inductive-dynamic approach (including self-consistent solutions of Faraday's law and retaining inertia terms in ion momentum equations), that is, based on magnetic field B and plasma velocity v (B-v paradigm), in contrast to the conventional modeling based on electric field E and current j (E-j paradigm). The most distinct feature of this model is that the magnetic field in the ionosphere is not constant but self-consistently varies, e.g., with currents, in time. The model solves self-consistently time-dependent continuity, momentum, and energy equations for multiple species of ions and neutrals including photochemistry, and Maxwell's equations. The governing equations solved in the model are a set of multifluid-collisional-Hall MHD equations which are one of unique features of our ionosphere/thermosphere model. With such an inductive-dynamic approach, all possible MHD wave modes, each of which may refract and reflect depending on the local conditions, are retained in the solutions so that the dynamic coupling between the magnetosphere and ionosphere and among different regions of the ionosphere can be self-consistently investigated. In this presentation, we show that the disturbances propagate in the Alfven speed from the magnetosphere along the magnetic field lines down to the ionosphere/thermosphere and that they experience a mode conversion to compressional mode MHD waves (particularly fast mode) in the ionosphere. Because the fast modes can propagate perpendicular to the field, they propagate from the dayside high-latitude to the nightside as compressional waves and to the dayside low-latitude/equatorial ionosphere as rarefaction waves. The apparent prompt response of the low-latitude/equatorial ionosphere, manifesting as the sudden increase of the upward flow around the equator and global antisunward convection, is the result of such coupling of the high-latitude and the low-latitude/equatorial ionosphere, and the requirement of the flow continuity, instead of mechanisms such as the penetration electric field.
NASA Astrophysics Data System (ADS)
Gao, D.; Morley, N. B.
2002-12-01
A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermonuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.
Core plasma design of the compact helical reactor with a consideration of the equipartition effect
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2018-07-01
Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.
Three-dimensional magnetohydrodynamics of the emerging magnetic flux in the solar atmosphere
NASA Technical Reports Server (NTRS)
Matsumoto, R.; Tajima, T.; Shibata, K.; Kaisig, M.
1993-01-01
The nonlinear evolution of an emerging magnetic flux tube or sheet in the solar atmosphere is studied through 3D MHD simulations. In the initial state, a horizontal magnetic flux sheet or tube is assumed to be embedded at the bottom of MHD two isothermal gas layers, which approximate the solar photosphere/chromosphere and the corona. The magnetic flux sheet or tube is unstable against the undular mode of the magnetic buoyancy instability. The magnetic loop rises due to the linear and then later nonlinear instabilities caused by the buoyancy enhanced by precipitating the gas along magnetic field lines. We find by 3D simulation that during the ascendance of loops the bundle of flux tubes or even the flux sheet develops into dense gas filaments pinched between magnetic loops. The interchange modes help produce a fine fiber flux structure perpendicular to the magnetic field direction in the linear stage, while the undular modes determine the overall buoyant loop structure. The expansion of such a bundle of magnetic loops follows the self-similar behavior observed in 2D cases studied earlier. Our study finds the threshold flux for arch filament system (AFS) formation to be about 0.3 x 10 exp 20 Mx.
Fast soft x-ray images of magnetohydrodynamic phenomena in NSTX.
Bush, C E; Stratton, B C; Robinson, J; Zakharov, L E; Fredrickson, E D; Stutman, D; Tritz, K
2008-10-01
A variety of magnetohydrodynamic (MHD) phenomena have been observed on NSTX. Many of these affect fast particle losses, which are of major concern for future burning plasma experiments. Usual diagnostics for studying these phenomena are arrays of Mirnov coils for magnetic oscillations and p-i-n diode arrays for soft x-ray emission from the plasma core. Data reported here are from a unique fast soft x-ray imaging camera (FSXIC) with a wide-angle (pinhole) tangential view of the entire plasma minor cross section. The camera provides a 64x64 pixel image, on a charge coupled device chip, of light resulting from conversion of soft x rays incident on a phosphor to the visible. We have acquired plasma images at frame rates of 1-500 kHz (300 frames/shot) and have observed a variety of MHD phenomena: disruptions, sawteeth, fishbones, tearing modes, and edge localized modes (ELMs). New data including modes with frequency >90 kHz are also presented. Data analysis and modeling techniques used to interpret the FSXIC data are described and compared, and FSXIC results are compared to Mirnov and p-i-n diode array results.
Scrape-off-layer currents during MHD activity and disruptions in HBT-EP
NASA Astrophysics Data System (ADS)
Levesque, J. P.; Desanto, S.; Battey, A.; Bialek, J.; Brooks, J. W.; Mauel, M. E.; Navratil, G. A.
