NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.
2018-03-01
Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.
Resistive MHD Stability Analysis in Near Real-time
NASA Astrophysics Data System (ADS)
Glasser, Alexander; Kolemen, Egemen
2017-10-01
We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Special Issue on the 20th Workshop on MHD Stability Control
Park, Jong -Kyu
2016-11-08
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, Scott; Held, Eric
2013-10-01
Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.
Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.
To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less
Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control
Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.
2018-03-26
To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less
NASA Astrophysics Data System (ADS)
La Haye, Rob
2012-09-01
The Magnetohydrodynamic (MHD) Control Workshop with the theme 'Optimizing and Understanding the Role of Coils for Mode Control' was held at General Atomics (20-22 November 2011) following the 2011 APS-DPP Annual Meeting in Salt Lake City, Utah (14-18 November). This was the 16th in the annual series and was organized jointly by Columbia University, General Atomics, Princeton Plasma Physics Laboratory, and the University of Wisconsin-Madison. Program committee participation included representatives from the EU and Japan along with other US laboratory and university institutions. This workshop highlighted the role of applied non-axisymmetric magnetic fields from both internal and external coils for control of MHD stability to achieve high performance fusion plasmas. The application of 3D magnetic field offers control of important elements of equilibrium, stability, and transport. The use of active 3D fields to stabilize global instabilities and to correct magnetic field errors is an established tool for achieving high beta configurations. 3D fields also affect transport and plasma momentum, and are shown to be important for the control of edge localized modes (ELMs), resistive wall modes, and optimized stellarator configurations. The format was similar to previous workshops, including 13 invited talks, 21 contributed talks, and this year there were 2 panel discussions ('Error Field Correction' led by Andrew Cole of Columbia University and 'Application of Coils in General' led by Richard Buttery of General Atomics). Ted Strait of General Atomics also gave a summary of the International Tokamak Physics Activity (ITPA) MHD meeting in Padua, a group for which he is now the leader. In this special section of Plasma Physics and Controlled Fusion (PPCF) is a sample of the presentations at the workshop, which have been subject to the normal refereeing procedures of the journal. They include a review (A Boozer) and an invited talk (R Fitzpatrick) on error fields, an invited on control of neoclassical tearing modes (H van den Brand), and an invited talk (P Zanca) and a contributed talk (E Oloffson) on control of the resistive wall mode kink. These are just representative of the broad spectrum of recent work on stability found posted at the web site (https://fusion.gat.com/conferences/mhd11/). We thank PPCF for continuing to have this special issue section. This was the third time the workshop was held at General Atomics. We thank General Atomics for making the site available for an internationally represented workshop in the new era of heightened security and controls. The next workshop (17th) will be held at Columbia University for the (fourth time) (https://fusion.gat.com/conferences/mhd12/) with the theme of 'Addressing the Disruption Challenge for ITER' to be combined with the Joint US-Japan MHD Workshop with a special session on: 'Fundamentals of 3D Perturbed Equilibrium Control: Present & Beyond'.
Resistive Wall Modes Identification and Control in RFX-mod low qedge tokamak discharges
NASA Astrophysics Data System (ADS)
Baruzzo, Matteo; Bolzonella, Tommaso; Cavazzana, Roberto; Marchiori, Giuseppe; Marrelli, Lionello; Martin, Piero; Paccagnella, Roberto; Piovesan, Paolo; Piron, Lidia; Soppelsa, Anton; Zanca, Paolo; in, Yongkyoon; Liu, Yueqiang; Okabayashi, Michio; Takechi, Manabu; Villone, Fabio
2011-10-01
In this work the MHD stability of RFX mode tokamak discharges with qedge < 3 will be studied. The target plasma scenario is characterized by a plasma current 100kA
Numerical study of MHD supersonic flow control
NASA Astrophysics Data System (ADS)
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jong -Kyu
The 20th workshop on magnetohydrodynamic (MHD) stability control took place November 22–24, 2015, in Princeton Plasma Physics Laboratory (PPPL), following the American Physical Society—Division of Plasma Physics annual meeting on November 16–20 in Savannah, GA. The purpose of this workshop is to stimulate in depth discussion and motivate future research in the areas of MHD stability physics and control of magnetically confined plasmas. Furthermore, the workshop was organized jointly by Auburn University, Columbia University, General Atomics, Princeton Plasma Physics Laboratory, University of Wisconsin-Madison, and the Los Alamos National Laboratory, and under the auspices of the US/Japan Collaboration.
ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.
2012-10-01
Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.
2012-03-01
We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.
New MHD feedback control schemes using the MARTe framework in RFX-mod
NASA Astrophysics Data System (ADS)
Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo
2013-10-01
Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.
Ideal MHD stability of double transport barrier plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.
2008-01-01
The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.
17th Workshop on MHD Stability Control: addressing the disruption challenge for ITER
NASA Astrophysics Data System (ADS)
Buttery, Richard
2013-08-01
This annual workshop on magnetohydrodynamic stability control was held on 5-7 November 2012 at Columbia University in the city of New York, in the aftermath of a violent hydrodynamic instability event termed 'Hurricane Sandy'. Despite these challenging circumstances, Columbia University managed an excellent meeting, enabling the full participation of the community. This Workshop has been held since 1996 to help in the development of understanding and control of magnetohydrodynamic (MHD) instabilities for future fusion reactors. It covers a wide range of stability topics—from disruptions, to tearing modes, error fields, edge-localized modes (ELMs), resistive wall modes (RWMs) and ideal MHD—spanning many device types (tokamaks, stellarators and reversed field pinches) to identify commonalities in the physics and a means of control. The theme for 2012 was 'addressing the disruption challenge for ITER', and thus the first day had a heavy focus on both the avoidance and mitigation of disruptions in ITER. Key elements included understanding how to apply 3D fields to maintain stability, as well as managing the disruption process itself through mitigating loads in the thermal quench and handling so called 'runaway electrons'. This culminated in a panel discussion on the disruption mitigation strategy for ITER, which noted that heat load asymmetries during the thermal quench appear to be an artifact of MHD processes, and that runaway electron generation may be inevitable, suggesting research should focus on control and dissipation of the runaway beam. The workshop was combined this year with the annual US-Japan MHD Workshop, with a special section looking more deeply at 'Fundamentals of 3D Perturbed Equilibrium Control', with interesting sessions on 3D equilibrium reconstruction, RWM physics, novel control concepts such as non-magnetic sensing, adaptive control, q < 2 tokamak operation, and the effects of flow. The final day turned to tearing mode interactions, exploring the state of the art in 3D modeling, and innovative means of control through application of electromagnetic torques, use of electron cyclotron current drive and even the idea of electrostatic current drive. This concluded with a second panel discussion on the disruption avoidance strategy in ITER, which commented on the important role played by energetic particles in stability, ideas of active stability sensing and ways to progress 3D reconstruction. In this special section of Plasma Physics and Controlled Fusion , we present several of the invited and contributed papers from the 2012 workshop, which have been subject to the normal refereeing procedures of the journal. These give a sense of the exceptional quality of the presentations at this workshop, which may be found at: http://fusion.gat.com/conferences/mhd12/. The Program Committee deeply appreciates the participation and support our community continues to show in this workshop, which provides an unparalleled opportunity for in-depth discussion of MHD issues. We would also like to thank our hosts Columbia University, and in particular Professor Gerald Navratil, for outstanding support and facilities in the face of Hurricane Sandy's adversity. The meeting thanked outgoing Program Chair, Dr Richard Buttery from General Atomics, and welcomed next year's Program Chair, Professor David Maurer from Auburn University. The next meeting will be held in Santa Fe 18-20 November 2013.
Stability of DIII-D high-performance, negative central shear discharges
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.; ...
2017-03-20
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
Stability of DIII-D high-performance, negative central shear discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hanson, Jeremy M.; Berkery, John W.; Bialek, James M.
Tokamak plasma experiments on the DIII-D device demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor q min exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided asmore » long as a threshold minimum safety factor value q min > 2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to β N values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to β N > 4 by broadening the current profile. Furthermore, this path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.« less
MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields
NASA Astrophysics Data System (ADS)
Simakov, Andrei N.; Catto, Peter J.; Ramos, Jesus J.; Hastie, R. J.
2003-04-01
The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study stability of pressure driven Alfvén modes. A point dipole is considered in detail to demonstrate that equilibria exist, which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated next for point dipole equilibria by means of resistive MHD theory.
MHD stability analysis and global mode identification preparing for high beta operation in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.
2017-10-01
H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.
Feedback and Control of Linear and Nonlinear Global MHD Modes in Rotating Plasmas
NASA Astrophysics Data System (ADS)
Finn, J. M.; Chacon, L.
2002-11-01
We present studies of feedback applied to resistive wall modes in the presence of plasma rotation. The main tool used is a Newton-Krylov nonlinear reduced resistive MHD code with completely implicit time stepping[1]. The effects of proportional and derivative gain and toroidal phase shift are investigated. In addition to studying the complete stabilization of the resistive wall mode, we present results on controlling the amplitude of nonlinear modes locked to the wall but propagating slowly; we also show results on reducing the hysteresis in the locking-unlocking bifurcation diagram. [1] L. Chacon, D. A. Knoll and J. M. Finn, "An implicit, nonlinear reduced resistive MHD solver", J. Comp. Phys. v. 178, pp 15-36 (2002).
Stability of DIII-D high-performance, negative central shear discharges
NASA Astrophysics Data System (ADS)
Hanson, J. M.; Berkery, J. W.; Bialek, J.; Clement, M.; Ferron, J. R.; Garofalo, A. M.; Holcomb, C. T.; La Haye, R. J.; Lanctot, M. J.; Luce, T. C.; Navratil, G. A.; Olofsson, K. E. J.; Strait, E. J.; Turco, F.; Turnbull, A. D.
2017-05-01
Tokamak plasma experiments on the DIII-D device (Luxon et al 2005 Fusion Sci. Tech. 48 807) demonstrate high-performance, negative central shear (NCS) equilibria with enhanced stability when the minimum safety factor {{q}\\text{min}} exceeds 2, qualitatively confirming theoretical predictions of favorable stability in the NCS regime. The discharges exhibit good confinement with an L-mode enhancement factor H 89 = 2.5, and are ultimately limited by the ideal-wall external kink stability boundary as predicted by ideal MHD theory, as long as tearing mode (TM) locking events, resistive wall modes (RWMs), and internal kink modes are properly avoided or controlled. Although the discharges exhibit rotating TMs, locking events are avoided as long as a threshold minimum safety factor value {{q}\\text{min}}>2 is maintained. Fast timescale magnetic feedback control ameliorates RWM activity, expanding the stable operating space and allowing access to {β\\text{N}} values approaching the ideal-wall limit. Quickly growing and rotating instabilities consistent with internal kink mode dynamics are encountered when the ideal-wall limit is reached. The RWM events largely occur between the no- and ideal-wall pressure limits predicted by ideal MHD. However, evaluating kinetic contributions to the RWM dispersion relation results in a prediction of passive stability in this regime due to high plasma rotation. In addition, the ideal MHD stability analysis predicts that the ideal-wall limit can be further increased to {β\\text{N}}>4 by broadening the current profile. This path toward improved stability has the potential advantage of being compatible with the bootstrap-dominated equilibria envisioned for advanced tokamak (AT) fusion reactors.
Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario
NASA Astrophysics Data System (ADS)
Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi
2012-11-01
The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.
Laboratory Study of MHD Effects on Stability of Free-surface Liquid Metal Flow
NASA Astrophysics Data System (ADS)
Burin, M. J.; Ji, H.; McMurtry, K.; Peterson, L.; Giannakis, D.; Rosner, R.; Fischer, P.
2006-10-01
The dynamics of free-surface MHD shear flows is potentially important to both astrophysics (e.g. in the mixing of dense plasma accreted upon neutron star surfaces) and fusion reactors (e.g. in liquid metal ‘first walls’). To date however few relevant experiments exist. In order to study the fundamental physics of such flows, a small-scale laboratory experiment is being built using a liquid gallium alloy flowing in an open- channel geometry. The flow dimensions are nominally 10cm wide, 1cm deep, and 70cm long under an imposed magnetic field up to 7kG, leading to maximum Hartman number of 2000 and maximum Reynolds number of 4x10^5. Two basic physics issues will ultimately be addressed: (1) How do MHD effects modify the stability of the free surface? For example, is the flow more stable (through the suppression of cross-field motions), or less stable (through the introduction of new boundary layers)? We also investigate whether internal shear layers and imposed electric currents can control the surface stability. (2) How do MHD effects modify free-surface convection driven by a vertical and/or horizontal temperature gradient? We discuss aspects of both of these issues, along with detailed descriptions of the experimental device. Pertinent theoretical stability analyses and initial hydrodynamic results are presented in companion posters. This work is supported by DoE under contract #DE-AC02-76-CH03073.
Advances in simulation of wave interactions with extended MHD phenomena
NASA Astrophysics Data System (ADS)
Batchelor, D.; Abla, G.; D'Azevedo, E.; Bateman, G.; Bernholdt, D. E.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Foley, S.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.
2009-07-01
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
Stability of a two-volume MRxMHD model in slab geometry
NASA Astrophysics Data System (ADS)
Tuen, Li Huey
Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.
NASA Technical Reports Server (NTRS)
Brinkmann, R. P.
1989-01-01
This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.
Global plasma oscillations in electron internal transport barriers in TCV
NASA Astrophysics Data System (ADS)
Udintsev, V. S.; Sauter, O.; Asp, E.; Fable, E.; Goodman, T. P.; Turri, G.; Graves, J. P.; Scarabosio, A.; Zhuang, G.; Zucca, C.; TCV Team
2008-12-01
In the Tokamak à Configuration Variable (TCV) (Hofmann F et al1994 Plasma Phys. Control. Fusion 36 B277), global plasma oscillations have been discovered in fully non-inductively driven plasmas featuring electron internal transport barriers (ITB) with strong ECRH/ECCD. These oscillations are linked to the destabilization and stabilization of MHD modes near the foot of the ITB and can lead to large oscillations of the total plasma current and line-averaged density, among others. They are intrinsically related to the fact that ITBs have large pressure gradients in a region of low magnetic shear. Therefore, the ideal MHD limit is relatively low and infernal modes can be unstable. Depending on the proximity to the ideal limit, small crashes or resistive modes can appear which affect the time evolution of the discharge. Being near marginal stability, the modes can self-stabilize due to the modification of the pressure gradient and local q-profile. The plasma recovers good confinement, reverses shear and the ITB builds up, until a new MHD mode is destabilized. TCV results show that this cycling behaviour can be controlled by modifying the current density or the pressure profiles, either with Ohmic current density perturbation or by modifying the ECH/ECCD power. It is demonstrated that many observations such as q >= 2 sawteeth, beta collapses, minor disruptions and oscillation regimes in ITBs can be assigned to the same physics origin: the proximity to the infernal mode stability limit.
Trapped particle stability for the kinetic stabilizer
NASA Astrophysics Data System (ADS)
Berk, H. L.; Pratt, J.
2011-08-01
A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.
Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howell, E. C.; Sovinec, C. R.
The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less
Parameter-Space Survey of Linear G-mode and Interchange in Extended Magnetohydrodynamics
Howell, E. C.; Sovinec, C. R.
2017-09-11
The extended magnetohydrodynamic stability of interchange modes is studied in two configurations. In slab geometry, a local dispersion relation for the gravitational interchange mode (g-mode) with three different extensions of the MHD model [P. Zhu, et al., Phys. Rev. Lett. 101, 085005 (2008)] is analyzed. Our results delineate where drifts stablize the g-mode with gyroviscosity alone and with a two-fluid Ohm’s law alone. Including the two-fluid Ohm’s law produces an ion drift wave that interacts with the g-mode. This interaction then gives rise to a second instability at finite k y. A second instability is also observed in numerical extended MHD computations of linear interchange in cylindrical screw-pinch equilibria, the second configuration. Particularly with incomplete models, this mode limits the regions of stability for physically realistic conditions. But, applying a consistent two-temperature extended MHD model that includes the diamagnetic heat flux density (more » $$\\vec{q}$$ *) makes the onset of the second mode occur at larger Hall parameter. For conditions relevant to the SSPX experiment [E.B. Hooper, Plasma Phys. Controlled Fusion 54, 113001 (2012)], significant stabilization is observed for Suydam parameters as large as unity (D s≲1).« less
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.
2017-06-01
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...
2017-06-08
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pankin, A. Y.; Rafiq, T.; Kritz, A. H.
The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new mechanism of controlling the pedestal bootstrap current and the pedestal stability.« less
Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR
NASA Astrophysics Data System (ADS)
Park, Hyeon K.
2013-10-01
In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.
Feedback-assisted extension of the tokamak operating space to low safety factor
Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; ...
2014-07-07
Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q( a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q( a) = 2 (limiter plasmas) and q 95 = 2 (divertor plasmas). However, passively stable operation can be attained for q( a) and q 95 values as low as 2.2. RWM damping in the q( a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of themore » damped response does not increase significantly as the q( a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q 95 values reaching as low as 1.9 in DIII-D and q( a) reaching 1.55 in RFX-mod. In addition to being consistent with the q( a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.« less
Spatial and temporal analysis of DIII-D 3D magnetic diagnostic data
Strait, E. J.; King, J. D.; Hanson, J. M.; ...
2016-08-11
An extensive set of magnetic diagnostics in DIII-D is aimed at measuring non-axisymmetric "3D" features of tokamak plasmas, with typical amplitudes ~10 -3 to 10 -5 of the total magnetic field. We describe hardware and software techniques used at DIII-D to condition the individual signals and analysis to estimate the spatial structure from an ensemble of discrete measurements. Lastly, applications of the analysis include detection of non-rotating MHD instabilities, plasma control, and validation of MHD stability and 3D equilibrium models.
Magnetic control of magnetohydrodynamic instabilities in tokamaks
Strait, Edward J.
2014-11-24
Externally applied, non-axisymmetric magnetic fields form the basis of several relatively simple and direct methods to control magnetohydrodynamic (MHD) instabilities in a tokamak, and most present and planned tokamaks now include a set of non-axisymmetric control coils for application of fields with low toroidal mode numbers. Non-axisymmetric applied fields are routinely used to compensate small asymmetries ( δB/B ~ 10 -3 to 10 -4) of the nominally axisymmetric field, which otherwise can lead to instabilities through braking of plasma rotation and through direct stimulus of tearing modes or kink modes. This compensation may be feedback-controlled, based on the magnetic responsemore » of the plasma to the external fields. Non-axisymmetric fields are used for direct magnetic stabilization of the resistive wall mode — a kink instability with a growth rate slow enough that feedback control is practical. Saturated magnetic islands are also manipulated directly with non-axisymmetric fields, in order to unlock them from the wall and spin them to aid stabilization, or position them for suppression by localized current drive. Several recent scientific advances form the foundation of these developments in the control of instabilities. Most fundamental is the understanding that stable kink modes play a crucial role in the coupling of non-axisymmetric fields to the plasma, determining which field configurations couple most strongly, how the coupling depends on plasma conditions, and whether external asymmetries are amplified by the plasma. A major advance for the physics of high-beta plasmas ( β = plasma pressure/magnetic field pressure) has been the understanding that drift-kinetic resonances can stabilize the resistive wall mode at pressures well above the ideal-MHD stability limit, but also that such discharges can be very sensitive to external asymmetries. The common physics of stable kink modes has brought significant unification to the topics of static error fields at low beta and resistive wall modes at high beta. Furthermore, these and other scientific advances, and their application to control of MHD instabilities, will be reviewed with emphasis on the most recent results and their applicability to ITER.« less
Mode control using two electrodes on HBT-EP
NASA Astrophysics Data System (ADS)
Stewart, I. G.; Brooks, J. W.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.
2017-10-01
Understanding the effects of plasma rotation on magnetohydrodynamic (MHD) modes and tokamak plasma stability is important for performance enhancement of current magnetic confinement experiments and to future fusion devices such as ITER. In order to control plasma rotation, two molybdenum electrodes have been installed on HBT-EP toroidally separated by 144 degrees. This allows independent biasing of the two probes both spatially and temporally. When the bias probes are inserted into the edge of the plasma and a voltage is applied, the probes drive radial currents and produce plasma flow from the torque induced by the currents. If the bias probe voltage is sufficiently positive, the MHD mode rotation transitions into a state with a rapid mode rotation frequency (in excess of 25 kHz) in the direction opposite to mode rotation without bias. The transition into this reversed rotation state occurs when the torque exceeds a threshold, which can depend upon the phase of an applied n = 1 error field. We present recent studies of the two-electrode system on mode rotation, mode stability, and the toroidal symmetry of the radial current through the scrape-off-layer (SOL) during MHD activity and applied magnetic perturbations. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Technical Reports Server (NTRS)
Barth, Timothy
2005-01-01
The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.
High beta and second stability region transport and stability analysis. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1996-01-01
This report describes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the period March 1 to December 31, 1995. Significant progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. Specifically, attention is concentrated on analysis of Advanced Tokamak experiments at TFTR involving plasmas in which the q-profiles were non-monotonic.
High beta and second stability region transport and stability analysis: Technical progress report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hughes, M.H.; Phillips, M.W.
1995-03-01
This report summarizes MHD equilibrium and stability studies carried out at Northrop Grumman`s Advanced Technology and Development Center during the 12 month period starting March 1, 1994. Progress is reported in both ideal and resistive MHD modeling of TFTR plasmas. The development of codes to calculate the significant effects of highly anisotropic pressure distributions is discussed along with results from this model.
ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.; SWIM Project Team
2011-10-01
We present developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. A third code (QLCALC) then interfaces with computational geometry packages to construct the RF-induced quasilinear diffusion tensor from NIMROD/GENRAY data, and the moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution. Initial results are shown to correctly capture the physics of magnetic island stabilization [Jenkins et al., PoP 17, 012502 (2010)]; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes. Funded by USDoE SciDAC.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
NASA Astrophysics Data System (ADS)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Free boundary resistive modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huysmans, G.T.A.; Goedbloed, J.P.; Kerner, W.
1993-05-01
There exist a number of observations of magnetohydrodynamic (MHD) activity that can be related to resistive MHD modes localized near the plasma boundary. To study the stability of these modes, a free boundary description of the plasma is essential. The resistive plasma--vacuum boundary conditions have been implemented in the fully toroidal resistive spectral code CASTOR (Complex Alfven Spectrum in Toroidal Geometry) [[ital Proceedings] [ital of] [ital the] 18[ital th] [ital Conference] [ital on] [ital Controlled] [ital Fusion] [ital and] [ital Plasma] [ital Physics], Berlin, edited by P. Bachmann and D. C. Robinson (European Physical Society, Petit-Lancy, Switzerland, 1991), p. 89].more » The influence of a free boundary, as compared to a fixed boundary on the stability of low-[ital m] tearing modes, is studied. It is found that the stabilizing (toroidal) effect of a finite pressure due the plasma compression is lost in the free boundary case for modes localized near the boundary. Since the stabilization due to the favorable average curvature in combination with a pressure gradient near the boundary is small, the influence of the pressure on the stability is much less important for free boundary modes than for fixed boundary modes.« less
Study of Second Stability for Global ITG Modes in MHD-stable Equilibria
NASA Astrophysics Data System (ADS)
Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan
1997-11-01
We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219
Linear and nonlinear stability criteria for compressible MHD flows in a gravitational field
NASA Astrophysics Data System (ADS)
Moawad, S. M.; Moawad
2013-10-01
The equilibrium and stability properties of ideal magnetohydrodynamics (MHD) of compressible flow in a gravitational field with a translational symmetry are investigated. Variational principles for the steady-state equations are formulated. The MHD equilibrium equations are obtained as critical points of a conserved Lyapunov functional. This functional consists of the sum of the total energy, the mass, the circulation along field lines (cross helicity), the momentum, and the magnetic helicity. In the unperturbed case, the equilibrium states satisfy a nonlinear second-order partial differential equation (PDE) associated with hydrodynamic Bernoulli law. The PDE can be an elliptic or a parabolic equation depending on increasing the poloidal flow speed. Linear and nonlinear Lyapunov stability conditions under translational symmetric perturbations are established for the equilibrium states.
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R.F.; Fowler, T.K.; Bulmer, R.
2005-01-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma.At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies have employedmore » a low-beta code written especially to analyze the beam injection/stabilization process,and a new code SYMTRAN (by Hua and Fowler)that solves the coupled radial and axial particle and energy transport in a K-S T-M. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values.The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma.Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging.Our studies have confirmed the viability of the K-S T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution.In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M.« less
Axisymmetric Tandem Mirrors: Stabilization and Confinement Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F; Fowler, T K; Bulmer, R
2004-07-15
The 'Kinetic Stabilizer' has been proposed as a means of MHD stabilizing an axisymmetric tandem mirror system. The K-S concept is based on theoretical studies by Ryutov, confirmed experimentally in the Gas Dynamic Trap experiment in Novosibirsk. In the K-S beams of ions are directed into the end of an 'expander' region outside the outer mirror of a tandem mirror. These ions, slowed, stagnated, and reflected as they move up the magnetic gradient, produce a low-density stabilizing plasma. At the Lawrence Livermore National Laboratory we have been conducting theoretical and computational studies of the K-S Tandem Mirror. These studies havemore » employed a low-beta code written especially to analyze the beam injection/stabilization process, and a new code SYMTRAN (by Hua and Fowler) that solves the coupled radial and axial particle and energy transport in a K-S TM. Also, a 'legacy' MHD stability code, FLORA, has been upgraded and employed to benchmark the injection/stabilization code and to extend its results to high beta values. The FLORA code studies so far have confirmed the effectiveness of the K-S in stabilizing high-beta (40%) plasmas with stabilizer plasmas the peak pressures of which are several orders of magnitude smaller than those of the confined plasma. Also the SYMTRAN code has shown D-T plasma ignition from alpha particle energy deposition in T-M regimes with strong end plugging. Our studies have confirmed the viability of the K-S-T-M concept with respect to MHD stability and radial and axial confinement. We are continuing these studies in order to optimize the parameters and to examine means for the stabilization of possible residual instability modes, such as drift modes and 'trapped-particle' modes. These modes may in principle be controlled by tailoring the stabilizer plasma distribution and/or the radial potential distribution. In the paper the results to date of our studies are summarized and projected to scope out possible fusion-power versions of the K-S T-M« less
Magnetotail dynamics under isobaric constraints
NASA Technical Reports Server (NTRS)
Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael
1994-01-01
Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.
C-Mod MHD stability analysis with LHCD
NASA Astrophysics Data System (ADS)
Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.
2016-10-01
In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.
NASA Astrophysics Data System (ADS)
Liu, Yong; Shu, Chi-Wang; Zhang, Mengping
2018-02-01
We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.
HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents
NASA Astrophysics Data System (ADS)
Navratil, G. A.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Levesque, J. P.; Mauel, M. E.; Stewart, I. G.; Hansen, C. J.
2017-10-01
The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. Comparison of kink mode structure and RMP response in circular versus diverted plasmas shows good agreement with DCON modeling. SOL current measurements have been used to study SOL current dynamics and current-sharing with the vacuum vessel wall during kink-mode growth and disruptions. A multi-chord extreme UV/soft X-ray array is being installed to provide detailed internal mode structure information. Internal local electrodes were used to apply local bias voltage at two radial locations to study the effect of rotation profile on MHD mode rotation and stability and radial current flow through the SOL. A GPU-based low latency control system using 96 inputs and 64 outputs to apply magnetic perturbations for active control of kink modes is extended to directly control the SOL currents for kink-mode control. An extensive array of SOL current monitors and edge drive electrodes are being installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.
NASA Astrophysics Data System (ADS)
Brennan, D. P.; Finn, J. M.
2014-10-01
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reduced resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values βrp,rw < βrp,iw < βip,rw < βip,iw (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below βrp,iw because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above βrp,iw because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain Gi to optimize in the presence of rotation in this regime with β > βrp,iw is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below βrp,iw.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
NASA Astrophysics Data System (ADS)
Bhakta, S.; Prajapati, R. P.; Dolai, B.
2017-08-01
The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenin, V. V.
2010-10-15
It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.
NASA Astrophysics Data System (ADS)
Gao, D.; Morley, N. B.
2002-12-01
A 2D model for MHD free surface flow in a spanwise field is developed. The model, designed to simulate film flows of liquid metals in future thermonuclear fusion reactors, considers an applied spanwise magnetic field with spatial and temporal variation and an applied streamwise external current. A special case - a thin falling film flow in spanwise magnetic field with constant gradient and constant applied external streamwise current, is here investigated in depth to gain insight into the behavior of the MHD film flow. The fully developed flow solution is derived and initial linear stability analysis is performed for this special case. It is seen that the velocity profile is significantly changed due to the presence of the MHD effect, resulting in the free surface analog of the classic M-shape velocity profile seen in developing pipe flows in a field gradient. The field gradient is also seen to destabilize the film flow under most conditions. The effect of external current depends on the relative direction of the field gradient to the current direction. By controlling the magnitude of an external current, it is possible to obtain a linearly stable falling film under these magnetic field conditions. Tables 1, Figs 12, Refs 20.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-07-01
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. The purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. Unlike an earlier conclusion from an eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. A thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.
Axisymmetric MHD-stable Mirror as a Neutron Source and a Fusion Reactor
Dr. Dmitri Ryutov
2018-04-17
Dr. Ryutov discusses the concept of axisymmetric mirrors and presents an overview of current experiments and theories. Particular attention is paid to MHD stabilization and the advantages and disadvantages of using mirrors. Future work is identified and further discussed.
An MHD variational principle that admits reconnection
NASA Technical Reports Server (NTRS)
Rilee, M. L.; Sudan, R. N.; Pfirsch, D.
1997-01-01
The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.
Ideal MHD stability and characteristics of edge localized modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team
2018-01-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R = 5.7 m, B T = 5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a = 1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R = 6.6 m, B T = 6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.
Plasma Density Effects on Toroidal Flow Stabilization of Edge Localized Modes
NASA Astrophysics Data System (ADS)
Cheng, Shikui; Zhu, Ping; Banerjee, Debabrata
2016-10-01
Recent EAST experiments have demonstrated mitigation and suppression of edge localized modes (ELMs) with toroidal rotation flow in higher collisionality regime, suggesting potential roles of plasma density. In this work, the effects of plasma density on the toroidal flow stabilization of the high- n edge localized modes have been extensively studied in linear calculations for a circular-shaped limiter H-mode tokamak, using the initial-value extended MHD code NIMROD. In the single MHD model, toroidal flow has a weak stabilizing effects on the high- n modes. Such a stabilization, however, can be significantly enhanced with the increase in plasma density. Furthermore, our calculations show that the enhanced stabilization of high- n modes from toroidal flow with higher edge plasma density persists in the 2-fluid MHD model. These findings may explain the ELM mitigation and suppression by toroidal rotation in higher collisionality regime due to the enhancement of plasma density obtained in EAST experiment. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of Chinese Academy of Sciences.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
Stabilizing Effect of Resistivity towards ELM-free H-mode Discharge in Lithium-conditioned NSTX
NASA Astrophysics Data System (ADS)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2016-10-01
The stabilizing effect of edge resistivity on the edge localized modes (ELMs) has been recently recovered through analyzing NSTX experimental profiles of Lithium-conditioned ELM-free H-mode discharge. Comparative studies of ELM-free and a reference NSTX ELMy-H mode equilibriums have been performed using both resistive and 2-fluid MHD models implemented in the initial value extended MHD code NIMROD. Our results indicate that in addition to the pedestal profile refinement in electron pressure, the inclusion of enhanced resistivity due to the increase in the effective electric charge number Zeff, which is observed after Lithium-conditioning in experiment, is further required to account for the full stabilization of the low- n edge localized modes. Such a stabilization from the enhanced edge resistivity only becomes effective when the two-fluid diamagnetic and finite-Larmor-radius (FLR) effects are considered in the MHD model. Supported by the National Magnetic Confinement Fusion Program of China under Grant Nos. 2014GB124002 and 2015GB101004, the 100 Talent Program and the President International Fellowship Initiative of the Chinese Academy of Sciences.
Experimental tests of linear and nonlinear three-dimensional equilibrium models in DIII-D
King, Josh D.; Strait, Edward J.; Lazerson, Samuel A.; ...
2015-07-01
DIII-D experiments using new detailed magnetic diagnostics show that linear, ideal magnetohydrodynamics (MHD) theory quantitatively describes the magnetic structure (as measured externally) of three-dimensional (3D) equilibria resulting from applied fields with toroidal mode number n = 1, while a nonlinear solution to ideal MHD force balance, using the VMEC code, requires the inclusion of n ≥ 1 to achieve similar agreement. Moreover, these tests are carried out near ITER baseline parameters, providing a validated basis on which to exploit 3D fields for plasma control development. We determine scans of the applied poloidal spectrum and edge safety factors which confirm thatmore » low-pressure, n = 1 non-axisymmetric tokamak equilibria are a single, dominant, stable eigenmode. But, at higher beta, near the ideal kink mode stability limit in the absence of a conducting wall, the qualitative features of the 3D structure are observed to vary in a way that is not captured by ideal MHD.« less
MHD Instability and Turbulence in the Tachocline
NASA Technical Reports Server (NTRS)
Werne, Joe; Wagner, William J. (Technical Monitor)
2003-01-01
The focus of this project was to study the physical processes that govern tachocline dynamics and structure. Specific features explored included stratification, shear, waves, and toroidal and poloidal background fields. In order to address recent theoretical work on anisotropic mixing and dynamics in the tachocline, we were particularly interested in such anisotropic mixing for the specific tachocline processes studied. Transition to turbulence often shapes the largest-scale features that appear spontaneously in a flow during the development of turbulence. The resulting large-scale straining field can control the subsequent dynamics; therefore, anticipation of the large-scale straining field that results for individual realizations of the transition to turbulence can be important for subsequent dynamics, flow morphology, and transport characteristics. As a result, we paid particular attention to the development of turbulence in the stratified and sheared environment of the tachocline. This is complicated by the fact that the linearly stability of sheared MHD flows is non-self-adjoint, implying that normal asymptotic linear stability theory may not be relevant.
Study of neoclassical effects on the pedestal structure in ELMy H-mode plasmas
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Kritz, A. H.; Rafiq, T.; Park, G. Y.; Ku, S.; Chang, C. S.; Snyder, P. B.
2009-11-01
The neoclassical effects on the H-mode pedestal structure are investigated in this study. First principles' kinetic simulations of the neoclassical pedestal dynamics are combined with the MHD stability conditions for triggering ELM crashes that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [1] is used to produce systematic scans over plasma parameters including plasma current, elongation, and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD stability ELITE code [2]. The scalings of the pedestal width and height are presented as a function of the scanned plasma parameters. Simulations with the XGC0 code, which include coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. Differences in the electron and ion pedestal scalings are investigated. [1] C.S. Chang et al, Phys. Plasmas 11 (2004) 2649. [2] P.B. Snyder et al, Phys. Plasmas, 9 (2002) 2037.
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
Stabilizing effect of resistivity towards ELM-free H-mode discharge in lithium-conditioned NSTX
Banerjee, Debabrata; Zhu, Ping; Maingi, Rajesh
2017-05-12
Linear stability analysis of the national spherical torus experiment (NSTX) Li-conditioned ELM-free H-mode equilibria is carried out in the context of the extended magneto-hydrodynamic (MHD) model in NIMROD. Our purpose is to investigate the physical cause behind edge localized mode (ELM) suppression in experiment after the Li-coating of the divertor and the first wall of the NSTX tokamak. Besides ideal MHD modeling, including finite-Larmor radius effect and two-fluid Hall and electron diamagnetic drift contributions, a non-ideal resistivity model is employed, taking into account the increase of Z eff after Li-conditioning in ELM-free H-mode. And unlike an earlier conclusion from anmore » eigenvalue code analysis of these equilibria, NIMROD results find that after reduced recycling from divertor plates, profile modification is necessary but insufficient to explain the mechanism behind complete ELMs suppression in ideal two-fluid MHD. After considering the higher plasma resistivity due to higher Z eff, the complete stabilization could be explained. Furthermore, a thorough analysis of both pre-lithium ELMy and with-lithium ELM-free cases using ideal and non-ideal MHD models is presented, after accurately including a vacuum-like cold halo region in NIMROD to investigate ELMs.« less
Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...
2016-02-10
Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less
Stable Spheromaks with Profile Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R
A spheromak equilibrium with zero edge current is shown to be stable to both ideal MHD and tearing modes that normally produce Taylor relaxation in gun-injected spheromaks. This stable equilibrium differs from the stable Taylor state in that the current density j falls to zero at the wall. Estimates indicate that this current profile could be sustained by non-inductive current drive at acceptable power levels. Stability is determined using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive could point the way to improved fusion reactors.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-05-10
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, D. P.; Finn, J. M.
2014-10-15
Feedback stabilization of magnetohydrodynamic (MHD) modes in a tokamak is studied in a cylindrical model with a resistive wall, plasma resistivity, viscosity, and toroidal rotation. The control is based on a linear combination of the normal and tangential components of the magnetic field just inside the resistive wall. The feedback includes complex gain, for both the normal and for the tangential components, and it is known that the imaginary part of the feedback for the former is equivalent to plasma rotation [J. M. Finn and L. Chacon, Phys. Plasmas 11, 1866 (2004)]. The work includes (1) analysis with a reducedmore » resistive MHD model for a tokamak with finite β and with stepfunction current density and pressure profiles, and (2) computations with a full compressible visco-resistive MHD model with smooth decreasing profiles of current density and pressure. The equilibria are stable for β = 0 and the marginal stability values β{sub rp,rw} < β{sub rp,iw} < β{sub ip,rw} < β{sub ip,iw} (resistive plasma, resistive wall; resistive plasma, ideal wall; ideal plasma, resistive wall; and ideal plasma, ideal wall) are computed for both models. The main results are: (a) imaginary gain with normal sensors or plasma rotation stabilizes below β{sub rp,iw} because rotation suppresses the diffusion of flux from the plasma out through the wall and, more surprisingly, (b) rotation or imaginary gain with normal sensors destabilizes above β{sub rp,iw} because it prevents the feedback flux from entering the plasma through the resistive wall to form a virtual wall. A method of using complex gain G{sub i} to optimize in the presence of rotation in this regime with β > β{sub rp,iw} is presented. The effect of imaginary gain with tangential sensors is more complicated but essentially destabilizes above and below β{sub rp,iw}.« less
MHD Stability in Compact Stellarators
NASA Astrophysics Data System (ADS)
Fu, Guoyong
1999-11-01
A key issue for current carrying compact stellarators(S.P. Hirshman et al., "Physics of compact stellarators", Phys. Plasmas 6, 1858 (1999).) is the stability of ideal MHD modes. We present recent stability results of external kink modes, ballooning mode, and vertical modes in Quasi-axisymmetric Stellarators (QAS)( A. Reiman et al, "Physics issue in the design of a high beta Quasi-Axisymmetric Stellarator" the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), Paper ICP/06.) as well as Quasi-Omnigeneous Stellarators (QOS)^2. The 3D stability code Terpsichore(W. A. Cooper et al., Phys. Plasmas 3, 275 (1996)) is used in this study. The vertical stability in a current carrying stellarator is studied for the first time. The vertical mode is found to be stabilized by externally generated poloidal flux(G.Y. Fu et al., "Stability of vertical mode in a current carrying stellarator"., to be submitted). Physically, this is because the external poloidal flux enhances the field line bending energy relative to the current drive term in the MHD energy principle, δ W. A simple stability criteria is derived in the limit of large aspect ratio and constant current density. For wall at infinite distance from the plasma, the amount of external flux needed for stabilization is given by f=(κ^2-κ)/(κ^2+1) where κ is the axisymmetric elongation and f is the fraction of the external rotational transform at the plasma edge. A systematic parameter study shows that the external kink in QAS can be stabilized at high beta ( ~ 5%) without a conducting wall by combination of edge magnetic shear and 3D shaping(G. Y. Fu et al., "MHD stability calculations of high-beta Quasi-Axisymmetric Stellarators", the 17th IAEA Fusion Energy conference, (Yokohama, Japan, October 1998), paper THP1/07.). The optimal shaping is obtained by using an optimizer with kink stability included in its objective function. The physics mechanism for the kink modes is studied by examining relative contributions of individual terms in δ W. It is found the external kinks are mainly driven by the parallel current. The pressure contributes significantly to the overall drive through the curvature term and the Pfirsch-Schluter current. These results demonstrate potential of QAS and QOS for disruption-free operations at high-beta without a close-fitting conducting wall and feedback stabilization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.Y. Fu; L.P. Ku; M.H. Redi
A key issue for compact stellarators is the stability of beta-limiting MHD modes, such as external kink modes driven by bootstrap current and pressure gradient. We report here recent progress in MHD stability studies for low-aspect-ratio Quasi-Axisymmetric Stellarators (QAS) and Quasi-Omnigeneous Stellarators (QOS). We find that the N = 0 periodicity-preserving vertical mode is significantly more stable in stellarators than in tokamaks because of the externally generated rotational transform. It is shown that both low-n external kink modes and high-n ballooning modes can be stabilized at high beta by appropriate 3D shaping without a conducting wall. The stabilization mechanism formore » external kink modes in QAS appears to be an enhancement of local magnetic shear due to 3D shaping. The stabilization of ballooning mode in QOS is related to a shortening of the normal curvature connection length.« less
NASA Astrophysics Data System (ADS)
Kuzmin, R. N.; Savenkova, N. P.; Shobukhov, A. V.; Kalmykov, A. V.
2018-03-01
The paper deals with investigation of the MHD-stability dependence on the depth of the anode immersion in the process of aluminium electrolysis. The proposed 3D three-phase mathematical model is based on the Navier-Stokes and Maxwell equation systems. This model makes it possible to simulate the distributions of the main physical fields both in horizontal and vertical planes. The suggested approach also allows to study the dynamics of the border between aluminium and electrolyte and the shape of the back oxidation zone.
Modeling of Feedback Stabilization of External MHD Modes in Toroidal Geometry
NASA Astrophysics Data System (ADS)
Chu, M. S.; Chance, M. S.; Okabayashi, M.
2000-10-01
The intelligent shell feedback scheme(C.M. Bishop, Plasma Phys. Contr. Nucl. Fusion 31), 1179 (1989). seeks to utilize external coils to suppress the unstable MHD modes slowed down by the resistive shell. We present a new formulation and numerical results of the interaction between the plasma and its outside vacuum region, with complete plasma response and the inclusion of a resistive vessel in general toroidal geometry. This is achieved by using the Green's function technique, which is a generalization of that previously used for the VACUUM(M.S. Chance, Phys. Plasmas 4), 2161 (1997). code and coupled with the ideal MHD code GATO. The effectiveness of different realizations of the intelligent shell concept is gauged by their ability to minimize the available free energy to drive the MHD mode. Computations indicate poloidal coverage of 30% of the total resistive wall surface area and 6 or 7 segments of ``intelligent coil'' arrays superimposed on the resistive wall will allow recovery of up to 90% the effectiveness of the ideal shell in stabilizing the ideal external kink.
Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go
2016-01-01
It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346
Flow shear stabilization of rotating plasmas due to the Coriolis effect.
Haverkort, J W; de Blank, H J
2012-07-01
A radially decreasing toroidal rotation frequency can have a stabilizing effect on nonaxisymmetric magnetohydrodynamic (MHD) instabilities. We show that this is a consequence of the Coriolis effect that induces a restoring pressure gradient force when plasma is perturbed radially. In a rotating cylindrical plasma, this Coriolis-pressure effect is canceled by the centrifugal effect responsible for the magnetorotational instability. In a magnetically confined toroidal plasma, a large aspect ratio expansion shows that only half of the effect is canceled. This analytical result is confirmed by numerical computations. When the plasma rotates faster toroidally in the core than near the edge, the effect can contribute to the formation of transport barriers by stabilizing MHD instabilities.
Proposed Approach to Stable High Beta Plasmas in ET
NASA Astrophysics Data System (ADS)
Taylor, R. J.; Carter, T. A.; Gauvreau, J.-L.; Gourdain, P.-A.; Grossman, A.; Lafonteese, D. J.; Pace, D. C.; Schmitz, L. W.
2003-10-01
Five second long plasmas have been produced in ET with ease. We need these long pulses to evolve high beta equilibria under controlled conditions. However, equilibrium control is lost to internal disruptions due to the development of giant sawteeth on the 1 second time scale. This time scale is approximately the central energy confinement time, while the central particle confinement time is much longer than 1 second. This persistent limitation is present in ohmic and ICRF heated discharges. MHD stable current profiles have been found using DCON(A.H. Glasser, private communication) but transport related phenomena like giant sawteeth and uncontrolled transport barrier evolution are not yet part of a simple stability study. We are advocating avoiding the evolution of giant sawtooth and conditions responsible for MHD instabilities as opposed to exploring their stabilization. This is equivalent to the statement that self-organized plasmas are in fact not welcome in long pulse tokamaks. We intend to prevent self-organization by the application of a multi-faceted ICRF strategy. The in house technology is ready but the approach needs to be artful and not preconceived. The flexibility built into the ET hardware is likely to help us to find a way to achieve global plasma control. It is essential that this work be pursued geared towards parameter performance and configuration control. Both require a significant commitment to understanding the device physics AND delivering on the engineering required for control and performance.
Numerical and experimental investigation of plasma plume deflection with MHD flow control
NASA Astrophysics Data System (ADS)
Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN
2018-04-01
This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.
Theory-based model for the pedestal, edge stability and ELMs in tokamaks
NASA Astrophysics Data System (ADS)
Pankin, A. Y.; Bateman, G.; Brennan, D. P.; Schnack, D. D.; Snyder, P. B.; Voitsekhovitch, I.; Kritz, A. H.; Janeschitz, G.; Kruger, S.; Onjun, T.; Pacher, G. W.; Pacher, H. D.
