Sample records for mhd system operating

  1. Initial Flow Matching Results of MHD Energy Bypass on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    Preliminary flow matching has been demonstrated for a MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment was used to perform a thermodynamic cycle analysis to properly match the flows from an inlet to a MHD generator and from the exit of a supersonic turbojet to a MHD accelerator. Working with various operating conditions such as the enthalpy extraction ratio and isentropic efficiency of the MHD generator and MHD accelerator, interfacing studies were conducted between the pre-ionizers, the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis and describes the NPSS analysis of a supersonic turbojet engine with a MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to an explored and desired range of 0 to 7.0 Mach.

  2. MHD retrofit of steam power plants. Feasibility study. Summary and conclusions, Part I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1979-07-01

    The US Department of Energy Division of Magnetohydrodynamics (DOE/MHD) initiated this study to evaluate the feasibility of a retrofit option to reduce the time and cost of commercializing MHD. The MHD retrofit option will integrate a nominal 260 megawatt thermal (MWt) MHD topping cycle into an existing or scheduled private utility steam plant; this facility will test both the MHD system and the combined operation of the MHD/steam plant. The 260 MWt input level was determined to be the size which could most effectively demonstrate and verify the engineering design and operational characteristics of a coal-fired, open-cycle, MHD power plant.more » Details are presented. A goal of the MHD program is to have operational by the year 2003 a commercial size, fully integrated MHD plant. This would be accomplished by demonstrating commercial scale, baseload performance of a fully integrated, MHD/steam power plant. (WHK)« less

  3. Flow Matching Results of an MHD Energy Bypass System on a Supersonic Turbojet Engine Using the Numerical Propulsion System Simulation (NPSS) Environment

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2011-01-01

    Flow matching has been successfully achieved for an MHD energy bypass system on a supersonic turbojet engine. The Numerical Propulsion System Simulation (NPSS) environment helped perform a thermodynamic cycle analysis to properly match the flows from an inlet employing a MHD energy bypass system (consisting of an MHD generator and MHD accelerator) on a supersonic turbojet engine. Working with various operating conditions (such as the applied magnetic field, MHD generator length and flow conductivity), interfacing studies were conducted between the MHD generator, the turbojet engine, and the MHD accelerator. This paper briefly describes the NPSS environment used in this analysis. This paper further describes the analysis of a supersonic turbojet engine with an MHD generator/accelerator energy bypass system. Results from this study have shown that using MHD energy bypass in the flow path of a supersonic turbojet engine increases the useful Mach number operating range from 0 to 3.0 Mach (not using MHD) to a range of 0 to 7.0 Mach with specific net thrust range of 740 N-s/kg (at ambient Mach = 3.25) to 70 N-s/kg (at ambient Mach = 7). These results were achieved with an applied magnetic field of 2.5 Tesla and conductivity levels in a range from 2 mhos/m (ambient Mach = 7) to 5.5 mhos/m (ambient Mach = 3.5) for an MHD generator length of 3 m.

  4. H2OTSTUF: Appropriate Operating Regimes for Magnetohydrodynamic Augmentation

    NASA Technical Reports Server (NTRS)

    Jones, Jonathan E.; Hawk, Clark W.

    1998-01-01

    A trade study of magnetohydrodynamic (MHD) augmented propulsion reveals a unique operating regime at lower thrust levels. Substantial mass savings are realized over conventional chemical, solar, and electrical propulsion concepts when MHD augmentation is used to obtain optimal I(sub sp). However, trip times for the most conservative estimates of power plant specific impulse and accelerator efficiency may be prohibitively long. Quasi-one-dimensional calculations show that a solar or nuclear thermal system augmented by MHD can provide competitive performance while utilizing a diverse range of propellants including water, which is available from the Space Shuttle, the Moon, asteroids, and various moons and planets within our solar system. The use of in-situ propellants will reduce costs of space operations as well as enable human exploration of our Solar System. The following conclusions can be drawn from the results of the mission trade study: (1) There exists a maximum thrust or mass flow rate above which MHD augmentation increases the initial mass in low earth orbit (LEO); (2) Mass saving of over 50% can be realized for unique combination of solar/MHD systems; (3) Trip times for systems utilizing current power supply technology may be prohibitively long. Theoretical predictions of MHD performance for in space propulsion systems show that improved efficiencies can reduce trip times to acceptable levels; (4) Long trip times indicative of low thrust systems can be shortened by an increase in the MHD accelerator efficiency or a decrease in the specific mass of the power supply and power processing unit; and (5) As for all propulsion concepts, missions with larger (Delta)v's benefit more from the increased specific impulse resulting from MHD augmentation. Using a quasi-one-dimensional analysis, the required operating conditions for a MHD accelerator to reach acceptable efficiencies are outlined. This analysis shows that substantial non-equilibrium ionization is desirable.

  5. MHD program plan, FY 1991

    NASA Astrophysics Data System (ADS)

    1990-10-01

    The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.

  6. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    NASA Astrophysics Data System (ADS)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the exhaust flow from the engine by converting electrical current back into flow enthalpy to increase thrust. Though there has been considerable research into the use of MHD generators to produce electricity for industrial power plants, interest in the technology for flight-weight aerospace applications has developed only recently. In this research, electromagnetic fields coupled with weakly ionzed gases to slow hypersonic airflow were investigated within the confines of an MHD energy-bypass system with the goal of showing that it is possible for an air-breathing engine to transition from takeoff to Mach 7 without carrying a rocket propulsion system along with it. The MHD energy-bypass system was modeled for use on a supersonic turbojet engine. The model included all components envisioned for an MHD energy-bypass system; two preionizers, an MHD generator, and an MHD accelerator. A thermodynamic cycle analysis of the hypothesized MHD energy-bypass system on an existing supersonic turbojet engine was completed. In addition, a detailed thermodynamic, plasmadynamic, and electromagnetic analysis was combined to offer a single, comprehensive model to describe more fully the proper plasma flows and magnetic fields required for successful operation of the MHD energy bypass system. The unique contribution of this research involved modeling the current density, temperature, velocity, pressure, electric field, Hall parameter, and electrical power throughout an annular MHD generator and an annular MHD accelerator taking into account an external magnetic field within a moving flow field, collisions of electrons with neutral particles in an ionized flow field, and collisions of ions with neutral particles in an ionized flow field (ion slip). In previous research, the ion slip term has not been considered. The MHD energy-bypass system model showed that it is possible to expand the operating range of a supersonic jet engine from a maximum of Mach 3.5 to a maximum of Mach 7. The inclusion of ion slip within the analysis further showed that it is possible to 'drive' this system with maximum magnetic fields of 3 T and with maximum conductivity levels of 11 mhos/m. These operating parameters better the previous findings of 5 T and 10 mhos/m, and reveal that taking into account collisions between ions and neutral particles within a weakly ionized flow provides a more realistic model with added benefits of lower magnetic fields and conductivity levels especially at the higher Mach numbers. (Abstract shortened by UMI.).

  7. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  8. Parametric study of potential early commercial power plants Task 3-A MHD cost analysis

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The development of costs for an MHD Power Plant and the comparison of these costs to a conventional coal fired power plant are reported. The program is divided into three activities: (1) code of accounts review; (2) MHD pulverized coal power plant cost comparison; (3) operating and maintenance cost estimates. The scope of each NASA code of account item was defined to assure that the recently completed Task 3 capital cost estimates are consistent with the code of account scope. Improvement confidence in MHD plant capital cost estimates by identifying comparability with conventional pulverized coal fired (PCF) power plant systems is undertaken. The basis for estimating the MHD plant operating and maintenance costs of electricity is verified.

  9. Exploratory study of several advanced nuclear-MHD power plant systems.

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Yang, Y. Y.

    1973-01-01

    In order for efficient multimegawatt closed cycle nuclear-MHD systems to become practical, long-life gas cooled reactors with exit temperatures of about 2500 K or higher must be developed. Four types of nuclear reactors which have the potential of achieving this goal are the NERVA-type solid core reactor, the colloid core (rotating fluidized bed) reactor, the 'light bulb' gas core reactor, and the 'coaxial flow' gas core reactor. Research programs aimed at developing these reactors have progressed rapidly in recent years so that prototype power reactors could be operating by 1980. Three types of power plant systems which use these reactors have been analyzed to determine the operating characteristics, critical parameters and performance of these power plants. Overall thermal efficiencies as high as 80% are projected, using an MHD turbine-compressor cycle with steam bottoming, and slightly lower efficiencies are projected for an MHD motor-compressor cycle.

  10. Ultrahigh temperature vapor core reactor-MHD system for space nuclear electric power

    NASA Technical Reports Server (NTRS)

    Maya, Isaac; Anghaie, Samim; Diaz, Nils J.; Dugan, Edward T.

    1991-01-01

    The conceptual design of a nuclear space power system based on the ultrahigh temperature vapor core reactor with MHD energy conversion is presented. This UF4 fueled gas core cavity reactor operates at 4000 K maximum core temperature and 40 atm. Materials experiments, conducted with UF4 up to 2200 K, demonstrate acceptable compatibility with tungsten-molybdenum-, and carbon-based materials. The supporting nuclear, heat transfer, fluid flow and MHD analysis, and fissioning plasma physics experiments are also discussed.

  11. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  12. MHD Generating system

    DOEpatents

    Petrick, Michael; Pierson, Edward S.; Schreiner, Felix

    1980-01-01

    According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.

  13. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Hypersonic Airbreathing Engines

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Bityurin, V. A.; Lineberry, J. T.

    2000-01-01

    The prospects for realizing a magnetohydrodynamic (MHD) bypass hypersonic airbreathing engine are examined from the standpoint of fundamental thermodynamic feasibility. The MHD-bypass engine, first proposed as part of the Russian AJAX vehicle concept, is based on the idea of redistributing energy between various stages of the propulsion system flow train. The system uses an MHD generator to extract a portion of the aerodynamic heating energy from the inlet and an MHD accelerator to reintroduce this power as kinetic energy in the exhaust stream. In this way, the combustor entrance Mach number can be limited to a specified value even as the flight Mach number increases. Thus, the fuel and air can be efficiently mixed and burned within a practical combustor length, and the flight Mach number operating envelope can be extended. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass engines using a simplified thermodynamic analysis. This cycle analysis, based on a thermally and calorically perfect gas, incorporates a coupled MHD generator-accelerator system and accounts for aerodynamic losses and thermodynamic process efficiencies in the various engin components. It is found that the flight Mach number range can be significantly extended; however, overall performance is hampered by non-isentropic losses in the MHD devices.

  14. High Pulsed Power, Self Excited Magnetohydrodynamic Power Generation Systems

    DTIC Science & Technology

    1985-12-27

    MHD GENERATOR OUTPUT, CASE G-2 86 TABLE 25:TEMPERATURE IN A SEMI -INFINITE COPPER SLAB EXPOSED TO GAS AT t=O 89 TABLE 26:TIME FOR GAS-Cu INTERFACE TO...REACH 2000 0 F, & BACK SURFACE TEMPERATURE AT THIS TIME,FOR A SEMI -INFINITE SLAB OF GIVEN THICKNESS,d. 89 TABLE 27: CONVECTIVE HEATING OF THE MHD...magnetic field for the explosive MHD generator. A dc room temperature magnet requires too much pow- er for operation at the 5 Tesla fields required by

  15. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  16. Engineering support for magnetohydrodynamic power plant analysis and design studies

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Marchmont, G.; Rogali, R.; Shikar, D.

    1980-01-01

    The major factors which influence the economic engineering selection of stack inlet temperatures in combined cycle MHD powerplants are identified and the range of suitable stack inlet temperatures under typical operating conditions is indicated. Engineering data and cost estimates are provided for four separately fired high temperature air heater (HTAH) system designs for HTAH system thermal capacity levels of 100, 250, 500 and 1000 MWt. An engineering survey of coal drying and pulverizing equipment for MHD powerplant application is presented as well as capital and operating cost estimates for varying degrees of coal pulverization.

  17. Performance optimization of an MHD generator with physical constraints

    NASA Technical Reports Server (NTRS)

    Pian, C. C. P.; Seikel, G. R.; Smith, J. M.

    1979-01-01

    A technique has been described which optimizes the power out of a Faraday MHD generator operating under a prescribed set of electrical and magnetic constraints. The method does not rely on complicated numerical optimization techniques. Instead the magnetic field and the electrical loading are adjusted at each streamwise location such that the resultant generator design operates at the most limiting of the cited stress levels. The simplicity of the procedure makes it ideal for optimizing generator designs for system analysis studies of power plants. The resultant locally optimum channel designs are, however, not necessarily the global optimum designs. The results of generator performance calculations are presented for an approximately 2000 MWe size plant. The difference between the maximum power generator design and the optimal design which maximizes net MHD power are described. The sensitivity of the generator performance to the various operational parameters are also presented.

  18. Multirail electromagnetic launcher powered from a pulsed magnetohydrodynamic generator

    NASA Astrophysics Data System (ADS)

    Afonin, A. G.; Butov, V. G.; Panchenko, V. P.; Sinyaev, S. V.; Solonenko, V. A.; Shvetsov, G. A.; Yakushev, A. A.

    2015-09-01

    The operation of an electromagnetic multirail launcher of solids powered from a pulsed magnetohydrodynamic (MHD) generator is studied. The plasma flow in the channel of the pulsed MHD generator and the possibility of launching solids in a rapid-fire mode of launcher operation are considered. It is shown that this mode of launcher operation can be implemented by matching the plasma flow dynamics in the channel of the pulsed MHD generator and the launching conditions. It is also shown that powerful pulsed MHD generators can be used as a source of electrical energy for rapid-fire electromagnetic rail launchers operating in a burst mode.

  19. Magnetohydrodynamic power generation

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Magnetohydrodynamic (MHD) Power Generation is a concise summary of MHD theory, history, and future trends. Results of the major international MHD research projects are discussed. Data from MHD research is included. Economics of initial and operating costs are considered.

  20. Global Regularity and Time Decay for the 2D Magnetohydrodynamic Equations with Fractional Dissipation and Partial Magnetic Diffusion

    NASA Astrophysics Data System (ADS)

    Dong, Bo-Qing; Jia, Yan; Li, Jingna; Wu, Jiahong

    2018-05-01

    This paper focuses on a system of the 2D magnetohydrodynamic (MHD) equations with the kinematic dissipation given by the fractional operator (-Δ )^α and the magnetic diffusion by partial Laplacian. We are able to show that this system with any α >0 always possesses a unique global smooth solution when the initial data is sufficiently smooth. In addition, we make a detailed study on the large-time behavior of these smooth solutions and obtain optimal large-time decay rates. Since the magnetic diffusion is only partial here, some classical tools such as the maximal regularity property for the 2D heat operator can no longer be applied. A key observation on the structure of the MHD equations allows us to get around the difficulties due to the lack of full Laplacian magnetic diffusion. The results presented here are the sharpest on the global regularity problem for the 2D MHD equations with only partial magnetic diffusion.

  1. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  2. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 2: Engineering. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Engineering design details for the principal systems, system operating modes, site facilities, and structures of an engineering test facility (ETF) of a 200 MWE power plant are presented. The ETF resembles a coal-fired steam power plant in many ways. It is analogous to a conventional plant which has had the coal combustor replaced with the MHD power train. Most of the ETF components are conventional. They can, however, be sized or configured differently or perform additional functions from those in a conventional coal power plant. The boiler not only generates steam, but also performs the functions of heating the MHD oxidant, recovering seed, and controlling emissions.

  3. Resistive Wall Modes Identification and Control in RFX-mod low qedge tokamak discharges

    NASA Astrophysics Data System (ADS)

    Baruzzo, Matteo; Bolzonella, Tommaso; Cavazzana, Roberto; Marchiori, Giuseppe; Marrelli, Lionello; Martin, Piero; Paccagnella, Roberto; Piovesan, Paolo; Piron, Lidia; Soppelsa, Anton; Zanca, Paolo; in, Yongkyoon; Liu, Yueqiang; Okabayashi, Michio; Takechi, Manabu; Villone, Fabio

    2011-10-01

    In this work the MHD stability of RFX mode tokamak discharges with qedge < 3 will be studied. The target plasma scenario is characterized by a plasma current 100kA

  4. A-Posteriori Error Estimation for Hyperbolic Conservation Laws with Constraint

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2004-01-01

    This lecture considers a-posteriori error estimates for the numerical solution of conservation laws with time invariant constraints such as those arising in magnetohydrodynamics (MHD) and gravitational physics. Using standard duality arguments, a-posteriori error estimates for the discontinuous Galerkin finite element method are then presented for MHD with solenoidal constraint. From these estimates, a procedure for adaptive discretization is outlined. A taxonomy of Green's functions for the linearized MHD operator is given which characterizes the domain of dependence for pointwise errors. The extension to other constrained systems such as the Einstein equations of gravitational physics are then considered. Finally, future directions and open problems are discussed.

  5. Present status of MHD research and development in Israel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branover, H.; Lesin, S.

    1994-12-31

    As in the previous years the Israel MHD program is concentrating exclusively on Liquid Metal MHD (LMMHD). The main effort is the development of gravitational heavy metal power generation systems with a Faraday type generator (ETGAR-type system). However, in the wake of this main development a number of diverse research projects are also elaborated. Two of those projects are reflected in this paper. First is the direct contact boiling of volatile thermodynamic liquids in hot liquid metals and the second is MHD turbulence with a variety of applications. The LMMHD power generation project is now about to enter the stagemore » of building a semi-commercial scale demonstration plant. The concept and performance parameters of this plant have been presented already at SEAM 30. Direct contact boiling of the volatile liquid in a hot metal leads to a substantial decrease of the cost of a LMMHD power generation system. Indeed, in this case a separate boiler is not needed. Moreover, the overall efficiency of the system is increased through achieving a more desirable two-phase flow pattern. A Special integrated facility for this study is in advanced stage of assembly and it will be put in operation soon. It will work with lead and water at temperatures up to 750{degrees}K. In the field of MHD Turbulence research, studies of two applications are pursued. The first is related to the engineering of liquid metal blankets in thermonuclear reactors. The second is connected with a possibility to simulate large scale atmospheric and oceanic turbulence using a laboratory MHD channel with liquid metal flow.« less

  6. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  7. New MHD feedback control schemes using the MARTe framework in RFX-mod

    NASA Astrophysics Data System (ADS)

    Piron, Chiara; Manduchi, Gabriele; Marrelli, Lionello; Piovesan, Paolo; Zanca, Paolo

    2013-10-01

    Real-time feedback control of MHD instabilities is a topic of major interest in magnetic thermonuclear fusion, since it allows to optimize a device performance even beyond its stability bounds. The stability properties of different magnetic configurations are important test benches for real-time control systems. RFX-mod, a Reversed Field Pinch experiment that can also operate as a tokamak, is a well suited device to investigate this topic. It is equipped with a sophisticated magnetic feedback system that controls MHD instabilities and error fields by means of 192 active coils and a corresponding grid of sensors. In addition, the RFX-mod control system has recently gained new potentialities thanks to the introduction of the MARTe framework and of a new CPU architecture. These capabilities allow to study new feedback algorithms relevant to both RFP and tokamak operation and to contribute to the debate on the optimal feedback strategy. This work focuses on the design of new feedback schemes. For this purpose new magnetic sensors have been explored, together with new algorithms that refine the de-aliasing computation of the radial sideband harmonics. The comparison of different sensor and feedback strategy performance is described in both RFP and tokamak experiments.

  8. Model-based high-throughput design of ion exchange protein chromatography.

    PubMed

    Khalaf, Rushd; Heymann, Julia; LeSaout, Xavier; Monard, Florence; Costioli, Matteo; Morbidelli, Massimo

    2016-08-12

    This work describes the development of a model-based high-throughput design (MHD) tool for the operating space determination of a chromatographic cation-exchange protein purification process. Based on a previously developed thermodynamic mechanistic model, the MHD tool generates a large amount of system knowledge and thereby permits minimizing the required experimental workload. In particular, each new experiment is designed to generate information needed to help refine and improve the model. Unnecessary experiments that do not increase system knowledge are avoided. Instead of aspiring to a perfectly parameterized model, the goal of this design tool is to use early model parameter estimates to find interesting experimental spaces, and to refine the model parameter estimates with each new experiment until a satisfactory set of process parameters is found. The MHD tool is split into four sections: (1) prediction, high throughput experimentation using experiments in (2) diluted conditions and (3) robotic automated liquid handling workstations (robotic workstation), and (4) operating space determination and validation. (1) Protein and resin information, in conjunction with the thermodynamic model, is used to predict protein resin capacity. (2) The predicted model parameters are refined based on gradient experiments in diluted conditions. (3) Experiments on the robotic workstation are used to further refine the model parameters. (4) The refined model is used to determine operating parameter space that allows for satisfactory purification of the protein of interest on the HPLC scale. Each section of the MHD tool is used to define the adequate experimental procedures for the next section, thus avoiding any unnecessary experimental work. We used the MHD tool to design a polishing step for two proteins, a monoclonal antibody and a fusion protein, on two chromatographic resins, in order to demonstrate it has the ability to strongly accelerate the early phases of process development. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design study of superconducting magnets for a combustion magnetohydrodynamic (MHD) generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.

    1977-01-01

    Design trade off studies for 13 different superconducting magnet systems were carried out. Based on these results, preliminary design characteristics were prepared for several superconducting magnet systems suitable for use with a combustion driven MHD generator. Each magnet generates a field level of 8 T in a volume 1.524 m (60 in.) long with a cross section 0.254 m x 0.254 m (10 in. x 10 in.) at the inlet and 0.406 m x .406 m (16 in. x 16 in.) at the outlet. The first design involves a racetrack coil geometry intended for operation at 4.2 K; the second design uses a racetrack geometry at 2.0 K; and the third design utilizes a rectangular saddle geometry at 4.2 K. Each case was oriented differently in terms of MHD channel axis and main field direction relative to gravity in order to evaluate fabrication ease. All cases were designed such that the system could be disassembled to allow for alteration of field gradient in the MHD channel by changing the angle between coils. Preliminary design characteristics and assembly drawings were generated for each case.

  10. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great challenge to algorithm development. In addition, controlling the numerical error of the divergence free condition of the magnetic fields for high order methods has been a stumbling block. Lower order methods are not practical for the astrophysical problems in question. We propose to extend our hydrodynamics schemes to the MHD equations with several desired properties over commonly used MHD schemes.

  11. Theoretical investigation of operation modes of MHD generators for energy-bypass engines

    NASA Astrophysics Data System (ADS)

    Tang, Jingfeng; Li, Nan; Yu, Daren

    2014-12-01

    A MHD generator with different arrangements of electromagnetic fields will lead the generator working in three modes. A quasi-one-dimensional approximation is used for the model of the MHD generator to analyze the inner mechanism of operation modes. For the MHD generator with a uniform constant magnetic field, a specific critical electric field E cr is required to decelerate a supersonic entrance flow into a subsonic exit flow. Otherwise, the generator works in a steady mode with a larger electric field than E cr in which a steady supersonic flow is provided at the exit, or the generator works in a choked mode with a smaller electric field than E cr in which the supersonic entrance flow is choked in the channel. The detailed flow field characteristics in different operation modes are discussed, demonstrating the relationship of operation modes with electromagnetic fields.

  12. Numerical analysis of real gas MHD flow on two-dimensional self-field MPD thrusters

    NASA Astrophysics Data System (ADS)

    Xisto, Carlos M.; Páscoa, José C.; Oliveira, Paulo J.

    2015-07-01

    A self-field magnetoplasmadynamic (MPD) thruster is a low-thrust electric propulsion space-system that enables the usage of magnetohydrodynamic (MHD) principles for accelerating a plasma flow towards high speed exhaust velocities. It can produce an high specific impulse, making it suitable for long duration interplanetary space missions. In this paper numerical results obtained with a new code, which is being developed at C-MAST (Centre for Mechanical and Aerospace Technologies), for a two-dimensional self-field MPD thruster are presented. The numerical model is based on the macroscopic MHD equations for compressible and electrically resistive flow and is able to predict the two most important thrust mechanisms that are associated with this kind of propulsion system, namely the thermal thrust and the electromagnetic thrust. Moreover, due to the range of very high temperatures that could occur during the operation of the MPD, it also includes a real gas model for argon.

  13. MHD generator electrode development. Summary report, July 1, 1981-September 30, 1982

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossing, B.R.; Buckman, R.W. Jr.; Pouchot, W.D.

    Emphasis on this program was the development of and understanding wastage mechanism(s) of metallic electrodes which may be suitable alternatives to platinum anode material for use in long-term open cycle, coal-fired MHD generator operations. The laboratory tests simulate both modes of material wastage observed in MHD electrode operation; i.e., arc erosion (melting/vaporization) and electrochemical corrosion. Based on experimental results from the electrochemical tests at 1473/sup 0/K, the rank order listing of the materials tested for anode applications were platinum, E-Brite 26-1 modified with a five percent addition of platinum, chromium, IN 601, E-Brite 26-1, and 330 stainless steel ranked inmore » decreasing order. The rank order listing based on the arc erosion test was platinum, chromium, E-Brite 26-1, 330 stainless steel, and IN 601. The relative arc erosion resistance of materials based on the AVCO Mark VII generator test results gave a rank order of platinum, 330 stainless steel, IN 601, and E-Brite 26-1. Engineering tests under simulated open-cycle coal-fired MHD operating conditions were performed in the 500 kW Westinghouse Electrode System Test Facility (WESTF). Tests were conducted on candidate metallic anode materials (cold wall) and ceramic anode (hot wall) materials. A ten-hour duration cold wall slagging test was conducted on platinum, E-Brite 26-1, 330 stainless steel and IN 601 and the results were similar to those obtained for those materials in the AVCO Mark VII generator tests. Non-slagging, super hot (>1700/sup 0/C) wall hafnia-rare earth oxide electrodes were tested in a sulfurous, western coal-fired MHD environment. All four ceramic electrode pairs were destroyed. 20 references.« less

  14. Design Study: Rocket Based MHD Generator

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This report addresses the technical feasibility and design of a rocket based MHD generator using a sub-scale LOx/RP rocket motor. The design study was constrained by assuming the generator must function within the performance and structural limits of an existing magnet and by assuming realistic limits on (1) the axial electric field, (2) the Hall parameter, (3) current density, and (4) heat flux (given the criteria of heat sink operation). The major results of the work are summarized as follows: (1) A Faraday type of generator with rectangular cross section is designed to operate with a combustor pressure of 300 psi. Based on a magnetic field strength of 1.5 Tesla, the electrical power output from this generator is estimated to be 54.2 KW with potassium seed (weight fraction 3.74%) and 92 KW with cesium seed (weight fraction 9.66%). The former corresponds to a enthalpy extraction ratio of 2.36% while that for the latter is 4.16%; (2) A conceptual design of the Faraday MHD channel is proposed, based on a maximum operating time of 10 to 15 seconds. This concept utilizes a phenolic back wall for inserting the electrodes and inter-electrode insulators. Copper electrode and aluminum oxide insulator are suggested for this channel; and (3) A testing configuration for the sub-scale rocket based MHD system is proposed. An estimate of performance of an ideal rocket based MHD accelerator is performed. With a current density constraint of 5 Amps/cm(exp 2) and a conductivity of 30 Siemens/m, the push power density can be 250, 431, and 750 MW/m(sup 3) when the induced voltage uB have values of 5, 10, and 15 KV/m, respectively.

  15. Design study of superconducting magnets for a combustion magnetohydrodynamic /MHD/ generator

    NASA Technical Reports Server (NTRS)

    Thome, R. J.; Ayers, J. W.; Hrycaj, T. M.; Burkhart, J. A.

    1978-01-01

    Results are presented for a trade-off and preliminary design study on concepts of a superconducting magnet system for a combustion MHD generator test facility. The main objective is to gain insight into the magnitude of the project in terms of physical characteristics and cost. The net result of a first-phase evaluation of attractive design alternatives is to concentrate subsequent efforts on (1) a racetrack coil geometry with an operating temperature of 4.2 K, (2) a racetrack coil geometry with an operating temperature of 2.0 K, and (3) a rectangular saddle coil geometry with an operating temperature of 4.2 K. All three systems are to produce 8 T, and use NbTi superconductor and iron for field enhancement. Design characteristics of the three systems are described. It is shown that the racetrack and rectangular saddle coil geometries seem most suitable for this application, the former because of its simplicity and the latter because of its efficient use of material. Advantages of the rectangular saddle over the two other systems are stressed.

  16. Stability of ideal MHD configurations. I. Realizing the generality of the G operator

    NASA Astrophysics Data System (ADS)

    Keppens, R.; Demaerel, T.

    2016-12-01

    A field theoretical approach, applied to the time-reversible system described by the ideal magnetohydrodynamic (MHD) equations, exposes the full generality of MHD spectral theory. MHD spectral theory, which classified waves and instabilities of static or stationary, usually axisymmetric or translationally symmetric configurations, actually governs the stability of flowing, (self-)gravitating, single fluid descriptions of nonlinear, time-dependent idealized plasmas, and this at any time during their nonlinear evolution. At the core of this theory is a self-adjoint operator G , discovered by Frieman and Rotenberg [Rev. Mod. Phys. 32, 898 (1960)] in its application to stationary (i.e., time-independent) plasma states. This Frieman-Rotenberg operator dictates the acceleration identified by a Lagrangian displacement field ξ , which connects two ideal MHD states in four-dimensional space-time that share initial conditions for density, entropy, and magnetic field. The governing equation reads /d 2 ξ d t 2 = G [ ξ ] , as first noted by Cotsaftis and Newcomb [Nucl. Fusion, Suppl. Part 2, 447 and 451 (1962)]. The time derivatives at left are to be taken in the Lagrangian way, i.e., moving with the flow v. Physically realizable displacements must have finite energy, corresponding to being square integrable in the Hilbert space of displacements equipped with an inner product rule, for which the G operator is self-adjoint. The acceleration in the left-hand side features the Doppler-Coriolis operator v . ∇ , which is known to become an antisymmetric operator when restricting attention to stationary equilibria. Here, we present all derivations needed to get to these insights and connect results throughout the literature. A first illustration elucidates what can happen when self-gravity is incorporated and presents aspects that have been overlooked even in simple uniform media. Ideal MHD flows, as well as Euler flows, have essentially 6 + 1 wave types, where the 6 wave modes are organized through the essential spectrum of the G operator. These 6 modes are actually three pairs of modes, in which the Alfvén pair (a shear wave pair in hydro) sits comfortably at the middle. Each pair of modes consists of a leftgoing wave and a rightgoing wave, or equivalently stated, with one type traveling from past to future (forward) and the other type that goes from future to past (backward). The Alfvén pair is special, in its left-right categorization, while there is full degeneracy for the slow and fast pairs when reversing time and mirroring space. The Alfvén pair group speed diagram leads to the familiar Elsässer variables.

  17. Safety and diagnostic systems on the Liquid Lithium Test Stand (LLTS)

    NASA Astrophysics Data System (ADS)

    Schwartz, J. A.; Jaworski, M. A.; Ellis, R.; Kaita, R.; Mozulay, R.

    2013-10-01

    The Liquid Lithium Test Stand (LLTS) is a test bed for development of flowing liquid lithium systems for plasma-facing components at PPPL. LLTS is designed to test operation of liquid lithium under vacuum, including flowing, solidifying (such as would be the case at the end of plasma operations), and re-melting. Constructed of stainless steel, LLTS is a closed loop of pipe with two reservoirs and a pump, as well as diagnostics for temperature, flow rate, and pressure. Since liquid lithium is a highly reactive material, special care must be taken when designing such a system. These include a permanent-magnet MHD pump and MHD flow meter that have no mechanical components in direct contact with the liquid lithium. The LLTS also includes an expandable 24-channel leak-detector interlock system which cuts power to heaters and the pump if any lithium leaks from a pipe joint. Design for the interlock systems and flow meter are presented. This work is supported by US DOE Contract DE-AC02-09CH11466.

  18. Enhanced understanding of the MHD dynamics and ELM control experiments in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Hyeon K.

    2013-10-01

    In KSTAR, H-mode discharges have been achieved reliably at toroidal fields from 1.4 to 3.5 T with a heating power of ~ 5 MW. Using real-time plasma shape control the flattop time in H-mode has been extended to over ~ 16 s at 600 kA in the 2012 campaign and the extended plasma operation boundary has surpassed the n = 1 no-wall limit with βN /li up to 4.1. In order to achieve a high beta steady state operation in KSTAR, establishment of predictive MHD simulation and first-principle-based control of the harmful MHD are the first steps. Visualization of MHD dynamics via a 2-D Electron Cyclotron Emission Imaging (ECEI) has significantly enhanced the level of understanding of the MHD dynamics. Following the first 2-D ELM measurements in H-mode plasmas in KSTAR the measured 2-D ELM images were compared with synthetic images from the BOUT + + code. The physics of ELMs is characterized based on a wide range of measured mode numbers (n, m) local magnetic shear and pressure gradients. The observed ELM dynamics during control experiments have been enlightening and consistent with the stability models. Near the q ~ 2 surface, the island width and Δ' of the m = 2 tearing mode have been verified through the modified Rutherford model based on the 2-D images. With the aid of a second (toroidally separated) ECEI system installed in the 2012 KSTAR campaign, a 3-D reconstruction of the MHD instabilities has allowed further validation of the computed magnetic field pitch angles, rotation speeds, and toroidal asymmetries of the MHDs Work supported by NRF of Korea under contract No. 20120005920 and the U.S. DoE under contract No. DE-FG-02-99ER54531.

  19. Ideal MHD stability and performance of ITER steady-state scenarios with ITBs

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Kessel, C. E.; Chance, M. S.; Jardin, S. C.; Manickam, J.

    2012-06-01

    Non-inductive steady-state scenarios on ITER will need to operate with internal transport barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. The large pressure gradients at the location of the internal barrier are conducive to the development of ideal MHD instabilities that may limit the plasma performance and may lead to plasma disruptions. Fully non-inductive scenario simulations with five combinations of heating and current drive sources are presented in this work, with plasma currents in the range 7-10 MA. For each configuration the linear, ideal MHD stability is analysed for variations of the Greenwald fraction and of the pressure peaking factor around the operating point, aiming at defining an operational space for stable, steady-state operations at optimized performance. It is shown that plasmas with lower hybrid heating and current drive maintain the minimum safety factor above 1.5, which is desirable in steady-state operations to avoid neoclassical tearing modes. Operating with moderate ITBs at 2/3 of the minor radius, these plasmas have a minimum safety factor above 2, are ideal MHD stable and reach Q ≳ 5 operating above the ideal no-wall limit.

  20. An innovative demonstration of high power density in a compact MHD generator

    NASA Astrophysics Data System (ADS)

    Lineberry, J. T.; Schmidt, H. J.; Chapman, J. N.

    1988-05-01

    This document is the first semi-annual report for this project. It has been prepared in accordance with contractual reporting obligations and contains a written summary of the research work which has been performed since the beginning of the project through March 31, 1988. During this period, research work has included a variety of studies on several aspects of the overall project as was needed to scope out the requirements for proceeding with a detailed design of experimental hardware. One of the major objectives of these efforts was to provide a definition of operating conditions that are required to allow this MHD system to meet the program objectives. These background studies encompassed detailed analyses of the combustion of the aluminum/carbon (Al:C) solid fuel and evaluations of the gas dynamic characteristics of the combustion plasma produced by combustion. Another major effort was that of analyses and predictions of the performance of conceptual designs for the MHD generator. Both of these tasks were directed at obtaining necessary information which would allow geometric scaling of the experimental MHD system. A summary of the design studies that were performed is given within the body of this report.

  1. Assessment of MCRM Boost Assist from Orbit for Deep Space Missions

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.

  2. Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.

    2008-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems. The baseline configuration for this high-power experimental facility utilizes a 1.5-MWe multi-gas arc-heater as a thermal driver for a 2-MWe MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable heat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  3. Status of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Lineberry, John T.

    2007-01-01

    Over the past several years, efforts have been under way to design and develop an operationally flexible research facility for investigating the use of cross-field MHD accelerators as a potential thrust augmentation device for thermal propulsion systems, The baseline configuration for this high-power experimental facility utilizes a 1,5-MW, multi-gas arc-heater as a thermal driver for a 2-MW, MHD accelerator, which resides in a large-bore 2-tesla electromagnet. A preliminary design study using NaK seeded nitrogen as the working fluid led to an externally diagonalized segmented MHD channel configuration based on an expendable beat-sink design concept. The current status report includes a review of engineering/design work and performance optimization analyses and summarizes component hardware fabrication and development efforts, preliminary testing results, and recent progress toward full-up assembly and testing

  4. A summary of the ECAS performance and cost results for MHD systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The potential is examined of various advanced power plant concepts using coal and coal-derived fuel. The results indicate that open cycle coal fired direct preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed cycle MHD systems may have the potential to approach the efficiency and COE of open cycle MHD. The 1200-1500 F liquid metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  5. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team

    2018-02-01

    A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.

  6. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  7. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  8. MHD stability analysis and global mode identification preparing for high beta operation in KSTAR

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.

    2017-10-01

    H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.

  9. NaK-nitrogen liquid metal MHD converter tests at 30 kw

    NASA Technical Reports Server (NTRS)

    Cerini, D. J.

    1974-01-01

    The feasibility of electrical power generation with an ambient temperature liquid-metal MHD separator cycle is demonstrated by tests in which a NaK-nitrogen LM-MHD converter was operated at nozzle inlet pressures ranging from 100 to 165 N/sq cm, NaK flow rates from 46 to 72 kg/sec, and nitrogen flow rates from 2.4 to 3.8 kg/sec. The generator was operated as an eight-phase linear induction generator, with two of the eight phases providing magnetic field compensation to minimized electrical end losses at the generator channel inlet and exit.

  10. Applications of plasma core reactors to terrestrial energy systems

    NASA Technical Reports Server (NTRS)

    Latham, T. S.; Biancardi, F. R.; Rodgers, R. J.

    1974-01-01

    Plasma core reactors offer several new options for future energy needs in addition to space power and propulsion applications. Power extraction from plasma core reactors with gaseous nuclear fuel allows operation at temperatures higher than conventional reactors. Highly efficient thermodynamic cycles and applications employing direct coupling of radiant energy are possible. Conceptual configurations of plasma core reactors for terrestrial applications are described. Closed-cycle gas turbines, MHD systems, photo- and thermo-chemical hydrogen production processes, and laser systems using plasma core reactors as prime energy sources are considered. Cycle efficiencies in the range of 50 to 65 percent are calculated for closed-cycle gas turbine and MHD electrical generators. Reactor advantages include continuous fuel reprocessing which limits inventory of radioactive by-products and thorium-U-233 breeder configurations with about 5-year doubling times.-

  11. U. S. and Soviet MHD Technology: A Comparative Overview

    DTIC Science & Technology

    1974-01-01

    developments in magnetohydro- dynamic power generation, in which the Soviet program far exceeds the American« The USSR now operates the first MUD power...their respective development approaches, and compares major U.S. and USSR MHD facilities and national program objectives. Preceding page blank...devoted to the history of MHD develop - ment in these two countries, respective development approaches, and cur- rent status of individual programs

  12. Experience of ALCOA-KOFEM with MHD induction stirrer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petho, S.

    1996-10-01

    Every ingot cast shop makes an effort to reduce the costs and to increase the productivity. The MHD stirrer is an adequate tool to achieve a more economical production. The electromagnetic stirrer accelerates the melting rate of the charge, reduces the metal loss and improves the consistency of ingot quality. The Ingot Business Unit of ALCOA-KOFEM operates seven melting furnaces. Each furnace is equipped with a POTOK type MHD induction stirrer in order to achieve a more profitable melting operation. Magnetohydrodynamic stirrers were installed between 1988 and 1990 on melting furnaces ranging in capacity from 25 to 60 tons ofmore » molten metal.« less

  13. Design of the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kendrick, R. D.; Forest, C. B.; O'Connell, R.; Nornberg, M. D.; Spence, E. J.

    2004-11-01

    A spherical dynamo experiment has been constructed at the University of Wisconsin's liquid-sodium facility. The goals of the experiment are to observe and understand magnetic instabilities driven by flow shear in MHD systems, investigate MHD turbulence for magnetic Reynolds numbers of 100, and understand the role of fluid turbulence in current generation. Magnetic field generation is possible for only specific flow geometries. The experiment consists of a 1 m diameter, spherical stainless steel vessel filled with liquid sodium at 110 Celsius. The temperature of the vessel is maintained through an actively-heated-and-cooled oil heat-exchange system. Two 100 Hp motors with impellers drive flows in the liquid sodium with flow velocities near 15 m/s. Each shaft is sealed with an oil-buffered dual mechanical cartridge seal. The experiment is automated for remote operation and data logging. The melting and transfer of one metric ton of sodium to a storage vessel is discussed. Operating parameters and performance of the experiment are presented.

  14. ECCD-induced tearing mode stabilization via active control in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.

    2012-10-01

    Actively controlled electron cyclotron current drive (ECCD) applied within magnetic islands formed by neoclassical tearing modes (NTMs) has been shown to control or suppress these modes. In conjunction with ongoing experimental efforts, the development and verification of integrated numerical models of this mode stabilization process is of paramount importance in determining optimal NTM stabilization strategies for ITER. In the advanced model developed by the SWIM Project, the equations/closures of extended (not reduced) MHD contain new terms arising from 3D (not toroidal or bounce-averaged) RF-induced quasilinear diffusion. The quasilinear operator formulation models the equilibration of driven current within the island using the same extended MHD dynamics which govern the physics of island formation, yielding a more accurate and self-consistent picture of 3D island response to RF drive. Results of computations which model ECRF deposition using ray tracing, assemble the 3D quasilinear operator from ray/profile data, and calculate the resultant forces within the extended MHD code will be presented. We also discuss the efficacy of various numerical active feedback control systems, which gather data from synthetic diagnostics to dynamically trigger and spatially align RF fields.

  15. Advanced Coal-Based Power Generations

    NASA Technical Reports Server (NTRS)

    Robson, F. L.

    1982-01-01

    Advanced power-generation systems using coal-derived fuels are evaluated in two-volume report. Report considers fuel cells, combined gas- and steam-turbine cycles, and magnetohydrodynamic (MHD) energy conversion. Presents technological status of each type of system and analyzes performance of each operating on medium-Btu fuel gas, either delivered via pipeline to powerplant or generated by coal-gasification process at plantsite.

  16. A summary of the ECAS MHD power plant results

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Harris, L. P.

    1976-01-01

    The performance and the cost of electricity (COE) for MHD systems utilizing coal or coal derived fuels are summarized along with a conceptual open cycle MHD plant design. The results show that open cycle coal fired recuperatively preheated MHD systems have potentially one of the highest coal-pile-to-bus bar efficiencies (48.3%) and also one of the lowest COE of the systems studied. Closed cycle, inert gas systems do not appear to have the potential of exceeding the efficiency of or competing with the COE of advanced steam plants.