2017-10-01
We report scrape-off layer (SOL) current measurements during MHD mode activity and disruptions in the HBT-EP tokamak. Currents are measured via Rogowski coils mounted on tiles in the low-field-side SOL, toroidal jumpers between otherwise-isolated vessel sections, and segmented plasma current Rogowski coils. These currents strongly depend on the plasma's major radius, mode amplitude, and mode phase. Plasma current asymmetries and SOL currents during disruptions reach 4% of the plasma current. Asymmetric toroidal currents between vessel sections rotate at tens of kHz through most of the current quench, then symmetrize once Ip reaches 30% of its pre-disruptive value. Toroidal jumper currents oscillate between co- and counter-Ip, with co-Ip being dominant on average during disruptions. Increases in local plasma current correlate with counter-Ip current in the nearest toroidal jumper. Measurements are interpreted in the context of two models that produce contrary predictions for the toroidal vessel current polarity during disruptions. Plasma current asymmetries are consistent with both models, and scale with plasma displacement toward the wall. Progress of ongoing SOL current diagnostic upgrades is also presented. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Astrophysics Data System (ADS)
McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.
2017-10-01
We present comparisons of magnetic tearing fluctuation activity between RFP experiments on the low-aspect-ratio RELAX device (R / a 2) and nonlinear simulations of zero-beta, single-fluid MHD using the NIMROD code in both cylindrical and toroidal geometries at a Lundquist number of S =104 , nearly as high as experimental values. Time-average fluctuation amplitudes observed in the simulations are similar to those from the experiments, but more rigorous comparisons versus spectral mode numbers are in progress. We also focus on how the spatiotemporal dynamics of the fluctuations vary with RFP equilibrium parameters. Interestingly, at shallow reversal, cylindrical simulations show a relatively uncoupled spectrum of nearly quiescent modes periodically varying in time, whereas the corresponding toroidal cases show a fully chaotic spectrum of strongly nonlinearly interacting modes. We ascribe this to the geometric m = 1 coupling present in the toroidal but not the cylindrical case. We present initial results from convergence studies with increased spatial resolution for both geometries. Simulations at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
NASA Astrophysics Data System (ADS)
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
MHD simulation of plasma compression experiments
NASA Astrophysics Data System (ADS)
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
Onset of solar flares as predicted by two-dimensional MHD-models of quiescent prominences
NASA Technical Reports Server (NTRS)
Galindotrejo, J.
1985-01-01
The close connection between the sudden disapperance (disparition brusque) of the quiescent prominences and the two-ribbon flares are well known. During this dynamic phase the prominence ascends rapidly (typically with a velocity about 100 Km/sec) and disappears. In another later stage is observed material falling back into the chromosphere. The impact of this downfalling matter on the chromosphere produces the H brightening, which shows the symmetric double pattern. The occurence of the disparition brusque is thought to be a consequence of a plasma instability of magnetohydrostatic (MHD) structures. By means of the MHD-energy principle, the stability properties of four prominence models are analyzed. It is shown that all considered models undergo instabilities for parameters outside of the observed range at quiescent prominences. The possibility that such instabilities in the flare parameter range may indicate just the onset of a flare is considered.
Multiple secondary islands formation in nonlinear evolution of double tearing mode simulations
NASA Astrophysics Data System (ADS)
Guo, W.; Ma, J.; Yu, Z.
2017-03-01
A new numerical code solving the conservative perturbed resistive magnetohydrodynamic (MHD) model is developed. Numerical tests of the ideal Kelvin-Helmholtz instability and the resistive double tearing mode (DTM) show its capability in solving linear and nonlinear MHD instabilities. The nonlinear DTM evolution in 2D geometry is numerically investigated with low guiding field B z 0 , short half-distance y 0 between the equilibrium current sheets, and small resistivity η. The interaction of islands on the two initial current sheets may generate an unstable flow driven current sheet with a high length-to-thickness aspect ratio (α), and multiple secondary islands can form. In general, the length-to-thickness aspect ratio α and the number of secondary islands increase with decreasing guide field B z 0 , decreasing half-distance y 0 , and increasing Lundquist number of the flow driven current sheet S L although the dependence may be non-monotonic. The reconnection rate dependence on S L , B z 0 , and y 0 is also investigated.
NASA Astrophysics Data System (ADS)
Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group
2017-06-01
The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.
RESONANT ABSORPTION OF AXISYMMETRIC MODES IN TWISTED MAGNETIC FLUX TUBES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giagkiozis, I.; Verth, G.; Goossens, M.