2006-04-01
An improved model for triggering edge localized mode (ELM) crashes is developed for use within integrated modelling simulations of the pedestal and ELM cycles at the edge of H-mode tokamak plasmas. The new model is developed by using the BALOO, DCON and ELITE ideal MHD stability codes to derive parametric expressions for the ELM triggering threshold. The whole toroidal mode number spectrum is studied with these codes. The DCON code applies to low mode numbers, while the BALOO code applies to only high mode numbers and the ELITE code applies to intermediate and high mode numbers. The variables used in the parametric stability expressions are the normalized pressure gradient and the parallel current density, which drive ballooning and peeling modes. Two equilibria motivated by DIII-D geometry with different plasma triangularities are studied. It is found that the stable region in the high triangularity discharge covers a much larger region of parameter space than the corresponding stability region in the low triangularity discharge. The new ELM trigger model is used together with a previously developed model for pedestal formation and ELM crashes in the ASTRA integrated modelling code to follow the time evolution of the temperature profiles during ELM cycles. The ELM frequencies obtained in the simulations of low and high triangularity discharges are observed to increase with increasing heating power. There is a transition from second stability to first ballooning mode stability as the heating power is increased in the high triangularity simulations. The results from the ideal MHD stability codes are compared with results from the resistive MHD stability code NIMROD.
Nonlinear Diamagnetic Stabilization of Double Tearing Modes in Cylindrical MHD Simulations
NASA Astrophysics Data System (ADS)
Abbott, Stephen; Germaschewski, Kai
2014-10-01
Double tearing modes (DTMs) may occur in reversed-shear tokamak configurations if two nearby rational surfaces couple and begin reconnecting. During the DTM's nonlinear evolution it can enter an ``explosive'' growth phase leading to complete reconnection, making it a possible driver for off-axis sawtooth crashes. Motivated by similarities between this behavior and that of the m = 1 kink-tearing mode in conventional tokamaks we investigate diamagnetic drifts as a possible DTM stabilization mechanism. We extend our previous linear studies of an m = 2 , n = 1 DTM in cylindrical geometry to the fully nonlinear regime using the MHD code MRC-3D. A pressure gradient similar to observed ITB profiles is used, together with Hall physics, to introduce ω* effects. We find the diamagnetic drifts can have a stabilizing effect on the nonlinear DTM through a combination of large scale differential rotation and mechanisms local to the reconnection layer. MRC-3D is an extended MHD code based on the libMRC computational framework. It supports nonuniform grids in curvilinear coordinates with parallel implicit and explicit time integration.
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
Featured Image: Tests of an MHD Code
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2016-09-01
Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2
Ceramic component for electrodes
Marchant, David D.
1979-01-01
A ceramic component suitable for preparing MHD generator electrodes consists of HfO.sub.2 and sufficient Tb.sub.4 O.sub.7 to stabilize at least 60 volume percent of the HfO.sub.2 into the cubic structure. The ceramic component may also contain a small amount of PrO.sub.2, Yb.sub.2 O.sub.3 or a mixture of both to improve stability and electronic conductivity of the electrode. The component is highly resistant to corrosion by molten potassium seed and molten coal slag in the MHD fluid and exhibits both ionic and electronic conductivity.
King, J. R.; Pankin, A. Y.; Kruger, S. E.; ...
2016-06-24
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. The full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
King, J. R.; Pankin, A. Y.; Kruger, S. E.
The extended-MHD NIMROD code [C. R. Sovinec and J. R. King, J. Comput. Phys. 229, 5803 (2010)] is verified against the ideal-MHD ELITE code [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)] on a diverted tokamak discharge. When the NIMROD model complexity is increased incrementally, resistive and first-order finite-Larmour radius effects are destabilizing and stabilizing, respectively. Lastly, the full result is compared to local analytic calculations which are found to overpredict both the resistive destabilization and drift stabilization in comparison to the NIMROD computations.
Investigation of MHD instabilities and control in KSTAR preparing for high beta operation
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.
2013-08-01
Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically.
Viscous, resistive MHD stability computed by spectral techniques
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Zang, T. A.; Montgomery, D.; Hussaini, M. Y.
1983-01-01
Expansions in Chebyshev polynomials are used to study the linear stability of one dimensional magnetohydrodynamic (MHD) quasi-equilibria, in the presence of finite resistivity and viscosity. The method is modeled on the one used by Orszag in accurate computation of solutions of the Orr-Sommerfeld equation. Two Reynolds like numbers involving Alfven speeds, length scales, kinematic viscosity, and magnetic diffusivity govern the stability boundaries, which are determined by the geometric mean of the two Reynolds like numbers. Marginal stability curves, growth rates versus Reynolds like numbers, and growth rates versus parallel wave numbers are exhibited. A numerical result which appears general is that instability was found to be associated with inflection points in the current profile, though no general analytical proof has emerged. It is possible that nonlinear subcritical three dimensional instabilities may exist, similar to those in Poiseuille and Couette flow.
Ideal MHD stability and performance of ITER steady-state scenarios with ITBs
NASA Astrophysics Data System (ADS)
Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.
2012-06-01
Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.
Real time MHD mode control using ECCD in KSTAR: Plan and requirements
NASA Astrophysics Data System (ADS)
Joung, M.; Woo, M. H.; Jeong, J. H.; Hahn, S. H.; Yun, S. W.; Lee, W. R.; Bae, Y. S.; Oh, Y. K.; Kwak, J. G.; Yang, H. L.; Namkung, W.; Park, H.; Cho, M. H.; Kim, M. H.; Kim, K. J.; Na, Y. S.; Hosea, J.; Ellis, R.
2014-02-01
For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration with PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.
Effect of fast electrons on the stability of resistive interchange modes in the TJ-II stellarator
DOE Office of Scientific and Technical Information (OSTI.GOV)
García, L.; Ochando, M. A.; Hidalgo, C.
2016-06-15
In this paper, we report on electromagnetic phenomena in low-β plasmas at the TJ-II stellarator, controlled by external heating. To understand the observations qualitatively, we introduce a simple modification of the standard resistive MHD equations, to include the potential impact of fast electrons on instabilities. The dominant instabilities of the modeling regime are resistive interchange modes, and calculations are performed in a configuration with similar characteristics as the TJ-II stellarator. The main effect of the trapping of fast electrons by magnetic islands induced by MHD instabilities is to increase the magnetic component of the fluctuations, changing the character of themore » instability to tearing-like and modifying the frequency of the modes. These effects seem to be consistent with some of the experimental observations.« less
Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.
Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar
2015-01-01
Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.
Feedback Control of Resistive Wall Modes in Slowly Rotating DIII-D Plasmas
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Chance, M. S.; Takahashi, H.; Garofalo, A. M.; Reimerdes, H.; in, Y.; Chu, M. S.; Jackson, G. L.; La Haye, R. J.; Strait, E. J.
2006-10-01
In slowly rotating plasmas on DIII-D, the requirement of RWM control feedback have been identified, using a MHD code along with measured power supply characteristics. It was found that a small time delay is essential for achieving high beta if no rotation stabilization exists. The overall system delay or the band pass time constant should be in the range of 0.4 of the RWM growth time. Recently the control system was upgraded using twelve linear audio amplifiers and a faster digital control system, reducing the time-delay from 600 to 100 μs. The advantage has been clearly observed when the RWMs excited by ELMs were effectively controlled by feedback even if the rotation transiently slowed nearly to zero. This study provides insight on stability in the low- rotation plasmasw with balanced NBI in DIII-D and also in ITER.
NASA Astrophysics Data System (ADS)
Alemany, A.; Lielausis, O.; Chopart, J.-P.
2003-09-01
PAMIR 2002 was organized in Ramatuelle, France, on September 16-20, 2002. The conference was attended by scientists working in various fields of magnetohydrodynamics and in this view has played an important role in the exchanges of ideas, promoting new scientific collaborations. The conference has managed about 160 oral and poster presentations regrouped in the form of specific topics. The audience of the conference has extended compared with PAMIR 2000 by considering that about 190 scientists, representing 22 countries, attended the Ramatuelle site. All scientific aspects of the liquid MHD were represented including: 1. Fundamental MHD enclosed all aspects of the MHD flows under various conditions of the magnetic Reynolds number. Problems involving steady, alternating or travelling magnetic field as well as the stability problems were considered. The specific problem of strong magnetic fields was also considered in this session. 2. Mettalurgical application of MHD. The communications have analyzed the possibilities offered by the magnetic fields in metallurgy to increase the quality of the product. The problems of interface stabilities, which control various industrial applications, have been also considered in this session as well as the transport of liquid metals by electromagnetic pumps. Some applications in electromagnetic filtration have been also reported. 3. Magnetoelectrolysis (poorly conducting fluids). The possibility to control the mass transfer phenomena in electrochemical systems by using the action of a magnetic field is one of the most promising and new applications of electromagnetism in Europe. The field of magnetoelectrolysis is extremely wide and provides, only for electrodeposition, the possibility to improve the quality, the structure, and to control the homogeneity and the rate of the deposit. Some particular applications for electrodeposition of magnetic materials have been also presented. 4. Magnetic fluids. This topic was announced for the second time in the conference program after its first presentation at PAMIR 2000. All aspects of the topic were presented, including applications for microelectronics and new possibilities in power engineering regarding the thermodynamic machine to produce electricity. 5. Cristal growth. The magnetic fields are used here to stabilize the interfaces between the crystal and the solution allowing to improve the quality of the crystals as well as to grow large-size single crystals. Various configurations with various types of magnetic fields (DC, AC or travelling, etc.) were reported. 6. Dynamo effect. The last day of the conference was devoted to the dynamo effect. This was a very important session, characterizing a very high level of activity in the European countries, especially in the domain of experiment. All the existing experiments in this field, using sodium as a liquid metal, with extremely important results for some of them considering the self-generation of magnetic fields, were examined. The next generation of dynamo experiments was also discussed, involving the papers devoted to the theoretical approach including turbulence. The conference was combined with the management committee of COST (COST P6 Magnetodynamics of Liquids) and with a meeting of the COST P6 working groups. They were devoted to metallurgical applications of MHD (person-in-charge - Prof. B. Nacke from Hannover, Germany), poorly conducting fluid (person-in-charge - Dr. G. Gerbeth from Dresden, Germany) and fundamental MHD (person-in-charge - Dr. J. Leorat from Paris, France). Additionally, a special meeting dedicated the Ampere program was organized to consider the second generation of dynamo experiments in Riga (Latvia), capable to reproduce the main mechanisms of the earth dynamo (reversion of polarity, for example). In this experiment, the Coriolis and Laplace forces will be combined. The proposed facility consists of a spherical container of 2 m in diameter, filled with liquid sodium and mounted on a rotating table. Therefore, Riga has a vocation to become a European center for the MHD studies at high magnetic Reynolds numbers. This project is a part of the construction of a scientific and technologic park in Riga, with the Ampere program being presented as an incubator of the project. A consensus about the program from different European partners interested in experimental dynamo has been achieved. The audience at the conference is extremely important, and new countries have participated for the first time, for example, China and some countries from North Africa. Magnetohydrodynamics moves forward in Europe. The vitality of MHD has been demonstrated from the diversity of the topics reported at PAMIR 2002. A new PAMIR conference will be organized in 2005.
User's manual for the FLORA equilibrium and stability code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freis, R.P.; Cohen, B.I.
1985-04-01
This document provides a user's guide to the content and use of the two-dimensional axisymmetric equilibrium and stability code FLORA. FLORA addresses the low-frequency MHD stability of long-thin axisymmetric tandem mirror systems with finite pressure and finite-larmor-radius effects. FLORA solves an initial-value problem for interchange, rotational, and ballooning stability.
Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Makwana, K. D.; Keppens, R.; Lapenta, G.
2017-12-01
We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.
DISCO: A 3D Moving-mesh Magnetohydrodynamics Code Designed for the Study of Astrophysical Disks
NASA Astrophysics Data System (ADS)
Duffell, Paul C.
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide variety of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.
DISCO: A 3D MOVING-MESH MAGNETOHYDRODYNAMICS CODE DESIGNED FOR THE STUDY OF ASTROPHYSICAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffell, Paul C., E-mail: duffell@berkeley.edu
2016-09-01
This work presents the publicly available moving-mesh magnetohydrodynamics (MHD) code DISCO. DISCO is efficient and accurate at evolving orbital fluid motion in two and three dimensions, especially at high Mach numbers. DISCO employs a moving-mesh approach utilizing a dynamic cylindrical mesh that can shear azimuthally to follow the orbital motion of the gas. The moving mesh removes diffusive advection errors and allows for longer time-steps than a static grid. MHD is implemented in DISCO using an HLLD Riemann solver and a novel constrained transport (CT) scheme that is compatible with the mesh motion. DISCO is tested against a wide varietymore » of problems, which are designed to test its stability, accuracy, and scalability. In addition, several MHD tests are performed which demonstrate the accuracy and stability of the new CT approach, including two tests of the magneto-rotational instability, one testing the linear growth rate and the other following the instability into the fully turbulent regime.« less
Linear MHD stability analysis of post-disruption plasmas in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aleynikova, K., E-mail: ksenia.aleynikova@gmail.com; Huijsmans, G. T. A.; Aleynikov, P.
2016-05-15
Most of the plasma current can be replaced by a runaway electron (RE) current during plasma disruptions in ITER. In this case the post-disruption plasma current profile is likely to be more peaked than the pre-disruption profile. The MHD activity of such plasma will affect the runaway electron generation and confinement and the dynamics of the plasma position evolution (Vertical Displacement Event), limiting the timeframe for runaway electrons and disruption mitigation. In the present paper, we evaluate the influence of the possible RE seed current parameters on the onset of the MHD instabilities. By varying the RE seed current profile,more » we search for subsequent plasma evolutions with the highest and the lowest MHD activity. This information can be applied to a development of desirable ITER disruption scenario.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition tomore » instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10{sup 8} and 10{sup 3} for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10{sup 5}, which is much larger than experimentally measured values using T{sub e} values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.« less
Viscous drag reduction in boundary layers
NASA Technical Reports Server (NTRS)
Bushnell, Dennis M. (Editor); Hefner, Jerry N. (Editor)
1990-01-01
The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.
A model of energetic ion effects on pressure driven tearing modes in tokamaks
Halfmoon, M. R.; Brennan, D. P.
2017-06-05
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
A model of energetic ion effects on pressure driven tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halfmoon, M. R.; Brennan, D. P.
Here, the effects that energetic trapped ions have on linear resistive magnetohydrodynamic (MHD) instabilities are studied in a reduced model that captures the essential physics driving or damping the modes through variations in the magnetic shear. The drift-kinetic orbital interaction of a slowing down distribution of trapped energetic ions with a resistive MHD instability is integrated to a scalar contribution to the perturbed pressure, and entered into an asymptotic matching formalism for the resistive MHD dispersion relation. Toroidal magnetic field line curvature is included to model trapping in the particle distribution, in an otherwise cylindrical model. The focus is onmore » a configuration that is driven unstable to the m/n = 2/1 mode by increasing pressure, where m is the poloidal mode number and n is the toroidal. The particles and pressure can affect the mode both in the core region where there can be low and reversed shear and outside the resonant surface in significant positive shear. The results show that the energetic ions damp and stabilize the mode when orbiting in significant positive shear, increasing the marginal stability boundary. However, the inner core region contribution with low and reversed shear can drive the mode unstable. This effect of shear on the energetic ion pressure contribution is found to be consistent with the literature. These results explain the observation that the 2/1 mode was found to be damped and stabilized by energetic ions in delta δf-MHD simulations of tokamak experiments with positive shear throughout, while the 2/1 mode was found to be driven unstable in simulations of experiments with weakly reversed shear in the core. This is also found to be consistent with related experimental observations of the stability of the 2/1 mode changing significantly with core shear.« less
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, G.Y.; Cooper, W.A.; Gruber, R.
1992-06-01
The TERPSICHORE three-dimensional linear ideal magnetohydrodynamic (MHD) stability code ({ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Chexbres, Switzerland, 1988 (Editrice Compositori, Bologna, Italy, 1989), p. 93; {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Proceedings of the 17th European Conference, Amsterdam, The Netherlands (European Physical Society, Petit-Lancy, Switzerland, 1990), Vol. 14B, Part II, p. 931; {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Valla Monastero, Varenna, Italy, 1990 (Editrice Compositori, Bologna, Italy, 1990), p. 655) has been extended to the full MHD equations.more » The new code is used to calculate the physical growth rates of nonlocal low-{ital n} modes for {ital l}=2 torsatron configurations. A comprehensive investigation of the relation between the Mercier modes and the low-{ital n} modes has been performed. The unstable localized low-{ital n} modes are found to be correlated with the Mercier criterion. Finite growth rates of the low-{ital n} modes correspond to finite values of the Mercier criterion parameter. Near the Mercier marginal stability boundary, the low-{ital n} modes tend to be weakly unstable with very small growth rates. However, the stability of global-type low-{ital n} modes is found to be decorrelated from that of Mercier modes. The low-{ital n} modes with global radial structures can be more stable or more unstable than Mercier modes.« less
Pressure profiles of plasmas confined in the field of a dipole magnet
NASA Astrophysics Data System (ADS)
Davis, Matthew Stiles
Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.
NASA Astrophysics Data System (ADS)
Chen, Gui-Qiang; Wang, Ya-Guang
2008-03-01
Compressible vortex sheets are fundamental waves, along with shocks and rarefaction waves, in entropy solutions to multidimensional hyperbolic systems of conservation laws. Understanding the behavior of compressible vortex sheets is an important step towards our full understanding of fluid motions and the behavior of entropy solutions. For the Euler equations in two-dimensional gas dynamics, the classical linearized stability analysis on compressible vortex sheets predicts stability when the Mach number M > sqrt{2} and instability when M < sqrt{2} ; and Artola and Majda’s analysis reveals that the nonlinear instability may occur if planar vortex sheets are perturbed by highly oscillatory waves even when M > sqrt{2} . For the Euler equations in three dimensions, every compressible vortex sheet is violently unstable and this instability is the analogue of the Kelvin Helmholtz instability for incompressible fluids. The purpose of this paper is to understand whether compressible vortex sheets in three dimensions, which are unstable in the regime of pure gas dynamics, become stable under the magnetic effect in three-dimensional magnetohydrodynamics (MHD). One of the main features is that the stability problem is equivalent to a free-boundary problem whose free boundary is a characteristic surface, which is more delicate than noncharacteristic free-boundary problems. Another feature is that the linearized problem for current-vortex sheets in MHD does not meet the uniform Kreiss Lopatinskii condition. These features cause additional analytical difficulties and especially prevent a direct use of the standard Picard iteration to the nonlinear problem. In this paper, we develop a nonlinear approach to deal with these difficulties in three-dimensional MHD. We first carefully formulate the linearized problem for the current-vortex sheets to show rigorously that the magnetic effect makes the problem weakly stable and establish energy estimates, especially high-order energy estimates, in terms of the nonhomogeneous terms and variable coefficients. Then we exploit these results to develop a suitable iteration scheme of the Nash Moser Hörmander type to deal with the loss of the order of derivative in the nonlinear level and establish its convergence, which leads to the existence and stability of compressible current-vortex sheets, locally in time, in three-dimensional MHD.
Nonlinear Two Fluid and Kinetic ELM Simulations
NASA Astrophysics Data System (ADS)
Strauss, H. R.; Sugiyama, L.; Chang, C. S.; Ku, S.; Hientzsch, B.; Breslau, J.; Park, W.; Samtaney, R.; Adams, M.; Jardin, S.
2006-04-01
Simulations of ELMs using dissipative MHD, two fluid MHD, and neoclassical kinetic physics models are being carried out using the M3D code [1]. Resistive MHD simulations of nonlinear edge pressure and current driven instabilities have been performed, initialized with realistic DIIID equilibria. Simulations show the saturation of the modes and relaxation of equilbrium profiles. Linear simulations including two fluid effects show the stabilization of toroidal mode number n = 10 modes, when the Hall parameter H, the ratio of ion skin depth to major radius, exceeds a threshhold. Nonlinear simulations are being done including gyroviscous stabilization. Kinetic effects are incorporated by coupling with the XGC code [2], which is able to simulate the edge plasma density and pressure pedestal buildup. These profiles are being used to initialize M3D simulations of an ELM crash and pedestal relaxation. The goal is to simulate an ELM cycle. [1] Park, W., Belova, E.V., Fu, G.Y., Tang, X.Z., Strauss, H.R., Sugiyama, L.E., Phys. Plas. 6, 1796 (1999).[2] Chang, C.S., Ku, S., and Weitzner, H., Phys. Plas. 11, 2649 (2004)
Integrated Modeling of Time Evolving 3D Kinetic MHD Equilibria and NTV Torque
NASA Astrophysics Data System (ADS)
Logan, N. C.; Park, J.-K.; Grierson, B. A.; Haskey, S. R.; Nazikian, R.; Cui, L.; Smith, S. P.; Meneghini, O.
2016-10-01
New analysis tools and integrated modeling of plasma dynamics developed in the OMFIT framework are used to study kinetic MHD equilibria evolution on the transport time scale. The experimentally observed profile dynamics following the application of 3D error fields are described using a new OMFITprofiles workflow that directly addresses the need for rapid and comprehensive analysis of dynamic equilibria for next-step theory validation. The workflow treats all diagnostic data as fundamentally time dependent, provides physics-based manipulations such as ELM phase data selection, and is consistent across multiple machines - including DIII-D and NSTX-U. The seamless integration of tokamak data and simulation is demonstrated by using the self-consistent kinetic EFIT equilibria and profiles as input into 2D particle, momentum and energy transport calculations using TRANSP as well as 3D kinetic MHD equilibrium stability and neoclassical transport modeling using General Perturbed Equilibrium Code (GPEC). The result is a smooth kinetic stability and NTV torque evolution over transport time scales. Work supported by DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Sjögreen, Björn; Yee, H. C.
2018-07-01
The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.
CPU and GPU-based Numerical Simulations of Combustion Processes
2012-04-27
Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villone, F.; Mastrostefano, S.; Calabrò, G.
2014-08-15
One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FASTmore » could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.« less
Fundamentals of Plasma Physics
NASA Astrophysics Data System (ADS)
Bellan, Paul M.
2008-07-01
Preface; 1. Basic concepts; 2. The Vlasov, two-fluid, and MHD models of plasma dynamics; 3. Motion of a single plasma particle; 4. Elementary plasma waves; 5. Streaming instabilities and the Landau problem; 6. Cold plasma waves in a magnetized plasma; 7. Waves in inhomogeneous plasmas and wave energy relations; 8. Vlasov theory of warm electrostatic waves in a magnetized plasma; 9. MHD equilibria; 10. Stability of static MHD equilibria; 11. Magnetic helicity interpreted and Woltjer-Taylor relaxation; 12. Magnetic reconnection; 13. Fokker-Planck theory of collisions; 14. Wave-particle nonlinearities; 15. Wave-wave nonlinearities; 16. Non-neutral plasmas; 17. Dusty plasmas; Appendix A. Intuitive method for vector calculus identities; Appendix B. Vector calculus in orthogonal curvilinear coordinates; Appendix C. Frequently used physical constants and formulae; Bibliography; References; Index.
Simulations of initial MHD experiments on the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
O'Connell, R.; Forest, C. B.; Goldwin, J. M.; Kendrick, R. D.; Canary, H. W.; Nornberg, M. D.; Jaun, A.
1999-11-01
Initial experiments for a liquid metal MHD device have been modelled using measurements from geometrically similar water experiments. In the low B limit the water flows are the same as sodium flows. Two codes have been written to predict 1) linear stability of the system and 2) the response of the system to an externally applied vertical magnetic field, using measured velocity profiles. Predictions are made for a first set of MHD experiments, including: a) demonstration of the distortion and amplification of externally applied magnetic fields by sheared flows, b) demonstration of the β-effect by measurement of the turbulent conductivity, c) demonstration of a turbulent α effect and d) characterization of magnetic eigenmodes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nachtrieb, R.; Freidberg, J.P.
The newly elucidated strategy for the magnetic fusion program set forth by the Department of Energy calls for increased emphasis on alternate concepts. This strategy is motivated by the recognition that in spite of its many attractive features, a tokamak tends to be a low power density device, ultimately translating into large and corresponding expensive reactor. ITER, as it is currently envisaged, is a good example of a large, expensive, plain vanilla tokamak. In its defense, ITER rightly claims that its base design is very conservative in order to minimize the risk of failure. In order to increase power densitymore » and reduce cost there are two qualitatively different approaches that one can follow: discover advanced modes of tokamak operation or develop near alternate concepts. To decide which path to follow is a difficult task because of the uncertainties involved in making accurate comparisons between different concepts at different stages of development. One area, however, that most would agree is meaningful is ideal MHD stability. For any given concept to be credible as a reactor, it must at least be stable against macroscopic ideal MHD modes. The TPX design, for instance, goes to considerable trouble to obtain stability against external kinks: a close fitting metallic cage, rotation to stabilize the resistive wall version of the external kink, and, if all else fails, feedback. For credibility any other advanced tokamak or alternate concept should be held to the same standards of ideal MHD stability. As a first step in addressing this requirement we have investigated the stability of the RFP since it can be simply and accurately modeled as a straight cylinder. The RFP is well known to have good stability at high P against internal modes but is very unstable to external modes. We have developed a linear stability code which treats the plasma as an ideal compressible fluid, and includes longitudinal flow and a resistive wall.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, C W; Reisman, D B; McLean, H S
2007-05-30
A fusion reactor is described in which a moving string of mutually repelling compact toruses (alternating helicity, unidirectional Btheta) is generated by repetitive injection using a magnetized coaxial gun driven by continuous gun current with alternating poloidal field. An injected CT relaxes to a minimum magnetic energy equilibrium, moves into a compression cone, and enters a conducting cylinder where the plasma is heated to fusion-producing temperature. The CT then passes into a blanketed region where fusion energy is produced and, on emergence from the fusion region, the CT undergoes controlled expansion in an exit cone where an alternating poloidal fieldmore » opens the flux surfaces to directly recover the CT magnetic energy as current which is returned to the formation gun. The CT String Reactor (CTSTR) reactor satisfies all the necessary MHD stability requirements and is based on extrapolation of experimentally achieved formation, stability, and plasma confinement. It is supported by extensive 2D, MHD calculations. CTSTR employs minimal external fields supplied by normal conductors, and can produce high fusion power density with uniform wall loading. The geometric simplicity of CTSTR acts to minimize initial and maintenance costs, including periodic replacement of the reactor first wall.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, P. T.; Shadid, J. N.; Hu, J. J.
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD
Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...
2017-11-06
Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less
Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients
Denny, Gerald B.; Deger, Serpil M.; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T.; David, Sthuthi; Ellis, Charles D.; Ikizler, T. Alp
2016-01-01
Background Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. Methods We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. Results The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls (p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls (p = 0.009). The LDR level was correlated with whole body protein synthesis (r = 0.25; p = 0.08), with whole body protein breakdown (r = −0.38 p = 0.01) and net protein balance (r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls (r = 0.79, p < 0.001), but less so in the MHD patients (r = 0.58, p < 0.001). Conclusions Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin. PMID:27413537
Leucine disposal rate for assessment of amino acid metabolism in maintenance hemodialysis patients.
Denny, Gerald B; Deger, Serpil M; Chen, Guanhua; Bian, Aihua; Sha, Feng; Booker, Cindy; Kesler, Jaclyn T; David, Sthuthi; Ellis, Charles D; Ikizler, T Alp
Protein energy wasting (PEW) is common in patients undergoing maintenance hemodialysis (MHD) and closely associated with poor outcomes. Insulin resistance and associated alterations in amino acid metabolism are potential pathways leading to PEW. We hypothesized that the measurement of leucine disposal during a hyperinsulinemic- euglycemic-euaminoacidemic clamp (HEAC) procedure would accurately measure the sensitivity to insulin for its actions on concomitant carbohydrate and protein metabolism in MHD patients. We examined 35 MHD patients and 17 control subjects with normal kidney function by hyperinsulinemic-euglycemic clamp (HEGC) followed by HEAC clamp procedure to obtain leucine disposal rate (LDR) along with isotope tracer methodology to assess whole body protein turnover. The glucose disposal rate (GDR) by HEGC was 5.1 ± 2.1 mg/kg/min for the MHD patients compared to 6.3 ± 3.9 mg/kg/min for the controls ( p = 0.38). The LDR during HEAC was 0.09 ± 0.03 mg/kg/min for the MHD patients compared to 0.11 ± 0.05 mg/kg/min for the controls ( p = 0.009). The LDR level was correlated with whole body protein synthesis ( r = 0.25; p = 0.08), with whole body protein breakdown ( r = -0.38 p = 0.01) and net protein balance ( r = 0.85; p < 0.001) in the overall study population. Correlations remained significant in subgroup analysis. The GDR derived by HEGC and LDR correlated well in the controls ( r = 0.79, p < 0.001), but less so in the MHD patients ( r = 0.58, p < 0.001). Leucine disposal rate reliably measures amino acid utilization in MHD patients and controls in response to high dose insulin.
Vector processing efficiency of plasma MHD codes by use of the FACOM 230-75 APU
NASA Astrophysics Data System (ADS)
Matsuura, T.; Tanaka, Y.; Naraoka, K.; Takizuka, T.; Tsunematsu, T.; Tokuda, S.; Azumi, M.; Kurita, G.; Takeda, T.
1982-06-01
In the framework of pipelined vector architecture, the efficiency of vector processing is assessed with respect to plasma MHD codes in nuclear fusion research. By using a vector processor, the FACOM 230-75 APU, the limit of the enhancement factor due to parallelism of current vector machines is examined for three numerical codes based on a fluid model. Reasonable speed-up factors of approximately 6,6 and 4 times faster than the highly optimized scalar version are obtained for ERATO (linear stability code), AEOLUS-R1 (nonlinear stability code) and APOLLO (1-1/2D transport code), respectively. Problems of the pipelined vector processors are discussed from the viewpoint of restructuring, optimization and choice of algorithms. In conclusion, the important concept of "concurrency within pipelined parallelism" is emphasized.
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO,LL; SNYDER,PB; LEONARD,AW
2003-03-01
A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALOONING MODES. Several testable features of the working model of edge localized modes (ELMs) as intermediate toroidal mode number peeling-ballooning modes are evaluated quantitatively using DIII-D and JT-60U experimental data and the ELITE MHD stability code. These include the hypothesis that ELM sizes are related to the radial widths of the unstable MHD modes, the unstable modes have a strong ballooning character localized in the outboard bad curvature region, and ELM size generally becomes smaller at high edge collisionality. ELMs are triggered when the growth rates of the unstable MHD modes becomemore » significantly large. These testable features are consistent with many ELM observations in DIII-D and JT-60U discharges.« less
Capabilities of Fully Parallelized MHD Stability Code MARS
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2016-10-01
Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.
Dependence of Edge Profiles and Stability on Neutral Beam Power in NSTX
NASA Astrophysics Data System (ADS)
Travis, P.; Canal, G. P.; Osborne, T. H.; Maingi, R.; Sabbagh, S. A.; NSTX-U Team
2016-10-01
Studying the effect of neutral beam injected (NBI) power on edge plasma profiles and magnetohydrodynamic (MHD) stability is central to the understanding of edge-localized modes (ELMs). Higher heating power should quicken the development of pressure and current-driven peeling-ballooning modes. NSTX ELMy H-mode discharges with NBI power of 4, 5 and 6 MW were analyzed with a python-based set of analysis tools that fit plasma profiles, compute kinetic equilibria, and evaluate the MHD stability with the code ELITE. Electron density and temperature from Thomson scattering measurements, and ion density, temperature, and rotation from Charge Exchange Recombination Spectroscopy were inputs to the kinetic equilibrium fits. The power scan provides an opportunity to compare the stability calculations from the ELITE (ideal) and M3D-C1 (resistive) codes. Preliminary analysis shows that edge pressure profiles for the 5 and 6 MW discharges are comparable, suggesting they both reach a stability boundary. The 4 MW case shows lower edge pressure, which is likely limited by edge transport below the edge stability boundary. This work was supported in part by the U.S. Department of Energy, Office of Science, Office of Workforce Development for Teachers and Scientists (WDTS) under the Science Undergraduate Laboratory Internship (SULI) program.
2008-10-01
Supersonic Flow with the Help of MHD Method 5a. CONTRACT NUMBER ISTC Registration No: 3475 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...MONITOR’S ACRONYM(S) 11. SPONSOR/MONITOR’S REPORT NUMBER(S) ISTC 05-7004 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release...Center ( ISTC ), Moscow. ISTC Project No. 3475р Control of heat fluxes on the surface of the body streamlined by supersonic flow with the help of MHD
Shock Control and Power Extraction by MHD Processes in Hypersonic Air Flow
2006-11-01
green) directions. The lower curve is smoothed to remove the pulser induced oscillations. E. Modeling of Hypersonic Aerodynamic Control and Thrust ...combination of deceleration near the surface and acceleration of the outer flow at XzO. 5 , to only acceleration ( thrust ) at y=l (Fig. 19). 1 - 1 - f...7 8 9 10 M Figure 20. Thrust (F.) and lift (AL) forces, their ratio (AL/AD), and the MHD deposited power versus Mach number for MHD accelerator with X
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)
2002-01-01
Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.
MHD simulation of relaxation transition to a flipped relaxed state in spherical torus
NASA Astrophysics Data System (ADS)
Kanki, Takashi; Nagata, Masayoshi; Kagei, Yasuhiro
2008-11-01
Recently, it has been demonstrated in the HIST device that in spite of the violation of the Kruskal-Shafranov stability condition, a normal spherical torus (ST) plasma has relaxed to a flipped ST state through a transient reversed-field pinch-like state when the vacuum toroidal field is decreased and its direction is reversed [1]. It has been also observed during this relaxation transition process that not only the toroidal field but also the poloidal field reverses polarity spontaneously and that the ion flow velocity is strongly fluctuated and abruptly increased up to > 50 km/s. The purpose of the present study is to investigate the plasma flows and the relevant MHD relaxation phenomena to elucidate this transition mechanism by using three-dimensional MHD simulations [2]. It is found from the numerical results that the magnetic reconnection between the open and closed field lines occurs due to the non-linear growth of the n=1 kink instability of the central open flux, generating the toroidal flow ˜ 60 km/s in the direction of the toroidal current. The n=1 kink instability and the plasma flows driven by the magnetic reconnection are consider to be responsible for the self-reversal of the magnetic fields. [1] M. Nagata el al., Phys. Rev. Lett. 90, 225001 (2003). [2] Y. Kagei el al., Plasma. Phys. Control. Fusion 45, L17 (2003).
Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...
2015-02-03
Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β N limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β N, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma tomore » an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β N levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β N.« less
A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations
NASA Astrophysics Data System (ADS)
Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong
2018-03-01
A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.
Computation of resistive instabilities by matched asymptotic expansions
Glasser, A. H.; Wang, Z. R.; Park, J. -K.
2016-11-17
Here, we present a method for determining the linear resistive magnetohydrodynamic (MHD) stability of an axisymmetric toroidal plasma, based on the method of matched asymptotic expansions. The plasma is partitioned into a set of ideal MHD outer regions, connected through resistive MHD inner regions about singular layers where q = m/n, with m and n toroidal mode numbers, respectively, and q the safety factor. The outer regions satisfy the ideal MHD equations with zero-frequency, which are identical to the Euler-Lagrange equations for minimizing the potential energy delta W. The solutions to these equations go to infinity at the singular surfaces.more » The inner regions satisfy the equations of motion of resistive MHD with a finite eigenvalue, resolving the singularity. Both outer and inner regions are solved numerically by newly developed singular Galerkin methods, using specialized basis functions. These solutions are matched asymptotically, providing a complex dispersion relation which is solved for global eigenvalues and eigenfunctions in full toroidal geometry. The dispersion relation may have multiple complex unstable roots, which are found by advanced root-finding methods. These methods are much faster and more robust than the previous numerical methods. The new methods are applicable to more challenging high-pressure and strongly shaped plasma equilibria and generalizable to more realistic inner region dynamics. In the thermonuclear regime, where the outer and inner regions overlap, they are also much faster and more accurate than the straight-through methods, which treat the resistive MHD equations in the whole plasma volume.« less
Discharge start-up and ramp-up development for NSTX-U and MAST-U
NASA Astrophysics Data System (ADS)
Battaglia, D. J.; Boyer, M. D.; Gerhardt, S. P.; Menard, J. E.; Mueller, D.; Cunningham, G.; Kirk, A.; Kogan, L.; McArdle, G.; Pangione, L.; Thornton, A. J.; Ren, E.
2017-10-01
A collaborative modeling effort is underway to develop robust inductive start-up and ramp-up scenarios for NSTX-U and MAST-U. These complementary spherical tokamak devices aim to generate the physics basis for achieving steady-state, high-beta and high-confinement plasma discharges with a self-consistent solution for managing the divertor heat flux. High-performance discharges in these devices require sufficient plasma elongation (κ = 2.4 - 2.8) to maximize the bootstrap and beam-driven current drive, increase MHD stability at high Ip and high βN, and realize advanced divertor geometries such as the snowflake and super-X. Achieving the target elongation on NSTX-U is enabled by an L-H transition in the current ramp-up that slows the current diffusion and maintains a low internal inductance (li <= 0.8). Modeling focuses on developing scenarios that achieve a suitable field null for breakdown and discharge conditions conducive to an early L-H transition while maintaining vertical and MHD stability, with appropriate margin for variation in experimental conditions. The toroidal currents induced in conducting structures and the specifications of the real-time control and power supply systems are unique constraints for the two devices. Work Supported by U.S. DOE Contract No. DE-AC02-09CH11466 and the RCUK Energy Programme [Grant Number EP/P012450/1].
A Computational Study of a Circular Interface Richtmyer-Meshkov Instability in MHD
NASA Astrophysics Data System (ADS)
Maxon, William; Black, Wolfgang; Denissen, Nicholas; McFarland, Jacob; Los Alamos National Laboratory Collaboration; University of Missouri Shock Tube Laboratory Team
2017-11-01
The Richtmyer-Meshkov instability (RMI) is a hydrodynamic instability that appears in several high energy density applications such as inertial confinement fusion (ICF). In ICF, as the thermonuclear fuel is being compressed it begins to mix due to fluid instabilities including the RMI. This mixing greatly decreases the energy output. The RMI occurs when two fluids of different densities are impulsively accelerated and the pressure and density gradients are misaligned. In magnetohydrodynamics (MHD), the RMI may be suppressed by introducing a magnetic field in an electrically conducting fluid, such as a plasma. This suppression has been studied as a possible mechanism for improving confinement in ICF targets. In this study,ideal MHD simulations are performed with a circular interface impulsively accelerated by a shock wave in the presence of a magnetic field. These simulations are executed with the research code FLAG, a multiphysics, arbitrary Lagrangian/Eulerian, hydrocode developed and utilized at Los Alamos National Laboratory. The simulation results will be assessed both quantitatively and qualitatively to examine the stabilization mechanism. These simulations will guide ongoing MHD experiments at the University of Missouri Shock Tube Facility.
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-04-01
As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.
Resistive instabilities in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rutherford, P.H.
1985-10-01
Low-m tearing modes constitute the dominant instability problem in present-day tokamaks. In this lecture, the stability criteria for representative current profiles with q(0)-values slightly less than unit are reviewed; ''sawtooth'' reconnection to q(0)-values just at, or slightly exceeding, unity is generally destabilizing to the m = 2, n = 1 and m = 3, n = 2 modes, and severely limits the range of stable profile shapes. Feedback stabilization of m greater than or equal to 2 modes by rf heating or current drive, applied locally at the magnetic islands, appears feasible; feedback by island current drive is much moremore » efficient, in terms of the radio-frequency power required, then feedback by island heating. Feedback stabilization of the m = 1 mode - although yielding particularly beneficial effects for resistive-tearing and high-beta stability by allowing q(0)-values substantially below unity - is more problematical, unless the m = 1 ideal-MHD mode can be made positively stable by strong triangular shaping of the central flux surfaces. Feedback techniques require a detectable, rotating MHD-like signal; the slowing of mode rotation - or the excitation of non-rotating modes - by an imperfectly conducting wall is also discussed.« less
Modeling resistive wall modes and disruptive instabilities with M3D-C1
NASA Astrophysics Data System (ADS)
Ferraro, Nm; Jardin, Sc; Pfefferle, D.
2016-10-01
Disruptive instabilities pose a significant challenge to the tokamak approach to magnetic fusion energy, and must be reliably avoided in a successful reactor. These instabilities generally involve rapid, global changes to the magnetic field, and electromagnetic interaction with surrounding conducting structures. Here we apply the extended-MHD code M3D-C1 to calculate the stability and evolution of disruptive modes, including their interaction with external conducting structures. The M3D-C1 model includes the effects of resistivity, equilibrium rotation, and resistive walls of arbitrary thickness, each of which may play important roles in the stability and evolution of disruptive modes. The strong stabilizing effect of rotation on resistive wall modes is explored and compared with analytic theory. The nonlinear evolution of vertical displacement events is also considered, including the evolution of non-axisymmetric instabilities that may arise during the current-quench phase of the disruption. It is found that the non-axisymmetric stability of the plasma during a VDE depends strongly on the thermal history of the plasma. This work is supported by US DOE Grant DE-AC02-09CH11466 and the SciDAC Center for Extended MHD Modeling.
Tokamak Operation with Safety Factor q 95 < 2 via Control of MHD Stability
Piovesan, Paolo; Hanson, Jeremy M.; Martin, Piero; ...
2014-07-24
Magnetic feedback control of the resistive-wall mode has enabled DIII-D to access stable operation at safety factor q95 = 1:9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at given toroidal magnetic eld. In tokamaks with a divertor, the limit occurs at q95 = 2, as con rmed in DIII-D. Since the energy con cement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a wholemore » new high-current regime not accessible before. This result brings signi cant possible bene ts in terms of fusion performance, but it also extends resistive wall mode physics and its control to conditions never explored before. In present experiments, q95 < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.« less
Long Pulse Operation on Tore-Supra: Towards Steady State
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreau, P.; Bucalossi, J.; Brosset, C.
The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.
Core plasma design of the compact helical reactor with a consideration of the equipartition effect
NASA Astrophysics Data System (ADS)
Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group
2018-07-01
Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
NASA Astrophysics Data System (ADS)
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a qualitatively different way of creating MHD relevant plasmas to look at the physics of magnetic reconnection. We show here an overview of the experiment and initial electrostatic and magnetic probe data. Plasma creation using plasma guns is independent of equilibrium or force balance, so we can scale many relevant parameters. As the magnetic reconnection region between two parallel current channels sweeps down a long plasma column we can generate 3D movies of magnetic reconnection from many repetitive shots. If two current channels were to move because of kink instabilities instead of mutual J x B forces and reconnection effects, each shot would less reproducible. Our data show the kink stability boundary for a single current channel. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
MHD simulation of plasma compression experiments
NASA Astrophysics Data System (ADS)
Reynolds, Meritt; Barsky, Sandra; de Vietien, Peter
2017-10-01
General Fusion (GF) is working to build a magnetized target fusion (MTF) power plant based on compression of magnetically-confined plasma by liquid metal. GF is testing this compression concept by collapsing solid aluminum liners onto plasmas formed by coaxial helicity injection in a series of experiments called PCS (Plasma Compression, Small). We simulate the PCS experiments using the finite-volume MHD code VAC. The single-fluid plasma model includes temperature-dependent resistivity and anisotropic heat transport. The time-dependent curvilinear mesh for MHD simulation is derived from LS-DYNA simulations of actual field tests of liner implosion. We will discuss how 3D simulations reproduced instability observed in the PCS13 experiment and correctly predicted stabilization of PCS14 by ramping the shaft current during compression. We will also present a comparison of simulated Mirnov and x-ray diagnostics with experimental measurements indicating that PCS14 compressed well to a linear compression ratio of 2.5:1.
Onset of solar flares as predicted by two-dimensional MHD-models of quiescent prominences
NASA Technical Reports Server (NTRS)
Galindotrejo, J.
1985-01-01
The close connection between the sudden disapperance (disparition brusque) of the quiescent prominences and the two-ribbon flares are well known. During this dynamic phase the prominence ascends rapidly (typically with a velocity about 100 Km/sec) and disappears. In another later stage is observed material falling back into the chromosphere. The impact of this downfalling matter on the chromosphere produces the H brightening, which shows the symmetric double pattern. The occurence of the disparition brusque is thought to be a consequence of a plasma instability of magnetohydrostatic (MHD) structures. By means of the MHD-energy principle, the stability properties of four prominence models are analyzed. It is shown that all considered models undergo instabilities for parameters outside of the observed range at quiescent prominences. The possibility that such instabilities in the flare parameter range may indicate just the onset of a flare is considered.
Alpha particle effects in burning tokamak plasmas: overview and specific examples
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigmar, D.J.
1986-07-01
Using the total power balance of an ignited tokamak plasma as a guideline, a range of alpha driven effects is surveyed regarding their impact on achieving and maintaining fusion burn. Specific examples of MHD and kinetic modes and multi species transport dynamics are discussed, including the possible interaction of these categories of effects. This power balance approach rather than a straightforward enumeration of possible effects serves to reveal their non-linear dependence and the ensuing fragility of our understanding of the approach to and maintenance of ignition. Specific examples are given of the interaction between ..cap alpha..-power driven sawtoothing and idealmore » MHD stability, and direct ..cap alpha..-effects on MHD modes including kinetic corrections. Anomalous ion heat transport and central impurity peaking mechanisms and anomalous and collisional ..cap alpha..-transport including the ambipolar electric field are discussed.« less
Damping Rate Measurements of Medium n Alfv'en Eigenmodes in JET
NASA Astrophysics Data System (ADS)
Klein, Alexander; Testa, Duccio; Snipes, Joseph; Fasoli, Ambrogio; Carfantan, Hervé
2007-11-01
Alfv'en Eigenmodes (AE's) with mode numbers 5 < n < 20 are expected to be unstable in burning tokamaks and may lead to loss of fast particle confinement. The active MHD spectroscopy program at JET has already provided a wealth of information about low n (n <= 2) AE's in the past decade, but a recently installed array of four antennas is capable of driving higher mode numbered (n < 100, 30 < f < 350 kHz) perturbations. In the latest JET campaign, the damping rates for several types of AE's were measured parasitically in a wide range of tokamak scenarios. We review the active MHD diagnostic and present the first measurements of medium-n AE stability on JET, then describe future plans for the active MHD spectroscopy project. The data analysis involves a novel method for resolving multiple AE's that exist at identical frequencies, which uses techniques based on the SparSpec code.