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  18. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  19. Robe Development for Electrical Conductivity Analysis in an Electron Gun Produced Helium Plasma

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Bitteker, Leo; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    The use of magnetohydrodynamic (MHD) power conversion systems, potentially coupled with a fission power source, is currently being investigated as a driver for an advanced propulsion system, such as a plasma thruster. The efficiency of a MHD generator is strongly dependent on the electrical conductivity of the fluid that passes through the generator; power density increases as fluid conductivity increases. Although traditional MHD flows depend on thermal ionization to enhance the electrical conductivity, ionization due to nuclear interactions may achieve a comparable or improved conductivity enhancement while avoiding many of the limitations inherent to thermal ionization. Calculations suggest that nuclear-enhanced electrical conductivity increases as the neutron flux increases; conductivity of pure He-3 greater than 10 mho/m may be achievable if exposed to a flux greater than 10(exp 12) neutrons/cm2/s.) However, this remains to be demonstrated experimentally. An experimental facility has been constructed at the Propulsion Research Center at the NASA Marshall Space Flight Center, using helium as the test fluid. High energy electrons will be used to simulate the effects of neutron-induced ionization of helium gas to produce a plasma. These experiments will be focused on diagnosis of the plasma in a virtually static system; results will be applied to future tests with a MHD system. Initial experiments will utilize a 50 keV electron gun that can operate at up to a current of 200 micro A. Spreading the electron beam over a four inch diameter window results in an electron flux of 1.5x 10(exp 13) e/sq cm/s. The equivalent neutron flux that would produce the same ionization fraction in helium is 1x10(exp 12) n/sq cm/s. Experiments will simulate the neutron generated plasma modeled by Bitteker, which takes into account the products of thermal neutron absorption in He-3, and includes various ion species in estimating the conductivity of the resulting plasma. Several different probes will be designed and implemented to verify the plasma kinetics model. System parameters and estimated operating ranges are summarized. The predicted ionization fraction, electron density, and conductivity levels are provided in for an equivalent neutron flux of 1x10(exp 12) n/cm2/s. Understanding the complex plasma kinetics throughout a MHD channel is necessary to design an optimal power conversion system for space propulsion applications. The proposed experiments seek to fully characterize the helium plasma and to determine the reliability of each measurement technique, such that they may be applied to more advanced MHD studies. The expected value of each plasma parameter determined from theoretical models will be verified experimentally by several independent techniques to determine the most reliable method of obtaining each parameter. The results of these experiments will be presented in the final paper.

  20. A summary of the ECAS performance and cost results for MHD system. [Energy Conversion Alternatives Study

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Sovie, R. J.; Burns, R. K.; Barna, G. J.; Burkhart, J. A.; Nainiger, J. J.; Smith, J. M.

    1976-01-01

    The interagency-funded, NASA-coordinated Energy Conversion Alternatives Study (ECAS) has studied the potential of various advanced power plant concepts using coal and coal-derived fuel. Principle studies were conducted through prime contracts with the General Electric Company and the Westinghouse Electric Corporation. The results indicate that open-cycle coal-fired direct-preheat MHD systems have potentially one of the highest coal-pile-to-bus-bar efficiencies and also one of the lowest costs of electricity (COE) of the systems studied. Closed-cycle MHD systems may have the potential to approach the efficiency and COE of open-cycle MHD. The 1200-1500 F liquid-metal MHD systems studied do not appear to have the potential of exceeding the efficiency or competing with the COE of advanced steam plants.

  1. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  2. Feasibility of MHD submarine propulsion. Phase II, MHD propulsion: Testing in a two Tesla test facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  3. On the local well-posedness and a Prodi-Serrin-type regularity criterion of the three-dimensional MHD-Boussinesq system without thermal diffusion

    NASA Astrophysics Data System (ADS)

    Larios, Adam; Pei, Yuan

    2017-07-01

    We prove a Prodi-Serrin-type global regularity condition for the three-dimensional Magnetohydrodynamic-Boussinesq system (3D MHD-Boussinesq) without thermal diffusion, in terms of only two velocity and two magnetic components. To the best of our knowledge, this is the first Prodi-Serrin-type criterion for such a 3D hydrodynamic system which is not fully dissipative, and indicates that such an approach may be successful on other systems. In addition, we provide a constructive proof of the local well-posedness of solutions to the fully dissipative 3D MHD-Boussinesq system, and also the fully inviscid, irresistive, non-diffusive MHD-Boussinesq equations. We note that, as a special case, these results include the 3D non-diffusive Boussinesq system and the 3D MHD equations. Moreover, they can be extended without difficulty to include the case of a Coriolis rotational term.

  4. Engineering test facility design definition

    NASA Technical Reports Server (NTRS)

    Bercaw, R. W.; Seikel, G. R.

    1980-01-01

    The Engineering Test Facility (ETF) is the major focus of the Department of Energy (DOE) Magnetohydrodynamics (MHD) Program to facilitate commercialization and to demonstrate the commercial operability of MHD/steam electric power. The ETF will be a fully integrated commercial prototype MHD power plant with a nominal output of 200 MW sub e. Performance of this plant is expected to meet or surpass existing utility standards for fuel, maintenance, and operating costs; plant availability; load following; safety; and durability. It is expected to meet all applicable environmental regulations. The current design concept conforming to the general definition, the basis for its selection, and the process which will be followed in further defining and updating the conceptual design.

  5. H2-O2 combustion powered steam-MHD central power systems

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.; Smith, J. M.; Nichols, L. D.

    1974-01-01

    Estimates are made for both the performance and the power costs of H2-O2 combustion powered steam-MHD central power systems. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city.

  6. The Impact of Comorbid Mental Health Disorders on Complications Following Cervical Spine Surgery with Minimum 2-Year Surveillance.

    PubMed

    Diebo, Bassel G; Lavian, Joshua D; Liu, Shian; Shah, Neil V; Murray, Daniel P; Beyer, George A; Segreto, Frank A; Maffucci, Fenizia; Poorman, Gregory W; Cherkalin, Denis; Torre, Barrett; Vasquez-Montes, Dennis; Yoshihara, Hiroyuki; Cukor, Daniel; Naziri, Qais; Passias, Peter G; Paulino, Carl B

    2018-03-23

    Retrospective Analysis OBJECTIVE.: To improve understanding of the impact of comorbid mental health disorders on long-term outcomes following cervical spinal fusion in cervical radiculopathy (CR) or cervical myelopathy (CM) patients. Subsets of patients with CR and CM have mental health disorders, and their impact on surgical complications is poorly understood. Patients admitted from 2009-2013 with CR or CM diagnoses who underwent cervical surgery with minimum 2-year surveillance were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients with a comorbid mental health disorder (MHD) were compared against those without (no-MHD). Univariate analysis compared demographics, complications, readmissions, and revisions between MHD and no-MHD cohorts. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: age, gender, Charlson/Deyo score, and surgical approach). 20,342 patients (MHD: n = 4,819; no-MHD: n = 15,523) were included. Mental health disorders identified: depressive (57.8%), anxiety (28.1%), sleep (25.2%), and stress (2.9%). CR patients had greater prevalence of comorbid MHD than CM patients (p = 0.015). Two years post-operatively, all MHD patients had significantly higher rates of complications (specifically: device-related, infection), readmission for any indication, and revision surgery (all p < 0.05); regression modeling corroborated these findings and revealed combined surgical approach as the strongest predictor for any complication (CR, Odds Ratio [OR]: 3.945, p < 0.001; CM, OR: 2.828, p < 0.001) and MHD as the strongest predictor for future revision (CR, OR: 1.269, p = 0.001; CM, OR: 1.248, p = 0.008) in both CR and CM cohorts. Nearly 25% of patients admitted for CR and CM carried comorbid mental health disorder and experienced greater rates of any complication, readmission, or revision, at minimum, two years following cervical spine surgery. Results must be confirmed with retrospective studies utilizing larger national databases and with prospective cohort studies. Patient counseling and psychological screening/support is recommended to complement surgical treatment. 3.

  7. MHD modeling of DIII-D QH-mode discharges and comparison to observations

    NASA Astrophysics Data System (ADS)

    King, Jacob

    2016-10-01

    MHD modeling of DIII-D QH-mode discharges and comparison to observations Nonlinear NIMROD simulations, initialized from a reconstruction of a DIII-D QH-mode discharge with broadband MHD, saturate into a turbulent state, but do not saturate when flow is not included. This is consistent with the experimental results of the quiescent regime observed on DIII-D with broadband MHD activity [Garofalo et al., PoP (2015) and refs. within]. These ELM-free discharges have the normalized pedestal-plasma confinement necessary for burning-plasma operation on ITER. Relative to QH-mode operation with more coherent MHD activity, operation with broadband MHD tends to occur at higher densities and lower rotation and thus may be more relevant to ITER. The nonlinear NIMROD simulations require highly accurate equilibrium reconstructions. Our equilibrium reconstructions include the scrape-off-layer profiles and the measured toroidal and poloidal rotation profiles. The simulation develops into a saturated turbulent state and the n=1 and 2 modes become dominant through an inverse cascade. Each toroidal mode in the range of n=1-5 is dominant at a different time. The perturbations are advected and sheared apart in the counter-clockwise direction consistent with the direction of the poloidal flow inside the LCFS. Work towards validation through comparison to magnetic coil and Doppler reflectometry measurements is presented. Consistent with experimental observations during QH-mode, the simulated state leads to large particle transport relative to the thermal transport. Analysis shows that the phase of the density and temperature perturbations differ resulting in greater convective particle transport relative to the convective thermal transport. This work supported by the U.S. Department of Energy Office of Science and the SciDAC Center for Extended MHD Modeling under Contract Numbers DE-FC02-06ER54875, DE-FC02-08ER54972 and DE-FC02-04ER54698.

  8. A Riccati solution for the ideal MHD plasma response with applications to real-time stability control

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen; Glasser, A. H.

    2018-03-01

    Active feedback control of ideal MHD stability in a tokamak requires rapid plasma stability analysis. Toward this end, we reformulate the δW stability method with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the generic tokamak ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD matrix Riccati differential equation. Since Riccati equations are prevalent in the control theory literature, such a shift in perspective brings to bear a range of numerical methods that are well-suited to the robust, fast solution of control problems. We discuss the usefulness of Riccati techniques in solving the stiff ordinary differential equations often encountered in ideal MHD stability analyses—for example, in tokamak edge and stellarator physics. We demonstrate the applicability of such methods to an existing 2D ideal MHD stability code—DCON [A. H. Glasser, Phys. Plasmas 23, 072505 (2016)]—enabling its parallel operation in near real-time, with wall-clock time ≪1 s . Such speed may help enable active feedback ideal MHD stability control, especially in tokamak plasmas whose ideal MHD equilibria evolve with inductive timescale τ≳ 1s—as in ITER.

  9. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-12-31

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DIII-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  10. Improved operating scenarios of the DIII-D tokamak as a result of the addition of UNIX computer systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Henline, P.A.

    1995-10-01

    The increased use of UNIX based computer systems for machine control, data handling and analysis has greatly enhanced the operating scenarios and operating efficiency of the DRI-D tokamak. This paper will describe some of these UNIX systems and their specific uses. These include the plasma control system, the electron cyclotron heating control system, the analysis of electron temperature and density measurements and the general data acquisition system (which is collecting over 130 Mbytes of data). The speed and total capability of these systems has dramatically affected the ability to operate DIII-D. The improved operating scenarios include better plasma shape controlmore » due to the more thorough MHD calculations done between shots and the new ability to see the time dependence of profile data as it relates across different spatial locations in the tokamak. Other analysis which engenders improved operating abilities will be described.« less

  11. NASA Lewis H2-O2 MHD program

    NASA Technical Reports Server (NTRS)

    Smith, M.; Nichols, L. D.; Seikel, G. R.

    1974-01-01

    Performance and power costs of H2-O2 combustion powered steam-MHD central power systems are estimated. Hydrogen gas is assumed to be transmitted by pipe from a remote coal gasifier into the city and converted to electricity in a steam MHD plant having an integral gaseous oxygen plant. These steam MHD systems appear to offer an attractive alternative to both in-city clean fueled conventional steam power plants and to remote coal fired power plants with underground electric transmission into the city. Status and plans are outlined for an experimental evaluation of H2-O2 combustion-driven MHD power generators at NASA Lewis Research Center.

  12. Trapped particle stability for the kinetic stabilizer

    NASA Astrophysics Data System (ADS)

    Berk, H. L.; Pratt, J.

    2011-08-01

    A kinetically stabilized axially symmetric tandem mirror (KSTM) uses the momentum flux of low-energy, unconfined particles that sample only the outer end-regions of the mirror plugs, where large favourable field-line curvature exists. The window of operation is determined for achieving magnetohydrodynamic (MHD) stability with tolerable energy drain from the kinetic stabilizer. Then MHD stable systems are analysed for stability of the trapped particle mode. This mode is characterized by the detachment of the central-cell plasma from the kinetic-stabilizer region without inducing field-line bending. Stability of the trapped particle mode is sensitive to the electron connection between the stabilizer and the end plug. It is found that the stability condition for the trapped particle mode is more constraining than the stability condition for the MHD mode, and it is challenging to satisfy the required power constraint. Furthermore, a severe power drain may arise from the necessary connection of low-energy electrons in the kinetic stabilizer to the central region.

  13. Liquid-metal flows: Magnetohydrodynamics and applications; Proceedings of the Fifth Beersheba International Seminar on Magnetohydrodynamic Flows and Turbulence, University of the Negev, Beersheba, Israel, Mar. 2-6, 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branover, H.; Mond, M.; Unger, Y.

    The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less

  14. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  15. Status of power generation experiments in the NASA Lewis closed cycle MHD facility

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Nichols, L. D.

    1971-01-01

    The design and operation of the closed cycle MHD facility is discussed and results obtained in recent experiments are presented. The main components of the facility are a compressor, recuperative heat exchanger, heater, nozzle, MHD channel with 28 pairs of thoriated tungsten electrodes, cesium condenser, and an argon cooler. The facility has been operated at temperatures up to 2100 K with a cesium-seeded argon working fluid. At low magnetic field strengths, the open circuit voltage, Hall voltage and short circuit current obtained are 90, 69, and 47 percent of the theoretical equilibrium values, respectively. Comparison of this data with a wall and boundary layer leakage theory indicates that the generator has shorting paths in the Hall direction.

  16. Resistive MHD Stability Analysis in Near Real-time

    NASA Astrophysics Data System (ADS)

    Glasser, Alexander; Kolemen, Egemen

    2017-10-01

    We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.

  17. Constructing the spectral web of rotating plasmas

    NASA Astrophysics Data System (ADS)

    Goedbloed, Hans

    2012-10-01

    Rotating plasmas are ubiquitous in nature. The theory of MHD stability of such plasmas, initiated a long time ago, has severely suffered from the wide spread misunderstanding that it necessarily involves non-self-adjoint operators. It has been shown (J.P. Goedbloed, PPCF 16, 074001, 2011; Goedbloed, Keppens and Poedts, Advanced Magnetohydrodynamics, Cambridge, 2010) that, on the contrary, spectral theory of moving plasmas can be constructed entirely on the basis of energy conservation and self-adjointness of the occurring operators. The spectral web is a further development along this line. It involves the construction of a network of curves in the complex omega-plane associated with the complex complementary energy, which is the energy needed to maintain harmonic time dependence in an open system. Vanishing of that energy, at the intersections of the mentioned curves, yields the eigenvalues of the closed system. This permits to consider the enormous diversity of MHD instabilities of rotating tokamaks, accretion disks about compact objects, and jets emitted from those objects, from a single view point. This will be illustrated with results obtained with a new spectral code (ROC).

  18. Towards Integrated Pulse Detonation Propulsion and MHD Power

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Thompson, Bryan R.; Lineberry, John T.

    1999-01-01

    The interest in pulse detonation engines (PDE) arises primarily from the advantages that accrue from the significant combustion pressure rise that is developed in the detonation process. Conventional rocket engines, for example, must obtain all of their compression from the turbopumps, while the PDE provides additional compression in the combustor. Thus PDE's are expected to achieve higher I(sub sp) than conventional rocket engines and to require smaller turbopumps. The increase in I(sub sp) and the decrease in turbopump capacity must be traded off against each other. Additional advantages include the ability to vary thrust level by adjusting the firing rate rather than throttling the flow through injector elements. The common conclusion derived from these aggregated performance attributes is that PDEs should result in engines which are smaller, lower in cost, and lighter in weight than conventional engines. Unfortunately, the analysis of PDEs is highly complex due to their unsteady operation and non-ideal processes. Although the feasibility of the basic PDE concept has been proven in several experimental and theoretical efforts, the implied performance improvements have yet to be convincingly demonstrated. Also, there are certain developmental issues affecting the practical application of pulse detonation propulsion systems which are yet to be fully resolved. Practical detonation combustion engines, for example, require a repetitive cycle of charge induction, mixing, initiation/propagation of the detonation wave, and expulsion/scavenging of the combustion product gases. Clearly, the performance and power density of such a device depends upon the maximum rate at which this cycle can be successfully implemented. In addition, the electrical energy required for direct detonation initiation can be significant, and a means for direct electrical power production is needed to achieve self-sustained engine operation. This work addresses the technological issues associated with PDEs for integrated aerospace propulsion and MHD power. An effort is made to estimate the energy requirements for direct detonation initiation of potential fuel/oxidizer mixtures and to determine the electrical power requirements. This requirement is evaluated in terms of the possibility for MHD power generation using the combustion detonation wave. Small scale laboratory experiments were conducted using stoichiometric mixtures of acetylene and oxygen with an atomized spray of cesium hydroxide dissolved in alcohol as an ionization seed in the active MHD region. Time resolved thrust and MHD power generation measurements were performed. These results show that PDEs yield higher I(sub sp) levels than a comparable rocket engine and that MHD power generation is viable candidate for achieving self-excited engine operation.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheviakov, Alexei F., E-mail: chevaikov@math.usask.ca

    Partial differential equations of the form divN=0, N{sub t}+curl M=0 involving two vector functions in R{sup 3} depending on t, x, y, z appear in different physical contexts, including the vorticity formulation of fluid dynamics, magnetohydrodynamics (MHD) equations, and Maxwell's equations. It is shown that these equations possess an infinite family of local divergence-type conservation laws involving arbitrary functions of space and time. Moreover, it is demonstrated that the equations of interest have a rather special structure of a lower-degree (degree two) conservation law in R{sup 4}(t,x,y,z). The corresponding potential system has a clear physical meaning. For the Maxwell's equations,more » it gives rise to the scalar electric and the vector magnetic potentials; for the vorticity equations of fluid dynamics, the potentialization inverts the curl operator to yield the fluid dynamics equations in primitive variables; for MHD equations, the potential equations yield a generalization of the Galas-Bogoyavlenskij potential that describes magnetic surfaces of ideal MHD equilibria. The lower-degree conservation law is further shown to yield curl-type conservation laws and determined potential equations in certain lower-dimensional settings. Examples of new nonlocal conservation laws, including an infinite family of nonlocal material conservation laws of ideal time-dependent MHD equations in 2+1 dimensions, are presented.« less

  20. Active control of ECCD-induced tearing mode stabilization in coupled NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, Scott; Held, Eric

    2013-10-01

    Actively controlled ECCD applied in or near magnetic islands formed by NTMs has been successfully shown to control/suppress these modes, despite uncertainties in island O-point locations (where induced current is most stabilizing) relative to the RF deposition region. Integrated numerical models of the mode stabilization process can resolve these uncertainties and augment experimental efforts to determine optimal ITER NTM stabilization strategies. The advanced SWIM model incorporates RF effects in the equations/closures of extended MHD as 3D (not toroidal or bounce-averaged) quasilinear diffusion coefficients. Equilibration of driven current within the island geometry is modeled using the same extended MHD dynamics governing the physics of island formation, yielding a more accurate/self-consistent picture of island response to RF drive. Additionally, a numerical active feedback control system gathers data from synthetic diagnostics to dynamically trigger & spatially align the RF fields. Computations which model the RF deposition using ray tracing, assemble the 3D QL operator from ray & profile data, calculate the resultant xMHD forces, and dynamically realign the RF to more efficiently stabilize modes are presented; the efficacy of various control strategies is also discussed. Supported by the SciDAC Center for Extended MHD Modeling (CEMM); see also https://cswim.org.

  1. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams

    2017-07-01

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.

  2. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  3. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE PAGES

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...

    2017-04-28

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  4. Conceptual Design of a Space-Based Multimegawatt MHD Power System, Task 1 Topical Report; Volume 1: Technical Discussion

    DTIC Science & Technology

    1988-01-01

    system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or

  5. US/USSR cooperative program in open-cycle MHD electrical power generation: joint test report No. 4. Tests in the U-25B facility: MHD generator tests No. 6 and 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picologlou, B F; Batenin, V M

    1981-01-01

    A description of the main results obtained during Tests No. 6 and 7 at the U-25B Facility using the new channel No. 2 is presented. The purpose of these tests was to operate the MHD generator at its design parameters. Described here are new plasma diagnostic devices: a traversing dual electrical probe for determining distribution of electron concentrations, and a traversing probe that includes a pitot tube for measuring total and static pressure, and a light detector for measuring plasma luminescence. Data are presented on heat flux distribution along the channel, the first data of this type obtained for anmore » MHD facility of such size. Results are given of experimental studies of plasma characteristics, gasdynamic, thermal, and electrical MHD channel performance, and temporal and spatial nonuniformities. Typical modes of operation are analyzed by means of local electrical analyses. Computer models are used to obtain predictions for both localized and overall generator characteristics. These theoretical predictions agree closely with the results of the local analyses, as well as with measurements of the overall gasdynamic and electrical characteristics of the generator.« less

  6. Advances in long pulse operation at high radio frequency power in Tore Supra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goniche, M.; Dumont, R.; Bourdelle, C.

    2014-06-15

    The lower hybrid current drive (LHCD) system of Tore Supra has been upgraded for long pulse operation at higher power (7–8 MW). The two launchers have coupled on plasma 3.8 MW and 2.7 MW separately. This new power capability allows extending the operational domain of Tore Supra for long pulses at higher current and density. 38 long (20 s –155 s) discharges with very low loop voltage (V{sub L} = 30-60 mV) were performed with combined LHCD (5-5.7 MW) and ICRH (1–3 MW) powers, with up to 1 GJ of injected energy. Higher LHCD efficiency, with respect to the previous long discharges, is reported. MHD stability of these discharges ismore » very sensitive to the LHCD power and parallel wave index, in particular in the preforming phase. For theses evanescent loop voltage plasmas, the ICRH power, in excess of 1 MW, is found to have a beneficial effect on the MHD stability.« less

  7. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the questionmore » of interest by examining several different indicators of MHD-like behavior.« less

  8. Core plasma design of the compact helical reactor with a consideration of the equipartition effect

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Yanagi, N.; Tamura, H.; Tanaka, T.; Sakamoto, R.; Suzuki, C.; Seki, R.; Satake, S.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2018-07-01

    Integrated physics analysis of plasma operation scenario of the compact helical reactor FFHR-c1 has been conducted. The DPE method, which predicts radial profiles in a reactor by direct extrapolation from the reference experimental data, has been extended to implement the equipartition effect. Close investigation of the plasma operation regime has been conducted and a candidate plasma operation point of FFHR-c1 has been identified within the parameter regime that has already been confirmed in LHD experiment in view of MHD equilibrium, MHD stability and neoclassical transport.

  9. NaK-nitrogen liquid metal MHD converter tests at 30 kW.

    NASA Technical Reports Server (NTRS)

    Cerini, D. J.

    1973-01-01

    Description of the tests performed and test results obtained in an experiment where a NaK-nitrogen liquid metal MHD converter was operated over a range of nozzle inlet pressures of 100 to 165 N per sq cm, NaK flow rates of 46 to 72 kg/sec, and nitrogen flow rates of 3.4 to 3.8 kg/sec. The test results indicate: (1) smooth and stable operation, (2) absence of unexpected electrical or flow losses, and (3) possibility of operation with the expected full power output of 30 kW.

  10. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  11. Pulse Detonation Rocket Magnetohydrodynamic Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Jones, J. E.; Dobson, C. C.; Cole, J. W.; Thompson, B. R.; Plemmons, D. H.; Turner, M. W.

    2003-01-01

    The production of onboard electrical power by pulse detonation engines is problematic in that they generate no shaft power; however, pulse detonation driven magnetohydrodynamic (MHD) power generation represents one intriguing possibility for attaining self-sustained engine operation and generating large quantities of burst power for onboard electrical systems. To examine this possibility further, a simple heat-sink apparatus was developed for experimentally investigating pulse detonation driven MHD generator concepts. The hydrogen oxygen fired driver was a 90 cm long stainless steel tube having a 4.5 cm square internal cross section and a short Schelkin spiral near the head end to promote rapid formation of a detonation wave. The tube was intermittently filled to atmospheric pressure and seeded with a CsOH/methanol prior to ignition by electrical spark. The driver exhausted through an aluminum nozzle having an area contraction ratio of A*/A(sub zeta) = 1/10 and an area expansion ratio of A(sub zeta)/A* = 3.2 (as limited by available magnet bore size). The nozzle exhausted through a 24-electrode segmented Faraday channel (30.5 cm active length), which was inserted into a 0.6 T permanent magnet assembly. Initial experiments verified proper drive operation with and without the nozzle attachment, and head end pressure and time resolved thrust measurements were acquired. The exhaust jet from the nozzle was interrogated using a polychromatic microwave interferometer yielding an electron number density on the order of 10(exp 12)/cm at the generator entrance. In this case, MHD power generation experiments suffered from severe near-electrode voltage drops and low MHD interaction; i.e., low flow velocity, due to an inherent physical constraint on expansion with the available magnet. Increased scaling, improved seeding techniques, higher magnetic fields, and higher expansion ratios are expected to greatly improve performance.

  12. MHD Flow Control

    DTIC Science & Technology

    2006-09-01

    Umj) flj + GjE(Umj)flyjI A S + fS do (3.7)I This system (3.6) is integrated in time using explicit low-memory Runge-Kutta method: I U o=U" Ui =UO - ci At...signals are registered by the four-channel digital memory oscilloscopes Tektronix TDS 2414 and ASK 3107. Scheme of operation The scheme of the experiment is

  13. Stability of a two-volume MRxMHD model in slab geometry

    NASA Astrophysics Data System (ADS)

    Tuen, Li Huey

    Ideal MHD models are known to be inadequate to describe various physical attributes of a toroidal field with non-continuous symmetry, such as magnetic islands and stochastic regions. Motivated by this omission, a new variational principle MRXMHD was developed; rather than include an infinity of magnetic flux surfaces, MRxMHD has a finite number of flux surfaces, and thus supports partial plasma relaxation. The model comprises of relaxed plasma regions which are separated by nested ideal MHD interfaces (flux surfaces), and can be encased in a perfectly conducting wall. In each region the pressure is constant, but can jump across interfaces. The field and field pitch, or rotational transform, can also jump across the interfaces. Unlike ideal MHD, MRxMHD plasmas can support toroidally non-axisymmetric confined magnetic fields, magnetic islands and stochastic regions. In toroidally non-axisymmetric plasma, the existence of interfaces in MRxMHD is contingent on the irrationality of the rotational transform of flux surfaces. That is, the KAM theorem shows that invariant tori (flux surfaces) continue to exist for sufficiently small perturbations to an integrable system (which describes flux surfaces), provided that the rotational transform is sufficiently irrational. Building upon the MRxMHD stability model, we study the effects of irrationality of the rotational transform at interfaces in MRxMHD on plasma stability. We present an MRxMHD equilibrium model to investigate the effects of magnetic field pitch within the plasma and across the aforementioned flux surfaces within a chosen geometry. In this model, it is found that the 2D system stability conditions are dependent on the interface and resonant surface magnetic field pitch at minimised energy states, and the stability of a system as a function of magnetic field pitch destabilises at particular values of magnetic field pitch. We benchmark the treatment of a two-volume system, along with the calculations for background and perturbed magnetic fields to existing cylindrical working. An expression is formulated for the stability eigenvalues by creating a model for the slab geometry system. The eigenvalues for system stability at a minimum energy state are found to depend upon the rationality of the magnetic field pitch at resonant surfaces. Various system parameter scans are conducted to determine their affect upon system stability and their implications. While tearing instabilities exist at low order rational resonances, investigating the instability of high-order rationals requires study of pressure-driven instabilities.

  14. An new MHD/kinetic model for exploring energetic particle production in macro-scale systems

    NASA Astrophysics Data System (ADS)

    Drake, J. F.; Swisdak, M.; Dahlin, J. T.

    2017-12-01

    A novel MHD/kinetic model is being developed to explore magneticreconnection and particle energization in macro-scale systems such asthe solar corona and the outer heliosphere. The model blends the MHDdescription with a macro-particle description. The rationale for thismodel is based on the recent discovery that energetic particleproduction during magnetic reconnection is controlled by Fermireflection and Betatron acceleration and not parallel electricfields. Since the former mechanisms are not dependent on kineticscales such as the Debye length and the electron and ion inertialscales, a model that sheds these scales is sufficient for describingparticle acceleration in macro-systems. Our MHD/kinetic model includesmacroparticles laid out on an MHD grid that are evolved with the MHDfields. Crucially, the feedback of the energetic component on the MHDfluid is included in the dynamics. Thus, energy of the total system,the MHD fluid plus the energetic component, is conserved. The systemhas no kinetic scales and therefore can be implemented to modelenergetic particle production in macro-systems with none of theconstraints associated with a PIC model. Tests of the new model insimple geometries will be presented and potential applications will bediscussed.

  15. Feasibility of MHD submarine propulsion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doss, E.D.; Sikes, W.C.

    1992-09-01

    This report describes the work performed during Phase 1 and Phase 2 of the collaborative research program established between Argonne National Laboratory (ANL) and Newport News Shipbuilding and Dry Dock Company (NNS). Phase I of the program focused on the development of computer models for Magnetohydrodynamic (MHD) propulsion. Phase 2 focused on the experimental validation of the thruster performance models and the identification, through testing, of any phenomena which may impact the attractiveness of this propulsion system for shipboard applications. The report discusses in detail the work performed in Phase 2 of the program. In Phase 2, a two Teslamore » test facility was designed, built, and operated. The facility test loop, its components, and their design are presented. The test matrix and its rationale are discussed. Representative experimental results of the test program are presented, and are compared to computer model predictions. In general, the results of the tests and their comparison with the predictions indicate that thephenomena affecting the performance of MHD seawater thrusters are well understood and can be accurately predicted with the developed thruster computer models.« less

  16. Energy Conversion Alternatives Study (ECAS), General Electric Phase 1. Volume 2: Advanced energy conversion systems. Part 1: Open-cycle gas turbines

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Corman, J. C.

    1976-01-01

    Ten energy conversion systems are defined and analyzed in terms of efficiency. These include: open-cycle gas turbine recuperative; open-cycle gas turbine; closed-cycle gas turbine; supercritical CO2 cycle; advanced steam cycle; liquid metal topping cycle; open-cycle MHD; closed-cycle inert gas MHD; closed-cycle liquid metal MHD; and fuel cells. Results are presented.

  17. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    PubMed

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  18. MHD compressor---expander conversion system integrated with GCR inside a deployable reflector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tuninetti, G.; Botta, E.; Criscuolo, C.

    1989-04-20

    This work originates from the proposal MHD Compressor-Expander Conversion System Integrated with a GCR Inside a Deployable Reflector''. The proposal concerned an innovative concept of nuclear, closed-cycle MHD converter for power generation on space-based systems in the multi-megawatt range. The basic element of this converter is the Power Conversion Unit (PCU) consisting of a gas core reactor directly coupled to an MHD expansion channel. Integrated with the PCU, a deployable reflector provides reactivity control. The working fluid could be either uranium hexafluoride or a mixture of uranium hexafluoride and helium, added to enhance the heat transfer properties. The original Statementmore » of Work, which concerned the whole conversion system, was subsequently redirected and focused on the basic mechanisms of neutronics, reactivity control, ionization and electrical conductivity in the PCU. Furthermore, the study was required to be inherently generic such that the study was required to be inherently generic such that the analysis an results can be applied to various nuclear reactor and/or MHD channel designs''.« less

  19. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  20. Fast Numerical Solution of the Plasma Response Matrix for Real-time Ideal MHD Control

    DOE PAGES

    Glasser, Alexander; Kolemen, Egemen; Glasser, Alan H.

    2018-03-26

    To help effectuate near real-time feedback control of ideal MHD instabilities in tokamak geometries, a parallelized version of A.H. Glasser’s DCON (Direct Criterion of Newcomb) code is developed. To motivate the numerical implementation, we first solve DCON’s δW formulation with a Hamilton-Jacobi theory, elucidating analytical and numerical features of the ideal MHD stability problem. The plasma response matrix is demonstrated to be the solution of an ideal MHD Riccati equation. We then describe our adaptation of DCON with numerical methods natural to solutions of the Riccati equation, parallelizing it to enable its operation in near real-time. We replace DCON’s serial integration of perturbed modes—which satisfy a singular Euler- Lagrange equation—with a domain-decomposed integration of state transition matrices. Output is shown to match results from DCON with high accuracy, and with computation time < 1s. Such computational speed may enable active feedback ideal MHD stability control, especially in plasmas whose ideal MHD equilibria evolve with inductive timescalemore » $$\\tau$$ ≳ 1s—as in ITER. Further potential applications of this theory are discussed.« less

  1. Magnetohydrodynamics with GAMER

    NASA Astrophysics Data System (ADS)

    Zhang, Ui-Han; Schive, Hsi-Yu; Chiueh, Tzihong

    2018-06-01

    GAMER, a parallel Graphic-processing-unit-accelerated Adaptive-MEsh-Refinement (AMR) hydrodynamic code, has been extended to support magnetohydrodynamics (MHD) with both the corner-transport-upwind and MUSCL-Hancock schemes and the constraint transport technique. The divergent preserving operator for AMR has been applied to reinforce the divergence-free constraint on the magnetic field. GAMER-MHD has fully exploited the concurrent executions between the graphic process unit (GPU) MHD solver and other central processing unit computation pertinent to AMR. We perform various standard tests to demonstrate that GAMER-MHD is both second-order accurate and robust, producing results as accurate as those given by high-resolution uniform-grid runs. We also explore a new 3D MHD test, where the magnetic field assumes the Arnold–Beltrami–Childress configuration, temporarily becomes turbulent with current sheets, and finally settles to a lowest-energy equilibrium state. This 3D problem is adopted for the performance test of GAMER-MHD. The single-GPU performance reaches 1.2 × 108 and 5.5 × 107 cell updates per second for the single- and double-precision calculations, respectively, on Tesla P100. We also demonstrate a parallel efficiency of ∼70% for both weak and strong scaling using 1024 XK nodes on the Blue Waters supercomputers.

  2. A Radiation Transfer Solver for Athena Using Short Characteristics

    NASA Astrophysics Data System (ADS)

    Davis, Shane W.; Stone, James M.; Jiang, Yan-Fei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiation MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.

  3. Study to assess the effects of magnetohydrodynamic electromagnetic pulse on electric power systems, phase 1, volume 3

    NASA Astrophysics Data System (ADS)

    Legro, J. R.; Abi-Samra, N. C.; Tesche, F. M.

    1985-05-01

    In addition to the initial transients designated as fast transient high-altitude EMP (HEMP) and intermediate time EMP, electromagnetic signals are also perceived at times from seconds to hundreds of seconds after a high-altitude nuclear burst. This signal was defined by the term magnetohydrodynamic-electromagnetic pulse (MHD-EMP). The MHD-EMP phenomena was detected in actual weapon tests and predicted from theoretical models. A preliminary research effort to investigate the nature and coupling of the MHD-EMP environments to electric power systems documented the construction of approximate system response network models, and the development of a unified methodology to assess equipment and systematic vulnerability are defined. The MHD-EMP environment is compared to a qualitatively similar natural event, the electromagnetic environment produced by geomagnetic storms.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnack, D.D.; Lottati, I.; Mikic, Z.

    The authors describe TRIM, a MHD code which uses finite volume discretization of the MHD equations on an unstructured adaptive grid of triangles in the poloidal plane. They apply it to problems related to modeling tokamak toroidal plasmas. The toroidal direction is treated by a pseudospectral method. Care was taken to center variables appropriately on the mesh and to construct a self adjoint diffusion operator for cell centered variables.

  5. MHD conversion of solar energy. [space electric power system

    NASA Technical Reports Server (NTRS)

    Lau, C. V.; Decher, R.

    1978-01-01

    Low temperature plasmas wherein an alkali metal vapor is a component are uniquely suited to simultaneously absorb solar radiation by coupling to the resonance lines and produce electrical power by the MHD interaction. This work is an examination of the possibility of developing space power systems which take advantage of concentrated solar power to produce electricity. It is shown that efficient cycles in which expansion work takes place at nearly constant top cycle temperature can be devised. The power density of the solar MHD generator is lower than that of conventional MHD generators because of the relatively high seed concentration required for radiation absorption and the lower flow velocity permitted to avoid total pressure losses due to heating.

  6. Data-driven Modeling of the Solar Corona by a New Three-dimensional Path-conservative Osher-Solomon MHD Model

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Li, Caixia; Xiang, Changqing; Zhang, Man; Li, HuiChao; Wei, Fengsi

    2017-11-01

    A second-order path-conservative scheme with a Godunov-type finite-volume method has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in three-dimensional spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependent dissipation matrix. For simplicity, the straight line segment path is used, and the path integral is evaluated in a fully numerical way by a high-order numerical Gauss-Legendre quadrature. Besides its very close similarity to Godunov type, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable, and complete, in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the path-conservative scheme is realized for the generalized Lagrange multiplier and the extended generalized Lagrange multiplier formulation of solar wind MHD systems. This new model that is second order in space and time is written in the FORTRAN language with Message Passing Interface parallelization and validated in modeling the time-dependent large-scale structure of the solar corona, driven continuously by Global Oscillation Network Group data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from 2009 October 9 to 2009 December 29 show its capability of producing a structured solar corona in agreement with solar coronal observations.

  7. Data-Driven Modeling of Solar Corona by a New 3d Path-Conservative Osher-Solomon MHD Odel

    NASA Astrophysics Data System (ADS)

    Feng, X. S.; Li, C.

    2017-12-01

    A second-order path-conservative scheme with Godunov-type finite volume method (FVM) has been implemented to advance the equations of single-fluid solar wind plasma magnetohydrodynamics (MHD) in time. This code operates on the six-component composite grid system in 3D spherical coordinates with hexahedral cells of quadrilateral frustum type. The generalized Osher-Solomon Riemann solver is employed based on a numerical integration of the path-dependentdissipation matrix. For simplicity, the straight line segment path is used and the path-integral is evaluated in a fully numerical way by high-order numerical Gauss-Legendre quadrature. Besides its closest similarity to Godunov, the resulting scheme retains the attractive features of the original solver: it is nonlinear, free of entropy-fix, differentiable and complete in that each characteristic field results in a different numerical viscosity, due to the full use of the MHD eigenstructure. By using a minmod limiter for spatial oscillation control, the pathconservative scheme is realized for the generalized Lagrange multiplier (GLM) and the extended generalized Lagrange multiplier (EGLM) formulation of solar wind MHD systems. This new model of second-order in space and time is written in FORTRAN language with Message Passing Interface (MPI) parallelization, and validated in modeling time-dependent large-scale structure of solar corona, driven continuously by the Global Oscillation Network Group (GONG) data. To demonstrate the suitability of our code for the simulation of solar wind, we present selected results from October 9th, 2009 to December 29th, 2009 , & Year 2008 to show its capability of producing structured solar wind in agreement with the observations.

  8. Relaxation model for extended magnetohydrodynamics: Comparison to magnetohydrodynamics for dense Z-pinches

    DOE PAGES

    Seyler, C. E.; Martin, M. R.

    2011-01-14

    In this study, it is shown that the two-fluid model under a generalized Ohm’s law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm’s law determines the current density to a system where Ohm’s law determines the electric field. This resultmore » is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.« less

  9. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  10. Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario

    NASA Astrophysics Data System (ADS)

    Chen, Junjie; Li, Guoqiang; Qian, Jinping; Liu, Zixi

    2012-11-01

    The Experimental Advanced Superconducting Tokamak (EAST) is the first fully superconducting tokamak with a D-shaped cross-sectional plasma presently in operation. The ideal magnetohydrodynamic (MHD) stability and required power for the EAST advanced tokamak (AT) scenario with negative central shear and double transport barrier (DTB) are investigated. With the equilibrium code TOQ and stability code GATO, the ideal MHD stability is analyzed. It is shown that a moderate ratio of edge transport barriers' (ETB) height to internal transport barriers' (ITBs) height is beneficial to ideal MHD stability. The normalized beta βN limit is about 2.20 (without wall) and 3.70 (with ideal wall). With the scaling law of energy confinement time, the required heating power for EAST AT scenario is calculated. The total heating power Pt increases as the toroidal magnetic field BT or the normalized beta βN is increased.

  11. Liquid-metal magnetohydrodynamic system evaluation. [coal-fired designs

    NASA Technical Reports Server (NTRS)

    Holman, R. R.; Lippert, T. E.

    1976-01-01

    The present study emphasizes a direct coal-fired design using a bubbly two-component flow of sodium and argon in the MHD generator and a Rankine steam-bottoming plant. Two basic cycles were studied, corresponding to argon temperatures of 922 and 1089 K at the duct inlet. The MHD duct system consisted of multiple ducts arranged in clusters and separated by iron magnet pole pieces. The ducts, each with an output of about 100 MW, were parallel to the flow, but were connected in series electrically to provide a higher MHD voltage. With channel efficiencies of 80%, a pump efficiency of 90%, and a 45% efficient steam-bottoming plant, the overall efficiency of the 1089 K liquid-metal MHD power plant was 43%.

  12. Mechanism analysis of Magnetohydrodynamic heat shield system and optimization of externally applied magnetic field

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-04-01

    As a novel thermal protection technique for hypersonic vehicles, Magnetohydrodynamic (MHD) heat shield system has been proved to be of great intrinsic value in the hypersonic field. In order to analyze the thermal protection mechanisms of such a system, a physical model is constructed for analyzing the effect of the Lorentz force components in the counter and normal directions. With a series of numerical simulations, the dominating Lorentz force components are analyzed for the MHD heat flux mitigation in different regions of a typical reentry vehicle. Then, a novel magnetic field with variable included angle between magnetic induction line and streamline is designed, which significantly improves the performance of MHD thermal protection in the stagnation and shoulder areas. After that, the relationships between MHD shock control and MHD thermal protection are investigated, based on which the magnetic field above is secondarily optimized obtaining better performances of both shock control and thermal protection. Results show that the MHD thermal protection is mainly determined by the Lorentz force's effect on the boundary layer. From the stagnation to the shoulder region, the flow deceleration effect of the counter-flow component is weakened while the flow deflection effect of the normal component is enhanced. Moreover, there is no obviously positive correlation between the MHD shock control and thermal protection. But once a good Lorentz force's effect on the boundary layer is guaranteed, the thermal protection performance can be further improved with an enlarged shock stand-off distance by strengthening the counter-flow Lorentz force right after shock.

  13. DOUBLE DYNAMO SIGNATURES IN A GLOBAL MHD SIMULATION AND MEAN-FIELD DYNAMOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaudoin, Patrice; Simard, Corinne; Cossette, Jean-François

    The 11 year solar activity cycle is the most prominent periodic manifestation of the magnetohydrodynamical (MHD) large-scale dynamo operating in the solar interior, yet longer and shorter (quasi-) periodicities are also present. The so-called “quasi-biennial” signal appearing in many proxies of solar activity has been gaining increasing attention since its detection in p -mode frequency shifts, which suggests a subphotospheric origin. A number of candidate mechanisms have been proposed, including beating between co-existing global dynamo modes, dual dynamos operating in spatially separated regions of the solar interior, and Rossby waves driving short-period oscillations in the large-scale solar magnetic field producedmore » by the 11 year activity cycle. In this article, we analyze a global MHD simulation of solar convection producing regular large-scale magnetic cycles, and detect and characterize shorter periodicities developing therein. By constructing kinematic mean-field α {sup 2}Ω dynamo models incorporating the turbulent electromotive force (emf) extracted from that same simulation, we find that dual-dynamo behavior materializes in fairly wide regions of the model’s parameters space. This suggests that the origin of the similar behavior detected in the MHD simulation lies with the joint complexity of the turbulent emf and differential rotation profile, rather that with dynamical interactions such as those mediated by Rossby waves. Analysis of the simulation also reveals that the dual dynamo operating therein leaves a double-period signature in the temperature field, consistent with a dual-period helioseismic signature. Order-of-magnitude estimates for the magnitude of the expected frequency shifts are commensurate with helioseismic measurements. Taken together, our results support the hypothesis that the solar quasi-biennial oscillations are associated with a secondary dynamo process operating in the outer reaches of the solar convection zone.« less

  14. Research and development studies for MHD/coal power flow train components. Technical progress report, 1 September 1979-31 August 1980

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M. H.