2016-06-01
It has been shown recently that magnetic twist and axisymmetric MHD modes are ubiquitous in the solar atmosphere, and therefore the study of resonant absorption for these modes has become a pressing issue because it can have important consequences for heating magnetic flux tubes in the solar atmosphere and the observed damping. In this investigation, for the first time, we calculate the damping rate for axisymmetric MHD waves in weakly twisted magnetic flux tubes. Our aim is to investigate the impact of resonant damping of these modes for solar atmospheric conditions. This analytical study is based on an idealized configurationmore » of a straight magnetic flux tube with a weak magnetic twist inside as well as outside the tube. By implementing the conservation laws derived by Sakurai et al. and the analytic solutions for weakly twisted flux tubes obtained recently by Giagkiozis et al. we derive a dispersion relation for resonantly damped axisymmetric modes in the spectrum of the Alfvén continuum. We also obtain an insightful analytical expression for the damping rate in the long wavelength limit. Furthermore, it is shown that both the longitudinal magnetic field and the density, which are allowed to vary continuously in the inhomogeneous layer, have a significant impact on the damping time. Given the conditions in the solar atmosphere, resonantly damped axisymmetric modes are highly likely to be ubiquitous and play an important role in energy dissipation. We also suggest that, given the character of these waves, it is likely that they have already been observed in the guise of Alfvén waves.« less
Global Alfvén eigenmodes in the H-1 heliac
NASA Astrophysics Data System (ADS)
Hole, M. J.; Blackwell, B. D.; Bowden, G.; Cole, M.; Könies, A.; Michael, C.; Zhao, F.; Haskey, S. R.
2017-12-01
Recent upgrades in H-1 power supplies have enabled the operation of the H-1 experiment at higher heating powers than previously attainable. A heating power scan in mixed hydrogen/helium plasmas reveals a change in mode activity with increasing heating power. At low power (< 50 kW) modes with beta-induced Alfvén eigenmode frequency scaling are observed. At higher power modes consistent with an analysis of nonconventional global Alfvén eigenmodes (GAEs) are observed, the subject of this work. We have computed the mode continuum, and identified GAE structures using the ideal MHD solver CKA and the gyrokinetic code EUTERPE. An analytic model for ICRH-heated minority ions is used to estimate the fast ion temperature from the hydrogen species. Linear growth rate scans using a local flux surface stability calculation, LGRO, are performed. These studies demonstrate drive from the radial spatial gradient of circulating particles whose speed is significantly less than the Alfvén speed, and are resonant with the mode through harmonics of the Fourier decomposition of the strongly shaped heliac magnetic field. They reveal drive is possible with a small ({n}f/{n}0< 0.2) hot energetic tail of the hydrogen species, for which {T}f> 300 {eV}. Local linear growth rate scans are also complemented with global calculations from CKA and EUTERPE. These qualitatively confirm the findings from the LGRO study, and show that the inclusion of finite Larmor radius effects can reduce the growth rate by a factor of up to ten, and increases the marginal stability fast ion temperature by a factor of two. Finally, a study of damping of the global mode with the thermal plasma is conducted, computing continuum damping , and the damping arising from finite Larmor radius and parallel electric fields (via resistivity). We find that continuum damping is of order 0.1% for the configuration studied. A similar calculation in the cylindrical plasma model produces a frequency 35% higher and a damping 30% of the three-dimensional result: this confirms the importance of strong magnetic shaping to the frequency and damping. The inclusion of resistivity lifts the damping to γ /ω =-0.189. Such large damping is consistent with experimental observations that in absence of drive the mode decays rapidly (∼0.1 ms).
Burrell, Keith H.; Barada, Kshitish; Chen, Xi; ...
2016-03-11
Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burrell, Keith H.; Barada, Kshitish; Chen, Xi
Here, recent experiments in DIII-D have led to the discovery of a means of modifying edge turbulence to achieve stationary, high confinement operation without Edge Localized Mode (ELM) instabilities and with no net external torque input. Eliminating the ELM-induced heat bursts and controlling plasma stability at low rotation represent two of the great challenges for fusion energy. By exploiting edge turbulence in a novel manner, we achieved excellent tokamak performance, well above the H 98y2 international tokamak energy confinement scaling (H 98y2=1.25), thus meeting an additional confinement challenge that is usually difficult at low torque. The new regime is triggeredmore » in double null plasmas by ramping the injected torque to zero and then maintaining it there. This lowers ExB rotation shear in the plasma edge, allowing low-k, broadband, electromagnetic turbulence to increase. In the H-mode edge, a narrow transport barrier usually grows until MHD instability (a peeling ballooning mode) leads to the ELM heat burst. However, the increased turbulence reduces the pressure gradient, allowing the development of a broader and thus higher transport barrier. A 60% increase in pedestal pressure and 40% increase in energy confinement result. An increase in the ExB shearing rate inside of the edge pedestal is a key factor in the confinement increase. Strong double-null plasma shaping raises the threshold for the ELM instability, allowing the plasma to reach a transport-limited state near but below the explosive ELM stability boundary. The resulting plasmas have burning-plasma-relevant β N=1.6-1.8 and run without the need for extra torque from 3D magnetic fields. To date, stationary conditions have been produced for 2 s or 12 energy confinement times, limited only by external hardware constraints. Stationary operation with improved pedestal conditions is highly significant for future burning plasma devices, since operation without ELMs at low rotation and good confinement is key for fusion energy production.« less
MHD Wave Propagation at the Interface Between Solar Chromosphere and Corona
NASA Astrophysics Data System (ADS)
Huang, Y.; Song, P.; Vasyliunas, V. M.