Nonlinear MHD study on the influence of E×B flow in QH-mode plasma of DIII-D
NASA Astrophysics Data System (ADS)
Liu, Feng; Huijsmans, Guido; Loarte, Alberto; Garofalo, Andrea; Solomon, Wayne; Nkonga, Boniface; Hoelzl, Matthias
2017-10-01
In QH-mode experiments with zero-net NBI torque show that there remains a finite E×B rotation in the pedestal region implying that a minimum E×B flow or flow shear is required for the plasma to develop the Edge Harmonic Oscillation (EHO), which is a saturated KPM (kink-peeling mode) characteristic of the QH-mode. To understand the roles of E×B flow and its shear in the saturation of KPMs, non-linear MHD simulations of DIII-D QH-mode plasmas including toroidal mode numbers n = 0 to 10 with different E×B rotation speed have been performed. These simulation show that ExB rotation strongly stabilizes high-n modes but destabilizes low-n modes (particularly the n =2 mode) in the linear growth phase, which is consistent experimental observations and previous linear MHD modelling. US DOE under DE-FC02-04ER54698.
NASA Astrophysics Data System (ADS)
Redi, Martha; Canik, John; Fredrickson, E.; Fu, G.; Nuehrenberg, C.; Boozer, A. H.
2000-10-01
The standard ballooning-mode beta limit comes from an infinite-n, radially local, ideal magnetohydrodynamic (MHD) calculation. Finite-n ballooning modes have been observed in tokamak plasmas [1]. Investigations of optimized quasiaxially symmetric stellarators with three dimensional, global, ideal MHD codes have recently shown good stability for the external kink, ``vertical" and infinite-n ballooning modes [2,3]. However, infinite-n ballooning stability may be too restrictive, due to its sensitivity to features in the local shear and curvature. The CAS3D [4] code is being used to compare the stability of the high-n ballooning modes to the infinite-n calculations from TERPSICHORE [5]. [1] E. Fredrickson, et al. Phys. Plas. 3 (1996) 2620. [2] G. Fu, Phys. Plas. 7 (2000)1079; Phys. Plas. 7 (2000) 1809. M. Redi, et al. Phys. Plas 7 (2000)1911. [3] A. Reiman, et al., Plas. Phys. Cont. Fus. 41 (1999) B273. [4] C. Nuehrenberg, Phys. Plas. 6 (1999) 275. C. Nuehrenberg, Phys. Plas. 3 (1996) 2401. C. Schwab, Phys. Fluids B5 (1993) 3195. [5] W. A. Cooper, Phys. Plas. 3 (1996) 275.
Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory
NASA Technical Reports Server (NTRS)
Sjoegreen, Bjoern; Yee, H. C.
2003-01-01
The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.
Stable Spheromaks Sustained by Neutral Beam Injection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fowler, T K; Jayakumar, R; McLean, H S
It is shown that spheromak equilibria, stable at zero-beta but departing from the Taylor state, could be sustained by non-inductive current drive at acceptable power levels. Stability to both ideal MHD and tearing modes is verified using the NIMROD code for linear stability analysis. Non-linear NIMROD calculations with non-inductive current drive and pressure effects could point the way to improved fusion reactors.
Magneto-Hydrodynamics Based Microfluidics
Qian, Shizhi; Bau, Haim H.
2009-01-01
In microfluidic devices, it is necessary to propel samples and reagents from one part of the device to another, stir fluids, and detect the presence of chemical and biological targets. Given the small size of these devices, the above tasks are far from trivial. Magnetohydrodynamics (MHD) offers an elegant means to control fluid flow in microdevices without a need for mechanical components. In this paper, we review the theory of MHD for low conductivity fluids and describe various applications of MHD such as fluid pumping, flow control in fluidic networks, fluid stirring and mixing, circular liquid chromatography, thermal reactors, and microcoolers. PMID:20046890
Effects of Density and Impurity on Edge Localized Modes in Tokamaks
NASA Astrophysics Data System (ADS)
Zhu, Ping
2017-10-01
Plasma density and impurity concentration are believed to be two of the key elements governing the edge tokamak plasma conditions. Optimal levels of plasma density and impurity concentration in the edge region have been searched for in order to achieve the desired fusion gain and divertor heat/particle load mitigation. However, how plasma density or impurity would affect the edge pedestal stability may have not been well known. Our recent MHD theory modeling and simulations using the NIMROD code have found novel effects of density and impurity on the dynamics of edge-localized modes (ELMs) in tokamaks. First, previous MHD analyses often predict merely a weak stabilizing effect of toroidal flow on ELMs in experimentally relevant regimes. We find that the stabilizing effects on the high- n ELMs from toroidal flow can be significantly enhanced with the increased edge plasma density. Here n denotes the toroidal mode number. Second, the stabilizing effects of the enhanced edge resistivity due to lithium-conditioning on the low- n ELMs in the high confinement (H-mode) discharges in NSTX have been identified. Linear stability analysis of the experimentally constrained equilibrium suggests that the change in the equilibrium plasma density and pressure profiles alone due to lithium-conditioning may not be sufficient for a complete suppression of the low- n ELMs. The enhanced resistivity due to the increased effective electric charge number Zeff after lithium-conditioning provides additional stabilization of the low- n ELMs. These new effects revealed in our theory analyses may help further understand recent ELM experiments and suggest new control schemes for ELM suppression and mitigation in future experiments. They may also pose additional constraints on the optimal levels of plasma density and impurity concentration in the edge region for H-mode tokamak operation. Supported by National Magnetic Confinement Fusion Science Program of China Grants 2014GB124002 and 2015GB101004, the 100 Talent Program of the Chinese Academy of Sciences, and U.S. Department of Energy Grants DE-FG02-86ER53218 and DE-FC02-08ER54975.
Disruption avoidance by means of electron cyclotron waves
NASA Astrophysics Data System (ADS)
Esposito, B.; Granucci, G.; Maraschek, M.; Nowak, S.; Lazzaro, E.; Giannone, L.; Gude, A.; Igochine, V.; McDermott, R.; Poli, E.; Reich, M.; Sommer, F.; Stober, J.; Suttrop, W.; Treutterer, W.; Zohm, H.; ASDEX Upgrade, the; FTU Teams
2011-12-01
Disruptions are very challenging to ITER operation as they may cause damage to plasma facing components due to direct plasma heating, forces on structural components due to halo and eddy currents and the production of runaway electrons. Electron cyclotron (EC) waves have been demonstrated as a tool for disruption avoidance by a large set of recent experiments performed in ASDEX Upgrade and FTU using various disruption types, plasma operating scenarios and power deposition locations. The technique is based on the stabilization of magnetohydrodynamic (MHD) modes (mainly m/n = 2/1) through the localized injection of EC power on the resonant surface. This paper presents new results obtained in ASDEX Upgrade regarding stable operation above the Greenwald density achieved after avoidance of density limit disruptions by means of ECRH and suitable density feedback control (L-mode ohmic plasmas, Ip = 0.6 MA, Bt = 2.5 T) and NTM-driven disruptions at high-β limit delayed/avoided by means of both co-current drive (co-ECCD) and pure heating (ECRH) with power <=1.7 MW (H-mode NBI-heated plasmas, PNBI ~ 7.5 MW, Ip = 1 MA, Bt = 2.1 T, q95 ~ 3.6). The localized perpendicular injection of ECRH/ECCD onto a resonant surface leads to the delay and/or complete avoidance of disruptions. The experiments indicate the existence of a power threshold for mode stabilization to occur. An analysis of the MHD mode evolution using the generalized Rutherford equation coupled to the frequency and phase evolution equations shows that control of the modes is due to EC heating close to the resonant surface. The ECRH contribution (Δ'H term) is larger than the co-ECCD one in the initial and more important phase when the discharge is 'saved'. Future research and developments of the disruption avoidance technique are also discussed.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-12-15
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.
Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng
2015-01-01
The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393
MHD compressor---expander conversion system integrated with GCR inside a deployable reflector
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tuninetti, G.; Botta, E.; Criscuolo, C.
1989-04-20
This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less
A note on two-dimensional asymptotic magnetotail equilibria
NASA Technical Reports Server (NTRS)
Voigt, Gerd-Hannes; Moore, Brian D.
1994-01-01
In order to understand, on the fluid level, the structure, the time evolution, and the stability of current sheets, such as the magnetotail plasma sheet in Earth's magnetosphere, one has to consider magnetic field configurations that are in magnetohydrodynamic (MHD) force equilibrium. Any reasonable MHD current sheet model has to be two-dimensional, at least in an asymptotic sense (B(sub z)/B (sub x)) = epsilon much less than 1. The necessary two-dimensionality is described by a rather arbitrary function f(x). We utilize the free function f(x) to construct two-dimensional magnetotail equilibria are 'equivalent' to current sheets in empirical three-dimensional models. We obtain a class of asymptotic magnetotail equilibria ordered with respect to the magnetic disturbance index Kp. For low Kp values the two-dimensional MHD equilibria reflect some of the realistic, observation-based, aspects of three-dimensional models. For high Kp values the three-dimensional models do not fit the asymptotic MHD equlibria, which is indicative of their inconsistency with the assumed pressure function. This, in turn, implies that high magnetic activity levels of the real magnetosphere might be ruled by thermodynamic conditions different from local thermodynamic equilibrium.
Lab experiments investigating astrophysical jet physics
NASA Astrophysics Data System (ADS)
Bellan, Paul
2014-10-01
Dynamics relevant to astrophysical plasmas is being investigated in lab experiments having similar physics and topology, but much smaller time and space scales. High speed movies and numerical simulations both show that highly collimated MHD-driven plasma flows are a critical feature; these collimated flows can be considered to be a lab version of an astrophysical jet. Having both axial and azimuthal magnetic fields, the jet is effectively an axially lengthening plasma-confining flux tube with embedded helical magnetic field (flux rope). The jet velocity is in good agreement with an MHD acceleration model. Axial stagnation of the jet compresses embedded azimuthal magnetic flux and so results in jet self-collimation. Jets kink when they breach the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can provide an effective gravity which provides the environment for a spontaneously-developing, fine-scale, extremely fast Rayleigh-Taylor instability that erodes the current channel to be smaller than the ion skin depth. This cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale can result in a fast magnetic reconnection whereby the jet breaks off from its source electrode. Supported by USDOE and NSF.
Development and Application of Predictive Tools for MHD Stability Limits in Tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Dylan; Miller, G. P.
This is a project to develop and apply analytic and computational tools to answer physics questions relevant to the onset of non-ideal magnetohydrodynamic (MHD) instabilities in toroidal magnetic confinement plasmas. The focused goal of the research is to develop predictive tools for these instabilities, including an inner layer solution algorithm, a resistive wall with control coils, and energetic particle effects. The production phase compares studies of instabilities in such systems using analytic techniques, PEST- III and NIMROD. Two important physics puzzles are targeted as guiding thrusts for the analyses. The first is to form an accurate description of the physicsmore » determining whether the resistive wall mode or a tearing mode will appear first as β is increased at low rotation and low error fields in DIII-D. The second is to understand the physical mechanism behind recent NIMROD results indicating strong damping and stabilization from energetic particle effects on linear resistive modes. The work seeks to develop a highly relevant predictive tool for ITER, advance the theoretical description of this physics in general, and analyze these instabilities in experiments such as ASDEX Upgrade, DIII-D, JET, JT-60U and NTSX. The awardee on this grant is the University of Tulsa. The research efforts are supervised principally by Dr. Brennan. Support is included for two graduate students, and a strong collaboration with Dr. John M. Finn of LANL. The work includes several ongoing collaborations with General Atomics, PPPL, and the NIMROD team, among others.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Observation of finite-. beta. MHD phenomena in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuire, K.M.
1984-09-01
Stable high-beta plasmas are required for the tokamak to attain an economical fusion reactor. Recently, intense neutral beam heating experiments in tokamaks have shown new effects on plasma stability and confinement associated with high beta plasmas. The observed spectrum of MHD fluctuations at high beta is clearly dominated by the n = 1 mode when the q = 1 surface is in the plasma. The m/n = 1/1 mode drives other n = 1 modes through toroidal coupling and n > 1 modes through nonlinear coupling. On PDX, with near perpendicular injection, a resonant interaction between the n = 1more » internal kink and the trapped fast ions results in loss of beam particles and heating power. Key parameters in the theory are the value of q/sub 0/ and the injection angle. High frequency broadband magnetic fluctuations have been observed on ISX-B and D-III and a correlation with the deterioration of plasma confinement was reported. During enhanced confinement (H-mode) discharges in divertor plasmas, two new edge instabilities were observed, both localized radially near the separatrix. By assembling results from the different tokamak experiments, it is found that the simple theoretical ideal MHD beta limit has not been exceeded. Whether this represents an ultimate tokamak limit or if beta optimized configurations (Dee- or bean-shaped plasmas) can exceed this limit and perhaps enter a second regime of stability remains to be clarified.« less
Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...
2017-07-28
Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less
Control of External Kink Instability
NASA Astrophysics Data System (ADS)
Navratil, Gerald
2004-11-01
A fundamental pressure and current limiting phenomenon in magnetically confined plasmas for fusion energy is the long wavelength ideal-MHD kink mode. These modes have been extensively studied in tokamak and reversed field pinch (RFP) devices. They are characterized by significant amplitude on the boundary of the confined plasma and can therefore be controlled by manipulation of the external boundary conditions. In the past ten years, the theoretically predicted stabilizing effect of a nearby conducting wall has been documented in experiments, which opens the possibility of a significant increase in maximum stable plasma pressure. While these modes are predicted to remain unstable when the stabilizing wall is resistive, their growth rates are greatly reduced from the hydrodynamic time scale to the time scale of magnetic diffusion through the resistive wall. These resistive wall slowed kink modes have been identified as limiting phenomena in tokamak (DIII-D, PBX-M, HBT-EP, JT-60U, JET, NSTX) and RFP (HBTX, Extrap, T2R) devices. The theoretical prediction of stabilization to nearly the ideal wall pressure limit by toroidal plasma rotation and/or active feedback control using coils has recently been realized experimentally. Sustained, stable operation at double the no-wall pressure limit has been achieved. Discovery of the phenomenon of resonant field amplification by marginally stable kink modes and its role in the momentum balance of rotationally stabilized plasmas has emerged as a key feature. A theoretical framework, based on an extension of the very successful treatment of the n=0 axisymmetric mode developed in the early 1990's, to understand the stabilization mechanisms and model the performance of active feedback control systems is now established. This allows design of kink control systems for burning plasma experiments like ITER.
ELM Suppression and Pedestal Structure in I-Mode Plasmas
NASA Astrophysics Data System (ADS)
Walk, John
2013-10-01
The I-mode regime is characterized by the formation of a temperature pedestal and enhanced energy confinement (H98 up to 1.2), without an accompanying density pedestal or drop in particle transport. Unlike ELMy H-modes, I-mode operation appears to have naturally-occurring suppression of large ELMs in addition to its highly favorable scalings of pedestal structure (and therefore overall performance). Instead, continuous Weakly Coherent Modes help to regulate density. Extensive study of the ELMy H-mode has led to the development of the EPED model, which utilizes calculations of coupled peeling-ballooning MHD modes and kinetic-ballooning mode (KBM) stability limits to predict the pedestal structure preceding an ELM crash. We apply similar tools to the structure and ELM stability of I-mode pedestals. Peeling-ballooning MHD calculations are completed using the ELITE code, showing I-mode pedestals to be generally MHD-stable. Under certain conditions, intermittent ELMs are observed in I-mode at reduced field, typically triggered by sawtooth crashes; modification of the temperature pedestal (and therefore the pressure profile stability) by sawtooth heat pulses is being examined in ELITE. Modeled stability to KBM turbulence in I-mode and ELMy H-mode suggests that typical I-modes are stable against KBM turbulence. Measured I-mode pedestals are significantly wider (more stable) than the width scaling with the square root of poloidal beta characteristic of the KBM-limited pedestals in ELMy H-mode. Finally, we explore scalings of pedestal structure with engineering parameters compared to ELMy H-modes on C-Mod. In particular, we focus on scalings of the pressure pedestal with heating power (and its relation to the favorable scaling of confinement with power in I-mode) and on relationships between heat flux and pedestal temperature gradients. This work is supported by DOE agreement DE-FC02-99ER54512. Theory work at General Atomics is supported by DOE agreement DE-FG02-99ER54309.
NASA Astrophysics Data System (ADS)
Lauber, Ph.; Günter, S.; Könies, A.; Pinches, S. D.
2007-09-01
In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfvén physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU München, 2003; Ph. Lauber, S. Günter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfvén regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfvén eigenmodes (TAEs) and kinetic Alfvén waves (KAWs) with analytical results, ideal MHD codes, drift-kinetic codes and other codes based on kinetic models are reported.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medvedev, S. Yu., E-mail: medvedev@a5.kiam.ru; Ivanov, A. A., E-mail: aai@a5.kiam.ru; Martynov, A. A., E-mail: martynov@a5.kiam.ru
The influence of current density and pressure gradient profiles in the pedestal on the access to the regimes free from edge localized modes (ELMs) like quiescent H-mode in ITER is investigated. Using the simulator of MHD modes localized near plasma boundary based on the KINX code, calculations of the ELM stability were performed for the ITER plasma in scenarios 2 and 4 under variations of density and temperature profiles with the self-consistent bootstrap current in the pedestal. Low pressure gradient values at the separatrix, the same position of the density and temperature pedestals and high poloidal beta values facilitate reachingmore » high current density in the pedestal and a potential transition into the regime with saturated large scale kink modes. New version of the localized MHD mode simulator allows one to compute the growth rates of ideal peeling-ballooning modes with different toroidal mode numbers and to determine the stability region taking into account diamagnetic stabilization. The edge stability diagrams computations and sensitivity studies of the stability limits to the value of diamagnetic frequency show that diamagnetic stabilization of the modes with high toroidal mode numbers can help to access the quiescent H-mode even with high plasma density but only with low pressure gradient values at the separatrix. The limiting pressure at the top of the pedestal increases for higher plasma density. With flat density profile the access to the quiescent H-mode is closed even with diamagnetic stabilization taken into account, while toroidal mode numbers of the most unstable peeling-ballooning mode decrease from n = 10−40 to n = 3−20.« less
A Radiation Transfer Solver for Athena Using Short Characteristics
NASA Astrophysics Data System (ADS)
Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei
2012-03-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haverkort, J.W.; Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven; Blank, H.J. de
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. Amore » rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.« less
NASA Astrophysics Data System (ADS)
Kikuchi, Yusuke; Yoshikawa, Tatsuya; Nishioka, Tsutomu; Hashimoto, Shotaro; Fukumoto, Naoyuki; Nagata, Masayoshi
Application of an externally applied rotating magnetic field (RMF) for control of MHD relaxation phenomena driven by a coaxial helicity injection has been proposed in the HIST spherical torus device. In this letter, the plasma responses to the RMF evaluated by magnetic fields inside the plasma in HIST are shown.
[Output standard in the mental health services of Reggio Emilia, Italy. Methodological issues].
Grassi, G
2000-01-01
The project Output Standards of the Mental Health Department (MHD) of Reggio Emilia is set out to define outputs and quality standards and to guarantee transparency and to facilitate organizational improvement. The MHD started an interprofessional working group that defined the MHD outputs as long as process, quality peculiarities, indicators and standards for each output. The MHD Director validated the group results. The MHD defined 9 outputs and its indicators and standards and consequently modified its data registration system, the way to supply free and partially charged services and budget indicators. As a result, a new instrument for management and quality control has been provided. The A. maintains that to define outputs, indicators and standards will allow to compare several services of the Department, get them omogeneous and guarantee and improve quality.
Forced Reconnection in the Near Magnetotail: Onset and Energy Conversion in PIC and MHD Simulations
NASA Technical Reports Server (NTRS)
Birn, J.; Hesse, Michael
2014-01-01
Using two-dimensional particle-in-cell (PIC) together with magnetohydrodynamic (MHD) Q1 simulations of magnetotail dynamics, we investigate the evolution toward onset of reconnection and the subsequent energy transfer and conversion. In either case, reconnection onset is preceded by a driven phase, during which magnetic flux is added to the tail at the high-latitude boundaries, followed by a relaxation phase, during which the configuration continues to respond to the driving. The boundary deformation leads to the formation of thin embedded current sheets, which are bifurcated in the near tail, converging to a single sheet farther out in the MHD simulations. The thin current sheets in the PIC simulation are carried by electrons and are associated with a strong perpendicular electrostatic field, which may provide a connection to parallel potentials and auroral arcs and an ionospheric signal even prior to the onset of reconnection. The PIC simulation very well satisfies integral entropy conservation (intrinsic to ideal MHD) during this phase, supporting ideal ballooning stability. Eventually, the current intensification leads to the onset of reconnection, the formation and ejection of a plasmoid, and a collapse of the inner tail. The earthward flow shows the characteristics of a dipolarization front: enhancement of Bz, associated with a thin vertical electron current sheet in the PIC simulation. Both MHD and PIC simulations show a dominance of energy conversion from incoming Poynting flux to outgoing enthalpy flux, resulting in heating of the inner tail. Localized Joule dissipation plays only a minor role.
Stabilization of the SIESTA MHD Equilibrium Code Using Rapid Cholesky Factorization
NASA Astrophysics Data System (ADS)
Hirshman, S. P.; D'Azevedo, E. A.; Seal, S. K.
2016-10-01
The SIESTA MHD equilibrium code solves the discretized nonlinear MHD force F ≡ J X B - ∇p for a 3D plasma which may contain islands and stochastic regions. At each nonlinear evolution step, it solves a set of linearized MHD equations which can be written r ≡ Ax - b = 0, where A is the linearized MHD Hessian matrix. When the solution norm | x| is small enough, the nonlinear force norm will be close to the linearized force norm | r| 0 obtained using preconditioned GMRES. In many cases, this procedure works well and leads to a vanishing nonlinear residual (equilibrium) after several iterations in SIESTA. In some cases, however, | x|>1 results and the SIESTA code has to be restarted to obtain nonlinear convergence. In order to make SIESTA more robust and avoid such restarts, we have implemented a new rapid QR factorization of the Hessian which allows us to rapidly and accurately solve the least-squares problem AT r = 0, subject to the condition | x|<1. This avoids large contributions to the nonlinear force terms and in general makes the convergence sequence of SIESTA much more stable. The innovative rapid QR method is based on a pairwise row factorization of the tri-diagonal Hessian. It provides a complete Cholesky factorization while preserving the memory allocation of A. This work was supported by the U.S. D.O.E. contract DE-AC05-00OR22725.
Non-Equilibrium Plasma MHD Electrical Power Generation at Tokyo Tech
NASA Astrophysics Data System (ADS)
Murakami, T.; Okuno, Y.; Yamasaki, H.
2008-02-01
This paper reviews the recent activities on radio-frequency (rf) electromagnetic-field-assisted magnetohydrodynamic (MHD) power generation experiments at the Tokyo Institute of Technology. An inductively coupled rf field (13.56 MHz) is continuously supplied to the disk-shaped Hall-type MHD generator. The first part of this paper describes a method of obtaining increased power output from a pure Argon plasma MHD power generator by incorporating an rf power source to preionize and heat the plasma. The rf heating enhances ionization of the Argon and raises the temperature of the free electron population above the nominally low 4500 K temperatures obtained without rf heating. This in turn enhances the plasma conductivity making MHD power generation feasible. We demonstrate an enhanced power output when rf heating is on approximately 5 times larger than the input power of the rf generator. The second part of this paper is a demonstration of a physical phenomenon of the rf-stabilization of the ionization instability, that had been conjectured for some time, but had not been seen experimentally. The rf heating suppresses the ionization instability in the plasma behavior and homogenizes the nonuniformity of the plasma structures. The power-generating performance is significantly improved with the aid of the rf power under wide seeding conditions. The increment of the enthalpy extraction ratio of around 2% is significantly greater than the fraction of the net rf power, that is, 0.16%, to the thermal input.
Stability of the cometary ionopause
NASA Astrophysics Data System (ADS)
Ershkovich, A. I.; Axford, W. I.; Ip, W.-H.; Flammer, K. R.
MHD stability of the cometary ionopause is discussed in the context of the Giotto mission to comet Halley. A mechanism associated with the plasma compressibility is suggested here as being responsible for the apparent stability of the Halley ionopause: when the phase velocity of surface waves at the ionopause approaches the fast magnetoacoustic speed the unstable surface waves are transformed into stable body waves in the whole fluid resulting in an effective damping of the instability. The effects of both mass loading (due to photoionization) and dissociative recombination are also studied.
Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR
NASA Astrophysics Data System (ADS)
Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team
2017-10-01
Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).
Effects of flows on viscous and resistive MHD stability
NASA Technical Reports Server (NTRS)
Einaudi, Giorgio
1986-01-01
In many solar applications the viscosity appears to be more important than resistivity. In order to discuss the instabilities in solar conditions, an idealized configuration is considered in which the plasma is flowing in the z-direction along the magnetic field B sub 0 with a velocity V sub 0. As far as the velocity is concerned two different velocity profiles, with different hydrodynmaic stability properties are discussed. The results are summarized.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anninos, Peter; Lau, Cheuk; Bryant, Colton
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less
CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
NASA Astrophysics Data System (ADS)
Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
NASA Astrophysics Data System (ADS)
Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.
2017-10-01
The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.
A stepped pressure profile model for internal transport barriers
NASA Astrophysics Data System (ADS)
Hole, Matthew; Hudson, Stuart; Dewar, Robert
2007-11-01
B ∇x et al We develop a multiple interface variational model, comprising multiple Taylor-relaxed plasma regions separated by ideal MHD barriers. The magnetic field in each region is Beltrami, = μ, and the pressure constant. Between these regions the pressure, field strength, and rotational transform may have step changes at the ideal barrier. A principle motivation is the development of a mathematically rigorous ideal MHD model to describe intrinsically 3D equilibria, with nonzero internal pressure, using robust KAM surfaces as the barriers. As each region is locally relaxed however, such a model may also yield reasons for existence of internal transport barriers (ITBs). Focusing on the latter, we build on Hole Nuc. Fus. 47, pp746-753, 2007, which recently studied the stability of a two-interface periodic-cylinder configuration. In this work, we perform a stability scan over pressure and for a two-interface configuration with no jump in , and compare the characteristics of stable equilibria to those of ITB's.
Experimental investigation of multi-scale non-equilibrium plasma dynamics
NASA Astrophysics Data System (ADS)
Bellan, Paul
2013-10-01
Lab experiments at Caltech resolve complex, detailed MHD dynamics spatially and temporally. Unbalanced forces drive fast plasma flows which tend to self-collimate via self-pinching. Collimation results from flow stagnation compressing embedded magnetic flux and so amplifying the magnetic field responsible for pinching. Measurements show that the collimated flow is essentially a dense plasma jet with embedded axial and azimuthal magnetic fields, i.e., a magnetic flux tube (flux rope). The measured jet velocity is in good agreement with an MHD acceleration model. Depending on how flux tube radius varies with axial position, jets flow into a flux tube from both ends or from just one end. Jets kink when the flux tube in which they are embedded breaches the Kruskal-Shafranov stability limit. The lateral acceleration of a sufficiently strong kink can produce an enormous effective gravity which provides the environment for an observed fine-scale, extremely fast Rayleigh-Taylor (RT) instability. The RT can erode the jet current channel to be smaller than the ion skin depth so there is a cascade from the ideal MHD scale of the kink to the non-MHD ion skin depth scale. This process can result in a magnetic reconnection whereby the jet and its embedded flux tube break. Supported by USDOE.
NASA Astrophysics Data System (ADS)
Petit, Jean-Pierre; Dore, Jean-Christophe
2013-09-01
MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager
Stability of ideal MHD configurations. I. Realizing the generality of the G operator
NASA Astrophysics Data System (ADS)
Keppens, R.; Demaerel, T.
2016-12-01
A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes are organized through the essential spectrum of the G operator. These 6 modes are actually three pairs of modes, in which the Alfvén pair (a shear wave pair in hydro) sits comfortably at the middle. Each pair of modes consists of a leftgoing wave and a rightgoing wave, or equivalently stated, with one type traveling from past to future (forward) and the other type that goes from future to past (backward). The Alfvén pair is special, in its left-right categorization, while there is full degeneracy for the slow and fast pairs when reversing time and mirroring space. The Alfvén pair group speed diagram leads to the familiar Elsässer variables.
Equilibrium Spline Interface (ESI) for magnetic confinement codes
NASA Astrophysics Data System (ADS)
Li, Xujing; Zakharov, Leonid E.
2017-12-01
A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.
Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications
NASA Astrophysics Data System (ADS)
Macheret, Sergey
2005-05-01
The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.
NASA Astrophysics Data System (ADS)
Fisher, Dustin; Zhang, Yue; Wallace, Ben; Gilmore, Mark; Manchester, Ward; Arge, C. Nick
2016-10-01
The Plasma Bubble Expansion Experiment (PBEX) at the University of New Mexico uses a coaxial plasma gun to launch jet and spheromak magnetic plasma configurations into the Helicon-Cathode (HelCat) plasma device. Plasma structures launched from the gun drag frozen-in magnetic flux into the background magnetic field of the chamber providing a rich set of dynamics to study magnetic turbulence, force-free magnetic spheromaks, and shocks. Preliminary modeling is presented using the highly-developed 3-D, MHD, BATS-R-US code developed at the University of Michigan. BATS-R-US employs an adaptive mesh refinement grid that enables the capture and resolution of shock structures and current sheets, and is particularly suited to model the parameter regime under investigation. CCD images and magnetic field data from the experiment suggest the stabilization of an m =1 kink mode trailing a plasma jet launched into a background magnetic field. Results from a linear stability code investigating the effect of shear-flow as a cause of this stabilization from magnetic tension forces on the jet will be presented. Initial analyses of a possible magnetic Rayleigh Taylor instability seen at the interface between launched spheromaks and their entraining background magnetic field will also be presented. Work supported by the Army Research Office Award No. W911NF1510480.
Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere
NASA Technical Reports Server (NTRS)
Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.;
2016-01-01
We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.
PREFACE: Theory of Fusion Plasmas, 13th Joint Varenna-Lausanne International Workshop (2012)
NASA Astrophysics Data System (ADS)
Garbet, Xavier; Sauter, Olivier
2012-12-01
The 2012 joint Varenna-Lausanne international workshop on the theory of fusion plasmas has been very fruitful. A broad variety of topics were addressed, as usual covering turbulence, MHD, edge physic, RF wave heating and a taste of astrophysics. Moreover the scope of the meeting was extended this year to include the physics of materials and diagnostics for burning plasmas. This evolution reflects the complexity of problems at hand in fusion, in particular in the context of ITER construction. Long-standing problems without immediate consequences have sometimes become an urgent matter in that context. One may quote for instance the choice of plasma facing components or the design of control systems. Another characteristic of the meeting is the interplay between various domains of plasma physics. For instance MHD modes are now currently investigated with gyrokinetic codes, kinetic effects are more and more included in MHD stability analysis, and turbulence is now accounted for in wave propagation problems. This is the proof of cross-fertilization and it is certainly a healthy sign in our community. Finally introducing some novelty in the programme does not prevent us from respecting the traditions of the meeting. As usual a good deal of the presentations were dedicated to numerical simulations. Combining advanced numerical techniques with elaborated analytical theory is certainly a trademark of the Varenna-Lausanne conference, which was respected again this year. The quality and size of the scientific production is illustrated by the 26 papers which appear in the present volume of Journal of Physics: Conference Series, all refereed. We would also like to mention another set of 20 papers to be published in Plasma Physics and Controlled Fusion. We hope the readers will enjoy this special issue of JPCS and the one to come in PPCF. Xavier Garbet and Olivier Sauter October 26, 2012
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not occur in laboratory plasmas.
NASA Astrophysics Data System (ADS)
Orlando, S.; Sacco, G. G.; Argiroffi, C.; Reale, F.; Peres, G.; Maggio, A.
2010-02-01
Context. Plasma accreting onto classical T Tauri stars (CTTS) is believed to impact the stellar surface at free-fall velocities, generating a shock. Current time-dependent models describing accretion shocks in CTTSs are one-dimensional, assuming that the plasma moves and transports energy only along magnetic field lines (β ≪ 1). Aims: We investigate the stability and dynamics of accretion shocks in CTTSs, considering the case of β ⪆ 1 in the post-shock region. In these cases the 1D approximation is not valid and a multi-dimensional MHD approach is necessary. Methods: We model an accretion stream propagating through the atmosphere of a CTTS and impacting onto its chromosphere by performing 2D axisymmetric MHD simulations. The model takes into account the stellar magnetic field, the gravity, the radiative cooling, and the thermal conduction (including the effects of heat flux saturation). Results: The dynamics and stability of the accretion shock strongly depend on the plasma β. In the case of shocks with β > 10, violent outflows of shock-heated material (and possibly MHD waves) are generated at the base of the accretion column and intensely perturb the surrounding stellar atmosphere and the accretion column itself (therefore modifying the dynamics of the shock). In shocks with β ≈ 1, the post-shock region is efficiently confined by the magnetic field. The shock oscillations induced by cooling instability are strongly influenced by β: for β > 10, the oscillations may be rapidly dumped by the magnetic field, approaching a quasi-stationary state, or may be chaotic with no obvious periodicity due to perturbation of the stream induced by the post-shock plasma itself; for β≈ 1 the oscillations are quasi-periodic, although their amplitude is smaller and the frequency higher than those predicted by 1D models. Three movies are only available in electronic form at http://www.aanda.org
Overview of RWM Stabilization and Other Experiments With New Internal Coils in the DIII-D Tokamak
NASA Astrophysics Data System (ADS)
Jackson, G. L.; Evans, T. E.; La Haye, R. J.; Kellman, A. G.; Schaffer, M. J.; Scoville, J. T.; Strait, E. J.; Szymanski, D. D.; Bialek, J.; Garofalo, A. M.; Navratil, G. A.; Reimerdes, H.; Edgell, D. H.; Okabayashi, M.; Hatcher, R.
2003-10-01
A set of 12 single-turn internal coils (I-coils) has been installed and operated in the DIII-D tokamak. The primary purpose of these coils (A_coil = 1.1 m^2, I ≤,7 kA, d_wall = 1.47 cm) is to improve stabilization of the n=1 resistive wall mode (RWM), compared to the existing external C-coil set, especially for high βN advanced tokamak discharges in low toroidal rotation plasmas. The versatility of the I-coil set and its associated power systems allow for a variety of experiments: fast feedback stabilization of RWMs, dc error field correction, edge stochastic fields, n=1,2, or 3 toroidal magnetic braking, and MHD spectroscopy (0-60 Hz). The resonant field amplification from an applied n=1 field was found to be completely suppressed, demonstrating successfully the controllability with the new system. With the I-coils, the high βN regime (above the no wall limit) has been explored both with RWM feedback and with dynamic error field correction. Experiments on edge ergodization will also be discussed.
Effect of Pressure Anisotropy on the m = 1 Small Wavelength Modes in Z-Pinches
NASA Astrophysics Data System (ADS)
Faghihi, M.
1987-05-01
A generalization of Freidberg's perpendicular MHD model is used to investigate the effect of pressure anisotropy on the small wavelength internal kink (m = 1) mode instability in a Z-Pinch. A normal mode analysis of perturbed motion of an incompressible, collisionless and cylindrical plasma is performed. The stability criterion is (rΣB2)' <= 0, where Σ = 1 - (P|| - P⊥)/B2. It cannot be fulfilled without violation of the fire hose stability condition Σ >= 0.
NASA Astrophysics Data System (ADS)
Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.
2017-06-01
Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.
The stability properties of cylindrical force-free fields - Effect of an external potential field
NASA Technical Reports Server (NTRS)
Chiuderi, C.; Einaudi, G.; Ma, S. S.; Van Hoven, G.
1980-01-01
A large-scale potential field with an embedded smaller-scale force-free structure gradient x B equals alpha B is studied in cylindrical geometry. Cases in which alpha goes continuously from a constant value alpha 0 on the axis to zero at large r are considered. Such a choice of alpha (r) produces fields which are realistic (few field reversals) but not completely stable. The MHD-unstable wavenumber regime is found. Since the considered equilibrium field exhibits a certain amount of magnetic shear, resistive instabilities can arise. The growth rates of the tearing mode in the limited MHD-stable region of k space are calculated, showing time-scales much shorter than the resistive decay time.
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davis, Shane W.; Stone, James M.; Jiang Yanfei
2012-03-01
We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiationmore » MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.« less
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Astrophysics Data System (ADS)
Hals, F. A.
1981-03-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.
Effect of parallel electric fields on the ponderomotive stabilization of MHD instabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litwin, C.; Hershkowitz, N.
The contribution of the wave electric field component E/sub parallel/, parallel to the magnetic field, to the ponderomotive stabilization of curvature driven instabilities is evaluated and compared to the transverse component contribution. For the experimental density range, in which the stability is primarily determined by the m = 1 magnetosonic wave, this contribution is found to be the dominant and stabilizing when the electron temperature is neglected. For sufficiently high electron temperatures the dominant fast wave is found to be axially evanescent. In the same limit, E/sub parallel/ becomes radially oscillating. It is concluded that the increased electron temperature nearmore » the plasma surface reduces the magnitude of ponderomotive effects.« less
AN MHD AVALANCHE IN A MULTI-THREADED CORONAL LOOP
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hood, A. W.; Cargill, P. J.; Tam, K. V.
For the first time, we demonstrate how an MHD avalanche might occur in a multithreaded coronal loop. Considering 23 non-potential magnetic threads within a loop, we use 3D MHD simulations to show that only one thread needs to be unstable in order to start an avalanche even when the others are below marginal stability. This has significant implications for coronal heating in that it provides for energy dissipation with a trigger mechanism. The instability of the unstable thread follows the evolution determined in many earlier investigations. However, once one stable thread is disrupted, it coalesces with a neighboring thread andmore » this process disrupts other nearby threads. Coalescence with these disrupted threads then occurs leading to the disruption of yet more threads as the avalanche develops. Magnetic energy is released in discrete bursts as the surrounding stable threads are disrupted. The volume integrated heating, as a function of time, shows short spikes suggesting that the temporal form of the heating is more like that of nanoflares than of constant heating.« less
Fluctuation driven EMFs in the Madison Dynamo Experiment
NASA Astrophysics Data System (ADS)
Kaplan, Elliot; Brown, Ben; Clark, Mike; Nornberg, Mark; Rahbarnia, Kian; Rasmus, Alex; Taylor, Zane; Forest, Cary
2013-04-01
The Madison Dynamo Experiment is a 1 m diameter sphere filled with liquid Sodium designed to study MHD in a simply connected geometry. Two impellers drive a two-vortex flow, based on the calculations of Dudley and James, intended to excite system-scale dynamo instability. We present a collection of results from experiments measuring hydrodynamic fluctuations and their MHD effects. An equatorial baffle was added to the experiment in order to diminish the large-eddy hydrodynamic fluctuations by stabilizing the shear layer between the two counter-rotating flow cells. The change in the fluctuation levels was inferred from the change in the spatial spectrum of the induced magnetic field. This reduction correlated with a 2.4 times increase in the induced toroidal magnetic field (a proxy measure of the effective resistivity). Furthermore, the local velocity fluctuations were directly measured by the addition of a 3-d emf probe (a strong permanent magnet inserted into the flow with electrical leads to measure the induced voltage, and magnetic probes to determine the magnetic fluctuations). The measured emfs are consistent with the enhanced magnetic diffusivity interpretation of mean-field MHD.
Fast Magnetotail Reconnection: Challenge to Global MHD Modeling
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.
2005-05-01
Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.
NASA Astrophysics Data System (ADS)
Jenkins, Thomas G.; Held, Eric D.
2015-09-01
Neoclassical tearing modes are macroscopic (L ∼ 1 m) instabilities in magnetic fusion experiments; if unchecked, these modes degrade plasma performance and may catastrophically destroy plasma confinement by inducing a disruption. Fortunately, the use of properly tuned and directed radiofrequency waves (λ ∼ 1 mm) can eliminate these modes. Numerical modeling of this difficult multiscale problem requires the integration of separate mathematical models for each length and time scale (Jenkins and Kruger, 2012 [21]); the extended MHD model captures macroscopic plasma evolution while the RF model tracks the flow and deposition of injected RF power through the evolving plasma profiles. The scale separation enables use of the eikonal (ray-tracing) approximation to model the RF wave propagation. In this work we demonstrate a technique, based on methods of computational geometry, for mapping the ensuing RF data (associated with discrete ray trajectories) onto the finite-element/pseudospectral grid that is used to model the extended MHD physics. In the new representation, the RF data can then be used to construct source terms in the equations of the extended MHD model, enabling quantitative modeling of RF-induced tearing mode stabilization. Though our specific implementation uses the NIMROD extended MHD (Sovinec et al., 2004 [22]) and GENRAY RF (Smirnov et al., 1994 [23]) codes, the approach presented can be applied more generally to any code coupling requiring the mapping of ray tracing data onto Eulerian grids.
QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES
DOE Office of Scientific and Technical Information (OSTI.GOV)
LAO, LL; SNYDER, PB; LEONARD, AW
2002-07-01
OAK A271 QUANTITATIVE TESTS OF ELMS AS INTERMEDIATE N PEELING-BALLOONING MODES. Two of the major issues crucial for the design of the next generation tokamak burning plasma devices are the predictability of the edge pedestal height and control of the divertor heat load in H-mode configurations. Both of these are strongly impacted by edge localized modes (ELMs) and their size. A working model for ELMs is that they are intermediate toroidal mode number, n {approx} 5-30, peeling-ballooning modes driven by the large edge pedestal pressure gradient P{prime} and the associated large edge bootstrap current density J{sub BS}. the interplay betweenmore » P{prime} and J{sub BS} as a discharge evolves can excite peeling-ballooning modes over a wide spectrum of n. The pedestal current density plays a dual role by stabilizing the high n ballooning modes via opening access to second stability but providing free energy to drive the intermediate n peeling modes. This makes a systematic evaluation of this model particularly challenging. This paper describes recent quantitative tests of this model using experimental data from the DIII-D and the JT-60U tokamaks. These tests are made possible by recent improvements to the ELITE MHD stability code, which allow an efficient evaluation of the unstable peeling-ballooning modes, as well as by improvements to other diagnostic and analysis techniques. Some of the key testable features of this model are: (1) ELMs are triggered when the growth rates of intermediate n MHD modes become significantly large; (2) ELM sizes are related to the radial widths of the unstable modes; (3) the unstable modes have a strong ballooning character localized in the outboard bad curvature region; (4) at high collisionality, ELM size generally becomes smaller because J{sub BS} is reduced.« less
Finite-Larmor-radius effects on z-pinch stability
NASA Astrophysics Data System (ADS)
Scheffel, Jan; Faghihi, Mostafa
1989-06-01
The effect of finite Larmor radius (FLR) on the stability of m = 1 small-axial-wavelength kinks in a z-pinch with purely poloidal magnetic field is investigated. We use the incompressible FLR MHD model; a collisionless fluid model that consistently includes the relevant FLR terms due to ion gyroviscosity, Hall effect and electron diamagnetism. With FLR terms absent, the Kadomtsev criterion of ideal MHD, 2r dp/dr + m2B2/μ0 ≥ 0 predicts instability for internal modes unless the current density is singular at the centre of the pinch. The same result is obtained in the present model, with FLR terms absent. When the FLR terms are included, a normal-mode analysis of the linearized equations yields the following results. Marginally unstable (ideal) modes are stabilized by gyroviscosity. The Hall term has a damping (but not absolutely stabilizing) effect - in agreement with earlier work. On specifying a constant current and particle density equilibrium, the effect of electron diamagnetism vanishes. For a z-pinch with parameters relevant to the EXTRAP experiment, the m = 1 modes are then fully stabilized over the crosssection for wavelengths λ/a ≤ 1, where a denotes the pinch radius. As a general z-pinch result a critical line-density limit Nmax = 5 × 1018 m-1 is found, above which gyroviscous stabilization near the plasma boundary becomes insufficient. This limit corresponds to about five Larmor radii along the pinch radius. The result holds for wavelengths close to, or smaller than, the pinch radius and for realistic equilibrium profiles. This limit is far below the required limit for a reactor with contained alpha particles, which is in excess of 1020 m-1.
NASA Astrophysics Data System (ADS)
Stefanikova, E.; Frassinetti, L.; Saarelma, S.; Loarte, A.; Nunes, I.; Garzotti, L.; Lomas, P.; Rimini, F.; Drewelow, P.; Kruezi, U.; Lomanowski, B.; de la Luna, E.; Meneses, L.; Peterka, M.; Viola, B.; Giroud, C.; Maggi, C.; contributors, JET
2018-05-01
The electron temperature and density pedestals tend to vary in their relative radial positions, as observed in DIII-D (Beurskens et al 2011 Phys. Plasmas 18 056120) and ASDEX Upgrade (Dunne et al 2017 Plasma Phys. Control. Fusion 59 14017). This so-called relative shift has an impact on the pedestal magnetohydrodynamic (MHD) stability and hence on the pedestal height (Osborne et al 2015 Nucl. Fusion 55 063018). The present work studies the effect of the relative shift on pedestal stability of JET ITER-like wall (JET-ILW) baseline low triangularity (δ) unseeded plasmas, and similar JET-C discharges. As shown in this paper, the increase of the pedestal relative shift is correlated with the reduction of the normalized pressure gradient, therefore playing a strong role in pedestal stability. Furthermore, JET-ILW tends to have a larger relative shift compared to JET carbon wall (JET-C), suggesting a possible role of the plasma facing materials in affecting the density profile location. Experimental results are then compared with stability analysis performed in terms of the peeling-ballooning model and with pedestal predictive model EUROPED (Saarelma et al 2017 Plasma Phys. Control. Fusion). Stability analysis is consistent with the experimental findings, showing an improvement of the pedestal stability, when the relative shift is reduced. This has been ascribed mainly to the increase of the edge bootstrap current, and to minor effects related to the increase of the pedestal pressure gradient and narrowing of the pedestal pressure width. Pedestal predictive model EUROPED shows a qualitative agreement with experiment, especially for low values of the relative shift.
Inhibitory Control in a Notorious Brain Teaser: The Monty Hall Dilemma
ERIC Educational Resources Information Center
Saenen, Lore; Heyvaert, Mieke; Van Dooren, Wim; Onghena, Patrick
2015-01-01
The Monty Hall dilemma (MHD) is a counterintuitive probability problem in which participants often use misleading heuristics, such as the equiprobability bias. Finding the optimal solution to the MHD requires inhibition of these heuristics. In the current study, we investigated the relation between participants' equiprobability bias and their MHD…
MHD Instabilities in Simple Plasma Configuration
1984-01-01
current near the plasma boundary) which can be detected outside the plasma ring . A concept which has proved to b- of great significance for the stability...decrease in the major radius of the plasma ring , a significant loss of plasma energy and particles (from the core of the plasma) and a decrease in the
On controlling nonlinear dissipation in high order filter methods for ideal and non-ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjogreen, B.