    1980-01-01

    The aim of this program is to contribute to certain facets of the development of the MHD/coal power system, and particularly the CDIF of DOE with regard to its flow train. Consideration is given specifically to the electrical power take-off, the diagnostic and instrumentation systems, the combustor and MHD channel technology, and electrode alternatives. Within the constraints of the program, high priorities were assigned to the problems of power take-off and the related characteristics of the MHD channel, and to the establishment of a non-intrusive, laser-based diagnostic system. The next priority was given to the combustor modeling and to amore » significantly improved analysis of particle combustion. Separate abstracts were prepared for nine of the ten papers included. One paper was previously included in the data base. (WHK)« less

  15. Energy structure of MHD flow coupling with outer resistance circuit

    NASA Astrophysics Data System (ADS)

    Huang, Z. Y.; Liu, Y. J.; Chen, Y. Q.; Peng, Z. L.

    2015-08-01

    Energy structure of MHD flow coupling with outer resistance circuit is studied to illuminate qualitatively and quantitatively the energy relation of this basic MHD flow system with energy input and output. Energy structure are analytically derived based on the Navier-Stocks equations for two-dimensional fully-developed flow and generalized Ohm's Law. The influences of applied magnetic field, Hall parameter and conductivity on energy structure are discussed based on the analytical results. Associated energies in MHD flow are deduced and validated by energy conservation. These results reveal that energy structure consists of two sub structures: electrical energy structure and internal energy structure. Energy structure and its sub structures provide an integrated theoretical energy path of the MHD system. Applied magnetic field and conductivity decrease the input energy, dissipation by fluid viscosity and internal energy but increase the ratio of electrical energy to input energy, while Hall parameter has the opposite effects. These are caused by their different effects on Bulk velocity, velocity profiles, voltage and current in outer circuit. Understanding energy structure helps MHD application designers to actively adjust the allocation of different parts of energy so that it is more reasonable and desirable.

  16. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 1: Introduction and summary and general assumptions. [energy conversion systems for electric power plants using coal - feasibility

    NASA Technical Reports Server (NTRS)

    Beecher, D. T.

    1976-01-01

    Nine advanced energy conversion concepts using coal or coal-derived fuels are summarized. They are; (1) open-cycle gas turbines, (2) combined gas-steam turbine cycles, (3) closed-cycle gas turbines, (4) metal vapor Rankine topping, (5) open-cycle MHD; (6) closed-cycle MHD; (7) liquid-metal MHD; (8) advanced steam; and (9) fuel cell systems. The economics, natural resource requirements, and performance criteria for the nine concepts are discussed.

  17. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as liquid pumping and internal compression. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  18. Methods of reducing energy consumption of the oxidant supply system for MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1983-01-01

    An in-depth study was conducted to identify possible improvements to the oxidant supply system for combined cycle MHD power plants which would lead to higher thermal efficiency and reduction in the cost of electricity, COE. Results showed that the oxidant system energy consumption could be minimized when the process was designed to deliver a product O2 concentration of 70 mole percent. The study also led to the development of a new air separation process, referred to as 'liquid pumping and internal compression'. MHD system performance calculations show that the new process would permit an increase in plant thermal efficiency of 0.6 percent while allowing more favorable tradeoffs between magnetic energy and oxidant system capacity requirements.

  19. Multi-megawatt, gigajoule plasma operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Dumont, R. J.; Goniche, M.; Ekedahl, A.; Saoutic, B.; Artaud, J.-F.; Basiuk, V.; Bourdelle, C.; Corre, Y.; Decker, J.; Elbèze, D.; Giruzzi, G.; Hoang, G.-T.; Imbeaux, F.; Joffrin, E.; Litaudon, X.; Lotte, Ph; Maget, P.; Mazon, D.; Nilsson, E.; The Tore Supra Team

    2014-07-01

    Integrating several important technological elements required for long pulse operation in magnetic fusion devices, the Tore Supra tokamak routinely addresses the physics and technology issues related to this endeavor and, as a result, contributes essential information on critical issues for ITER. During the last experimental campaign, components of the radiofrequency system including an ITER relevant launcher (passive active multijunction (PAM)) and continuous wave/3.7 GHz klystrons, have been extensively qualified, and then used to develop steady state scenarios in which the lower hybrid (LH), ion cyclotron (IC) and electron cyclotron (EC) systems have been combined in fully stationary shots (duration ˜150 s, injected power up to ˜8 MW, injected/extracted energy up to ˜1 GJ). Injection of LH power in the 5.0-6.0 MW range has extended the domain of accessible plasma parameters to higher densities and non-inductive currents. These discharges exhibit steady electron internal transport barriers (ITBs). We report here on various issues relevant to the steady state operation of future devices, ranging from operational aspects and limitations related to the achievement of long pulses in a fully actively cooled fusion device (e.g. overheating due to fast particle losses), to more fundamental plasma physics topics. The latter include a beneficial influence of IC resonance heating on the magnetohydrodynamic (MHD) stability in these discharges, which has been studied in detail. Another interesting observation is the appearance of oscillations of the central temperature with typical periods of the order of one to several seconds, caused by a nonlinear interplay between LH deposition, MHD activity and bootstrap current in the presence of an ITB.

  20. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, P. T.; Shadid, J. N.; Hu, J. J.

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  1. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  2. Performance of fully-coupled algebraic multigrid preconditioners for large-scale VMS resistive MHD

    DOE PAGES

    Lin, P. T.; Shadid, J. N.; Hu, J. J.; ...

    2017-11-06

    Here, we explore the current performance and scaling of a fully-implicit stabilized unstructured finite element (FE) variational multiscale (VMS) capability for large-scale simulations of 3D incompressible resistive magnetohydrodynamics (MHD). The large-scale linear systems that are generated by a Newton nonlinear solver approach are iteratively solved by preconditioned Krylov subspace methods. The efficiency of this approach is critically dependent on the scalability and performance of the algebraic multigrid preconditioner. Our study considers the performance of the numerical methods as recently implemented in the second-generation Trilinos implementation that is 64-bit compliant and is not limited by the 32-bit global identifiers of themore » original Epetra-based Trilinos. The study presents representative results for a Poisson problem on 1.6 million cores of an IBM Blue Gene/Q platform to demonstrate very large-scale parallel execution. Additionally, results for a more challenging steady-state MHD generator and a transient solution of a benchmark MHD turbulence calculation for the full resistive MHD system are also presented. These results are obtained on up to 131,000 cores of a Cray XC40 and one million cores of a BG/Q system.« less

  3. A RADIATION TRANSFER SOLVER FOR ATHENA USING SHORT CHARACTERISTICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Shane W.; Stone, James M.; Jiang Yanfei

    2012-03-01

    We describe the implementation of a module for the Athena magnetohydrodynamics (MHD) code that solves the time-independent, multi-frequency radiative transfer (RT) equation on multidimensional Cartesian simulation domains, including scattering and non-local thermodynamic equilibrium (LTE) effects. The module is based on well known and well tested algorithms developed for modeling stellar atmospheres, including the method of short characteristics to solve the RT equation, accelerated Lambda iteration to handle scattering and non-LTE effects, and parallelization via domain decomposition. The module serves several purposes: it can be used to generate spectra and images, to compute a variable Eddington tensor (VET) for full radiationmore » MHD simulations, and to calculate the heating and cooling source terms in the MHD equations in flows where radiation pressure is small compared with gas pressure. For the latter case, the module is combined with the standard MHD integrators using operator splitting: we describe this approach in detail, including a new constraint on the time step for stability due to radiation diffusion modes. Implementation of the VET method for radiation pressure dominated flows is described in a companion paper. We present results from a suite of test problems for both the RT solver itself and for dynamical problems that include radiative heating and cooling. These tests demonstrate that the radiative transfer solution is accurate and confirm that the operator split method is stable, convergent, and efficient for problems of interest. We demonstrate there is no need to adopt ad hoc assumptions of questionable accuracy to solve RT problems in concert with MHD: the computational cost for our general-purpose module for simple (e.g., LTE gray) problems can be comparable to or less than a single time step of Athena's MHD integrators, and only few times more expensive than that for more general (non-LTE) problems.« less

  4. Impact of ideal MHD stability limits on high-beta hybrid operation

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Igochine, V.; Turco, F.; Ryan, D. A.; Cianciosa, M. R.; Liu, Y. Q.; Marrelli, L.; Terranova, D.; Wilcox, R. S.; Wingen, A.; Angioni, C.; Bock, A.; Chrystal, C.; Classen, I.; Dunne, M.; Ferraro, N. M.; Fischer, R.; Gude, A.; Holcomb, C. T.; Lebschy, A.; Luce, T. C.; Maraschek, M.; McDermott, R.; Odstrčil, T.; Paz-Soldan, C.; Reich, M.; Sertoli, M.; Suttrop, W.; Taylor, N. Z.; Weiland, M.; Willensdorfer, M.; The ASDEX Upgrade Team; The DIII-D Team; The EUROfusion MST1 Team

    2017-01-01

    The hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressure {βN} must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by 8× 2 non-axisymmetric coils as {βN} approaches the no-wall limit. The full n  =  1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n  =  1 response is due to a global, marginally-stable n  =  1 kink characterized by a large m  =  1, n  =  1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps {{q}\\text{min}}>1 . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high {βN} up to 3.5-4.

  5. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piovesan, Paolo; Igochine, V.; Turco, F.

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  6. Impact of ideal MHD stability limits on high-beta hybrid operation

    DOE PAGES

    Piovesan, Paolo; Igochine, V.; Turco, F.; ...

    2016-10-27

    Here, the hybrid scenario is a candidate for stationary high-fusion gain tokamak operation in ITER and DEMO. To obtain such performance, the energy confinement and the normalized pressuremore » $${{\\beta}_{N}}$$ must be maximized, which requires operating near or above ideal MHD no-wall limits. New experimental findings show how these limits can affect hybrid operation. Even if hybrids are mainly limited by tearing modes, proximity to the no-wall limit leads to 3D field amplification that affects plasma profiles, e.g. rotation braking is observed in ASDEX Upgrade throughout the plasma and peaks in the core. As a result, even the small ASDEX Upgrade error fields are amplified and their effects become visible. To quantify such effects, ASDEX Upgrade measured the response to 3D fields applied by $$8\\times 2$$ non-axisymmetric coils as $${{\\beta}_{N}}$$ approaches the no-wall limit. The full n = 1 response profile and poloidal structure were measured by a suite of diagnostics and compared with linear MHD simulations, revealing a characteristic feature of hybrids: the n = 1 response is due to a global, marginally-stable n = 1 kink characterized by a large m = 1, n = 1 core harmonic due to q min being just above 1. A helical core distortion of a few cm forms and affects various core quantities, including plasma rotation, electron and ion temperature, and intrinsic W density. In similar experiments, DIII-D also measured the effect of this helical core on the internal current profile, providing information useful to understanding of the physics of magnetic flux pumping, i.e. anomalous current redistribution by MHD modes that keeps $${{q}_{\\text{min}}}>1$$ . Thanks to flux pumping, a broad current profile is maintained in DIII-D even with large on-axis current drive, enabling fully non-inductive operation at high $${{\\beta}_{N}}$$ up to 3.5–4.« less

  7. Progress in space weather predictions and applications

    NASA Astrophysics Data System (ADS)

    Lundstedt, H.

    The methods of today's predictions of space weather and effects are so much more advanced and yesterday's statistical methods are now replaced by integrated knowledge-based neuro-computing models and MHD methods. Within the ESA Space Weather Programme Study a real-time forecast service has been developed for space weather and effects. This prototype is now being implemented for specific users. Today's applications are not only so many more but also so much more advanced and user-oriented. A scientist needs real-time predictions of a global index as input for an MHD model calculating the radiation dose for EVAs. A power company system operator needs a prediction of the local value of a geomagnetically induced current. A science tourist needs to know whether or not aurora will occur. Soon we might even be able to predict the tropospheric climate changes and weather caused by the space weather.

  8. Numerical Simulation of 3-D Supersonic Viscous Flow in an Experimental MHD Channel

    NASA Technical Reports Server (NTRS)

    Kato, Hiromasa; Tannehill, John C.; Gupta, Sumeet; Mehta, Unmeel B.

    2004-01-01

    The 3-D supersonic viscous flow in an experimental MHD channel has been numerically simulated. The experimental MHD channel is currently in operation at NASA Ames Research Center. The channel contains a nozzle section, a center section, and an accelerator section where magnetic and electric fields can be imposed on the flow. In recent tests, velocity increases of up to 40% have been achieved in the accelerator section. The flow in the channel is numerically computed using a new 3-D parabolized Navier-Stokes (PNS) algorithm that has been developed to efficiently compute MHD flows in the low magnetic Reynolds number regime. The MHD effects are modeled by introducing source terms into the PNS equations which can then be solved in a very e5uent manner. To account for upstream (elliptic) effects, the flowfield can be computed using multiple streamwise sweeps with an iterated PNS algorithm. The new algorithm has been used to compute two test cases that match the experimental conditions. In both cases, magnetic and electric fields are applied to the flow. The computed results are in good agreement with the available experimental data.

  9. Validation of Extended MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; Craig, D.; McCollam, K. J.; Sovinec, C. R.

    2016-10-01

    Significant effort has been devoted to improvement of computational models used in fusion energy sciences. Rigorous validation of these models is necessary in order to increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation over a wide range of parameters. In particular, the Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), can be varied over a wide range and provide substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 5 ×104 for single-fluid runs, with the magnetic Prandtl number Pm = 1 . Experiments with plasma current IP ranging from 60 kA to 500 kA result in S from 4 ×104 to 8 ×106 . Validation metric comparisons are presented, focusing on how magnetic fluctuations b scale with S. Single-fluid NIMROD results give S b - 0.21 , and experiments give S b - 0.28 for the dominant m = 1 , n = 6 mode. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  10. Summary and evaluation of the conceptual design study of a potential early commercial MHD power plant (CSPEC)

    NASA Technical Reports Server (NTRS)

    Staiger, P. J.; Penko, P. F.

    1982-01-01

    The conceptual design study of a potential early commercial MHD power plant (CSPEC) is described and the results are summarized. Each of two contractors did a conceptual design of an approximtely 1000 MWe open-cycle MHD/steam plant with oxygen enriched combustion air preheated to an intermediate temperatue in a metallic heat exchanger. The contractors were close in their overall plant efficiency estimates but differed in their capital cost and cost of electricity estimates, primarily because of differences in balance-of-plant material, contingency, and operating and maintenance cost estimates. One contractor concluded that its MHD plant design compared favorably in cost of electricity with conventional coal-fired steam plants. The other contractor is making such a comparison as part of a follow-on study. Each contractor did a preliminary investigation of part-load performance and plant availability. The results of NASA studies investigating the effect of plant size and oxidizer preheat temperature on the performance of CSPEC-type MHD plants are also described. The efficiency of a 1000 MWe plant is about three points higher than of a 200 MWe plant. Preheating to 1600 F gives an efficiency about one and one-half points higher than preheating to 800 F for all plant sizes. For each plant size and preheat temperature there is an oxidizer enrichment level and MHD generator length that gives the highest plant efficiency.

  11. The influence of the Hall term on the development of magnetized laser-produced plasma jets

    NASA Astrophysics Data System (ADS)

    Hamlin, N. D.; Seyler, C. E.; Khiar, B.

    2018-04-01

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGON and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. This points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.

  12. Research and development studies for MHD/coal power flow train components. Part II. Diagnostics and instrumentation MHD channel combutor. Progres report. [Flow calculations for combustors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, M.H.; Lederman, S.; Sforza, P.

    1980-01-01

    This is Part II of the Technical Progress Report on Tasks II-IV of the subject contract. It deals sequentially with Diagnostics and Instrumentation, the MHD Channel and the Combustor. During this period, a significant effort has gone into establishing a schematic design of a laser diagnostic system which can be applied to the flow-train of the MHD system, and to acquiring, assembling and shaking down a laboratory set-up upon which a prototype can be based. With further reference to the MHD Channel, a model analysis has been initiated of the two-dimensional MHD boundary layer between two electrodes in the limitmore » of small magnetic Reynolds numbers with negligible effect of the flow on the applied magnetic field. An objective of this model study is the assessment of variations in initial conditions on the boundary layer behavior. Finally, the problem of combustion modeling has been studied on an initial basis. The open reports on this subject depict a high degree of empiricism, centering attention on global behavior mainly. A quasi-one-dimensional model code has been set-up to check some of the existing estimates. Also a code for equilibrium combustion has been activated.« less

  13. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  14. ON THE ROLE OF INVOLUTIONS IN THE DISCONTINUOUS GALERKIN DISCRETIZATION OF MAXWELL AND MAGNETOHYDRODYNAMIC SYSTEMS

    NASA Technical Reports Server (NTRS)

    Barth, Timothy

    2005-01-01

    The role of involutions in energy stability of the discontinuous Galerkin (DG) discretization of Maxwell and magnetohydrodynamic (MHD) systems is examined. Important differences are identified in the symmetrization of the Maxwell and MHD systems that impact the construction of energy stable discretizations using the DG method. Specifically, general sufficient conditions to be imposed on the DG numerical flux and approximation space are given so that energy stability is retained These sufficient conditions reveal the favorable energy consequence of imposing continuity in the normal component of the magnetic induction field at interelement boundaries for MHD discretizations. Counterintuitively, this condition is not required for stability of Maxwell discretizations using the discontinuous Galerkin method.

  15. Novel residual-based large eddy simulation turbulence models for incompressible magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Sondak, David

    The goal of this work was to develop, introduce, and test a promising computational paradigm for the development of turbulence models for incompressible magnetohydrodynamics (MHD). MHD governs the behavior of an electrically conducting fluid in the presence of an external electromagnetic (EM) field. The incompressible MHD model is used in many engineering and scientific disciplines from the development of nuclear fusion as a sustainable energy source to the study of space weather and solar physics. Many interesting MHD systems exhibit the phenomenon of turbulence which remains an elusive problem from all scientific perspectives. This work focuses on the computational perspective and proposes techniques that enable the study of systems involving MHD turbulence. Direct numerical simulation (DNS) is not a feasible approach for studying MHD turbulence. In this work, turbulence models for incompressible MHD were developed from the variational multiscale (VMS) formulation wherein the solution fields were decomposed into resolved and unresolved components. The unresolved components were modeled with a term that is proportional to the residual of the resolved scales. Two additional MHD models were developed based off of the VMS formulation: a residual-based eddy viscosity (RBEV) model and a mixed model that partners the VMS formulation with the RBEV model. These models are endowed with several special numerical and physics features. Included in the numerical features is the internal numerical consistency of each of the models. Physically, the new models are able to capture desirable MHD physics such as the inverse cascade of magnetic energy and the subgrid dynamo effect. The models were tested with a Fourier-spectral numerical method and the finite element method (FEM). The primary test problem was the Taylor-Green vortex. Results comparing the performance of the new models to DNS were obtained. The performance of the new models was compared to classic and cutting-edge dynamic Smagorinsky eddy viscosity (DSEV) models. The new models typically outperform the classical models.

  16. Multi-Fluid Simulations of a Coupled Ionosphere-Magnetosphere System

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.; Glocer, A.; Toth, G.; Ridley, A. J.; Sokolov, I. V.; de Zeeuw, D. L.

    2008-05-01

    In the last decade we have developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on an extended magnetohydrodynamics model with anisotropic pressures. Ionosheric outflow can be a significant contributor to the plasma population of the magnetosphere during active geomagnetic conditions. This talk will present preliminary results of our simulations when we couple a new field- aligned multi-fluid polar wind code to the Ionosphere Electrodynamics (IE), and Global Magnetosphere (GM) components of the SWMF. We use multi-species and multi-fluid MHD to track the resulting plasma composition in the magnetosphere.

  17. Ideal MHD stability and characteristics of edge localized modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Ze-Yu; Chan, V. S.; Zhu, Yi-Ren; Jian, Xiang; Chen, Jia-Le; Cheng, Shi-Kui; Zhu, Ping; Xu, Xue-Qiao; Xia, Tian-Yang; Li, Guo-Qiang; Lao, L. L.; Snyder, P. B.; Wang, Xiao-Gang; the CFETR Physics Team

    2018-01-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for the China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario (R  =  5.7 m, B T  =  5 T) derived from multi-code integrated modeling, with key parameters {{β }N},{{β }T},{{β }p} varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for the engineering design. The long wavelength low-n global ideal MHD stability of the CFETR baseline scenario, including the wall stabilization effect, is evaluated by GATO. It is found that the low-n core modes are stable with a wall at r/a  =  1.2. An investigation of intermediate wavelength ideal MHD modes (peeling ballooning modes) is also carried out by multi-code benchmarking, including GATO, ELITE, BOUT++ and NIMROD. A good agreement is achieved in predicting edge-localized instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT++. A mix of grassy and type I ELMs is identified. When the size and magnetic field of CFETR are increased (R  =  6.6 m, B T  =  6 T), collisionality correspondingly increases and the instability is expected to shift to grassy ELMs.

  18. Multi-MW Closed Cycle MHD Nuclear Space Power Via Nonequilibrium He/Xe Working Plasma

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Harada, Nobuhiro

    2011-01-01

    Prospects for a low specific mass multi-megawatt nuclear space power plant were examined assuming closed cycle coupling of a high-temperature fission reactor with magnetohydrodynamic (MHD) energy conversion and utilization of a nonequilibrium helium/xenon frozen inert plasma (FIP). Critical evaluation of performance attributes and specific mass characteristics was based on a comprehensive systems analysis assuming a reactor operating temperature of 1800 K for a range of subsystem mass properties. Total plant efficiency was expected to be 55.2% including plasma pre-ionization power, and the effects of compressor stage number, regenerator efficiency and radiation cooler temperature on plant efficiency were assessed. Optimal specific mass characteristics were found to be dependent on overall power plant scale with 3 kg/kWe being potentially achievable at a net electrical power output of 1-MWe. This figure drops to less than 2 kg/kWe when power output exceeds 3 MWe. Key technical issues include identification of effective methods for non-equilibrium pre-ionization and achievement of frozen inert plasma conditions within the MHD generator channel. A three-phase research and development strategy is proposed encompassing Phase-I Proof of Principle Experiments, a Phase-II Subscale Power Generation Experiment, and a Phase-III Closed-Loop Prototypical Laboratory Demonstration Test.

  19. A MHD channel study for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  20. A MHD channel study for the ETF conceptual design

    NASA Astrophysics Data System (ADS)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  1. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  2. A stochastic approach to uncertainty in the equations of MHD kinematics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Edward G., E-mail: egphillips@math.umd.edu; Elman, Howard C., E-mail: elman@cs.umd.edu

    2015-03-01

    The magnetohydrodynamic (MHD) kinematics model describes the electromagnetic behavior of an electrically conducting fluid when its hydrodynamic properties are assumed to be known. In particular, the MHD kinematics equations can be used to simulate the magnetic field induced by a given velocity field. While prescribing the velocity field leads to a simpler model than the fully coupled MHD system, this may introduce some epistemic uncertainty into the model. If the velocity of a physical system is not known with certainty, the magnetic field obtained from the model may not be reflective of the magnetic field seen in experiments. Additionally, uncertaintymore » in physical parameters such as the magnetic resistivity may affect the reliability of predictions obtained from this model. By modeling the velocity and the resistivity as random variables in the MHD kinematics model, we seek to quantify the effects of uncertainty in these fields on the induced magnetic field. We develop stochastic expressions for these quantities and investigate their impact within a finite element discretization of the kinematics equations. We obtain mean and variance data through Monte Carlo simulation for several test problems. Toward this end, we develop and test an efficient block preconditioner for the linear systems arising from the discretized equations.« less

  3. Prospects for Nuclear Electric Propulsion Using Closed-Cycle Magnetohydrodynamic Energy Conversion

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Bitteker, L. J.; Jones, J. E.

    2001-01-01

    Nuclear electric propulsion (NEP) has long been recognized as a major enabling technology for scientific and human exploration of the solar system, and it may conceivably form the basis of a cost-effective space transportation system suitable for space commerce. The chief technical obstacles to realizing this vision are the development of efficient, high-power (megawatt-class) electric thrusters and the development of low specific mass (less than 1 kg/kWe) power plants. Furthermore, comprehensive system analyses of multimegawatt class NEP systems are needed in order to critically assess mission capability and cost attributes. This Technical Publication addresses some of these concerns through a systematic examination of multimegawatt space power installations in which a gas-cooled nuclear reactor is used to drive a magnetohydrodynamic (MHD) generator in a closed-loop Brayton cycle. The primary motivation for considering MHD energy conversion is the ability to transfer energy out of a gas that is simply too hot for contact with any solid material. This has several intrinsic advantages including the ability to achieve high thermal efficiency and power density and the ability to reject heat at elevated temperatures. These attributes lead to a reduction in system specific mass below that obtainable with turbine-based systems, which have definite solid temperature limits for reliable operation. Here, the results of a thermodynamic cycle analysis are placed in context with a preliminary system analysis in order to converge on a design space that optimizes performance while remaining clearly within established bounds of engineering feasibility. MHD technology issues are discussed including the conceptual design of a nonequilibrium disk generator and opportunities for exploiting neutron-induced ionization mechanisms as a means of increasing electrical conductivity and enhancing performance and reliability. The results are then used to make a cursory examination of piloted Mars missions during the 2018 opportunity.

  4. [Output standard in the mental health services of Reggio Emilia, Italy. Methodological issues].

    PubMed

    Grassi, G

    2000-01-01

    The project Output Standards of the Mental Health Department (MHD) of Reggio Emilia is set out to define outputs and quality standards and to guarantee transparency and to facilitate organizational improvement. The MHD started an interprofessional working group that defined the MHD outputs as long as process, quality peculiarities, indicators and standards for each output. The MHD Director validated the group results. The MHD defined 9 outputs and its indicators and standards and consequently modified its data registration system, the way to supply free and partially charged services and budget indicators. As a result, a new instrument for management and quality control has been provided. The A. maintains that to define outputs, indicators and standards will allow to compare several services of the Department, get them omogeneous and guarantee and improve quality.

  5. Oxygen-enriched air for MHD power plants

    NASA Technical Reports Server (NTRS)

    Ebeling, R. W., Jr.; Cutting, J. C.; Burkhart, J. A.

    1979-01-01

    Cryogenic air-separation process cycle variations and compression schemes are examined. They are designed to minimize net system power required to supply pressurized, oxygen-enriched air to the combustor of an MHD power plant with a coal input of 2000 MWt. Power requirements and capital costs for oxygen production and enriched air compression for enrichment levels from 13 to 50% are determined. The results are presented as curves from which total compression power requirements can be estimated for any desired enrichment level at any delivery pressure. It is found that oxygen enrichment and recuperative heating of MHD combustor air to 1400 F yields near-term power plant efficiencies in excess of 45%. A minimum power compression system requires 167 MW to supply 330 lb of oxygen per second and costs roughly 100 million dollars. Preliminary studies show MHD/steam power plants to be competitive with plants using high-temperature air preheaters burning gas.

  6. Two-way coupling of magnetohydrodynamic simulations with embedded particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Makwana, K. D.; Keppens, R.; Lapenta, G.

    2017-12-01

    We describe a method for coupling an embedded domain in a magnetohydrodynamic (MHD) simulation with a particle-in-cell (PIC) method. In this two-way coupling we follow the work of Daldorff et al. (2014) [19] in which the PIC domain receives its initial and boundary conditions from MHD variables (MHD to PIC coupling) while the MHD simulation is updated based on the PIC variables (PIC to MHD coupling). This method can be useful for simulating large plasma systems, where kinetic effects captured by particle-in-cell simulations are localized but affect global dynamics. We describe the numerical implementation of this coupling, its time-stepping algorithm, and its parallelization strategy, emphasizing the novel aspects of it. We test the stability and energy/momentum conservation of this method by simulating a steady-state plasma. We test the dynamics of this coupling by propagating plasma waves through the embedded PIC domain. Coupling with MHD shows satisfactory results for the fast magnetosonic wave, but significant distortion for the circularly polarized Alfvén wave. Coupling with Hall-MHD shows excellent coupling for the whistler wave. We also apply this methodology to simulate a Geospace Environmental Modeling (GEM) challenge type of reconnection with the diffusion region simulated by PIC coupled to larger scales with MHD and Hall-MHD. In both these cases we see the expected signatures of kinetic reconnection in the PIC domain, implying that this method can be used for reconnection studies.

  7. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE PAGES

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    2018-04-29

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  8. The Influence of the Hall Term on the Development of Magnetized Laser-Produced Plasma Jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlin, N.D.; Seyler, C. E.; Khiar, B.

    We present 2D axisymmetric simulation results describing the influence of the Hall term on laser-produced plasma jets and their interaction with an applied magnetic field parallel to the laser axis. Bending of the poloidal B-field lines produces an MHD shock structure surrounding a conical cavity, and a jet is produced from the convergence of the shock envelope. Both the jet and the conical cavity underneath it are bound by fast MHD shocks. We compare the MHD results generated using the extended-MHD code Physics as an Extended-MHD Relaxation System with an Efficient Upwind Scheme (PERSEUS) with MHD results generated using GORGONmore » and find reasonable agreement. We then present extended-MHD results generated using PERSEUS, which show that the Hall term has several effects on the plasma jet evolution. A hot low-density current-carrying layer of plasma develops just outside the plume, which results in a helical rather than a purely poloidal B-field, and reduces magnetic stresses, resulting in delayed flow convergence and jet formation. The flow is partially frozen into the helical field, resulting in azimuthal rotation of the jet. The Hall term also produces field-aligned current in strongly magnetized regions. In particular, we find the influence of Hall physics on this problem to be scale-dependent. In conclusion, this points to the importance of mitigating the Hall effect in a laboratory setup, by increasing the jet density and system dimensions, in order to avoid inaccurate extrapolation to astrophysical scales.« less

  9. Chapter 5: Waves and Oscillations in the Solar Atmosphere

    NASA Astrophysics Data System (ADS)

    Erdélyi, Robert

    2008-10-01

    The actual operating heating process that generates and sustains the hot solar corona has so far defied a quantitative understanding despite efforts spanning over half a century. Particular attention is paid here towards the exploration of the coronal heating problem from the perspectives of MHD waves and oscillations. Do MHD waves play any role in the heating of the solar atmosphere? In order to attempt answering this question, first we need do embark on the key properties of the heating of the solar atmosphere...

  10. Heat recovery and seed recovery development project: preliminary design report (PDR)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  11. Weakly Ionized Plasmas in Hypersonics: Fundamental Kinetics and Flight Applications

    NASA Astrophysics Data System (ADS)

    Macheret, Sergey

    2005-05-01

    The paper reviews some of the recent studies of applications of weakly ionized plasmas to supersonic/hypersonic flight. Plasmas can be used simply as means of delivering energy (heating) to the flow, and also for electromagnetic flow control and magnetohydrodynamic (MHD) power generation. Plasma and MHD control can be especially effective in transient off-design flight regimes. In cold air flow, nonequilibrium plasmas must be created, and the ionization power budget determines design, performance envelope, and the very practicality of plasma/MHD devices. The minimum power budget is provided by electron beams and repetitive high-voltage nanosecond pulses, and the paper describes theoretical and computational modeling of plasmas created by the beams and repetitive pulses. The models include coupled equations for non-local and unsteady electron energy distribution function (modeled in forward-back approximation), plasma kinetics, and electric field. Recent experimental studies at Princeton University have successfully demonstrated stable diffuse plasmas sustained by repetitive nanosecond pulses in supersonic air flow, and for the first time have demonstrated the existence of MHD effects in such plasmas. Cold-air hypersonic MHD devices are shown to permit optimization of scramjet inlets at Mach numbers higher than the design value, while operating in self-powered regime. Plasma energy addition upstream of the inlet throat can increase the thrust by capturing more air (Virtual Cowl), or it can reduce the flow Mach number and thus eliminate the need for an isolator duct. In the latter two cases, the power that needs to be supplied to the plasma would be generated by an MHD generator downstream of the combustor, thus forming the "reverse energy bypass" scheme. MHD power generation on board reentry vehicles is also discussed.

  12. Validation of MHD Models using MST RFP Plasmas

    NASA Astrophysics Data System (ADS)

    Jacobson, C. M.; Chapman, B. E.; den Hartog, D. J.; McCollam, K. J.; Sarff, J. S.; Sovinec, C. R.

    2017-10-01

    Rigorous validation of computational models used in fusion energy sciences over a large parameter space and across multiple magnetic configurations can increase confidence in their ability to predict the performance of future devices. MST is a well diagnosed reversed-field pinch (RFP) capable of operation with plasma current ranging from 60 kA to 500 kA. The resulting Lundquist number S, a key parameter in resistive magnetohydrodynamics (MHD), ranges from 4 ×104 to 8 ×106 for standard RFP plasmas and provides substantial overlap with MHD RFP simulations. MST RFP plasmas are simulated using both DEBS, a nonlinear single-fluid visco-resistive MHD code, and NIMROD, a nonlinear extended MHD code, with S ranging from 104 to 105 for single-fluid runs, and the magnetic Prandtl number Pm = 1 . Validation metric comparisons are presented, focusing on how normalized magnetic fluctuations at the edge b scale with S. Preliminary results for the dominant n = 6 mode are b S - 0 . 20 +/- 0 . 02 for single-fluid NIMROD, b S - 0 . 25 +/- 0 . 05 for DEBS, and b S - 0 . 20 +/- 0 . 02 for experimental measurements, however there is a significant discrepancy in mode amplitudes. Preliminary two-fluid NIMROD results are also presented. Work supported by US DOE.

  13. Simulation of wave interactions with MHD

    NASA Astrophysics Data System (ADS)

    Batchelor, D.; Alba, C.; Bateman, G.; Bernholdt, D.; Berry, L.; Bonoli, P.; Bramley, R.; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, W.; Fu, G.; Harvey, R.; Jaeger, E.; Jardin, S.; Jenkins, T.; Keyes, D.; Klasky, S.; Kruger, S.; Ku, L.; Lynch, V.; McCune, D.; Ramos, J.; Schissel, D.; Schnack, D.; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation 01 Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RP effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  14. HVEPS Scramjet-Driven MHD Power Demonstration Test Results (Preprint)

    DTIC Science & Technology

    2007-06-01

    an outer annulus which provides the flow passage for the liquid NaK. Final fabrication and assembly of the seeding system was completed at UTRC as...ABSTRACT The Air Force sponsored Hypersonic Vehicle Electric Power System (HVEPS) program was a research program to develop scramjet driven...magnetohydrodynamic (MHD) power for an advanced high power, airborne electric power system . This program has been active for the past five years with various

  15. Successful experiments on an external MHD Accelerator: wall confinement of the plasma, annihilation of the electrothermal instability by magnetic gradient inversion, creation of a stable spiral current pattern

    NASA Astrophysics Data System (ADS)

    Petit, Jean-Pierre; Dore, Jean-Christophe

    2013-09-01

    MHD propulsion has been extensively studied since the fifties. To shift from propulsion to an MHD Aerodyne, one only needs to accelerate the air externally, along its outer skin, using Lorentz forces. We present a set of successful experiments, obtained around a model, placed in low density air. We successfully dealt with various problems: wall confinement of two-temperature plasma obtained by inversion of the magnetic pressure gradient, annihilation of the Velikhov electrothermal instability by magnetic confinement of the streamers, establishment of a stable spiral distribution of the current, obtained by an original method. Another direction of research is devoted to the study of an MHD-controlled inlet which, coupled with a turbofan engine and implying an MHD-bypass system, would extend the flight domain to hypersonic conditions. Research manager

  16. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  17. Kinetic effects on turbulence driven by the magnetorotational instability in black hole accretion

    NASA Astrophysics Data System (ADS)

    Sharma, Prateek

    Many astrophysical objects (e.g., spiral galaxies, the solar system, Saturn's rings, and luminous disks around compact objects) occur in the form of a disk. One of the important astrophysical problems is to understand how rotationally supported disks lose angular momentum, and accrete towards the bottom of the gravitational potential, converting gravitational energy into thermal (and radiation) energy. The magnetorotational instability (MRI), an instability causing turbulent transport in ionized accretion disks, is studied in the kinetic regime. Kinetic effects are important because radiatively inefficient accretion flows (RIAFs), like the one around the supermassive black hole in the center of our Galaxy, are collisionless. The ion Larmor radius is tiny compared to the scale of MHD turbulence so that the drift kinetic equation (DKE), obtained by averaging the Vlasov equation over the fast gyromotion, is appropriate for evolving the distribution function. The kinetic MHD formalism, based on the moments of the DKE, is used for linear and nonlinear studies. A Landau fluid closure for parallel heat flux, which models kinetic effects like collisionless damping, is used to close the moment hierarchy. We show, that the kinetic MHD and drift kinetic formalisms give the same set of linear modes for a Keplerian disk. The BGK collision operator is used to study the transition of the MRI from kinetic to the MHD regime. The ZEUS MHD code is modified to include the key kinetic MHD terms: anisotropy, pressure tensor and anisotropic thermal conduction. The modified code is used to simulate the collisionless MRI in a local shearing box. As magnetic field is amplified by the MRI, pressure anisotropy ( p [perpendicular] > p || ) is created because of the adiabatic invariance (m 0( p [perpendicular] / B ). Larmor radius scale instabilities---mirror, ion-cyclotron, and firehose---are excited even at small pressure anisotropies (D p/p ~ 1/b). Pressure isotropization due to pitch angle scattering by these instabilities is included as a subgrid model. A key result of the kinetic MHD simulations is that the anisotropy stress can be as large as the Maxwell stress. It is shown, with the help of simple tests, that the centered differencing of anisotropic thermal conduction can cause the heat to flow from lower to higher temperatures, giving negative temperatures in regions with large temperature gradients. A new method, based on limiting the transverse temperature gradient, allows heat to flow only from higher to lower temperatures. Several tests and convergence studies are presented to compare the different methods.

  18. Magnetohydrodynamic Oscillations in the Solar Corona and Earth's Magnetosphere: Towards Consolidated Understanding

    NASA Astrophysics Data System (ADS)

    Nakariakov, V. M.; Pilipenko, V.; Heilig, B.; Jelínek, P.; Karlický, M.; Klimushkin, D. Y.; Kolotkov, D. Y.; Lee, D.-H.; Nisticò, G.; Van Doorsselaere, T.; Verth, G.; Zimovets, I. V.

    2016-04-01

    Magnetohydrodynamic (MHD) oscillatory processes in different plasma systems, such as the corona of the Sun and the Earth's magnetosphere, show interesting similarities and differences, which so far received little attention and remain under-exploited. The successful commissioning within the past ten years of THEMIS, Hinode, STEREO and SDO spacecraft, in combination with matured analysis of data from earlier spacecraft (Wind, SOHO, ACE, Cluster, TRACE and RHESSI) makes it very timely to survey the breadth of observations giving evidence for MHD oscillatory processes in solar and space plasmas, and state-of-the-art theoretical modelling. The paper reviews several important topics, such as Alfvénic resonances and mode conversion; MHD waveguides, such as the magnetotail, coronal loops, coronal streamers; mechanisms for periodicities produced in energy releases during substorms and solar flares, possibility of Alfvénic resonators along open field lines; possible drivers of MHD waves; diagnostics of plasmas with MHD waves; interaction of MHD waves with partly-ionised boundaries (ionosphere and chromosphere). The review is mainly oriented to specialists in magnetospheric physics and solar physics, but not familiar with specifics of the adjacent research fields.

  19. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 9: Closed-cycle MHD. [energy conversion efficiency of electric power plants using magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Tsu, T. C.

    1976-01-01

    A closed-cycle MHD system for an electric power plant was studied. It consists of 3 interlocking loops, an external heating loop, a closed-cycle cesium seeded argon nonequilibrium ionization MHD loop, and a steam bottomer. A MHD duct maximum temperature of 2366 K (3800 F), a pressure of 0.939 MPa (9.27 atm) and a Mach number of 0.9 are found to give a topping cycle efficiency of 59.3%; however when combined with an integrated gasifier and optimistic steam bottomer the coal to bus bar efficiency drops to 45.5%. A 1978 K (3100 F) cycle has an efficiency of 55.1% and a power plant efficiency of 42.2%. The high cost of the external heating loop components results in a cost of electricity of 21.41 mills/MJ (77.07 mills/kWh) for the high temperature system and 19.0 mills/MJ (68.5 mills/kWh) for the lower temperature system. It is, therefore, thought that this cycle may be more applicable to internally heated systems such as some futuristic high temperature gas cooled reactor.

  20. Pulsed fusion space propulsion: Computational Magneto-Hydro Dynamics of a multi-coil parabolic reaction chamber

    NASA Astrophysics Data System (ADS)

    Romanelli, Gherardo; Mignone, Andrea; Cervone, Angelo

    2017-10-01

    Pulsed fusion propulsion might finally revolutionise manned space exploration by providing an affordable and relatively fast access to interplanetary destinations. However, such systems are still in an early development phase and one of the key areas requiring further investigations is the operation of the magnetic nozzle, the device meant to exploit the fusion energy and generate thrust. One of the last pulsed fusion magnetic nozzle design is the so called multi-coil parabolic reaction chamber: the reaction is thereby ignited at the focus of an open parabolic chamber, enclosed by a series of coaxial superconducting coils that apply a magnetic field. The field, beside confining the reaction and preventing any contact between hot fusion plasma and chamber structure, is also meant to reflect the explosion and push plasma out of the rocket. Reflection is attained thanks to electric currents induced in conductive skin layers that cover each of the coils, the change of plasma axial momentum generates thrust in reaction. This working principle has yet to be extensively verified and computational Magneto-Hydro Dynamics (MHD) is a viable option to achieve that. This work is one of the first detailed ideal-MHD analysis of a multi-coil parabolic reaction chamber of this kind and has been completed employing PLUTO, a freely distributed computational code developed at the Physics Department of the University of Turin. The results are thus a preliminary verification of the chamber's performance. Nonetheless, plasma leakage through the chamber structure has been highlighted. Therefore, further investigations are required to validate the chamber design. Implementing a more accurate physical model (e.g. Hall-MHD or relativistic-MHD) is thus mandatory, and PLUTO shows the capabilities to achieve that.

  1. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-07-01

    A review of experimental work on magnetohydrodynamic (MHD) and heat transfer (HT) characteristics of liquid metal flows in fusion relevant conditions is presented. Experimental data on MHD flow pressure drop in straight channels of round and rectangular cross-section with electroconducting walls in a transverse magnetic field show good agreement with theoretical predictions, and simple engineering formulas are confirmed. Less data are available on velocity distribution and HT characteristics, and even less data are available for channels with electroinsulating walls or artificially made self-heating electroinsulating coatings. Some experiments show an interesting phenomena of HT increase in the presence of a transversemore » or axial magnetic field. For channels of complex geometry -- expansions, contractions, bends, and manifolds -- few experimental data are available. Future efforts should be directed toward investigation of MHD/HT in straight channels with perfect and nonperfect electroinsulated walls, including walls with controlled imperfections, and in channels of complex geometry. International cooperation in manufacturing and operating experimental facilities with magnetic fields at, or even higher than, 5--7 T with comparatively large volumes may be of great help.« less

  2. Continued Development and Validation of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2015-11-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks; determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and provide an intermediate step between theory and future experiments. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (~ 36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. Results from verification of the PSI-TET extended MHD model using the GEM magnetic reconnection challenge will also be presented along with investigation of injector configurations for future SIHI experiments using Taylor state equilibrium calculations. Work supported by DoE.