2017-12-01
We study the electromagnetic and momentum constraints at the solar transition region which is a sharp layer interfacing between the solar chromosphere and corona. When mass transfer between the two domains is neglected, the transition region can be treated as a contact discontinuity across which the magnetic flux is conserved and the total forces are balanced. We consider an Alfvénic perturbation that propagates along the magnetic field incident onto the interface from one side. In order to satisfy the boundary conditions at the transition region, only part of the incident energy flux is transmitted through and the rest is reflected. Taking into account the highly anisotropic propagation of waves in magnetized plasmas, we generalize the law of reflection and specify Snell's law for each of the three wave MHD modes: incompressible Alfvén mode and compressible fast and slow modes. Unlike conventional optical systems, the interface between two magnetized plasmas is not rigid but can be deformed by the waves, allowing momentum and energy to be transferred by compression. With compressible modes included, the Fresnel conditions need substantial modification. We derive Fresnel conditions, reflectivities and transmittances, and mode conversion for incident waves propagating along the background magnetic field. The results are well organized when the incident perturbation is decomposed into components in and normal to the incident plane (containing the background magnetic field and the normal direction of the interface). For a perturbation normal to the incident plane, both transmitted and reflected perturbations are incompressible Alfvén mode waves. For a perturbation in the incident plane, they can be compressible slow and fast mode waves which may produce ripples on the transition region.
MHD Studies of Advanced Tokamak Equilibria
NASA Astrophysics Data System (ADS)
Strumberger, E.
2005-10-01
Advanced tokamak scenarios are often characterized by an extremely reversed profile of the safety factor, q, and a fast toroidal rotation. ASDEX Upgrade type equilibria with toroidal flow are computed up to a toroidal Mach number of Mta= 0.5, and compared with the static solution. Using these equilibria, the stabilizing effect of differential toroidal rotation on double tearing modes (DTMs) is investigated. These studies show that the computation of equilibria with flow is necessary for toroidally rotating plasma with Mta>=0.2. The use of ρtor instead of ρpol as radial coordinate enables us also to investigate the stability of equilibria with current holes. For numerical reasons, the rotational transform, = 1/q, has to be unequal zero in the CASTOR$FLOW code, but values of a>=0.001 (qa<=1000) can be easily handled. Stability studies of DTMs in the presence of a current hole are presented. Tokamak equilibria are only approximately axisymmetric. The finite number of toroidal field coils destroys the perfect axisymmetry of the device, and the coils produce a short wavelength ripple in the magnetic field strength. This toroidal field ripple plays a crucial role for the loss of high energy particles. Therefore, three-dimensional tokamak equilibria with and without current holes are computed for various plasma beta values. In addition the influence of the plasma beta on the toroidal field ripple is investigated.
Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D. A.; Finn, J. M.
2002-11-01
The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.
Kinetic effects on the velocity-shear-driven instability
NASA Technical Reports Server (NTRS)
Wang, Z.; Pritchett, P. L.; Ashour-Abdalla, M.
1992-01-01
A comparison is made between the properties of the low-frequency long-wavelength velocity-shear-driven instability in kinetic theory and magnetohydrodynamics (MHD). The results show that the removal of adiabaticity along the magnetic field line in kinetic theory leads to modifications in the nature of the instability. Although the threshold for the instability in the two formalisms is the same, the kinetic growth rate and the unstable range in wave-number space can be larger or smaller than the MHD values depending on the ratio between the thermal speed, Alfven speed, and flow speed. When the thermal speed is much larger than the flow speed and the flow speed is larger than the Alfven speed, the kinetic formalism gives a larger maximum growth rate and broader unstable range in wave-number space. In this regime, the normalized wave number for instability can be larger than unity, while in MHD it is always less than unity. The normal mode profile in the kinetic case has a wider spatial extent across the shear layer.