2004-01-01
The newly developed adaptive numerical dissipation control in spatially high order filter schemes for the compressible Euler and Navier-Stokes equations has been recently extended to the ideal and non-ideal magnetohydrodynamics (MHD) equations. These filter schemes are applicable to complex unsteady MHD high-speed shock/shear/turbulence problems. They also provide a natural and efficient way for the minimization of Div(B) numerical error. The adaptive numerical dissipation mechanism consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. The numerical dissipation considered consists of high order linear dissipation for the suppression of high frequency oscillation and the nonlinear dissipative portion of high-resolution shock-capturing methods for discontinuity capturing. The applicable nonlinear dissipative portion of high-resolution shock-capturing methods is very general. The objective of this paper is to investigate the performance of three commonly used types of nonlinear numerical dissipation for both the ideal and non-ideal MHD.
The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy
NASA Astrophysics Data System (ADS)
Tenerani, Anna; Velli, Marco; Hellinger, Petr
2017-12-01
We study the stability of large-amplitude, circularly polarized Alfvén waves in an anisotropic plasma described by the double-adiabatic/CGL closure, and in particular the effect of a background thermal pressure anisotropy on the well-known properties of Alfvén wave parametric decay in magnetohydrodynamics (MHD). Anisotropy allows instability over a much wider range of values of parallel plasma beta (β ∥) when ξ = p 0⊥/p 0∥ > 1. When the pressure anisotropy exceeds a critical value, ξ ≥ ξ* with ξ* ≃ 2.7, there is a new regime in which the parametric instability is no longer quenched at high β ∥, and in the limit β ∥ ≫ 1, the growth rate becomes independent of β ∥. In the opposite case of ξ < ξ*, the instability is strongly suppressed with increasing parallel plasma beta, similarly to the MHD case. We analyze marginal stability conditions for parametric decay in the (ξ, β ∥) parameter space and discuss possible implications for Alfvénic turbulence in the solar wind.
Advances in long pulse operation at high radio frequency power in Tore Supra
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goniche, M.; Dumont, R.; Bourdelle, C.
2014-06-15
The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges ismore » very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.« less
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Peng, X. D.
2018-04-01
The effect of plasma rotation on the linear stability of the resistive magnetohydrodynamic (MHD) instabilities with a nonmonotonic q profile is investigated numerically in the cylindrical geometry. The results have shown that the plasma rotation has a stabilization effect on the double tearing modes (DTMs) depending on the magnitude of the velocity, while the velocity shear has a relatively weak effect. The effect of rotation on DTMs is determined by the velocity at each rational surface. A toroidal velocity imposed on the innermost rational surface has a weak effect on m > 1 DTMs. When the velocity is imposed on the outboard resonant surface, the growth rates of the DTMs are reduced for m > 1 modes; however, it has an obvious destabilizing effect on both m = 1 (with m the poloidal mode number) DTM and single tearing mode branches if the distance between the two rational surfaces is sufficiently small. It is shown that the effect of plasma rotation on the growth rates of the MHD instabilities is in phase with the integrated value of the coupling between potential fluctuation and magnetic flux perturbation.
Neoclassical tearing mode seeding by coupling with infernal modes in low-shear tokamaks
NASA Astrophysics Data System (ADS)
Kleiner, A.; Graves, J. P.; Brunetti, D.; Cooper, W. A.; Halpern, F. D.; Luciani, J.-F.; Lütjens, H.
2016-09-01
A numerical and an analytical study of the triggering of resistive MHD modes in tokamak plasmas with low magnetic shear core is presented. Flat q profiles give rise to fast growing pressure driven MHD modes, such as infernal modes. It has been shown that infernal modes drive fast growing islands on neighbouring rational surfaces. Numerical simulations of such instabilities in a MAST-like configuration are performed with the initial value stability code XTOR-2F in the resistive frame. The evolution of magnetic islands are computed from XTOR-2F simulations and an analytical model is developed based on Rutherford’s theory in combination with a model of resistive infernal modes. The parameter {{Δ }\\prime} is extended from the linear phase to the non-linear phase. Additionally, the destabilising contribution due to a helically perturbed bootstrap current is considered. Comparing the numerical XTOR-2F simulations to the model, we find that coupling has a strong destabilising effect on (neoclassical) tearing modes and is able to seed 2/1 magnetic islands in situations when the standard NTM theory predicts stability.
Design of stabilized platforms for deep space optical communications (DSOC)
NASA Astrophysics Data System (ADS)
Jacka, N.; Walter, R.; Laughlin, D.; McNally, J.
2017-02-01
Numerous Deep Space Optical Communications (DSOC) demonstrations are planned by NASA to provide the basis for future implementation of optical communications links in planetary science missions and eventually manned missions to Mars. There is a need for a simple, robust precision optical stabilization concept for long-range free space optical communications applications suitable for optical apertures and masses larger than the current state of the art. We developed a stabilization concept by exploiting the ultra-low noise and wide bandwidth of ATA-proprietary Magnetohydrodynamic (MHD) angular rate sensors and building on prior practices of flexure-based isolation. We detail a stabilization approach tailored for deep space optical communications, and present an innovative prototype design and test results. Our prototype system provides sub-micro radian stabilization for a deep space optical link such as NASA's integrated Radio frequency and Optical Communications (iROC) and NASA's DSOC programs. Initial test results and simulations suggest that >40 dB broadband jitter rejection is possible without placing unrealistic expectations on the control loop bandwidth and flexure isolation frequency. This approach offers a simple, robust method for platform stabilization without requiring a gravity offload apparatus for ground testing or launch locks to survive a typical launch environment. This paper reviews alternative stabilization concepts, their advantages and disadvantages, as well as, their applicability to various optical communications applications. We present results from testing that subjected the prototype system to realistic spacecraft base motion and confirmed predicted sub-micro radian stabilization performance with a realistic 20-cm aperture.
2012-01-01
Background Bioimpedance analysis (BIA) has been reported as helpful in identifying hypervolemia. Observation data showed that hypervolemic maintenance hemodialysis (MHD) patients identified using BIA methods have higher mortality risk. However, it is not known if BIA-guided fluid management can improve MHD patients’ survival. The objectives of the BOCOMO study are to evaluate the outcome of BIA guided fluid management compared with standard care. Methods This is a multicenter, prospective, randomized, controlled trial. More than 1300 participants from 16 clinical sites will be included in the study. The enrolment period will last 6 months, and minimum length of follow-up will be 36 months. MHD patients aged between 18 years and 80 years who have been on MHD for at least 3 months and meet eligibility criteria will be invited to participate in the study. Participants will be randomized to BIA arm or control arm in a 1:1 ratio. A portable whole body bioimpedance spectroscopy device (BCM—Fresenius Medical Care D GmbH) will be used for BIA measurement at baseline for both arms of the study. In the BIA arm, additional BCM measurements will be performed every 2 months. The primary intent-to-treat analysis will compare outcomes for a composite endpoint of death, acute myocardial infarction, stroke or incident peripheral arterial occlusive disease between groups. Secondary endpoints will include left ventricular wall thickness, blood pressure, medications, and incidence and length of hospitalization. Discussions Previous results regarding the benefit of strict fluid control are conflicting due to small sample sizes and unstable dry weight estimating methods. To our knowledge this is the first large-scale, multicentre, prospective, randomized controlled trial to assess whether BIS-guided volume management improves outcomes of MHD patients. The endpoints of the BOCOMO study are of utmost importance to health care providers. In order to obtain that aim, the study was designed with very careful important considerations related to the endpoints, sample size, inclusion criteria, exclusion criteria and so on. For example, annual mortality of Beijing MHD patients was around 10%. To reach statistical significance, the sample size will be very large. By using composite endpoint, the sample size becomes reasonable and feasible. Limiting inclusion to patients with urine volume less than 800 ml/day the day before dialysis session will limit confounding due to residual renal function effects on the measured parameters. Patients who had received BIS measurement within 3 months prior to enrolment are excluded as data from such measurements might lead to protocol violation. Although not all patients enrolled will be incident patients, we will record the vintage of dialysis in the multivariable analysis. Trial registration Current Controlled Trials NCT01509937 PMID:23006960
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Wingen, Andreas; Ferraro, Nathaniel M.; Shafer, Morgan W.; ...
2015-09-03
Calculations of the plasma response to applied non-axisymmetric fields in several DIII-D discharges show that predicted displacements depend strongly on the edge current density. This result is found using both a linear two-fluid-MHD model (M3D-C1) and a nonlinear ideal-MHD model (VMEC). Furthermore, it is observed that the probability of a discharge being edge localized mode (ELM)-suppressed is most closely related to the edge current density, as opposed to the pressure gradient. It is found that discharges with a stronger kink response are closer to the peeling–ballooning stability limit in ELITE simulations and eventually cross into the unstable region, causing ELMsmore » to reappear. Thus for effective ELM suppression, the RMP has to prevent the plasma from generating a large kink response, associated with ELM instability. Experimental observations are in agreement with the finding; discharges which have a strong kink response in the MHD simulations show ELMs or ELM mitigation during the RMP phase of the experiment, while discharges with a small kink response in the MHD simulations are fully ELM suppressed in the experiment by the applied resonant magnetic perturbation. The results are cross-checked against modeled 3D ideal MHD equilibria using the VMEC code. The procedure of constructing optimal 3D equilibria for diverted H-mode discharges using VMEC is presented. As a result, kink displacements in VMEC are found to scale with the edge current density, similar to M3D-C1, but the displacements are smaller. A direct correlation in the flux surface displacements to the bootstrap current is shown.« less
Adaptive Numerical Dissipation Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2005-01-01
The required type and amount of numerical dissipation/filter to accurately resolve all relevant multiscales of complex MHD unsteady high-speed shock/shear/turbulence/combustion problems are not only physical problem dependent, but also vary from one flow region to another. In addition, proper and efficient control of the divergence of the magnetic field (Div(B)) numerical error for high order shock-capturing methods poses extra requirements for the considered type of CPU intensive computations. The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free from numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multiresolution wavelets (WAV) (for the above types of flow feature). These filters also provide a natural and efficient way for the minimization of Div(B) numerical error.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, D. D.; Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706; Cheng, J.
We perform linear stability studies of the ion temperature gradient (ITG) instability in unsheared slab geometry using kinetic and extended magnetohydrodynamics (MHD) models, in the regime k{sub ∥}/k{sub ⊥}≪1. The ITG is a parallel (to B) sound wave that may be destabilized by finite ion Larmor radius (FLR) effects in the presence of a gradient in the equilibrium ion temperature. The ITG is stable in both ideal and resistive MHD; for a given temperature scale length L{sub Ti0}, instability requires that either k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} be sufficiently large. Kinetic models capture FLR effects to all ordersmore » in either parameter. In the extended MHD model, these effects are captured only to lowest order by means of the Braginskii ion gyro-viscous stress tensor and the ion diamagnetic heat flux. We present the linear electrostatic dispersion relations for the ITG for both kinetic Vlasov and extended MHD (two-fluid) models in the local approximation. In the low frequency fluid regime, these reduce to the same cubic equation for the complex eigenvalue ω=ω{sub r}+iγ. An explicit solution is derived for the growth rate and real frequency in this regime. These are found to depend on a single non-dimensional parameter. We also compute the eigenvalues and the eigenfunctions with the extended MHD code NIMROD, and a hybrid kinetic δf code that assumes six-dimensional Vlasov ions and isothermal fluid electrons, as functions of k{sub ⊥}ρ{sub i} and ρ{sub i}/L{sub Ti0} using a spatially dependent equilibrium. These solutions are compared with each other, and with the predictions of the local kinetic and fluid dispersion relations. Kinetic and fluid calculations agree well at and near the marginal stability point, but diverge as k{sub ⊥}ρ{sub i} or ρ{sub i}/L{sub Ti0} increases. There is good qualitative agreement between the models for the shape of the unstable global eigenfunction for L{sub Ti0}/ρ{sub i}=30 and 20. The results quantify how far fluid calculations can be extended accurately into the kinetic regime. We conclude that for the linear ITG problem in slab geometry with unsheared magnetic field when k{sub ∥}/k{sub ⊥}≪1, the extended MHD model may be a reliable physical model for this problem when ρ{sub i}/L{sub Ti0}<10{sup −2} and k{sub ⊥}ρ{sub i}<0.2.« less
The Hall-induced stability of gravitating fluids
NASA Astrophysics Data System (ADS)
Karmakar, P. K.; Goutam, H. P.
2018-05-01
We analyze the stability behavior of low-density partially ionized self-gravitating magnetized unbounded dusty plasma fluid in the presence of the Hall diffusion effects (HDEs) in the non-ideal magnetohydrodynamic (MHD) equilibrium framework. The effects of inhomogeneous self-gravity are methodically included in the basic model tapestry. Application of the Fourier plane-wave perturbative treatment decouples the structuration representative parameters into a linear generalized dispersion relation (sextic) in a judicious mean-fluid approximation. The dispersion analysis shows that the normal mode, termed as the gravito-magneto-acoustic (GMA) mode, is drastically modified due to the HDEs. This mode is highly dispersive, and driven unstable by the Hall current resulting from the symmetry-breaking of electrons and ions relative to the magnetic field. The mode feature, which is derived from a modified induction with the positive Hall, is against the ideal MHD. It is further demonstrated that the HDEs play stabilizing roles by supporting the cloud against gravitational collapse. Provided that the HDEs are concurrently switched off, the collapse occurs on the global spatial scale due to enhanced inward accretion of the gravitating dust constituents. It is seen explicitly that the enhanced dust-charge leads to stabilizing effects. Besides, the Hall-induced fluctuations, as propagatory wave modes, exhibit both normal and anomalous dispersions. The reliability checkup of the entailed results as diverse corollaries and special cases are illustratively discussed in the panoptic light of the earlier paradigmatic predictions available in the literature.
Kinetically Stabilized Axisymmetric Tandem Mirrors: Summary of Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Post, R F
2005-02-08
The path to practical fusion power through plasma confinement in magnetic fields, if it is solely based on the present front-runner, the tokamak, is clearly long, expensive, and arduous. The root causes for this situation lie in the effects of endemic plasma turbulence and in the complexity the tokamak's ''closed'' field geometry. The studies carried out in the investigations described in the attached reports are aimed at finding an approach that does not suffer from these problems. This goal is to be achieved by employing an axisymmetric ''open'' magnetic field geometry, i.e. one generated by a linear array of circularmore » magnet coils, and employing the magnetic mirror effect in accomplishing the plugging of end leakage. More specifically, the studies were aimed at utilizing the tandem-mirror concept in an axisymmetric configuration to achieve performance superior to the tokamak, and in a far simpler system, one for which the cost and development time could be much lower than that for the tokamak, as exemplified by ITER and its follow-ons. An important stimulus for investigating axisymmetric versions of the tandem mirror is the fact that, beginning from early days in fusion research there have been examples of axisymmetric mirror experiments where the plasma exhibited crossfield transport far below the turbulence-enhanced rates characteristic of tokamaks, in specific cases approaching the ''classical'' rate. From the standpoint of theory, axisymmetric mirror-based systems have special characteristics that help explain the low levels of turbulence that have been observed. Among these are the facts that there are no parallel currents in the equilibrium state, and that the drift surfaces of all of the trapped particles are closed surfaces, as shown early on by Teller and Northrop. In addition, in such systems it is possible to arrange that the radial boundary of the confined plasma terminates without contact with the chamber wall. This possibility reduces the probability of so-called ''temperature-gradient'' instabilities, known to be endemic to closed systems. Finally, the open-ended nature of the field readily allows the control of the radial potential distribution, a circumstance that has been shown, for example in the Gamma 10 tandem-mirror experiment at Tsukuba Japan, to suppress drift-type instability modes. Standing against all of these attractive properties of axisymmetric mirror-based systems is the fact, shown early on, that such systems are prone to MHD ''interchange'' instabilities, one in which the plasma column drifts transversely, at a rate far above classical transport. Observed early on, the ''cure'' that was universally adopted, as first demonstrated in the famous ''Ioffe experiment'', was to abandon axisymmetry and employ so-called ''magnetic-well'' fields, ones in which the field increases radially and axially from its interior, strongly suppressing the MHD interchange mode, up to plasma ''beta'' values approaching unity, observed in the 2X2B experiment. When the tandem mirror concept was introduced in 1976 every experiment that was constructed employed various combinations of non-axisymmetric coil configurations (''Baseball,'' and ''Yin-Yang'' coils) to create the magnetic fields. But it came at a heavy price: non-axisymmetric fields gave rise to new non-classical loss channels, and the complexity of the fields introduced difficult engineering problems. It was well recognized at the time that it would be highly advantageous to preserve axisymmetry of the tandem mirror coils, but there was no apparent way to stabilize the ubiquitous MHD interchange mode. A decade later a way to accomplish this end was analyzed theoretically, and, a few years later successfully demonstrated experimentally, in the Gas Dynamic Trap (GDT) experiment at Novosibirsk. The concept: the presence of a sufficient amount of plasma on the expanding field lines outside the end mirrors of a mirror machine can act as an ''anchor,'' MHD stabilizing the interior, confined, plasma. Moreover, Ryutov's theory showed that the pressure of this anchor plasma could be orders of magnitude smaller than that of the confined plasma, and still be able to stabilize it. In the GDT, which operates in a collision-dominated region (as opposed to the near-collisionless mode of a tandem mirror), the effluent plasma, though much lower in density than that of the confined plasma, is sufficient to stabilize the central plasma, up to plasma beta values of 40 percent. Furthermore, once MHD stabilized, the confined plasma in the GDT exhibited no signs of plasma turbulence or enhanced cross-field transport, even in the presence of a substantial population of high energy ions produced by neutral-beam injection.« less
The influence of cosmic rays on the stability and large-scale dynamics of the interstellar medium
NASA Astrophysics Data System (ADS)
Kuznetsov, V. D.
1986-06-01
The diffusion-convection formulation is used to study the influence of galactic cosmic rays on the stability and dynamics of the interstellar medium which is supposedly kept in equilibrium by the gravitational field of stars. It is shown that the influence of cosmic rays on the growth rate of MHD instability depends largely on a dimensionless parameter expressing the ratio of the characteristic acoustic time scale to the cosmic-ray diffusion time. If this parameter is small, the cosmic rays will decelerate the build-up of instabilities, thereby stabilizing the system; in contrast, if the parameter is large, the system will be destabilized.
Joint DIII-D/EAST Experiments Toward Steady State AT Demonstration
NASA Astrophysics Data System (ADS)
Garofalo, A. M.; Meneghini, O.; Staebler, G. M.; van Zeeland, M. A.; Gong, X.; Ding, S.; Qian, J.; Ren, Q.; Xu, G.; Grierson, B. A.; Solomon, W. M.; Holcomb, C. T.
2015-11-01
Joint DIII-D/EAST experiments on fully noninductive operation at high poloidal beta have demonstrated several attractive features of this regime for a steady-state fusion reactor. Very large bootstrap fraction (>80 %) is desirable because it reduces the demands on external noninductive current drive. High bootstrap fraction with an H-mode edge results in a broad current profile and internal transport barriers (ITBs) at large minor radius, leading to high normalized energy confinement and high MHD stability limits. The ITB radius expands with higher normalized beta, further improving both stability and confinement. Electron density ITB and large Shafranov shift lead to low AE activity in the plasma core and low anomalous fast ion losses. Both the ITB and the current profile show remarkable robustness against perturbations, without external control. Supported by US DOE under DE-FC02-04ER54698, DE-AC02-09CH11466 & DE-AC52-07NA27344 & by NMCFSP under contracts 2015GB102000 and 2015GB110001.
Tallafuss, A; Wilm, T P; Crozatier, M; Pfeffer, P; Wassef, M; Bally-Cuif, L
2001-10-01
Little is known about the factors that control the specification of the mid-hindbrain domain (MHD) within the vertebrate embryonic neural plate. Because the head-trunk junction of the Drosophila embryo and the MHD have patterning similarities, we have searched for vertebrate genes related to the Drosophila head gap gene buttonhead (btd), which in the fly specifies the head-trunk junction. We report here the identification of a zebrafish gene which, like btd, encodes a zinc-finger transcriptional activator of the Sp-1 family (hence its name, bts1 for btd/Sp-related-1) and shows a restricted expression in the head. During zebrafish gastrulation, bts1 is transcribed in the posterior epiblast including the presumptive MHD, and precedes in this area the expression of other MHD markers such as her5, pax2.1 and wnt1. Ectopic expression of bts1 combined to knock-down experiments demonstrate that Bts1 is both necessary and sufficient for the induction of pax2.1 within the anterior neural plate, but is not involved in regulating her5, wnt1 or fgf8 expression. Our results confirm that early MHD development involves several genetic cascades that independently lead to the induction of MHD markers, and identify Bts1 as a crucial upstream component of the pathway selectively leading to pax2.1 induction. In addition, they imply that flies and vertebrates, to control the development of a boundary embryonic region, have probably co-opted a similar strategy: the restriction to this territory of the expression of a Btd/Sp-like factor.
Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows
NASA Astrophysics Data System (ADS)
De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert
2018-06-01
Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.
Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry
NASA Astrophysics Data System (ADS)
Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.
2001-10-01
The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Logan, B.G.
A recently completed two-year study of a commercial tandem mirror reactor design (Mirror Advanced Reactor Study (MARS)) is briefly reviewed. The end plugs are designed for trapped particle stability, MHD ballooning, balanced geodesic curvature, and small radial electric fields in the central cell. New technologies such as lithium-lead blankets, 24T hybrid coils, gridless direct converters and plasma halo vacuum pumps are highlighted.
An new MHD/kinetic model for exploring energetic particle production in macro-scale systems
NASA Astrophysics Data System (ADS)
Drake, J. F.; Swisdak, M.; Dahlin, J. T.
2017-12-01
A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.
NASA Astrophysics Data System (ADS)
Barnes, P. R.; Vance, E. F.
A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.
Ebert, David Daniel; Cuijpers, Pim; Muñoz, Ricardo F.; Baumeister, Harald
2017-01-01
Although psychological interventions might have a tremendous potential for the prevention of mental health disorders (MHD), their current impact on the reduction of disease burden is questionable. Possible reasons include that it is not practical to deliver those interventions to the community en masse due to limited health care resources and the limited availability of evidence-based interventions and clinicians in routine practice, especially in rural areas. Therefore, new approaches are needed to maximize the impact of psychological preventive interventions. Limitations of traditional prevention programs could potentially be overcome by providing Internet- and mobile-based interventions (IMIs). This relatively new medium for promoting mental health and preventing MHD introduces a fresh array of possibilities, including the provision of evidence-based psychological interventions that are free from the restraints of travel and time and allow reaching participants for whom traditional opportunities are not an option. This article provides an introduction to the subject and narratively reviews the available evidence for the effectiveness of IMIs with regard to the prevention of MHD onsets. The number of randomized controlled trials that have been conducted to date is very limited and so far it is not possible to draw definite conclusions about the potential of IMIs for the prevention of MHD for specific disorders. Only for the indicated prevention of depression there is consistent evidence across four different randomized trial trials. The only trial on the prevention of general anxiety did not result in positive findings in terms of eating disorders (EDs), effects were only found in post hoc subgroup analyses, indicating that it might be possible to prevent ED onset for subpopulations of people at risk of developing EDs. Future studies need to identify those subpopulations likely to profit from preventive. Disorders not examined so far include substance use disorders, bipolar disorders, stress-related disorders, phobic disorders and panic disorder, obsessive–compulsive disorder, impulse-control disorders, somatic symptom disorder, and insomnia. In summary, there is a need for more rigorously conducted large scale randomized controlled trials using standard clinical diagnostic instruments for the selection of participants without MHD at baseline and the assessment of MHD onset. Subsequently, we discuss future directions for the field in order to fully exploit the potential of IMI for the prevention of MHD. PMID:28848454
Ebert, David Daniel; Cuijpers, Pim; Muñoz, Ricardo F; Baumeister, Harald
2017-01-01
Although psychological interventions might have a tremendous potential for the prevention of mental health disorders (MHD), their current impact on the reduction of disease burden is questionable. Possible reasons include that it is not practical to deliver those interventions to the community en masse due to limited health care resources and the limited availability of evidence-based interventions and clinicians in routine practice, especially in rural areas. Therefore, new approaches are needed to maximize the impact of psychological preventive interventions. Limitations of traditional prevention programs could potentially be overcome by providing Internet- and mobile-based interventions (IMIs). This relatively new medium for promoting mental health and preventing MHD introduces a fresh array of possibilities, including the provision of evidence-based psychological interventions that are free from the restraints of travel and time and allow reaching participants for whom traditional opportunities are not an option. This article provides an introduction to the subject and narratively reviews the available evidence for the effectiveness of IMIs with regard to the prevention of MHD onsets. The number of randomized controlled trials that have been conducted to date is very limited and so far it is not possible to draw definite conclusions about the potential of IMIs for the prevention of MHD for specific disorders. Only for the indicated prevention of depression there is consistent evidence across four different randomized trial trials. The only trial on the prevention of general anxiety did not result in positive findings in terms of eating disorders (EDs), effects were only found in post hoc subgroup analyses, indicating that it might be possible to prevent ED onset for subpopulations of people at risk of developing EDs. Future studies need to identify those subpopulations likely to profit from preventive. Disorders not examined so far include substance use disorders, bipolar disorders, stress-related disorders, phobic disorders and panic disorder, obsessive-compulsive disorder, impulse-control disorders, somatic symptom disorder, and insomnia. In summary, there is a need for more rigorously conducted large scale randomized controlled trials using standard clinical diagnostic instruments for the selection of participants without MHD at baseline and the assessment of MHD onset. Subsequently, we discuss future directions for the field in order to fully exploit the potential of IMI for the prevention of MHD.
NASA Technical Reports Server (NTRS)
Song, Yan; Lysak, Robert L.
1992-01-01
A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González, J. J.; Guzmán, F.
2015-12-01
In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
NASA Technical Reports Server (NTRS)
Fast, R. W. (Editor)
1982-01-01
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar.
H-mode pedestal stability and ELMs in Alcator C-Mod
NASA Astrophysics Data System (ADS)
Mossessian, Dmitri
2002-11-01
For steady state H-mode operation, a relaxation mechanism is required to limit build-up of the edge gradient and impurity accumulation. The major relaxation mechanism seen on most of the existing tokamaks - large type I ELMs - drive high particle and energy fluxes that present a significant power load on the divertor plates. On Alcator C-Mod, however, type I ELMs are not observed. Instead, more benign mechanisms - EDA and small grassy ELMs - appear to drive enhanced particle transport at the edge of H-mode plasmas. Both have good energy confinement, no impurity accumulation, and are steady state. In EDA the edge relaxation mechanism is provided by a quasicoherent electromagnetic mode localized in the outer part of the pedestal. Non-linear gyrofluid and linear gyrokinetic simulations, as well as real geometry fluctuation modeling based on fluid equations show the presence of a coherent mode. Based on those results the observed mode is tentatively identified as resistive ballooning. At higher edge pressure gradient the mode is replaced by broadband fluctuations and small irregular ELMs are observed. Based on ideal MHD calculations that include effects of bootstrap current, these ELMs are identified as medium n coupled ideal peeling/ballooning modes. The stability threshold and modes structure of these modes are studied with recently developed linear MHD stability code ELITE and the results are compared with the observed dependence of the ELMs' character on pedestal parameters and plasma shape.
Single Null Negative Triangularity Tokamak for Power Handling
NASA Astrophysics Data System (ADS)
Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.
2017-10-01
Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.
NASA Astrophysics Data System (ADS)
Sears, S. H.; Almagri, A. F.; Anderson, J. K.; Bonofiglo, P. J.; Capecchi, W.; Kim, J.
2016-10-01
The damping of Alfvenic waves is an important process, with implications varying from anomalous ion heating in laboratory and astrophysical plasmas to the stability of fusion alpha-driven modes in a burning plasma. With a 1 MW NBI on the MST, a controllable set of energetic particle modes (EPMs) and Alfvenic eigenmodes can be excited. We investigate the damping of these modes as a function of both magnetic and flow shear. Typical EPM damping rates are -104 s-1 in standard RFP discharges. Magnetic shear in the region of large energetic ion density is -2 cm-1 and can be increased up to -2.5 cm-1 by varying the boundary field. Continuum mode damping rates can be reduced up to 50%. New experiments use a bias probe to control the rotation profile. Accelerating the edge plasma relative to the rapidly rotating NBI-driven core decreases the flow shear, while decelerating the edge plasma increases the flow shear in the region of strong energetic ion population. Mode damping rates measured as a function of the local flow shear are compared to ideal MHD predictions. Work supported by US DOE.
First results of coupled IPS/NIMROD/GENRAY simulations
NASA Astrophysics Data System (ADS)
Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.; Schnack, D. D.
2010-11-01
The Integrated Plasma Simulator (IPS) framework, developed by the SWIM Project Team, facilitates self-consistent simulations of complicated plasma behavior via the coupling of various codes modeling different spatial/temporal scales in the plasma. Here, we apply this capability to investigate the stabilization of tearing modes by ECCD. Under IPS control, the NIMROD code (MHD) evolves fluid equations to model bulk plasma behavior, while the GENRAY code (RF) calculates the self-consistent propagation and deposition of RF power in the resulting plasma profiles. GENRAY data is then used to construct moments of the quasilinear diffusion tensor (induced by the RF) which influence the dynamics of momentum/energy evolution in NIMROD's equations. We present initial results from these coupled simulations and demonstrate that they correctly capture the physics of magnetic island stabilization [Jenkins et al, PoP 17, 012502 (2010)] in the low-beta limit. We also discuss the process of code verification in these simulations, demonstrating good agreement between NIMROD and GENRAY predictions for the flux-surface-averaged, RF-induced currents. An overview of ongoing model development (synthetic diagnostics/plasma control systems; neoclassical effects; etc.) is also presented. Funded by US DoE.
Nonlinear asymmetric tearing mode evolution in cylindrical geometry
Teng, Qian; Ferraro, N.; Gates, David A.; ...
2016-10-27
The growth of a tearing mode is described by reduced MHD equations. For a cylindrical equilibrium, tearing mode growth is governed by the modified Rutherford equation, i.e., the nonlinear Δ'(w). For a low beta plasma without external heating, Δ'(w) can be approximately described by two terms, Δ' ql(w), Δ'A(w). In this work, we present a simple method to calculate the quasilinear stability index Δ'ql rigorously, for poloidal mode number m ≥ 2. Δ' ql is derived by solving the outer equation through the Frobenius method. Δ'ql is composed of four terms proportional to: constant Δ' 0, w, wlnw, and w2.more » Δ' A is proportional to the asymmetry of island that is roughly proportional to w. The sum of Δ' ql and Δ' A is consistent with the more accurate expression calculated perturbatively. The reduced MHD equations are also solved numerically through a 3D MHD code M3D-C1. The analytical expression of the perturbed helical flux and the saturated island width agree with the simulation results. Lastly, it is also confirmed by the simulation that the Δ' A has to be considered in calculating island saturation.« less
MHD Simulations of Plasma Dynamics with Non-Axisymmetric Boundaries
NASA Astrophysics Data System (ADS)
Hansen, Chris; Levesque, Jeffrey; Morgan, Kyle; Jarboe, Thomas
2015-11-01
The arbitrary geometry, 3D extended MHD code PSI-TET is applied to linear and non-linear simulations of MCF plasmas with non-axisymmetric boundaries. Progress and results from simulations on two experiments will be presented: 1) Detailed validation studies of the HIT-SI experiment with self-consistent modeling of plasma dynamics in the helicity injectors. Results will be compared to experimental data and NIMROD simulations that model the effect of the helicity injectors through boundary conditions on an axisymmetric domain. 2) Linear studies of HBT-EP with different wall configurations focusing on toroidal asymmetries in the adjustable conducting wall. HBT-EP studies the effect of active/passive stabilization with an adjustable ferritic wall. Results from linear verification and benchmark studies of ideal mode growth with and without toroidal asymmetries will be presented and compared to DCON predictions. Simulations of detailed experimental geometries are enabled by use of the PSI-TET code, which employs a high order finite element method on unstructured tetrahedral grids that are generated directly from CAD models. Further development of PSI-TET will also be presented including work to support resistive wall regions within extended MHD simulations. Work supported by DoE.
NASA Astrophysics Data System (ADS)
Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.
2017-05-01
We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.
Influence of Thermal Anisotropy on Equilibrium Stellarator Beta Limits
NASA Astrophysics Data System (ADS)
Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.
2017-10-01
The effect of anisotropic heat conduction on the upper beta limit of stellarator plasmas is studied using the nonlinear, extended MHD code NIMROD. The configuration under investigation is an l=2, M=10 torsatron with vacuum rotational transform near unity. Finite-beta plasmas are created using a volumetric heating source and temperature dependent resistivity; modeled with 22 stellarator symmetric (integer multiples of M) toroidal modes. Extended MHD simulations are then performed to generate steady state solutions that represent 3D equilibria. With increased heating, Shafranov shifts occur, and the associated break up of edge magnetic surfaces limits the achievable beta. Due to the presence of finite parallel heat conduction, pressure profiles can exist in regions of magnetic stochasticity. Here, we present results of independently varying the parallel and perpendicular thermal anisotropy. In particular, simulations show that the attained stored energy is a function of the magnitude of parallel and perpendicular thermal conduction for a given heat source, indicating that equilibrium beta limits are sensitive to anisotropic transport properties. Preliminary studies of MHD stability with non-stellarator symmetric modes, near the highest achievable beta, are also presented. Research supported by US DOE under Grant No. DE-FG02-99ER54546.
NASA Astrophysics Data System (ADS)
Masti, Robert; Srinivasan, Bhuvana; King, Jacob; Stoltz, Peter; Hansen, David; Held, Eric
2017-10-01
Recent results from experiments and simulations of magnetically driven pulsed power liners have explored the role of early-time electrothermal instability in the evolution of the MRT (magneto-Rayleigh-Taylor) instability. Understanding the development of these instabilities can lead to potential stabilization mechanisms; thereby providing a significant role in the success of fusion concepts such as MagLIF (Magnetized Liner Inertial Fusion). For MagLIF the MRT instability is the most detrimental instability toward achieving fusion energy production. Experiments of high-energy density plasmas from wire-array implosions have shown the requirement for more advanced physics modeling than that of ideal magnetohydrodynamics. The overall focus of this project is on using a multi-fluid extended-MHD model with kinetic closures for thermal conductivity, resistivity, and viscosity. The extended-MHD model has been updated to include the SESAME equation-of-state tables and numerical benchmarks with this implementation will be presented. Simulations of MRT growth and evolution for MagLIF-relevant parameters will be presented using this extended-MHD model with the SESAME equation-of-state tables. This work is supported by the Department of Energy Office of Science under Grant Number DE-SC0016515.
Stability of plasma cylinder with current in a helical plasma flow
NASA Astrophysics Data System (ADS)
Leonovich, Anatoly S.; Kozlov, Daniil A.; Zong, Qiugang
2018-04-01
Stability of a plasma cylinder with a current wrapped by a helical plasma flow is studied. Unstable surface modes of magnetohydrodynamic (MHD) oscillations develop at the boundary of the cylinder enwrapped by the plasma flow. Unstable eigenmodes can also develop for which the plasma cylinder is a waveguide. The growth rate of the surface modes is much higher than that for the eigenmodes. It is shown that the asymmetric MHD modes in the plasma cylinder are stable if the velocity of the plasma flow is below a certain threshold. Such a plasma flow velocity threshold is absent for the symmetric modes. They are unstable in any arbitrarily slow plasma flows. For all surface modes there is an upper threshold for the flow velocity above which they are stable. The helicity index of the flow around the plasma cylinder significantly affects both the Mach number dependence of the surface wave growth rate and the velocity threshold values. The higher the index, the lower the upper threshold of the velocity jump above which the surface waves become stable. Calculations have been carried out for the growth rates of unstable oscillations in an equilibrium plasma cylinder with current serving as a model of the low-latitude boundary layer (LLBL) of the Earth's magnetic tail. A tangential discontinuity model is used to simulate the geomagnetic tail boundary. It is shown that the magnetopause in the geotail LLBL is unstable to a surface wave (having the highest growth rate) in low- and medium-speed solar wind flows, but becomes stable to this wave in high-speed flows. However, it can remain weakly unstable to the radiative modes of MHD oscillations.
NASA Astrophysics Data System (ADS)
Reiman, Allan H.
2016-07-01
In toroidal, magnetically confined plasmas, the heat and particle transport is strongly anisotropic, with transport along the field lines sufficiently strong relative to cross-field transport that the equilibrium pressure can generally be regarded as constant on the flux surfaces in much of the plasma. The regions near small magnetic islands, and those near the X-lines of larger islands, are exceptions, having a significant variation of the pressure within the flux surfaces. It is shown here that the variation of the equilibrium pressure within the flux surfaces in those regions has significant consequences for the pressure driven currents. It is further shown that the consequences are strongly affected by the symmetry of the magnetic field if the field is invariant under combined reflection in the poloidal and toroidal angles. (This symmetry property is called "stellarator symmetry.") In non-stellarator-symmetric equilibria, the pressure-driven currents have logarithmic singularities at the X-lines. In stellarator-symmetric MHD equilibria, the singular components of the pressure-driven currents vanish. These equilibria are to be contrasted with equilibria having B ṡ∇p =0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that are constrained to have simply nested flux surfaces, where the pressure-driven current goes like 1 /x near rational surfaces, where x is the distance from the rational surface, except in the case of quasi-symmetric flux surfaces. For the purpose of calculating the pressure-driven currents near magnetic islands, we work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B ṡ∇p =0 , near magnetic islands. Small but nonzero values of B ṡ∇p are important in this region, and small non-MHD contributions to the parallel force balance equation cannot be neglected there. Two approaches are pursued to solve our equations for the pressure driven currents. First, the equilibrium equations are applied to an analytically tractable magnetic field with an island, obtaining explicit expressions for the rotational transform and magnetic coordinates, and for the pressure-driven current and its limiting behavior near the X-line. The second approach utilizes an expansion about the X-line to provide a more general calculation of the pressure-driven current near an X-line and of the rotational transform near a separatrix. The study presented in this paper is motivated, in part, by tokamak experiments with nonaxisymmetric magnetic perturbations, where significant differences are observed between the behavior of stellarator-symmetric and non-stellarator-symmetric configurations with regard to stabilization of edge localized modes by resonant magnetic perturbations. Implications for the coupling between neoclassical tearing modes, and for magnetic island stability calculations, are also discussed.
The effect of plasma beta on high-n ballooning stability at low magnetic shear
NASA Astrophysics Data System (ADS)
Connor, J. W.; Ham, C. J.; Hastie, R. J.
2016-08-01
An explanation of the observed improvement in H-mode pedestal characteristics with increasing core plasma pressure or poloidal beta, {β\\text{pol}} , as observed in MAST and JET, is sought in terms of the impact of the Shafranov shift, {{Δ }\\prime} , on ideal ballooning MHD stability. To illustrate this succinctly, a self-consistent treatment of the low magnetic shear region of the ‘s-α ’ stability diagram is presented using the large aspect ratio Shafranov equilibrium, but enhancing both α and {{Δ }\\prime} so that they compete with each other. The method of averaging, valid at low s, is used to simplify the calculation and demonstrates how α , {{Δ }\\prime} , plasma shaping and ‘average favourable curvature’ all contribute to stability.
Transport and Dynamics in Toroidal Fusion Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnack, Dalton D
2006-05-16
This document reports the successful completion of the OFES Theory Milestone for FY2005, namely, Perform parametric studies to better understand the edge physics regimes of laboratory experiments. Simulate at increased resolution (up to 20 toroidal modes), with density evolution, late into the nonlinear phase and compare results from different types of edge modes. Simulate a single case including a study of heat deposition on nearby material walls. The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in tokamak plasmas are investigated through numerical computation. Data from the DIII-D device at General Atomics (http://fusion.gat.com/diii-d/) is used for themore » magnetohydrodynamic (MHD) equilibria, but edge parameters are varied to reveal important physical effects. The equilibrium with very low magnetic shear produces an unstable spectrum that is somewhat insensitive to dissipation coefficient values. Here, linear growth rates from the non-ideal NIMROD code (http://nimrodteam.org) agree reasonably well with ideal, i.e. non-dissipative, results from the GATO global linear stability code at low toroidal mode number (n) and with ideal results from the ELITE edge linear stability code at moderate to high toroidal mode number. Linear studies with a more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more significant discrepancies between the ideal and non-ideal calculations. The maximum growth rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the non-ideal computations continue to increase with n unless strong anisotropic thermal conduction is included. Recent modeling advances allow drift effects associated with the Hall electric field and gyroviscosity to be considered. A stabilizing effect can be observed in the preliminary results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is only 13% less than the non-ideal MHD result. Computations performed with a non-local kinetic closure for parallel electron thermal conduction that is valid over all collisionality regimes identify thermal diffusivity ratios of {chi}{sub ||}/{chi}{sub {perpendicular}} ~ 10{sup 7} - 10{sup 8} as appropriate when using collisional heat flux modeling for these modes. Adding significant parallel viscosity proves to have little effect. Nonlinear ELM computations solve the resistive MHD model with toroidal resolution 0{<=}n{<=}21, including anisotropic thermal conduction, temperature-dependent resistivity, and number density evolution. The computations are based on a realistic equilibrium with high pedestal temperature from the linear study. When the simulated ELM grows to appreciable amplitude, ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens about a peak at n=13. Analysis of the results finds the heat flux on the wall to be very nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber. Net thermal energy loss occurs on a time-scale of 100 {micro}s, and the instantaneous loss rate exceeds 1 GW.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joung, M.; Woo, M. H.; Jeong, J. H.
For a high-performance, advanced tokamak mode in KSTAR, we have been developing a real-time control system of MHD modes such as sawtooth and Neo-classical Tearing Mode (NTM) by ECH/ECCD. The active feedback control loop will be also added to the mirror position and the real-time detection of the mode position. In this year, for the stabilization of NTM that is crucial to plasma performance we have implemented open-loop ECH antenna control system in KSTAR Plasma Control System (PCS) for ECH mirror movement during a single plasma discharge. KSTAR 170 GHz ECH launcher which was designed and fabricated by collaboration withmore » PPPL and POSTECH has a final mirror of a poloidally and toroidally steerable mirror. The poloidal steering motion is only controlled in the real-time NTM control system and its maximum steering speed is 10 degree/sec by DC motor. However, the latency of the mirror control system and the return period of ECH antenna mirror angle are not fast because the existing launcher mirror control system is based on PLC which is connected to the KSTAR machine network through serial to LAN converter. In this paper, we present the design of real time NTM control system, ECH requirements, and the upgrade plan.« less
The Magnetorotational Instability in a Collisionless Plasma
NASA Astrophysics Data System (ADS)
Quataert, Eliot; Dorland, William; Hammett, Gregory W.
2002-09-01
We consider the linear axisymmetric stability of a differentially rotating collisionless plasma in the presence of a weak magnetic field; we restrict our analysis to wavelengths much larger than the proton Larmor radius. This is the kinetic version of the magnetorotational instability explored extensively as a mechanism for magnetic field amplification and angular momentum transport in accretion disks. The kinetic calculation is appropriate for hot accretion flows onto compact objects and for the growth of very weak magnetic fields, where the collisional mean free path is larger than the wavelength of the unstable modes. We show that the kinetic instability criterion is the same as in MHD, namely that the angular velocity decrease outward. However, nearly every mode has a linear kinetic growth rate that differs from its MHD counterpart. The kinetic growth rates also depend explicitly on β, i.e., on the ratio of the gas pressure to the pressure of the seed magnetic field. For β~1 the kinetic growth rates are similar to the MHD growth rates, while for β>>1 they differ significantly. For β>>1, the fastest growing mode has a growth rate ~sqrt(3)Ω for a Keplerian disk, larger than its MHD counterpart; there are also many modes whose growth rates are negligible, <~β-1/2Ω<<Ω. We provide a detailed physical interpretation of these results and show that gas pressure forces, rather than just magnetic forces, are central to the behavior of the magnetorotational instability in a collisionless plasma. We also discuss the astrophysical implications of our analysis.
Resistive wall modes in the EXTRAP T2R reversed-field pinch
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Malmberg, J.-A.; Yadikin, D.; Cecconello, M.
2003-10-01
Resistive wall modes (RWM) in the reversed field pinch are studied and a detailed comparison of experimental growth rates and linear magnetohydrodynamic (MHD) theory is made. RWM growth rates are experimentally measured in the thin shell device EXTRAP T2R [P. R. Brunsell et al., Plasma Phys. Controlled Fusion 43, 1 (2001)]. Linear MHD calculations of RWM growth rates are based on experimental equilibria. Experimental and linear MHD RWM growth rate dependency on the equilibrium profiles is investigated experimentally by varying the pinch parameter Θ=Bθ(a)/ in the range Θ=1.5-1.8. Quantitative agreement between experimental and linear MHD growth rates is seen. The dominating RWMs are the internal on-axis modes (having the same helicity as the central equilibrium field). At high Θ, external nonresonant modes are also observed. For internal modes experimental growth rates decrease with Θ while for external modes, growth rates increase with Θ. The effect of RWMs on the reversed-field pinch plasma performance is discussed.
NASA Astrophysics Data System (ADS)
Derigs, Dominik; Winters, Andrew R.; Gassner, Gregor J.; Walch, Stefanie; Bohm, Marvin
2018-07-01
The paper presents two contributions in the context of the numerical simulation of magnetized fluid dynamics. First, we show how to extend the ideal magnetohydrodynamics (MHD) equations with an inbuilt magnetic field divergence cleaning mechanism in such a way that the resulting model is consistent with the second law of thermodynamics. As a byproduct of these derivations, we show that not all of the commonly used divergence cleaning extensions of the ideal MHD equations are thermodynamically consistent. Secondly, we present a numerical scheme obtained by constructing a specific finite volume discretization that is consistent with the discrete thermodynamic entropy. It includes a mechanism to control the discrete divergence error of the magnetic field by construction and is Galilean invariant. We implement the new high-order MHD solver in the adaptive mesh refinement code FLASH where we compare the divergence cleaning efficiency to the constrained transport solver available in FLASH (unsplit staggered mesh scheme).