  3. Feedback-assisted extension of the tokamak operating space to low safety factor

    DOE PAGES

    Hanson, Jeremy M.; Bialek, James M.; Baruzzo, M.; ...

    2014-07-07

    Recent DIII-D and RFX-mod experiments have demonstrated stable tokamak operation at very low values of the edge safety factor q( a) near and below 2. The onset of n = 1 resistive wall mode (RWM) kink instabilities leads to a disruptive stability limit, encountered at q( a) = 2 (limiter plasmas) and q 95 = 2 (divertor plasmas). However, passively stable operation can be attained for q( a) and q 95 values as low as 2.2. RWM damping in the q( a) = 2 regime was measured using active MHD spectroscopy. Although consistent with theoretical predictions, the amplitude of themore » damped response does not increase significantly as the q( a) = 2 limit is approached, in contrast with damping measurements made approaching the pressure-driven RWM limit. Applying proportional gain magnetic feedback control of the n = 1 modes has resulted in stabilized operation with q 95 values reaching as low as 1.9 in DIII-D and q( a) reaching 1.55 in RFX-mod. In addition to being consistent with the q( a) = 2 external kink mode stability limit, the unstable modes have growth rates on the order of the characteristic wall eddy-current decay timescale in both devices, and a dominant m = 2 poloidal structure that is consistent with ideal MHD predictions. As a result, the experiments contribute to validating MHD stability theory and demonstrate that a key tokamak stability limit can be overcome with feedback.« less

  4. Specifications and implementation of the RT MHD control system for the EC launcher of FTU

    NASA Astrophysics Data System (ADS)

    Galperti, C.; Alessi, E.; Boncagni, L.; Bruschi, A.; Granucci, G.; Grosso, A.; Iannone, F.; Marchetto, C.; Nowak, S.; Panella, M.; Sozzi, C.; Tilia, B.

    2012-09-01

    To perform real time plasma control experiments using EC heating waves by using the new fast launcher installed on FTU a dedicated data acquisition and elaboration system has been designed recently. A prototypical version of the acquisition/control system has been recently developed and will be tested on FTU machine in its next experimental campaign. The open-source framework MARTe (Multi-threaded Application Real-Time executor) on Linux/RTAI real-time operating system has been chosen as software platform to realize the control system. Standard open-architecture industrial PCs, based either on VME bus and CompactPCI bus equipped with standard input/output cards are the chosen hardware platform.

  5. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  6. Magnetohydrodynamic pump with a system for promoting flow of fluid in one direction

    DOEpatents

    Lemoff, Asuncion V [Union City, CA; Lee, Abraham P [Irvine, CA

    2010-07-13

    A magnetohydrodynamic pump for pumping a fluid. The pump includes a microfluidic channel for channeling the fluid, a MHD electrode/magnet system operatively connected to the microfluidic channel, and a system for promoting flow of the fluid in one direction in the microfluidic channel. The pump has uses in the medical and biotechnology industries for blood-cell-separation equipment, biochemical assays, chemical synthesis, genetic analysis, drug screening, an array of antigen-antibody reactions, combinatorial chemistry, drug testing, medical and biological diagnostics, and combinatorial chemistry. The pump also has uses in electrochromatography, surface micromachining, laser ablation, inkjet printers, and mechanical micromilling.

  7. Satellite nuclear power station: An engineering analysis

    NASA Technical Reports Server (NTRS)

    Williams, J. R.; Clement, J. D.; Rosa, R. J.; Kirby, K. D.; Yang, Y. Y.

    1973-01-01

    A nuclear-MHD power plant system which uses a compact non-breeder reactor to produce power in the multimegawatt range is analyzed. It is shown that, operated in synchronous orbit, the plant would transmit power safely to the ground by a microwave beam. Fuel reprocessing would take place in space, and no radioactive material would be returned to earth. Even the effect of a disastrous accident would have negligible effect on earth. A hydrogen moderated gas core reactor, or a colloid-core, or NERVA type reactor could also be used. The system is shown to approach closely the ideal of economical power without pollution.

  8. On MHD rotational transport, instabilities and dynamo action in stellar radiation zones

    NASA Astrophysics Data System (ADS)

    Mathis, Stéphane; Brun, A.-S.; Zahn, J.-P.

    2009-04-01

    Magnetic field and their related dynamical effects are thought to be important in stellar radiation zones. For instance, it has been suggested that a dynamo, sustained by a m = 1 MHD instability of toroidal magnetic fields (discovered by Tayler in 1973), could lead to a strong transport of angular momentum and of chemicals in such stable regions. We wish here to recall the different magnetic transport processes present in radiative zone and show how the dynamo can operate by recalling the conditions required to close the dynamo loop (BPol → BTor → BPol). Helped by high-resolution 3D MHD simulations using the ASH code in the solar case, we confirm the existence of the m = 1 instability, study its non-linear saturation, but we do not detect, up to a magnetic Reylnods number of 105, any dynamo action.

  9. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  10. Magnetohydrodynamics MHD Engineering Test Facility ETF 200 MWe power plant. Conceptual Design Engineering Report CDER. Volume 3: Costs and schedules

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The estimated plant capital cost for a coal fired 200 MWE electric generating plant with open cycle magnetohydrodynamics is divided into principal accounts based on Federal Energy Regulatory Commision account structure. Each principal account is defined and its estimated cost subdivided into identifiable and major equipment systems. The cost data sources for compiling the estimates, cost parameters, allotments, assumptions, and contingencies, are discussed. Uncertainties associated with developing the costs are quantified to show the confidence level acquired. Guidelines established in preparing the estimated costs are included. Based on an overall milestone schedule related to conventional power plant scheduling experience and starting procurement of MHD components during the preliminary design phase there is a 6 1/2-year construction period. The duration of the project from start to commercial operation is 79 months. The engineering phase of the project is 4 1/2 years; the construction duration following the start of the man power block is 37 months.

  11. Modeling extreme (Carrington-type) space weather events using three-dimensional MHD code simulations

    NASA Astrophysics Data System (ADS)

    Ngwira, C. M.; Pulkkinen, A. A.; Kuznetsova, M. M.; Glocer, A.

    2013-12-01

    There is growing concern over possible severe societal consequences related to adverse space weather impacts on man-made technological infrastructure and systems. In the last two decades, significant progress has been made towards the modeling of space weather events. Three-dimensional (3-D) global magnetohydrodynamics (MHD) models have been at the forefront of this transition, and have played a critical role in advancing our understanding of space weather. However, the modeling of extreme space weather events is still a major challenge even for existing global MHD models. In this study, we introduce a specially adapted University of Michigan 3-D global MHD model for simulating extreme space weather events that have a ground footprint comparable (or larger) to the Carrington superstorm. Results are presented for an initial simulation run with ``very extreme'' constructed/idealized solar wind boundary conditions driving the magnetosphere. In particular, we describe the reaction of the magnetosphere-ionosphere system and the associated ground induced geoelectric field to such extreme driving conditions. We also discuss the results and what they might mean for the accuracy of the simulations. The model is further tested using input data for an observed space weather event to verify the MHD model consistence and to draw guidance for future work. This extreme space weather MHD model is designed specifically for practical application to the modeling of extreme geomagnetically induced electric fields, which can drive large currents in earth conductors such as power transmission grids.

  12. Coalescence of Magnetic Islands in the low resistivity Hall MHD Regime.

    NASA Astrophysics Data System (ADS)

    Knoll, D. A.; Chacon, L.; Simakov, A. N.

    2006-10-01

    We revisit the well-known problem of the coalescence of magnetic islands in the context of Hall MHD. Unlike previous work, we focus on regimes of small resistivity (S ˜10^6) and where the ion skin depth diL (system size). These conditions are of relevance, for instance, in the solar corona and the earth's magnetotail. We aim to address under which conditions such systems can exhibit fast reconnection. First, we revisit the resistive MHD problem to further understand the well-known sloshing result. Next, the interaction between the ion inertial length, di, and the dynamically evolving current sheet scale length, (δJ), is established. Initially, diδJ. If η is such that (δJ) dynamically thins down to di prior to the well-known sloshing phenomena, then sloshing is avoided. This results in peak reconnection rates which are η-independent and scale as √di. However, if di is small enough that resistivity prevents (δJ) from thinning down to this scale prior to sloshing, then reconnection (and sloshing) proceeds as in the resistive MHD model. Finally, we discuss our development of a semi-analytical model to describe the well-known sloshing result in the resistive MHD model, and our plans to extend it to Hall MHD. D. A. Knoll, L. Chac'on, Phys. Plasmas, 13 (3), p.032307 (2006). D. A. Knoll, L. Chac'on, Phys. Rev. Lett., 96, 135001 (2006). A. Simakov, L. Chac'on, D. A. Knoll, Phys. Plasmas, accepted (2006).

  13. Numerical study of MHD supersonic flow control

    NASA Astrophysics Data System (ADS)

    Ryakhovskiy, A. I.; Schmidt, A. A.

    2017-11-01

    Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.

  14. Enhanced Spectral Anisotropies Near the Proton-Cyclotron Scale: Possible Two-Component Structure in Hall-FLR MHD Turbulence Simulations

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Goldstein, Melvyn L.

    2011-01-01

    Recent analysis of the magnetic correlation function of solar wind fluctuations at 1 AU suggests the existence of two-component structure near the proton-cyclotron scale. Here we use two-and-one-half dimensional and three-dimensional compressible MHD models to look for two-component structure adjacent the proton-cyclotron scale. Our MHD system incorporates both Hall and Finite Larmor Radius (FLR) terms. We find that strong spectral anisotropies appear adjacent the proton-cyclotron scales depending on selections of initial condition and plasma beta. These anisotropies are enhancements on top of related anisotropies that appear in standard MHD turbulence in the presence of a mean magnetic field and are suggestive of one turbulence component along the inertial scales and another component adjacent the dissipative scales. We compute the relative strengths of linear and nonlinear accelerations on the velocity and magnetic fields to gauge the relative influence of terms that drive the system with wave-like (linear) versus turbulent (nonlinear) dynamics.

  15. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  16. Applying MHD Results to a Scramjet Vehicle

    DTIC Science & Technology

    2007-02-12

    flow, arc formation and extinction, high temperature materials, and non-intrusive gas diagnostics. In this report, results from the DOE Program, and...3) Use of demonstrated non-intrusive diagnostics for plasma and boundary layer measurements, and (4) Testing of high - temperature materials for an MHD...cycle systems with researchers in Eindhoven, The Netherlands, and open-cycle systems with personnel at the High Temperature Institute, Moscow, Russia

  17. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    NASA Astrophysics Data System (ADS)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  18. High Field Side MHD Activity During Local Helicity Injection

    NASA Astrophysics Data System (ADS)

    Pachicano, J. L.; Bongard, M. W.; Fonck, R. J.; Perry, J. M.; Reusch, J. A.; Richner, N. J.

    2017-10-01

    MHD is an essential part of understanding the mechanism for local helicity injection (LHI) current drive. The new high field side (HFS) LHI system on the Pegasus ST permits new tests of recent NIMROD simulations. In that model, LHI current streams in the plasma edge undergo large-scale reconnection events, leading to current drive. This produces bursty n = 1 activity around 30 kHz on low field side (LFS) Mirnov coils, consistent with experiment. The simulations also feature coherent injector streams winding down the center column. Improvements to the core high-resolution poloidal Mirnov array with Cat7A Ethernet cabling and differentially driven signal processing eliminated EMI-driven switching noise, enabling detailed spectral analysis. Preliminary results from the recovered HFS poloidal Mirnov coils suggest n = 1 activity is present at the top of the vessel core, but does not persist down the centerstack. HFS LHI experiments can exhibit an operating regime where the high amplitude MHD is abruptly reduced by more than an order of magnitude on LFS Mirnov coils, leading to higher plasma current and improved particle confinement. This reduction is not observed on the HFS midplane magnetics. Instead, they show broadband turbulence-like magnetic features with near consistent amplitude in a frequency range of 90-200 kHz. Work supported by US DOE Grant DE-FG02-96ER54375.

  19. A large eddy lattice Boltzmann simulation of magnetohydrodynamic turbulence

    NASA Astrophysics Data System (ADS)

    Flint, Christopher; Vahala, George

    2018-02-01

    Large eddy simulations (LES) of a lattice Boltzmann magnetohydrodynamic (LB-MHD) model are performed for the unstable magnetized Kelvin-Helmholtz jet instability. This algorithm is an extension of Ansumali et al. [1] to MHD in which one performs first an expansion in the filter width on the kinetic equations followed by the usual low Knudsen number expansion. These two perturbation operations do not commute. Closure is achieved by invoking the physical constraint that subgrid effects occur at transport time scales. The simulations are in very good agreement with direct numerical simulations.

  20. Advancing parabolic operators in thermodynamic MHD models: Explicit super time-stepping versus implicit schemes with Krylov solvers

    NASA Astrophysics Data System (ADS)

    Caplan, R. M.; Mikić, Z.; Linker, J. A.; Lionello, R.

    2017-05-01

    We explore the performance and advantages/disadvantages of using unconditionally stable explicit super time-stepping (STS) algorithms versus implicit schemes with Krylov solvers for integrating parabolic operators in thermodynamic MHD models of the solar corona. Specifically, we compare the second-order Runge-Kutta Legendre (RKL2) STS method with the implicit backward Euler scheme computed using the preconditioned conjugate gradient (PCG) solver with both a point-Jacobi and a non-overlapping domain decomposition ILU0 preconditioner. The algorithms are used to integrate anisotropic Spitzer thermal conduction and artificial kinematic viscosity at time-steps much larger than classic explicit stability criteria allow. A key component of the comparison is the use of an established MHD model (MAS) to compute a real-world simulation on a large HPC cluster. Special attention is placed on the parallel scaling of the algorithms. It is shown that, for a specific problem and model, the RKL2 method is comparable or surpasses the implicit method with PCG solvers in performance and scaling, but suffers from some accuracy limitations. These limitations, and the applicability of RKL methods are briefly discussed.

  1. Stratified Simulations of Collisionless Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hirabayashi, Kota; Hoshino, Masahiro

    2017-06-01

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.

  2. Numerical Simulations of Free Surface Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema

    2003-11-01

    We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.

  3. Dynamics of Vortex and Magnetic Lines in Ideal Hydrodynamics and MHD

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Ruban, V. P.

    Vortex line and magnetic line representations are introduced for description of flows in ideal hydrodynamics and MHD, respectively. For incompressible fluids it is shown that the equations of motion for vorticity φ and magnetic field with the help of this transformation follow from the variational principle. By means of this representation it is possible to integrate the system of hydrodynamic type with the Hamiltonian H=|φ|dr. It is also demonstrated that these representations allow to remove from the noncanonical Poisson brackets, defined on the space of divergence-free vector fields, degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD a new Weber type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent this transformation coincides with the Clebsch representation analog introduced in [1].

  4. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 4: Supplementary engineering data

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the Magnetohydrodynamic Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates, and identification of engineering issues that should be reexamined are also given. The latest (1980-1981) information from the MHD technology program are integrated with the elements of a conventional steam power electric generating plant. Supplementary Engineering Data (Issues, Background, Performance Assurance Plan, Design Details, System Design Descriptions and Related Drawings) is presented.

  6. Simulations of initial MHD experiments on the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    O'Connell, R.; Forest, C. B.; Goldwin, J. M.; Kendrick, R. D.; Canary, H. W.; Nornberg, M. D.; Jaun, A.

    1999-11-01

    Initial experiments for a liquid metal MHD device have been modelled using measurements from geometrically similar water experiments. In the low B limit the water flows are the same as sodium flows. Two codes have been written to predict 1) linear stability of the system and 2) the response of the system to an externally applied vertical magnetic field, using measured velocity profiles. Predictions are made for a first set of MHD experiments, including: a) demonstration of the distortion and amplification of externally applied magnetic fields by sheared flows, b) demonstration of the β-effect by measurement of the turbulent conductivity, c) demonstration of a turbulent α effect and d) characterization of magnetic eigenmodes.

  7. Multi-spacecraft testing of time-dependent interplanetary MHD models for operational forecasting of geomagnetic storms

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Smith, Z. K.

    1989-01-01

    An MHD 2-1/2D, time-dependent model is used, together with observations of six solar flares during February 3-7, 1986, to demonstrate global, large-scale, compound disturbances in the solar wind over a wide range of heliolongitudes. This scenario is one that is likely to occur many times during the cruise, possibly even encounter, phases of the Multi-Comet Mission. It is suggested that a model such as this one should be tested with multi-spacecraft data (such as the MCM and earth-based probes) with several goals in view: (1) utility of the model for operational real-time forecasting of geomagnetic storms, and (2) scientific interpretation of certain forms of cometary activities and their possible association with solar-generated activity.

  8. You’re Cut Off: HD and MHD Simulations of Truncated Accretion Disks

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-01-01

    Truncated accretion disks are commonly invoked to explain the spectro-temporal variability from accreting black holes in both small systems, i.e. state transitions in galactic black hole binaries (GBHBs), and large systems, i.e. low-luminosity active galactic nuclei (LLAGNs). In the canonical truncated disk model of moderately low accretion rate systems, gas in the inner region of the accretion disk occupies a hot, radiatively inefficient phase, which leads to a geometrically thick disk, while the gas in the outer region occupies a cooler, radiatively efficient phase that resides in the standard geometrically thin disk. Observationally, there is strong empirical evidence to support this phenomenological model, but a detailed understanding of the disk behavior is lacking. We present well-resolved hydrodynamic (HD) and magnetohydrodynamic (MHD) numerical models that use a toy cooling prescription to produce the first sustained truncated accretion disks. Using these simulations, we study the dynamics, angular momentum transport, and energetics of a truncated disk in the two different regimes. We compare the behaviors of the HD and MHD disks and emphasize the need to incorporate a full MHD treatment in any discussion of truncated accretion disk evolution.

  9. Non-ideal magnetohydrodynamics on a moving mesh

    NASA Astrophysics Data System (ADS)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  10. Hamiltonian dynamics of vortex and magnetic lines in hydrodynamic type systems

    NASA Astrophysics Data System (ADS)

    Kuznetsov, E. A.; Ruban, V. P.

    2000-01-01

    Vortex line and magnetic line representations are introduced for a description of flows in ideal hydrodynamics and magnetohydrodynamics (MHD), respectively. For incompressible fluids, it is shown with the help of this transformation that the equations of motion for vorticity Ω and magnetic field follow from a variational principle. By means of this representation, it is possible to integrate the hydrodynamic type system with the Hamiltonian H=∫\\|Ω\\|dr and some other systems. It is also demonstrated that these representations allow one to remove from the noncanonical Poisson brackets, defined in the space of divergence-free vector fields, the degeneracy connected with the vorticity frozenness for the Euler equation and with magnetic field frozenness for ideal MHD. For MHD, a new Weber-type transformation is found. It is shown how this transformation can be obtained from the two-fluid model when electrons and ions can be considered as two independent fluids. The Weber-type transformation for ideal MHD gives the whole Lagrangian vector invariant. When this invariant is absent, this transformation coincides with the Clebsch representation analog introduced by V.E. Zakharov and E. A. Kuznetsov [Dokl. Ajad. Nauk 194, 1288 (1970) [Sov. Phys. Dokl. 15, 913 (1971)

  11. Optimization of DIII-D discharges to avoid AE destabilization

    NASA Astrophysics Data System (ADS)

    Varela, Jacobo; Spong, Donald; Garcia, Luis; Huang, Juan; Murakami, Masanori

    2017-10-01

    The aim of the study is to analyze the stability of Alfven Eigenmodes (AE) perturbed by energetic particles (EP) during DIII-D operation. We identify the optimal NBI operational regimes that avoid or minimize the negative effects of AE on the device performance. We use the reduced MHD equations to describe the linear evolution of the poloidal flux and the toroidal component of the vorticity in a full 3D system, coupled with equations of density and parallel velocity moments for the energetic particles, including the effect of the acoustic modes. We add the Landau damping and resonant destabilization effects using a closure relation. We perform parametric studies of the MHD and AE stability, taking into account the experimental profiles of the thermal plasma and EP, also using a range of values of the energetic particles β, density and velocity as well the effect of the toroidal couplings. We reproduce the AE activity observed in high poloidal β discharge at the pedestal and reverse shear discharges. This material based on work is supported both by the U.S. Department of Energy, Office of Science, under Contract DE-AC05-00OR22725 with UT-Battelle, LLC. Research sponsored in part by the Ministerio de Economia y Competitividad of Spain under the project.

  12. LM-research opportunities and activities at Beer-Sheva

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lesin, S.

    1996-06-01

    Energy conversion concepts based on liquid metal (LM) magnetohydrodynamic (MHD) technology was intensively investigated at the Center for MHD Studies (CMHDS), in the Ben-Gurion University of the Negev in Israel. LMMHD energy conversion systems operate in a closed cycle as follows: heat intended for conversion into electricity is added to a liquid metal contained in a closed loop of pipes. The liquid metal is mixed with vapor or gas introduced from outside so that a two-phase mixture is formed. The gaseous phase performs a thermodynamic cycle, converting a certain amount of heat into mechanical energy of the liquid metal. Thismore » energy is converted into electrical power as the metal flows across a magnetic field in the MHD channel. Those systems where the expanding thermodynamic fluid performs work against gravitational forces (natural circulation loops) and using heavy liquid metals are named ETGAR systems. A number of different heavy-metal facilities have been specially constructed and tested with fluid combinations of mercury and steam, mercury and nitrogen, mercury and freon, lead-bismuth and steam, and lead and steam. Since the experimental investigation of such flows is a very difficult task and all the known measurment methods are incomplete and not fully reliable, a variety of experimental approaches have been developed. In most experiments, instantaneous pressure distribution along the height of the upcomer were measured and the average void fraction was calculated numerically using the one-dimensional equation for the two-phase flow. The research carried out at the CMHDS led to significant improvements in the characterization of the two-phase phenomena expected in the riser of ETGAR systems. One of the most important outcomes is the development of a new empirical correlation which enables the reliable prediction of the velocity ratio between the LM and the steam (slip), the friction factor, as well as of the steam void fraction distribution along the riser.« less

  13. High-beta extended MHD simulations of stellarators

    NASA Astrophysics Data System (ADS)

    Bechtel, T. A.; Hegna, C. C.; Sovinec, C. R.; Roberds, N. A.

    2016-10-01

    The high beta properties of stellarator plasmas are studied using the nonlinear, extended MHD code NIMROD. In this work, we describe recent developments to the semi-implicit operator which allow the code to model 3D plasma evolution with better accuracy and efficiency. The configurations under investigation are an l=2, M=5 torsatron with geometry modeled after the Compact Toroidal Hybrid (CTH) experiment and an l=2, M=10 torsatron capable of having vacuum rotational transform profiles near unity. High-beta plasmas are created using a volumetric heating source and temperature dependent anisotropic thermal conduction and resistivity. To reduce computation expenses, simulations are initialized from stellarator symmetric pseudo-equilibria by turning on symmetry breaking modes at finite beta. The onset of MHD instabilities and nonlinear consequences are monitored as a function of beta as well as the fragility of the magnetic surfaces. Research supported by US DOE under Grant No. DE-FG02-99ER54546.

  14. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet shock systems, finite-rate chemistry, wall cooling with thermally balanced engine (fuel heat sink), fuel injection and mixing, friction, etc. are shown and discussed for both the MHD engine and the conventional scramjet. The MHD bypass engine has significantly lower performance in all categories across the Mach number range (8 to 12.2). The lower performance is attributed to the combined effects of 1) additional irreversibility and cooling requirements associated with the MHD components and 2) the total pressure decrease associated with the inverse cycle itself.

  15. MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.

    2013-11-01

    When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due tomore » anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii.« less

  16. New Space Weather Forecasting at NOAA with Michigan's Geospace Model

    NASA Astrophysics Data System (ADS)

    Singer, H. J.; Millward, G. H.; Balch, C. C.; Cash, M. D.; Onsager, T. G.; Toth, G.; Welling, D. T.; Gombosi, T. I.

    2016-12-01

    We will present first results from the University of Michigan's Geospace model that is transitioning, during 2016, from a research capability into operations at the NOAA Space Weather Prediction Center. The first generation of space weather products from this model will be described. These initial products will support power grid operators, as well as other users, with both global and regional, short-term predictions of geomagnetic activity. The Geospace model is a coupled system including three components: the BATS-R-US magnetohydrodynamic (MHD) model of the magnetosphere; the Ridley ionosphere electrodynamics model (RIM); and the Rice Convection Model (RCM), an inner magnetosphere ring-current model developed at Rice University. The model is driven by solar wind data from a satellite at L1 (now NOAA's DSCOVR satellite) and F10.7, a proxy for solar extreme ultra-violet radiation. The Geospace model runs continuously, driven by the 1-minute cadence real-time L1 data that is propagated to the inflow boundary of the MHD code. The model steps back to an earlier time and then continues forward if high-speed solar wind overtakes slower solar wind. This mode of operation is unique among the models at NOAA's National Center for Environment Prediction's Central Operations (NCO), and it is also different from the typical scientific simulation mode. All of this work has involved 3D graphical model displays and validation tools that are being developed to support forecasters and web-based external users. Lessons learned during the transition process will be described, as well as the iterative process that occurs between Research and Operations and the scientific challenges for future model and product improvements.

  17. NASA Lewis Research Center combustion MHD experiment

    NASA Technical Reports Server (NTRS)

    Smith, J. M.

    1982-01-01

    The MHD power generation experiments were conducted in a high field strength cryomagnet which was adapted from an existing facility. In its original construction, it consisted of 12 high purity aluminum coils pool cooled in a bath of liquid neon. In this configuration, a peak field of 15 tesla was produced. For the present experiments, the center four coils were removed and a 23 cm diameter transverse warm bore tube was inserted to allow the placement of the MHD experiment between the remaining eight coils. In this configuration, a peak field of 6 tesla should be obtainable. The time duration of the experiment is limited by the neon supply which allows on the order of 1 minute of total operating time followed by an 18-hour reliquefaction period. As a result, the experiments are run in a pulsed mode. The run duration for the data presented here was 5 sec. The magnetic field profile along the MHD duct is shown. Since the working fluid is in essence superheated steam, it is easily water quenched at the exit of the diffuser and the components are designed vacuum tight so that the exhaust pipe and demister an be pumped down to simulate the vacuum of outer space.

  18. Present understanding of MHD and heat transfer phenomena for liquid metal blankets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirillov, I.R.; Barleon, L.; Reed, C.B.

    1994-12-31

    Liquid metals (Li, Li17Pb83, Pb) are considered as coolants in many designs of fusion reactor blankets. To estimate their potential and to make an optimal design, one has to know the magnetohydrodynamic (MHD) and heat transfer characteristics of liquid metal flow in the magnetic field. Such flows with high characteristic parameter values (Hartmann number M and interaction parameter N) open up a relatively new field in Magnetohydrodynamics requiring both theoretical and experimental efforts. A review of experimental work done for the last ten years in different countries shows that there are some data on MHD/HT characteristics in straight channels ofmore » simple geometry under fusion reactor relevant conditions (M>>1, N>>1) and not enough data for complex flow geometries. Future efforts should be directed to investigation of MHD/HT in straight channels with perfect and imperfect electroinsulated walls, including those with controlled imperfections, and in channels of complex geometry. The experiments are not simple, since the fusion relevant conditions require facilities with magnetic fields at, or even higher than, 5-7 T in comparatively large volumes. International cooperation in constructing and operating these facilities may be of great help.« less

  19. Numerical analysis of Hall effect on the performance of magnetohydrodynamic heat shield system based on nonequilibrium Hall parameter model

    NASA Astrophysics Data System (ADS)

    Li, Kai; Liu, Jun; Liu, Weiqiang

    2017-01-01

    Magnetohydrodynamic (MHD) heat shield system, a novel thermal protection technique in the hypersonic field, has been paid much attention in recent years. In the real flight condition, not only the Lorentz force but also the Hall electric field is induced by the interaction between ionized air post shock and magnetic field. In order to analyze the action mechanisms of the Hall effect, numerical methods of coupling thermochemical nonequilibrium flow field with externally applied magnetic field as well as the induced electric field are constructed and validated. Based on the nonequilibrium model of Hall parameter, numerical simulations of the MHD heat shield system is conducted under two different magnetic induction strengths (B0=0.2 T, 0.5 T) on a reentry capsule forebody. Results show that, the Hall effect is the same under the two magnetic induction strengths when the wall is assumed to be conductive. For this case, with the Hall effect taken into account, the Lorentz force counter stream diminishes a lot and the circumferential component dominates, resulting that the heat flux and shock-off distance approach the case without MHD control. However, for the insulating wall, the Hall effect acts in different ways under these two magnetic induction strengths. For this case, with the Hall effect taken into account, the performance of MHD heat shield system approaches the case neglecting the Hall effect when B0 equals 0.2 T. Such performance becomes worse when B0 equals 0.5 T and the aerothermal environment on the capsule shoulder is even worse than the case without MHD control.

  20. On the performance of exponential integrators for problems in magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Einkemmer, Lukas; Tokman, Mayya; Loffeld, John

    2017-02-01

    Exponential integrators have been introduced as an efficient alternative to explicit and implicit methods for integrating large stiff systems of differential equations. Over the past decades these methods have been studied theoretically and their performance was evaluated using a range of test problems. While the results of these investigations showed that exponential integrators can provide significant computational savings, the research on validating this hypothesis for large scale systems and understanding what classes of problems can particularly benefit from the use of the new techniques is in its initial stages. Resistive magnetohydrodynamic (MHD) modeling is widely used in studying large scale behavior of laboratory and astrophysical plasmas. In many problems numerical solution of MHD equations is a challenging task due to the temporal stiffness of this system in the parameter regimes of interest. In this paper we evaluate the performance of exponential integrators on large MHD problems and compare them to a state-of-the-art implicit time integrator. Both the variable and constant time step exponential methods of EPIRK-type are used to simulate magnetic reconnection and the Kevin-Helmholtz instability in plasma. Performance of these methods, which are part of the EPIC software package, is compared to the variable time step variable order BDF scheme included in the CVODE (part of SUNDIALS) library. We study performance of the methods on parallel architectures and with respect to magnitudes of important parameters such as Reynolds, Lundquist, and Prandtl numbers. We find that the exponential integrators provide superior or equal performance in most circumstances and conclude that further development of exponential methods for MHD problems is warranted and can lead to significant computational advantages for large scale stiff systems of differential equations such as MHD.

  1. Final Report for "Implimentation and Evaluation of Multigrid Linear Solvers into Extended Magnetohydrodynamic Codes for Petascale Computing"

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srinath Vadlamani; Scott Kruger; Travis Austin

    Extended magnetohydrodynamic (MHD) codes are used to model the large, slow-growing instabilities that are projected to limit the performance of International Thermonuclear Experimental Reactor (ITER). The multiscale nature of the extended MHD equations requires an implicit approach. The current linear solvers needed for the implicit algorithm scale poorly because the resultant matrices are so ill-conditioned. A new solver is needed, especially one that scales to the petascale. The most successful scalable parallel processor solvers to date are multigrid solvers. Applying multigrid techniques to a set of equations whose fundamental modes are dispersive waves is a promising solution to CEMM problems.more » For the Phase 1, we implemented multigrid preconditioners from the HYPRE project of the Center for Applied Scientific Computing at LLNL via PETSc of the DOE SciDAC TOPS for the real matrix systems of the extended MHD code NIMROD which is a one of the primary modeling codes of the OFES-funded Center for Extended Magnetohydrodynamic Modeling (CEMM) SciDAC. We implemented the multigrid solvers on the fusion test problem that allows for real matrix systems with success, and in the process learned about the details of NIMROD data structures and the difficulties of inverting NIMROD operators. The further success of this project will allow for efficient usage of future petascale computers at the National Leadership Facilities: Oak Ridge National Laboratory, Argonne National Laboratory, and National Energy Research Scientific Computing Center. The project will be a collaborative effort between computational plasma physicists and applied mathematicians at Tech-X Corporation, applied mathematicians Front Range Scientific Computations, Inc. (who are collaborators on the HYPRE project), and other computational plasma physicists involved with the CEMM project.« less

  2. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  3. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  4. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE PAGES

    Khodak, Andrei

    2017-08-21

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  5. Numerical Analysis of 2-D and 3-D MHD Flows Relevant to Fusion Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khodak, Andrei

    Here, the analysis of many fusion applications such as liquid-metal blankets requires application of computational fluid dynamics (CFD) methods for electrically conductive liquids in geometrically complex regions and in the presence of a strong magnetic field. A current state of the art general purpose CFD code allows modeling of the flow in complex geometric regions, with simultaneous conjugated heat transfer analysis in liquid and surrounding solid parts. Together with a magnetohydrodynamics (MHD) capability, the general purpose CFD code will be a valuable tool for the design and optimization of fusion devices. This paper describes an introduction of MHD capability intomore » the general purpose CFD code CFX, part of the ANSYS Workbench. The code was adapted for MHD problems using a magnetic induction approach. CFX allows introduction of user-defined variables using transport or Poisson equations. For MHD adaptation of the code three additional transport equations were introduced for the components of the magnetic field, in addition to the Poisson equation for electric potential. The Lorentz force is included in the momentum transport equation as a source term. Fusion applications usually involve very strong magnetic fields, with values of the Hartmann number of up to tens of thousands. In this situation a system of MHD equations become very rigid with very large source terms and very strong variable gradients. To increase system robustness, special measures were introduced during the iterative convergence process, such as linearization using source coefficient for momentum equations. The MHD implementation in general purpose CFD code was tested against benchmarks, specifically selected for liquid-metal blanket applications. Results of numerical simulations using present implementation closely match analytical solutions for a Hartmann number of up to 1500 for a 2-D laminar flow in the duct of square cross section, with conducting and nonconducting walls. Results for a 3-D test case are also included.« less

  6. Statistical Mechanics of Turbulent Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2014-01-01

    Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  7. MHD oxidant intermediate temperature ceramic heater study

    NASA Technical Reports Server (NTRS)

    Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.

    1981-01-01

    The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.

  8. Two-dimensional lattice Boltzmann model for magnetohydrodynamics.

    PubMed

    Schaffenberger, Werner; Hanslmeier, Arnold

    2002-10-01

    We present a lattice Boltzmann model for the simulation of two-dimensional magnetohydro dynamic (MHD) flows. The model is an extension of a hydrodynamic lattice Boltzman model with 9 velocities on a square lattice resulting in a model with 17 velocities. Earlier lattice Boltzmann models for two-dimensional MHD used a bidirectional streaming rule. However, the use of such a bidirectional streaming rule is not necessary. In our model, the standard streaming rule is used, allowing smaller viscosities. To control the viscosity and the resistivity independently, a matrix collision operator is used. The model is then applied to the Hartmann flow, giving reasonable results.

  9. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Mark F.; Samtaney, Ravi, E-mail: samtaney@pppl.go; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  10. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2010-09-01

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called ‘‘textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss–Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  11. Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, Mark F.; Samtaney, Ravi; Brandt, Achi

    2013-12-14

    Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations – so-called “textbook” multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field,more » which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.« less

  12. Stratified Simulations of Collisionless Accretion Disks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp

    This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale,more » stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.« less

  13. Evidence of Active MHD Instability in EULAG-MHD Simulations of Solar Convection

    NASA Astrophysics Data System (ADS)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul

    2015-11-01

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos & Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.

  14. Sample preparation and detection device for infectious agents

    DOEpatents

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  15. Observation of alpha particle loss from JET plasmas during ion cyclotron resonance frequency heating using a thin foil Faraday cup detector array.

    PubMed

    Darrow, D S; Cecil, F E; Kiptily, V; Fullard, K; Horton, A; Murari, A

    2010-10-01

    The loss of MeV alpha particles from JET plasmas has been measured with a set of thin foil Faraday cup detectors during third harmonic heating of helium neutral beam ions. Tail temperatures of ∼ 2 MeV have been observed, with radial scrape off lengths of a few centimeters. Operational experience from this system indicates that such detectors are potentially feasible for future large tokamaks, but careful attention to screening rf and MHD induced noise is essential.

  16. Scalable Parallel Computation for Extended MHD Modeling of Fusion Plasmas

    NASA Astrophysics Data System (ADS)

    Glasser, Alan H.

    2008-11-01

    Parallel solution of a linear system is scalable if simultaneously doubling the number of dependent variables and the number of processors results in little or no increase in the computation time to solution. Two approaches have this property for parabolic systems: multigrid and domain decomposition. Since extended MHD is primarily a hyperbolic rather than a parabolic system, additional steps must be taken to parabolize the linear system to be solved by such a method. Such physics-based preconditioning (PBP) methods have been pioneered by Chac'on, using finite volumes for spatial discretization, multigrid for solution of the preconditioning equations, and matrix-free Newton-Krylov methods for the accurate solution of the full nonlinear preconditioned equations. The work described here is an extension of these methods using high-order spectral element methods and FETI-DP domain decomposition. Application of PBP to a flux-source representation of the physics equations is discussed. The resulting scalability will be demonstrated for simple wave and for ideal and Hall MHD waves.

  17. A First-Principles Analytical Theory for 2D Magnetic Reconnection in Electron and Hall Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Simakov, A. N.; Zocco, A.

    2007-12-01

    Although the relevance of two-fluid effects in fast magnetic reconnection is well-known, (J. Birn et al., J. Geophys. Res., 106 (A3), 3715 (2001) a first-principles theory -- akin to Sweet and Parker's in resistive MHD -- has been elusive. Here, we present such a first principles steady-state analytical theory for electron MHD, (L. Chacón, A. N. Simakov, A. Zocco, Phys. Rev. Lett., submitted) and its extension to Hall MHD. (A. N. Simakov, L. Chacón, in preparation) The theory discretizes the extended MHD equations at the reconnection site, leading to a set of time-dependent ODEs. Their steady-state analysis, which describes the system at or around the point of maximum reconnection rate, provides predictions for the scaling of relevant quantities with the dissipation coefficients (e.g, resistivity and hyper-resistivity) and other relevant parameters. In particular, we will show that EMHD admits both elongated and open-X point configurations of the reconnection region, and that the reconnection rate can be shown not to scale explicitly with the dissipation parameters. This result is, to our knowledge, the first analytical confirmation of the possibility of fast magnetic reconnection in EMHD. In Hall MHD, the transition between resistive MHD and EMHD is studied, and scalings with the ion inertial length are obtained.

  18. Impact of helical boundary conditions in MHD modeling of RFP and tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Bonfiglio, D.; Cappello, S.; Escande, D. F.; Piovesan, P.; Veranda, M.; Chacón, L.

    2012-10-01

    Helical boundary conditions imposed by the active control system of the RFX-mod device provide a handle to govern the plasma dynamics in both RFP and Ohmic tokamak discharges [1]. By applying an edge radial magnetic field with proper helicity, it is possible to increase the persistence of the spontaneous helical RFP states at high current,and to stimulate them also at low current or high density. Helical BCs even allow to access helical states with different helicity than the spontaneous one [2]. In Ohmic tokamak operation at q(a)<2, the presence of the 2/1 RWM reduces the sawtoothing activity of the 1/1 internal kink, which takes a stationary snake-like character instead. Many of these features are qualitatively reproduced in 3D nonlinear MHD modeling. We study the impact of helical BCs on the MHD dynamics in both RFP and tokamak with two successfully benchmarked numerical tools, SpeCyl and PIXIE3D [3]. We recover the bifurcation from a sawtooth to a snake solution when imposing a 2/1 BC in the tokamak case and we interpret this as a toroidal/nonlinear coupling effect. We show that the bifurcation is more easily stimulated with a 1/1 BC.[4pt] [1] P. Piovesan, invited talk this meeting[0pt] [2] M. Veranda et al EPS-ICPP Conference (2012) P4.004[0pt] [3] D. Bonfiglio et al Phys. Plasmas (2010)

  19. Statistical evaluation of substorm strength and onset times in a global MHD model

    NASA Astrophysics Data System (ADS)

    Haiducek, J. D.; Welling, D. T.; Morley, S.; Ganushkina, N. Y.

    2016-12-01

    Magnetospheric substorms are characterized by an explosive release of energy stored in the magnetotail, resulting in a tailward plasmoid release, magnetic field perturbations which reach the ground, and a brightening of the aurora. The basic energy release process has been reproduced in magnetohydrodynamic (MHD) models of the global magnetosphere, but previous studies of substorms using MHD have been limited to case studies covering one or a few events. The lack of large-scale validation studies, and the fact that most MHD models rely on numerical or ad-hoc resistivity to produce the reconnection necessary for substorms, has led some to question the suitability of MHD for studying substorms. However, MHD models are able to capture global implications of substorms, including magnetospheric and ionospheric current systems, dipolarizations, and magnetic field perturbations at the surface, providing a compelling motivation to understand and improve substorm physics in global MHD.The present work seeks to assess the capabilities and limitations of MHD with respect to capturing substorms. We identify substorms in long (one month of simulation time) simulations and compare these to observations during the same time period. To reduce the risk of mis-identifying other phenomena as substorms, we use multiple signatures for the identification, including ground-based magnetic field in mid and high latitudes, plasmoid releases, dipolarization signatures, particle injections, and auroral imagery. We evaluate the model in terms of substorm frequency, strength, location, and timing. We model the same time period using the Minimal Substorm Model, which solves an energy balance equation based on solar wind input. This model has been previously shown to produce substorms at a realistic frequency given solar wind conditions; by comparing it to the MHD we are able to assess the relative importance of MHD physics in terms of substorm timing and occurrence rate. We compute a superposed epoch analysis (SEA) of the substorm "hits" (events that occurred in both the model and observations), "misses" (events that occurred only in observations), and false positives. The SEA result serves as a representative scenario with which we evaluate new model configurations in terms of their ability to reproduce substorm dynamics.

  20. The Impact of Comorbid Mental Health Disorders on Complications Following Adult Spinal Deformity Surgery with Minimum 2-Year Surveillance.

    PubMed

    Diebo, Bassel G; Lavian, Joshua D; Murray, Daniel P; Liu, Shian; Shah, Neil V; Beyer, George A; Segreto, Frank A; Bloom, Lee; Vasquez-Montes, Dennis; Day, Louis M; Hollern, Douglas A; Horn, Samantha R; Naziri, Qais; Cukor, Daniel; Passias, Peter G; Paulino, Carl B

    2018-02-06

    Retrospective analysis OBJECTIVE.: To compare long-term outcomes between patients with and without mental health comorbidities who are undergoing surgery for adult spinal deformity (ASD). Recent literature reveals that one in three patients admitted for surgical treatment for ASD has comorbid mental health disorder. Currently, impacts of baseline mental health status on long-term outcomes following ASD surgery have not been thoroughly investigated. Patients admitted from 2009-2013 with diagnoses of ASD who underwent ≥4-level thoracolumbar fusion with minimum two-year follow-up were retrospectively reviewed using New York State's Statewide Planning and Research Cooperative System (SPARCS). Patients were stratified by fusion length (Short: 4-8-level; Long: ≥9 level). Patients with comorbid mental health disorder (MHD) at time of admission were selected for analysis (MHD) and compared against those without MHD (no-MHD). Univariate analysis compared demographics, complications, readmissions and revisions between cohorts for each fusion length. Multivariate binary logistic regression models identified independent predictors of outcomes (covariates: fusion length, age, female gender, and Deyo score). 6,020 patients (MHD: n = 1,631; no-MHD: n = 4,389) met inclusion criteria. Mental health diagnoses included disorders of depression (59.0%), sleep (28.0%), anxiety (24.0%), and stress (2.3%). At two-year follow-up, MHD patients with short fusion had significantly higher complication rates (p = 0.001). MHD patients with short or long fusion also had significantly higher rates of any readmission and revision (all p ≤ 0.002). Regression modeling revealed that comorbid MHD was a significant predictor of any complication (OR: 1.17, p = 0.01) and readmission (OR: 1.32, p < 0.001). MHD was the strongest predictor of any revision (OR: 1.56, p < 0.001). Long fusion most strongly predicted any complication (OR: 1.87, p < 0.001). ASD patients with comorbid depressive, sleep, anxiety, and stress disorders were more likely to experience surgical complications and revision at minimum of two years following spinal fusion surgery. Proper patient counseling and psychological screening/support is recommended to complement ASD treatment. 3.