A non-ideal MHD model for structure formation
NASA Astrophysics Data System (ADS)
Karmakar, Pralay Kumar; Sarma, Pankaj
2018-02-01
The evolutionary initiation dynamics of triggered planetary structure formation is indeed a complex process yet to be well understood. We herein develop a theoretical classical model to see the gravitational fragmentation kinetics of the viscoelastic non-ideal magneto-hydro-dynamic (MHD) fabric. The inhomogeneous planetary disk is primarily composed of heavier dust grains (strongly correlated) together with relatively lighter electrons, ions and neutrals (weakly correlated) in a mean-fluidic approximation. A normal harmonic mode analysis results in a quadratic dispersion relation of a unique shape. It is demonstrated that the growth rate of the MHD fluctuations (magnetosonic) contributing to the planet formation rate, apart from the wave vector and its projection orientation, has a pure explicit dependency on the viscoelastic parameters. The analysis specifically shows that the effective generalized viscosity (χ) , viscoelastic relaxation time (τm) , and K-orientation (θ) play as destabilizing agencies against the non-local gravitational disk collapse. The relevancy is briefly indicated in the real astronomical context of bounded planetary structure formation and evolution.
Opening Switch Research on a Plasma Focus VI.
1988-02-26
Sausage Instability in the Plasma Focus In this section the classical Kruskal- Schwarzschild 3 theory for the sausage mode is applied to the pinch phase...on 1) the shape of the pinch, 2) axial flow of plasma, and 3) self-generated magnetic fields are also presented. The Kruskal- Schwarzschild Theory The...classical mhd theory for the m=O mode in a plasma supported by a magnetic field against gravity; this is the well-known Kruskal- Schwarzschild
Effect of 3-D magnetic fields on neutral particle fueling and exhaust in MAST
NASA Astrophysics Data System (ADS)
Flesch, Kurt; Kremeyer, Thierry; Waters, Ian; Schmitz, Oliver; Kirk, Andrew; Harrison, James
2017-10-01
The application of resonant magnetic perturbations (RMPs) is used to suppress edge localized modes but causes in many cases a density pump-out. At MAST, this particle pump out was found to be connected to an amplifying MHD plasma response. An analysis is presented on past MAST discharges to understand the effect of these RMPs on the neutral household and on changes in neutral fueling and exhaust during the pump out. A global, 0-D particle balance model was used to study the neutral dynamics and plasma confinement during shots with and without RMP application. Using the D α emission measured by filterscopes and a calibrated 1-D CCD camera, as well as S/XB coefficients determined by the edge plasma parameters, globally averaged ion confinement times were calculated. In L-mode, discharges with RMPs that caused an MHD response had a 15-20% decrease in confinement time but an increase in total recycling flux. The application of RMPs in H-mode caused either a decrease or no change in confinement, like those in L-mode, depending on the configuration of the RMPs and plasma response. A spectroscopically assisted Penning gauge is being prepared for the next campaign at MAST-U to extend this particle balance to study impurity exhaust with RMPs. This work was funded in part by the U.S. DoE under Grant DE-SC0012315.
A note on two-dimensional asymptotic magnetotail equilibria
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Moore, Brian D.
1994-01-01
In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.
Lab experiments investigating astrophysical jet physics
NASA Astrophysics Data System (ADS)
Bellan, Paul
2014-10-01
Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.
Study of Plasma Flow Modes in Imploding Nested Arrays
NASA Astrophysics Data System (ADS)
Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.
2018-02-01
Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r < V A ) and super-Alfvénic ( V r > V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Suppression of high-energy electrons generated in both disrupting and sustained MST tokamak plasmas
NASA Astrophysics Data System (ADS)
Pandya, M. D.; Chapman, B. E.; Munaretto, S.; Cornille, B. S.; McCollam, K. J.; Sovinec, C. R.; Dubois, A. M.; Almagri, A. F.; Goetz, J. A.
2017-10-01
High-energy electrons appearing during MST tokamak plasma disruptions are rapidly lost from the plasma due apparently to internal MHD activity. Work has just recently begun on generating and diagnosing disruptions in MST tokamak plasmas. Initial measurements show the characteristic drop in central temperature and density preceding a quench of the plasma current. This corresponds to a burst of dominantly n=1 MHD activity, which is accompanied by a short-lived burst of high-energy electrons. The short-lived nature of these electrons is suspected to be due to stochastic transport associated with the increased MHD. Earlier work shows that runaway electrons generated in low density, sustained plasmas are suppressed by a sufficiently large m=3 RMP in plasmas with q(a) <3. RMPs of various poloidal mode number can be generated with an array of saddle coils wound around the vertical insulated gap in MST's thick conducting shell. With an m=3 RMP, the degree of runaway suppression increases with RMP amplitude, while an m=1 RMP has little effect on the runaways. Nonlinear MHD modeling with NIMROD of these MST plasmas indicates increased stochasticity with an m=3 RMP, while no such increase in stochasticity is observed with an m=1 RMP. Work supported by US DOE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaye, S. M.; Guttenfelder, W.; Bell, R. E.