Numerical simulation of the kinetic effects in the solar wind
NASA Astrophysics Data System (ADS)
Sokolov, I.; Toth, G.; Gombosi, T. I.
2017-12-01
Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS-R-US+ALTOR code as applied to kinetic simulations of the solar wind.
Studying Turbulence Using Numerical Simulation Databases - X Proceedings of the 2004 Summer Program
NASA Technical Reports Server (NTRS)
Moin, Parviz; Mansour, Nagi N.
2004-01-01
This Proceedings volume contains 32 papers that span a wide range of topics that reflect the ubiquity of turbulence. The papers have been divided into six groups: 1) Solar Simulations; 2) Magnetohydrodynamics (MHD); 3) Large Eddy Simulation (LES) and Numerical Simulations; 4) Reynolds Averaged Navier Stokes (RANS) Modeling and Simulations; 5) Stability and Acoustics; 6) Combustion and Multi-Phase Flow.
Electromagnetic Torque in Tokamaks with Toroidal Asymmetries
NASA Astrophysics Data System (ADS)
Logan, Nikolas Christopher
Toroidal rotation and rotation shear strongly influences stability and confinement in tokamaks. Breaking of the toroidal symmetry by fields orders of magnitude smaller than the axisymmetric field can, however, produce electromagnetic torques that significantly affect the plasma rotation, stability and confinement. These electromagnetic torques are the study of this thesis. There are two typical types of electromagnetic torques in tokamaks: 1) "resonant torques" for which a plasma current defined by a single toroidal and single poloidal harmonic interact with external currents and 2) "nonresonant torques" for which the global plasma response to nonaxisymmetric fields is phase shifted by kinetic effects that drive the rotation towards a neoclassical offset. This work describes the diagnostics and analysis necessary to evaluate the torque by measuring the rate of momentum transfer per unit area in the vacuum region between the plasma and external currents using localized magnetic sensors to measure the Maxwell stress. These measurements provide model independent quantification of both the resonant and nonresonant electromagnetic torques, enabling direct verification of theoretical models. Measured values of the nonresonant torque are shown to agree well with the perturbed equilibrium nonambipolar transport (PENT) code calculation of torque from cross field transport in nonaxisymmetric equilibria. A combined neoclassical toroidal viscosity (NTV) theory, valid across a wide range of kinetic regimes, is fully implemented for the first time in general aspect ratio and shaped plasmas. The code captures pitch angle resonances, reproducing previously inaccessible collisionality limits in the model. The complete treatment of the model enables benchmarking to the hybrid kinetic MHD stability codes MARS-K and MISK, confirming the energy-torque equivalency principle in perturbed equilibria. Experimental validations of PENT results confirm the torque applied by nonaxisymmetric coils is often proportional to the energy put into the dominant ideal MHD kink mode. This reduces the control of nonresonant torque to a single mode model, enabling efficient feed forward optimization of applied fields. Initial results including the anisotropic kinetic pressure tensor directly in the plasma eigenmode calculations are presented here, and may eventually provide accurate metrics for multimodal coupling similar to the established single mode metrics.
Magnetic energy storage and conversion in the solar atmosphere
NASA Technical Reports Server (NTRS)
Spicer, D. S.; Mariska, J. T.; Boris, J. P.
1986-01-01
According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.
Numerical MHD codes for modeling astrophysical flows
NASA Astrophysics Data System (ADS)
Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.
2016-05-01
We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.
NASA Astrophysics Data System (ADS)
1981-09-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, C.M.; Deeds, W.E.
1999-07-13
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output. 5 figs.
Single channel double-duct liquid metal electrical generator using a magnetohydrodynamic device
Haaland, Carsten M.; Deeds, W. Edward
1999-01-01
A single channel double-duct liquid metal electrical generator using a magnetohydrodynamic (MHD) device. The single channel device provides useful output AC electric energy. The generator includes a two-cylinder linear-piston engine which drives liquid metal in a single channel looped around one side of the MHD device to form a double-duct contra-flowing liquid metal MHD generator. A flow conduit network and drive mechanism are provided for moving liquid metal with an oscillating flow through a static magnetic field to produce useful AC electric energy at practical voltages and currents. Variable stroke is obtained by controlling the quantity of liquid metal in the channel. High efficiency is obtained over a wide range of frequency and power output.
NASA Technical Reports Server (NTRS)
1981-01-01
Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.
Advanced ECCD based NTM control in closed-loop operation at ASDEX Upgrade (AUG)
NASA Astrophysics Data System (ADS)
Reich, Matthias; Barrera-Orte, Laura; Behler, Karl; Bock, Alexander; Giannone, Louis; Maraschek, Marc; Poli, Emanuele; Rapson, Chris; Stober, Jörg; Treutterer, Wolfgang
2012-10-01
In high performance plasmas, Neoclassical Tearing Modes (NTMs) are regularly observed at reactor-grade beta-values. They limit the achievable normalized beta, which is undesirable because fusion performance scales as beta squared. The method of choice for controlling and avoiding NTMs at AUG is the deposition of ECCD inside the magnetic island for stabilization in real-time (rt). Our approach to tackling such complex control problems using real-time diagnostics allows rigorous optimization of all subsystems. Recent progress in rt-equilibrium reconstruction (< 3.5 ms), rt-localization of NTMs (< 8 ms) and rt beam tracing (< 25 ms) allows closed-loop feedback operation using multiple movable mirrors as the ECCD deposition actuator. The rt-equilibrium uses function parametrization or a fast Grad-Shafranov solver with an option to include rt-MSE measurements. The island localization is based on a correlation of ECE and filtered Mirnov signals. The rt beam-tracing module provides deposition locations and their derivative versus actuator position of multiple gyrotrons. The ``MHD controller'' finally drives the actuators. Results utilizing closed-loop operation with multiple gyrotrons and their effect on NTMs are shown.
NASA Astrophysics Data System (ADS)
Jusoh, Rahimah; Nazar, Roslinda
2018-04-01
The magnetohydrodynamic (MHD) stagnation point flow and heat transfer of an electrically conducting nanofluid over a nonlinear stretching/shrinking sheet is studied numerically. Mathematical modelling and analysis are attended in the presence of viscous dissipation. Appropriate similarity transformations are used to reduce the boundary layer equations for momentum, energy and concentration into a set of ordinary differential equations. The reduced equations are solved numerically using the built in bvp4c function in Matlab. The numerical and graphical results on the effects of various parameters on the velocity and temperature profiles as well as the skin friction coefficient and the local Nusselt number are analyzed and discussed in this paper. The study discovers the existence of dual solutions for a certain range of the suction parameter. The conducted stability analysis reveals that the first solution is stable and feasible, while the second solution is unstable.
Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.
Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul
2010-03-01
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena.
NASA Astrophysics Data System (ADS)
Ida, K.; Nagaoka, K.; Inagaki, S.; Kasahara, H.; Evans, T.; Yoshinuma, M.; Kamiya, K.; Ohdach, S.; Osakabe, M.; Kobayashi, M.; Sudo, S.; Itoh, K.; Akiyama, T.; Emoto, M.; Dinklage, A.; Du, X.; Fujii, K.; Goto, M.; Goto, T.; Hasuo, M.; Hidalgo, C.; Ichiguchi, K.; Ishizawa, A.; Jakubowski, M.; Kawamura, G.; Kato, D.; Morita, S.; Mukai, K.; Murakami, I.; Murakami, S.; Narushima, Y.; Nunami, M.; Ohno, N.; Pablant, N.; Sakakibara, S.; Seki, T.; Shimozuma, T.; Shoji, M.; Tanaka, K.; Tokuzawa, T.; Todo, Y.; Wang, H.; Yokoyama, M.; Yamada, H.; Takeiri, Y.; Mutoh, T.; Imagawa, S.; Mito, T.; Nagayama, Y.; Watanabe, K. Y.; Ashikawa, N.; Chikaraishi, H.; Ejiri, A.; Furukawa, M.; Fujita, T.; Hamaguchi, S.; Igami, H.; Isobe, M.; Masuzaki, S.; Morisaki, T.; Motojima, G.; Nagasaki, K.; Nakano, H.; Oya, Y.; Suzuki, C.; Suzuki, Y.; Sakamoto, R.; Sakamoto, M.; Sanpei, A.; Takahashi, H.; Tsuchiya, H.; Tokitani, M.; Ueda, Y.; Yoshimura, Y.; Yamamoto, S.; Nishimura, K.; Sugama, H.; Yamamoto, T.; Idei, H.; Isayama, A.; Kitajima, S.; Masamune, S.; Shinohara, K.; Bawankar, P. S.; Bernard, E.; von Berkel, M.; Funaba, H.; Huang, X. L.; T., Ii; Ido, T.; Ikeda, K.; Kamio, S.; Kumazawa, R.; Kobayashi, T.; Moon, C.; Muto, S.; Miyazawa, J.; Ming, T.; Nakamura, Y.; Nishimura, S.; Ogawa, K.; Ozaki, T.; Oishi, T.; Ohno, M.; Pandya, S.; Shimizu, A.; Seki, R.; Sano, R.; Saito, K.; Sakaue, H.; Takemura, Y.; Tsumori, K.; Tamura, N.; Tanaka, H.; Toi, K.; Wieland, B.; Yamada, I.; Yasuhara, R.; Zhang, H.; Kaneko, O.; Komori, A.; Collaborators
2015-10-01
The progress in the understanding of the physics and the concurrent parameter extension in the large helical device since the last IAEA-FEC, in 2012 (Kaneko O et al 2013 Nucl. Fusion 53 095024), is reviewed. Plasma with high ion and electron temperatures (Ti(0) ˜ Te(0) ˜ 6 keV) with simultaneous ion and electron internal transport barriers is obtained by controlling recycling and heating deposition. A sign flip of the nondiffusive term of impurity/momentum transport (residual stress and convection flow) is observed, which is associated with the formation of a transport barrier. The impact of the topology of three-dimensional magnetic fields (stochastic magnetic fields and magnetic islands) on heat momentum, particle/impurity transport and magnetohydrodynamic stability is also discussed. In the steady state operation, a 48 min discharge with a line-averaged electron density of 1 × 1019 m-3 and with high electron and ion temperatures (Ti(0) ˜ Te(0) ˜ 2 keV), resulting in 3.36 GJ of input energy, is achieved.
Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade
NASA Astrophysics Data System (ADS)
Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team
2017-10-01
The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.
The effects of differential flow between rational surfaces on toroidal resistive MHD modes
NASA Astrophysics Data System (ADS)
Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John
2016-10-01
Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.
MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1979-07-01
The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant.more » Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)« less
Metallurgical technologies, energy conversion, and magnetohydrodynamic flows
NASA Astrophysics Data System (ADS)
Branover, Herman; Unger, Yeshajahu
The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)
Sverdlov, Aaron L.; Elezaby, Aly; Behring, Jessica B.; Bachschmid, Markus M.; Luptak, Ivan; Tu, Vivian H.; Siwik, Deborah A.; Miller, Edward J.; Liesa, Marc; Shirihai, Orian S; Pimentel, David R.; Cohen, Richard A.; Colucci, Wilson S.
2014-01-01
Background Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Methods and results Male C57Bl/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8 months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. Conclusions MHD due to consumption of a HFHS “Western” diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. PMID:25109264
NASA Astrophysics Data System (ADS)
Li, Kai; Liu, Jun; Liu, Weiqiang
2017-01-01
Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.
Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.
Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P
2011-03-01
High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.
Scrape-off-layer characterization and current-control of kink modes in HBT-EP
NASA Astrophysics Data System (ADS)
Brooks, John; Stewart, Ian; Levesque, Jeffrey; Mauel, Mike; Navratil, Gerald
2017-10-01
Scrape-off layer (SOL) currents and their paths through tokamaks are not well understood, but their control may prove crucial to the success of ITER and future fusion energy devices. We extend Columbia University's High Beta Tokamak-Extended Pulse (HBT-EP) experiment and active GPU feedback system to study the SOL and control MHD kink instabilities by actively controlling these currents. First, the radial plasma profiles and the edge structure of kink instabilities are measured with two triple probes. Second, we use active feedback control of a radially adjustable biased electrode to change the rotation and magnitude of slowly growing kink instabilities. By changing the phase between the probe's voltage and the edge instability with active feedback, we study its ability to influence and control plasma MHD structures. This work is in preparation for a planned 2018 multi-electrode SOL control upgrade. Supported by U.S. DOE Grant DE-FG02-86ER53222.
Optimization of DIII-D discharges to avoid AE destabilization
NASA Astrophysics Data System (ADS)
Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori
2017-10-01
The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.
Integrated Scenario Modeling of NSTX Advanced Plasma Configurations
NASA Astrophysics Data System (ADS)
Kessel, Charles; Synakowski, Edward
2003-10-01
The Spherical Torus will provide an attractive fusion energy source if it can demonstrate the following major features: high elongation and triangularity, 100% non-inductive current with a credible path to high bootstrap fractions, non-solenoidal startup and current rampup, high beta with stabilization of RWM instabilities, and sufficiently high energy confinement. NSTX has specific experimental milestones to examine these features, and integrated scenario modeling is helping to understand how these configurations might be produced and what tools are needed to access this operating space. Simulations with the Tokamak Simulation Code (TSC), CURRAY, and JSOLVER/BALMSC/PEST2 have identified fully non-inductively sustained, high beta plasmas that rely on strong plasma shaping accomplished with a PF coil modification, off-axis current drive from Electron Bernstein Waves (EBW), flexible on-axis heating and CD from High Harmonic Fast Wave (HHFW) and Neutral Beam Injection (NBI), and density control. Ideal MHD stability shows that with wall stabilization through plasma rotation and/or RWM feedback coils, a beta of 40% is achievable, with 100% non-inductive current sustained for 4 current diffusion times. Experimental data and theory are combined to produce a best extrapolation to these regimes, which is continuously improved as the discharges approach these parameters, and theoretical/computational methods expand. Further investigations and development for integrated scenario modeling on NSTX is discussed.
Electron Bernstein Wave Studies in MST
NASA Astrophysics Data System (ADS)
Seltzman, Andrew; Anderson, Jay; Forest, Cary; Nonn, Paul; Thomas, Mark; Reusch, Joshua; Hendries, Eric
2013-10-01
The overdense condition in a RFP prevents electromagnetic waves from propagating past the extreme edge. However use of the electron Bernstein wave (EBW) has the potential to heat and drive current in the plasma. MHD simulations have demonstrated that resistive tearing mode stability is very sensitive to the gradient in the edge current density profile, allowing EBW current drive to influence and potentially stabilize tearing mode activity. Coupling between the X-mode and Bernstein waves is strongly dependent on the edge density gradient. The effects on coupling of plasma density, magnetic field strength, antenna radial position and launch polarization have been examined. Coupling as high as 90% has been observed. Construction of a 450 kw RF source is complete and initial experimental results will be reported. The power and energy of this auxiliary system should be sufficient for several scientific purposes, including verifying mode conversion, EBW propagation and absorption in high beta plasmas. Target plasmas in the 300-400 kA range will be heated near the reversal surface, potentially allowing mode control, while target plasmas in the 250 kA range will allow heating near the core, allowing better observation of heating effects. Heating and heat pulse propagation experiments are planned, as well as probing the stability of parametric decay during mode conversion, at moderate injected power. Work supported by USDOE.
Understanding the stability of the low torque ITER Baseline Scenario in DIII-D
NASA Astrophysics Data System (ADS)
Turco, Francesca
2017-10-01
Analysis of the evolving current density (J), pedestal and rotation profiles in a database of 200 ITER Baseline Scenario discharges in the DIII-D tokamak sheds light on the cause of the disruptive instability limiting both high and low torque operation of these plasmas. The m =2/n =1 tearing modes, occurring after several pressure-relaxation times, are related to the shape of the current profile in the outer region of the plasma. The q =2 surface is located just inside the current pedestal, near a minimum in J. This well in J deepens at constant betaN and at lower rotation, causing the equilibrium to evolve towards a classically unstable state. Lack of core-edge differential rotation likely biases the marginal point towards instability during the secular trend in J. New results from the 2017 experimental campaign establish the first reproducible, stable operation at T =0 Nm for this scenario. A new ramp-up recipe with delayed heating keeps the discharges stable without the need for ECCD stabilization. The J profile shape in the new shots is consistent with an expansion of the previous ``shallow well'' stable operational space. Realtime Active MHD Spectroscopy (AMS) has been applied to IBS plasmas for the first time, and the plasma response measurements show that the AMS can help sense the approach to instability during the discharges. The AMS data shows the trend towards instability at low rotation, and MARS-K modelling partially reproduces the experimental trend if collisionality and resistivity are included. The modelling results are sensitive to the edge resistivity, and this can indicate that the AMS is measuring the changes in ideal (kink) stability, to which the tearing stability index delta' is correlated. Together these results constitute a crucial step to acquire physical understanding and sensing capability for the MHD stability in the Q =10 ITER scenario. Work supported by US DOE under DE-FC02-04ER54698 and DE-FG02-04ER54761.
Analysis of ELM stability with extended MHD models in JET, JT-60U and future JT-60SA tokamak plasmas
NASA Astrophysics Data System (ADS)
Aiba, N.; Pamela, S.; Honda, M.; Urano, H.; Giroud, C.; Delabie, E.; Frassinetti, L.; Lupelli, I.; Hayashi, N.; Huijsmans, G.; JET Contributors, the; Research Unit, JT-60SA
2018-01-01
The stability with respect to a peeling-ballooning mode (PBM) was investigated numerically with extended MHD simulation codes in JET, JT-60U and future JT-60SA plasmas. The MINERVA-DI code was used to analyze the linear stability, including the effects of rotation and ion diamagnetic drift ({ω }* {{i}}), in JET-ILW and JT-60SA plasmas, and the JOREK code was used to simulate nonlinear dynamics with rotation, viscosity and resistivity in JT-60U plasmas. It was validated quantitatively that the ELM trigger condition in JET-ILW plasmas can be reasonably explained by taking into account both the rotation and {ω }* {{i}} effects in the numerical analysis. When deuterium poloidal rotation is evaluated based on neoclassical theory, an increase in the effective charge of plasma destabilizes the PBM because of an acceleration of rotation and a decrease in {ω }* {{i}}. The difference in the amount of ELM energy loss in JT-60U plasmas rotating in opposite directions was reproduced qualitatively with JOREK. By comparing the ELM affected areas with linear eigenfunctions, it was confirmed that the difference in the linear stability property, due not to the rotation direction but to the plasma density profile, is thought to be responsible for changing the ELM energy loss just after the ELM crash. A predictive study to determine the pedestal profiles in JT-60SA was performed by updating the EPED1 model to include the rotation and {ω }* {{i}} effects in the PBM stability analysis. It was shown that the plasma rotation predicted with the neoclassical toroidal viscosity degrades the pedestal performance by about 10% by destabilizing the PBM, but the pressure pedestal height will be high enough to achieve the target parameters required for the ITER-like shape inductive scenario in JT-60SA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branover, H.; Mond, M.; Unger, Y.
The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less
NASA Astrophysics Data System (ADS)
Fast, R. W.
Applications of superconductivity are considered, taking into account MHD and fusion, generators, transformers, transmission lines, magnets for physics, cryogenic techniques, electrtronics, and aspects of magnet stability. Advances related to heat transfer in He I are discussed along with subjects related to theat transfer in He II, refrigeration of superconducting systems, refrigeration and liquefaction, dilution and magnetic refrigerators, refrigerators for space applications, mass transfer and flow phenomena, and the properties of fluids. Developments related to cryogenic applications are also explored, giving attention to bulk storage and transfer of cryogenic fluids, liquefied natural gas operations, space science and technology, and cryopumping. Topics related to cryogenic instrumentation and controls include the production and use of high grade silicon diode temperature sensors, the choice of strain gages for use in a large superconducting alternator, microprocessor control of cryogenic pressure, and instrumentation, data acquisition and reduction for a large spaceborne helium dewar. For individual items see A83-43221 to A83-43250
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-07-01
A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less
NASA Astrophysics Data System (ADS)
Paz-Soldan, C.
2013-10-01
Small deformations of the otherwise axisymmetric field, known as ``error fields'' (EFs), lead to large changes in global MHD stability. This talk will compare results from both 1) a line-tied screw-pinch with rotating conducting walls and 2) the DIII-D tokamak to illustrate that in both devices the EF has greatest effect where it overlaps with the spatial structure of its global kink mode. In both configurations the kink structure in the symmetry direction is well described by a single mode number (azimuthal m = 1 , toroidal n = 1 , respectively) and EF ordering is clear. In the asymmetric direction (axial and poloidal, respectively) the harmonics of the kink are coupled (by line-tying and toroidicity, respectively) and thus EF ordering is not straightforward. In the pinch, the kink is axially localized to the anode region and consequently the anode EF dominates the MHD stability. In DIII-D, the poloidal harmonics of the n = 1 EF whose pitch is smaller than the local field-line pitch are empirically shown to be dominant across a wide breadth of EF optimization experiments. In analogy with the pinch, these harmonics are also where overlap with the kink is greatest and thus where the largest plasma kink response is found. The robustness of the kink structure further enables vacuum-field cost-function minimization techniques to accurately predict optimal EF correction coil currents by strongly weighting the kink-like poloidal harmonics in the minimization. To test the limits of this paradigm recent experiments in DIII-D imposed field structures that lack kink-overlapping harmonics, yielding ~10X less sensitivity. The very different plasmas of the pinch and tokamak thus both demonstrate the dominance of the kink mode in determining optimal EF correction. Supported by US DOE under DE-AC05-06OR23100, DE-FG02-00ER54603, DE-FC02-04ER54698, and NSF 0903900.
Nonlinear stability of Halley comethosheath with transverse plasma motion
NASA Technical Reports Server (NTRS)
Srivastava, Krishna M.; Tsurutani, Bruce T.
1994-01-01
Weakly nonlinear Magneto Hydrodynamic (MHD) stability of the Halley cometosheath determined by the balance between the outward ion-neutral drag force and the inward Lorentz force is investigated including the transverse plasma motion as observed in the flanks with the help of the method of multiple scales. The eigenvalues and the eigenfunctions are obtained for the linear problem and the time evolution of the amplitude is obtained using the solvability condition for the solution of the second order problem. The diamagnetic cavity boundary and the adjacent layer of about 100 km thickness is found unstable for the travelling waves of certain wave numbers. Halley ionopause has been observed to have strong ripples with a wavelength of several hundred kilometers. It is found that nonlinear effects have stabilizing effect.
Reimerdes, H; Garofalo, A M; Jackson, G L; Okabayashi, M; Strait, E J; Chu, M S; In, Y; La Haye, R J; Lanctot, M J; Liu, Y Q; Navratil, G A; Solomon, W M; Takahashi, H; Groebner, R J
2007-02-02
Recent DIII-D experiments with reduced neutral beam torque and minimum nonaxisymmetric perturbations of the magnetic field show a significant reduction of the toroidal plasma rotation required for the stabilization of the resistive-wall mode (RWM) below the threshold values observed in experiments that apply nonaxisymmetric magnetic fields to slow the plasma rotation. A toroidal rotation frequency of less than 10 krad/s at the q=2 surface (measured with charge exchange recombination spectroscopy using C VI) corresponding to 0.3% of the inverse of the toroidal Alfvén time is sufficient to sustain the plasma pressure above the ideal MHD no-wall stability limit. The low-rotation threshold is found to be consistent with predictions by a kinetic model of RWM damping.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2010-01-01
Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.
Influence of ICRF heating on the stability of TAEs
NASA Astrophysics Data System (ADS)
Sears, J.; Burke, W.; Parker, R. R.; Snipes, J. A.; Wolfe, S.
2007-11-01
Unstable toroidicity-induced Alfv'en eigenmodes (TAEs) can appear spontaneously due to resonant interaction with fast particles such as fusion alphas, raising concern that TAEs may threaten ITER performance. This work investigates the progression of stable TAE damping rates toward instability during a scan of ICRF heating power up to 3.1 MW. Stable eigenmodes are identified in Alcator C-Mod by the Active MHD diagnostic. Unstable TAEs are observed to appear spontaneously in C-Mod limited L-mode plasmas at sufficient tail energies generated by >3 MW of ICRF heating. However preliminary analysis of experiments with moderate ICRF heating power show that TAE stability may not simply degrade with overall fast particle content. There are hints that the stability of some TAEs may be enhanced in the presence of fast particle distribution tails. Furthermore, the radial profile of the energetic particle distribution relative to the safety factor profile affects the ICRF power influence on TAE stability.
NASA Astrophysics Data System (ADS)
Wang, Xiaojing; Yu, Qingquan; Zhang, Xiaodong; Zhang, Yang; Zhu, Sizheng; Wang, Xiaoguang; Wu, Bin
2018-04-01
Numerical studies on the stabilization of neoclassical tearing modes (NTMs) by electron cyclotron current drive (ECCD) have been carried out based on reduced MHD equations, focusing on the amount of the required driven current for mode stabilization and the comparison with analytical results. The dependence of the minimum driven current required for NTM stabilization on some parameters, including the bootstrap current density, radial width of the driven current, radial deviation of the driven current from the resonant surface, and the island width when applying ECCD, are studied. By fitting the numerical results, simple expressions for these dependences are obtained. Analysis based on the modified Rutherford equation (MRE) has also been carried out, and the corresponding results have the same trend as numerical ones, while a quantitative difference between them exists. This difference becomes smaller when the applied radio frequency (rf) current is smaller.
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
Helioseismic Constraints on New Solar Models from the MoSEC Code
NASA Technical Reports Server (NTRS)
Elliott, J. R.
1998-01-01
Evolutionary solar models are computed using a new stellar evolution code, MOSEC (Modular Stellar Evolution Code). This code has been designed with carefully controlled truncation errors in order to achieve a precision which reflects the increasingly accurate determination of solar interior structure by helioseismology. A series of models is constructed to investigate the effects of the choice of equation of state (OPAL or MHD-E, the latter being a version of the MHD equation of state recalculated by the author), the inclusion of helium and heavy-element settling and diffusion, and the inclusion of a simple model of mixing associated with the solar tachocline. The neutrino flux predictions are discussed, while the sound speed of the computed models is compared to that of the sun via the latest inversion of SOI-NMI p-mode frequency data. The comparison between models calculated with the OPAL and MHD-E equations of state is particularly interesting because the MHD-E equation of state includes relativistic effects for the electrons, whereas neither MHD nor OPAL do. This has a significant effect on the sound speed of the computed model, worsening the agreement with the solar sound speed. Using the OPAL equation of state and including the settling and diffusion of helium and heavy elements produces agreement in sound speed with the helioseismic results to within about +.-0.2%; the inclusion of mixing slightly improves the agreement.
Introduction to Plasma Physics
NASA Astrophysics Data System (ADS)
Gurnett, Donald A.; Bhattacharjee, Amitava
2017-03-01
Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.
Simulation of Alpha Particles in Rotating Plasma Interacting with a Stationary Ripple
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abraham J. Fetterman and Nathaniel J. Fisch
Superthermal ExB rotation can provide magnetohydrodynamic (MHD) stability and enhanced confinement to axisymmetric mirrors. However, the rotation speed has been limited by phenomena at end electrodes. A new prediction is that rotation might instead be produced using a magnetic ripple and alpha particle kinetic energy, in an extension of the alpha channeling concept. The interaction of alpha particles with the ripple results in visually interesting and practically useful orbits.
Laboratory Plasma Source as an MHD Model for Astrophysical Jets
NASA Technical Reports Server (NTRS)
Mayo, Robert M.
1997-01-01
The significance of the work described herein lies in the demonstration of Magnetized Coaxial Plasma Gun (MCG) devices like CPS-1 to produce energetic laboratory magneto-flows with embedded magnetic fields that can be used as a simulation tool to study flow interaction dynamic of jet flows, to demonstrate the magnetic acceleration and collimation of flows with primarily toroidal fields, and study cross field transport in turbulent accreting flows. Since plasma produced in MCG devices have magnetic topology and MHD flow regime similarity to stellar and extragalactic jets, we expect that careful investigation of these flows in the laboratory will reveal fundamental physical mechanisms influencing astrophysical flows. Discussion in the next section (sec.2) focuses on recent results describing collimation, leading flow surface interaction layers, and turbulent accretion. The primary objectives for a new three year effort would involve the development and deployment of novel electrostatic, magnetic, and visible plasma diagnostic techniques to measure plasma and flow parameters of the CPS-1 device in the flow chamber downstream of the plasma source to study, (1) mass ejection, morphology, and collimation and stability of energetic outflows, (2) the effects of external magnetization on collimation and stability, (3) the interaction of such flows with background neutral gas, the generation of visible emission in such interaction, and effect of neutral clouds on jet flow dynamics, and (4) the cross magnetic field transport of turbulent accreting flows. The applicability of existing laboratory plasma facilities to the study of stellar and extragalactic plasma should be exploited to elucidate underlying physical mechanisms that cannot be ascertained though astrophysical observation, and provide baseline to a wide variety of proposed models, MHD and otherwise. The work proposed herin represents a continued effort on a novel approach in relating laboratory experiments to astrophysical jet observation. There exists overwhelming similarity among these flows that has already produced some fascinating results and is expected to continue a high pay off in future flow similarity studies.
NASA Astrophysics Data System (ADS)
Wan, Tian
This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.
Vanitha, RN; Kavimani, S; Soundararajan, P; Chamundeeswari, D; Kannan, G; Rengarajan, S
2016-01-01
Background: Malnutrition and inflammation are associated with morbidity and mortality in patients on maintenance hemodialysis (MHD). Ghrelin, an orexigenic peptide hormone, is speculated to be associated with nutritional and inflammatory status in MHD. Aim: To assess the serum total ghrelin levels and its possible relationship with inflammation and nutritional status in patients on MHD. Subjects and Methods: The study was conducted on 90 patients on MHD for 6 months and above (56 males, 34 females, mean age 52.6 [11.7] years; mean dialysis vintage 20.9 [12.1] months) and 70 healthy volunteers as control (5 males, 25 females, mean age 50.6 [9.7] years). Demographics were obtained for the study population, and dialysis-related data were collected for cases. Anthropometry, biochemical parameters, serum total ghrelin and inflammatory markers tumor necrosis factor-alpha (TNF-α), and high-sensitivityC-reactive protein (hsCRP) were assessed for cases and control. Self-reported appetite (five questions of appetite and diet assessment tool) and nutritional status (subjective global assessment-dialysis malnutrition score) were assessed for cases. Results: Ghrelin (242.5 [62.3] pg/mL vs. 80.2 [19.6] pg/mL; P < 0.001), TNF-α (39.8 [15.2] pg/mL vs. 6.5 [1.2] pg/mL; P < 0.001), hsCRP (10.2 [2.8] mg/L vs. 2.7 [0.54] mg/L; P < 0.001) were significantly elevated in cases versus control, anthropometry, and biochemical parameters were significantly decreased in hemodialysis patient. Of 90 cases, (13/90 [14.4%]) were well-nourished, (28/90 [31%]) mild to moderately malnourished, and (49/90 [54.4%]) were moderate to severely malnourished. Appetite was very good for14.4%, good and fair for 47.8%, poor and very poor for 37.8% patients. There was a significant difference in appetite with respect to nutritional status (P < 0.001). Ghrelin had positive correlation with inflammatory markers and negative correlation with nutritional status (P < 0.001). Conclusion: The study identified the association of ghrelin with appetite, nutritional, and inflammatory status of the patients on MHD. PMID:27398245
Extended-MHD Studies of Flow-Profile Effects on Edge Harmonic Oscillations in QH-mode Discharges
NASA Astrophysics Data System (ADS)
King, J. R.; Burrell, K. H.; Garofalo, A. M.; Jenkins, T. G.; Kruger, S. E.; Snyder, P. B.
2012-10-01
It is desirable to have an ITER H-mode regime that is quiescent to edge-localized modes (ELMs). ELMs deposit large, localized, impulsive, surface heat loads that can damage the divertor. One such quiescent regime with edge harmonic oscillations (EHO) is observed on DIII-D, JET, JT-60U, and ASDEX-U [1]. The physical mechanisms of EHO are not fully understood, but linear MHD calculations suggest EHO may be a saturated kink-peeling mode partially driven by flow-profile shear [2]. We present preliminary EHO computations using the extended-MHD NIMROD code. The model incorporates first-order FLR effects and parallel heat flows. Using reconstructed DIII-D profiles from discharges with EHO, we scan the ExB and polodial flow profiles and compute linear stability. The aim is to ascertain the role of the ExB flow shear, as motivated by experimental results [3], and to compare with theoretical predictions where the growth rate is enhanced at intermediate wavenumbers and cut-off at large wavenumbers by diamagnetic effects [4]. Initial nonlinear computations exploring the EHO saturation mechanism are presented.[4pt] [1] Phys. Plasmas, v19, p056117, 2012 (and refs. within).[0pt] [2] Nucl. Fusion, v47, p961, 2007.[0pt] [3] Nucl. Fusion, v51, p083018, 2011.[0pt] [4] Phys. Plasmas v10, p4405, 2003.
Conceptual design study of the moderate size superconducting spherical tokamak power plant
NASA Astrophysics Data System (ADS)
Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki
2015-06-01
A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.
Usefulness of oral loading of oxcarbazepine suspension in selected patients with epilepsy.
Kim, Dong Wook; Gu, Namyi; Lee, Howard; Jang, In-Jin; Chu, Kon; Yu, Kyung-Sang; Cho, Joo-Youn; Yoon, Seo Hyun; Na, Hyun Jeong; Lee, Sang Kun
2013-10-01
Oral loading of oxcarbazepine tablet is effective and well tolerated to adequately achieve the therapeutic levels of its active metabolite, 10,11-dihydro-10-hydroxy-carbazepine (monohydroxy derivative, MHD) in epilepsy patients. The present study was performed to investigate the safety, tolerability, and pharmacokinetic profiles of oral loading of oxcarbazepine suspension in epilepsy patients with a high risk of recurrent seizures. Oxcarbazepine suspension was administered orally at a single loading dose of 30 mg/kg to 38 adult patients with recurrent seizures, who required rapid seizure control or temporarily discontinued antiepileptic drugs for diagnostic or pre-surgical evaluation. Plasma concentrations of oxcarbazepine and MHD were determined, and adverse events were assessed at 2, 4, 6, 8, 10, 12, 14, 16, and 24 hours after oral loading of oxcarbazepine suspension. 30 patients experienced ≥ 1 adverse event during the first 24 hours after oral loading of oxcarbazepine (e.g., dizziness, transient diplopia, nausea or vomiting), most of which occurred within 4 hours after loading, suggesting no temporal association with MHD plasma levels. 35 (92.1%) patients were still compliant with a maintenance dose of oxcarbazepine after discharge from hospital. 34 (89.4%) patients reached the lower therapeutic level of MHD (12 mg/l) at 4 hours after oral loading of oxcarbazepine suspension, which lasted up to 24 hours in most patients. No patient reached the supratherapeutic levels of MHD (> 35 mg/l) during the study. The mean plasma concentration-time curves and pharmacokinetic profiles of oral loading of oxcarbazepine suspension were similar to those of oral loading of oxcarbazepine tablet. Oral loading of oxcarbazepine suspension followed by maintenance dosing is well tolerated and effective in steadily achieving the therapeutic level of MHD in selected patients with epilepsy.
Increasing Plasma Parameters using Sheared Flow Stabilization of a Z-Pinch
NASA Astrophysics Data System (ADS)
Shumlak, Uri
2016-10-01
Recent experiments on the ZaP Flow Z-Pinch at the University of Washington have been successful in compressing the plasma column to smaller radii, producing the predicted increases in plasma density (1018 cm-3), temperature (200 eV), and magnetic fields (4 T), while maintaining plasma stability for many Alfven times (over 40 μs) using sheared plasma flows. These results indicate the suitability of the device as a discovery science platform for astrophysical and high energy density plasma research, and keeps open a possible path to achieving burning plasma conditions in a compact fusion device. Long-lived Z-pinch plasmas have been produced with dimensions of 1 cm radius and 100 cm long that are stabilized by sheared axial flows for over 1000 Alfven radial transit times. The observed plasma stability is coincident with the presence of a sheared flow as measured by time-resolved multi-chord ion Doppler spectroscopy applied to impurity ion radiation. These measurements yield insights into the evolution of the velocity profile and show that the stabilizing behavior of flow shear agrees with theoretical calculations and 2-D MHD computational simulations. The flow shear value, extent, and duration are shown to be consistent with theoretical models of the plasma viscosity, which places a design constraint on the maximum axial length of a sheared flow stabilized Z-pinch. Measurements of the magnetic field topology indicate simultaneous azimuthal symmetry and axial uniformity along the entire 100 cm length of the Z-pinch plasma. Separate control of plasma acceleration and compression have increased the accessible plasma parameters and have generated stable plasmas with radii below 0.5 cm, as measured with a high resolution digital holographic interferometer. This work was supported by Grants from U.S. DOE, NNSA, and ARPA-E.
Coronal magnetohydrodynamic waves and oscillations: observations and quests.
Aschwanden, Markus J
2006-02-15
Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.
On the behavior and stability of a liquid metal in quasi-planar electric contacts
NASA Astrophysics Data System (ADS)
Samuilov, S. D.
2016-06-01
The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.
NASA Astrophysics Data System (ADS)
Marx, Alain; Lütjens, Hinrich
2017-03-01
A hybrid MPI/OpenMP parallel version of the XTOR-2F code [Lütjens and Luciani, J. Comput. Phys. 229 (2010) 8130] solving the two-fluid MHD equations in full tokamak geometry by means of an iterative Newton-Krylov matrix-free method has been developed. The present work shows that the code has been parallelized significantly despite the numerical profile of the problem solved by XTOR-2F, i.e. a discretization with pseudo-spectral representations in all angular directions, the stiffness of the two-fluid stability problem in tokamaks, and the use of a direct LU decomposition to invert the physical pre-conditioner at every Krylov iteration of the solver. The execution time of the parallelized version is an order of magnitude smaller than the sequential one for low resolution cases, with an increasing speedup when the discretization mesh is refined. Moreover, it allows to perform simulations with higher resolutions, previously forbidden because of memory limitations.
Steady-State Operation in Tore Supra
NASA Astrophysics Data System (ADS)
Hoang, G. T.; Tore Supra, Equipe
1999-11-01
The Tore Supra superconducting tokamak is devoted to steady-state operation. The CIEL (French acronym for internal component and limiter) project( LIPA, M., et al., Proc. of the 17th IEEE/NPSS Symp. on Fus. Engineering, San Diego, USA, 1997.) consists of a complete upgrade of the inner chamber of Tore Supra, planned to be installed during the year 2000. This project will allow physics scenarios with up to 24 MW of radio frequency heating and current drive (typically 8 - 10 MW of ICRF, 10 - 12 MW of LHCD and 2 MW of ECRF) in stationary plasmas up to 1000 s, with active particle control. This paper presents an overview of the experiments planned to explore the properties, such as the confinement and MHD stability, of various heating and current drive scenarios for long duration discharges. The expected performance for the CIEL phase is also reported.
Weak stability of the plasma-vacuum interface problem
NASA Astrophysics Data System (ADS)
Catania, Davide; D'Abbicco, Marcello; Secchi, Paolo
2016-09-01
We consider the free boundary problem for the two-dimensional plasma-vacuum interface in ideal compressible magnetohydrodynamics (MHD). In the plasma region, the flow is governed by the usual compressible MHD equations, while in the vacuum region we consider the Maxwell system for the electric and the magnetic fields. At the free interface, driven by the plasma velocity, the total pressure is continuous and the magnetic field on both sides is tangent to the boundary. We study the linear stability of rectilinear plasma-vacuum interfaces by computing the Kreiss-Lopatinskiĭ determinant of an associated linearized boundary value problem. Apart from possible resonances, we obtain that the piecewise constant plasma-vacuum interfaces are always weakly linearly stable, independently of the size of tangential velocity, magnetic and electric fields on both sides of the characteristic discontinuity. We also prove that solutions to the linearized problem obey an energy estimate with a loss of regularity with respect to the source terms, both in the interior domain and on the boundary, due to the failure of the uniform Kreiss-Lopatinskiĭ condition, as the Kreiss-Lopatinskiĭ determinant associated with this linearized boundary value problem has roots on the boundary of the frequency space. In the proof of the a priori estimates, a crucial part is played by the construction of symmetrizers for a reduced differential system, which has poles at which the Kreiss-Lopatinskiĭ condition may fail simultaneously.
NASA Technical Reports Server (NTRS)
Benyo, Theresa L.
2011-01-01
Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.
Present understanding of MHD and heat transfer phenomena for liquid metal blankets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirillov, I.R.; Barleon, L.; Reed, C.B.
1994-12-31
Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less
Nonlinear 3D visco-resistive MHD modeling of fusion plasmas: a comparison between numerical codes
NASA Astrophysics Data System (ADS)
Bonfiglio, D.; Chacon, L.; Cappello, S.
2008-11-01
Fluid plasma models (and, in particular, the MHD model) are extensively used in the theoretical description of laboratory and astrophysical plasmas. We present here a successful benchmark between two nonlinear, three-dimensional, compressible visco-resistive MHD codes. One is the fully implicit, finite volume code PIXIE3D [1,2], which is characterized by many attractive features, notably the generalized curvilinear formulation (which makes the code applicable to different geometries) and the possibility to include in the computation the energy transport equation and the extended MHD version of Ohm's law. In addition, the parallel version of the code features excellent scalability properties. Results from this code, obtained in cylindrical geometry, are compared with those produced by the semi-implicit cylindrical code SpeCyl, which uses finite differences radially, and spectral formulation in the other coordinates [3]. Both single and multi-mode simulations are benchmarked, regarding both reversed field pinch (RFP) and ohmic tokamak magnetic configurations. [1] L. Chacon, Computer Physics Communications 163, 143 (2004). [2] L. Chacon, Phys. Plasmas 15, 056103 (2008). [3] S. Cappello, Plasma Phys. Control. Fusion 46, B313 (2004) & references therein.
Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment
NASA Astrophysics Data System (ADS)
Schaffner, D. A.
2015-12-01
The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.
Sverdlov, Aaron L; Elezaby, Aly; Behring, Jessica B; Bachschmid, Markus M; Luptak, Ivan; Tu, Vivian H; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Colucci, Wilson S
2015-01-01
Diet-induced obesity leads to metabolic heart disease (MHD) characterized by increased oxidative stress that may cause oxidative post-translational modifications (OPTM) of cardiac mitochondrial proteins. The functional consequences of OPTM of cardiac mitochondrial proteins in MHD are unknown. Our objective was to determine whether cardiac mitochondrial dysfunction in MHD due to diet-induced obesity is associated with cysteine OPTM. Male C57BL/6J mice were fed either a high-fat, high-sucrose (HFHS) or control diet for 8months. Cardiac mitochondria from HFHS-fed mice (vs. control diet) had an increased rate of H2O2 production, a decreased GSH/GSSG ratio, a decreased rate of complex II substrate-driven ATP synthesis and decreased complex II activity. Complex II substrate-driven ATP synthesis and complex II activity were partially restored ex-vivo by reducing conditions. A biotin switch assay showed that HFHS feeding increased cysteine OPTM in complex II subunits A (SDHA) and B (SDHB). Using iodo-TMT multiplex tags we found that HFHS feeding is associated with reversible oxidation of cysteines 89 and 231 in SDHA, and 100, 103 and 115 in SDHB. MHD due to consumption of a HFHS "Western" diet causes increased H2O2 production and oxidative stress in cardiac mitochondria associated with decreased ATP synthesis and decreased complex II activity. Impaired complex II activity and ATP production are associated with reversible cysteine OPTM of complex II. Possible sites of reversible cysteine OPTM in SDHA and SDHB were identified by iodo-TMT tag labeling. Mitochondrial ROS may contribute to the pathophysiology of MHD by impairing the function of complex II. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease". Copyright © 2014 Elsevier Ltd. All rights reserved.
Serum VEGF-C levels as a candidate biomarker of hypervolemia in chronic kidney disease
Sahutoglu, Tuncay; Sakaci, Tamer; Hasbal, Nuri B.; Ahbap, Elbis; Kara, Ekrem; Sumerkan, Mutlu C.; Sevinc, Mustafa; Akgol, Cuneyt; Koc, Yener; Basturk, Taner; Unsal, Abdulkadir
2017-01-01
Abstract Attaining and maintaining optimal “dry weight” is one of the principal goals during maintenance hemodialysis (MHD). Recent studies have shown a close relationship between Na+ load and serum vascular endothelial growth factor-C (VEGF-C) levels; thus, we aimed to investigate the role of VEGF-C as a candidate biomarker of hypervolemia. Physical examination, basic laboratory tests, N-terminal pro b-type natriuretic peptide (NT-ProBNP), echocardiography, and bioimpedance spectroscopy data of 3 groups of study subjects (euvolemic MHD patients, healthy controls, and hypervolemic chronic kidney disease [CKD] patients) were analyzed. Research data for MHD patients were obtained both before the first and after the last hemodialysis (HD) sessions of the week. Data of 10 subjects from each study groups were included in the analysis. Serum VEGF-C levels were significantly higher in hypervolemic CKD versus in MHD patients both before the first and after the last HD sessions (P = .004 and P = .000, respectively). Healthy controls had serum VEGF-C levels similar to and higher than MHD patients before the first and after the last HD sessions of the week (P = .327 and P = .021, respectively). VEGF-C levels were correlated with bioimpedance spectroscopy results (r2 0.659, P = .000) and edema (r2 0.494, P =0.006), but not with ejection fraction (EF) (r2 −0.251, P = .134), blood pressures (systolic r2 0.037, P = 0.824, diastolic r2 −0.067, P = .691), and NT-ProBNP (r2 −0.047, P = .773). These findings suggest that serum VEGF-C levels could be a potential new biomarker of hypervolemia. The lack of correlation between VEGF-C and EF may hold a promise to eliminate this common confounder. Further studies are needed to define the clinical utility of VEGF-C in volume management. PMID:28471955
Sverdlov, Aaron L; Elezaby, Aly; Qin, Fuzhong; Behring, Jessica B; Luptak, Ivan; Calamaras, Timothy D; Siwik, Deborah A; Miller, Edward J; Liesa, Marc; Shirihai, Orian S; Pimentel, David R; Cohen, Richard A; Bachschmid, Markus M; Colucci, Wilson S
2016-01-11
Mitochondrial reactive oxygen species (ROS) are associated with metabolic heart disease (MHD). However, the mechanism by which ROS cause MHD is unknown. We tested the hypothesis that mitochondrial ROS are a key mediator of MHD. Mice fed a high-fat high-sucrose (HFHS) diet develop MHD with cardiac diastolic and mitochondrial dysfunction that is associated with oxidative posttranslational modifications of cardiac mitochondrial proteins. Transgenic mice that express catalase in mitochondria and wild-type mice were fed an HFHS or control diet for 4 months. Cardiac mitochondria from HFHS-fed wild-type mice had a 3-fold greater rate of H2O2 production (P=0.001 versus control diet fed), a 30% decrease in complex II substrate-driven oxygen consumption (P=0.006), 21% to 23% decreases in complex I and II substrate-driven ATP synthesis (P=0.01), and a 62% decrease in complex II activity (P=0.002). In transgenic mice that express catalase in mitochondria, all HFHS diet-induced mitochondrial abnormalities were ameliorated, as were left ventricular hypertrophy and diastolic dysfunction. In HFHS-fed wild-type mice complex II substrate-driven ATP synthesis and activity were restored ex vivo by dithiothreitol (5 mmol/L), suggesting a role for reversible cysteine oxidative posttranslational modifications. In vitro site-directed mutation of complex II subunit B Cys100 or Cys103 to redox-insensitive serines prevented complex II dysfunction induced by ROS or high glucose/high palmitate in the medium. Mitochondrial ROS are pathogenic in MHD and contribute to mitochondrial dysfunction, at least in part, by causing oxidative posttranslational modifications of complex I and II proteins including reversible oxidative posttranslational modifications of complex II subunit B Cys100 and Cys103. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.