  1. Three-dimensional global MHD modeling of a coronal mass ejection interacting with the solar wind

    NASA Astrophysics Data System (ADS)

    An, J.; Inoue, S.; Magara, T.; Lee, H.; Kang, J.; Hayashi, K.; Tanaka, T.; Den, M.

    2013-12-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to reproduce the structure of the solar wind, the propagation of a coronal mass ejection (CME), and the interaction between them. This MHD code is based on the finite volume method and total diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in the spherical coordinate system (Tanaka 1995). In this study, we constructed a model of the solar wind driven by the physical values at 50 solar radii obtained from the MHD tomographic method (Hayashi et al. 2003) where an interplanetary scintillation (IPS) observational data is used. By comparing the result to the observational data obtained from the near-Earth OMNI dataset, we confirmed that our simulation reproduces the velocity, temperature and density profiles obtained from the near-Earth OMNI dataset. We then insert a spheromak-type CME (Kataoka et al. 2009) into our solar-wind model and investigate the propagation process of the CME interacting with the solar wind. In particular, we discuss how the magnetic twist accumulated in a CME affects the CME-solar wind interaction.

  2. Constrained-transport Magnetohydrodynamics with Adaptive Mesh Refinement in CHARM

    NASA Astrophysics Data System (ADS)

    Miniati, Francesco; Martin, Daniel F.

    2011-07-01

    We present the implementation of a three-dimensional, second-order accurate Godunov-type algorithm for magnetohydrodynamics (MHD) in the adaptive-mesh-refinement (AMR) cosmological code CHARM. The algorithm is based on the full 12-solve spatially unsplit corner-transport-upwind (CTU) scheme. The fluid quantities are cell-centered and are updated using the piecewise-parabolic method (PPM), while the magnetic field variables are face-centered and are evolved through application of the Stokes theorem on cell edges via a constrained-transport (CT) method. The so-called multidimensional MHD source terms required in the predictor step for high-order accuracy are applied in a simplified form which reduces their complexity in three dimensions without loss of accuracy or robustness. The algorithm is implemented on an AMR framework which requires specific synchronization steps across refinement levels. These include face-centered restriction and prolongation operations and a reflux-curl operation, which maintains a solenoidal magnetic field across refinement boundaries. The code is tested against a large suite of test problems, including convergence tests in smooth flows, shock-tube tests, classical two- and three-dimensional MHD tests, a three-dimensional shock-cloud interaction problem, and the formation of a cluster of galaxies in a fully cosmological context. The magnetic field divergence is shown to remain negligible throughout.

  3. Poloidal structure of the plasma response to n = 1 Resonant Magnetic Perturbations in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Marrelli, L.; Bettini, P.; Piovesan, P.; Terranova, D.; Giannone, L.; Igochine, V.; Maraschek, M.; Suttrop, W.; Teschke, M.; Liu, Y. Q.; Ryan, D.; Eurofusion Mst1 Team; ASDEX Upgrade Team

    2017-10-01

    The hybrid scenario, a candidate for high-beta steady-state tokamak operations, becomes highly sensitive to 3D magnetic field near the no-wall limit. A predictive understanding of the plasma response to 3D fields near ideal MHD limits in terms of validated MHD stability codes is therefore important in order to safely operate future devices. Slowly rotating (5 - 10 Hz) n = 1 external magnetic fields have been applied in hybrid discharges in ASDEX Upgrade for an experimental characterization: the global n = 1 kink response has been measured by means of SXR and complete poloidal arrays of bθ probes located at different toroidal angles and compared to predictions of MHD codes such as MARS-F and V3FIT-VMEC. A Least-Squares Spectral Analysis approach has been developed together with a Monte Carlo technique to extract the small plasma response and its confidence interval from the noisy magnetic signals. MARS-F correctly reproduces the poloidal structure of the n = 1 measurements: for example, the dependence of the dominant poloidal mode number at the plasma edge from q95 is the same as in the experiment. Similar comparisons with V3FIT-VMEC and will be presented. See author list of ``H. Meyer et al. 2017 Nucl. Fusion 57 102014''.

  4. Evolution of the Orszag-Tang vortex system in a compressible medium. II - Supersonic flow

    NASA Technical Reports Server (NTRS)

    Picone, J. Michael; Dahlburg, Russell B.

    1991-01-01

    A study is presented on the effect of embedded supersonic flows and the resulting emerging shock waves on phenomena associated with MHD turbulence, including reconnection, the formation of current sheets and vortex structures, and the evolution of spatial and temporal correlations among physical variables. A two-dimensional model problem, the Orszag-Tang (1979) vortex system, is chosen, which involves decay from nonrandom initial conditions. The system is doubly periodic, and the initial conditions consist of single-mode solenoidal velocity and magnetic fields, each containing X points and O points. The initial mass density is flat, and the initial pressure fluctuations are incompressible, balancing the local forces for a magnetofluid of unit mass density. Results on the evolution of the local structure of the flow field, the global properties of the system, and spectral correlations are presented. The important dynamical properties and observational consequences of embedded supersonic regions and emerging shocks in the Orszag-Tang model of an MHD system undergoing reconnection are discussed. Conclusions are drawn regarding the effects of local supersonic regions on MHD turbulence.

  5. Schlieren Technique Applied to Magnetohydrodynamic Generator Plasma Torch

    NASA Astrophysics Data System (ADS)

    Chopra, Nirbhav; Pearcy, Jacob; Jaworski, Michael

    2017-10-01

    Magnetohydrodynamic (MHD) generators are a promising augmentation to current hydrocarbon based combustion schemes for creating electrical power. In recent years, interest in MHD generators has been revitalized due to advances in a number of technologies such as superconducting magnets, solid-state power electronics and materials science as well as changing economics associated with carbon capture, utilization, and sequestration. We use a multi-wavelength schlieren imaging system to evaluate electron density independently of gas density in a plasma torch under conditions relevant to MHD generators. The sensitivity and resolution of the optical system are evaluated alongside the development of an automated analysis and calibration program in Python. Preliminary analysis shows spatial resolutions less than 1mm and measures an electron density of ne = 1 ×1016 cm-3 in an atmospheric microwave torch. Work supported by DOE contract DE-AC02-09CH11466.

  6. Pressure profiles of plasmas confined in the field of a dipole magnet

    NASA Astrophysics Data System (ADS)

    Davis, Matthew Stiles

    Understanding the maintenance and stability of plasma pressure confined by a strong magnetic field is a fundamental challenge in both laboratory and space plasma physics. Using magnetic and X-ray measurements on the Levitated Dipole Experiment (LDX), the equilibrium plasma pressure has been reconstructed, and variations of the plasma pressure for different plasma conditions have been examined. The relationship of these profiles to the magnetohydrodynamic (MHD) stability limit, and to the enhanced stability limit that results from a fraction of energetic trapped electrons, has been analyzed. In each case, the measured pressure profiles and the estimated fractional densities of energetic electrons were qualitatively consistent with expectations of plasma stability. LDX confines high temperature and high pressure plasma in the field of a superconducting dipole magnet. The strong dipole magnet can be either mechanically supported or magnetically levitated. When the dipole was mechanically supported, the plasma density profile was generally uniform while the plasma pressure was highly peaked. The uniform density was attributed to the thermal plasma being rapidly lost along the field to the mechanical supports. In contrast, the strongly peaked plasma pressure resulted from a fraction of energetic, mirror trapped electrons created by microwave heating at the electron cyclotron resonance (ECRH). These hot electrons are known to be gyrokinetically stabilized by the background plasma and can adopt pressure profiles steeper than the MHD limit. X-ray measurements indicated that this hot electron population could be described by an energy distribution in the range 50-100 keV. Combining information from the magnetic reconstruction of the pressure profile, multi-chord interferometer measurements of the electron density profile, and X-ray measurements of the hot electron energy distribution, the fraction of energetic electrons at the pressure peak was estimated to be ˜ 35% of the total electron population. When the dipole was magnetically levitated the plasma density increased substantially because particle losses to the mechanical supports were eliminated so particles could only be lost via slower cross-field transport processes. The pressure profile was observed to be broader during levitated operation than it was during supported operation, and the pressure appeared to be contained in both a thermal population and an energetic electron population. X-ray spectra indicated that the X-rays came from a similar hot electron population during levitated and supported operation; however, the hot electron fraction was an order of magnitude smaller during levitated operation (<3% of the total electron population). Pressure gradients for both supported and levitated plasmas were compared to the MHD limit. Levitated plasmas had pressure profiles that were (i) steeper than, (ii) shallower than, or (iii) near the MHD limit dependent on plasma conditions. However, those profiles that exceeded the MHD limit were observed to have larger fractions of energetic electrons. When the dipole magnet was supported, high pressure plasmas always had profiles that exceeded the MHD interchange stability limit, but the high pressure in these plasmas appeared to arise entirely from a population of energetic trapped electrons.

  7. Energy Conversion Alternatives Study (ECAS), Westinghouse phase 1. Volume 8: Open-cycle MHD. [energy conversion efficiency and design analysis of electric power plants employing magnetohydrodynamics

    NASA Technical Reports Server (NTRS)

    Hoover, D. Q.

    1976-01-01

    Electric power plant costs and efficiencies are presented for three basic open-cycle MHD systems: (1) direct coal fired system, (2) a system with a separately fired air heater, and (3) a system burning low-Btu gas from an integrated gasifier. Power plant designs were developed corresponding to the basic cases with variation of major parameters for which major system components were sized and costed. Flow diagrams describing each design are presented. A discussion of the limitations of each design is made within the framework of the assumptions made.

  8. Magnetic levitation and MHD propulsion

    NASA Astrophysics Data System (ADS)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des développements actuels avec en particulier les premiers essais en rade de Kobe de Yamato I, navire de 260 tonnes, entraîné par MHD.

  9. Metallurgical technologies, energy conversion, and magnetohydrodynamic flows

    NASA Astrophysics Data System (ADS)

    Branover, Herman; Unger, Yeshajahu

    The present volume discusses metallurgical applications of MHD, R&D on MHD devices employing liquid working medium for process applications, electromagnetic (EM) modulation of molten metal flow, EM pump performance of superconducting MHD devices, induction EM alkali-metal pumps, a physical model for EM-driven flow in channel-induction furnaces, grain refinement in Al alloys via EM vibrational method, dendrite growth of solidifying metal in dc magnetic field, MHD for mass and heat transfer in single-crystal melt growth, inverse EM shaping, and liquid-metal MHD development in Israel. Also discussed are the embrittlement of steel by lead, an open cycle MHD disk generator, the acceleration of gas-liquid piston flows for molten-metal MHD generators, MHD flow around a cylinder, new MHD drag coefficients, liquid-metal MHD two-phase flow, and two-phase liquid gas mixers for MHD energy conversion. (No individual items are abstracted in this volume)

  10. Heating and current drive requirements towards steady state operation in ITER

    NASA Astrophysics Data System (ADS)

    Poli, F. M.; Bonoli, P. T.; Kessel, C. E.; Batchelor, D. B.; Gorelenkova, M.; Harvey, B.; Petrov, Y.

    2014-02-01

    Steady state scenarios envisaged for ITER aim at optimizing the bootstrap current, while maintaining sufficient confinement and stability to provide the necessary fusion yield. Non-inductive scenarios will need to operate with Internal Transport Barriers (ITBs) in order to reach adequate fusion gain at typical currents of 9 MA. However, the large pressure gradients associated with ITBs in regions of weak or negative magnetic shear can be conducive to ideal MHD instabilities, reducing the no-wall limit. The E × B flow shear from toroidal plasma rotation is expected to be low in ITER, with a major role in the ITB dynamics being played by magnetic geometry. Combinations of H/CD sources that maintain weakly reversed magnetic shear profiles throughout the discharge are the focus of this work. Time-dependent transport simulations indicate that, with a trade-off of the EC equatorial and upper launcher, the formation and sustainment of quasi-steady state ITBs could be demonstrated in ITER with the baseline heating configuration. However, with proper constraints from peeling-ballooning theory on the pedestal width and height, the fusion gain and the maximum non-inductive current are below the ITER target. Upgrades of the heating and current drive system in ITER, like the use of Lower Hybrid current drive, could overcome these limitations, sustaining higher non-inductive current and confinement, more expanded ITBs which are ideal MHD stable.

  11. Applications of magnetohydrodynamics in biological systems-a review on the numerical studies

    NASA Astrophysics Data System (ADS)

    Rashidi, Saman; Esfahani, Javad Abolfazli; Maskaniyan, Mahla

    2017-10-01

    Magnetohydrodynamic (MHD) fluid flow in different geometries relevant to human body parts is an interesting and important scientific area due to its applications in medical sciences. This article performs a comprehensive review on the applications of MHD and their numerical modelling in biological systems. Applications of MHD in medical sciences are classified into four categories in this paper. Applications of MHD in simple flow, peristaltic flow, pulsatile flow, and drag delivery are these categories. The numerical researches performed for these categories are reviewed and summarized separately. Finally, some conclusions and suggestions for future works based on the literature review are presented. The results indicated that during a surgery when it is necessary to drop blood flow or reduce tissue temperature, it may be achieved by using a magnetic field. Moreover, the review showed that the trapping is an important phenomenon in peristaltic flows that causes the formation of thrombus in blood and the movement of food bolus in gastrointestinal tract. This phenomenon may be disappeared by using a proper magnetic field. Finally, the concentration of particles that are delivered to the target region increases with an increase in the magnetic field intensity.

  12. Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zank, G. P.; Adhikari, L.; Hunana, P.

    2017-02-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuationsmore » in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.« less

  13. EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca

    We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensionalmore » instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.« less

  14. Design and experimental investigation of an oxy-fuel combustion system for magnetohydrodynamic power extraction

    NASA Astrophysics Data System (ADS)

    Hernandez, Manuel Johannes

    A general consensus in the scientific and research community is the need to restrict carbon emissions in energy systems. Therefore, extensive research efforts are underway to develop the next generation of energy systems. In the field of power generation, researchers are actively investigating novel methods to produce electricity in a cleaner, efficient form. Recently, Oxy-Combustion for magnetohydrodynamic power extraction has generated significant interest, since the idea was proposed as a method for clean power generation in coal and natural gas power plants. Oxy-combustion technologies have been proposed to provide high enthalpy, electrically conductive flows for direct conversion of electricity. Direct power extraction via magnetohydrodynamics (MHD) can occur as a consequence of the motion of "seeded" combustion products in the presence of magnetic fields. However, oxy-combustion technologies for MHD power extraction has not been demonstrated in the available literature. Furthermore, there are still fundamental unexplored questions remaining, associated with this technology, for MHD power extraction. In this present study, previous magnetohydrodynamic combustion technologies and technical issues in this field were assessed to develop a new combustion system for electrically conductive flows. The research aims were to fully understand the current-state-of-the-art of open-cycle magnetohydrodynamic technologies and present new future directions and concepts. The design criteria, methodology, and technical specifications of an advanced cooled oxy-combustion technology are presented in this dissertation. The design was based on a combined analytical, empirical, and numerical approach. Analytical one-dimensional (1D) design tools initiated design construction. Design variants were analyzed and vetted against performance criteria through the application of computational fluid dynamics modeling. CFD-generated flow fields permitted insightful visualization of the design concepts. Therefore, numerical computational fluid dynamics (CFD) models were developed to design and optimize the combustion flow fields of oxy-fuel combustion systems. These models were analyzed to understand the boundary layer and heat transfer profile and qualitative behaviors in the product designs. Advanced materials for high-temperature applications were assessed for their possible implementation in the product design. A trade-off analysis indicated that this scheme may incur elevated product cost and a difficulty in manufacturing. Active cooling strategies were considered for product development. A rocket-based cooling scheme, regenerative cooling, was implemented to provide active cooling. In the hot gas path (HGP) cooling design, CFD models were developed to predict the variation of heat removal along the oxy-combustion wall for various operating conditions. The oxy-combustion technology was manufactured using electrical discharge machining (EDM). The product development lifecycle in this dissertation encompassed preliminary design, detailed design, and demonstration and validation of the product. Towards the final stages of the product development, Fuel-rich oxy combustion experiments were carried out to demonstrate and observe flame characteristics from the designed technology and to predict heat transfer loads. The demonstration findings of oxy-combustion flames are presented in this work to contribute the developing field of MHD direct power extraction, which lacks oxy-combustion design data and qualitative combustion datasets. The findings show that this oxy-combustion concept is capable of providing a high-enthalpy MHD environment for seeding, in order to render the flow to be conductive. Based on previous findings, temperatures in the range of 2800-3000 K may enable magnetohydrodynamic power extraction. The combustor hardware design was developed to contribute to engineered systems rated less than 100 kW for demonstration. The product hardware was designed to produce gas velocities of 2000 m/s gas and temperatures within the following range of 2800-3000 K. In the injection system, the momentum flux ratio (MFR) was estimated to be 16. The heat loss fraction in this oxy-combustion system, based on CFD and analytical calculations, at optimal operating conditions, was estimated to be less than 10 percent. Furthermore, the heat transfer design removed approximately 7 MW/m2. The experimental performance of oxy-combustion systems demonstrates promise for advanced power generation applications.

  15. Magnetohydrodynamic Augmented Propulsion Experiment: I. Performance Analysis and Design

    NASA Technical Reports Server (NTRS)

    Litchford, R. J.; Cole, J. W.; Lineberry, J. T.; Chapman, J. N.; Schmidt, H. J.; Lineberry, C. W.

    2003-01-01

    The performance of conventional thermal propulsion systems is fundamentally constrained by the specific energy limitations associated with chemical fuels and the thermal limits of available materials. Electromagnetic thrust augmentation represents one intriguing possibility for improving the fuel composition of thermal propulsion systems, thereby increasing overall specific energy characteristics; however, realization of such a system requires an extremely high-energy-density electrical power source as well as an efficient plasma acceleration device. This Technical Publication describes the development of an experimental research facility for investigating the use of cross-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In this experiment,a 1.5-MW(sub e) Aerotherm arc heater is used to drive a 2-MW(sub e) MHD accelerator. The heatsink MHD accelerator is configured as an externally diagonalized, segmented channel, which is inserted into a large-bore, 2-T electromagnet. The performance analysis and engineering design of the flow path are described as well as the parameter measurements and flow diagnostics planned for the initial series of test runs.

  16. A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang

    2007-10-01

    We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.

  17. Amplification of large scale magnetic fields in a decaying MHD system

    NASA Astrophysics Data System (ADS)

    Park, Kiwan

    2017-10-01

    Dynamo theory explains the amplification of magnetic fields in the conducting fluids (plasmas) driven by the continuous external energy. It is known that the nonhelical continuous kinetic or magnetic energy amplifies the small scale magnetic field; and the helical energy, the instability, or the shear with rotation effect amplifies the large scale magnetic field. However, recently it was reported that the decaying magnetic energy independent of helicity or instability could generate the large scale magnetic field. This phenomenon may look somewhat contradictory to the conventional dynamo theory. But it gives us some clues to the fundamental mechanism of energy transfer in the magnetized conducting fluids. It also implies that an ephemeral astrophysical event emitting the magnetic and kinetic energy can be a direct cause of the large scale magnetic field observed in space. As of now the exact physical mechanism is not yet understood in spite of several numerical results. The plasma motion coupled with a nearly conserved vector potential in the magnetohydrodynamic (MHD) system may transfer magnetic energy to the large scale. Also the intrinsic property of the scaling invariant MHD equation may decide the direction of energy transfer. In this paper we present the simulation results of inversely transferred helical and nonhelical energy in a decaying MHD system. We introduce a field structure model based on the MHD equation to show that the transfer of magnetic energy is essentially bidirectional depending on the plasma motion and initial energy distribution. And then we derive α coefficient algebraically in line with the field structure model to explain how the large scale magnetic field is induced by the helical energy in the system regardless of an external forcing source. And for the algebraic analysis of nonhelical magnetic energy, we use the eddy damped quasinormalized Markovian approximation to show the inverse transfer of magnetic energy.

  18. MHD processes in the outer heliosphere

    NASA Technical Reports Server (NTRS)

    Burlaga, L. F.

    1984-01-01

    The magnetic field measurements from Voyager and the magnetohydrodynamic (MHD) processes in the outer heliosphere are reviewed. A bibliography of the experimental and theoretical work concerning magnetic fields and plasmas observed in the outer heliosphere is given. Emphasis in this review is on basic concepts and dynamical processes involving the magnetic field. The theory that serves to explain and unify the interplanetary magnetic field and plasma observations is magnetohydrodynamics. Basic physical processes and observations that relate directly to solutions of the MHD equations are emphasized, but obtaining solutions of this complex system of equations involves various assumptions and approximations. The spatial and temporal complexity of the outer heliosphere and some approaches for dealing with this complexity are discussed.

  19. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  20. Population pharmacokinetics of oxcarbazepine and its metabolite 10-hydroxycarbazepine in healthy subjects.

    PubMed

    Antunes, Natalicia de Jesus; van Dijkman, Sven C; Lanchote, Vera Lucia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Alexandre Junior, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; van Hasselt, J G Coen; Della Pasqua, Oscar

    2017-11-15

    Oxcarbazepine is indicated for the treatment of partial or generalised tonic-clonic seizures. Most of the absorbed oxcarbazepine is converted into its active metabolite, 10-hydroxycarbazepine (MHD), which can exist as R-(-)- and S-(+)-MHD enantiomers. Here we describe the influence of the P-glycoprotein (P-gp) inhibitor verapamil, on the disposition of oxcarbazepine and MHD enantiomers, both of which are P-gp substrates. Healthy subjects (n=12) were randomised to oxcarbazepine or oxcarbazepine combined with verapamil at doses of 300mg b.i.d. and 80mg t.i.d., respectively. Blood samples (n=185) were collected over a period of 12h post oxcarbazepine dose. An integrated PK model was developed using nonlinear mixed effects modelling using a meta-analytical approach. The pharmacokinetics of oxcarbazepine was described by a two-compartment model with absorption transit compartments and first-order elimination. The concentration-time profiles of both MHD enantiomers were characterised by a one-compartment distribution model. Clearance estimates (95% CI) were 84.9L/h (69.5-100.3) for oxcarbazepine and 2.0L/h (1.9-2.1) for both MHD enantiomers. The volume of distribution was much larger for oxcarbazepine (131L (97-165)) as compared to R-(-)- and S-(+)-MHD (23.6L (14.4-32.8) vs. 31.7L (22.5-40.9), respectively). Co-administration of verapamil resulted in a modest increase of the apparent bioavailability of oxcarbazepine by 12% (10-28), but did not affect parent or metabolite clearances. Despite the evidence of comparable systemic levels of OXC and MHD following administration of verapamil, differences in brain exposure to both moieties cannot be excluded after P-glycoprotein inhibition. Copyright © 2017. Published by Elsevier B.V.

  1. Update on the DIII-D ECH system: experiments, gyrotrons, advanced diagnostics, and controls

    NASA Astrophysics Data System (ADS)

    Lohr, John; Brambila, Rigoberto; Cengher, Mirela; Gorelov, Yuri; Grosnickle, William; Moeller, Charles; Ponce, Dan; Torrezan, Antonio; Ives, Lawrence; Reed, Michael; Blank, Monica; Felch, Kevin; Parisuaña, Claudia; LeViness, Alexandra

    2017-08-01

    The ECH system on DIII-D is continuing to be upgraded, while simultaneously being operated nearly daily for plasma experiments. The latest major hardware addition is a new 117.5 GHz gyrotron, which generated 1.7 MW for short pulses during factory testing. A new gyrotron control system based on Field Programmable Gate Array (FPGA) technology with very high speed system data acquisition has significantly increased the flexibility and reliability of individual gyrotron operation. We have improved the performance of the fast mirror scanning, both by increasing the scan speeds and by adding new algorithms for controlling the aiming using commands generated by the Plasma Control System (PCS). The system is used for transport studies, ELM control, current profile control, non-inductive current generation, suppression of MHD modes, startup assist, plasma density control, and other applications. A program of protective measures, which has been in place for more than two years, has eliminated damage to hardware and diagnostics caused by overdense operation. Other activities not directly related to fusion research have used the ECH system to test components, study methods for improving production of semiconductor junctions and materials, and test the feasibility of using ground based microwave systems to power satellites into orbit.

  2. Error Analysis of Magnetohydrodynamic Angular Rate Sensor Combing with Coriolis Effect at Low Frequency.

    PubMed

    Ji, Yue; Xu, Mengjie; Li, Xingfei; Wu, Tengfei; Tuo, Weixiao; Wu, Jun; Dong, Jiuzhi

    2018-06-13

    The magnetohydrodynamic (MHD) angular rate sensor (ARS) with low noise level in ultra-wide bandwidth is developed in lasing and imaging applications, especially the line-of-sight (LOS) system. A modified MHD ARS combined with the Coriolis effect was studied in this paper to expand the sensor’s bandwidth at low frequency (<1 Hz), which is essential for precision LOS pointing and wide-bandwidth LOS jitter suppression. The model and the simulation method were constructed and a comprehensive solving method based on the magnetic and electric interaction methods was proposed. The numerical results on the Coriolis effect and the frequency response of the modified MHD ARS were detailed. In addition, according to the experimental results of the designed sensor consistent with the simulation results, an error analysis of model errors was discussed. Our study provides an error analysis method of MHD ARS combined with the Coriolis effect and offers a framework for future studies to minimize the error.

  3. MHD thrust vectoring of a rocket engine

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic

    2016-09-01

    In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.

  4. Theory and Simulation of Real and Ideal Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2004-01-01

    Incompressible, homogeneous magnetohydrodynamic (MHD) turbulence consists of fluctuating vorticity and magnetic fields, which are represented in terms of their Fourier coefficients. Here, a set of five Fourier spectral transform method numerical simulations of two-dimensional (2-D) MHD turbulence on a 512(sup 2) grid is described. Each simulation is a numerically realized dynamical system consisting of Fourier modes associated with wave vectors k, with integer components, such that k = |k| less than or equal to k(sub max). The simulation set consists of one ideal (non-dissipative) case and four real (dissipative) cases. All five runs had equivalent initial conditions. The dimensions of the dynamical systems associated with these cases are the numbers of independent real and imaginary parts of the Fourier modes. The ideal simulation has a dimension of 366104, while each real simulation has a dimension of 411712. The real runs vary in magnetic Prandtl number P(sub M), with P(sub M) is a member of {0.1, 0.25, 1, 4}. In the results presented here, all runs have been taken to a simulation time of t = 25. Although ideal and real Fourier spectra are quite different at high k, they are similar at low values of k. Their low k behavior indicates the existence of broken symmetry and coherent structure in real MHD turbulence, similar to what exists in ideal MHD turbulence. The value of PM strongly affects the ratio of kinetic to magnetic energy and energy dissipation (which is mostly ohmic). The relevance of these results to 3-D Navier-Stokes and MHD turbulence is discussed.

  5. Numerical analysis on the cutting and finishing efficiency of MRAFF process

    NASA Astrophysics Data System (ADS)

    Lih, F. L.

    2016-03-01

    The aim of the present research is to conduct a numerical study of the characteristic of a two-phase magnetorheological fluid with different operation conditions by the finite volume method called SIMPLE with an add-on MHD code.

  6. Equilibrium Spline Interface (ESI) for magnetic confinement codes

    NASA Astrophysics Data System (ADS)

    Li, Xujing; Zakharov, Leonid E.

    2017-12-01

    A compact and comprehensive interface between magneto-hydrodynamic (MHD) equilibrium codes and gyro-kinetic, particle orbit, MHD stability, and transport codes is presented. Its irreducible set of equilibrium data consists of three (in the 2-D case with occasionally one extra in the 3-D case) functions of coordinates and four 1-D radial profiles together with their first and mixed derivatives. The C reconstruction routines, accessible also from FORTRAN, allow the calculation of basis functions and their first derivatives at any position inside the plasma and in its vicinity. After this all vector fields and geometric coefficients, required for the above mentioned types of codes, can be calculated using only algebraic operations with no further interpolation or differentiation.

  7. Solar-Driven Liquid-Metal MHD Generator

    NASA Technical Reports Server (NTRS)

    Hohl, F.; Lee, J. H.

    1982-01-01

    Liquid-metal magnetohydrodynamic (MHD) power generator with solar oven as its heat source has potential to produce electric power in space and on Earth at high efficiency. Generator focuses radiation from Sun to heat driving gas that pushes liquid metal past magnetic coil. Power is extracted directly from electric currents set up in conducting liquid. Using solar energy as fuel can save considerable costs and payload weight, compared to previous systems.

  8. New Developments in Modeling MHD Systems on High Performance Computing Architectures

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Raeder, J.; Larson, D. J.; Bhattacharjee, A.

    2009-04-01

    Modeling the wide range of time and length scales present even in fluid models of plasmas like MHD and X-MHD (Extended MHD including two fluid effects like Hall term, electron inertia, electron pressure gradient) is challenging even on state-of-the-art supercomputers. In the last years, HPC capacity has continued to grow exponentially, but at the expense of making the computer systems more and more difficult to program in order to get maximum performance. In this paper, we will present a new approach to managing the complexity caused by the need to write efficient codes: Separating the numerical description of the problem, in our case a discretized right hand side (r.h.s.), from the actual implementation of efficiently evaluating it. An automatic code generator is used to describe the r.h.s. in a quasi-symbolic form while leaving the translation into efficient and parallelized code to a computer program itself. We implemented this approach for OpenGGCM (Open General Geospace Circulation Model), a model of the Earth's magnetosphere, which was accelerated by a factor of three on regular x86 architecture and a factor of 25 on the Cell BE architecture (commonly known for its deployment in Sony's PlayStation 3).

  9. Parametric analysis of closed cycle magnetohydrodynamic (MHD) power plants

    NASA Technical Reports Server (NTRS)

    Owens, W.; Berg, R.; Murthy, R.; Patten, J.

    1981-01-01

    A parametric analysis of closed cycle MHD power plants was performed which studied the technical feasibility, associated capital cost, and cost of electricity for the direct combustion of coal or coal derived fuel. Three reference plants, differing primarily in the method of coal conversion utilized, were defined. Reference Plant 1 used direct coal fired combustion while Reference Plants 2 and 3 employed on site integrated gasifiers. Reference Plant 2 used a pressurized gasifier while Reference Plant 3 used a ""state of the art' atmospheric gasifier. Thirty plant configurations were considered by using parametric variations from the Reference Plants. Parametric variations include the type of coal (Montana Rosebud or Illinois No. 6), clean up systems (hot or cold gas clean up), on or two stage atmospheric or pressurized direct fired coal combustors, and six different gasifier systems. Plant sizes ranged from 100 to 1000 MWe. Overall plant performance was calculated using two methodologies. In one task, the channel performance was assumed and the MHD topping cycle efficiencies were based on the assumed values. A second task involved rigorous calculations of channel performance (enthalpy extraction, isentropic efficiency and generator output) that verified the original (task one) assumptions. Closed cycle MHD capital costs were estimated for the task one plants; task two cost estimates were made for the channel and magnet only.

  10. MHD code using multi graphical processing units: SMAUG+

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Griffiths, M. K.; Erdélyi, R.

    2018-01-01

    This paper introduces the Sheffield Magnetohydrodynamics Algorithm Using GPUs (SMAUG+), an advanced numerical code for solving magnetohydrodynamic (MHD) problems, using multi-GPU systems. Multi-GPU systems facilitate the development of accelerated codes and enable us to investigate larger model sizes and/or more detailed computational domain resolutions. This is a significant advancement over the parent single-GPU MHD code, SMAUG (Griffiths et al., 2015). Here, we demonstrate the validity of the SMAUG + code, describe the parallelisation techniques and investigate performance benchmarks. The initial configuration of the Orszag-Tang vortex simulations are distributed among 4, 16, 64 and 100 GPUs. Furthermore, different simulation box resolutions are applied: 1000 × 1000, 2044 × 2044, 4000 × 4000 and 8000 × 8000 . We also tested the code with the Brio-Wu shock tube simulations with model size of 800 employing up to 10 GPUs. Based on the test results, we observed speed ups and slow downs, depending on the granularity and the communication overhead of certain parallel tasks. The main aim of the code development is to provide massively parallel code without the memory limitation of a single GPU. By using our code, the applied model size could be significantly increased. We demonstrate that we are able to successfully compute numerically valid and large 2D MHD problems.

  11. 3D Neutronic Analysis in MHD Calculations at ARIES-ST Fusion Reactors Systems

    NASA Astrophysics Data System (ADS)

    Hançerliogulları, Aybaba; Cini, Mesut

    2013-10-01

    In this study, we developed new models for liquid wall (FW) state at ARIES-ST fusion reactor systems. ARIES-ST is a 1,000 MWe fusion reactor system based on a low aspect ratio ST plasma. In this article, we analyzed the characteristic properties of magnetohydrodynamics (MHD) and heat transfer conditions by using Monte-Carlo simulation methods (ARIES Team et al. in Fusion Eng Des 49-50:689-695, 2000; Tillack et al. in Fusion Eng Des 65:215-261, 2003) . In fusion applications, liquid metals are traditionally considered to be the best working fluids. The working liquid must be a lithium-containing medium in order to provide adequate tritium that the plasma is self-sustained and that the fusion is a renewable energy source. As for Flibe free surface flows, the MHD effects caused by interaction with the mean flow is negligible, while a fairly uniform flow of thick can be maintained throughout the reactor based on 3-D MHD calculations. In this study, neutronic parameters, that is to say, energy multiplication factor radiation, heat flux and fissile fuel breeding were researched for fusion reactor with various thorium and uranium molten salts. Sufficient tritium amount is needed for the reactor to work itself. In the tritium breeding ratio (TBR) >1.05 ARIES-ST fusion model TBR is >1.1 so that tritium self-sufficiency is maintained for DT fusion systems (Starke et al. in Fusion Energ Des 84:1794-1798, 2009; Najmabadi et al. in Fusion Energ Des 80:3-23, 2006).

  12. Optimal Control Techniques for ResistiveWall Modes in Tokamaks

    NASA Astrophysics Data System (ADS)

    Clement, Mitchell Dobbs Pearson

    Tokamaks can excite kink modes that can lock or nearly lock to the vacuum vessel wall, and whose rotation frequencies and growth rates vary in time but are generally inversely proportional to the magnetic flux diffusion time of the vacuum vessel wall. This magnetohydrodynamic (MHD) instability is pressure limiting in tokamaks and is called the Resistive Wall Mode (RWM). Future tokamaks that are expected to operate as fusion reactors will be required to maximize plasma pressure in order to maximize fusion performance. The DIII-D tokamak is equipped with electromagnetic control coils, both inside and outside of its vacuum vessel, which create magnetic fields that are small by comparison to the machine's equilibrium field but are able to dynamically counteract the RWM. Presently for RWM feedback, DIII-D uses its interior control coils using a classical proportional gain only controller to achieve high plasma pressure. Future advanced tokamak designs will not likely have the luxury of interior control coils and a proportional gain algorithm is not expected to be effective with external control coils. The computer code VALEN was designed to calculate the performance of an MHD feedback control system in an arbitrary geometry. VALEN models the perturbed magnetic field from a single MHD instability and its interaction with surrounding conducting structures using a finite element approach. A linear quadratic gaussian (LQG) control, or H 2 optimal control, algorithm based on the VALEN model for RWM feedback was developed for use with DIII-D's external control coil set. The algorithm is implemented on a platform that combines a graphics processing unit (GPU) for real-time control computation with low latency digital input/output control hardware and operates in parallel with the DIII-D Plasma Control System (PCS). Simulations and experiments showed that modern control techniques performed better, using 77% less current, than classical techniques when using coils external to the vacuum vessel for RWM feedback. RWM feedback based on VALEN outperformed a classical control algorithm using external coils to suppress the normalized plasma response to a rotating n=1 perturbation applied by internal coils over a range of frequencies. This study describes the design, development and testing of the GPU based control hardware and algorithm along with its performance during experiment and simulation.

  13. Magnetic energy storage and conversion in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Mariska, J. T.; Boris, J. P.

    1986-01-01

    According to the approach employed in this investigation, particularly important simple configurations of magnetic field and plasma are identified, and it is attempted to achieve an understanding of the large-scale dynamic processes and transformations which these systems can undergo. Fundamental concepts are discussed, taking into account aspects of magnetic energy generation, ideal MHD theory, non-MHD properties, the concept of 'anomalous' resistivity, and global electrodynamic coupling. Questions of magnetically controlled energy conversion are examined, giving attention to magnetic modifications of plasma transport, the transition region structure and flows, channeling and acceleration of plasma, channeling and dissipation of MHD waves, and anomalous dissipation of field-aligned currents. A description of the characteristics of magnetohydrodynamic energy conversion is also provided, and outstanding questions are discussed.

  14. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  15. Numerical MHD codes for modeling astrophysical flows

    NASA Astrophysics Data System (ADS)

    Koldoba, A. V.; Ustyugova, G. V.; Lii, P. S.; Comins, M. L.; Dyda, S.; Romanova, M. M.; Lovelace, R. V. E.

    2016-05-01

    We describe a Godunov-type magnetohydrodynamic (MHD) code based on the Miyoshi and Kusano (2005) solver which can be used to solve various astrophysical hydrodynamic and MHD problems. The energy equation is in the form of entropy conservation. The code has been implemented on several different coordinate systems: 2.5D axisymmetric cylindrical coordinates, 2D Cartesian coordinates, 2D plane polar coordinates, and fully 3D cylindrical coordinates. Viscosity and diffusivity are implemented in the code to control the accretion rate in the disk and the rate of penetration of the disk matter through the magnetic field lines. The code has been utilized for the numerical investigations of a number of different astrophysical problems, several examples of which are shown.

  16. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  17. Numerical Calculation of Neoclassical Distribution Functions and Current Profiles in Low Collisionality, Axisymmetric Plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B.C. Lyons, S.C. Jardin, and J.J. Ramos

    2012-06-28

    A new code, the Neoclassical Ion-Electron Solver (NIES), has been written to solve for stationary, axisymmetric distribution functions (f ) in the conventional banana regime for both ions and elec trons using a set of drift-kinetic equations (DKEs) with linearized Fokker-Planck-Landau collision operators. Solvability conditions on the DKEs determine the relevant non-adiabatic pieces of f (called h ). We work in a 4D phase space in which Ψ defines a flux surface, θ is the poloidal angle, v is the total velocity referenced to the mean flow velocity, and λ is the dimensionless magnetic moment parameter. We expand h inmore » finite elements in both v and λ . The Rosenbluth potentials, φ and ψ, which define the integral part of the collision operator, are expanded in Legendre series in cos χ , where χ is the pitch angle, Fourier series in cos θ , and finite elements in v . At each ψ , we solve a block tridiagonal system for hi (independent of fe ), then solve another block tridiagonal system for he (dependent on fi ). We demonstrate that such a formulation can be accurately and efficiently solved. NIES is coupled to the MHD equilibrium code JSOLVER [J. DeLucia, et al., J. Comput. Phys. 37 , pp 183-204 (1980).] allowing us to work with realistic magnetic geometries. The bootstrap current is calculated as a simple moment of the distribution function. Results are benchmarked against the Sauter analytic formulas and can be used as a kinetic closure for an MHD code (e.g., M3D-C1 [S.C. Jardin, et al ., Computational Science & Discovery, 4 (2012).]).« less

  18. Global MHD modeling of an ICME focused on the physics involved in an ICME interacting with a solar wind

    NASA Astrophysics Data System (ADS)

    An, Jun-Mo; Magara, Tetsuya; Inoue, Satoshi; Hayashi, Keiji; Tanaka, Takashi

    2015-04-01

    We developed a three-dimensional (3D) magnetohydrodynamic (MHD) code to investigate the structure of a solar wind, the properties of a coronal mass ejection (CME) and the interaction between them. This MHD code is based on the finite volume method incorporating total variation diminishing (TVD) scheme with an unstructured grid system. In particular, this grid system can avoid the singularity at the north and south poles and relax tight CFL conditions around the poles, both of which would arise in a spherical coordinate system (Tanaka 1994). In this model, we first apply an MHD tomographic method (Hayashi et al. 2003) to interplanetary scintillation (IPS) observational data and derive a solar wind from the physical values obtained at 50 solar radii away from the Sun. By comparing the properties of this solar wind to observational data obtained near the Earth orbit, we confirmed that our model captures the velocity, temperature and density profiles of a solar wind near the Earth orbit. We then insert a spheromak-type CME (Kataoka et al. 2009) into the solar wind to reproduce an actual CME event occurred on 29 September 2013. This has been done by introducing a time-dependent boundary condition to the inner boundary of our simulation domain (50rs < r < 300rs). On the basis of a comparison between the properties of a simulated CME and observations near the Earth, we discuss the physics involved in an ICME interacting with a solar wind.

  19. A System Scale Theory for Fast Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Knoll, D.; Chacon, L.; Lapenta, G.

    2005-12-01

    Magnetic reconnection is at the root of explosive phenomena such as solar flares, coronal mass ejections, plasmoid ejection from earth's magnetotail and major disruptions in magnetic fusion energy experiments. Plasmas in all the above mentioned cases are known to have negligible electric resistivity. This small resistivity can not explain the reconnection time scales observed in nature, when using the resistive MHD model. Recently much progress has been made considering the Hall MHD model. Hall physics has been shown to facility fast reconnection when the magnetic field shear scale length is in the order of the ion inertial length. However, in many systems of interest the initial scale lengths of the problem can not justify the use of Hall MHD. Thus a successful system scale theory must involve a current sheet thinning mechanism which brings the relevant scales down to the Hall scales. In this presentation we give examples of how naturally occurring hydrodynamic flows can provide such current sheet thinning [1,2,3] and where these occur in solar [4] and magnetosphere application [5]. We also discuss the primary obstacle for such flow to drive current sheet thinning, the build up of magnetic pressure, and how Hall MHD may overcome this obstacle. [1] Knoll and Brackbill, Phys. Plasmas, vol. 9, 2002 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Knoll and Chacon, Phys. Plasmas, 2005 (submitted) [4] Lapenta and Knoll, ApJ, vol. 624, 2005 [5] Brackbill and Knoll, PRL, vol. 86, 2001

  20. Far infrared diagnostics of electron concentration in combustion MHD plasmas using interferometry and Faraday rotation

    NASA Astrophysics Data System (ADS)

    Kuzmenko, P. J.

    1985-12-01

    The plasma electrical conductivity is a key parameter in determining the efficiency of an magnetohydrodynamic (MHD) generator. Electromagnetic waves offer an accurate, non-intrusive probe. The electron concentration and mobility may be deduced from the refractive index and absorption coefficient measured with an interferometer. The first experiment used an HCOOH laser at 393.6 microns feeding a Michelson interferometer mounted around a combustor duct with open ports. Simultaneous measurements of positive ion density and plasma temperature made with a Langmuir probe and line reversal apparatus verified the operation of the interferometer. With a magnetic field present, measurement of the polarization rotation and induced ellipticity in a wave traveling along the field provides information on the plasma conductivity. Compared to interferometry, diagnostic apparatus based on Faraday rotation offers simpler optics and requires far less stringent mechanical stability at a cost of lower sensitivity. An advanced detection scheme, using a polarizing beam splitter improved the sensitivity to be comparable to that of interferometry. Interferometry is the preferred technique for small scale, high accuracy measurements, with Faraday rotation reserved for large systems or measurements within a working generator.