A representative H-mode discharge from the National Spherical Torus eXperiment is studied in detail to utilize it as a basis for a time-evolving prediction of the electron temperature profile using an appropriate reduced transport model. The time evolution of characteristic plasma variables such as βe, ν*e, the MHD α parameter, and the gradient scale lengths of Te, Ti, and ne were examined as a prelude to performing linear gyrokinetic calculations to determine the fastest growing micro instability at various times and locations throughout the discharge. The inferences from the parameter evolutions and the linear stability calculations were consistent. Early inmore » the discharge, when βe and ν*e were relatively low, ballooning parity modes were dominant. As time progressed and both βe and ν*e increased, microtearing became the dominant low-κθ mode, especially in the outer half of the plasma. There are instances in time and radius, however, where other modes, at higher-κθ, may, in addition to microtearing, be important for driving electron transport. Given these results, the Rebut-Lallia-Watkins (RLW) electron thermal diffusivity model, which is based on microtearing-induced transport, was used to predict the time-evolving electron temperature across most of the profile. The results indicate that RLW does a good job of predicting Te for times and locations where microtearing was determined to be important, but not as well when microtearing was predicted to be stable or subdominant.« less
Ubiquitous Instabilities of Dust Moving in Magnetized Gas
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Squire, Jonathan
2018-06-01
Squire & Hopkins (2017) showed that coupled dust-gas mixtures are generically subject to "resonant drag instabilities" (RDIs), which drive violently-growing fluctuations in both. But the role of magnetic fields and charged dust has not yet been studied. We therefore explore the RDI in gas which obeys ideal MHD and is coupled to dust via both Lorentz forces and drag, with an external acceleration (e.g., gravity, radiation) driving dust drift through gas. We show this is always unstable, at all wavelengths and non-zero values of dust-to-gas ratio, drift velocity, dust charge, "stopping time" or drag coefficient (for any drag law), or field strength; moreover growth rates depend only weakly (sub-linearly) on these parameters. Dust charge and magnetic fields do not suppress instabilities, but give rise to a large number of new instability "families," each with distinct behavior. The "MHD-wave" (magnetosonic or Alfvén) RDIs exhibit maximal growth along "resonant" angles where the modes have a phase velocity matching the corresponding MHD wave, and growth rates increase without limit with wavenumber. The "gyro" RDIs are driven by resonances between drift and Larmor frequencies, giving growth rates sharply peaked at specific wavelengths. Other instabilities include "acoustic" and "pressure-free" modes (previously studied), and a family akin to cosmic ray instabilities which appear when Lorentz forces are strong and dust streams super-Alfvénically along field lines. We discuss astrophysical applications in the warm ISM, CGM/IGM, HII regions, SNe ejecta/remnants, Solar corona, cool-star winds, GMCs, and AGN.
New method to analyze internal disruptions with tomographic reconstructions
NASA Astrophysics Data System (ADS)
Tanzi, C. P.; de Blank, H. J.
1997-03-01
Sawtooth crashes have been investigated on the Rijnhuizen Tokamak Project (RTP) [N. J. Lopes Cardozo et al., Proceedings of the 14th International Conference on Plasma Physics and Controlled Nuclear Fusion Research, Würzburg, 1992 (International Atomic Energy Agency, Vienna, 1993), Vol. 1, p. 271]. Internal disruptions in tokamak plasmas often exhibit an m=1 poloidal mode structure prior to the collapse which can be clearly identified by means of multicamera soft x-ray diagnostics. In this paper tomographic reconstructions of such m=1 modes are analyzed with a new method, based on magnetohydrodynamic (MHD) invariants computed from the two-dimensional emissivity profiles, which quantifies the amount of profile flattening not only after the crash but also during the precursor oscillations. The results are interpreted by comparing them with two models which simulate the measurements of the m=1 redistribution of soft x-ray emissivity prior to the sawtooth crash. One model is based on the magnetic reconnection model of Kadomtsev. The other involves ideal MHD motion only. In cases where differences in magnetic topology between the two models cannot be seen in the tomograms, the analysis of profile flattening has an advantage. The analysis shows that in RTP the clearly observed m=1 displacement of some sawteeth requires the presence of convective ideal MHD motion, whereas other precursors are consistent with magnetic reconnection of up to 75% of the magnetic flux within the q=1 surface. The possibility of ideal interchange combined with enhanced cross-field transport is not excluded.