NASA Astrophysics Data System (ADS)
1980-07-01
In most of the processes, a portion of the potassium seed material is converted to a compound not containing sulfur. The potassium in this form can, when injected upstream of the MHD channel, capture the sulfur released during the combustion of coal and eliminate the need for flue gas desulfurization equipment. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup.
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
Magnetohydrodynamic power generation
NASA Technical Reports Server (NTRS)
Smith, J. L.
1984-01-01
Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.
NASA Astrophysics Data System (ADS)
Davoust, L.; Moreau, R.; Cowley, M. D.; Tanguy, P. A.; Bertrand, F.
1997-10-01
We present analytical and numerical models of magnetohydrodynamic(MHD) buoyancy-driven flow within the liquid pool of a horizontal Bridgman crystal growth furnace, under the influence of a uniform vertical magnetic field B0. A horizontal differentially heated cylinder, whose aspect ratio (radius to length) is small enough for a fully developed regime to be established in the central core, is considered. With Hartmann layers remaining electrically inactive, a modified Rayleigh number RaG, which is the ration of the ordinary Rayleigh number to the square of the Hartmann number, is found to control the MHD reorganisation of the flow. This modified Rayleigh number is a measure of the importance of thermal convection relative to diffusion if velocity is estimated from the balance between the torques of buoyancy and the Laplace force. When RaG is much smaller than unity (quasi-diffusive regime), an analytical modelling of the flow, based on a power series of RaG, demonstrates that this balance requires secondary vortices within vertical mid-planes of the cylinder, both within the core flow and near the end walls. A 3-D numerical calculation of the flow provides evidence of the transition from a convective MHD flow (when RaG is still of the order of unity) to the quasi-diffusive flow, analytically studied. Indeed, this transition takes the form of a rather complex 3-D MHD organisation of the flow which is due to the nonuniformity of the axial temperature gradient along the cylinder.
Newtonian CAFE: a new ideal MHD code to study the solar atmosphere
NASA Astrophysics Data System (ADS)
González-Avilés, J. J.; Cruz-Osorio, A.; Lora-Clavijo, F. D.; Guzmán, F. S.
2015-12-01
We present a new code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centres on the analysis of solar phenomena within the photosphere-corona region. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As solar tests we present the transverse oscillations of Alfvénic pulses in coronal loops using a 2.5D model, and as 3D tests we present the propagation of impulsively generated MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the Harten-Lax-van Leer-Einfeldt (HLLE) flux formula combined with Minmod, MC, and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.
MHD control experiments in the Extrap T2R Reversed Field Pinch
NASA Astrophysics Data System (ADS)
Marrelli, L.; Bolzonella, T.; Brunsell, P.; Cecconello, M.; Drake, J.; Franz, P.; Gregoratto, D.; Manduchi, G.; Martin, P.; Ortolani, S.; Paccagnella, R.; Piovesan, P.; Spizzo, G.; Yadikin, D.; Zanca, P.
2004-11-01
We report here on MHD active control experiments performed in the Extrap T2R device, which has been recently equipped with a set of 32 feedback controlled saddle coils couples. Experiments aiming at selectively exciting a resonant resistive instability in order to actively induce Quasi Single Helicity states will be presented. Open loop experiments have in fact shown that a spectrum with one dominant mode can be excited in a high aspect ratio device like T2R. In addition, evidences of controlled braking of tearing modes, which spontaneously rotate in T2R, have been gathered, allowing the determination of a threshold for mode wall locking. Different feedback control schemes have been implemented. In particular, mode suppression schemes proved successful in delaying resistive wall modes growth and in increasing the discharge duration: this suggests a hybrid mode control scenario, in which RWM are suppressed and QSH is induced. Radiation imaging and internal magnetic field reconstructions performed with the ORBIT code will be presented.
Optimization of Kink Stability in High-Beta Quasi-axisymmetric Stellarators
NASA Astrophysics Data System (ADS)
Fu, G. Y.; Ku, L.-P.; Manickam, J.; Cooper, W. A.
1998-11-01
A key issue for design of Quasi-axisymmetric stellarators( A. Reiman et al, this conference.) (QAS) is the stability of external kink modes driven by pressure-induced bootstrap current. In this work, the 3D MHD stability code TERPSICHORE(W.A. Cooper, Phys. Plasmas 3), 275(1996). is used to calculate the stability of low-n external kink modes in a high-beta QAS. The kink stability is optimized by adjusting plasma boundary shape (i.e., external coil configuration) as well as plasma pressure and current profiles. For this purpose, the TERPSICHORE code has been implemented successfully in an optimizer which maximizes kink stability as well as quasi-symmetry. A key factor for kink stability is rotational transform profile. It is found that the edge magnetic shear is strongly stabilizing. The amount of the shear needed for complete stabilization increases with edge transform. It is also found that the plasma boundary shape plays an important role in the kink stability besides transform profile. The physics mechanisms for the kink stability are being studied by examining the contributions of individual terms in δ W of the energy principle: the field line bending term, the current-driven term, the pressure-driven term, and the vacuum term. Detailed results will be reported.
Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.
Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I
2018-02-12
Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Haye, R. J., E-mail: lahaye@fusion.gat.com
2015-12-10
ITER is an international project to design and build an experimental fusion reactor based on the “tokamak” concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of “H-mode” and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after whichmore » assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the “missing” current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM “seeding” instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a “wild card” may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.« less
NASA Astrophysics Data System (ADS)
La Haye, R. J.
2015-12-01
ITER is an international project to design and build an experimental fusion reactor based on the "tokamak" concept. ITER relies upon localized electron cyclotron current drive (ECCD) at the rational safety factor q=2 to suppress or stabilize the expected poloidal mode m=2, toroidal mode n=1 neoclassical tearing mode (NTM) islands. Such islands if unmitigated degrade energy confinement, lock to the resistive wall (stop rotating), cause loss of "H-mode" and induce disruption. The International Tokamak Physics Activity (ITPA) on MHD, Disruptions and Magnetic Control joint experiment group MDC-8 on Current Drive Prevention/Stabilization of Neoclassical Tearing Modes started in 2005, after which assessments were made for the requirements for ECCD needed in ITER, particularly that of rf power and alignment on q=2 [1]. Narrow well-aligned rf current parallel to and of order of one percent of the total plasma current is needed to replace the "missing" current in the island O-points and heal or preempt (avoid destabilization by applying ECCD on q=2 in absence of the mode) the island [2-4]. This paper updates the advances in ECCD stabilization on NTMs learned in DIII-D experiments and modeling during the last 5 to 10 years as applies to stabilization by localized ECCD of tearing modes in ITER. This includes the ECCD (inside the q=1 radius) stabilization of the NTM "seeding" instability known as sawteeth (m/n=1/1) [5]. Recent measurements in DIII-D show that the ITER-similar current profile is classically unstable, curvature stabilization must not be neglected, and the small island width stabilization effect from helical ion polarization currents is stronger than was previously thought [6]. The consequences of updated assumptions in ITER modeling of the minimum well-aligned ECCD power needed are all-in-all favorable (and well-within the ITER 24 gyrotron capability) when all effects are included. However, a "wild card" may be broadening of the localized ECCD by the presence of the island; various theories predict broadening could occur and there is experimental evidence for broadening in DIII-D. Wider than now expected ECCD in ITER would make alignment easier to do but weaken the stabilization and thus require more rf power. In addition to updated modeling for ITER, advances in the ITER-relevant DIII-D ECCD gyrotron launch mirror control system hardware and real-time plasma control system have been made [7] and there are plans for application in DIII-D ITER demonstration discharges.
2011-01-01
Aim and Methods We investigated the association between polymorphisms of the angiotensin converting enzyme-1 (ACE-1) and angiotensin II type one receptor (AT1RA1166C) genes and the causation of renal disease in 76 advanced chronic kidney disease (CKD) pediatric patients undergoing maintenance hemodialysis (MHD) or conservative treatment (CT). Serum ACE activity and creatine kinase-MB fraction (CK-MB) were measured in all groups. Left ventricular mass index (LVMI) was calculated according to echocardiographic measurements. Seventy healthy controls were also genotyped. Results The differences of D allele and DI genotype of ACE were found significant between MHD group and the controls (p = 0.0001). ACE-activity and LVMI were higher in MHD, while CK-MB was higher in CT patients than in all other groups. The combined genotype DD v/s ID+II comparison validated that DD genotype was a high risk genotype for hypertension .~89% of the DD CKD patients were found hypertensive in comparison to ~ 61% of patients of non DD genotype(p = 0.02). The MHD group showed an increased frequency of the C allele and CC genotype of the AT1RA1166C polymorphism (P = 0.0001). On multiple linear regression analysis, C-allele was independently associated with hypertension (P = 0.04). Conclusion ACE DD and AT1R A/C genotypes implicated possible roles in the hypertensive state and in renal damage among children with ESRD. This result might be useful in planning therapeutic strategies for individual patients. PMID:21859496
Hu, Chao; Yang, Hualan; Zhao, Yanfang; Chen, Xiang; Dong, Yinying; Li, Long; Dong, Yehao; Cui, Jiefeng; Zhu, Tongyu; Zheng, Ping; Lin, Ching-Shwun; Dai, Jican
2016-01-01
Mental health disorders(MHD) in chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) have been widely studied. However, the underlying role of inflammatory cytokines and their associated signaling pathways have not been investigated. Here, we report the potential role of cytokines and associated signaling pathways in CP/CPPS patients with MHD and in a CP/CPPS animal model. CP/CPPS patients (n = 810) and control subjects (n = 992) were enrolled in this case-control multicenter study, and serum cytokine levels were measured. Male Sprague-Dawley rats received multiple intracutaneous injections of an immuno-agent along with a pertussis-diphtheria-tetanus triple vaccine for autoimmune CP/CPPS development. The results revealed that, in CP/CPPS patients with significant MHD, elevated IL-1α, IL-1β, IL-4, IL-13, and TNF-α serum levels were observed. The above five cytokines in CP/CPPS rats were significantly elevated in prostate tissue (p < 0.05), and IL-1β levels were elevated in serum and cerebrospinal fluid. In behavioral tests, CP/CPPS rats showed anxiety- and depression-like symptoms, and impaired spatial and associative memory performance (p < 0.05). In the CP/CPPS group, ERK1/2 phosphorylation levels were increased in the amygdala and nucleus accumbens, and decreased in the hippocampus, but not caudate nucleus. Thus, prostate-derived cytokines, especially IL-1β, cross the blood brain barrier and may lead to enhanced ERK1/2 signaling in several brain areas, possibly underlying induction of CP/CPPS-related MHD. PMID:27334333
MHD Turbulence Sheared in Fixed and Rotating Frames
NASA Technical Reports Server (NTRS)
Kassinos, S. C.; Knaepen, B.; Wray, A.
2004-01-01
We consider homogeneous turbulence in a conducting fluid that is exposed to a uniform external magnetic field while being sheared in fixed and rotating frames. We take both the frame-rotation axis and the applied magnetic field to be aligned in the direction normal to the plane of the mean shear. Here a systematic parametric study is carried out in a series of Direct Numerical Simulations (DNS) in order to clarify the main effects determining the structural anisotropy and stability of the flow.
Antunes, Natalícia de Jesus; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre Junior, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Marques, Maria Paula; Lanchote, Vera Lucia
2016-02-01
Oxcarbazepine (OXC), a second-generation antiepileptic, and its chiral metabolite 10-hydroxycarbazepine (MHD) are substrates of P-glycoprotein, which can be inhibited by verapamil. This study evaluated the influence of verapamil on the pharmacokinetics of OXC and MHD enantiomers in healthy volunteers. Healthy volunteers (n = 12) on occasion O (OXC monotherapy) received 300 mg OXC/12 h for 5 days, and on the O + V occasion (treatment with OXC + verapamil), they received 300 mg OXC/12 h and 80 mg verapamil/8 h for 5 days. Blood samples were collected over a period of 12 h. Total and free plasma concentrations of OXC and the MHD enantiomers were evaluated by LC-MS/MS. Noncompartmental pharmacokinetic analysis was performed using the WinNonlin program. The kinetic disposition of MHD was enantioselective with plasma accumulation (AUC(0-12) S-(+)/R-(-) ratio of 4.38) and lower fraction unbound (0.37 vs 0.42) of the S-(+)-MHD enantiomer. Treatment with verapamil reduced the OXC mean residence time (4.91 vs 4.20 h) and apparent volume of distribution (4.72 vs 3.15 L/kg). Verapamil also increased for both MHD enantiomers C max total [R-(-)-MHD: 2.65 vs 2.98 μg/mL and S-(+)-MHD: 10.15 vs 11.60 μg/mL], C average [R-(-)-MHD: 1.98 vs 2.18 μg/mL and S-(+)-MHD: 8.10 vs 8.83 μg/mL], and AUC(0-12) [R-(-)-MHD: 23.79 vs 26.19 μg h/mL and S-(+)-MHD: 97.87 vs 108.35 μg h/mL]. Verapamil increased the AUC values of both MDH enantiomers, which is probably related to the inhibition of intestinal P-glycoprotein. Considering that the exposure of both MHD enantiomers was increased in only 10 %, no OXC dose adjustment could be recommended in the situation of verapamil coadministration.
A first look at resistive MHD stability differences between NSTX and NSTX-U high beta discharges
NASA Astrophysics Data System (ADS)
Morton, L. A.; La Haye, R. J.; Berkery, J. W.; Menard, J. E.; Ferraro, N. M.; Brennan, D. P.; Sabbagh, S. A.; Delgado-Aparicio, L. F.; Tritz, K.
2017-10-01
Comparison is made of the onset, growth rate and saturation of m/n = 2/1 tearing modes in NSTX and NSTX-U high beta discharges. NSTX-U has stronger toroidal field, higher electron temperature (thus longer resistive diffusion time) and a larger aspect ratio (due to the expansion of the center stack). Experimental identification of the mode helicity, radial location, and width is accomplished by synergistically combining information from soft x-ray emission, Thomson scattering (Te profile), Charge Exchange Recombination (Ti profile) and Mirnov diagnostics. Fitting the generalized Rutherford equation to the time-evolution of the island width allows evaluation of the different drive and stabilizing terms. Linear stability calculations have also been performed with M3D-C1. The possibility of a reduction in the stabilizing interchange effect due to curvature at somewhat larger aspect ratio in NSTX-U is one focus of the analysis. This work is supported by the US DOE under Grant DE-FG02-99ER54522.
BOOK REVIEW: Fundamentals of Plasma Physics and Controlled Fusion
NASA Astrophysics Data System (ADS)
Brambilla, Marco
1998-04-01
Professor Kenro Miyamoto, already well known for his textbook Plasma Physics for Nuclear Fusion (MIT Press, Cambridge, MA, 1976; revised edition 1989), has now published a new book entitled Fundamentals of Plasma Physics and Controlled Fusion (Iwanami Book Service Center, Tokyo, 1997). To a large extent, the new book is a somewhat shortened and well reorganized version of its predecessor. The style, concise and matter of fact, clearly shows the origin of the text in lectures given by the author to graduate students. As announced by the title, the book is divided into two parts: the first part (about 250 pages) is a general introduction to the physics of plasmas, while the second, somewhat shorter, part (about 150 pages), is devoted to a description of the most important experimental approaches to achieving controlled thermonuclear fusion. Even in the first part, moreover, the choice of subjects is consistently oriented towards the needs of fusion research. Thus, the introduction to the behaviour of charged particles (particle motion, collisions, etc.) and to the collective description of plasmas is quite short, although the reader will get a flavour of all the most important topics and will find a number of examples chosen for their relevance to fusion applications (only the presentation of the Vlasov equation, in the second section of Chapter 4, might be criticized as so concise as to be almost misleading, since the difference between microscopic and macroscopic fields is not even mentioned). Considerably more space is devoted to the magnetohydrodynamic (MHD) description of equilibrium and stability. This part includes the solution of the Grad-Shafranov equation for circular tokamaks, a brief discussion of Pfirsch-Schlüter, neoclassical and anomalous diffusion, and two relatively long chapters on the most important ideal and resistive MHD instabilities of toroidal plasmas; drift and ion temperature gradient driven instabilities are also briefly presented. The general part concludes with a few chapters on waves, again covering a broad spectrum of topics in a very condensed form: cold plasma waves, Landau and cyclotron absorption, quasi-linear theory, power flow and ray tracing in non-uniform plasmas, the main radiofrequency heating scenarios (ion cyclotron, lower hybrid and electron cyclotron) and the most common velocity space instabilities. The second part describes tokamaks, reversed field pinches, stellarators and open ended systems, and ends with a short chapter on inertial fusion. Although more descriptive in nature, this part offers a succinct introduction to relatively advanced topics, particularly for the tokamak: MHD stability and density limits, non-inductive current drive, bootstrap current, improved confinement regimes and scaling laws of the confinement. Reference to the first, general part, allows an introduction to and explanation of many of the formulas in current use for the interpretation of experimental results. A nice feature of this part is also the concise but very readable introduction to the history of fusion research. The level of the presentation corresponds well to what one would expect in a course for postgraduate students: most topics are discussed rather briefly, but always quantitatively, the mathematics being mostly worked out in full. As should be clear from the description of the content, there is a strong bias towards concrete applications, at the expense of general principles: this goes so far that the derivation of the energy principle for ideal MHD instabilities and of the dielectric tensor of the hot plasma are relegated to appendices, in spite of the fact that the mathematics involved is by no means more complex than that of the applications discussed in the main text. The equations of magnetohydrodynamics are derived in Chapter 5 not as a particular closure of the hierarchy of moments of the Vlasov equation, but using a phenomenological approach. The space devoted to comments and explanations is kept to a minimum, and discussions of the limits of validity of the theoretical models used (Vlasov equation, MHD, cold plasma, etc.) are almost absent: this price had to be paid to condense so many topics in less than 400 pages. The text is nevertheless always clear and easy to follow. The new book will therefore be appreciated both by students entering fusion research and by many senior physicists, for example experimentalists with an interest in the theoretical aspects of their work, wishing to gain a rapid but not too superficial overview of the whole field. It can also be useful for teachers of plasma physics as a source of relevant examples on particular topics worked out in detail. For all the plasma physicists who do not already possess the previous volume by Prof. Miyamoto, it is a useful addition to their library.
NASA Astrophysics Data System (ADS)
Cesario, R. C.; Castaldo, C.; Fonseca, A.; De Angelis, R.; Parail, V.; Smeulders, P.; Beurskens, M.; Brix, M.; Calabrò, G.; De Vries, P.; Mailloux, J.; Pericoli, V.; Ravera, G.; Zagorski, R.
2007-09-01
LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas (δ≈0.4) at high βN (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B0 = 2.3 T, IP = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.
Impact of ideal MHD stability limits on high-beta hybrid operation
NASA Astrophysics Data System (ADS)
Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team
2017-01-01
The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.
Impact of ideal MHD stability limits on high-beta hybrid operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piovesan, Paolo; Igochine, V.; Turco, F.
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
Impact of ideal MHD stability limits on high-beta hybrid operation
Piovesan, Paolo; Igochine, V.; Turco, F.; ...
2016-10-27
Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less
NASA Astrophysics Data System (ADS)
Matsunaga, G.; Okabayashi, M.; Aiba, N.; Boedo, J. A.; Ferron, J. R.; Hanson, J. M.; Hao, G. Z.; Heidbrink, W. W.; Holcomb, C. T.; In, Y.; Jackson, G. L.; Liu, Y. Q.; Luce, T. C.; McKee, G. R.; Osborne, T. H.; Pace, D. C.; Shinohara, K.; Snyder, P. B.; Solomon, W. M.; Strait, E. J.; Turnbull, A. D.; Van Zeeland, M. A.; Watkins, J. G.; Zeng, L.; the DIII-D Team; the JT-60 Team
2013-12-01
In the wall-stabilized high-β plasmas in JT-60U and DIII-D, interactions between energetic particle (EP) driven modes (EPdMs) and edge localized modes (ELMs) have been observed. The interaction between the EPdM and ELM are reproducibly observed. Many EP diagnostics indicate a strong correlation between the distorted waveform of the EPdM and the EP transport to the edge. The waveform distortion is composed of higher harmonics (n ⩾ 2) and looks like a density snake near the plasma edge. According to statistical analyses, ELM triggering by the EPdMs requires a finite level of waveform distortion and pedestal recovery. ELM pacing by the EPdMs occurs when the repetition frequency of the EPdMs is higher than the natural ELM frequency. EPs transported by EPdMs are thought to contribute to change the edge stability.
Influence of toroidal rotation on resistive tearing modes in tokamaks
NASA Astrophysics Data System (ADS)
Wang, S.; Ma, Z. W.
2015-12-01
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τR/τV ≫ 1, where τR and τV represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τR/τV ≪ 1), the rotation shear shows a destabilizing effect when the rotation is large.
Efficacy of beta-hydroxy-beta-methylbutyrate supplementation in maintenance hemodialysis patients.
Fitschen, Peter J; Biruete, Annabel; Jeong, Jinny; Wilund, Kenneth R
2017-01-01
Maintenance hemodialysis (MHD) patients suffer from a number of co-morbidities including declines in muscle mass and physical function. Beta-hydroxy-beta-methylbutyrate (HMB) is a metabolite of the amino acid leucine that has been shown to improve lean mass and physical function in elderly and clinical populations, but had not been studied in MHD patients. The purpose of this study was to investigate the efficacy of HMB in this population. We performed a double-blind, placebo-controlled, randomized trial to assess the effects of daily HMB supplementation on co-morbidities in MHD patients. MHD patients were recruited and assigned to either daily supplementation with HMB (n = 16) or placebo (n = 17) for 6 months. Measurements of body composition, bone density, strength, physical function, fall risk, quality of life, and blood parameters were measured at baseline and 6 months. Blood was drawn at baseline, 3, and 6 months to measure compliance. No significant effects of HMB on body composition, bone density, strength, physical function, fall risk, quality of life, or blood parameters were observed. On analysis of plasma HMB concentrations, 5 of 16 patients (31%) in the HMB group were found to be noncompliant at 3 or 6 months. Therefore, we performed a per-protocol analysis with compliant participants only and observed no significant differences in our outcomes of interest. These results do not support the efficacy of HMB to attenuate co-morbid conditions in MHD patients. Moreover, this highlights the need for future interventions targeted at reducing pill burden and improving pill compliance in this population. © 2016 International Society for Hemodialysis.
Plasma Braking Due to External Magnetic Perturbations
NASA Astrophysics Data System (ADS)
Frassinetti, L.; Olofsson, Kejo; Brunsell, P. R.; Khan, M. W. M.; Drake, J. R.
2010-11-01
The RFP EXTRAP T2R is equipped with a comprehensive active feedback system (128 active saddle coils in the full-coverage array) and active control of both resonant and non-resonant MHD modes has been demonstrated. The feedback algorithms, based on modern control methodology such as reference mode tracking (both amplitude and phase), are a useful tool to improve the ``state of the art'' of the MHD mode control. But this tool can be used also to improve the understanding and the characterization of other phenomena such as the ELM mitigation with a resonant magnetic perturbation or the plasma viscosity. The present work studies plasma and mode braking due to static RMPs. Results show that a static RMP produces a global braking of the flow profile. The study of the effect of RMPs characterized by different helicities will also give information on the plasma viscosity profile. Experimental results are finally compared to theoretical models.
Two-dimensional lattice Boltzmann model for magnetohydrodynamics.
Schaffenberger, Werner; Hanslmeier, Arnold
2002-10-01
We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.
SHI, LIHUA; SONG, JIE; ZHANG, XIAODONG; LI, YING; LI, HUI
2013-01-01
The aim of this study was to examine the correlation between the microinflammatory state and structural and functional changes of the left ventricle in maintenance haemodialysis patients (MHD). In total, 48 MHD patients and 30 healthy volunteers participated in this study. The microinflammatory state was detected from high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6) and tumour necrosis factor-α (TNF-α) levels determined by ELISA. The structure and function of the left ventricle was measured according to ultrasound cardiogram examination. The serum levels of hs-CRP, IL-6 and TNF-α in the MHD patients were higher compared with those in the controls (P<0.05). Furthermore, the measurements of the left atrial diameter (LAD), left venticular diameter (LVD), interventricular septal thickness (IVST), left ventricular posterior wall thickness (LVPWT) and the left ventricular mass index (LVMI) increased significantly and the left ventricular function (LVEF) was reduced. Correlation analysis demonstrated that the concentrations of hs-CRP, TNF-α and IL-6 correlated with the LVMI (P<0.05), but only hs-CRP correlated with the loss of function of the heart in the haemodialysis patients (P<0.05). The microinflammatory state may be closely associated with the structural and functional impairment of the heart in MHD patients. PMID:24137221
MHD heat flux mitigation in hypersonic flow around a blunt body with ablating surface
NASA Astrophysics Data System (ADS)
Bityurin, V. A.; Bocharov, A. N.
2018-07-01
One of the possible applications of magnetohydrodynamic flow control is considered. Namely, the surface heat flux mitigation by means of magnetohydrodynamic (MHD) interaction in hypersonic flow around a blunt body. The 2D computational model realizes a coupled solution of chemically non-equilibrium ionized airflow in magnetic field. Heat- and mass-transfer due to the ablation of materials from the body surface is taken into account. Two cases of free-stream flow conditions are considered: moderate free-stream velocity (7500 m s‑1) case and high free-stream velocity (11 000 m s‑1) case. It is shown that the first flow case results in moderate ionization in the shock layer, while the second flow case results in high ionization. In the first case, the Hall effect is significant, and effective electrical conductivity in the shock layer is rather low. In the second case, the Hall effect reduces, and effective conductivity is high. Even if the Hall effect is strong, as in the first case, intensive MHD deceleration of the flow behind the shock is provided due to the presence of insulating boundaries, the bow shock front and non-conductive wall of the blunt body. In the second case, high effective conductivity provides a high intensity of MHD flow deceleration. In both cases, a strong effect of MHD interaction on the flow structure is observed. As a consequence, a noticeable reduction of the surface heat flux is revealed for reasonable values of magnetic induction. The new treatment of mechanism for the surface heat flux reduction is proposed, which is different from commonly used one assuming that MHD interaction increases the bow shock stand-off distance, and, consequently results in a decrease of the mean temperature drop across the shock layer. The new effect of ‘saturation of heat flux’ is discussed.
Lu, Yao; Fang, Youxin; Wu, Xunyi; Ma, Chunlai; Wang, Yue; Xu, Lan
2017-03-01
The human UDP-glucuronosyltransferase which is genetically polymorphic catalyzes glucuronidations of various drugs. The interactions among UGT1A4, UGT1A6, UGT1A9, and UGT2B15 genetic polymorphisms, monohydroxylated derivative (MHD) of oxcarbazepine (OXC) plasma concentrations, and OXC monotherapeutic efficacy were explored in 124 Chinese patients with epilepsy receiving OXC monotherapy. MHD is the major active metabolite of OXC, and its plasma concentration was measured using high-performance liquid chromatography when patients reached their maintenance dose of OXC. Genomic DNA was extracted from whole blood and SNP genotyping performed using PCR followed by dideoxy chain termination sequencing. We followed the patients for at least 1 year to evaluate the OXC monotherapy efficacy. Patients were divided into two groups according to their therapeutic outcome: group 1, seizure free; group 2, not seizure free. The data were analyzed using T test, one-way analysis of variance (ANOVA), Kruskal-Wallis test, chi-square test, Fisher's exact test, correlation analysis, and multivariate regression analysis. T test analysis showed that MHD plasma concentrations were significantly different between the two groups (p = 0.002). One-way ANOVA followed by Bonferroni post hoc testing of four candidate SNPs revealed that carriers of the UGT1A9 variant allele I399 C > T (TT 13.28 ± 7.44 mg/L, TC 16.41 ± 6.53 mg/L) had significantly lower MHD plasma concentrations and poorer seizure control than noncarriers (CC 22.24 ± 8.49 mg/L, p < 0.05). In our study, we have demonstrated the effects of UGT1A9 genetic polymorphisms on MHD plasma concentrations and OXC therapeutic efficacy. Through MHD monitoring, we can predict OXC therapeutic efficacy, which may be useful for the personalization of OXC therapy in epileptic patients.
Kelvin-Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Zaqarashvili, T. V.; Ofman, L.; Chandra, R.
2018-01-01
We investigate the conditions under which the fluting (m = 2), m = 3 , and m = 12 magnetohydrodynamic (MHD) modes in a uniformly twisted flux tube moving along its axis become unstable in order to model the Kelvin-Helmholtz (KH) instability in a twisting solar coronal hole jet near the northern pole of the Sun. We employed the dispersion relations of MHD modes derived from the linearized MHD equations. We assumed real wavenumbers and complex angular wave frequencies, namely complex wave phse velocities. The dispersion relations were solved numerically at fixed input parameters (taken from observational data) and varying degrees of torsion of the internal magnetic field. It is shown that the stability of the modes depends upon five parameters: the density contrast between the flux tube and its environment, the ratio of the external and internal axial magnetic fields, the twist of the magnetic field lines inside the tube, the ratio of transverse and axial jet's velocities, and the value of the Alfvén Mach number (the ratio of the tube axial velocity to Alfvén speed inside the flux tube). Using a twisting jet of 2010 August 21 by SDO/AIA and other observations of coronal jets we set the parameters of our theoretical model and have obtained that in a twisted magnetic flux tube of radius of 9.8 Mm, at a density contrast of 0.474 and fixed Alfvén Mach number of ≅ 0.76 , for the three MHD modes there exist instability windows whose width crucially depends upon the internal magnetic field twist. It is found that for the considered modes an azimuthal magnetic field of 1.3 - 1.4 G (computed at the tube boundary) makes the width of the instability windows equal to zero, that is, it suppress the KH instability onset. On the other hand, the times for developing KH instability of the m = 12 MHD mode at instability wavelengths between 15 and 12 Mm turn out to be in the range of 1.9 - 4.7 min that is in agreement with the growth rates estimated from the temporal evolution of the observed unstable jet's blobs in their initial stage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543; Hudson, S.
2015-02-15
Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2)more » retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.« less
Multi-physics simulations of space weather
NASA Astrophysics Data System (ADS)
Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron
Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space weather simulation results to "standard" ideal MHD.
Characterization of peeling modes in a low aspect ratio tokamak
NASA Astrophysics Data System (ADS)
Bongard, M. W.; Thome, K. E.; Barr, J. L.; Burke, M. G.; Fonck, R. J.; Hinson, E. T.; Redd, A. J.; Schlossberg, D. J.
2014-11-01
Peeling modes are observed at the plasma edge in the Pegasus Toroidal Experiment under conditions of high edge current density (Jedge ˜ 0.1 MA m-2) and low magnetic field (B ˜ 0.1 T) present at near-unity aspect ratio. Their macroscopic properties are measured using external Mirnov coil arrays, Langmuir probes and high-speed visible imaging. The modest edge parameters and short pulse lengths of Pegasus discharges permit direct measurement of the internal magnetic field structure with an insertable array of Hall-effect sensors, providing the current profile and its temporal evolution. Peeling modes generate coherent, edge-localized electromagnetic activity with low toroidal mode numbers n ⩽ 3 and high poloidal mode numbers, in agreement with theoretical expectations of a low-n external kink structure. Coherent MHD fluctuation amplitudes are found to be strongly dependent on the experimentally measured Jedge/B peeling instability drive, consistent with theory. Peeling modes nonlinearly generate ELM-like, field-aligned filamentary structures that detach from the edge and propagate radially outward. The KFIT equilibrium code is extended with an Akima spline profile parameterization and an improved model for induced toroidal wall current estimation to obtain a reconstruction during peeling activity with its current profile constrained by internal Hall measurements. It is used to test the analytic peeling stability criterion and numerically evaluate ideal MHD stability. Both approaches predict instability, in agreement with experiment, with the latter identifying an unstable external kink.
A GDT-based fusion neutron source for academic and industrial applications
NASA Astrophysics Data System (ADS)
Anderson, J. K.; Forest, C. B.; Mirnov, V. V.; Peterson, E. E.; Waleffe, R.; Wallace, J.; Harvey, R. W.
2017-10-01
The design of a fusion neutron source based on the gas dynamic trap (GDT) configuration is underway. The motivation is both the ends and the means. There are immediate applications for neutrons including medical isotope production and actinide burners. Taking the next step in the magnetic mirror path will leverage advances in high-temperature superconducting magnets and additive manufacturing in confining a fusion plasma, and both the technological and physics bases exist. Recent breakthrough results at the GDT facility in Russia demonstrate stable confinement of a beta 60% mirror plasma at high Te ( 1 keV). These scale readily to a fusion neutron source with an increase in magnetic field, mirror ratio, and ion energy. Studies of a next-step compact device focus on calculations of MHD equilibrium and stability, and Fokker-Planck modeling to optimize the heating scenario. The conceptualized device uses off-the-shelf MRI magnets for a 1 T central field, REBCO superconducting mirror coils (which can currently produce fields in excess of 30T), and existing 75 keV NBI and 140 GHz ECRH. High harmonic fast wave injection is damped on beam ions, dramatically increasing the fusion reactivity for an incremental bump in input power. MHD stability is achieved with the vortex confinement scheme, where a biasing profile imposes optimal ExB rotation of the plasma. Liquid metal divertors are being considered in the end cells. Work supported by the Wisconsin Alumni Research Foundation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Charlson C.
2008-07-15
Numeric studies of the impact of the velocity space distribution on the stabilization of (1,1) internal kink mode and excitation of the fishbone mode are performed with a hybrid kinetic-magnetohydrodynamic model. These simulations demonstrate an extension of the physics capabilities of NIMROD[C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)], a three-dimensional extended magnetohydrodynamic (MHD) code, to include the kinetic effects of an energetic minority ion species. Kinetic effects are captured by a modification of the usual MHD momentum equation to include a pressure tensor calculated from the {delta}f particle-in-cell method [S. E. Parker and W. W. Lee,more » Phys. Fluids B 5, 77 (1993)]. The particles are advanced in the self-consistent NIMROD fields. We outline the implementation and present simulation results of energetic minority ion stabilization of the (1,1) internal kink mode and excitation of the fishbone mode. A benchmark of the linear growth rate and real frequency is shown to agree well with another code. The impact of the details of the velocity space distribution is examined; particularly extending the velocity space cutoff of the simulation particles. Modestly increasing the cutoff strongly impacts the (1,1) mode. Numeric experiments are performed to study the impact of passing versus trapped particles. Observations of these numeric experiments suggest that assumptions of energetic particle effects should be re-examined.« less
NASA Astrophysics Data System (ADS)
Reusch, Joshua
2017-10-01
A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.
Optimization of the oxidant supply system for combined cycle MHD power plants
NASA Technical Reports Server (NTRS)
Juhasz, A. J.
1982-01-01
An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.
NASA Astrophysics Data System (ADS)
Poli, Francesca
2012-10-01
Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities in a wide range of βN, reducing the no-wall limit. Scenarios are established as relaxed flattop states with time-dependent transport simulations with TSC [1]. Fully non-inductive configurations with current in the range of 7-10 MA and various heating mixes (NB, EC, IC and LH) have been studied against variations of the pressure profile peaking and of the Greenwald fraction. It is found that stable equilibria have qmin> 2 and moderate ITBs at 2/3 of the minor radius [2]. The ExB flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H&CD sources that maintain reverse or weak magnetic shear profiles throughout the discharge and ρ(qmin)>=0.5 are the focus of this work. The ITER EC upper launcher, designed for NTM control, can provide enough current drive off-axis to sustain moderate ITBs at mid-radius and maintain a non-inductive current of 8-9MA and H98>=1.5 with the day one heating mix. LH heating and current drive is effective in modifying the current profile off-axis, facilitating the formation of stronger ITBs in the rampup phase, their sustainment at larger radii and larger bootstrap fraction. The implications for steady state operation and fusion performance are discussed.[4pt] [1] Jardin S.C. et al, J. Comput. Phys. 66 (1986) 481[0pt] [2] Poli F.M. et al, Nucl. Fusion 52 (2012) 063027.
Rapporteur report: MHD electric power plants
NASA Technical Reports Server (NTRS)
Seikel, G. R.
1980-01-01
Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.
Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Widmer, F., E-mail: widmer@mps.mpg.de; Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077 Göttingen; Büchner, J.
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysicalmore » plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τ{sub t}. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τ{sub t} decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as long as the initial level of turbulence is not too large. This implies that turbulence plays an important role to reach the limit of fast reconnection in large Reynolds number plasmas even for smaller amounts of turbulence.« less
Inverted Temperature Loops in The Quiet Corona: Properties and Physical Origin
NASA Astrophysics Data System (ADS)
Huang, Z.; van der Holst, B.; Frazin, R. A.; Nuevo, F.; Vásquez, A. M.; Manchester, W.; Sokolov, I.; Gombosi, T. I.
2013-12-01
Huang et al. 2012 revealed the existence of inverted temperature ("down") loops, in which temperature decreases with height, as well as the usual ("up") loops, in which the temperature increases with height, in the quiet solar Corona. It was shown that the "down" loops are mostly located at low latitudes and "up" loops most often appear in high latitudes. A recent study by Nuevo et al. 2013 confirmed this discovery and further showed that the "down" loop population is greatest at solar minimum; and strongly decreases with solar activity. Moreover, the "down" loops were found to be associated with values of the plasma beta greater than about unity, while the "up" loops were associated with much smaller values of beta. Here, we review the properties of "up" and "down" loops, and employ a state-of-the-art global MHD model to understand the physics of these loops as well as to investigate their thermodynamic stability. The 3D MHD model uses a phenomenological wave dissipation model based on wave reflection (proportional to the Alfvén speed gradients) and turbulent dissipation.
Constructing the spectral web of rotating plasmas
NASA Astrophysics Data System (ADS)
Goedbloed, Hans
2012-10-01
Rotating plasmas are ubiquitous in nature. The theory of MHD stability of such plasmas, initiated a long time ago, has severely suffered from the wide spread misunderstanding that it necessarily involves non-self-adjoint operators. It has been shown (J.P. Goedbloed, PPCF 16, 074001, 2011; Goedbloed, Keppens and Poedts, Advanced Magnetohydrodynamics, Cambridge, 2010) that, on the contrary, spectral theory of moving plasmas can be constructed entirely on the basis of energy conservation and self-adjointness of the occurring operators. The spectral web is a further development along this line. It involves the construction of a network of curves in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. This permits to consider the enormous diversity of MHD instabilities of rotating tokamaks, accretion disks about compact objects, and jets emitted from those objects, from a single view point. This will be illustrated with results obtained with a new spectral code (ROC).
Anisotropic diffusion in mesh-free numerical magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.
2017-04-01
We extend recently developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect) and turbulent 'eddy diffusion'. We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV). We show that the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behaviour even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators and non-linear flux limiters, which is trivially generalized to AMR/moving-mesh codes. We also present applications of some of these improvements for SPH, in the form of a new integral-Godunov SPH formulation that adopts a moving-least squares gradient estimator and introduces a flux-limited Riemann problem between particles.
Verification of BOUT++ by the method of manufactured solutions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dudson, B. D., E-mail: benjamin.dudson@york.ac.uk; Hill, P.; Madsen, J.
2016-06-15
BOUT++ is a software package designed for solving plasma fluid models. It has been used to simulate a wide range of plasma phenomena ranging from linear stability analysis to 3D plasma turbulence and is capable of simulating a wide range of drift-reduced plasma fluid and gyro-fluid models. A verification exercise has been performed as part of a EUROfusion Enabling Research project, to rigorously test the correctness of the algorithms implemented in BOUT++, by testing order-of-accuracy convergence rates using the Method of Manufactured Solutions (MMS). We present tests of individual components including time-integration and advection schemes, non-orthogonal toroidal field-aligned coordinate systemsmore » and the shifted metric procedure which is used to handle highly sheared grids. The flux coordinate independent approach to differencing along magnetic field-lines has been implemented in BOUT++ and is here verified using the MMS in a sheared slab configuration. Finally, we show tests of three complete models: 2-field Hasegawa-Wakatani in 2D slab, 3-field reduced magnetohydrodynamics (MHD) in 3D field-aligned toroidal coordinates, and 5-field reduced MHD in slab geometry.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koniges, A.E.; Craddock, G.G.; Schnack, D.D.
The purpose of the workshop was to assemble workers, both within and outside of the fusion-related computations areas, for discussion regarding the issues of dynamically adaptive gridding. There were three invited talks related to adaptive gridding application experiences in various related fields of computational fluid dynamics (CFD), and nine short talks reporting on the progress of adaptive techniques in the specific areas of scrape-off-layer (SOL) modeling and magnetohydrodynamic (MHD) stability. Adaptive mesh methods have been successful in a number of diverse fields of CFD for over a decade. The method involves dynamic refinement of computed field profiles in a waymore » that disperses uniformly the numerical errors associated with discrete approximations. Because the process optimizes computational effort, adaptive mesh methods can be used to study otherwise the intractable physical problems that involve complex boundary shapes or multiple spatial/temporal scales. Recent results indicate that these adaptive techniques will be required for tokamak fluid-based simulations involving the diverted tokamak SOL modeling and MHD simulations problems related to the highest priority ITER relevant issues.Individual papers are indexed separately on the energy data bases.« less
Rotational Shear Effects on Edge Harmonic Oscillations in DIII-D Quiescent H-mode Discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, Wm.; Tobias, B. J.; Yan, Z.
2015-11-01
In quiescent H-mode (QH) regime, the edge harmonic oscillations (EHO) play an important role in avoiding the transient ELM power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n <= 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-I and MIR diagnostics, as well as the kink/peeling mode properties of the ideal MHD code ELITE. The numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the toroidal rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that the low-n EHO can be destabilized in principle with rotation in both directions. These modeling results are consistent with experimental observations of the EHO and support the proposed theory of the EHO as a rotational shear driven kink/peeling mode.
Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu
2016-03-01
Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, T.F.; Aumiller, D.L.; Gilbert, J.B.
1993-02-01
The performance of several small, seawater magnetohydrodynamic (MHD) thrusters was studied in a closed loop environment. Three different thrusters were designed, constructed, and evaluated. For the first time, videographic and photographic recordings of flow through an MHD thrusters were obtained. The MHD induced flowrate, thrust, and mechanical efficiency was measured/calculated for each thruster at different combinations of electric current and magnetic field strength. Direct determination of thrust, and subsequently of efficiency were not possible. Therefore, the hydraulic resistance of each different thruster was correlated with flowrate. This information was used in conjunction with the measured MHD induced flowrate to calculatemore » the thrust and efficiency of each thruster. Experimental results were repeatable. A theoretical model was developed to predict the performance of each thruster. The results of this model are presented for one thruster at several magnetic field strengths at various electric currents. These predictions corresponded well with the measured/calculated values of MHD induced flowrate and mechanical efficiency. Finally, several MHD thrusters with radically different configurations are proposed.« less
A fully implicit Hall MHD algorithm based on the ion Ohm's law
NASA Astrophysics Data System (ADS)
Chacón, Luis
2010-11-01
Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.
Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.
1995-01-01
The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.
Porting a Hall MHD Code to a Graphic Processing Unit
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2011-01-01
We present our experience porting a Hall MHD code to a Graphics Processing Unit (GPU). The code is a 2nd order accurate MUSCL-Hancock scheme which makes use of an HLL Riemann solver to compute numerical fluxes and second-order finite differences to compute the Hall contribution to the electric field. The divergence of the magnetic field is controlled with Dedner?s hyperbolic divergence cleaning method. Preliminary benchmark tests indicate a speedup (relative to a single Nehalem core) of 58x for a double precision calculation. We discuss scaling issues which arise when distributing work across multiple GPUs in a CPU-GPU cluster.
Reversed field pinch operation with intelligent shell feedback control in EXTRAP T2R
NASA Astrophysics Data System (ADS)
Brunsell, P. R.; Kuldkepp, M.; Menmuir, S.; Cecconello, M.; Hedqvist, A.; Yadikin, D.; Drake, J. R.; Rachlew, E.