  1. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  2. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2016-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. A zero-beta Hall-MHD model has shown good agreement with experimental data at 14.5 kHz injector operation. Experimental observations at higher frequency, where the best performance is achieved, indicate pressure effects are important and likely required to attain quantitative agreement with simulations. Efforts to extend the existing validation to high frequency (36-68 kHz) using an extended MHD model implemented in the PSI-TET arbitrary-geometry 3D MHD code will be presented. An implementation of anisotropic viscosity, a feature observed to improve agreement between NIMROD simulations and experiment, will also be presented, along with investigations of flux conserver features and their impact on density control for future SIHI experiments. Work supported by DoE.

  3. Hybrid DG/FV schemes for magnetohydrodynamics and relativistic hydrodynamics

    NASA Astrophysics Data System (ADS)

    Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter

    2018-01-01

    This paper presents a high order hybrid discontinuous Galerkin/finite volume scheme for solving the equations of the magnetohydrodynamics (MHD) and of the relativistic hydrodynamics (SRHD) on quadrilateral meshes. In this approach, for the spatial discretization, an arbitrary high order discontinuous Galerkin spectral element (DG) method is combined with a finite volume (FV) scheme in order to simulate complex flow problems involving strong shocks. Regarding the time discretization, a fourth order strong stability preserving Runge-Kutta method is used. In the proposed hybrid scheme, a shock indicator is computed at the beginning of each Runge-Kutta stage in order to flag those elements containing shock waves or discontinuities. Subsequently, the DG solution in these troubled elements and in the current time step is projected onto a subdomain composed of finite volume subcells. Right after, the DG operator is applied to those unflagged elements, which, in principle, are oscillation-free, meanwhile the troubled elements are evolved with a robust second/third order FV operator. With this approach we are able to numerically simulate very challenging problems in the context of MHD and SRHD in one, and two space dimensions and with very high order polynomials. We make convergence tests and show a comprehensive one- and two dimensional testbench for both equation systems, focusing in problems with strong shocks. The presented hybrid approach shows that numerical schemes of very high order of accuracy are able to simulate these complex flow problems in an efficient and robust manner.

  4. Adaptive Numerical Dissipative Control in High Order Schemes for Multi-D Non-Ideal MHD

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjoegreen, B.

    2004-01-01

    The goal is to extend our adaptive numerical dissipation control in high order filter schemes and our new divergence-free methods for ideal MHD to non-ideal MHD that include viscosity and resistivity. The key idea consists of automatic detection of different flow features as distinct sensors to signal the appropriate type and amount of numerical dissipation/filter where needed and leave the rest of the region free of numerical dissipation contamination. These scheme-independent detectors are capable of distinguishing shocks/shears, flame sheets, turbulent fluctuations and spurious high-frequency oscillations. The detection algorithm is based on an artificial compression method (ACM) (for shocks/shears), and redundant multi-resolution wavelets (WAV) (for the above types of flow feature). These filter approaches also provide a natural and efficient way for the minimization of Div(B) numerical error. The filter scheme consists of spatially sixth order or higher non-dissipative spatial difference operators as the base scheme for the inviscid flux derivatives. If necessary, a small amount of high order linear dissipation is used to remove spurious high frequency oscillations. For example, an eighth-order centered linear dissipation (AD8) might be included in conjunction with a spatially sixth-order base scheme. The inviscid difference operator is applied twice for the viscous flux derivatives. After the completion of a full time step of the base scheme step, the solution is adaptively filtered by the product of a 'flow detector' and the 'nonlinear dissipative portion' of a high-resolution shock-capturing scheme. In addition, the scheme independent wavelet flow detector can be used in conjunction with spatially compact, spectral or spectral element type of base schemes. The ACM and wavelet filter schemes using the dissipative portion of a second-order shock-capturing scheme with sixth-order spatial central base scheme for both the inviscid and viscous MHD flux derivatives and a fourth-order Runge-Kutta method are denoted.

  5. Longitudinal structure of MHD perturbations at the boundary of convective stability in the Kruskal-Oberman model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arsenin, V. V.

    2010-10-15

    It is shown that, in contrast to the MHD model, a perturbation at the boundary of convective stability of a finite-pressure plasma in confinement systems without an averaged minB in the Kruskal-Oberman model is not generally a purely flute one. The reasons for this discrepancy are clarified. The analysis is carried out for axisymmetric configurations formed by a poloidal magnetic field.

  6. Magnetosphere Modeling: From Cartoons to Simulations

    NASA Astrophysics Data System (ADS)

    Gombosi, T. I.

    2017-12-01

    Over the last half a century physics-based global computer simulations became a bridge between experiment and basic theory and now it represents the "third pillar" of geospace research. Today, many of our scientific publications utilize large-scale simulations to interpret observations, test new ideas, plan campaigns, or design new instruments. Realistic simulations of the complex Sun-Earth system have been made possible by the dramatically increased power of both computing hardware and numerical algorithms. Early magnetosphere models were based on simple E&M concepts (like the Chapman-Ferraro cavity) and hydrodynamic analogies (bow shock). At the beginning of the space age current system models were developed culminating in the sophisticated Tsyganenko-type description of the magnetic configuration. The first 3D MHD simulations of the magnetosphere were published in the early 1980s. A decade later there were several competing global models that were able to reproduce many fundamental properties of the magnetosphere. The leading models included the impact of the ionosphere by using a height-integrated electric potential description. Dynamic coupling of global and regional models started in the early 2000s by integrating a ring current and a global magnetosphere model. It has been recognized for quite some time that plasma kinetic effects play an important role. Presently, global hybrid simulations of the dynamic magnetosphere are expected to be possible on exascale supercomputers, while fully kinetic simulations with realistic mass ratios are still decades away. In the 2010s several groups started to experiment with PIC simulations embedded in large-scale 3D MHD models. Presently this integrated MHD-PIC approach is at the forefront of magnetosphere simulations and this technique is expected to lead to some important advances in our understanding of magnetosheric physics. This talk will review the evolution of magnetosphere modeling from cartoons to current systems, to global MHD to MHD-PIC and discuss the role of state-of-the-art models in forecasting space weather.

  7. Optimization of the oxidant supply system for combined cycle MHD power plants

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1982-01-01

    An in-depth study was conducted to determine what, if any, improvements could be made on the oxidant supply system for combined cycle MHD power plants which could be reflected in higher thermal efficiency and a reduction in the cost of electricity, COE. A systematic analysis of air separation process varitions which showed that the specific energy consumption could be minimized when the product stream oxygen concentration is about 70 mole percent was conducted. The use of advanced air compressors, having variable speed and guide vane position control, results in additional power savings. The study also led to the conceptual design of a new air separation process, sized for a 500 MW sub e MHD plant, referred to a internal compression is discussed. In addition to its lower overall energy consumption, potential capital cost savings were identified for air separation plants using this process when constructed in a single large air separation train rather than multiple parallel trains, typical of conventional practice.

  8. Some topics in the magnetohydrodynamics of accreting magnetic compact objects

    NASA Technical Reports Server (NTRS)

    Aly, J. J.

    1986-01-01

    Magnetic compact objects (neutron stars or white dwarfs) are currently thought to be present in many accreting systems that are releasing large amounts of energy. The magnetic field of the compact star may interact strongly with the accretion flow and play an essential role in the physics of these systems. Some magnetohydrodynamic (MHD) problems that are likely to be relevant in building up self-consistent models of the interaction between the accreting plasma and the star's magnetosphere are addressed in this series of lectures. The basic principles of MHD are first introduced and some important MHD mechanisms (Rayleigh-Taylor and Kelvin-Helmholtz instabilities; reconnection) are discussed, with particular reference to their role in allowing the infalling matter to penetrate the magnetosphere and mix with the field. The structure of a force-free magnetosphere and the possibility of quasistatic momentum and energy transfer between regions linked by field-aligned currents are then studied in some detail. Finally, the structure of axisymmetric accretion flows onto magnetic compact objects is considered.

  9. The island coalescence problem: Scaling of reconnection in extended fluid models including higher-order moments

    DOE PAGES

    Ng, Jonathan; Huang, Yi -Min; Hakim, Ammar; ...

    2015-11-05

    As modeling of collisionless magnetic reconnection in most space plasmas with realistic parameters is beyond the capability of today's simulations, due to the separation between global and kinetic length scales, it is important to establish scaling relations in model problems so as to extrapolate to realistic scales. Furthermore, large scale particle-in-cell simulations of island coalescence have shown that the time averaged reconnection rate decreases with system size, while fluid systems at such large scales in the Hall regime have not been studied. Here, we perform the complementary resistive magnetohydrodynamic (MHD), Hall MHD, and two fluid simulations using a ten-moment modelmore » with the same geometry. In contrast to the standard Harris sheet reconnection problem, Hall MHD is insufficient to capture the physics of the reconnection region. Additionally, motivated by the results of a recent set of hybrid simulations which show the importance of ion kinetics in this geometry, we evaluate the efficacy of the ten-moment model in reproducing such results.« less

  10. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  11. MODELING STATISTICAL PROPERTIES OF SOLAR ACTIVE REGIONS THROUGH DIRECT NUMERICAL SIMULATIONS OF 3D-MHD TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malapaka, Shiva Kumar; Mueller, Wolf-Christian

    Statistical properties of the Sun's photospheric turbulent magnetic field, especially those of the active regions (ARs), have been studied using the line-of-sight data from magnetograms taken by the Solar and Heliospheric Observatory and several other instruments. This includes structure functions and their exponents, flatness curves, and correlation functions. In these works, the dependence of structure function exponents ({zeta}{sub p}) of the order of the structure functions (p) was modeled using a non-intermittent K41 model. It is now well known that the ARs are highly turbulent and are associated with strong intermittent events. In this paper, we compare some of themore » observations from Abramenko et al. with the log-Poisson model used for modeling intermittent MHD turbulent flows. Next, we analyze the structure function data obtained from the direct numerical simulations (DNS) of homogeneous, incompressible 3D-MHD turbulence in three cases: sustained by forcing, freely decaying, and a flow initially driven and later allowed to decay (case 3). The respective DNS replicate the properties seen in the plots of {zeta}{sub p} against p of ARs. We also reproduce the trends and changes observed in intermittency in flatness and correlation functions of ARs. It is suggested from this analysis that an AR in the onset phase of a flare can be treated as a forced 3D-MHD turbulent system in its simplest form and that the flaring stage is representative of decaying 3D-MHD turbulence. It is also inferred that significant changes in intermittency from the initial onset phase of a flare to its final peak flaring phase are related to the time taken by the system to reach the initial onset phase.« less

  12. Recent progress of the JT-60SA project

    NASA Astrophysics Data System (ADS)

    Shirai, H.; Barabaschi, P.; Kamada, Y.; the JT-60SA Team

    2017-10-01

    The JT-60SA project has been implemented for the purpose of an early realization of fusion energy. With a powerful and versatile NBI and ECRF system, a flexible plasma-shaping capability, and various kinds of in-vessel coils to suppress MHD instabilities, JT-60SA plays an essential role in addressing the key physics and engineering issues of ITER and DEMO. It aims to achieve the long sustainment of high integrated performance plasmas under the high β N condition required in DEMO. The fabrication and installation of components and systems of JT-60SA procured by the EU and Japan are steadily progressing. The installation of toroidal field (TF) coils around the vacuum vessel started in December 2016. The commissioning of the cryogenic system and power supply system has been implemented in the Naka site, and JT-60SA will start operation in 2019. The JT-60SA research plan covers a wide area of issues in ITER and DEMO relevant operation regimes, and has been regularly updated on the basis of intensive discussion among European and Japanese researchers.

  13. The stability analysis of magnetohydrodynamic equilibria - Comparing the thermodynamic approach with the energy principle

    NASA Technical Reports Server (NTRS)

    Brinkmann, R. P.

    1989-01-01

    This paper is a contribution to the stability analysis of current-carrying plasmas, i.e., plasma systems that are forced by external mchanisms to carry a nonrelaxing electrical current. Under restriction to translationally invariant configurations, the thermodynamic stability criterion for a multicomponent plasma is rederived within the framework of nonideal MHD. The chosen dynamics neglects scalar resistivity, but allows for other types of dissipation effects both in Ohm's law and in the equation of motion. In the second section of the paper, the thermodynamic stability criterion is compared with the ideal MHD based energy principle of Bernstein et al. With the help of Schwarz's inequality, it is shown that the former criterion is always more 'pessimistic' than the latter, i.e., that thermodynamic stability implies stability according to the MHD principle, but not vice versa. This reuslt confirms the physical plausible idea that dissipational effects tend to weaken the stability properties of current-carrying plasma equilibria by breaking the constraints of ideal MHD and allowing for possibly destabilizing effects such as magnetic field line reconfiguration.

  14. Entropy stable high order discontinuous Galerkin methods for ideal compressible MHD on structured meshes

    NASA Astrophysics Data System (ADS)

    Liu, Yong; Shu, Chi-Wang; Zhang, Mengping

    2018-02-01

    We present a discontinuous Galerkin (DG) scheme with suitable quadrature rules [15] for ideal compressible magnetohydrodynamic (MHD) equations on structural meshes. The semi-discrete scheme is analyzed to be entropy stable by using the symmetrizable version of the equations as introduced by Godunov [32], the entropy stable DG framework with suitable quadrature rules [15], the entropy conservative flux in [14] inside each cell and the entropy dissipative approximate Godunov type numerical flux at cell interfaces to make the scheme entropy stable. The main difficulty in the generalization of the results in [15] is the appearance of the non-conservative "source terms" added in the modified MHD model introduced by Godunov [32], which do not exist in the general hyperbolic system studied in [15]. Special care must be taken to discretize these "source terms" adequately so that the resulting DG scheme satisfies entropy stability. Total variation diminishing / bounded (TVD/TVB) limiters and bound-preserving limiters are applied to control spurious oscillations. We demonstrate the accuracy and robustness of this new scheme on standard MHD examples.

  15. Global magnetohydrodynamic simulations on multiple GPUs

    NASA Astrophysics Data System (ADS)

    Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui

    2014-01-01

    Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.

  16. Status of the ITER Electron Cyclotron Heating and Current Drive System

    NASA Astrophysics Data System (ADS)

    Darbos, Caroline; Albajar, Ferran; Bonicelli, Tullio; Carannante, Giuseppe; Cavinato, Mario; Cismondi, Fabio; Denisov, Grigory; Farina, Daniela; Gagliardi, Mario; Gandini, Franco; Gassmann, Thibault; Goodman, Timothy; Hanson, Gregory; Henderson, Mark A.; Kajiwara, Ken; McElhaney, Karen; Nousiainen, Risto; Oda, Yasuhisa; Omori, Toshimichi; Oustinov, Alexander; Parmar, Darshankumar; Popov, Vladimir L.; Purohit, Dharmesh; Rao, Shambhu Laxmikanth; Rasmussen, David; Rathod, Vipal; Ronden, Dennis M. S.; Saibene, Gabriella; Sakamoto, Keishi; Sartori, Filippo; Scherer, Theo; Singh, Narinder Pal; Strauß, Dirk; Takahashi, Koji

    2016-01-01

    The electron cyclotron (EC) heating and current drive (H&CD) system developed for the ITER is made of 12 sets of high-voltage power supplies feeding 24 gyrotrons connected through 24 transmission lines (TL), to five launchers, four located in upper ports and one at the equatorial level. Nearly all procurements are in-kind, following general ITER philosophy, and will come from Europe, India, Japan, Russia and the USA. The full system is designed to couple to the plasma 20 MW among the 24 MW generated power, at the frequency of 170 GHz, for various physics applications such as plasma start-up, central H&CD and magnetohydrodynamic (MHD) activity control. The design takes present day technology and extends toward high-power continuous operation, which represents a large step forward as compared to the present state of the art. The ITER EC system will be a stepping stone to future EC systems for DEMO and beyond.

  17. A new technique for observationally derived boundary conditions for space weather

    NASA Astrophysics Data System (ADS)

    Pagano, Paolo; Mackay, Duncan Hendry; Yeates, Anthony Robinson

    2018-04-01

    Context. In recent years, space weather research has focused on developing modelling techniques to predict the arrival time and properties of coronal mass ejections (CMEs) at the Earth. The aim of this paper is to propose a new modelling technique suitable for the next generation of Space Weather predictive tools that is both efficient and accurate. The aim of the new approach is to provide interplanetary space weather forecasting models with accurate time dependent boundary conditions of erupting magnetic flux ropes in the upper solar corona. Methods: To produce boundary conditions, we couple two different modelling techniques, MHD simulations and a quasi-static non-potential evolution model. Both are applied on a spatial domain that covers the entire solar surface, although they extend over a different radial distance. The non-potential model uses a time series of observed synoptic magnetograms to drive the non-potential quasi-static evolution of the coronal magnetic field. This allows us to follow the formation and loss of equilibrium of magnetic flux ropes. Following this a MHD simulation captures the dynamic evolution of the erupting flux rope, when it is ejected into interplanetary space. Results.The present paper focuses on the MHD simulations that follow the ejection of magnetic flux ropes to 4 R⊙. We first propose a technique for specifying the pre-eruptive plasma properties in the corona. Next, time dependent MHD simulations describe the ejection of two magnetic flux ropes, that produce time dependent boundary conditions for the magnetic field and plasma at 4 R⊙ that in future may be applied to interplanetary space weather prediction models. Conclusions: In the present paper, we show that the dual use of quasi-static non-potential magnetic field simulations and full time dependent MHD simulations can produce realistic inhomogeneous boundary conditions for space weather forecasting tools. Before a fully operational model can be produced there are a number of technical and scientific challenges that still need to be addressed. Nevertheless, we illustrate that coupling quasi-static and MHD simulations in this way can significantly reduce the computational time required to produce realistic space weather boundary conditions.

  18. Assessment of disk MHD generators for a base load powerplant

    NASA Technical Reports Server (NTRS)

    Chubb, D. L.; Retallick, F. D.; Lu, C. L.; Stella, M.; Teare, J. D.; Loubsky, W. J.; Louis, J. F.; Misra, B.

    1981-01-01

    Results from a study of the disk MHD generator are presented. Both open and closed cycle disk systems were investigated. Costing of the open cycle disk components (nozzle, channel, diffuser, radiant boiler, magnet and power management) was done. However, no detailed costing was done for the closed cycle systems. Preliminary plant design for the open cycle systems was also completed. Based on the system study results, an economic assessment of the open cycle systems is presented. Costs of the open cycle disk conponents are less than comparable linear generator components. Also, costs of electricity for the open cycle disk systems are competitive with comparable linear systems. Advantages of the disk design simplicity are considered. Improvements in the channel availability or a reduction in the channel lifetime requirement are possible as a result of the disk design.

  19. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Astrophysics Data System (ADS)

    1981-09-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  20. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER). Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Main elements of the design are identified and explained, and the rationale behind them was reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are presented, and the engineering issues that should be reexamined are identified. The latest (1980-1981) information from the MHD technology program is integrated with the elements of a conventional steam power electric generating plant.

  1. Comparison of predictive estimates of high-latitude electrodynamics with observations of global-scale Birkeland currents

    NASA Astrophysics Data System (ADS)

    Anderson, Brian J.; Korth, Haje; Welling, Daniel T.; Merkin, Viacheslav G.; Wiltberger, Michael J.; Raeder, Joachim; Barnes, Robin J.; Waters, Colin L.; Pulkkinen, Antti A.; Rastaetter, Lutz

    2017-02-01

    Two of the geomagnetic storms for the Space Weather Prediction Center Geospace Environment Modeling challenge occurred after data were first acquired by the Active Magnetosphere and Planetary Electrodynamics Response Experiment (AMPERE). We compare Birkeland currents from AMPERE with predictions from four models for the 4-5 April 2010 and 5-6 August 2011 storms. The four models are the Weimer (2005b) field-aligned current statistical model, the Lyon-Fedder-Mobarry magnetohydrodynamic (MHD) simulation, the Open Global Geospace Circulation Model MHD simulation, and the Space Weather Modeling Framework MHD simulation. The MHD simulations were run as described in Pulkkinen et al. (2013) and the results obtained from the Community Coordinated Modeling Center. The total radial Birkeland current, ITotal, and the distribution of radial current density, Jr, for all models are compared with AMPERE results. While the total currents are well correlated, the quantitative agreement varies considerably. The Jr distributions reveal discrepancies between the models and observations related to the latitude distribution, morphologies, and lack of nightside current systems in the models. The results motivate enhancing the simulations first by increasing the simulation resolution and then by examining the relative merits of implementing more sophisticated ionospheric conductance models, including ionospheric outflows or other omitted physical processes. Some aspects of the system, including substorm timing and location, may remain challenging to simulate, implying a continuing need for real-time specification.

  2. Investigation of MHD instabilities and control in KSTAR preparing for high beta operation

    NASA Astrophysics Data System (ADS)

    Park, Y. S.; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W.; Lee, S. G.; Ko, W. H.; Bak, J. G.; Jeon, Y. M.; Park, J. K.; Kim, J.; Hahn, S. H.; Ahn, J.-W.; Yoon, S. W.; Lee, K. D.; Choi, M. J.; Yun, G. S.; Park, H. K.; You, K.-I.; Bae, Y. S.; Oh, Y. K.; Kim, W.-C.; Kwak, J. G.

    2013-08-01

    Initial H-mode operation of the Korea Superconducting Tokamak Advanced Research (KSTAR) is expanded to higher normalized beta and lower plasma internal inductance moving towards design target operation. As a key supporting device for ITER, an important goal for KSTAR is to produce physics understanding of MHD instabilities at long pulse with steady-state profiles, at high normalized beta, and over a wide range of plasma rotation profiles. An advance from initial plasma operation is a significant increase in plasma stored energy and normalized beta, with Wtot = 340 kJ, βN = 1.9, which is 75% of the level required to reach the computed ideal n = 1 no-wall stability limit. The internal inductance was lowered to 0.9 at sustained H-mode duration up to 5 s. In ohmically heated plasmas, the plasma current reached 1 MA with prolonged pulse length up to 12 s. Rotating MHD modes are observed in the device with perturbations having tearing rather than ideal parity. Modes with m/n = 3/2 are triggered during the H-mode phase but are relatively weak and do not substantially reduce Wtot. In contrast, 2/1 modes to date only appear when the plasma rotation profiles are lowered after H-L back-transition. Subsequent 2/1 mode locking creates a repetitive collapse of βN by more than 50%. Onset behaviour suggests the 3/2 mode is close to being neoclassically unstable. A correlation between the 2/1 mode amplitude and local rotation shear from an x-ray imaging crystal spectrometer suggests that the rotation shear at the mode rational surface is stabilizing. As a method to access the ITER-relevant low plasma rotation regime, plasma rotation alteration by n = 1, 2 applied fields and associated neoclassical toroidal viscosity (NTV) induced torque is presently investigated. The net rotation profile change measured by a charge exchange recombination diagnostic with proper compensation of plasma boundary movement shows initial evidence of non-resonant rotation damping by the n = 1, 2 applied field configurations. The result addresses perspective on access to low rotation regimes for MHD instability studies applicable to ITER. Computation of active RWM control using the VALEN-3D code examines control performance using midplane locked mode detection sensors. The LM sensors are found to be strongly affected by mode and control coil-induced vessel current, and consequently lead to limited control performance theoretically.

  3. Trigger mechanism for the abrupt loss of energetic ions in magnetically confined plasmas.

    PubMed

    Ida, K; Kobayashi, T; Yoshinuma, M; Akiyama, T; Tokuzawa, T; Tsuchiya, H; Itoh, K; Itoh, S-I

    2018-02-12

    Interaction between a quasi-stable stationary MHD mode and a tongue-shaped deformation is observed in the toroidal plasma with energetic particle driven MHD bursts. The quasi-stable stationary 1/1 MHD mode with interchange parity appears near the resonant rational surface of q = 1 between MHD bursts. The tongue-shaped deformation rapidly appears at the non-resonant non-rational surface as a localized large plasma displacement and then collapses (tongue event). It curbs the stationary 1/1 MHD mode and then triggers the collapse of energetic particle and magnetic field reconnection. The rotating 1/1 MHD mode with tearing parity at the q = 1 resonant surface, namely, the MHD burst, is excited after the tongue event.

  4. CISM: Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.; Team, T. C.

    2003-12-01

    The Center for Integrated SpaceWeather Modeling (CISM), an NSF Science and Technology Center that is a consortium of ten institutions headed by Boston University, has as its primary goal the development of a series of ever improving versions of a comprehensive physics-based simulation model that describes the space environment from the Sun to the Earth. CISM will do this by coupling existing models of components of the system. In this paper we review our progress to date and summarize our plans. We discuss results of initial coupling of MHD models of the corona and solar wind, and of a global magnetospheric MHD model with a global ionosphere/thermosphere model, a radiation belt model, and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere. Including the Dartmouth radiation belt model shows how the radiation belts evolve in a realistic magnetosphere.

  5. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    NASA Astrophysics Data System (ADS)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  6. Featured Image: Tests of an MHD Code

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    Creating the codes that are used to numerically model astrophysical systems takes a lot of work and a lot of testing! A new, publicly available moving-mesh magnetohydrodynamics (MHD) code, DISCO, is designed to model 2D and 3D orbital fluid motion, such as that of astrophysical disks. In a recent article, DISCO creator Paul Duffell (University of California, Berkeley) presents the code and the outcomes from a series of standard tests of DISCOs stability, accuracy, and scalability.From left to right and top to bottom, the test outputs shown above are: a cylindrical Kelvin-Helmholtz flow (showing off DISCOs numerical grid in 2D), a passive scalar in a smooth vortex (can DISCO maintain contact discontinuities?), a global look at the cylindrical Kelvin-Helmholtz flow, a Jupiter-mass planet opening a gap in a viscous disk, an MHD flywheel (a test of DISCOs stability), an MHD explosion revealing shock structures, an MHD rotor (a more challenging version of the explosion), a Flock 3D MRI test (can DISCO study linear growth of the magnetorotational instability in disks?), and a nonlinear 3D MRI test.Check out the gif below for a closer look at each of these images, or follow the link to the original article to see even more!CitationPaul C. Duffell 2016 ApJS 226 2. doi:10.3847/0067-0049/226/1/2

  7. Cascades, ``Blobby'' Turbulence, and Target Pattern Formation in Elastic Systems: A New Take on Classic Themes in Plasma Turbulence

    NASA Astrophysics Data System (ADS)

    Fan, Xiang

    2017-10-01

    Concerns central to understanding turbulence and transport include: 1) Dynamics of dual cascades in EM turbulence; 2) Understanding `negative viscosity phenomena' in drift-ZF systems; 3) The physics of blobby turbulence (re: SOL). Here, we present a study of a simple model - that of Cahn-Hilliard Navier-Stokes (CHNS) Turbulence - which sheds important new light on these issues. The CHNS equations describe the motion of binary fluid undergoing a second order phase transition and separation called spinodal decomposition. The CHNS system and 2D MHD are analogous, as they both contain a vorticity equation and a ``diffusion'' equation. The CHNS system differs from 2D MHD by the appearance of negative diffusivity, and a nonlinear dissipative flux. An analogue of the Alfven wave exists in the 2D CHNS system. DNS shows that mean square concentration spectrum Hkψ scales as k - 7 / 3 in the elastic range. This suggests an inverse cascade of Hψ . However, the kinetic energy spectrum EkK scales as k-3 , as in the direct enstrophy cascade range for a 2D fluid (not MHD!). The resolution is that the feedback of capillarity acts only at blob interfaces. Thus, as blob merger progresses, the packing fraction of interfaces decreases, thus explaining the weakened surface tension feedback and the outcome for EkK. We also examine the evolution of scalar concentration in a single eddy in the Cahn-Hilliard system. This extends the classic problem of flux expulsion in 2D MHD. The simulation results show that a target pattern is formed. Target pattern is a meta stable state, since the band merger process continues on a time scale exponentially long relative to the eddy turnover time. Band merger resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  8. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows, I: Basic Theory

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, H. C.

    2003-01-01

    The objective of this paper is to extend our recently developed highly parallelizable nonlinear stable high order schemes for complex multiscale hydrodynamic applications to the viscous MHD equations. These schemes employed multiresolution wavelets as adaptive numerical dissipation controls t o limit the amount of and to aid the selection and/or blending of the appropriate types of dissipation to be used. The new scheme is formulated for both the conservative and non-conservative form of the MHD equations in curvilinear grids. The four advantages of the present approach over existing MHD schemes reported in the open literature are as follows. First, the scheme is constructed for long-time integrations of shock/turbulence/combustion MHD flows. Available schemes are too diffusive for long-time integrations and/or turbulence/combustion problems. Second, unlike exist- ing schemes for the conservative MHD equations which suffer from ill-conditioned eigen- decompositions, the present scheme makes use of a well-conditioned eigen-decomposition obtained from a minor modification of the eigenvectors of the non-conservative MHD equations t o solve the conservative form of the MHD equations. Third, this approach of using the non-conservative eigensystem when solving the conservative equations also works well in the context of standard shock-capturing schemes for the MHD equations. Fourth, a new approach to minimize the numerical error of the divergence-free magnetic condition for high order schemes is introduced. Numerical experiments with typical MHD model problems revealed the applicability of the newly developed schemes for the MHD equations.

  9. Magnetohydrodynamic (MHD) driven droplet mixer

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.

    2004-05-11

    A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.

  10. Numerical Simulation for the Unsteady MHD Flow and Heat Transfer of Couple Stress Fluid over a Rotating Disk

    PubMed Central

    2014-01-01

    The present work is devoted to study the numerical simulation for unsteady MHD flow and heat transfer of a couple stress fluid over a rotating disk. A similarity transformation is employed to reduce the time dependent system of nonlinear partial differential equations (PDEs) to ordinary differential equations (ODEs). The Runge-Kutta method and shooting technique are employed for finding the numerical solution of the governing system. The influences of governing parameters viz. unsteadiness parameter, couple stress and various physical parameters on velocity, temperature and pressure profiles are analyzed graphically and discussed in detail. PMID:24835274

  11. Influence of verapamil on the pharmacokinetics of oxcarbazepine and of the enantiomers of its 10-hydroxy metabolite in healthy volunteers.

    PubMed

    Antunes, Natalícia de Jesus; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre Junior, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Marques, Maria Paula; Lanchote, Vera Lucia

    2016-02-01

    Oxcarbazepine (OXC), a second-generation antiepileptic, and its chiral metabolite 10-hydroxycarbazepine (MHD) are substrates of P-glycoprotein, which can be inhibited by verapamil. This study evaluated the influence of verapamil on the pharmacokinetics of OXC and MHD enantiomers in healthy volunteers. Healthy volunteers (n = 12) on occasion O (OXC monotherapy) received 300 mg OXC/12 h for 5 days, and on the O + V occasion (treatment with OXC  + verapamil), they received 300 mg OXC/12 h and 80 mg verapamil/8 h for 5 days. Blood samples were collected over a period of 12 h. Total and free plasma concentrations of OXC and the MHD enantiomers were evaluated by LC-MS/MS. Noncompartmental pharmacokinetic analysis was performed using the WinNonlin program. The kinetic disposition of MHD was enantioselective with plasma accumulation (AUC(0-12) S-(+)/R-(-) ratio of 4.38) and lower fraction unbound (0.37 vs 0.42) of the S-(+)-MHD enantiomer. Treatment with verapamil reduced the OXC mean residence time (4.91 vs 4.20 h) and apparent volume of distribution (4.72 vs 3.15 L/kg). Verapamil also increased for both MHD enantiomers C max total [R-(-)-MHD: 2.65 vs 2.98 μg/mL and S-(+)-MHD: 10.15 vs 11.60 μg/mL], C average [R-(-)-MHD: 1.98 vs 2.18 μg/mL and S-(+)-MHD: 8.10 vs 8.83 μg/mL], and AUC(0-12) [R-(-)-MHD: 23.79 vs 26.19 μg h/mL and S-(+)-MHD: 97.87 vs 108.35 μg h/mL]. Verapamil increased the AUC values of both MDH enantiomers, which is probably related to the inhibition of intestinal P-glycoprotein. Considering that the exposure of both MHD enantiomers was increased in only 10 %, no OXC dose adjustment could be recommended in the situation of verapamil coadministration.

  12. The Nonlinear Magnetosphere: Expressions in MHD and in Kinetic Models

    NASA Technical Reports Server (NTRS)

    Hesse, Michael; Birn, Joachim

    2011-01-01

    Like most plasma systems, the magnetosphere of the Earth is governed by nonlinear dynamic evolution equations. The impact of nonlinearities ranges from large scales, where overall dynamics features are exhibiting nonlinear behavior, to small scale, kinetic, processes, where nonlinear behavior governs, among others, energy conversion and dissipation. In this talk we present a select set of examples of such behavior, with a specific emphasis on how nonlinear effects manifest themselves in MHD and in kinetic models of magnetospheric plasma dynamics.

  13. Field-aligned currents and magnetospheric convection - A comparison between MHD simulations and observations

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Ogino, Tatsuki

    1988-01-01

    A time-dependent three-dimensional MHD model was used to investigate the magnetospheric configuration as a function of the interplanetary magnetic field direction when it was in the y-z plane in geocentric solar magnetospheric coordinates. The model results show large global convection cells, tail lobe cells, high-latitude polarcap cells, and low latitude cells. The field-aligned currents generated in the model magnetosphere and the model convection system are compared with observations from low-altitude polar orbiting satellites.

  14. Existence of frozen-in coordinate systems

    NASA Technical Reports Server (NTRS)

    Chertkov, A. D.

    1995-01-01

    The 'frozen-in' coordinate systems were first introduced in the works on 'reconnection' and 'magnetic barrier' theories (see review by M.l.Pudovkin and V.S.Semenov, Space Sci. Rev. 41,1 1985). The idea was to utilize the mathematical apparatus developed for 'general relativity' theory to simplify obtaining solutions to the ideal MHD equations set. Magnetic field (B), plasma velocity (v), and their vector product were used as coordinate vectors. But there exist no stationary solutions of ideal MHD set that satisfies the required boundary conditions at infinity (A.D.Chertkov, Solar Wind Seven Conf.,Pergamon Press,1992,165) having non-zero vector product of v and B where v and B originate from the same sphere. The existence of a solution is the hidden mine of the mentioned theories. The solution is constructed in the coordinate system, which is unknown and indeterminate before obtaining this solution. A substitution of the final solution must be done directly into the initial MHD set in order to check the method. One can demonstrate that 'solutions' of Petschek's problem, obtained by 'frozen-in' coordinate systems, does not satisfy just the 'frozen-in' equation, i.e. induction equation. It stems from the fact that Petschek's 're-connection' model, treated as a boundary problem, is over determined. This problem was incorrectly formulated.

  15. A conservative MHD scheme on unstructured Lagrangian grids for Z-pinch hydrodynamic simulations

    NASA Astrophysics Data System (ADS)

    Wu, Fuyuan; Ramis, Rafael; Li, Zhenghong

    2018-03-01

    A new algorithm to model resistive magnetohydrodynamics (MHD) in Z-pinches has been developed. Two-dimensional axisymmetric geometry with azimuthal magnetic field Bθ is considered. Discretization is carried out using unstructured meshes made up of arbitrarily connected polygons. The algorithm is fully conservative for mass, momentum, and energy. Matter energy and magnetic energy are managed separately. The diffusion of magnetic field is solved using a derivative of the Symmetric-Semi-Implicit scheme, Livne et al. (1985) [23], where unconditional stability is obtained without needing to solve large sparse systems of equations. This MHD package has been integrated into the radiation-hydrodynamics code MULTI-2D, Ramis et al. (2009) [20], that includes hydrodynamics, laser energy deposition, heat conduction, and radiation transport. This setup allows to simulate Z-pinch configurations relevant for Inertial Confinement Fusion.

  16. Solving free-plasma-boundary problems with the SIESTA MHD code

    NASA Astrophysics Data System (ADS)

    Sanchez, R.; Peraza-Rodriguez, H.; Reynolds-Barredo, J. M.; Tribaldos, V.; Geiger, J.; Hirshman, S. P.; Cianciosa, M.

    2017-10-01

    SIESTA is a recently developed MHD equilibrium code designed to perform fast and accurate calculations of ideal MHD equilibria for 3D magnetic configurations. It is an iterative code that uses the solution obtained by the VMEC code to provide a background coordinate system and an initial guess of the solution. The final solution that SIESTA finds can exhibit magnetic islands and stochastic regions. In its original implementation, SIESTA addressed only fixed-boundary problems. This fixed boundary condition somewhat restricts its possible applications. In this contribution we describe a recent extension of SIESTA that enables it to address free-plasma-boundary situations, opening up the possibility of investigating problems with SIESTA in which the plasma boundary is perturbed either externally or internally. As an illustration, the extended version of SIESTA is applied to a configuration of the W7-X stellarator.

  17. Predictor-based multivariable closed-loop system identification of the EXTRAP T2R reversed field pinch external plasma response

    NASA Astrophysics Data System (ADS)

    Olofsson, K. Erik J.; Brunsell, Per R.; Rojas, Cristian R.; Drake, James R.; Hjalmarsson, Håkan

    2011-08-01

    The usage of computationally feasible overparametrized and nonregularized system identification signal processing methods is assessed for automated determination of the full reversed-field pinch external plasma response spectrum for the experiment EXTRAP T2R. No assumptions on the geometry of eigenmodes are imposed. The attempted approach consists of high-order autoregressive exogenous estimation followed by Markov block coefficient construction and Hankel matrix singular value decomposition. It is seen that the obtained 'black-box' state-space models indeed can be compared with the commonplace ideal magnetohydrodynamics (MHD) resistive thin-shell model in cylindrical geometry. It is possible to directly map the most unstable autodetected empirical system pole to the corresponding theoretical resistive shell MHD eigenmode.

  18. Design of the high-resolution soft X-ray imaging system on the Joint Texas Experimental Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jianchao; Ding, Yonghua, E-mail: yhding@mail.hust.edu.cn; Zhang, Xiaoqing

    2014-11-15

    A new soft X-ray diagnostic system has been designed on the Joint Texas Experimental Tokamak (J-TEXT) aiming to observe and survey the magnetohydrodynamic (MHD) activities. The system consists of five cameras located at the same toroidal position. Each camera has 16 photodiode elements. Three imaging cameras view the internal plasma region (r/a < 0.7) with a spatial resolution about 2 cm. By tomographic method, heat transport outside from the 1/1 mode X-point during the sawtooth collapse is found. The other two cameras with a higher spatial resolution 1 cm are designed for monitoring local MHD activities respectively in plasma coremore » and boundary.« less

  19. Equilibrium 𝛽-limits in classical stellarators

    NASA Astrophysics Data System (ADS)

    Loizu, J.; Hudson, S. R.; Nührenberg, C.; Geiger, J.; Helander, P.

    2017-12-01

    A numerical investigation is carried out to understand the equilibrium -limit in a classical stellarator. The stepped-pressure equilibrium code (Hudson et al., Phys. Plasmas, vol. 19 (11), 2012) is used in order to assess whether or not magnetic islands and stochastic field-lines can emerge at high . Two modes of operation are considered: a zero-net-current stellarator and a fixed-iota stellarator. Despite the fact that relaxation is allowed (Taylor, Rev. Mod. Phys., vol. 58 (3), 1986, pp. 741-763), the former is shown to maintain good flux surfaces up to the equilibrium -limit predicted by ideal-magnetohydrodynamics (MHD), above which a separatrix forms. The latter, which has no ideal equilibrium -limit, is shown to develop regions of magnetic islands and chaos at sufficiently high , thereby providing a `non-ideal -limit'. Perhaps surprisingly, however, the value of at which the Shafranov shift of the axis reaches a fraction of the minor radius follows in all cases the scaling laws predicted by ideal-MHD. We compare our results to the High-Beta-Stellarator theory of Freidberg (Ideal MHD, 2014, Cambridge University Press) and derive a new prediction for the non-ideal equilibrium -limit above which chaos emerges.

  20. Are Birds Smarter Than Mathematicians? Pigeons (Columba livia) Perform Optimally on a Version of the Monty Hall Dilemma

    PubMed Central

    Herbranson, Walter T.; Schroeder, Julia

    2011-01-01

    The “Monty Hall Dilemma” (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training. PMID:20175592

  1. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1995-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has-four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  2. Double-duct liquid metal magnetohydrodynamic engine

    DOEpatents

    Haaland, Carsten M.

    1997-01-01

    An internal combustion, liquid metal (LM) magnetohydrodynamic (MHD) engine and an alternating current (AC) magnetohydrodynamic generator, are used in combination to provide useful AC electric energy output. The engine design has four pistons and a double duct configuration, with each duct containing sodium potassium liquid metal confined between free pistons located at either end of the duct. The liquid metal is forced to flow back and forth in the duct by the movement of the pistons, which are alternatively driven by an internal combustion process. In the MHD generator, the two LM-MHD ducts pass in close proximity through a Hartmann duct with output transformer. AC power is produced by operating the engine with the liquid metal in the two generator ducts always flowing in counter directions. The amount of liquid metal maintained in the ducts may be varied. This provides a variable stroke length for the pistons. The engine/generator provides variable AC power at variable frequencies that correspond to the power demands of the vehicular propulsion. Also the engine should maintain nearly constant efficiency throughout the range of power usage. Automobiles and trucks could be powered by the invention, with no transmission or power converter devices being required.

  3. Are birds smarter than mathematicians? Pigeons (Columba livia) perform optimally on a version of the Monty Hall Dilemma.

    PubMed

    Herbranson, Walter T; Schroeder, Julia

    2010-02-01

    The "Monty Hall Dilemma" (MHD) is a well known probability puzzle in which a player tries to guess which of three doors conceals a desirable prize. After an initial choice is made, one of the remaining doors is opened, revealing no prize. The player is then given the option of staying with their initial guess or switching to the other unopened door. Most people opt to stay with their initial guess, despite the fact that switching doubles the probability of winning. A series of experiments investigated whether pigeons (Columba livia), like most humans, would fail to maximize their expected winnings in a version of the MHD. Birds completed multiple trials of a standard MHD, with the three response keys in an operant chamber serving as the three doors and access to mixed grain as the prize. Across experiments, the probability of gaining reinforcement for switching and staying was manipulated, and birds adjusted their probability of switching and staying to approximate the optimal strategy. Replication of the procedure with human participants showed that humans failed to adopt optimal strategies, even with extensive training.

  4. Method of and system for producing electrical power

    DOEpatents

    Carabetta, Ralph A.; Staats, Gary E.; Cutting, John C.

    1993-01-01

    A method and system for converting the chemical energy of methane to electrical energy. Methane is thermally decomposed to hydrogen and carbon in a decomposing unit at a temperature not less than 1200.degree. K. and at a pressure above atmospheric pressure. Carbon and substantially pure oxygen and a cesium or potassium seed material is transmitted to a combustor which is maintained at a pressure of at least 50 atmospheres to combust the carbon and oxygen and provide an ionized plasma having a temperature not less than 2900.degree. K. The ionized plasma is accelerated to a velocity not less than 1000 m/sec and transported through an MHD generator having a magnetic field in the range of from 4 to 6 Tesla to generate dc power. The ionized plasma is decelerated and passed from the MHD generator in heat exchange relationship with the methane to heat the methane for decomposition, and thereafter any cesium or potassium seed material is recovered and transported to the combustor, and the dc power from the MHD generator is converted to ac power.

  5. Method of and system for producing electrical power

    DOEpatents

    Carabetta, Ralph A.; Staats, Gary E.; Cutting, John C.

    1993-01-01

    A method and system for converting the chemical energy of methane to electrical energy. Methane is thermally decomposed to hydrogen and carbon in a decomposing unit at a temperature not less than about 1200.degree. K. and at a pressure at least slightly above atmospheric pressure. Carbon and substantially pure oxygen and a cesium or potassium seed material is transmitted to a combustor which is maintained at a pressure of at least about 50 atmospheres to combust the carbon and oxygen and provide an ionized plasma having a temperature not less than about 2800.degree. K. The ionized plasma is accelerated to a velocity not less than about 1000 m/sec and transported through an MHD generator having a magnetic field in the range of from about 4 to about 6 Tesla to generate dc power. The ionized plasma is de-accelerated and passed from the MHD generator in heat exchange relationship with the methane to heat same for decomposition and or reaction, and thereafter any cesium or potassium seed material is recovered and transported to the combustor, and the dc power from the MHD generator is converted to ac power.