Properties of Alfven Eigenmodes in the TAE range on the National Spherical Torus Experiment-Upgrade
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-04-24
A second Neutral Beam (NB) injection line is being installed on the NSTX Upgrade device, resulting in six NB sources with di erent tangency radii that will be available for heating and current drive. This work explores the properties of instabilities in the frequency range of the Toroidal Alfv en Eigenmode (TAE) for NSTX-U scenarios with various NB injection geometries, from more perpendicular to more tangential, and with increased toroidal magnetic eld with respect to previous NSTX scenarios. Predictions are based on analysis through the ideal MHD code NOVA-K. For the scenarios considered in this work, modi cations of themore » Alfv en continuum result in a frequency upshift and a broadening of the radial mode structure. The latter e ect may have consequences for fast ion transport and loss. Preliminary stability considerations indicate that TAEs are potentially unstable, with ion Landau damping representing the dominant damping mechanism« less
Anomalous Ion Heating, Intrinsic and Induced Rotation in the Pegasus Toroidal Experiment
NASA Astrophysics Data System (ADS)
Burke, M. G.; Barr, J. L.; Bongard, M. W.; Fonck, R. J.; Hinson, E. T.; Perry, J. M.; Redd, A. J.; Thome, K. E.
2014-10-01
Pegasus plasmas are initiated through either standard, MHD stable, inductive current drive or non-solenoidal local helicity injection (LHI) current drive with strong reconnection activity, providing a rich environment to study ion dynamics. During LHI discharges, a large amount of anomalous impurity ion heating has been observed, with Ti ~ 800 eV but Te < 100 eV. The ion heating is hypothesized to be a result of large-scale magnetic reconnection activity, as the amount of heating scales with increasing fluctuation amplitude of the dominant, edge localized, n = 1 MHD mode. Chordal Ti spatial profiles indicate centrally peaked temperatures, suggesting a region of good confinement near the plasma core surrounded by a stochastic region. LHI plasmas are observed to rotate, perhaps due to an inward radial current generated by the stochastization of the plasma edge by the injected current streams. H-mode plasmas are initiated using a combination of high-field side fueling and Ohmic current drive. This regime shows a significant increase in rotation shear compared to L-mode plasmas. In addition, these plasmas have been observed to rotate in the counter-Ip direction without any external momentum sources. The intrinsic rotation direction is consistent with predictions from the saturated Ohmic confinement regime. Work supported by US DOE Grant DE-FG02-96ER54375.
SPATIAL DAMPING OF PROPAGATING KINK WAVES IN PROMINENCE THREADS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soler, R.; Oliver, R.; Ballester, J. L., E-mail: roberto.soler@wis.kuleuven.be
Transverse oscillations and propagating waves are frequently observed in threads of solar prominences/filaments and have been interpreted as kink magnetohydrodynamic (MHD) modes. We investigate the spatial damping of propagating kink MHD waves in transversely nonuniform and partially ionized prominence threads. Resonant absorption and ion-neutral collisions (Cowling's diffusion) are the damping mechanisms taken into account. The dispersion relation of resonant kink waves in a partially ionized magnetic flux tube is numerically solved by considering prominence conditions. Analytical expressions of the wavelength and damping length as functions of the kink mode frequency are obtained in the thin tube and thin boundary approximations.more » For typically reported periods of thread oscillations, resonant absorption is an efficient mechanism for the kink mode spatial damping, while ion-neutral collisions have a minor role. Cowling's diffusion dominates both the propagation and damping for periods much shorter than those observed. Resonant absorption may explain the observed spatial damping of kink waves in prominence threads. The transverse inhomogeneity length scale of the threads can be estimated by comparing the observed wavelengths and damping lengths with the theoretically predicted values. However, the ignorance of the form of the density profile in the transversely nonuniform layer introduces inaccuracies in the determination of the inhomogeneity length scale.« less
Shocks and currents in stratified atmospheres with a magnetic null point
NASA Astrophysics Data System (ADS)
Tarr, Lucas A.; Linton, Mark
2017-08-01
We use the resistive MHD code LARE (Arber et al 2001) to inject a compressive MHD wavepacket into a stratified atmosphere that has a single magnetic null point, as recently described in Tarr et al 2017. The 2.5D simulation represents a slice through a small ephemeral region or area of plage. The strong gradients in field strength and connectivity related to the presence of the null produce substantially different dynamics compared to the more slowly varying fields typically used in simple sunspot models. The wave-null interaction produces a fast mode shock that collapses the null into a current sheet and generates a set of outward propagating (from the null) slow mode shocks confined to field lines near each separatrix. A combination of oscillatory reconnection and shock dissipation ultimately raise the plasma's internal energy at the null and along each separatrix by 25-50% above the background. The resulting pressure gradients must be balanced by Lorentz forces, so that the final state has contact discontinuities along each separatrix and a persistent current at the null. The simulation demonstrates that fast and slow mode waves localize currents to the topologically important locations of the field, just as their Alfvenic counterparts do, and also illustrates the necessity of treating waves and reconnection as coupled phenomena.
A self-similar magnetohydrodynamic model for ball lightnings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsui, K. H.