2006-11-01
Discharges in the thin shell reversed field pinch (RFP) device EXTRAP T2R without active feedback control are characterized by growth of non-resonant m = 1 unstable resistive wall modes (RWMs) in agreement with linear MHD theory. Resonant m = 1 tearing modes (TMs) exhibit initially fast rotation and the associated perturbed radial fields at the shell are small, but eventually TMs wall-lock and give rise to a growing radial field. The increase in the radial field at the wall due to growing RWMs and wall-locked TMs is correlated with an increase in the toroidal loop voltage, which leads to discharge termination after 3-4 wall times. An active magnetic feedback control system has been installed in EXTRAP T2R. A two-dimensional array of 128 active saddle coils (pair-connected into 64 independent m = 1 coils) is used with intelligent shell feedback control to suppress the m = 1 radial field at the shell. With feedback control, active stabilization of the full toroidal spectrum of 16 unstable m = 1 non-resonant RWMs is achieved, and TM wall locking is avoided. A three-fold extension of the pulse length, up to the power supply limit, is observed. Intelligent shell feedback control is able to maintain the plasma equilibrium for 10 wall times, with plasma confinement parameters sustained at values comparable to those obtained in thick shell devices of similar size.
Liu, Li; Liu, Yue-Ping; Wang, Jing; An, Li-Wei; Jiao, Jian-Mei
2016-06-01
To investigate the effects of a knowledge-attitude-behaviour health education model on acquisition of disease-related knowledge and self-management behaviour by patients undergoing maintenance haemodialysis. Patients recently prescribed MHD were randomly assigned to a control group or an intervention group. Control group patients were treated with usual care and general education models. A specialist knowledge-attitude-behaviour health education model was applied to patients in the intervention group. Eighty-six patients were included (n = 43 per group). Before intervention, there were no significant between-group differences in disease knowledge and self-management behaviour. After 6 months' intervention, a significant between-group difference in acquisition of disease knowledge was observed. Self-management behaviour scores (control of body mass, reasonable diet, correct drug intake, physical activity, correct fistula care, disease condition monitoring, psychological and social behaviours) for the intervention group were also higher than those for the control group. These preliminary findings suggest that the knowledge-attitude-behaviour model appears to be a valuable tool for the health education of MHD patients. © The Author(s) 2016.
Liu, Li; Wang, Jing; An, Li-Wei; Jiao, Jian-Mei
2016-01-01
Objective To investigate the effects of a knowledge-attitude-behaviour health education model on acquisition of disease-related knowledge and self-management behaviour by patients undergoing maintenance haemodialysis. Methods Patients recently prescribed MHD were randomly assigned to a control group or an intervention group. Control group patients were treated with usual care and general education models. A specialist knowledge-attitude-behaviour health education model was applied to patients in the intervention group. Results Eighty-six patients were included (n = 43 per group). Before intervention, there were no significant between-group differences in disease knowledge and self-management behaviour. After 6 months’ intervention, a significant between-group difference in acquisition of disease knowledge was observed. Self-management behaviour scores (control of body mass, reasonable diet, correct drug intake, physical activity, correct fistula care, disease condition monitoring, psychological and social behaviours) for the intervention group were also higher than those for the control group. Conclusion These preliminary findings suggest that the knowledge-attitude-behaviour model appears to be a valuable tool for the health education of MHD patients. PMID:26951842
Stability of Elevated-qmin Steady-State Scenarios on DIII-D
NASA Astrophysics Data System (ADS)
Holcomb, C. T.; Victor, B.; Ferron, J. R.; Luce, T. C.; Schuster, E.
2016-10-01
Limits to high performance steady-state operation with qmin >1.4 and βN <= 3.5 are identified and explained. Various βN and q-profile histories were produced while testing feedback control of these profiles. Ten pulses had no core MHD at βN=3.4-3.5, with qmin=1.4-1.8, and q95=5-5.8. These have predicted ideal-wall kink βN limits between 4 and 5. One pulse had an n=1 tearing mode (TM) at βN=3.5 with no clear trigger. Five pulses developed n=1 TMs when βN=2, qmin=2, and q95=4.7. Stability calculations for these latter cases will be shown. In seven other shots, additional NBI power from sources with more normal injection was used, and these had off-axis fishbone (OAFB) modes at βN=3.5. These sources produce more large-radius trapped ions whose precession can drive OAFB. Preliminary analysis suggests a threshold power or voltage exists. In some cases OAFB appear to trigger n=1 TMs. These studies seek to clarify the operational limits of a steady-state scenario for next step devices. Supported by US DOE under DE-AC52-07NA27344, DE-FC02-04ER54698, DE-FG02-09ER55064.
NASA Astrophysics Data System (ADS)
Pensia, R. K.; Sutar, D. L.; Sharma, S.
2018-05-01
The Jeans instability of self-gravitating optically thick quantum plasma is reanalyzed in the framework of viscosity, black body radiation and modify ohms law. The usual magnetohydrodynamic (MHD) equation is used for the present configuration with black body radiation, viscosity, electrical resistivity and quantum corrections. A general dispersion relation is obtained with the help of linearized perturbation equations. It is found that the quantum correction has stabilizing effect on the system. The instability of system is discussed for various cases as our interest.
Spheromak reactor-design study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Les, J.M.
1981-06-30
A general overview of spheromak reactor characteristics, such as MHD stability, start up, and plasma geometry is presented. In addition, comparisons are made between spheromaks, tokamaks and field reversed mirrors. The computer code Sphero is also discussed. Sphero is a zero dimensional time independent transport code that uses particle confinement times and profile parameters as input since they are not known with certainty at the present time. More specifically, Sphero numerically solves a given set of transport equations whose solutions include such variables as fuel ion (deuterium and tritium) density, electron density, alpha particle density and ion, electron temperatures.
Piron, C.; Martin, P.; Bonfiglio, D.; ...
2016-08-11
External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigationmore » in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Finally, numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.« less
NASA Astrophysics Data System (ADS)
Emeriau-Viard, Constance; Brun, Allan Sacha
2017-10-01
During the PMS, structure and rotation rate of stars evolve significantly. We wish to assess the consequences of these drastic changes on stellar dynamo, internal magnetic field topology and activity level by mean of HPC simulations with the ASH code. To answer this question, we develop 3D MHD simulations that represent specific stages of stellar evolution along the PMS. We choose five different models characterized by the radius of their radiative zone following an evolutionary track, from 1 Myr to 50 Myr, computed by a 1D stellar evolution code. We introduce a seed magnetic field in the youngest model and then we spread it through all simulations. First of all, we study the consequences that the increase of rotation rate and the change of geometry of the convective zone have on the dynamo field that exists in the convective envelop. The magnetic energy increases, the topology of the magnetic field becomes more complex and the axisymmetric magnetic field becomes less predominant as the star ages. The computation of the fully convective MHD model shows that a strong dynamo develops with a ratio of magnetic to kinetic energy reaching equipartition and even super-equipartition states in the faster rotating cases. Magnetic fields resulting from our MHD simulations possess a mixed poloidal-toroidal topology with no obvious dominant component. We also study the relaxation of the vestige dynamo magnetic field within the radiative core and found that it satisfies stability criteria. Hence it does not experience a global reconfiguration and instead slowly relaxes by retaining its mixed poloidal-toroidal topology.
NASA Astrophysics Data System (ADS)
Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.
2013-08-01
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.
Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Carins, Iver H.; Grabbe, Crockett L.
1994-01-01
A magnetohydrodynamic (MHD) theory is developed for the standoff distance a(s) of the bow shock and the thickness Delta(ms) of the magnetosheath, using the empirical Spreiter et al. relation Delta(ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for Delta(ms) and As. In general, however, MHD effects produce major differences from previous models, especially at low Alfev (Ma) and Sonic (Ms) Mach numbers. The magnetic field orientation Ma, Ms and the ratio of specific heats gamma are all important variables of the theory. In contrast, the fast mode Mach number need play no direct role. Three principle conclusions are reached. First the gasdynamic and phenomenological models miss important dependences of field orientation and Ms generally provide poor approximations to the MHD results. Second, changes in field orientation and Ms are predicted to cause factor of approximately 4 changes in Delta(ms) at low Ma. These effects should be important when predicting the shock's location or calculating gramma from observations. Third, using Spreiter et al.'s value for k in the MHD theory leads to maxima a(s) values at low Ma and nominal Ms that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or a breakdown in the Spreiter-like relation at very low Ma.
Model of vertical plasma motion during the current quench
NASA Astrophysics Data System (ADS)
Breizman, Boris; Kiramov, Dmitrii
2017-10-01
Tokamak disruptions impair plasma position control, which allows the plasma column to move and hit the wall. These detrimental events enhance thermal and mechanical loads due to halo currents and runaway electron losses. Their fundamental understanding and prevention is one of the high-priority items for ITER. As commonly observed in experiments, the disruptive plasma tends to move vertically, and the timescale of this motion is rather resistive than Alfvenic. These observations suggest that the plasma column is nearly force-free during its vertical motion. In fact, the force-free constraint is already used in disruption simulators. In this work, we consider a geometrically simple system that mimics the tokamak plasma surrounded by the conducting structures. Using this model, we highlight the underlying mechanism of the vertical displacement events during the current quench phase of plasma disruption. We also address a question of ideal MHD stability of the plasma during its resistive motion. Work supported by the U.S. Department of Energy Contracts DEFG02-04ER54742 and DE-SC0016283.
Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System
NASA Astrophysics Data System (ADS)
Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.
2008-05-01
In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.
NASA Technical Reports Server (NTRS)
Smith, M.; Nichols, L. D.; Seikel, G. R.
1974-01-01
Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.
A summary of the ECAS performance and cost results for MHD systems
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.
1976-01-01
The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.
Free-Boundary 3D Equilibria and Resistive Wall Instabilities with Extended-MHD
NASA Astrophysics Data System (ADS)
Ferraro, N. M.
2015-11-01
The interaction of the plasma with external currents, either imposed or induced, is a critical element of a wide range of important tokamak phenomena, including resistive wall mode (RWM) stability and feedback control, island penetration and locking, and disruptions. A model of these currents may be included within the domain of extended-MHD codes in a way that preserves the self-consistency, scalability, and implicitness of their numerical methods. Such a model of the resistive wall and non-axisymmetric coils is demonstrated using the M3D-C1 code for a variety of applications, including RWMs, perturbed non-axisymmetric equilibria, and a vertical displacement event (VDE) disruption. The calculated free-boundary equilibria, which include Spitzer resistivity, rotation, and two-fluid effects, are compared to external magnetic and internal thermal measurements for several DIII-D discharges. In calculations of the perturbed equilibria in ELM suppressed discharges, the tearing response at the top of the pedestal is found to correlate with the onset of ELM suppression. Nonlinear VDE calculations, initialized using a vertically unstable DIII-D equilibrium, resolve in both space and time the currents induced in the wall and on the plasma surface, and also the currents flowing between the plasma and the wall. The relative magnitude of these contributions and the total impulse to the wall depend on the resistive wall time, although the maximum axisymmetric force on the wall over the course of the VDE is found to be essentially independent of the wall conductivity. This research was supported by US DOE contracts DE-FG02-95ER54309, DE-FC02-04ER54698 and DE-AC52-07NA27344.
Tearing Mode Stability of Evolving Toroidal Equilibria
NASA Astrophysics Data System (ADS)
Pletzer, A.; McCune, D.; Manickam, J.; Jardin, S. C.
2000-10-01
There are a number of toroidal equilibrium (such as JSOLVER, ESC, EFIT, and VMEC) and transport codes (such as TRANSP, BALDUR, and TSC) in our community that utilize differing equilibrium representations. There are also many heating and current drive (LSC and TORRAY), and stability (PEST1-3, GATO, NOVA, MARS, DCON, M3D) codes that require this equilibrium information. In an effort to provide seamless compatibility between the codes that produce and need these equilibria, we have developed two Fortran 90 modules, MEQ and XPLASMA, that serve as common interfaces between these two classes of codes. XPLASMA provides a common equilibrium representation for the heating and current drive applications while MEQ provides common equilibrium and associated metric information needed by MHD stability codes. We illustrate the utility of this approach by presenting results of PEST-3 tearing stability calculations of an NSTX discharge performed on profiles provided by the TRANSP code. Using the MEQ module, the TRANSP equilibrium data are stored in a Fortran 90 derived type and passed to PEST3 as a subroutine argument. All calculations are performed on the fly, as the profiles evolve.
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2004-12-01
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schl{umlt u}ter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scalelengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
Edge Currents and Stability in DIII-D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, D M; Fenstermacher, M E; Finkenthal, D K
2005-05-05
Understanding the stability physics of the H-mode pedestal in tokamak devices requires an accurate measurement of plasma current in the pedestal region with good spatial resolution. Theoretically, the high pressure gradients achieved in the edge of H-mode plasmas should lead to generation of a significant edge current density peak through bootstrap and Pfirsh-Schlueter effects. This edge current is important for the achievement of second stability in the context of coupled magneto hydrodynamic (MHD) modes which are both pressure (ballooning) and current (peeling) driven [1]. Many aspects of edge localized mode (ELM) behavior can be accounted for in terms of anmore » edge current density peak, with the identification of Type 1 ELMs as intermediate-n toroidal mode number MHD modes being a natural feature of this model [2]. The development of a edge localized instabilities in tokamak experiments code (ELITE) based on this model allows one to efficiently calculate the stability and growth of the relevant modes for a broad range of plasma parameters [3,4] and thus provides a framework for understanding the limits on pedestal height. This however requires an accurate assessment of the edge current. While estimates of j{sub edge} can be made based on specific bootstrap models, their validity may be limited in the edge (gradient scale lengths comparable to orbit size, large changes in collisionality, etc.). Therefore it is highly desirable to have an actual measurement. Such measurements have been made on the DIII-D tokamak using combined polarimetry and spectroscopy of an injected lithium beam. [5,6]. By analyzing one of the Zeeman-split 2S-2P lithium resonance line components, one can obtain direct information on the local magnetic field components. These values allow one to infer details of the edge current density. Because of the negligible Stark mixing of the relevant atomic levels in lithium, this method of determining j(r) is insensitive to the large local electric fields typically found in enhanced confinement (H-mode) edges, and thus avoids an ambiguity common to MSE measurements of B{sub pol}.« less
Marginal Stability of Sweet–Parker Type Current Sheets at Low Lundquist Numbers
NASA Astrophysics Data System (ADS)
Shi, Chen; Velli, Marco; Tenerani, Anna
2018-06-01
Magnetohydrodynamic simulations have shown that a nonunique critical Lundquist number S c exists, hovering around S c ∼ 104, above which threshold Sweet–Parker type stationary reconnecting configurations become unstable to a fast tearing mode dominated by plasmoid generation. It is known that the flow along the sheet plays a stabilizing role, though a satisfactory explanation of the nonuniversality and variable critical Lundquist numbers observed is still lacking. Here we discuss this question using 2D linear MHD simulations and linear stability analyses of Sweet–Parker type current sheets in the presence of background stationary inflows and outflows at low Lundquist numbers (S ≤ 104). Simulations show that the inhomogeneous outflow stabilizes the current sheet by stretching the growing magnetic islands and at the same time evacuating the magnetic islands out of the current sheet. This limits the time during which fluctuations that begin at any given wavelength can remain unstable, rendering the instability nonexponential. We find that the linear theory based on the expanding-wavelength assumption works well for S larger than ∼1000. However, we also find that the inflow and location of the initial perturbation also affect the stability threshold.
von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo
2018-04-01
A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.
Global MHD simulation of magnetosphere using HPF
NASA Astrophysics Data System (ADS)
Ogino, T.
We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.
NASA Technical Reports Server (NTRS)
Riggins, David W.
2002-01-01
The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.
MHD Effects of a Ferritic Wall on Tokamak Plasmas
NASA Astrophysics Data System (ADS)
Hughes, Paul E.
It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency on the ferritic effect, as well as observations of the effect of the ferritic wall on disruption halo currents.
Excitation of Alfvén modes by energetic particles in magnetic fusion
NASA Astrophysics Data System (ADS)
Gorelenkov, N. N.
2012-09-01
Ions with energies above the plasma ion temperature (also called super thermal, hot or energetic particles - EP) are utilized in laboratory experiments as a plasma heat source to compensate for energy loss. Sources for super thermal ions are direct injection via neutral beams, RF heating and fusion reactions. Being super thermal, ions have the potential to induce instabilities of a certain class of magnetohydrodynamics (MHD) cavity modes, in particular, various Alfvén and Alfvénacoustic Eigenmodes. It is an area where ideal MHD and kinetic theories can be tested with great accuracy. This paper touches upon key motivations to study the energetic ion interactions with MHD modes. One is the possibility of controlling the heating channel of present and future tokamak reactors via EP transport. In some extreme circumstances, uncontrolled instabilities led to vessel wall damages. This paper reviews some experimental and theoretical advances and the developments of the predictive tools in the area of EP wave interactions. Some recent important results and challenges are discussed. Many predicted instabilities pose a challenge for ITER, where the alpha-particle population is likely to excite various modes.
Drift kinetic effects on plasma response in high beta spherical tokamak experiments
NASA Astrophysics Data System (ADS)
Wang, Zhirui; Park, Jong-Kyu; Menard, Jonathan E.; Liu, Yueqiang; Kaye, Stanley M.; Gerhardt, Stefan
2018-01-01
The high β plasma response to rotating n=1 external magnetic perturbations is numerically studied and compared with the National Spherical Torus Experiment (NSTX). The hybrid magnetohydrodynamic(MHD)-kinetic modeling shows that drift kinetic effects are important in resolving the disagreement of plasma response between the ideal MHD prediction and the NSTX experimental observation when plasma pressure reaches and exceeds the no-wall limit (Troyon et al 1984 Plasma Phys. Control. Fusion 26 209). Since the external rotating fields and high plasma rotation are presented in the NSTX experiments, the importance of the resistive wall effect and plasma rotation in determining the plasma response is also identified, where the resistive wall suppresses the plasma response through the wall eddy current. The inertial energy due to plasma rotation destabilizes the plasma. The complexity of the plasma response in this study indicates that MHD modeling, including comprehensive physics, e.g. the drift kinetic effects, resistive wall and plasma rotation, are essential in order to reliably predict the plasma behavior in a high beta spherical tokamak device.
Micro optical fiber display switch based on the magnetohydrodynamic (MHD) principle
NASA Astrophysics Data System (ADS)
Lian, Kun; Heng, Khee-Hang
2001-09-01
This paper reports on a research effort to design, microfabricate and test an optical fiber display switch based on magneto hydrodynamic (MHD) principal. The switch is driven by the Lorentz force and can be used to turn on/off the light. The SU-8 photoresist and UV light source were used for prototype fabrication in order to lower the cost. With a magnetic field supplied by an external permanent magnet, and a plus electrical current supplied across the two inert sidewall electrodes, the distributed body force generated will produce a pressure difference on the fluid mercury in the switch chamber. By change the direction of current flow, the mercury can turn on or cut off the light pass in less than 10 ms. The major advantages of a MHD-based micro-switch are that it does not contain any solid moving parts and power consumption is much smaller comparing to the relay type switches. This switch can be manufactured by molding gin batch production and may have potential applications in extremely bright traffic control,, high intensity advertising display, and communication.
Validation and Continued Development of Methods for Spheromak Simulation
NASA Astrophysics Data System (ADS)
Benedett, Thomas
2016-10-01
The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.
Sugiyama, Ikuo; Bouillon, Thomas; Yamaguchi, Masayuki; Suzuki, Hikoe; Hirota, Takashi; Fink, Martin
2015-04-01
Oxcarbazepine is an anti-epileptic drug, which is almost completely metabolized by cytosolic enzymes in the liver to the active 10-monohyroxy metabolite (MHD) following oral administration. The pharmacokinetic (PK) profiles of MHD were evaluated in pediatric epileptic patients and a possible ethnic difference in PK of MHD between Japanese and non-Japanese pediatric patients was assessed. A non-linear mixed effect modeling approach was used to determine the PK of MHD. A one-compartment population model with first-order absorption appropriately described the PK of MHD. No clinically relevant differences were found for using body surface area or weight to explain between-patient variability, therefore the final model included the effects of body weight on apparent clearance (CL/F) and apparent volume of distribution (V/F) of MHD, and in addition, the effect of 3 concomitant anti-epileptic drugs (carbamazepine, phenobarbital and phenytoin) on CL/F of MHD. Inclusion of ethnicity as a covariate in the final model, concluded no ethnic difference with respect to CL/F of MHD between Japanese and non-Japanese patients. Hence, oxcarbazepine can be generally applied using the same dosage and administration for the treatment of partial onset seizures in pediatric patients, regardless of ethnicity. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.
We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less
NASA Technical Reports Server (NTRS)
Musielak, Z. E.; Rosner, R.
1988-01-01
Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.
Influence of toroidal rotation on resistive tearing modes in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, S.; Ma, Z. W., E-mail: zwma@zju.edu.cn
Influence of toroidal equilibrium plasma rotation on m/n = 2/1 resistive tearing modes is studied numerically using a 3D toroidal MHD code (CLT). It is found that the toroidal rotation with or without shear can suppress the tearing instability and the Coriolis effect in the toroidal geometry plays a dominant role on the rotation induced stabilization. For a high viscosity plasma (τ{sub R}/τ{sub V} ≫ 1, where τ{sub R} and τ{sub V} represent resistive and viscous diffusion time, respectively), the effect of the rotation shear combined with the viscosity appears to be stabilizing. For a low viscosity plasmas (τ{sub R}/τ{sub V} ≪ 1), the rotation shearmore » shows a destabilizing effect when the rotation is large.« less
Influence of driven current on resistive tearing mode in Tokamaks
NASA Astrophysics Data System (ADS)
Ma, Zhiwei; Wang, Sheng; Zhang, Wei
2016-10-01
Influence of driven current on the m / n = 2 / 1 resistive tearing mode is studied systematically using a three-dimensional toroidal MHD code (CLT). A uniform driven current with Gaussian distribution in the radial direction is imposed around the unperturbed rational surface. It is found that the driven current can locally modify the profiles of the current and safety factor, such that the tearing mode becomes linearly stable. The stabilizing effect increases with increase of the driven current Icd or decrease of its width δcd, unless an excessively large driven current reverses the magnetic shear near the rational surface and drives other instabilities such as double or triple tearing modes. The stabilizing effect can be negligible or becomes reversed if the maximum driven current density is not at the unperturbed rational surface. ITER-CN Program.
NASA Technical Reports Server (NTRS)
1981-01-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
NASA Astrophysics Data System (ADS)
1981-09-01
The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating
de Jesus Antunes, Natalicia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Lanchote, Vera Lucia
2013-12-01
Oxcarbazepine is a second-generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic-clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10-hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)-(+)- and R-(-)-MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert-butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD-H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC-MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD and an AUC(0-12) S-(+)/R-(-) ratio of 5.44. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boldyrev, Stanislav; Perez, Jean Carlos
The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less
Yoshikawa, Masahiro; Takase, Osamu; Tsujimura, Taro; Sano, Etsuko; Hayashi, Matsuhiko; Takato, Tsuyoshi; Hishikawa, Keiichi
2018-03-28
Hypercalcemia and hyperparathyroidism in patients receiving maintenance hemodialysis (MHD) can cause the progression of cardiovascular diseases (CVD) and mineral bone disorders (MBD). The KDIGO recommends the dialysates with a calcium (Ca) concentration of 1.25-1.5 mmol/L for MHD treatments, but the optimal concentration remains controversial. Here, we conducted a systematic review and a meta-analysis of seven randomized controlled trials examining a total of 622 patients to investigate the optimal concentration for MHD for 6 months or longer. The dialysates with a low Ca concentration (1.125 or 1.25 mmol/L) significantly lowered the serum Ca and raised the intact parathyroid hormone levels by 0.52 mg/dL (95% confidence interval, 0.20-0.85) and 39.59 pg/mL (14.80-64.38), respectively, compared with a high Ca concentration (1.50 or 1.75 mmol/L). Three studies showed that a low concentration was preferred for lowering arterial calcifications or atherosclerosis in different arteries, but one study showed that coronary arterial calcifications increased with a low concentration. Two studies showed contradictory outcomes in terms of MBD. Our meta-analysis showed that a dialysate with a low Ca concentration lowered the serum Ca levels in patients receiving long-term MHD, but further studies are needed to determine the optimal Ca concentration in terms of CVD and MBD.
Magnus: A New Resistive MHD Code with Heat Flow Terms
NASA Astrophysics Data System (ADS)
Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2017-07-01
We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.
Parametric study of potential early commercial power plants Task 3-A MHD cost analysis
NASA Technical Reports Server (NTRS)
1983-01-01
The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.
TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.
The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less
NASA Technical Reports Server (NTRS)
Hals, F. A.
1981-01-01
Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.
A MHD channel study for the ETF conceptual design
NASA Technical Reports Server (NTRS)
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
1981-01-01
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
A MHD channel study for the ETF conceptual design
NASA Astrophysics Data System (ADS)
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
NASA Astrophysics Data System (ADS)
Kuzmenko, P. J.
1985-12-01
The plasma electrical conductivity is a key parameter in determining the efficiency of an magnetohydrodynamic (MHD) generator. Electromagnetic waves offer an accurate, non-intrusive probe. The electron concentration and mobility may be deduced from the refractive index and absorption coefficient measured with an interferometer. The first experiment used an HCOOH laser at 393.6 microns feeding a Michelson interferometer mounted around a combustor duct with open ports. Simultaneous measurements of positive ion density and plasma temperature made with a Langmuir probe and line reversal apparatus verified the operation of the interferometer. With a magnetic field present, measurement of the polarization rotation and induced ellipticity in a wave traveling along the field provides information on the plasma conductivity. Compared to interferometry, diagnostic apparatus based on Faraday rotation offers simpler optics and requires far less stringent mechanical stability at a cost of lower sensitivity. An advanced detection scheme, using a polarizing beam splitter improved the sensitivity to be comparable to that of interferometry. Interferometry is the preferred technique for small scale, high accuracy measurements, with Faraday rotation reserved for large systems or measurements within a working generator.
Results from the Mochi.Labjet Experiment
NASA Astrophysics Data System (ADS)
Lavine, Eric Sander; You, Setthivoine
2017-10-01
Magnetized plasma jets are generally modeled as magnetic flux tubes filled with flowing plasma governed by magnetohydrodynamics (MHD). Recent theoretical work has outlined a more fundamental approach based on flux tubes of canonical vorticity, where canonical vorticity is defined as the circulation of a species' canonical momentum. This approach extends the concept of magnetic flux tube evolution to include the effects of finite particle momentum and enables visualization of the topology of plasma jets in regimes beyond MHD. Under the appropriate conditions this framework suggests how to form and drive stable, collimated plasma jets with very long aspect-ratios. To explore this possibility, a triple electrode planar plasma gun (Mochi.LabJet) has been designed to produce helical shear flows inside a driven magnetized plasma jet. High speed video confirms the experiment can produce long ( 1m), collimated, stable jets with core plasma currents of 60 - 80 kA, skin currents of 100 - 120 kA and axial velocities on the order of 40 - 80 km/s (for hydrogen). Presented here are magnetic and ion flow velocity measurements as well as stability space analysis that suggests the jets are stable to kink instabilities over many Alfvén times.
NASA Astrophysics Data System (ADS)
Ma, Xinxing; Ennis, D. A.; Hanson, J. D.; Hartwell, G. J.; Knowlton, S. F.; Maurer, D. A.
2017-10-01
Non-axisymmetric equilibrium reconstructions have been routinely performed with the V3FIT code in the Compact Toroidal Hybrid (CTH), a stellarator/tokamak hybrid. In addition to 50 external magnetic measurements, 160 SXR emissivity measurements are incorporated into V3FIT to reconstruct the magnetic flux surface geometry and infer the current distribution within the plasma. Improved reconstructions of current and q profiles provide insight into understanding the physics of density limit disruptions observed in current-carrying discharges in CTH. It is confirmed that the final scenario of the density limit of CTH plasmas is consistent with classic observations in tokamaks: current profile shrinkage leads to growing MHD instabilities (tearing modes) followed by a loss of MHD equilibrium. It is also observed that the density limit at a given current linearly increases with increasing amounts of 3D shaping fields. Consequently, plasmas with densities up to two times the Greenwald limit are attained. Equilibrium reconstructions show that addition of 3D fields effectively moves resonance surfaces towards the edge of the plasma where the current profile gradient is less, providing a stabilizing effect. This work is supported by US Department of Energy Grant No. DE-FG02-00ER54610.
Magnetic Diagnosis Upgrade and Analysis for MHD Instabilities on the J-TEXT
NASA Astrophysics Data System (ADS)
Guo, Daojing; Hu, Qiming; Zhuang, Ge; Wang, Nengchao; Ding, Yonghua; Tang, Yuejin; Yu, Qingquan; Huazhong University of Science; Technology Team; Max-Planck-Institut für Plasmaphysik Collaboration
2017-10-01
The magnetic diagnostic system on the J-TEXT tokamak has been upgraded to measure the magnetohydrodynamic (MHD) instabilities with diverse bands of frequencies. 12 saddle loop probes and 73 Mirnov probes are newly developed. The fabrication and installment of the new probes are elaborately designed, in consideration of higher spatial resolution and better amplitude-frequency characteristic. In this case, the probes utilize two kinds of novel fabrication craft, one of which is low temperature co-fired ceramics (LTCC), the other is flexible printed circuit (FPC). A great deal of experiments on the J-TEXT have validated the stability of the new system. Some typical discharges observed by the new diagnostic system are reviewed. In order to extract useful information from raw signals, several efficient signal processing methods are reviewed. An analytical model based on lumped eddy current circuits is used to compensate equilibrium flux and the corresponding eddy current fluxes, a visualization processing based on singular value decomposition (SVD) and cross-power spectrum are applied to detect the mode number. Fusion Science Program of China (Contract Nos. 2015GB111001 and 2014GB108000) and the National Natural Science Foundation of China (Contract Nos. 11505069 and 11405068).
Ekman-Hartmann layer in a magnetohydrodynamic Taylor-Couette flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szklarski, Jacek; Ruediger, Guenther
2007-12-15
We study magnetic effects induced by rigidly rotating plates enclosing a cylindrical magnetohydrodynamic (MHD) Taylor-Couette flow at the finite aspect ratio H/D=10. The fluid confined between the cylinders is assumed to be liquid metal characterized by small magnetic Prandtl number, the cylinders are perfectly conducting, an axial magnetic field is imposed with Hartmann number Ha{approx_equal}10, and the rotation rates correspond to Reynolds numbers of order 10{sup 2}-10{sup 3}. We show that the end plates introduce, besides the well-known Ekman circulation, similar magnetic effects which arise for infinite, rotating plates, horizontally unbounded by any walls. In particular, there exists the Hartmannmore » current, which penetrates the fluid, turns in the radial direction, and together with the applied magnetic field gives rise to a force. Consequently, the flow can be compared with a Taylor-Dean flow driven by an azimuthal pressure gradient. We analyze the stability of such flows and show that the currents induced by the plates can give rise to instability for the considered parameters. When designing a MHD Taylor-Couette experiment, special care must be taken concerning the vertical magnetic boundaries so that they do not significantly alter the rotational profile.« less
Modelling Quasi-Periodic Pulsations in Solar and Stellar Flares
NASA Astrophysics Data System (ADS)
McLaughlin, J. A.; Nakariakov, V. M.; Dominique, M.; Jelínek, P.; Takasao, S.
2018-02-01
Solar flare emission is detected in all EM bands and variations in flux density of solar energetic particles. Often the EM radiation generated in solar and stellar flares shows a pronounced oscillatory pattern, with characteristic periods ranging from a fraction of a second to several minutes. These oscillations are referred to as quasi-periodic pulsations (QPPs), to emphasise that they often contain apparent amplitude and period modulation. We review the current understanding of quasi-periodic pulsations in solar and stellar flares. In particular, we focus on the possible physical mechanisms, with an emphasis on the underlying physics that generates the resultant range of periodicities. These physical mechanisms include MHD oscillations, self-oscillatory mechanisms, oscillatory reconnection/reconnection reversal, wave-driven reconnection, two loop coalescence, MHD flow over-stability, the equivalent LCR-contour mechanism, and thermal-dynamical cycles. We also provide a histogram of all QPP events published in the literature at this time. The occurrence of QPPs puts additional constraints on the interpretation and understanding of the fundamental processes operating in flares, e.g. magnetic energy liberation and particle acceleration. Therefore, a full understanding of QPPs is essential in order to work towards an integrated model of solar and stellar flares.
Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD
NASA Technical Reports Server (NTRS)
Yee, H. C.; Sjoegreen, B.
2004-01-01
The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.
Origin and Evolution of Magnetic Field in PMS Stars: Influence of Rotation and Structural Changes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Emeriau-Viard, Constance; Brun, Allan Sacha, E-mail: constance.emeriau@cea.fr, E-mail: sacha.brun@cea.fr
During stellar evolution, especially in the pre-main-sequence phase, stellar structure and rotation evolve significantly, causing major changes in the dynamics and global flows of the star. We wish to assess the consequences of these changes on stellar dynamo, internal magnetic field topology, and activity level. To do so, we have performed a series of 3D HD and MHD simulations with the ASH code. We choose five different models characterized by the radius of their radiative zone following an evolutionary track computed by a 1D stellar evolution code. These models characterized stellar evolution from 1 to 50 Myr. By introducing amore » seed magnetic field in the fully convective model and spreading its evolved state through all four remaining cases, we observe systematic variations in the dynamical properties and magnetic field amplitude and topology of the models. The five MHD simulations develop a strong dynamo field that can reach an equipartition state between the kinetic and magnetic energies and even superequipartition levels in the faster-rotating cases. We find that the magnetic field amplitude increases as it evolves toward the zero-age main sequence. Moreover, the magnetic field topology becomes more complex, with a decreasing axisymmetric component and a nonaxisymmetric one becoming predominant. The dipolar components decrease as the rotation rate and the size of the radiative core increase. The magnetic fields possess a mixed poloidal-toroidal topology with no obvious dominant component. Moreover, the relaxation of the vestige dynamo magnetic field within the radiative core is found to satisfy MHD stability criteria. Hence, it does not experience a global reconfiguration but slowly relaxes by retaining its mixed stable poloidal-toroidal topology.« less
NASA Astrophysics Data System (ADS)
Piron, C.; Martin, P.; Bonfiglio, D.; Hanson, J.; Logan, N. C.; Paz-Soldan, C.; Piovesan, P.; Turco, F.; Bialek, J.; Franz, P.; Jackson, G.; Lanctot, M. J.; Navratil, G. A.; Okabayashi, M.; Strait, E.; Terranova, D.; Turnbull, A.
2016-10-01
External n = 1 magnetic fields are applied in RFX-mod and DIII-D low safety factor Tokamak plasmas to investigate their interaction with the internal MHD dynamics and in particular with the sawtooth instability. In these experiments the applied magnetic fields cause a reduction of both the sawtooth amplitude and period, leading to an overall stabilizing effect on the oscillations. In RFX-mod sawteeth eventually disappear and are replaced by a stationary m = 1, n = 1 helical equilibrium without an increase in disruptivity. However toroidal rotation is significantly reduced in these plasmas, thus it is likely that the sawtooth mitigation in these experiments is due to the combination of the helically deformed core and the reduced rotation. The former effect is qualitatively well reproduced by nonlinear MHD simulations performed with the PIXIE3D code. The results obtained in these RFX-mod experiments motivated similar ones in DIII-D L-mode diverted Tokamak plasmas at low q 95. These experiments succeeded in reproducing the sawtooth mitigation with the approach developed in RFX-mod. In DIII-D this effect is correlated with a clear increase of the n = 1 plasma response, that indicates an enhancement of the coupling to the marginally stable n = 1 external kink, as simulations with the linear MHD code IPEC suggest. A significant rotation braking in the plasma core is also observed in DIII-D. Numerical calculations of the neoclassical toroidal viscosity (NTV) carried out with PENT identify this torque as a possible contributor for this effect.
Scalable algorithms for 3D extended MHD.
NASA Astrophysics Data System (ADS)
Chacon, Luis
2007-11-01
In the modeling of plasmas with extended MHD (XMHD), the challenge is to resolve long time scales while rendering the whole simulation manageable. In XMHD, this is particularly difficult because fast (dispersive) waves are supported, resulting in a very stiff set of PDEs. In explicit schemes, such stiffness results in stringent numerical stability time-step constraints, rendering them inefficient and algorithmically unscalable. In implicit schemes, it yields very ill-conditioned algebraic systems, which are difficult to invert. In this talk, we present recent theoretical and computational progress that demonstrate a scalable 3D XMHD solver (i.e., CPU ˜N, with N the number of degrees of freedom). The approach is based on Newton-Krylov methods, which are preconditioned for efficiency. The preconditioning stage admits suitable approximations without compromising the quality of the overall solution. In this work, we employ optimal (CPU ˜N) multilevel methods on a parabolized XMHD formulation, which renders the whole algorithm scalable. The (crucial) parabolization step is required to render XMHD multilevel-friendly. Algebraically, the parabolization step can be interpreted as a Schur factorization of the Jacobian matrix, thereby providing a solid foundation for the current (and future extensions of the) approach. We will build towards 3D extended MHDootnotetextL. Chac'on, Comput. Phys. Comm., 163 (3), 143-171 (2004)^,ootnotetextL. Chac'on et al., 33rd EPS Conf. Plasma Physics, Rome, Italy, 2006 by discussing earlier algorithmic breakthroughs in 2D reduced MHDootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) and 2D Hall MHD.ootnotetextL. Chac'on et al., J. Comput. Phys., 188 (2), 573-592 (2003)
The effect of extreme ionization rates during the initial collapse of a molecular cloud core
NASA Astrophysics Data System (ADS)
Wurster, James; Bate, Matthew R.; Price, Daniel J.
2018-05-01
What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.
Optimal Control Techniques for ResistiveWall Modes in Tokamaks
NASA Astrophysics Data System (ADS)
Clement, Mitchell Dobbs Pearson
Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to the vacuum vessel for RWM feedback. RWM feedback based on VALEN outperformed a classical control algorithm using external coils to suppress the normalized plasma response to a rotating n=1 perturbation applied by internal coils over a range of frequencies. This study describes the design, development and testing of the GPU based control hardware and algorithm along with its performance during experiment and simulation.
The method of projected characteristics for the evolution of magnetic arches
NASA Technical Reports Server (NTRS)
Nakagawa, Y.; Hu, Y. Q.; Wu, S. T.
1987-01-01
A numerical method of solving fully nonlinear MHD equation is described. In particular, the formulation based on the newly developed method of projected characteristics (Nakagawa, 1981) suitable to study the evolution of magnetic arches due to motions of their foot-points is presented. The final formulation is given in the form of difference equations; therefore, the analysis of numerical stability is also presented. Further, the most important derivation of physically self-consistent, time-dependent boundary conditions (i.e. the evolving boundary equations) is given in detail, and some results obtained with such boundary equations are reported.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
The Spectral Web of stationary plasma equilibria. II. Internal modes
NASA Astrophysics Data System (ADS)
Goedbloed, J. P.
2018-03-01
The new method of the Spectral Web to calculate the spectrum of waves and instabilities of plasma equilibria with sizeable flows, developed in the preceding Paper I [Goedbloed, Phys. Plasmas 25, 032109 (2018)], is applied to a collection of classical magnetohydrodynamic instabilities operating in cylindrical plasmas with shear flow or rotation. After a review of the basic concepts of the complementary energy giving the solution path and the conjugate path, which together constitute the Spectral Web, the cylindrical model is presented and the spectral equations are derived. The first example concerns the internal kink instabilities of a cylindrical force-free magnetic field of constant α subjected to a parabolic shear flow profile. The old stability diagram and the associated growth rate calculations for static equilibria are replaced by a new intricate stability diagram and associated complex growth rates for the stationary model. The power of the Spectral Web method is demonstrated by showing that the two associated paths in the complex ω-plane nearly automatically guide to the new class of global Alfvén instabilities of the force-free configuration that would have been very hard to predict by other methods. The second example concerns the Rayleigh-Taylor instability of a rotating theta-pinch. The old literature is revisited and shown to suffer from inconsistencies that are remedied. The most global n = 1 instability and a cluster sequence of more local but much more unstable n =2 ,3 ,…∞ modes are located on separate solution paths in the hydrodynamic (HD) version of the instability, whereas they merge in the MHD version. The Spectral Web offers visual demonstration of the central position the HD flow continuum and of the MHD Alfvén and slow magneto-sonic continua in the respective spectra by connecting the discrete modes in the complex plane by physically meaningful curves towards the continua. The third example concerns the magneto-rotational instability (MRI) thought to be operating in accretion disks about black holes. The sequence n =1 ,2 ,… of unstable MRIs is located on one continuous solution path, but also on infinitely many separate loops ("pancakes") of the conjugate path with just one MRI on each of them. For narrow accretion disks, those sequences are connected with the slow magneto-sonic continuum, which is far away though from the marginal stability transition. In this case, the Spectral Web method is the first to effectively incorporate the MRIs into the general MHD spectral theory of equilibria with background flows. Together, the three examples provide compelling evidence of the computational power of the Spectral Web Method.
Feedback control of the lower hybrid power deposition profile on Tore Supra
NASA Astrophysics Data System (ADS)
Barana, O.; Mazon, D.; Laborde, L.; Turco, F.
2007-07-01
The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.
Gozalo-Marcilla, Miguel; Luna, Stelio Pl; Crosignani, Nadia; Filho, José Np Puoli; Possebon, Fábio S; Pelligand, Ludovic; Taylor, Polly M
2017-09-01
To evaluate intravenous (IV) detomidine with methadone in horses to identify a combination which provides sedation and antinociception without adverse effects. Randomized, placebo-controlled, blinded, crossover. A group of eight adult healthy horses aged (mean ± standard deviation) 7 ± 2 years and 372 ± 27 kg. A total of six treatments were administered IV: saline (SAL); detomidine (5 μg kg -1 ; DET); methadone (0.2 mg kg -1 ; MET) alone or combined with detomidine [2.5 (MLD), 5 (MMD) or 10 (MHD) μg kg -1 ]. Thermal, mechanical and electrical nociceptive thresholds were measured, and sedation, head height above ground (HHAG), cardiopulmonary variables and intestinal motility were evaluated at 5, 15, 30, 45, 60, 75, 90, 120 and 180 minutes. Normal data were analyzed by mixed-model analysis of variance and non-normal by Kruskal-Wallis (p < 0.05). Nociceptive thresholds in horses administered methadone with the higher doses of detomidine (MMD, MHD) were increased above baseline to a greater degree and for longer duration (MMD: 15-30 minutes, MHD: 30-60 minutes) than in horses administered low dose with methadone or detomidine alone (MLD, DET: 5-15 minutes). No increases in nociceptive thresholds were recorded in SAL or MET. Compared with baseline, HHAG was lower for 30 minutes in MMD and DET, and for 45 minutes in MHD. No significant sedation was observed in SAL, MET or MLD. Intestinal motility was reduced for 75 minutes in MHD and for 30 minutes in all other treatments. Methadone (0.2 mg kg -1 ) potentiated the antinociception produced by detomidine (5 μg kg -1 ), with minimal sedative effects. Detomidine (5 μg kg -1 ) with methadone (0.2 mg kg -1 ) produced antinociception without the adverse effects of higher doses of detomidine. Copyright © 2017 Association of Veterinary Anaesthetists and American College of Veterinary Anesthesia and Analgesia. Published by Elsevier Ltd. All rights reserved.
A summary of the ECAS MHD power plant results
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Harris, L. P.
1976-01-01
The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.
H2-O2 combustion powered steam-MHD central power systems
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Smith, J. M.; Nichols, L. D.
1974-01-01
Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.
Coupling MHD and PIC models in 2 dimensions
NASA Astrophysics Data System (ADS)
Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.
2013-12-01
Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.
Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines
NASA Technical Reports Server (NTRS)
Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.
2000-01-01
The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Statistical evaluation of substorm strength and onset times in a global MHD model
NASA Astrophysics Data System (ADS)
Haiducek, J. D.; Welling, D. T.; Morley, S.; Ganushkina, N. Y.
2016-12-01
Magnetospheric substorms are characterized by an explosive release of energy stored in the magnetotail, resulting in a tailward plasmoid release, magnetic field perturbations which reach the ground, and a brightening of the aurora. The basic energy release process has been reproduced in magnetohydrodynamic (MHD) models of the global magnetosphere, but previous studies of substorms using MHD have been limited to case studies covering one or a few events. The lack of large-scale validation studies, and the fact that most MHD models rely on numerical or ad-hoc resistivity to produce the reconnection necessary for substorms, has led some to question the suitability of MHD for studying substorms. However, MHD models are able to capture global implications of substorms, including magnetospheric and ionospheric current systems, dipolarizations, and magnetic field perturbations at the surface, providing a compelling motivation to understand and improve substorm physics in global MHD.The present work seeks to assess the capabilities and limitations of MHD with respect to capturing substorms. We identify substorms in long (one month of simulation time) simulations and compare these to observations during the same time period. To reduce the risk of mis-identifying other phenomena as substorms, we use multiple signatures for the identification, including ground-based magnetic field in mid and high latitudes, plasmoid releases, dipolarization signatures, particle injections, and auroral imagery. We evaluate the model in terms of substorm frequency, strength, location, and timing. We model the same time period using the Minimal Substorm Model, which solves an energy balance equation based on solar wind input. This model has been previously shown to produce substorms at a realistic frequency given solar wind conditions; by comparing it to the MHD we are able to assess the relative importance of MHD physics in terms of substorm timing and occurrence rate. We compute a superposed epoch analysis (SEA) of the substorm "hits" (events that occurred in both the model and observations), "misses" (events that occurred only in observations), and false positives. The SEA result serves as a representative scenario with which we evaluate new model configurations in terms of their ability to reproduce substorm dynamics.
Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC
NASA Astrophysics Data System (ADS)
Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.
2016-12-01
We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.