  6. Advanced lattice Boltzmann scheme for high-Reynolds-number magneto-hydrodynamic flows

    NASA Astrophysics Data System (ADS)

    De Rosis, Alessandro; Lévêque, Emmanuel; Chahine, Robert

    2018-06-01

    Is the lattice Boltzmann method suitable to investigate numerically high-Reynolds-number magneto-hydrodynamic (MHD) flows? It is shown that a standard approach based on the Bhatnagar-Gross-Krook (BGK) collision operator rapidly yields unstable simulations as the Reynolds number increases. In order to circumvent this limitation, it is here suggested to address the collision procedure in the space of central moments for the fluid dynamics. Therefore, an hybrid lattice Boltzmann scheme is introduced, which couples a central-moment scheme for the velocity with a BGK scheme for the space-and-time evolution of the magnetic field. This method outperforms the standard approach in terms of stability, allowing us to simulate high-Reynolds-number MHD flows with non-unitary Prandtl number while maintaining accuracy and physical consistency.

  7. Reconnection Scaling Experiment (RSX): Magnetic Reconnection in Linear Geometry

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Sovinec, C.; Begay, D.; Wurden, G.; Furno, I.; Werley, C.; Fisher, M.; Vermare, L.; Fienup, W.

    2001-10-01

    The linear Reconnection Scaling Experiment (RSX) at LANL is a new experiment that can create MHD relevant plasmas to look at the physics of magnetic reconnection. This experiment can scale many relevant parameters because the guns that generate the plasma and current channels do not depend on equilibrium or force balance for startup. We describe the experiment and initial electrostatic and magnetic probe data. Two parallel current channels sweep down a long plasma column and probe data accumulated over many shots gives 3D movies of magnetic reconnection. Our first data tries to define an operating regime free from kink instabilities that might otherwise confuse the data and shot repeatability. We compare this with MHD 2 fluid NIMROD simulations of the single current channel kink stability boundary for a variety of experimental conditions.

  8. Magnetic islands and singular currents at rational surfaces in three-dimensional magnetohydrodynamic equilibria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loizu, J., E-mail: joaquim.loizu@ipp.mpg.de; Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton New Jersey 08543; Hudson, S.

    2015-02-15

    Using the recently developed multiregion, relaxed MHD (MRxMHD) theory, which bridges the gap between Taylor's relaxation theory and ideal MHD, we provide a thorough analytical and numerical proof of the formation of singular currents at rational surfaces in non-axisymmetric ideal MHD equilibria. These include the force-free singular current density represented by a Dirac δ-function, which presumably prevents the formation of islands, and the Pfirsch-Schlüter 1/x singular current, which arises as a result of finite pressure gradient. An analytical model based on linearized MRxMHD is derived that can accurately (1) describe the formation of magnetic islands at resonant rational surfaces, (2)more » retrieve the ideal MHD limit where magnetic islands are shielded, and (3) compute the subsequent formation of singular currents. The analytical results are benchmarked against numerical simulations carried out with a fully nonlinear implementation of MRxMHD.« less

  9. Scalable implicit incompressible resistive MHD with stabilized FE and fully-coupled Newton–Krylov-AMG

    DOE PAGES

    Shadid, J. N.; Pawlowski, R. P.; Cyr, E. C.; ...

    2016-02-10

    Here, we discuss that the computational solution of the governing balance equations for mass, momentum, heat transfer and magnetic induction for resistive magnetohydrodynamics (MHD) systems can be extremely challenging. These difficulties arise from both the strong nonlinear, nonsymmetric coupling of fluid and electromagnetic phenomena, as well as the significant range of time- and length-scales that the interactions of these physical mechanisms produce. This paper explores the development of a scalable, fully-implicit stabilized unstructured finite element (FE) capability for 3D incompressible resistive MHD. The discussion considers the development of a stabilized FE formulation in context of the variational multiscale (VMS) method,more » and describes the scalable implicit time integration and direct-to-steady-state solution capability. The nonlinear solver strategy employs Newton–Krylov methods, which are preconditioned using fully-coupled algebraic multilevel preconditioners. These preconditioners are shown to enable a robust, scalable and efficient solution approach for the large-scale sparse linear systems generated by the Newton linearization. Verification results demonstrate the expected order-of-accuracy for the stabilized FE discretization. The approach is tested on a variety of prototype problems, that include MHD duct flows, an unstable hydromagnetic Kelvin–Helmholtz shear layer, and a 3D island coalescence problem used to model magnetic reconnection. Initial results that explore the scaling of the solution methods are also presented on up to 128K processors for problems with up to 1.8B unknowns on a CrayXK7.« less

  10. Exploring reconnection, current sheets, and dissipation in a laboratory MHD turbulence experiment

    NASA Astrophysics Data System (ADS)

    Schaffner, D. A.

    2015-12-01

    The Swarthmore Spheromak Experiment (SSX) can serve as a testbed for studying MHD turbulence in a controllable laboratory setting, and in particular, explore the phenomena of reconnection, current sheets and dissipation in MHD turbulence. Plasma with turbulently fluctuating magnetic and velocity fields can be generated using a plasma gun source and launched into a flux-conserving cylindrical tunnel. No background magnetic field is applied so internal fields are allowed to evolve dynamically. Point measurements of magnetic and velocity fluctuations yield broadband power-law spectra with a steepening breakpoint indicative of the onset of a dissipation scale. The frequency range at which this steepening occurs can be correlated to the ion inertial scale of the plasma, a length which is characteristic of the size of current sheets in MHD plasmas and suggests a connection to dissipation. Observation of non-Gaussian intermittent jumps in magnetic field magnitude and angle along with measurements of ion temperature bursts suggests the presence of current sheets embedded within the turbulent plasma, and possibly even active reconnection sites. Additionally, structure function analysis coupled with appeals to fractal scaling models support the hypothesis that current sheets are associated with dissipation in this system.

  11. The conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Pro-ram, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the Near the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magneto-hydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) frommore » a 200{degrees}C NaK facility to a 350{degrees}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degrees}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer multiple-hour, MHD tests, all at 230{degrees}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000.« less

  12. Conversion of a room temperature NaK loop to a high temperature MHD facility for Li/V blanket testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, C.B.; Haglund, R.C.; Miller, M.E.

    1996-12-31

    The Vanadium/Lithium system has been the recent focus of ANL`s Blanket Technology Program, and for the last several years, ANL`s Liquid Metal Blanket activities have been carried out in direct support of the ITER (International Thermonuclear Experimental Reactor) breeding blanket task area. A key feasibility issue for the ITER Vanadium/Lithium breeding blanket is the development of insulator coatings. Design calculations, Hua and Gohar, show that an electrically insulating layer is necessary to maintain an acceptably low magnetohydrodynamic (MHD) pressure drop in the current ITER design. Consequently, the decision was made to convert Argonne`s Liquid Metal EXperiment (ALEX) from a 200{degree}Cmore » NaK facility to a 350{degree}C lithium facility. The upgraded facility was designed to produce MHD pressure drop data, test section voltage distributions, and heat transfer data for mid-scale test sections and blanket mockups at Hartmann numbers (M) and interaction parameters (N) in the range of 10{sup 3} to 10{sup 5} in lithium at 350{degree}C. Following completion of the upgrade work, a short performance test was conducted, followed by two longer, multiple-hour, MHD tests, all at 230{degree}C. The modified ALEX facility performed up to expectations in the testing. MHD pressure drop and test section voltage distributions were collected at Hartmann numbers of 1000. 4 refs., 2 figs.« less

  13. Multi-physics simulations of space weather

    NASA Astrophysics Data System (ADS)

    Gombosi, Tamas; Toth, Gabor; Sokolov, Igor; de Zeeuw, Darren; van der Holst, Bart; Cohen, Ofer; Glocer, Alex; Manchester, Ward, IV; Ridley, Aaron

    Presently magnetohydrodynamic (MHD) models represent the "workhorse" technology for simulating the space environment from the solar corona to the ionosphere. While these models are very successful in describing many important phenomena, they are based on a low-order moment approximation of the phase-space distribution function. In the last decade our group at the Center for Space Environment Modeling (CSEM) has developed the Space Weather Modeling Framework (SWMF) that efficiently couples together different models describing the interacting regions of the space environment. Many of these domain models (such as the global solar corona, the inner heliosphere or the global magnetosphere) are based on MHD and are represented by our multiphysics code, BATS-R-US. BATS-R-US can solve the equations of "standard" ideal MHD, but it can also go beyond this first approximation. It can solve resistive MHD, Hall MHD, semi-relativistic MHD (that keeps the displacement current), multispecies (different ion species have different continuity equations) and multifluid (all ion species have separate continuity, momentum and energy equations) MHD. Recently we added two-fluid Hall MHD (solving the electron and ion energy equations separately) and are working on extended magnetohydrodynamics with anisotropic pressures. This talk will show the effects of added physics and compare space weather simulation results to "standard" ideal MHD.

  14. Assessing the performance of community-available global MHD models using key system parameters and empirical relationships

    NASA Astrophysics Data System (ADS)

    Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.

    2015-12-01

    Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.

  15. Analytical investigation of critical phenomena in MHD power generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-07-31

    Critical phenomena in the Arnold Engineering Development Center (AEDC) High Performance Demonstration Experiment (HPDE) and the US U-25 Experiment, are analyzed. Also analyzed are the performance of a NASA-specified 500 MW(th) flow train and computations concerning critica issues for the scale-up of MHD Generators. The HPDE is characterized by computational simulations of both the nominal conditions and the conditions during the experimental runs. The steady-state performance is discussed along with the Hall voltage overshoots during the start-up and shutdown transients. The results of simulations of the HPDE runs with codes from the Q3D and TRANSIENT code families are compared tomore » the experimental results. The results of the simulations are in good agreement with the experimental data. Additional critica phenomena analyzed in the AEDC/HPDE are the optimal load schedules, parametric variations, the parametric dependence of the electrode voltage drops, the boundary layer behavior, near electrode phenomena with finite electrode segmentation, and current distribution in the end regions. The US U-25 experiment is characterized by computational simulations of the nominal operating conditions. The steady-state performance for the nominal design of the US U-25 experiment is analyzed, as is the dependence of performance on the mass flow rate. A NASA-specified 500 MW(th) MHD flow train is characterized for computer simulation and the electrical, transport, and thermodynamic properties at the inlet plane are analyzed. Issues for the scale-up of MHD power trains are discussed. The AEDC/HPDE performance is analyzed to compare these experimental results to scale-up rules.« less

  16. Transpiration cooled electrodes and insulators for MHD generators

    DOEpatents

    Hoover, Jr., Delmer Q.

    1981-01-01

    Systems for cooling the inner duct walls in a magnetohydrodynamic (MHD) generator. The inner face components, adjacent the plasma, are formed of a porous material known as a transpiration material. Selected cooling gases are transpired through the duct walls, including electrically insulating and electrode segments, and into the plasma. A wide variety of structural materials and coolant gases at selected temperatures and pressures can be utilized and the gases can be drawn from the generation system compressor, the surrounding environment, and combustion and seed treatment products otherwise discharged, among many other sources. The conduits conducting the cooling gas are electrically insulated through low pressure bushings and connectors so as to electrically isolate the generator duct from the ground.

  17. On MHD nonlinear stretching flow of Powell-Eyring nanomaterial

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Sajjad, Rai; Muhammad, Taseer; Alsaedi, Ahmed; Ellahi, Rahmat

    This communication addresses the magnetohydrodynamic (MHD) flow of Powell-Eyring nanomaterial bounded by a nonlinear stretching sheet. Novel features regarding thermophoresis and Brownian motion are taken into consideration. Powell-Eyring fluid is electrically conducted subject to non-uniform applied magnetic field. Assumptions of small magnetic Reynolds number and boundary layer approximation are employed in the mathematical development. Zero nanoparticles mass flux condition at the sheet is selected. Adequate transformation yield nonlinear ordinary differential systems. The developed nonlinear systems have been computed through the homotopic approach. Effects of different pertinent parameters on velocity, temperature and concentration fields are studied and analyzed. Further numerical data of skin friction and heat transfer rate is also tabulated and interpreted.

  18. The PLUTO code for astrophysical gasdynamics .

    NASA Astrophysics Data System (ADS)

    Mignone, A.

    Present numerical codes appeal to a consolidated theory based on finite difference and Godunov-type schemes. In this context we have developed a versatile numerical code, PLUTO, suitable for the solution of high-mach number flow in 1, 2 and 3 spatial dimensions and different systems of coordinates. Different hydrodynamic modules and algorithms may be independently selected to properly describe Newtonian, relativistic, MHD, or relativistic MHD fluids. The modular structure exploits a general framework for integrating a system of conservation laws, built on modern Godunov-type shock-capturing schemes. The code is freely distributed under the GNU public license and it is available for download to the astrophysical community at the URL http://plutocode.to.astro.it.

  19. Interchange mode excited by trapped energetic ions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, Seiya, E-mail: n-seiya@kobe-kosen.ac.jp

    2015-07-15

    The kinetic energy principle describing the interaction between ideal magnetohydrodynamic (MHD) modes with trapped energetic ions is revised. A model is proposed on the basis of the reduced ideal MHD equations for background plasmas and the bounce-averaged drift-kinetic equation for trapped energetic ions. The model is applicable to large-aspect-ratio toroidal devices. Specifically, the effect of trapped energetic ions on the interchange mode in helical systems is analyzed. Results show that the interchange mode is excited by trapped energetic ions, even if the equilibrium states are stable to the ideal interchange mode. The energetic-ion-induced branch of the interchange mode might bemore » associated with the fishbone mode in helical systems.« less

  20. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  1. Modeling the Sun-Earth Connection

    NASA Astrophysics Data System (ADS)

    Hughes, W. J.

    2003-04-01

    Space weather is caused by a series of interconnected events, beginning at the Sun and ending in the near-Earth space environment. Our ability to predict conditions and events in space depends on our understanding of these connections, and more importantly, our ability to predict details, such as the orientation of the magnetic field within a CME that is on its way to Earth. One approach to both improved understanding and prediction is through the use of models, particularly computer simulation models. Although models of the space environment are not yet good enough for this approach to be quantitative, things are changing. Models of components of the system the magnetosphere or the Sun’s corona, for example are now approaching a point where the biggest uncertainties in the model results are due to uncertainties in boundary conditions or in interactions with neighboring regions. Thus the time is ripe for the models to be joined into one large model that can deal with the complex couplings between the components of the system. In this talk we will review efforts to do this being undertaken by the new NSF Science and Technology Center, the Center for Integrated Space Weather Modeling, a consortium of ten institutions headed by Boston University. We will discuss results of initial efforts to couple MHD models of the corona and solar wind, and to couple a global magnetospheric MHD model with a global ionosphere/thermosphere model and a ring current particle model. Coupling the SAIC coronal MHD model and the U Colorado/SEC solar wind MHD codes allows us to track CMEs from the base of the corona to 1 AU. The results show how shocks form and develop in the heliosphere, and how the CME flattens into a pancake shape by the time it reaches earth. Coupling the Lyon/Fedder/Mobarry global MHD model with the Rice Convection Model and the NCAR TIE-GCM/TING model allows full dynamic coupling between the magnetosphere, the ionosphere/thermosphere, and the hot plasma in the inner magnetosphere.

  2. Black Hole Variability in MHD: A Numerical Test of the Propagating Fluctuations Model

    NASA Astrophysics Data System (ADS)

    Hogg, J. Drew; Reynolds, Christopher S.

    2017-08-01

    The variability properties of accreting black hole systems offer a crucial probe of the accretion physics providing the angular momentum transport and enabling the mass accretion. A few of the most telling signatures are the characteristic log-normal flux distributions, linear RMS-flux relations, and frequency-dependent time lags between energy bands. These commonly observed properties are often interpreted as evidence of inward propagating mass accretion rate fluctuations where fluctuations in the accretion flow combine multiplicatively. We present recent results from a long, semi-global MHD simulation of a thin (h/r=0.1) accretion disk that naturally reproduces this phenomenology. This bolsters the theoretical underpinnings of the “propagating fluctuations” model and demonstrates the viability of this process manifesting in MHD turbulence driven by the magnetorotational instability. We find that a key ingredient to this model is the modulation of the effective α parameter by the magnetic dynamo.

  3. Three-Dimensional Numerical Modeling of Magnetohydrodynamic Augmented Propulsion Experiment

    NASA Technical Reports Server (NTRS)

    Turner, M. W.; Hawk, C. W.; Litchford, R. J.

    2009-01-01

    Over the past several years, NASA Marshall Space Flight Center has engaged in the design and development of an experimental research facility to investigate the use of diagonalized crossed-field magnetohydrodynamic (MHD) accelerators as a possible thrust augmentation device for thermal propulsion systems. In support of this effort, a three-dimensional numerical MHD model has been developed for the purpose of analyzing and optimizing accelerator performance and to aid in understanding critical underlying physical processes and nonideal effects. This Technical Memorandum fully summarizes model development efforts and presents the results of pretest performance optimization analyses. These results indicate that the MHD accelerator should utilize a 45deg diagonalization angle with the applied current evenly distributed over the first five inlet electrode pairs. When powered at 100 A, this configuration is expected to yield a 50% global efficiency with an 80% increase in axial velocity and a 50% increase in centerline total pressure.

  4. The Richtmyer-Meshkov Instability on a Circular Interface in Magnetohydrodynamics

    NASA Astrophysics Data System (ADS)

    Black, Wolfgang; Maxon, W. Curtis; Denissen, Nicholas; McFarland, Jacob

    2017-11-01

    Hydrodynamic instabilities (HI) are ubiquitous in high energy density (HED) applications such as astrophysics, thermonuclear weapons, and inertial fusion. In these systems, fluid mixing is encouraged by the HI which can reduce the energy yield and eventually drive the system to equilibrium. The Richtmyer-Meshkov (RM) instability is one such HI and is created when a perturbed interface between a density gradient is impulsively accelerated. The physics can be complicated one step further by the inclusion of Magnetohydrodynamics (MHD), where HED systems experience the effects of magnetic and electric fields. These systems provide unique challenges and as such can be used to validate hydrodynamic codes capable of predicting HI. The work presented here will outline efforts to study the RMI in MHD for a circular interface utilizing the hydrocode FLAG, developed at Los Alamos National Laboratory.

  5. Advances and issues from the simulation of planetary magnetospheres with recent supercomputer systems

    NASA Astrophysics Data System (ADS)

    Fukazawa, K.; Walker, R. J.; Kimura, T.; Tsuchiya, F.; Murakami, G.; Kita, H.; Tao, C.; Murata, K. T.

    2016-12-01

    Planetary magnetospheres are very large, while phenomena within them occur on meso- and micro-scales. These scales range from 10s of planetary radii to kilometers. To understand dynamics in these multi-scale systems, numerical simulations have been performed by using the supercomputer systems. We have studied the magnetospheres of Earth, Jupiter and Saturn by using 3-dimensional magnetohydrodynamic (MHD) simulations for a long time, however, we have not obtained the phenomena near the limits of the MHD approximation. In particular, we have not studied meso-scale phenomena that can be addressed by using MHD.Recently we performed our MHD simulation of Earth's magnetosphere by using the K-computer which is the first 10PFlops supercomputer and obtained multi-scale flow vorticity for the both northward and southward IMF. Furthermore, we have access to supercomputer systems which have Xeon, SPARC64, and vector-type CPUs and can compare simulation results between the different systems. Finally, we have compared the results of our parameter survey of the magnetosphere with observations from the HISAKI spacecraft.We have encountered a number of difficulties effectively using the latest supercomputer systems. First the size of simulation output increases greatly. Now a simulation group produces over 1PB of output. Storage and analysis of this much data is difficult. The traditional way to analyze simulation results is to move the results to the investigator's home computer. This takes over three months using an end-to-end 10Gbps network. In reality, there are problems at some nodes such as firewalls that can increase the transfer time to over one year. Another issue is post-processing. It is hard to treat a few TB of simulation output due to the memory limitations of a post-processing computer. To overcome these issues, we have developed and introduced the parallel network storage, the highly efficient network protocol and the CUI based visualization tools.In this study, we will show the latest simulation results using the petascale supercomputer and problems from the use of these supercomputer systems.

  6. Mathematical modeling of the MHD stability dependence on the interpole distance in the multianode aluminium electrolyser

    NASA Astrophysics Data System (ADS)

    Kuzmin, R. N.; Savenkova, N. P.; Shobukhov, A. V.; Kalmykov, A. V.

    2018-03-01

    The paper deals with investigation of the MHD-stability dependence on the depth of the anode immersion in the process of aluminium electrolysis. The proposed 3D three-phase mathematical model is based on the Navier-Stokes and Maxwell equation systems. This model makes it possible to simulate the distributions of the main physical fields both in horizontal and vertical planes. The suggested approach also allows to study the dynamics of the border between aluminium and electrolyte and the shape of the back oxidation zone.

  7. Study of seed reprocessing systems for open cycle coal fired MHD power plants. Task 1: Selection of processes for more detailed study

    NASA Astrophysics Data System (ADS)

    1980-07-01

    In most of the processes, a portion of the potassium seed material is converted to a compound not containing sulfur. The potassium in this form can, when injected upstream of the MHD channel, capture the sulfur released during the combustion of coal and eliminate the need for flue gas desulfurization equipment. Criteria considered in the evaluation included cost, state of development, seed loss, power requirements, availability, durability, key component risk, environmental impact, safety, controllability, and impurities buildup.

  8. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    PubMed

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. CPU and GPU-based Numerical Simulations of Combustion Processes

    DTIC Science & Technology

    2012-04-27

    Distribution unlimited UCLA MAE Research and Technology Review April 27, 2012 Magnetohydrodynamic Augmentation of the Pulse Detonation Rocket Engines...Pulse Detonation Rocket-Induced MHD Ejector (PDRIME) – Energy extract from exhaust flow by MHD generator – Seeded air stream acceleration by MHD...accelerator for thrust enhancement and control • Alternative concept: Magnetic piston – During PDE blowdown process, MHD extracts energy and

  10. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency.

    PubMed

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-12-15

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth.

  11. Theoretical and Experimental Study of Radial Velocity Generation for Extending Bandwidth of Magnetohydrodynamic Angular Rate Sensor at Low Frequency

    PubMed Central

    Ji, Yue; Li, Xingfei; Wu, Tengfei; Chen, Cheng

    2015-01-01

    The magnetohydrodynamics angular rate sensor (MHD ARS) has received much attention for its ultra-low noise in ultra-broad bandwidth and its impact resistance in harsh environments; however, its poor performance at low frequency hinders its work in long time duration. The paper presents a modified MHD ARS combining Coriolis with MHD effect to extend the measurement scope throughout the whole bandwidth, in which an appropriate radial flow velocity should be provided to satisfy simplified model of the modified MHD ARS. A method that can generate radial velocity by an MHD pump in MHD ARS is proposed. A device is designed to study the radial flow velocity generated by the MHD pump. The influence of structure and physical parameters are studied by numerical simulation and experiment of the device. The analytic expression of the velocity generated by the energized current drawn from simulation and experiment are consistent, which demonstrates the effectiveness of the method generating radial velocity. The study can be applied to generate and control radial velocity in modified MHD ARS, which is essential for the two effects combination throughout the whole bandwidth. PMID:26694393

  12. Studies of several small seawater MHD thrusters using the high-field solenoid of MIT's bitter magnet laboratory. Annual report, 1 February 1992-31 January 1993. [MHD (Magnetohydrodynamic)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, T.F.; Aumiller, D.L.; Gilbert, J.B.

    1993-02-01

    The performance of several small, seawater magnetohydrodynamic (MHD) thrusters was studied in a closed loop environment. Three different thrusters were designed, constructed, and evaluated. For the first time, videographic and photographic recordings of flow through an MHD thrusters were obtained. The MHD induced flowrate, thrust, and mechanical efficiency was measured/calculated for each thruster at different combinations of electric current and magnetic field strength. Direct determination of thrust, and subsequently of efficiency were not possible. Therefore, the hydraulic resistance of each different thruster was correlated with flowrate. This information was used in conjunction with the measured MHD induced flowrate to calculatemore » the thrust and efficiency of each thruster. Experimental results were repeatable. A theoretical model was developed to predict the performance of each thruster. The results of this model are presented for one thruster at several magnetic field strengths at various electric currents. These predictions corresponded well with the measured/calculated values of MHD induced flowrate and mechanical efficiency. Finally, several MHD thrusters with radically different configurations are proposed.« less

  13. A fully implicit Hall MHD algorithm based on the ion Ohm's law

    NASA Astrophysics Data System (ADS)

    Chacón, Luis

    2010-11-01

    Hall MHD is characterized by extreme hyperbolic numerical stiffness stemming from fast dispersive waves. Implicit algorithms are potentially advantageous, but of very difficult efficient implementation due to the condition numbers of associated matrices. Here, we explore the extension of a successful fully implicit, fully nonlinear algorithm for resistive MHD,ootnotetextL. Chac'on, Phys. Plasmas, 15 (2008) based on Jacobian-free Newton-Krylov methods with physics-based preconditioning, to Hall MHD. Traditionally, Hall MHD has been formulated using the electron equation of motion (EOM) to determine the electric field in the plasma (the so-called Ohm's law). However, given that the center-of-mass EOM, the ion EOM, and the electron EOM are linearly dependent, one could equivalently employ the ion EOM as the Ohm's law for a Hall MHD formulation. While, from a physical standpoint, there is no a priori advantage for using one Ohm's law vs. the other, we argue in this poster that there is an algorithmic one. We will show that, while the electron Ohm's law prevents the extension of the resistive MHD preconditioning strategy to Hall MHD, an ion Ohm's law allows it trivially. Verification and performance numerical results on relevant problems will be presented.

  14. Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Rosa, R. J.

    2004-03-01

    Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.

  15. Nonlinear Conservation Laws and Finite Volume Methods

    NASA Astrophysics Data System (ADS)

    Leveque, Randall J.

    Introduction Software Notation Classification of Differential Equations Derivation of Conservation Laws The Euler Equations of Gas Dynamics Dissipative Fluxes Source Terms Radiative Transfer and Isothermal Equations Multi-dimensional Conservation Laws The Shock Tube Problem Mathematical Theory of Hyperbolic Systems Scalar Equations Linear Hyperbolic Systems Nonlinear Systems The Riemann Problem for the Euler Equations Numerical Methods in One Dimension Finite Difference Theory Finite Volume Methods Importance of Conservation Form - Incorrect Shock Speeds Numerical Flux Functions Godunov's Method Approximate Riemann Solvers High-Resolution Methods Other Approaches Boundary Conditions Source Terms and Fractional Steps Unsplit Methods Fractional Step Methods General Formulation of Fractional Step Methods Stiff Source Terms Quasi-stationary Flow and Gravity Multi-dimensional Problems Dimensional Splitting Multi-dimensional Finite Volume Methods Grids and Adaptive Refinement Computational Difficulties Low-Density Flows Discrete Shocks and Viscous Profiles Start-Up Errors Wall Heating Slow-Moving Shocks Grid Orientation Effects Grid-Aligned Shocks Magnetohydrodynamics The MHD Equations One-Dimensional MHD Solving the Riemann Problem Nonstrict Hyperbolicity Stiffness The Divergence of B Riemann Problems in Multi-dimensional MHD Staggered Grids The 8-Wave Riemann Solver Relativistic Hydrodynamics Conservation Laws in Spacetime The Continuity Equation The 4-Momentum of a Particle The Stress-Energy Tensor Finite Volume Methods Multi-dimensional Relativistic Flow Gravitation and General Relativity References

  16. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  17. Efficient Analysis of Simulations of the Sun's Magnetic Field

    NASA Astrophysics Data System (ADS)

    Scarborough, C. W.; Martínez-Sykora, J.

    2014-12-01

    Dynamics in the solar atmosphere, including solar flares, coronal mass ejections, micro-flares and different types of jets, are powered by the evolution of the sun's intense magnetic field. 3D Radiative Magnetohydrodnamics (MHD) computer simulations have furthered our understanding of the processes involved: When non aligned magnetic field lines reconnect, the alteration of the magnetic topology causes stored magnetic energy to be converted into thermal and kinetic energy. Detailed analysis of this evolution entails tracing magnetic field lines, an operation which is not time-efficient on a single processor. By utilizing a graphics card (GPU) to trace lines in parallel, conducting such analysis is made feasible. We applied our GPU implementation to the most advanced 3D Radiative-MHD simulations (Bifrost, Gudicksen et al. 2011) of the solar atmosphere in order to better understand the evolution of the modeled field lines.

  18. Simulating the interaction of the heliosphere with the local interstellar medium: MHD results from a finite volume approach, first bidimensional results

    NASA Technical Reports Server (NTRS)

    Chanteur, G.; Khanfir, R.

    1995-01-01

    We have designed a full compressible MHD code working on unstructured meshes in order to be able to compute accurately sharp structures embedded in large scale simulations. The code is based on a finite volume method making use of a kinetic flux splitting. A bidimensional version of the code has been used to simulate the interaction of a moving interstellar medium, magnetized or unmagnetized with a rotating and magnetized heliopspheric plasma source. Being aware that these computations are not realistic due to the restriction to two dimensions, we present it to demonstrate the ability of this new code to handle this problem. An axisymetric version, now under development, will be operational in a few months. Ultimately we plan to run a full 3d version.

  19. Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity.

    PubMed

    Font, José A

    2008-01-01

    This article presents a comprehensive overview of numerical hydrodynamics and magneto-hydrodynamics (MHD) in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003), most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do) overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable, an effort has been made to focus on multidimensional studies, directing the interested reader to earlier versions of the review for discussions on one-dimensional works. Supplementary material is available for this article at 10.12942/lrr-2008-7.

  20. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    NASA Astrophysics Data System (ADS)

    Akcay, Cihan; Kim, Charlson C.; Victor, Brian S.; Jarboe, Thomas R.

    2013-08-01

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth di to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification Itor/Iinj and formation time τf demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates Itor/Iinj and exhibits much a longer τf. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.

  1. A Mechanism for the Loading-Unloading Substorm Cycle Missing in MHD Global Magnetospheric Simulation Models

    NASA Technical Reports Server (NTRS)

    Klimas, A. J.; Uritsky, V.; Vassiliadis, D.; Baker, D. N.

    2005-01-01

    Loading and consequent unloading of magnetic flux is an essential element of the substorm cycle in Earth's magnetotail. We are unaware of an available global MHD magnetospheric simulation model that includes a loading- unloading cycle in its behavior. Given the central role that MHD models presently play in the development of our understanding of magnetospheric dynamics, and given the present plans for the central role that these models will play in ongoing space weather prediction programs, it is clear that this failure must be corrected. A 2-dimensional numerical driven current-sheet model has been developed that incorporates an idealized current- driven instability with a resistive MHD system. Under steady loading, the model exhibits a global loading- unloading cycle. The specific mechanism for producing the loading-unloading cycle will be discussed. It will be shown that scale-free avalanching of electromagnetic energy through the model, from loading to unloading, is carried by repetitive bursts of localized reconnection. Each burst leads, somewhat later, to a field configuration that is capable of exciting a reconnection burst again. This process repeats itself in an intermittent manner while the total field energy in the system falls. At the end of an unloading interval, the total field energy is reduced to well below that necessary to initiate the next unloading event and, thus, a loading-unloading cycle results. It will be shown that, in this model, it is the topology of bursty localized reconnection that is responsible for the appearance of the loading-unloading cycle.

  2. A pulse-burst laser system for Thomson scattering on NSTX-U

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Diallo, A.; LeBlanc, B.

    2017-10-01

    A pulse-burst laser system has been built for Thomson scattering on NSTX-U, and is currently being integrated into the NSTX-U Thomson scattering diagnostic system. The laser will be operated in three distinct modes. The base mode is continuous 30 Hz rep rate, and is the standard operating mode of the laser. The base mode will be interrupted to produce a "slow burst" (specified 1 kHz rep rate for 50 ms) or a "fast burst" (specified 10 kHz rep rate for 5 ms). The combination of base mode→ interruption→ burst mode is new and has not been implemented on any previous pulse-burst laser system. Laser pulsing is halted for a set period (~ 1 minute) following a burst to allow the YAG rods to cool; this type of operation is called a heat-capacity laser. The laser is Nd:YAG operated at 1064 nm, q-switched to produce >= 1.5 J pulses with ~ 20 ns FWHM. It is flashlamp pumped, with dual-rod oscillator (9 mm) and dual-rod amplifier (12 mm). Variable pulsewidth drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction. The laser system has demonstrated compliance with all specifications, and is capable of exceeding design specifications by significant margins, e.g., higher rep rates for longer burst periods. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, the L-H transition, and various MHD modes.

  3. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  4. Review of two-phase flow liquid metal MHD and turbine energy conversion concepts for space applications

    NASA Technical Reports Server (NTRS)

    Fabris, Gracio

    1992-01-01

    Two-phase energy conversion systems could be liquid metal magnetohydrodynamic (LMMHD) with no moving parts or two-phase turbines. Both of them are inherently simple and reliable devices which can operate in a wide range of temperatures. Their thermal efficiency is significantly higher than for conventional cycles due to reheat of vapor by liquid phase during the energy converting expansion. Often they can be more easily coupled to heat sources. These features make two-phase systems particularly promising for space application. Insufficient research has been done in the past. So far achieved LMMHD generator and two-phase turbine efficiencies are in the 40 to 45 percent range. However if certain fluid dynamic and design problems are resolved these efficiencies could be brought into the range of 70 percent. This would make two-phase systems extremely competitive as compared to present or other proposed conversion system for space. Accordingly, well directed research effort on potential space applications of two-phase conversion systems would be a wise investment.

  5. Towards an MHD Theory for the Standoff Distance of Earth's Bow Shock

    NASA Technical Reports Server (NTRS)

    Carins, Iver H.; Grabbe, Crockett L.

    1994-01-01

    A magnetohydrodynamic (MHD) theory is developed for the standoff distance a(s) of the bow shock and the thickness Delta(ms) of the magnetosheath, using the empirical Spreiter et al. relation Delta(ms) = kX and the MHD density ratio X across the shock. The theory includes as special cases the well-known gasdynamic theory and associated phenomenological MHD-like models for Delta(ms) and As. In general, however, MHD effects produce major differences from previous models, especially at low Alfev (Ma) and Sonic (Ms) Mach numbers. The magnetic field orientation Ma, Ms and the ratio of specific heats gamma are all important variables of the theory. In contrast, the fast mode Mach number need play no direct role. Three principle conclusions are reached. First the gasdynamic and phenomenological models miss important dependences of field orientation and Ms generally provide poor approximations to the MHD results. Second, changes in field orientation and Ms are predicted to cause factor of approximately 4 changes in Delta(ms) at low Ma. These effects should be important when predicting the shock's location or calculating gramma from observations. Third, using Spreiter et al.'s value for k in the MHD theory leads to maxima a(s) values at low Ma and nominal Ms that are much smaller than observations and MHD simulations require. Resolving this problem requires either the modified Spreiter-like relation and larger k found in recent MHD simulations and/or a breakdown in the Spreiter-like relation at very low Ma.

  6. Cost-effectiveness of the Mental Health and Development model for schizophrenia-spectrum and bipolar disorders in rural Kenya.

    PubMed

    de Menil, V; Knapp, M; McDaid, D; Raja, S; Kingori, J; Waruguru, M; Wood, S K; Mannarath, S; Lund, C

    2015-10-01

    The treatment gap for serious mental disorders across low-income countries is estimated to be 89%. The model for Mental Health and Development (MHD) offers community-based care for people with mental disorders in 11 low- and middle-income countries. In Kenya, using a pre-post design, 117 consecutively enrolled participants with schizophrenia-spectrum and bipolar disorders were followed-up at 10 and 20 months. Comparison outcomes were drawn from the literature. Costs were analysed from societal and health system perspectives. From the societal perspective, MHD cost Int$ 594 per person in the first year and Int$ 876 over 2 years. The cost per healthy day gained was Int$ 7.96 in the first year and Int$ 1.03 over 2 years - less than the agricultural minimum wage. The cost per disability-adjusted life year averted over 2 years was Int$ 13.1 and Int$ 727 from the societal and health system perspectives, respectively, on par with antiretrovirals for HIV. MHD achieved increasing returns over time. The model appears cost-effective and equitable, especially over 2 years. Its affordability relies on multi-sectoral participation nationally and internationally.

  7. Performance characteristics of a slagging gasifier for MHD combustor systems

    NASA Technical Reports Server (NTRS)

    Smith, K. O.

    1979-01-01

    The performance of a two stage, coal combustor concept for magnetohydrodynamic (MHD) systems was investigated analytically. The two stage MHD combustor is comprised of an entrained flow, slagging gasifier as the first stage, and a gas phase reactor as the second stage. The first stage was modeled by assuming instantaneous coal devolatilization, and volatiles combustion and char gasification by CO2 and H2O in plug flow. The second stage combustor was modeled assuming adiabatic instantaneous gas phase reactions. Of primary interest was the dependence of char gasification efficiency on first stage particle residence time. The influence of first stage stoichiometry, heat loss, coal moisture, coal size distribution, and degree of coal devolatilization on gasifier performance and second stage exhaust temperature was determined. Performance predictions indicate that particle residence times on the order of 500 msec would be required to achieve gasification efficiencies in the range of 90 to 95 percent. The use of a finer coal size distribution significantly reduces the required gasifier residence time for acceptable levels of fuel use efficiency. Residence time requirements are also decreased by increased levels of coal devolatilization. Combustor design efforts should maximize devolatilization by minimizing mixing times associated with coal injection.

  8. Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2014-01-01

    In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.

  9. Thermodynamic Cycle Analysis of Magnetohydrodynamic-Bypass Airbreathing Hypersonic Engines

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Bityurin, Valentine A.; Lineberry, John T.

    1999-01-01

    Established analyses of conventional ramjet/scramjet performance characteristics indicate that a considerable decrease in efficiency can be expected at off-design flight conditions. This can be explained, in large part, by the deterioration of intake mass flow and limited inlet compression at low flight speeds and by the onset of thrust degradation effects associated with increased burner entry temperature at high flight speeds. In combination, these effects tend to impose lower and upper Mach number limits for practical flight. It has been noted, however, that Magnetohydrodynamic (MHD) energy management techniques represent a possible means for extending the flight Mach number envelope of conventional engines. By transferring enthalpy between different stages of the engine cycle, it appears that the onset of thrust degradation may be delayed to higher flight speeds. Obviously, the introduction of additional process inefficiencies is inevitable with this approach, but it is believed that these losses are more than compensated through optimization of the combustion process. The fundamental idea is to use MHD energy conversion processes to extract and bypass a portion of the intake kinetic energy around the burner. We refer to this general class of propulsion system as an MHD-bypass engine. In this paper, we quantitatively assess the performance potential and scientific feasibility of MHD-bypass airbreathing hypersonic engines using ideal gasdynamics and fundamental thermodynamic principles.

  10. A consistent and conservative scheme for MHD flows with complex boundaries on an unstructured Cartesian adaptive system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jie; Ni, Ming-Jiu, E-mail: mjni@ucas.ac.cn

    2014-01-01

    The numerical simulation of Magnetohydrodynamics (MHD) flows with complex boundaries has been a topic of great interest in the development of a fusion reactor blanket for the difficulty to accurately simulate the Hartmann layers and side layers along arbitrary geometries. An adaptive version of a consistent and conservative scheme has been developed for simulating the MHD flows. Besides, the present study forms the first attempt to apply the cut-cell approach for irregular wall-bounded MHD flows, which is more flexible and conveniently implemented under adaptive mesh refinement (AMR) technique. It employs a Volume-of-Fluid (VOF) approach to represent the fluid–conducting wall interfacemore » that makes it possible to solve the fluid–solid coupling magnetic problems, emphasizing at how electric field solver is implemented when conductivity is discontinuous in cut-cell. For the irregular cut-cells, the conservative interpolation technique is applied to calculate the Lorentz force at cell-center. On the other hand, it will be shown how consistent and conservative scheme is implemented on fine/coarse mesh boundaries when using AMR technique. Then, the applied numerical schemes are validated by five test simulations and excellent agreement was obtained for all the cases considered, simultaneously showed good consistency and conservative properties.« less

  11. Fully implicit adaptive mesh refinement MHD algorithm

    NASA Astrophysics Data System (ADS)

    Philip, Bobby

    2005-10-01

    In the macroscopic simulation of plasmas, the numerical modeler is faced with the challenge of dealing with multiple time and length scales. The former results in stiffness due to the presence of very fast waves. The latter requires one to resolve the localized features that the system develops. Traditional approaches based on explicit time integration techniques and fixed meshes are not suitable for this challenge, as such approaches prevent the modeler from using realistic plasma parameters to keep the computation feasible. We propose here a novel approach, based on implicit methods and structured adaptive mesh refinement (SAMR). Our emphasis is on both accuracy and scalability with the number of degrees of freedom. To our knowledge, a scalable, fully implicit AMR algorithm has not been accomplished before for MHD. As a proof-of-principle, we focus on the reduced resistive MHD model as a basic MHD model paradigm, which is truly multiscale. The approach taken here is to adapt mature physics-based technologyootnotetextL. Chac'on et al., J. Comput. Phys. 178 (1), 15- 36 (2002) to AMR grids, and employ AMR-aware multilevel techniques (such as fast adaptive composite --FAC-- algorithms) for scalability. We will demonstrate that the concept is indeed feasible, featuring optimal scalability under grid refinement. Results of fully-implicit, dynamically-adaptive AMR simulations will be presented on a variety of problems.

  12. Experimental investigation of adiabatic compression and heating using collision of an MHD-driven jet with a gas target cloud for magnetized target fusion

    NASA Astrophysics Data System (ADS)

    Seo, Byonghoon; Li, Hui; Bellan, Paul

    2017-10-01

    We are studying magnetized target fusion using an experimental method where an imploding liner compressing a plasma is simulated by a high-speed MHD-driven plasma jet colliding with a gas target cloud. This has the advantage of being non-destructive so orders of magnitude more shots are possible. Since the actual density and temperature are much more modest than fusion-relevant values, the goal is to determine the scaling of the increase in density and temperature when an actual experimental plasma is adiabatically compressed. Two new-developed diagnostics are operating and providing data. The first new diagnostic is a fiber-coupled interferometer which measures line-integrated electron density not only as a function of time, but also as a function of position along the jet. The second new diagnostic is laser Thomson scattering which measures electron density and temperature at the location where the jet collides with the cloud. These diagnostics show that when the jet collides with a target cloud the jet slows down substantially and both the electron density and temperature increase. The experimental measurements are being compared with 3D MHD and hybrid kinetic numerical simulations that model the actual experimental geometry.

  13. The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: Magnetohydrodynamics Simulation Module for the Global Solar Corona.

    PubMed

    Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A

    Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.

  14. von Kármán–Howarth Equation for Hall Magnetohydrodynamics: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Verdini, Andrea; Landi, Simone; Franci, Luca; Matteini, Lorenzo

    2018-04-01

    A dynamical vectorial equation for homogeneous incompressible Hall-magnetohydrodynamic (MHD) turbulence together with the exact scaling law for third-order correlation tensors, analogous to that for the incompressible MHD, is rederived and applied to the results of two-dimensional hybrid simulations of plasma turbulence. At large (MHD) scales the simulations exhibit a clear inertial range where the MHD dynamic law is valid. In the sub-ion range the cascade continues via the Hall term, but the dynamic law derived in the framework of incompressible Hall-MHD equations is obtained only in a low plasma beta simulation. For a higher beta plasma the cascade rate decreases in the sub-ion range and the change becomes more pronounced as the plasma beta increases. This break in the cascade flux can be ascribed to nonthermal (kinetic) features or to others terms in the dynamical equation that are not included in the Hall-MHD incompressible approximation.