2006-07-15
Ball lightning is modeled by magnetohydrodynamic (MHD) equations in two-dimensional spherical geometry with azimuthal symmetry. Dynamic evolutions in the radial direction are described by the self-similar evolution function y(t). The plasma pressure, mass density, and magnetic fields are solved in terms of the radial label {eta}. This model gives spherical MHD plasmoids with axisymmetric force-free magnetic field, and spherically symmetric plasma pressure and mass density, which self-consistently determine the polytropic index {gamma}. The spatially oscillating nature of the radial and meridional field structures indicate embedded regions of closed field lines. These regions are named secondary plasmoids, whereas the overall self-similarmore » spherical structure is named the primary plasmoid. According to this model, the time evolution function allows the primary plasmoid expand outward in two modes. The corresponding ejection of the embedded secondary plasmoids results in ball lightning offering an answer as how they come into being. The first is an accelerated expanding mode. This mode appears to fit plasmoids ejected from thundercloud tops with acceleration to ionosphere seen in high altitude atmospheric observations of sprites and blue jets. It also appears to account for midair high-speed ball lightning overtaking airplanes, and ground level high-speed energetic ball lightning. The second is a decelerated expanding mode, and it appears to be compatible to slowly moving ball lightning seen near ground level. The inverse of this second mode corresponds to an accelerated inward collapse, which could bring ball lightning to an end sometimes with a cracking sound.« less
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
Stabilization of the SIESTA MHD Equilibrium Code Using Rapid Cholesky Factorization
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; D'Azevedo, E. A.; Seal, S. K.
2016-10-01
The SIESTA MHD equilibrium code solves the discretized nonlinear MHD force F ≡ J X B - ∇p for a 3D plasma which may contain islands and stochastic regions. At each nonlinear evolution step, it solves a set of linearized MHD equations which can be written r ≡ Ax - b = 0, where A is the linearized MHD Hessian matrix. When the solution norm | x| is small enough, the nonlinear force norm will be close to the linearized force norm | r| 0 obtained using preconditioned GMRES. In many cases, this procedure works well and leads to a vanishing nonlinear residual (equilibrium) after several iterations in SIESTA. In some cases, however, | x|>1 results and the SIESTA code has to be restarted to obtain nonlinear convergence. In order to make SIESTA more robust and avoid such restarts, we have implemented a new rapid QR factorization of the Hessian which allows us to rapidly and accurately solve the least-squares problem AT r = 0, subject to the condition | x|<1. This avoids large contributions to the nonlinear force terms and in general makes the convergence sequence of SIESTA much more stable. The innovative rapid QR method is based on a pairwise row factorization of the tri-diagonal Hessian. It provides a complete Cholesky factorization while preserving the memory allocation of A. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Experiments on helical modes in magnetized thin foil-plasmas
NASA Astrophysics Data System (ADS)
Yager-Elorriaga, David
2017-10-01
This paper gives an in-depth experimental study of helical features on magnetized, ultrathin foil-plasmas driven by the 1-MA linear transformer driver at University of Michigan. Three types of cylindrical liner loads were designed to produce: (a) pure magneto-hydrodynamic (MHD) modes (defined as being void of the acceleration-driven magneto-Rayleigh-Taylor instability, MRT) using a non-imploding geometry, (b) pure kink modes using a non-imploding, kink-seeded geometry, and (c) MRT-MHD coupled modes in an unseeded, imploding geometry. For each configuration, we applied relatively small axial magnetic fields of Bz = 0.2-2.0 T (compared to peak azimuthal fields of 30-40 T). The resulting liner-plasmas and instabilities were imaged using 12-frame laser shadowgraphy and visible self-emission on a fast framing camera. The azimuthal mode number was carefully identified with a tracking algorithm of self-emission minima. Our experiments show that the helical structures are a manifestation of discrete eigenmodes. The pitch angle of the helix is simply m / kR , from implosion to explosion, where m, k, and R are the azimuthal mode number, axial wavenumber, and radius of the helical instability. Thus, the pitch angle increases (decreases) during implosion (explosion) as R becomes smaller (larger). We found that there are one, or at most two, discrete helical modes that arise for magnetized liners, with no apparent threshold on the applied Bz for the appearance of helical modes; increasing the axial magnetic field from zero to 0.5 T changes the relative weight between the m = 0 and m = 1 modes. Further increasing the applied axial magnetic fields yield higher m modes. Finally, the seeded kink instability overwhelms the intrinsic instability modes of the plasma. These results are corroborated with our analytic theory on the effects of radial acceleration on the classical sausage, kink, and higher m modes. Work supported by US DOE award DE-SC0012328, Sandia National Laboratories, and the National Science Foundation. D.Y.E. was supported by NSF fellowship Grant Number DGE 1256260. The fast framing camera was supported by a DURIP, AFOSR Grant FA9550-15-1-0419.