Diebo, Bassel G; Lavian, Joshua D; Murray, Daniel P; Liu, Shian; Shah, Neil V; Beyer, George A; Segreto, Frank A; Bloom, Lee; Vasquez-Montes, Dennis; Day, Louis M; Hollern, Douglas A; Horn, Samantha R; Naziri, Qais; Cukor, Daniel; Passias, Peter G; Paulino, Carl B
2018-02-06
Retrospective analysis OBJECTIVE.: To compare long-term outcomes between patients with and without mental health comorbidities who are undergoing surgery for adult spinal deformity (ASD). Recent literature reveals that one in three patients admitted for surgical treatment for ASD has comorbid mental health disorder. Currently, impacts of baseline mental health status on long-term outcomes following ASD surgery have not been thoroughly investigated. Patients admitted from 2009-2013 with diagnoses of ASD who underwent ≥4-level thoracolumbar fusion with minimum two-year follow-up were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients were stratified by fusion length (Short: 4-8-level; Long: ≥9 level). Patients with comorbid mental health disorder (MHD) at time of admission were selected for analysis (MHD) and compared against those without MHD (no-MHD). Univariate analysis compared demographics, complications, readmissions and revisions between cohorts for each fusion length. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: fusion length, age, female gender, and Deyo score). 6,020 patients (MHD: n = 1,631; no-MHD: n = 4,389) met inclusion criteria. Mental health diagnoses included disorders of depression (59.0%), sleep (28.0%), anxiety (24.0%), and stress (2.3%). At two-year follow-up, MHD patients with short fusion had significantly higher complication rates (p = 0.001). MHD patients with short or long fusion also had significantly higher rates of any readmission and revision (all p ≤ 0.002). Regression modeling revealed that comorbid MHD was a significant predictor of any complication (OR: 1.17, p = 0.01) and readmission (OR: 1.32, p < 0.001). MHD was the strongest predictor of any revision (OR: 1.56, p < 0.001). Long fusion most strongly predicted any complication (OR: 1.87, p < 0.001). ASD patients with comorbid depressive, sleep, anxiety, and stress disorders were more likely to experience surgical complications and revision at minimum of two years following spinal fusion surgery. Proper patient counseling and psychological screening/support is recommended to complement ASD treatment. 3.
Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Matsuoka, C.; Nishihara, K.; Sano, T.
2017-04-01
A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.
NASA Astrophysics Data System (ADS)
Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.
2016-04-01
Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.
Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units
NASA Astrophysics Data System (ADS)
Bard, C.; Dorelli, J.
2017-12-01
The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.
Emission of magnetosound from MHD-unstable shear flow boundaries
NASA Astrophysics Data System (ADS)
Turkakin, H.; Rankin, R.; Mann, I. R.
2016-09-01
The emission of propagating MHD waves from the boundaries of flow channels that are unstable to the Kelvin-Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave emission are found to be two competing processes. It is shown that the fastest growing modes of the KHI surface waves do not coincide with efficient wave energy transport away from a velocity shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface waves are maximum, which corresponds to the situation where the ambient magnetic field is perpendicular to the flow channel velocity vector. The efficiency of wave emission increases with increasing magnetic field tension, which in Earth's magnetosphere likely dominates along the nightside magnetopause tailward of the terminator, and within earthward Bursty Bulk Flows (BBFs) in the inner plasma sheet. MHD wave emission may also dominate in Supra-Arcade Downflows (SADs) in the solar corona. Our results suggest that efficient emission of propagating MHD waves along BBF and SAD boundaries can potentially explain observations of deceleration and stopping of BBFs and SADs.
NASA Technical Reports Server (NTRS)
Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.
1976-01-01
The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.
Laser-powered MHD generators for space application
NASA Technical Reports Server (NTRS)
Jalufka, N. W.
1986-01-01
Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.
NASA Astrophysics Data System (ADS)
Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team
2018-01-01
In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.
NASA Astrophysics Data System (ADS)
Peterson, Ethan; Anderson, Jay; Clark, Mike; Egedal, Jan; Endrizzi, Douglass; Flanagan, Ken; Harvey, Robert; Lynn, Jacob; Milhone, Jason; Wallace, John; Waleffe, Roger; Mirnov, Vladimir; Forest, Cary
2017-10-01
Equilibrium reconstructions of rotating magnetospheres in the lab are computed using a user-friendly extended Grad-Shafranov solver written in Python and various magnetic and kinetic measurements. The stability of these equilibria are investigated using the NIMROD code with two goals: understand the onset of the classic ``wobble'' in the heliospheric current sheet and demonstrating proof-of-principle for a laboratory source of high- β turbulence. Using the same extended Grad-Shafranov solver, equilibria for an axisymmetric, non-paraxial magnetic mirror are used as a design foundation for a high-field magnetic mirror neutron source. These equilibria are numerically shown to be stable to the m=1 flute instability, with higher modes likely stabilized by FLR effects; this provides stability to gross MHD modes in an axisymmetric configuration. Numerical results of RF heating and neutral beam injection (NBI) from the GENRAY/CQL3D code suite show neutron fluxes promising for medical radioisotope production as well as materials testing. Synergistic effects between NBI and high-harmonic fast wave heating show large increases in neutron yield for a modest increase in RF power. work funded by DOE, NSF, NASA.
Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Sondak, David
The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.
H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation
NASA Technical Reports Server (NTRS)
Jones, Jonathan E.; Hawk, Clark W.
1998-01-01
A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.
Local shear instabilities in weakly ionized, weakly magnetized disks
NASA Technical Reports Server (NTRS)
Blaes, Omer M.; Balbus, Steven A.
1994-01-01
We extend the analysis of axisymmetric magnetic shear instabilities from ideal magnetohydrodynamic (MHD) flows to weakly ionized plasmas with coupling between ions and neutrals caused by collisions, ionization, and recombination. As part of the analysis, we derive the single-fluid MHD dispersion relation without invoking the Boussinesq approximation. This work expands the range of applications of these instabilities from fully ionized accretion disks to molecular disks in galaxies and, with somewhat more uncertainty, to protostellar disks. Instability generally requires the angular velocity to decrease outward, the magnetic field strengths to be subthermal, and the ions and neutrals to be sufficiently well coupled. If ionization and recombination processes can be neglected on an orbital timescale, adequate coupling is achieved when the collision frequency of a given neutral with the ions exceeds the local epicyclic freqency. When ionization equilibrium is maintained on an orbital timescale, a new feature is present in the disk dynamics: in contrast to a single-fluid system, subthermal azimuthal fields can affect the axisymmetric stability of weakly ionized two-fluid systems. We discuss the underlying causes for this behavior. Azimuthal fields tend to be stabilizing under these circumstances, and good coupling between the neutrals and ions requires the collision frequency to exceed the epicyclic frequency by a potentially large secant factor related to the magnetic field geometry. When the instability is present, subthermal azimuthal fields may also reduce the growth rate unless the collision frequency is high, but this is important only if the field strengths are very subthermal and/or the azimuthal field is the dominant field component. We briefly discuss our results in the context of the Galactic center circumnuclear disk, and suggest that the shear instability might be present there, and be responsible for the observed turbulent motions.
NASA Astrophysics Data System (ADS)
Piron, Chiara; Sauter, Olivier; Coda, Stefano; Merle, Antoine; Karpushov, Alexander; Pigatto, Leonardo; Bolzonella, Tommaso; Piovesan, Paolo; Vianello, Nicola; TCV Team; EUROfusion MST1 Team
2016-10-01
Fully non-inductive operation of high performance plasmas is one of the main objectives of contemporary Tokamak research. In this perspective, plasmas with Internal Transport Barriers (ITBs) are an attractive scenario, since they can attain a high fraction of bootstrap current. In this work we start exploring ITB scenarios on the Tokamak à Configuration Variable (TCV) heated by a newly available 1MW Neutral Beam Injector (NBI). Here we investigate for the first time in this device the impact of the additional NBI power on the performance and stability of L-mode plasmas with ITBs. Results of both experimental data analyses and ASTRA transport simulations are presented. The work examines also the Magneto Hydro-Dynamics (MHD) activity and stability of the explored plasmas. In particular, the role of plasma magnetic equilibrium parameters, such as plasma elongation and triangularity, on the sustainment of these NBI-heated ITB scenarios is discussed.
Correlation of the tokamak H-mode density limit with ballooning stability at the separatrix
NASA Astrophysics Data System (ADS)
Eich, T.; Goldston, R. J.; Kallenbach, A.; Sieglin, B.; Sun, H. J.; ASDEX Upgrade Team; Contributors, JET
2018-03-01
We show for JET and ASDEX Upgrade, based on Thomson-scattering measurements, a clear correlation of the density limit of the tokamak H-mode high-confinement regime with the approach to the ideal ballooning instability threshold at the periphery of the plasma. It is shown that the MHD ballooning parameter at the separatrix position α_sep increases about linearly with the separatrix density normalized to Greenwald density, n_e, sep/n_GW for a wide range of discharge parameters in both devices. The observed operational space is found to reach at maximum n_e, sep/n_GW≈ 0.4 -0.5 at values for α_sep≈ 2 -2.5, in the range of theoretical predictions for ballooning instability. This work supports the hypothesis that the H-mode density limit may be set by ballooning stability at the separatrix.
A fibre positioner solution for the 4MOST instrument
NASA Astrophysics Data System (ADS)
Lang-Bardl, Florian; Bender, Ralf; Grupp, Frank; Häuser, Marco; Hess, Hans-Joachim; Junk, Veronika; Kosyra, Ralf; Muschielok, Bernard; Richter, Josef; Schlichter, Jörg; Schwab, Christoph
2012-09-01
4MOST1 is a multi object spectrograph facility for ESO's NTT or VISTA telescope. 4MOST is one of the two projects selected for a conceptual design study by ESO. The 4MOST instrument will be able to position < 1500 fibres in the focal plane and collect spectra in a high resolution (R=20000)2 and a low resolution (R=5000) mode (HRM, LRM). The spectral coverage for the LRM is 400-900 nm, the HRM covers 390-459 nm and 564-676 nm. We will present one of the possible positioner designs and first tests of some components for the focal plane array. The design follows the LAMOST3 positioner and has two rotational axes to move the fibre inside the patrol disc. Each axis consists of a stepper motor attached to micro harmonic drive (MHD). The small outer dimensions and high gear ratios of the MHD-stepper motor package, makes them perfectly suitable for our application. The MHD is also backlash free and self-locking what gives us the opportunity to minimize power consumption and heat dissipation during observation without loosing the position of the fibre on sky. The control electronics will also be miniaturized and part of the positioner unit.
On improved confinement in mirror plasmas by a radial electric field
NASA Astrophysics Data System (ADS)
Ågren, O.; Moiseenko, V. E.
2017-11-01
A weak radial electric field can suppress radial excursions of a guiding center from its mean magnetic surface. The physical origin of this effect is the smearing action by a poloidal E × B rotation, which tend to cancel out the inward and outward radial drifts. A use of this phenomenon may provide larger margins for magnetic field shaping with radial confinement of particles maintained in the collision free idealization. Mirror fields, stabilized by a quadrupolar field component, are of particular interest for their MHD stability and the possibility to control the quasi neutral radial electric field by biased potential plates outside the confinement region. Flux surface footprints on the end tank wall have to be traced to avoid short-circuiting between biased plates. Assuming a robust biasing procedure, moderate voltage demands for the biased plates seems adequate to cure even the radial excursions of Yushmanov ions which could be locally trapped near the mirrors. Analytical expressions are obtained for a magnetic quadrupolar mirror configuration which possesses minimal radial magnetic drifts in the central confinement region. By adding a weak controlled radial quasi-neutral electric field, the majority of gyro centers are predicted to be forced to move even closer to their respective mean magnetic surface. The gyro center radial coordinate is in such a case an accurate approximation for a constant of motion. By using this constant of motion, the analysis is in a Vlasov description extended to finite β. A correspondence between that Vlasov system and a fluid description with a scalar pressure and an electric potential is verified. The minimum B criterion is considered and implications for flute mode stability in the considered magnetic field is analyzed. By carrying out a long-thin expansion to a higher order, the validity of the calculations are extended to shorter and more compact device designs.
Katkov, Anna; Sinuani, Inna; Azar, Ada; Shapiro, Gregory; Efrati, Shai; Beberashvili, Ilia
2018-01-23
Increased age is strongly associated with anorexia and protein-energy wasting (PEW) in maintenance hemodialysis (MHD) population. We hypothesized that the association of obestatin, a recently discovered anorexigenic gut hormone, with appetite and nutritional status differs by age groups. We performed a cross-sectional study on 261MHD patients. Obestatin, acyl-ghrelin, markers of inflammation (CRP, IL-6, TNF-α) and nutrition (self-reported appetite, dietary intake, biochemical nutritional parameters, and body composition) were measured. Obestatin was associated with appetite in multivariate analyses even after controlling for such confounders as lean body mass (LBM), IL-6 and acyl-ghrelin in patients younger than 71 years. For each ng/ml increase in obestatin levels, the odds for diminished appetite was 0.75 (95% CI: 0.59-0.96). However, these associations were not observed in patients 71 years and older. Multivariable logistic regression models (including appetite) also showed increasing odds for PEW (defined by ESPEN consensus-based criteria for the diagnosis of malnutrition) across increasing serum obestatin levels (OR: 1.51, 95% CI: 1.05-2.18) in patients 71 years and older. However, after lean body mass (LBM) was added to this model, the association between obestatin and malnutrition was abolished (OR: 1.26, 95% CI: 0.83-1.91). The association between serum obestatin, appetite and PEW differs depending on age in MHD patients. A positive link with appetite exists in patients younger than 71 years, whereas this relationship disappears by the age of 71. In older MHD patients, obestatin is associated with PEW through mechanisms related to LBM, but not to appetite.
Accurate, meshless methods for magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
NASA Technical Reports Server (NTRS)
Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.
2010-01-01
The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.
NASA Technical Reports Server (NTRS)
Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.
2009-01-01
The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered
MHD technology transfer, integration, and review committee
NASA Astrophysics Data System (ADS)
1990-05-01
As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.
Broken Ergodicity in MHD Turbulence in a Spherical Domain
NASA Technical Reports Server (NTRS)
Shebalin, John V.; wang, Yifan
2011-01-01
Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; ...
2016-12-15
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less
NASA Astrophysics Data System (ADS)
Lou, Yu-Qing; Xia, Yu-Kai
2017-05-01
We study magnetohydrodynamic (MHD) self-similar collapses and void evolution, with or without shocks, of a general polytropic quasi-spherical magnetofluid permeated by random transverse magnetic fields under the Paczynski-Wiita gravity that captures essential general relativistic effects of a Schwarzschild black hole (BH) with a growing mass. Based on the derived set of non-linear MHD ordinary differential equations, we obtain various asymptotic MHD solutions, the geometric and analytical properties of the magnetosonic critical curve (MSCC) and MHD shock jump conditions. Novel asymptotic MHD solution behaviours near the rim of central expanding voids are derived analytically. By exploring numerical global MHD solutions, we identify allowable boundary conditions at large radii that accommodate a smooth solution and show that a reasonable amount of magnetization significantly increases the mass accretion rate in the expansion-wave-collapse solution scenario. We also construct the counterparts of envelope-expansion-core-collapse solutions that cross the MSCC twice, which are found to be closely paired with a sequence of global smooth solutions satisfying a novel type of central MHD behaviours. MHD shocks with static outer and various inner flow profiles are also examined. Astrophysical applications include dynamic core collapses of magnetized massive stars and compact objects as well as formation of supermassive, hypermassive, dark matter and mixed matter BHs in the Universe, including the early Universe. Such gigantic BHs can be detected in X-ray/gamma-ray sources, quasars, ultraluminous infrared galaxies or extremely luminous infrared galaxies and dark matter overwhelmingly dominated elliptical galaxies as well as massive dark matter halos, etc. Gravitational waves and electromagnetic wave emissions in broad band (including e.g., gamma-ray bursts and fast radio bursts) can result from this type of dynamic collapses of forming BHs involving magnetized media.
Zhang, L J; Dong, W X; Guo, S M; Wang, Y X; Wang, A D; Lu, X J
2015-11-19
This study aims to explore the roles of somatic embryogenesis receptor-like kinase (SERK) in Malus hupehensis (Pingyi Tiancha). The full-length sequences of SERK1 in triploid Pingyi Tiancha (3n) and a tetraploid hybrid strain 33# (4n) were cloned, sequenced, and designated as MhSERK1 and MhdSERK1, respectively. Multiple alignments of amino acid sequences were conducted to identify similarity between MhSERK1 and MhdSERK1 and SERK sequences in other species, and a neighbor-joining phylogenetic tree was constructed to elucidate their phylogenetic relations. Expression levels of MhSERK1 and MhdSERK1 in different tissues and developmental stages were investigated using quantitative real-time PCR. The coding sequence lengths of MhSERK1 and MhdSERK1 were 1899 bp (encoding 632 amino acids) and 1881 bp (encoding 626 amino acids), respectively. Sequence analysis demonstrated that MhSERK1 and MhdSERK1 display high similarity to SERKs in other species, with a conserved intron/exon structure that is unique to members of the SERK family. Additionally, the phylogenetic tree showed that MhSERK1 and MhdSERK1 clustered with orange CitSERK (93%). Furthermore, MhSERK1 and MhdSERK1 were mainly expressed in the reproductive organs, in particular the ovary. Their expression levels were highest in young flowers and they differed among different tissues and organs. Our results suggest that MhSERK1 and MhdSERK1 are related to plant reproduction, and that MhSERK1 is related to apomixis in triploid Pingyi Tiancha.
Concept for a high performance MHD airbreathing-IEC fusion rocket
NASA Astrophysics Data System (ADS)
Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.
2001-02-01
Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .
NASA Technical Reports Server (NTRS)
Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.
1981-01-01
Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.
Magnetohydrodynamic Turbulence and the Geodynamo
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
NASA Technical Reports Server (NTRS)
Retallick, F. D.
1980-01-01
Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.
NASA Technical Reports Server (NTRS)
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
NASA Astrophysics Data System (ADS)
Larios, Adam; Pei, Yuan
2017-07-01
We prove a Prodi-Serrin-type global regularity condition for the three-dimensional Magnetohydrodynamic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity and two magnetic components. To the best of our knowledge, this is the first Prodi-Serrin-type criterion for such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may be successful on other systems. In addition, we provide a constructive proof of the local well-posedness of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive, non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty to include the case of a Coriolis rotational term.
Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics
NASA Technical Reports Server (NTRS)
Xu, Kun
1998-01-01
A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.
Equilibrium, confinement and stability of runaway electrons in tokamaks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spong, D A
1976-03-01
Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits aremore » analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models. (MOW)« less
M3D-K Simulations of Beam-Driven Alfven Eigenmodes in ASDEX-U
NASA Astrophysics Data System (ADS)
Wang, Ge; Fu, Guoyong; Lauber, Philipp; Schneller, Mirjam
2013-10-01
Core-localized Alfven eigenmodes are often observed in neutral beam-heated plasma in ASDEX-U tokamak. In this work, hybrid simulations with the global kinetic/MHD hybrid code M3D-K have been carried out to investigate the linear stability and nonlinear dynamics of beam-driven Alfven eigenmodes using experimental parameters and profiles of an ASDEX-U discharge. The safety factor q profile is weakly reversed with minimum q value about qmin = 3.0. The simulation results show that the n = 3 mode transits from a reversed shear Alfven eigenmode (RSAE) to a core-localized toroidal Alfven eigenmode (TAE) as qmin drops from 3.0 to 2.79, consistent with results from the stability code NOVA as well as the experimental measurement. The M3D-K results are being compared with those of the linear gyrokinetic stability code LIGKA for benchmark. The simulation results will also be compared with the measured mode frequency and mode structure. This work was funded by the Max-Planck/Princeton Center for Plasma Physics.
Plasma stability analysis using Consistent Automatic Kinetic Equilibrium reconstruction (CAKE)
NASA Astrophysics Data System (ADS)
Roelofs, Matthijs; Kolemen, Egemen; Eldon, David; Glasser, Alex; Meneghini, Orso; Smith, Sterling P.
2017-10-01
Presented here is the Consistent Automatic Kinetic Equilibrium (CAKE) code. CAKE is being developed to perform real-time kinetic equilibrium reconstruction, aiming to do a reconstruction in less than 100ms. This is achieved by taking, next to real-time Motional Stark Effect (MSE) and magnetics data, real-time Thomson Scattering (TS) and real-time Charge Exchange Recombination (CER, still in development) data in to account. Electron densities and temperature are determined by TS, while ion density and pressures are determined using CER. These form, together with the temperature and density of neutrals, the additional pressure constraints. Extra current constraints are imposed in the core by the MSE diagnostics. The pedestal current density is estimated using Sauters equation for the bootstrap current density. By comparing the behaviour of the ideal MHD perturbed potential energy (δW) and the linear stability index (Δ') of CAKE to magnetics-only reconstruction, it can be seen that the use of diagnostics to reconstruct the pedestal have a large effect on stability. Supported by U.S. DOE DE-SC0015878 and DE-FC02-04ER54698.
Equilibrium and stability of flow-dominated Plasmas in the Big Red Ball
NASA Astrophysics Data System (ADS)
Siller, Robert; Flanagan, Kenneth; Peterson, Ethan; Milhone, Jason; Mirnov, Vladimir; Forest, Cary
2017-10-01
The equilibrium and linear stability of flow-dominated plasmas are studied numerically using a spectral techniques to model MRI and dynamo experiments in the Big Red Ball device. The equilibrium code solves for steady-state magnetic fields and plasma flows subject to boundary conditions in a spherical domain. It has been benchmarked with NIMROD (non-ideal MHD with rotation - open discussion), Two different flow scenarios are studied. The first scenario creates a differentially rotating toroidal flow that is peaked at the center. This is done to explore the onset of the magnetorotational instability (MRI) in a spherical geometry. The second scenario creates a counter-rotating von Karman-like flow in the presence of a weak magnetic field. This is done to explore the plasma dynamo instability in the limit of a weak applied field. Both scenarios are numerically modeled as axisymmetric flow to create a steady-state equilibrium solution, the stability and normal modes are studied in the lowest toroidal mode number. The details of the observed flow, and the structure of the fastest growing modes will be shown. DoE, NSF.
Dependency of Tearing Mode Stability on Current and Pressure Profiles in DIII-D Hybrid Discharges
NASA Astrophysics Data System (ADS)
Kim, K.; Park, J. M.; Murakami, M.; La Haye, R. J.; Na, Y.-S.; SNU/ORAU; ORNL; Atomics, General; SNU; DIII-D Team
2016-10-01
Understanding the physics of the onset and evolution of tearing modes (TMs) in tokamak plasmas is important for high- β steady-state operation. Based on DIII-D steady-state hybrid experiments with accurate equilibrium reconstruction and well-measured plasma profiles, the 2/1 tearing mode can be more stable with increasing local current and pressure gradient at rational surface and with lower pressure peaking and plasma inductance. The tearing stability index Δ', estimated by the Rutherford equation with experimental mode growth rate was validated against Δ' calculated by linear eigenvalue solver (PEST3); preliminary comprehensive MHD modeling by NIMROD reproduced the TM onset reasonably well. We present a novel integrated modeling for the purpose of predicting TM onset in experiment by combining a model equilibrium reconstruction using IPS/FASTRAN, linear stability Δ' calculation using PEST3, and fitting formula for critical Δ' from NIMROD. Work supported in part by the US DoE under DE-AC05-06OR23100, DE-AC05-00OR22725, and DEFC02-04ER54698.
New perspectives on the dynamics of AC and DC plasma arcs exposed to cross-fields
NASA Astrophysics Data System (ADS)
Abdo, Youssef; Rohani, Vandad; Cauneau, François; Fulcheri, Laurent
2017-02-01
Interactions between an arc and external fields are crucially important for the design and the optimization of modern plasma torches. Multiple studies have been conducted to help better understand the behavior of DC and AC current arcs exposed to external and ‘self-induced’ magnetic fields, but the theoretical foundations remain very poorly explored. An analytical investigation has therefore been carried out in order to study the general behavior of DC and AC arcs under the effect of random cross-fields. A simple differential equation describing the general behavior of a planar DC or AC arc has been obtained. Several dimensionless numbers that depend primarily on arc and field parameters and the main arc characteristics (temperature, electric field strength) have also been determined. Their magnitude indicates the general tendency pattern of the arc evolution. The analytical results for many case studies have been validated using an MHD numerical model. The main purpose of this investigation was deriving a practical analytical model for the electric arc, rendering possible its stabilization and control, and the enhancement of the plasma torch power.
Edge-localized-modes in tokamaks
Leonard, Anthony W.
2014-09-11
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heatmore » flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. As a result, encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.« less
Edge-localized-modes in tokamaksa)
NASA Astrophysics Data System (ADS)
Leonard, A. W.
2014-09-01
Edge-localized-modes (ELMs) are a ubiquitous feature of H-mode in tokamaks. When gradients in the H-mode transport barrier grow to exceed the MHD stability limit the ELM instability grows explosively, rapidly transporting energy and particles onto open field lines and material surfaces. Though ELMs provide additional particle and impurity transport through the H-mode transport barrier, enabling steady operation, the resulting heat flux transients to plasma facing surfaces project to large amplitude in future low collisionality burning plasma tokamaks. Measurements of the ELM heat flux deposition onto material surfaces in the divertor and main chamber indicate significant broadening compared to inter-ELM heat flux, with a timescale for energy deposition that is consistent with sonic ion flow and numerical simulation. Comprehensive ELM simulation is highlighting the important physics processes of ELM transport including parallel transport due to magnetic reconnection and turbulence resulting from collapse of the H-mode transport barrier. Encouraging prospects for ELM control and/or suppression in future tokamaks include intrinsic modes of ELM free operation, ELM triggering with frequent small pellet injection and the application of 3D magnetic fields.
An Imposed Dynamo Current Drive Experiment: Demonstration of Confinement
NASA Astrophysics Data System (ADS)
Jarboe, Thomas; Hansen, Chris; Hossack, Aaron; Marklin, George; Morgan, Kyle; Nelson, Brian; Sutherland, Derek; Victor, Brian
2014-10-01
An experiment for studying and developing the efficient sustainment of a spheromak with sufficient confinement (current-drive power heats the plasma to its stability β-limit) and in the keV temperature range is discussed. A high- β spheromak sustained by imposed dynamo current drive (IDCD) is justified because: previous transient experiments showed sufficient confinement in the keV range with no external toroidal field coil; recent results on HIT-SI show sustainment with sufficient confinement at low temperature; the potential of IDCD of solving other fusion issues; a very attractive reactor concept; and the general need for efficient current drive in magnetic fusion. The design of a 0.55 m minor radius machine with the required density control, wall loading, and neutral shielding for a 2 s pulse is presented. Peak temperatures of 1 keV and toroidal currents of 1.35 MA and 16% wall-normalized plasma beta are envisioned. The experiment is large enough to address the key issues yet small enough for rapid modification and for extended MHD modeling of startup and code validation.
NIMROD Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Device (CTH)
NASA Astrophysics Data System (ADS)
Howell, E. C.; Pandya, M. D.; Hanson, J. D.; Mauer, D. A.; Ennis, D. A.; Hartwell, G. J.
2016-10-01
Nonlinear MHD simulations of low-q disruptions in the CTH are presented. CTH is a current carrying stellarator that is used to study the effects of 3D shaping. The application of 3D shaping stabilizes low-q disruptions in CTH. The amount of 3D shaping is controlled by adjusting the external rotational transform, and it is characterized by the ratio of the external rotational transform to the total transform: f =ιvac / ι . Disruptions are routinely observed during operation with weak shaping (f < 0.05). The frequency of disruptions decreases with increasing amounts of 3D shaping, and the disruptions are completely suppressed for f > 0.1 . Nonlinear simulations are performed using the NIMROD code to better understand how the shaping suppresses the disruptions. Comparisons of runs with weak (f = 0.04) and strong (f = 0.10) shaping are shown. This material is based upon work supported by Auburn University and the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences under Award Numbers DE-FG02-03ER54692 and DE-FG02-00ER54610.
9 CFR 3.104 - Space requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... required minimum horizontal dimension (MHD) of a pool for Group I cetaceans shall be 7.32 meters (24.0 feet... area requirements are met based on an MHD of 7.32 meters (24.0 feet) or two times the average adult... maturity. (ii) The MHD of a pool for Group II cetaceans shall be 7.32 meters (24.0 feet) or four times the...
Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator
NASA Astrophysics Data System (ADS)
Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.
2015-09-01
The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less
Energy structure of MHD flow coupling with outer resistance circuit
NASA Astrophysics Data System (ADS)
Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.
2015-08-01
Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Dipole Alignment in Rotating MHD Turbulence
NASA Technical Reports Server (NTRS)
Shebalin, John V.; Fu, Terry; Morin, Lee
2012-01-01
We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Siyao; Yan, Huirong; Lazarian, A., E-mail: syxu@pku.edu.cn, E-mail: huirong.yan@desy.de, E-mail: lazarian@astro.wisc.edu
2016-08-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of theirmore » propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.« less
Magnetohydrodynamics with GAMER
NASA Astrophysics Data System (ADS)
Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong
2018-06-01
GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.
NASA Astrophysics Data System (ADS)
Benyo, Theresa Louise
Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).
Feedback-Driven Mode Rotation Control by Electro-Magnetic Torque
NASA Astrophysics Data System (ADS)
Okabayashi, M.; Strait, E. J.; Garofalo, A. M.; La Haye, R. J.; in, Y.; Hanson, J. M.; Shiraki, D.; Volpe, F.
2013-10-01
The recent experimental discovery of feedback-driven mode rotation control, supported by modeling, opens new approaches for avoidance of locked tearing modes that otherwise lead to disruptions. This approach is an application of electro-magnetic (EM) torque using 3D fields, routinely maximized through a simple feedback system. In DIII-D, it is observed that a feedback-applied radial field can be synchronized in phase with the poloidal field component of a large amplitude tearing mode, producing the maximum EM torque input. The mode frequency can be maintained in the 10 Hz to 100 Hz range in a well controlled manner, sustaining the discharges. Presently, in the ITER internal coils designed for edge localized mode (ELM) control can only be varied at few Hz, yet, well below the inverse wall time constant. Hence, ELM control system could in principle be used for this feedback-driven mode control in various ways. For instance, the locking of MHD modes can be avoided during the controlled shut down of multi hundreds Mega Joule EM stored energy in case of emergency. Feedback could also be useful to minimize mechanical resonances at the disruption events by forcing the MHD frequency away from dangerous ranges. Work supported by the US DOE under DE-AC02-09CH11466, DE-FC-02-04ER54698, DE-FG02-08ER85195, and DE-FG02-04ER54761.
Synergy between fast-ion transport by core MHD and test blanket module fields in DIII-D experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heidbrink, W. W.; Austin, M. E.; Collins, C. S.
2015-07-21
We measured fast-ion transport caused by the combination of MHD and a mock-up test-blanket module (TBM) coil in the DIII-D tokamak. The primary diagnostic is an infrared camera that measures the heat flux on the tiles surrounding the coil. The combined effects of the TBM and four other potential sources of transport are studied: neoclassical tearing modes, Alfvén eigenmodes, sawteeth, and applied resonant magnetic perturbation fields for the control of edge localized modes. A definitive synergistic effect is observed at sawtooth crashes where, in the presence of the TBM, the localized heat flux at a burst increases from 0.36 ±0.27more » to 2.6 ±0.5 MW/m -2.« less
Recent progress of RF-dominated experiments on EAST
NASA Astrophysics Data System (ADS)
Liu, F. K.; Zhao, Y. P.; Shan, J. F.; Zhang, X. J.; Ding, B. J.; Wang, X. J.; Wang, M.; Xu, H. D.; Qin, C. M.; Li, M. H.; Gong, X. Z.; Hu, L. Q.; Wan, B. N.; Song, Y. T.; Li, J. G.
2017-10-01
The research of EAST program is mostly focused on the development of high performance steady state scenario with ITER-like poloidal configuration and RF-dominated heating schemes. With the enhanced ITER-relevant auxiliary heating and current drive systems, the plasma profile control by coupling/integration of various combinations has been investigated, including lower hybrid current drive (LHCD), electron cyclotron resonance heating (ECRH) and ion cyclotron resonance heating (ICRH). The 12 MW ICRH system has been installed on EAST. Heating and confinement studies using the Hydrogen Minority Heating scheme have been investigated. One of the importance challenges for EAST is coupling higher power into the core plasma, experiments including changing plasma position, electron density, local gas puffing and antenna phasing scanning were performed to improve ICRF coupling efficiency on EAST. Results show that local gas injection and reducing the k|| can improve the coupling efficiency directly. By means of the 4.6 GHz and 2.45 GHz LHCD systems, H-mode can be obtained and sustained at relatively high density, even up to ne ˜ 4.5 × 1019 m-3, where a current drive effect is still observed. Meanwhile, effect of source frequency (2.45GHz and 4.6GHz) on LHCD characteristic has been studied on EAST, showing that higher frequency improves penetration of the coupled LH (lower hybrid) power into the plasma core and leads to a better effect on plasma characteristics. Studies demonstrate the role of parasitic effects of edge plasma in LHCD and the mitigation by increasing source frequency. Experiments of effect of LH spectrum and plasma density on plasma characteristics are performed, suggesting the possibility of plasma control for high performance. The development of a 4MW ECRH system is in progress for the purpose of plasma heating and MHD control. The built ECRH system with 1MW source power has been successfully put into use on EAST in 2015. H-mode discharges with L-H transition triggered by ECRH injection were obtained and its effects on the electron temperature, particle confinement and the core MHD stabilities were observed. By further exploring and optimizing the RF combination for the sole RF heating and current drive regime, fully non-inductive H-mode discharges with Vloop˜0V has progressed steadily in the 2016 campaign. The overview of the significant progress of RF dominated experiments is presented in this paper.
Ion Isotropy and Ion Resonant Waves in the Solar Wind: Cassini Observations
NASA Technical Reports Server (NTRS)
Kellogg, Paul J.; Gurnett, Donald A.; Hospodarsky, George B.; Kurth, William S.
2001-01-01
Electric fields in the solar wind, in the range of one Hertz, are reported for the first time from a 3-axis stabilized spacecraft. The measurements are made with the Radio and Plasma Wave System (RPWS) experiment on the Cassini spacecraft. Kellogg suggested that such waves could be important in maintaining the near-isotropy of solar wind ions and the validity of MHD for the description of the solar wind. The amplitudes found are larger than those estimated by Kellogg from other measurements, and are due to quasi-electrostatic waves. These amplitudes are quite sufficient to maintain isotropy of the solar wind ions.
NASA Astrophysics Data System (ADS)
Faghihi, M.; Scheffel, J.
1988-12-01
A minor correction, having no major influence on our results, is reported here. The coefficients in the equations of state (16) and (17) should read The set of equations (13)-(20) now comprise the correct, linearized and Fourierdecomposed double adiabatic equations in cylindrical geometry. In addition, there is a printing error in (15): a factor bz should multiply the last term of the left-hand side. Our results are only slightly modified, and the discussion remains unchanged. We wish, however, to point out that the correct stability criterion for isotropic pressure, (26), should be This is the double adiabatic counterpart to the m ╪ 0 Kadomtsev criterion of ideal MHD.
Formation and stability of impurity "snakes" in tokamak plasmas.
Delgado-Aparicio, L; Sugiyama, L; Granetz, R; Gates, D A; Rice, J E; Reinke, M L; Bitter, M; Fredrickson, E; Gao, C; Greenwald, M; Hill, K; Hubbard, A; Hughes, J W; Marmar, E; Pablant, N; Podpaly, Y; Scott, S; Wilson, R; Wolfe, S; Wukitch, S
2013-02-08
New observations of the formation and dynamics of long-lived impurity-induced helical "snake" modes in tokamak plasmas have recently been carried out on Alcator C-Mod. The snakes form as an asymmetry in the impurity ion density that undergoes a seamless transition from a small helically displaced density to a large crescent-shaped helical structure inside q<1, with a regularly sawtoothing core. The observations show that the conditions for the formation and persistence of a snake cannot be explained by plasma pressure alone. Instead, many features arise naturally from nonlinear interactions in a 3D MHD model that separately evolves the plasma density and temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Shweta; Sharma, Prerana; Kaothekar, Sachin
The thermal instability of an infinite homogeneous, thermally conducting, and rotating plasma, incorporating finite electrical resistivity, finite electron inertia, and an arbitrary radiative heat-loss function in the presence of finite Larmor radius corrections and Hall current, has been studied. Analysis has been made with the help of linearized magnetohydrodynamics (MHD) equations. A general dispersion relation is obtained using the normal mode analysis method, and the dispersion relation is discussed for longitudinal propagation and transverse propagation separately. The dispersion relation has been solved numerically to obtain the dependence of the growth rate on the various parameters involved. The conditions of modifiedmore » thermal instability and stability are discussed in the different cases of interest.« less
The influence of the Hall term on the development of magnetized laser-produced plasma jets
NASA Astrophysics Data System (ADS)
Hamlin, N. D.; Seyler, C. E.; Khiar, B.
2018-04-01
We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.
Padyab, Mojgan; Armelius, Bengt-Åke; Armelius, Kerstin; Nyström, Siv; Blom, Björn; Grönlund, Ann-Sofie; Lundgren, Lena
2018-04-23
In Sweden, the Addiction Severity Index (ASI) is the Swedish National Board of Health and Welfare's recommended substance use disorder assessment tool and used routinely for patient intakes. Our study of 213 individuals assessed for substance use disorder with the ASI used nine years of the National Patient Register and examined whether clinical social workers' assessments of addiction severity at baseline were associated with later hospitalizations for mental health disorder (MHD). ASI composite scores and interviewer severity rating were used to measure clients' problems in seven areas (mental health, family and social relationships, employment, alcohol, drug use, health, and legal) at baseline. A stepwise regression method was used to assess the relative importance of ASI composite scores, MHD hospitalization two years prior to baseline, age, and gender for MHD hospitalization seven years post-baseline. Almost two-thirds of the individuals (63%) were hospitalized at least once for MHD in the seven years post-baseline. At the multivariable level, MHD hospitalization prior to baseline was the strongest predictor of future MHD hospitalization, followed by ASI composite scores for drug use, employment, mental health and, last, male gender. A key finding is that higher ASI composite scores for drug use and mental health are predictors of future need for MHD treatment. Future studies will replicate this effort with a national population of individuals with substance use disorder.
U. S. and Soviet MHD Technology: A Comparative Overview
1974-01-01
developments in magnetohydro- dynamic power generation, in which the Soviet program far exceeds the American« The USSR now operates the first MUD power...their respective development approaches, and compares major U.S. and USSR MHD facilities and national program objectives. Preceding page blank...devoted to the history of MHD develop - ment in these two countries, respective development approaches, and cur- rent status of individual programs
Broken Symmetries and Magnetic Dynamos
NASA Technical Reports Server (NTRS)
Shebalin, John V.
2007-01-01
Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.
Diebo, Bassel G; Lavian, Joshua D; Liu, Shian; Shah, Neil V; Murray, Daniel P; Beyer, George A; Segreto, Frank A; Maffucci, Fenizia; Poorman, Gregory W; Cherkalin, Denis; Torre, Barrett; Vasquez-Montes, Dennis; Yoshihara, Hiroyuki; Cukor, Daniel; Naziri, Qais; Passias, Peter G; Paulino, Carl B
2018-03-23
Retrospective Analysis OBJECTIVE.: To improve understanding of the impact of comorbid mental health disorders on long-term outcomes following cervical spinal fusion in cervical radiculopathy (CR) or cervical myelopathy (CM) patients. Subsets of patients with CR and CM have mental health disorders, and their impact on surgical complications is poorly understood. Patients admitted from 2009-2013 with CR or CM diagnoses who underwent cervical surgery with minimum 2-year surveillance were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients with a comorbid mental health disorder (MHD) were compared against those without (no-MHD). Univariate analysis compared demographics, complications, readmissions, and revisions between MHD and no-MHD cohorts. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: age, gender, Charlson/Deyo score, and surgical approach). 20,342 patients (MHD: n = 4,819; no-MHD: n = 15,523) were included. Mental health disorders identified: depressive (57.8%), anxiety (28.1%), sleep (25.2%), and stress (2.9%). CR patients had greater prevalence of comorbid MHD than CM patients (p = 0.015). Two years post-operatively, all MHD patients had significantly higher rates of complications (specifically: device-related, infection), readmission for any indication, and revision surgery (all p < 0.05); regression modeling corroborated these findings and revealed combined surgical approach as the strongest predictor for any complication (CR, Odds Ratio [OR]: 3.945, p < 0.001; CM, OR: 2.828, p < 0.001) and MHD as the strongest predictor for future revision (CR, OR: 1.269, p = 0.001; CM, OR: 1.248, p = 0.008) in both CR and CM cohorts. Nearly 25% of patients admitted for CR and CM carried comorbid mental health disorder and experienced greater rates of any complication, readmission, or revision, at minimum, two years following cervical spine surgery. Results must be confirmed with retrospective studies utilizing larger national databases and with prospective cohort studies. Patient counseling and psychological screening/support is recommended to complement surgical treatment. 3.
Extended MHD Effects in High Energy Density Experiments
NASA Astrophysics Data System (ADS)
Seyler, Charles
2016-10-01
The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
Dynamics of Magnetized Plasma Jets and Bubbles Launched into a Background Magnetized Plasma
NASA Astrophysics Data System (ADS)
Wallace, B.; Zhang, Y.; Fisher, D. M.; Gilmore, M.
2016-10-01
The propagation of dense magnetized plasma, either collimated with mainly azimuthal B-field (jet) or toroidal with closed B-field (bubble), in a background plasma occurs in a number of solar and astrophysical cases. Such cases include coronal mass ejections moving in the background solar wind and extragalactic radio lobes expanding into the extragalactic medium. Understanding the detailed MHD behavior is crucial for correctly modeling these events. In order to further the understanding of such systems, we are investigating the injection of dense magnetized jets and bubbles into a lower density background magnetized plasma using a coaxial plasma gun and a background helicon or cathode plasma. In both jet and bubble cases, the MHD dynamics are found to be very different when launched into background plasma or magnetic field, as compared to vacuum. In the jet case, it is found that the inherent kink instability is stabilized by velocity shear developed due to added magnetic tension from the background field. In the bubble case, rather than directly relaxing to a minimum energy Taylor state (spheromak) as in vacuum, there is an expansion asymmetry and the bubble becomes Rayleigh-Taylor unstable on one side. Recent results will be presented. Work supported by the Army Research Office Award No. W911NF1510480.
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
Chen, Xi; Burrell, Keith H.; Ferraro, Nathaniel M.; ...
2016-06-21
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHO) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ≤ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended MHD code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE.more » Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by the rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHO can be destabilized in principle with rotation in either direction. Furthermore, the modeling results are consistent with observations of the EHO, support the proposed theory of the EHO as a rotational shear driven kink/peeling mode, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.« less
Simulations of AGN jets: magnetic kink instability versus conical shocks
NASA Astrophysics Data System (ADS)
Barniol Duran, Rodolfo; Tchekhovskoy, Alexander; Giannios, Dimitrios
2017-08-01
Relativistic jets in active galactic nuclei (AGN) convert as much as half of their energy into radiation. To explore the poorly understood processes that are responsible for this conversion, we carry out fully 3D magnetohydrodynamic (MHD) simulations of relativistic magnetized jets. Unlike the standard approach of injecting the jets at large radii, our simulated jets self-consistently form at the source and propagate and accelerate outwards for several orders of magnitude in distance before they interact with the ambient medium. We find that this interaction can trigger strong energy dissipation of two kinds inside the jets, depending on the properties of the ambient medium. Those jets that form in a new outburst and drill a fresh hole through the ambient medium fall victim to a 3D magnetic kink instability and dissipate their energy primarily through magnetic reconnection in the current sheets formed by the instability. On the other hand, those jets that form during repeated cycles of AGN activity and escape through a pre-existing hole in the ambient medium maintain their stability and dissipate their energy primarily at MHD recollimation shocks. In both cases, the dissipation region can be associated with a change in the density profile of the ambient gas. The Bondi radius in AGN jets serves as such a location.
Rotational shear effects on edge harmonic oscillations in DIII-D quiescent H-mode discharges
NASA Astrophysics Data System (ADS)
Chen, Xi; Burrell, K. H.; Ferraro, N. M.; Osborne, T. H.; Austin, M. E.; Garofalo, A. M.; Groebner, R. J.; Kramer, G. J.; Luhmann, N. C., Jr.; McKee, G. R.; Muscatello, C. M.; Nazikian, R.; Ren, X.; Snyder, P. B.; Solomon, W. M.; Tobias, B. J.; Yan, Z.
2016-07-01
In the quiescent H-mode (QH-mode) regime, edge harmonic oscillations (EHOs) play an important role in avoiding transient edge localized mode (ELM) power fluxes by providing benign and continuous edge particle transport. A detailed theoretical, experimental and modeling comparison has been made of low-n (n ⩽ 5) EHO in DIII-D QH-mode plasmas. The calculated linear eigenmode structure from the extended magentoohydrodynamics (MHD) code M3D-C1 matches closely the coherent EHO properties from external magnetics data and internal measurements using the ECE, BES, ECE-Imaging and microwave imaging reflectometer (MIR) diagnostics, as well as the kink/peeling mode properties found by the ideal MHD code ELITE. Numerical investigations indicate that the low-n EHO-like solutions from M3D-C1 are destabilized by rotation and/or rotational shear while high-n modes are stabilized. This effect is independent of the rotation direction, suggesting that EHOs can be destabilized in principle with rotation in either direction. The modeling results are consistent with observations of EHO, support the proposed theory of the EHO as a low-n kink/peeling mode destabilized by edge E × B rotational shear, and improve our understanding and confidence in creating and sustaining QH-mode in present and future devices.
Simulations of Low-q Disruptions in the Compact Toroidal Hybrid Experiment
NASA Astrophysics Data System (ADS)
Howell, E. C.; Hanson, J. D.; Ennis, D. A.; Hartwell, G. J.; Maurer, D. A.
2017-10-01
Resistive MHD simulations of low-q disruptions in the Compact Toroidal Hybrid Device (CTH) are performed using the NIMROD code. CTH is a current-carrying stellarator used to study the effects of 3D shaping on MHD stability. Experimentally, it is observed that the application of 3D vacuum fields allows CTH to operate with edge safety factor less than 2.0. However, these low-q discharges often disrupt after peak current if the applied 3D fields are too weak. Nonlinear simulations are initialized using model VMEC equilibria representative of low-q discharges with weak vacuum transform. Initially a series of symmetry preserving island chains are excited at the q=6/5, 7/5, 8/5, and 9/5 rational surfaces. These island chains act as transport barriers preventing stochastic magnetic fields in the edge from penetrating into the core. As the simulation progresses, predominately m/n=3/2 and 4/3 instabilities are destabilized. As these instabilities grow to large amplitude they destroy the symmetry preserving islands leading to large regions of stochastic fields. A current spike and loss of core thermal confinement occurs when the innermost island chain (6/5) is destroyed. Work Supported by US-DOE Grant #DE-FG02-03ER54692.
Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations
NASA Astrophysics Data System (ADS)
Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.
2017-12-01
An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.