  15. Global MHD simulation of magnetosphere using HPF

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5% using 56 PEs of Fujitsu VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  16. An MHD variational principle that admits reconnection

    NASA Technical Reports Server (NTRS)

    Rilee, M. L.; Sudan, R. N.; Pfirsch, D.

    1997-01-01

    The variational approach of Pfirsch and Sudan's averaged magnetohydrodynamics (MHD) to the stability of a line-tied current layer is summarized. The effect of line-tying on current sheets that might arise in line-tied magnetic flux tubes by estimating the growth rates of a resistive instability using a variational method. The results show that this method provides a potentially new technique to gauge the stability of nearly ideal magnetohydrodynamic systems. The primary implication for the stability of solar coronal structures is that tearing modes are probably constant at work removing magnetic shear from the solar corona.

  17. Numerical analysis of MHD Carreau fluid flow over a stretching cylinder with homogenous-heterogeneous reactions

    NASA Astrophysics Data System (ADS)

    Khan, Imad; Ullah, Shafquat; Malik, M. Y.; Hussain, Arif

    2018-06-01

    The current analysis concentrates on the numerical solution of MHD Carreau fluid flow over a stretching cylinder under the influences of homogeneous-heterogeneous reactions. Modelled non-linear partial differential equations are converted into ordinary differential equations by using suitable transformations. The resulting system of equations is solved with the aid of shooting algorithm supported by fifth order Runge-Kutta integration scheme. The impact of non-dimensional governing parameters on the velocity, temperature, skin friction coefficient and local Nusselt number are comprehensively delineated with the help of graphs and tables.

  18. Extended Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Ganymede's Magnetosphere

    NASA Technical Reports Server (NTRS)

    Toth, Gabor; Jia, Xianzhe; Markidis, Stefano; Peng, Ivy Bo; Chen, Yuxi; Daldorff, Lars K. S.; Tenishev, Valeriy M.; Borovikov, Dmitry; Haiducek, John D.; Gombosi, Tamas I.; hide

    2016-01-01

    We have recently developed a new modeling capability to embed the implicit particle-in-cell (PIC) model iPIC3D into the Block-Adaptive-Tree-Solarwind-Roe-Upwind-Scheme magnetohydrodynamic (MHD) model. The MHD with embedded PIC domains (MHO-EPIC) algorithm Is a two-way coupled kinetic-fluid model. As one of the very first applications of the MHD-EPIC algorithm, we simulate the Interaction between Jupiter's magnetospherlc plasma and Ganymede's magnetosphere. We compare the MHO-EPIC simulations with pure Hall MHD simulations and compare both model results with Galileo observations to assess the Importance of kinetic effects In controlling the configuration and dynamics of Ganymede's magnetosphere. We find that the Hall MHD and MHO-EPIC solutions are qualitatively similar, but there are significant quantitative differences. In particular. the density and pressure inside the magnetosphere show different distributions. For our baseline grid resolution the PIC solution is more dynamic than the Hall MHD simulation and it compares significantly better with the Galileo magnetic measurements than the Hall MHD solution. The power spectra of the observed and simulated magnetic field fluctuations agree extremely well for the MHD-EPIC model. The MHO-EPIC simulation also produced a few flux transfer events (FTEs) that have magnetic signatures very similar to an observed event. The simulation shows that the FTEs often exhibit complex 3-0 structures with their orientations changing substantially between the equatorial plane and the Galileo trajectory, which explains the magnetic signatures observed during the magnetopause crossings. The computational cost of the MHO-EPIC simulation was only about 4 times more than that of the Hall MHD simulation.

  19. Nonlinear theory of magnetohydrodynamic flows of a compressible fluid in the shallow water approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klimachkov, D. A., E-mail: klimchakovdmitry@gmail.com; Petrosyan, A. S., E-mail: apetrosy@iki.rssi.ru

    2016-09-15

    Shallow water magnetohydrodynamic (MHD) theory describing incompressible flows of plasma is generalized to the case of compressible flows. A system of MHD equations is obtained that describes the flow of a thin layer of compressible rotating plasma in a gravitational field in the shallow water approximation. The system of quasilinear hyperbolic equations obtained admits a complete simple wave analysis and a solution to the initial discontinuity decay problem in the simplest version of nonrotating flows. In the new equations, sound waves are filtered out, and the dependence of density on pressure on large scales is taken into account that describesmore » static compressibility phenomena. In the equations obtained, the mass conservation law is formulated for a variable that nontrivially depends on the shape of the lower boundary, the characteristic vertical scale of the flow, and the scale of heights at which the variation of density becomes significant. A simple wave theory is developed for the system of equations obtained. All self-similar discontinuous solutions and all continuous centered self-similar solutions of the system are obtained. The initial discontinuity decay problem is solved explicitly for compressible MHD equations in the shallow water approximation. It is shown that there exist five different configurations that provide a solution to the initial discontinuity decay problem. For each configuration, conditions are found that are necessary and sufficient for its implementation. Differences between incompressible and compressible cases are analyzed. In spite of the formal similarity between the solutions in the classical case of MHD flows of an incompressible and compressible fluids, the nonlinear dynamics described by the solutions are essentially different due to the difference in the expressions for the squared propagation velocity of weak perturbations. In addition, the solutions obtained describe new physical phenomena related to the dependence of the height of the free boundary on the density of the fluid. Self-similar continuous and discontinuous solutions are obtained for a system on a slope, and a solution is found to the initial discontinuity decay problem in this case.« less

  20. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on unstructured meshes. Several stringent two- and three-dimensional problems are shown to work well with the methods presented here.

  1. Population pharmacokinetic analysis for 10-monohydroxy derivative of oxcarbazepine in pediatric epileptic patients shows no difference between Japanese and other ethnicities.

    PubMed

    Sugiyama, Ikuo; Bouillon, Thomas; Yamaguchi, Masayuki; Suzuki, Hikoe; Hirota, Takashi; Fink, Martin

    2015-04-01

    Oxcarbazepine is an anti-epileptic drug, which is almost completely metabolized by cytosolic enzymes in the liver to the active 10-monohyroxy metabolite (MHD) following oral administration. The pharmacokinetic (PK) profiles of MHD were evaluated in pediatric epileptic patients and a possible ethnic difference in PK of MHD between Japanese and non-Japanese pediatric patients was assessed. A non-linear mixed effect modeling approach was used to determine the PK of MHD. A one-compartment population model with first-order absorption appropriately described the PK of MHD. No clinically relevant differences were found for using body surface area or weight to explain between-patient variability, therefore the final model included the effects of body weight on apparent clearance (CL/F) and apparent volume of distribution (V/F) of MHD, and in addition, the effect of 3 concomitant anti-epileptic drugs (carbamazepine, phenobarbital and phenytoin) on CL/F of MHD. Inclusion of ethnicity as a covariate in the final model, concluded no ethnic difference with respect to CL/F of MHD between Japanese and non-Japanese patients. Hence, oxcarbazepine can be generally applied using the same dosage and administration for the treatment of partial onset seizures in pediatric patients, regardless of ethnicity. Copyright © 2014 The Japanese Society for the Study of Xenobiotics. Published by Elsevier Ltd. All rights reserved.

  2. An innovative demonstration of high power density in a compact MDH (magnetohydrodynamic) generator

    NASA Astrophysics Data System (ADS)

    Schmidt, H. J.; Lineberry, J. T.; Chapman, J. N.

    1990-06-01

    The present program was conducted by the University of Tennessee Space Institute (UTSI). It was by its nature a high risk experimental program to demonstrate the feasibility of high power density operation in a laboratory scale combustion driven MHD generator. Maximization of specific energy was not a consideration for the present program, but the results have implications in this regard by virtue of high energy fuel used. The power density is the ratio of the electrical energy output to the internal volume of the generator channel. The MHD process is a volumetric process and the power density is therefore a direct measure of the compactness of the system. Specific energy, is the ratio of the electrical energy output to consumable energy used for its production. The two parameters are conceptually interrelated. To achieve high power density and implied commensurate low system volume and weight, it was necessary to use an energetic fuel. The high energy fuel of choice was a mixture of powdered aluminum and carbon seeded with potassium carbonate and burned with gaseous oxygen. The solid fuel was burned in a hybrid combustion scheme wherein the fuel was cast within a cylindrical combustor in analogy with a solid propellant rocket motor. Experimental data is limited to gross channel output current and voltage, magnetic field strength, fuel and oxidizer flow rates, flow train external temperatures and combustor pressure. Similarly, while instantaneous oxidizer flow rates were measured, only average fuel consumption based on pre and post test component weights and dimensions was possible.

  3. An Analysis of Processes in the Solar Wind in a Thin Layer Adjacent to the Front of the Shock Wave

    NASA Astrophysics Data System (ADS)

    Molotkov, I. A.; Atamaniuk, B.

    2018-05-01

    A two-dimensional stationary system of nonlinear magnetohydrodynamics (MHD) equations in a thin layer adjoining the front of the interplanetary shock wave has been solved. Previously, any available publications relied on linear transport equations. But the presence of high-energy particles in the solar wind (SW) requires taking into account the processes of self-interaction. Our analysis examines the nonlinear terms in the MHD equations. A solution has been constructed for three cases: (1) in the absence of magnetic reconnections; (2) for magnetic reconnections; and (3) with the simultaneous action of reconnections and junction of magnetic islands. In all three cases, expressions were found for the main parameters of the SW. The results obtained on the basis of the solution of the MHD equations are consistent with the conclusions based on the investigation of the particle velocity distribution functions. This makes it possible to confirm the previously established fraction of particles excited to energies above 1 MeV.

  4. Nonlinear simulation of the fishbone instability

    NASA Astrophysics Data System (ADS)

    Idouakass, Malik; Faganello, Matteo; Berk, Herbert; Garbet, Xavier; Benkadda, Sadruddin; PIIM Team; IFS Team; IRFM Team

    2014-10-01

    We propose to extend the Odblom-Breizman precessional fishbone model to account for both the MagnetoHydroDynamic (MHD) nonlinearity at the q = 1 surface and the nonlinear response of the energetic particles contained within the q = 1 surface. This electromagnetic mode, whose excitation, damping and frequency chirping are determined by the self-consistent interaction between an energetic trapped particle population and the bulk plasma evolution, can induce effective transport and losses for the energetic particles, being them alpha-particles in next-future fusion devices or heated particles in present Tokamaks. The model is reduced to its simplest form, assuming a reduced MHD description for the bulk plasma and a two-dimensional phase-space evolution (gyro and bounce averaged) for deeply trapped energetic particles. Numerical simulations have been performed in order to characterize the mode chirping and saturation, in particular looking at the interplay between the development of phase-space structures and the system dissipation associated to the MHD non-linearities at the resonance locations.

  5. CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anninos, Peter; Lau, Cheuk; Bryant, Colton

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performedmore » separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.« less

  6. CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD

    NASA Astrophysics Data System (ADS)

    Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel

    2017-08-01

    We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.

  7. ECCD-induced tearing mode stabilization in coupled IPS/NIMROD/GENRAY HPC simulations

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Kruger, S. E.; Held, E. D.; Harvey, R. W.; Elwasif, W. R.

    2012-03-01

    We summarize ongoing developments toward an integrated, predictive model for determining optimal ECCD-based NTM stabilization strategies in ITER. We demonstrate the capability of the SWIM Project's Integrated Plasma Simulator (IPS) framework to choreograph multiple executions of, and data exchanges between, physics codes modeling various spatiotemporal scales of this coupled RF/MHD problem on several thousand HPC processors. As NIMROD evolves fluid equations to model bulk plasma behavior, self-consistent propagation/deposition of RF power in the ensuing plasma profiles is calculated by GENRAY. Data from both codes is then processed by computational geometry packages to construct the RF-induced quasilinear diffusion tensor; moments of this tensor (entering as additional terms in NIMROD's fluid equations due to the disparity in RF/MHD spatiotemporal scales) influence the dynamics of current, momentum, and energy evolution as well as the MHD closures. Initial results are shown to correctly capture the physics of magnetic island stabilization; we also discuss the development of a numerical plasma control system for active feedback stabilization of tearing modes.

  8. Comparing nonlinear MHD simulations of low-aspect-ratio RFPs to RELAX experiments

    NASA Astrophysics Data System (ADS)

    McCollam, K. J.; den Hartog, D. J.; Jacobson, C. M.; Sovinec, C. R.; Masamune, S.; Sanpei, A.

    2016-10-01

    Standard reversed-field pinch (RFP) plasmas provide a nonlinear dynamical system as a validation domain for numerical MHD simulation codes, with applications in general toroidal confinement scenarios including tokamaks. Using the NIMROD code, we simulate the nonlinear evolution of RFP plasmas similar to those in the RELAX experiment. The experiment's modest Lundquist numbers S (as low as a few times 104) make closely matching MHD simulations tractable given present computing resources. Its low aspect ratio ( 2) motivates a comparison study using cylindrical and toroidal geometries in NIMROD. We present initial results from nonlinear single-fluid runs at S =104 for both geometries and a range of equilibrium parameters, which preliminarily show that the magnetic fluctuations are roughly similar between the two geometries and between simulation and experiment, though there appear to be some qualitative differences in their temporal evolution. Runs at higher S are planned. This work is supported by the U.S. DOE and by the Japan Society for the Promotion of Science.

  9. Validation and Continued Development of Methods for Spheromak Simulation

    NASA Astrophysics Data System (ADS)

    Benedett, Thomas

    2017-10-01

    The HIT-SI experiment has demonstrated stable sustainment of spheromaks. Determining how the underlying physics extrapolate to larger, higher-temperature regimes is of prime importance in determining the viability of the inductively-driven spheromak. It is thus prudent to develop and validate a computational model that can be used to study current results and study the effect of possible design choices on plasma behavior. An extended MHD model has shown good agreement with experimental data at 14 kHz injector operation. Efforts to extend the existing validation to a range of higher frequencies (36, 53, 68 kHz) using the PSI-Tet 3D extended MHD code will be presented, along with simulations of potential combinations of flux conserver features and helicity injector configurations and their impact on current drive performance, density control, and temperature for future SIHI experiments. Work supported by USDoE.

  10. Effects of an external circuit on a MHD slider bearing with couplestress fluid between conducting plates

    NASA Astrophysics Data System (ADS)

    Tasneem Fathima, Syeda; Jamal, Salma; Hanumagowda, B. N.

    2018-04-01

    A MHD Slider bearing lubricated with conducting couplestress fluid (CCSF) between two electrical conducting plates under the influence of magnetic field in free space is theoretically investigated. A closed form solution for the film pressure and load carrying capacity is obtained analytically in terms of inlet-outlet (IO) film height ratio of slider bearings. The results are presented graphically for different values of operating parameters. The results suggest that the bearings with couplestress fluid as lubricant provide significant load carrying capacity than Newtonian lubricant case. Further, it is observed that the influence of applied magnetic field and induced magnetic field is to increase the load carrying capacity substantially while, the load decreases with increase in IO film ratio. Besides, the conductivity increases the load carrying capacity significantly. The results are compared with the Newtonian Fluid case.

  11. Overview of ASDEX Upgrade results

    NASA Astrophysics Data System (ADS)

    Zohm, H.; Adamek, J.; Angioni, C.; Antar, G.; Atanasiu, C. V.; Balden, M.; Becker, W.; Behler, K.; Behringer, K.; Bergmann, A.; Bertoncelli, T.; Bilato, R.; Bobkov, V.; Boom, J.; Bottino, A.; Brambilla, M.; Braun, F.; Brüdgam, M.; Buhler, A.; Chankin, A.; Classen, I.; Conway, G. D.; Coster, D. P.; de Marné, P.; D'Inca, R.; Drube, R.; Dux, R.; Eich, T.; Engelhardt, K.; Esposito, B.; Fahrbach, H.-U.; Fattorini, L.; Fink, J.; Fischer, R.; Flaws, A.; Foley, M.; Forest, C.; Fuchs, J. C.; Gál, K.; García Muñoz, M.; Gemisic Adamov, M.; Giannone, L.; Görler, T.; Gori, S.; da Graça, S.; Granucci, G.; Greuner, H.; Gruber, O.; Gude, A.; Günter, S.; Haas, G.; Hahn, D.; Harhausen, J.; Hauff, T.; Heinemann, B.; Herrmann, A.; Hicks, N.; Hobirk, J.; Hölzl, M.; Holtum, D.; Hopf, C.; Horton, L.; Huart, M.; Igochine, V.; Janzer, M.; Jenko, F.; Kallenbach, A.; Kálvin, S.; Kardaun, O.; Kaufmann, M.; Kick, M.; Kirk, A.; Klingshirn, H.-J.; Koscis, G.; Kollotzek, H.; Konz, C.; Krieger, K.; Kurki-Suonio, T.; Kurzan, B.; Lackner, K.; Lang, P. T.; Langer, B.; Lauber, P.; Laux, M.; Leuterer, F.; Likonen, J.; Liu, L.; Lohs, A.; Lunt, T.; Lyssoivan, A.; Maggi, C. F.; Manini, A.; Mank, K.; Manso, M.-E.; Mantsinen, M.; Maraschek, M.; Martin, P.; Mayer, M.; McCarthy, P.; McCormick, K.; Meister, H.; Meo, F.; Merkel, P.; Merkel, R.; Mertens, V.; Merz, F.; Meyer, H.; Mlynek, A.; Monaco, F.; Müller, H.-W.; Münich, M.; Murmann, H.; Neu, G.; Neu, R.; Neuhauser, J.; Nold, B.; Noterdaeme, J.-M.; Pautasso, G.; Pereverzev, G.; Poli, E.; Potzel, S.; Püschel, M.; Pütterich, T.; Pugno, R.; Raupp, G.; Reich, M.; Reiter, B.; Ribeiro, T.; Riedl, R.; Rohde, V.; Roth, J.; Rott, M.; Ryter, F.; Sandmann, W.; Santos, J.; Sassenberg, K.; Sauter, P.; Scarabosio, A.; Schall, G.; Schilling, H.-B.; Schirmer, J.; Schmid, A.; Schmid, K.; Schneider, W.; Schramm, G.; Schrittwieser, R.; Schustereder, W.; Schweinzer, J.; Schweizer, S.; Scott, B.; Seidel, U.; Sempf, M.; Serra, F.; Sertoli, M.; Siccinio, M.; Sigalov, A.; Silva, A.; Sips, A. C. C.; Speth, E.; Stäbler, A.; Stadler, R.; Steuer, K.-H.; Stober, J.; Streibl, B.; Strumberger, E.; Suttrop, W.; Tardini, G.; Tichmann, C.; Treutterer, W.; Tröster, C.; Urso, L.; Vainonen-Ahlgren, E.; Varela, P.; Vermare, L.; Volpe, F.; Wagner, D.; Wigger, C.; Wischmeier, M.; Wolfrum, E.; Würsching, E.; Yadikin, D.; Yu, Q.; Zasche, D.; Zehetbauer, T.; Zilker, M.

    2009-10-01

    ASDEX Upgrade was operated with a fully W-covered wall in 2007 and 2008. Stationary H-modes at the ITER target values and improved H-modes with H up to 1.2 were run without any boronization. The boundary conditions set by the full W wall (high enough ELM frequency, high enough central heating and low enough power density arriving at the target plates) require significant scenario development, but will apply to ITER as well. D retention has been reduced and stationary operation with saturated wall conditions has been found. Concerning confinement, impurity ion transport across the pedestal is neoclassical, explaining the strong inward pinch of high-Z impurities in between ELMs. In improved H-mode, the width of the temperature pedestal increases with heating power, consistent with a \\beta_{pol,ped}^{1/2} scaling. In the area of MHD instabilities, disruption mitigation experiments using massive Ne injection reach volume averaged values of the total electron density close to those required for runaway suppression in ITER. ECRH at the q = 2 surface was successfully applied to delay density limit disruptions. The characterization of fast particle losses due to MHD has shown the importance of different loss mechanisms for NTMs, TAEs and also beta-induced Alfven eigenmodes (BAEs). Specific studies addressing the first ITER operational phase show that O1 ECRH at the HFS assists reliable low-voltage breakdown. During ramp-up, additional heating can be used to vary li to fit within the ITER range. Confinement and power threshold in He are more favourable than in H, suggesting that He operation could allow us to assess H-mode operation in the non-nuclear phase of ITER operation.

  12. Ideal MHD Stability and Characteristics of Edge Localized Modes on CFETR

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Chan, Vincent; Xu, Xueqiao; Wang, Xiaogang; Cfetr Physics Team

    2017-10-01

    Investigation on the equilibrium operation regime, its ideal magnetohydrodynamics (MHD) stability and edge localized modes (ELM) characteristics is performed for China Fusion Engineering Test Reactor (CFETR). The CFETR operation regime study starts with a baseline scenario derived from multi-code integrated modeling, with key parameters varied to build a systematic database. These parameters, under profile and pedestal constraints, provide the foundation for engineering design. The linear stabilities of low-n and intermediate-n peeling-ballooning modes for CFETR baseline scenario are analyzed. Multi-code benchmarking, including GATO, ELITE, BOUT + + and NIMROD, demonstrated good agreement in predicting instabilities. Nonlinear behavior of ELMs for the baseline scenario is simulated using BOUT + + . Instabilities are found both at the pedestal top and inside the pedestal region, which lead to a mix of grassy and type I ELMs. Pedestal structures extending inward beyond the pedestal top are also varied to study the influence on ELM characteristic. Preliminary results on the dependence of the Type-I ELM divertor heat load scaling on machine size and pedestal pressure will also be presented. Prepared by LLNL under Contract DE-AC52-07NA27344 and National Magnetic Confinement Fusion Research Program of China (Grant No. 2014GB110003 and 2014GB107004).

  13. Validation of single-fluid and two-fluid magnetohydrodynamic models of the helicity injected torus spheromak experiment with the NIMROD code

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akcay, Cihan; Victor, Brian S.; Jarboe, Thomas R.

    We present a comparison study of 3-D pressureless resistive MHD (rMHD) and 3-D presureless two-fluid MHD models of the Helicity Injected Torus with Steady Inductive helicity injection (HIT-SI). HIT-SI is a current drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The comparable size of the collisionless ion skin depth d{sub i} to the resistive skin depth predicates the importance of the Hall term for HIT-SI. The simulations are run with NIMROD, an initial-value, 3-D extended MHD code. The modeled plasma density and temperature are assumed uniform and constant. The helicity injectors are modeledmore » as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification (I{sub tor}/I{sub inj}) and formation time τ{sub f} demonstrated by HIT-SI with similar internal magnetic fields. rMHD underestimates (I{sub tor}/I{sub inj}) and exhibits much a longer τ{sub f}. Biorthogonal decomposition (BD), a powerful mathematical tool for reducing large data sets, is employed to quantify how well the simulations reproduce the measured surface magnetic fields without resorting to a probe-by-probe comparison. BD shows that 2fl-MHD captures the dominant surface magnetic structures and the temporal behavior of these features better than rMHD.« less

  14. On the generation of magnetohydrodynamic waves in a stratified and magnetized fluid. II - Magnetohydrodynamic energy fluxes for late-type stars

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Rosner, R.

    1988-01-01

    Magnetohydrodynamic (MHD) wave energy fluxes for late-type stars are calculated, using previously obtained formulae for the source functions for the generation of MHD waves in a stratified, but otherwise uniform, turbulent atmosphere; the magnetic fields in the wave generation region are assumed to be homogeneous. In contradiction to previous results, it is shown that in this uniform magnetic field case there is no significant increase in the efficiency of MHD wave generation, at least within the theory's limits of applicability. The major results are that the MHD energy fluxes calculated for late-type stars are less than those obtained for compressible modes in the magnetic field-free case, and that these MHD energy fluxes do not vary enough for a given spectral type to explain the observed range of UV and X-ray fluxes from such stars. It is therefore concluded that MHD waves in stellar atmospheres with homogeneous magnetic fields in the wave generation region cannot explain the observed stellar coronal emissions; if such MHD waves are responsible for a significant component of stellar coronal heating, then nonuniform fields within the generation region must be appealed to.

  15. Numerical and experimental investigation of plasma plume deflection with MHD flow control

    NASA Astrophysics Data System (ADS)

    Kai, ZHAO; Feng, LI; Baigang, SUN; Hongyu, YANG; Tao, ZHOU; Ruizhi, SUN

    2018-04-01

    This paper presents a composite magneto hydrodynamics (MHD) method to control the low-temperature micro-ionized plasma flow generated by injecting alkali salt into the combustion gas to realize the thrust vector of an aeroengine. The principle of plasma flow with MHD control is analyzed. The feasibility of plasma jet deflection is investigated using numerical simulation with MHD control by loading the User-Defined Function model. A test rig with plasma flow controlled by MHD is established. An alkali salt compound with a low ionization energy is injected into combustion gas to obtain the low-temperature plasma flow. Finally, plasma plume deflection is obtained in different working conditions. The results demonstrate that plasma plume deflection with MHD control can be realized via numerical simulation. A low-temperature plasma flow can be obtained by injecting an alkali metal salt compound with low ionization energy into a combustion gas at 1800–2500 K. The vector angle of plasma plume deflection increases with the increase of gas temperature and the magnetic field intensity. It is feasible to realize the aim of the thrust vector of aeroengine by using MHD to control plasma flow deflection.

  16. Computational simulations of supersonic magnetohydrodynamic flow control, power and propulsion systems

    NASA Astrophysics Data System (ADS)

    Wan, Tian

    This work is motivated by the lack of fully coupled computational tool that solves successfully the turbulent chemically reacting Navier-Stokes equation, the electron energy conservation equation and the electric current Poisson equation. In the present work, the abovementioned equations are solved in a fully coupled manner using fully implicit parallel GMRES methods. The system of Navier-Stokes equations are solved using a GMRES method with combined Schwarz and ILU(0) preconditioners. The electron energy equation and the electric current Poisson equation are solved using a GMRES method with combined SOR and Jacobi preconditioners. The fully coupled method has also been implemented successfully in an unstructured solver, US3D, and convergence test results were presented. This new method is shown two to five times faster than the original DPLR method. The Poisson solver is validated with analytic test problems. Then, four problems are selected; two of them are computed to explore the possibility of onboard MHD control and power generation, and the other two are simulation of experiments. First, the possibility of onboard reentry shock control by a magnetic field is explored. As part of a previous project, MHD power generation onboard a re-entry vehicle is also simulated. Then, the MHD acceleration experiments conducted at NASA Ames research center are simulated. Lastly, the MHD power generation experiments known as the HVEPS project are simulated. For code validation, the scramjet experiments at University of Queensland are simulated first. The generator section of the HVEPS test facility is computed then. The main conclusion is that the computational tool is accurate for different types of problems and flow conditions, and its accuracy and efficiency are necessary when the flow complexity increases.

  17. Conservation Laws and Ponderomotive Force for Non-WKB, MHD Waves in the Solar Wind

    NASA Astrophysics Data System (ADS)

    McKenzie, J. F.; Webb, G. M.; Zank, G. P.; Kaghashvili, E. K.; Ratkiewicz, R. E.

    2004-12-01

    The interaction of non-WKB Alfvén waves in the Solar Wind was investigated by Heinemann and Olbert (1980), MacGregor and Charbonneau (1994) and others. MacGregor and Charbonneau (1994) investigated non-WKB Alfvén wave driven winds. We discuss both the canonical and physical wave stress energy tensors for non-WKB, MHD waves and the ponderomotive force exerted by the waves on the wind for the case where both compressible (magneto-acoustic type waves) and incompressible waves (Alfvén waves) are present. The equations for the waves include the effects of wave mixing (i.e. the interaction of the waves with each other via gradients in the background flow). Wave mixing is known to be an important element of turbulence theory in the Solar Wind. However, only the wave mixing of Alfvénic type disturbances have been accounted for in present models of Solar Wind turbulence (e.g. Zhou and Matthaeus, 1990), which use Elssässer variables to describe the perturbations. The relationship between the present analysis and nearly incompressible MHD (reduced MHD) is at present unclear. Also unclear is the relationship between the present analysis and theories using wave-mean field interactions (e.g. Grimshaw (1984), Holm (1999)). The analysis is based on a theory for wave and background stress-energy tensors developed by Webb et al. (2004a,b) using a Lagrangian formulation of the total system of waves and background plasma (see e.g. Dewar (1970) for the WKB case). Conservation laws for the total system of waves and background plasma result from application of Noether's theorems relating Lie symmetries of the action to conservation laws.

  18. Plasma Sail Concept Fundamentals

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Delamere, P.; Kabin, K.; Linde, T. J.

    2004-01-01

    The mini-magnetospheric plasma propulsion (M2P2) device, originally proposed by Winglee et al., predicts that a 15-km standoff distance (or 20-km cross-sectional dimension) of the magnetic bubble will provide for sufficient momentum transfer from the solar wind to accelerate a spacecraft to unprecedented speeds of 50 C80 km/s after an acceleration period of 3 mo. Such velocities will enable travel out of the solar system in period of 7 yr almost an order of magnitude improvement over present chemical-based propulsion systems. However, for the parameters of the simulation of Winglee et al., a fluid model for the interaction of M2P2 with the solar wind is not valid. It is assumed in the magnetohydrodynamic (MHD) fluid model, normally applied to planetary magnetospheres, that the characteristic scale size is much greater than the Larmor radius and ion skin depth of the solar wind. In the case of M2P2, the size of the magnetic bubble is actually less than or comparable to the scale of these characteristic parameters. Therefore, a kinetic approach, which addresses the small-scale physical mechanisms, must be used. A two-component approach to determining a preliminary estimate of the momentum transfer to the plasma sail has been adopted. The first component is a self-consistent MHD simulation of the small-scale expansion phase of the magnetic bubble. The fluid treatment is valid to roughly 5 km from the source and the steady-state MHD solution at the 5 km boundary was then used as initial conditions for the hybrid simulation. The hybrid simulations showed that the forces delivered to the innermost regions of the plasma sail are considerably ( 10 times) smaller than the MHD counterpart, are dominated by the magnetic field pressure gradient, and are directed primarily in the transverse direction.

  19. Analysis of oxcarbazepine and the 10-hydroxycarbazepine enantiomers in plasma by LC-MS/MS: application in a pharmacokinetic study.

    PubMed

    de Jesus Antunes, Natalicia; Wichert-Ana, Lauro; Coelho, Eduardo Barbosa; Della Pasqua, Oscar; Alexandre, Veriano; Takayanagui, Osvaldo Massaiti; Tozatto, Eduardo; Lanchote, Vera Lucia

    2013-12-01

    Oxcarbazepine is a second-generation antiepileptic drug indicated as monotherapy or adjunctive therapy in the treatment of partial seizures or generalized tonic-clonic seizures in adults and children. It undergoes rapid presystemic reduction with formation of the active metabolite 10-hydroxycarbazepine (MHD), which has a chiral center at position 10, with the enantiomers (S)-(+)- and R-(-)-MHD showing similar antiepileptic effects. This study presents the development and validation of a method of sequential analysis of oxcarbazepine and MHD enantiomers in plasma using liquid chromatography with tandem mass spectrometry (LC-MS/MS). Aliquots of 100 μL of plasma were extracted with a mixture of methyl tert-butyl ether: dichloromethane (2:1). The separation of oxcarbazepine and the MHD enantiomers was obtained on a chiral phase Chiralcel OD-H column, using a mixture of hexane:ethanol:isopropanol (80:15:5, v/v/v) as mobile phase at a flow rate of 1.3 mL/min with a split ratio of 1:5, and quantification was performed by LC-MS/MS. The limit of quantification was 12.5 ng oxcarbazepine and 31.25 ng of each MHD enantiomer/mL of plasma. The method was applied in the study of kinetic disposition of oxcarbazepine and the MHD enantiomers in the steady state after oral administration of 300 mg/12 h oxcarbazepine in a healthy volunteer. The maximum plasma concentration of oxcarbazepine was 1.2 µg/mL at 0.75 h. The kinetic disposition of MHD is enantioselective, with a higher proportion of the S-(+)-MHD enantiomer compared to R-(-)-MHD and an AUC(0-12) S-(+)/R-(-) ratio of 5.44. © 2013 Wiley Periodicals, Inc.

  20. High order entropy conservative central schemes for wide ranges of compressible gas dynamics and MHD flows

    NASA Astrophysics Data System (ADS)

    Sjögreen, Björn; Yee, H. C.

    2018-07-01

    The Sjogreen and Yee [31] high order entropy conservative numerical method for compressible gas dynamics is extended to include discontinuities and also extended to equations of ideal magnetohydrodynamics (MHD). The basic idea is based on Tadmor's [40] original work for inviscid perfect gas flows. For the MHD four formulations of the MHD are considered: (a) the conservative MHD, (b) the Godunov [14] non-conservative form, (c) the Janhunen [19] - MHD with magnetic field source terms, and (d) a MHD with source terms by Brackbill and Barnes [5]. Three forms of the high order entropy numerical fluxes for the MHD in the finite difference framework are constructed. They are based on the extension of the low order form of Chandrashekar and Klingenberg [9], and two forms with modifications of the Winters and Gassner [49] numerical fluxes. For flows containing discontinuities and multiscale turbulence fluctuations the high order entropy conservative numerical fluxes as the new base scheme under the Yee and Sjogreen [31] and Kotov et al. [21,22] high order nonlinear filter approach is developed. The added nonlinear filter step on the high order centered entropy conservative spatial base scheme is only utilized at isolated computational regions, while maintaining high accuracy almost everywhere for long time integration of unsteady flows and DNS and LES of turbulence computations. Representative test cases for both smooth flows and problems containing discontinuities for the gas dynamics and the ideal MHD are included. The results illustrate the improved stability by using the high order entropy conservative numerical flux as the base scheme instead of the pure high order central scheme.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav; Perez, Jean Carlos

    The complete project had two major goals — investigate MHD turbulence generated by counterpropagating Alfven modes, and study such processes in the LAPD device. In order to study MHD turbulence in numerical simulations, two codes have been used: full MHD, and reduced MHD developed specialy for this project. Quantitative numerical results are obtained through high-resolution simulations of strong MHD turbulence, performed through the 2010 DOE INCITE allocation. We addressed the questions of the spectrum of turbulence, its universality, and the value of the so-called Kolmogorov constant (the normalization coefficient of the spectrum). In these simulations we measured with unprecedented accuracymore » the energy spectra of magnetic and velocity fluctuations. We also studied the so-called residual energy, that is, the difference between kinetic and magnetic energies in turbulent fluctuations. In our analytic work we explained generation of residual energy in weak MHD turbulence, in the process of random collisions of counterpropagating Alfven waves. We then generalized these results for the case of strong MHD turbulence. The developed model explained generation of residual energy is strong MHD turbulence, and verified the results in numerical simulations. We then analyzed the imbalanced case, where more Alfven waves propagate in one direction. We found that spectral properties of the residual energy are similar for both balanced and imbalanced cases. We then compared strong MHD turbulence observed in the solar wind with turbulence generated in numerical simulations. Nonlinear interaction of Alfv´en waves has been studied in the upgraded Large Plasma Device (LAPD). We have simulated the collision of the Alfven modes in the settings close to the experiment. We have created a train of wave packets with the apltitudes closed to those observed n the experiment, and allowed them to collide. We then saw the generation of the second harmonic, resembling that observed in the experiment.« less

  2. Development of a real-time simulation tool towards self-consistent scenario of plasma start-up and sustainment on helical fusion reactor FFHR-d1

    NASA Astrophysics Data System (ADS)

    Goto, T.; Miyazawa, J.; Sakamoto, R.; Suzuki, Y.; Suzuki, C.; Seki, R.; Satake, S.; Huang, B.; Nunami, M.; Yokoyama, M.; Sagara, A.; the FFHR Design Group

    2017-06-01

    This study closely investigates the plasma operation scenario for the LHD-type helical reactor FFHR-d1 in view of MHD equilibrium/stability, neoclassical transport, alpha energy loss and impurity effect. In 1D calculation code that reproduces the typical pellet discharges in LHD experiments, we identify a self-consistent solution of the plasma operation scenario which achieves steady-state sustainment of the burning plasma with a fusion gain of Q ~ 10 was found within the operation regime that has been already confirmed in LHD experiment. The developed calculation tool enables systematic analysis of the operation regime in real time.

  3. Monolithic multigrid methods for two-dimensional resistive magnetohydrodynamics

    DOE PAGES

    Adler, James H.; Benson, Thomas R.; Cyr, Eric C.; ...

    2016-01-06

    Magnetohydrodynamic (MHD) representations are used to model a wide range of plasma physics applications and are characterized by a nonlinear system of partial differential equations that strongly couples a charged fluid with the evolution of electromagnetic fields. The resulting linear systems that arise from discretization and linearization of the nonlinear problem are generally difficult to solve. In this paper, we investigate multigrid preconditioners for this system. We consider two well-known multigrid relaxation methods for incompressible fluid dynamics: Braess--Sarazin relaxation and Vanka relaxation. We first extend these to the context of steady-state one-fluid viscoresistive MHD. Then we compare the two relaxationmore » procedures within a multigrid-preconditioned GMRES method employed within Newton's method. To isolate the effects of the different relaxation methods, we use structured grids, inf-sup stable finite elements, and geometric interpolation. Furthermore, we present convergence and timing results for a two-dimensional, steady-state test problem.« less

  4. A nuclear driven metallic vapor MHD coupled with MPD thrusters

    NASA Technical Reports Server (NTRS)

    Anghaie, Samim; Kumar, Ratan

    1991-01-01

    Nuclear energy as a source of power for space missions, represents an enabling technology for advanced and ambitious space applications. Nuclear fuel in a gaseous or liquid form has been configured as a promising and practical candidate in this regard. The present study investigates and performs a feasibility analysis of an innovative concept for space power generation and propulsion. The system embodies a conceptual nuclear reactor with an MHD generator and coupled to MPD thrusters. The reactor utilizes liquid uranium in droplet form as fuel and superheated metallic vapor as the working fluid. This ultrahigh temperature vapor core reactor brings forward varied and challenging technical issues, and it has been addressed to in this paper. A parametric study of the conceived system has been performed in a qualitative and quantitative manner. Preliminary results show enough promise for further indepth analysis of this novel system.

  5. Parametric study of potential early commercial MHD power plants. Task 3: Parameter variation of plant size

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    Plants with a nominal output of 200 and 500 MWe and conforming to the same design configuration as the Task II plant were investigated. This information is intended to permit an assessment of the competitiveness of first generation MHD/steam plants with conventional steam plants over the range of 200 to 1000 MWe. The results show that net plant efficiency of the MHD plant is significantly higher than a conventional steam plant of corresponding size. The cost of electricity is also less for the MHD plant over the entire plant size range. As expected, the cost differential is higher for the larger plant and decreases with plant size. Even at the 200 MWe capacity, however, the differential in COE between the MHD plant and the conventional plant is sufficient attractive to warrant serious consideration. Escalating fuel costs will enhance the competitive position of MHD plants because they can utilize the fuel more efficiently than conventional steam plants.

  6. Non-solenoidal startup and low-β operations in Pegasus

    NASA Astrophysics Data System (ADS)

    Schlossberg, D. J.; Battaglia, D. J.; Bongard, M. W.; Fonck, R. J.; Redd, A. J.

    2009-11-01

    Non-solenoidal startup using point-source DC helicity injectors (plasma guns) has been achieved in the Pegasus Toroidal Experiment for plasmas with Ip in excess of 100 kA using Iinj<4,A. The maximum achieved Ip tentatively scales as √ITFIinj/w, where w is the radial thickness of the gun-driven edge. The Ip limits appear to conform to a simple stationary model involving helicity conservation and Taylor relaxation. However, observed MHD activity reveals the additional dynamics of the relaxation process, evidenced by intermittent bursts of n=1 activity correlated with rapid redistribution of the current channel. Recent upgrades to the gun system provide higher helicity injection rates, smaller w, a more constrained gun current path, and more precise diagnostics. Experimental goals include extending parametric scaling studies, determining the conditions where parallel conduction losses dominate the helicity dissipation, and building the physics understanding of helicity injection to confidently design gun systems for larger, future tokamaks.

  7. Probing spherical tokamak plasmas using charged fusion products

    NASA Astrophysics Data System (ADS)

    Boeglin, Werner U.; Perez, Ramona V.; Darrow, Douglass S.; Cecconello, Marco; Klimek, Iwona; Allan, Scott Y.; Akers, Rob J.; Jones, Owen M.; Keeling, David L.; McClements, Ken G.; Scannell, Rory

    2015-11-01

    The detection of charged fusion products, such as protons and tritons resulting from D(d,p)t reactions, can be used to determine the fusion reaction rate profile in large spherical tokamak plasmas with neutral beam heating. The time resolution of a diagnostic of this type makes it possible to study the slowly-varying beam density profile, as well as rapid changes resulting from MHD instabilities. A 4-channel prototype proton detector (PD) was installed and operated on the MAST spherical tokamak in August/September 2013, and a new 6-channel system for the NSTX-U spherical tokamak is under construction. PD and neutron camera measurements obtained on MAST will be compared with TRANSP calculations, and the design of the new NSTX-U system will be presented, together with the first results from this diagnostic, if available. Supported in part by DOE DE-SC0001157.

  8. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    NASA Astrophysics Data System (ADS)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  9. The effect of extreme ionization rates during the initial collapse of a molecular cloud core

    NASA Astrophysics Data System (ADS)

    Wurster, James; Bate, Matthew R.; Price, Daniel J.

    2018-05-01

    What cosmic ray ionization rate is required such that a non-ideal magnetohydrodynamics (MHD) simulation of a collapsing molecular cloud will follow the same evolutionary path as an ideal MHD simulation or as a purely hydrodynamics simulation? To investigate this question, we perform three-dimensional smoothed particle non-ideal MHD simulations of the gravitational collapse of rotating, one solar mass, magnetized molecular cloud cores, which include Ohmic resistivity, ambipolar diffusion, and the Hall effect. We assume a uniform grain size of ag = 0.1 μm, and our free parameter is the cosmic ray ionization rate, ζcr. We evolve our models, where possible, until they have produced a first hydrostatic core. Models with ζcr ≳ 10-13 s-1 are indistinguishable from ideal MHD models, and the evolution of the model with ζcr = 10-14 s-1 matches the evolution of the ideal MHD model within 1 per cent when considering maximum density, magnetic energy, and maximum magnetic field strength as a function of time; these results are independent of ag. Models with very low ionization rates (ζcr ≲ 10-24 s-1) are required to approach hydrodynamical collapse, and even lower ionization rates may be required for larger ag. Thus, it is possible to reproduce ideal MHD and purely hydrodynamical collapses using non-ideal MHD given an appropriate cosmic ray ionization rate. However, realistic cosmic ray ionization rates approach neither limit; thus, non-ideal MHD cannot be neglected in star formation simulations.

  10. On the Measurements of Numerical Viscosity and Resistivity in Eulerian MHD Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rembiasz, Tomasz; Obergaulinger, Martin; Cerdá-Durán, Pablo

    2017-06-01

    We propose a simple ansatz for estimating the value of the numerical resistivity and the numerical viscosity of any Eulerian MHD code. We test this ansatz with the help of simulations of the propagation of (magneto)sonic waves, Alfvén waves, and the tearing mode (TM) instability using the MHD code Aenus. By comparing the simulation results with analytical solutions of the resistive-viscous MHD equations and an empirical ansatz for the growth rate of TMs, we measure the numerical viscosity and resistivity of Aenus. The comparison shows that the fast magnetosonic speed and wavelength are the characteristic velocity and length, respectively, ofmore » the aforementioned (relatively simple) systems. We also determine the dependence of the numerical viscosity and resistivity on the time integration method, the spatial reconstruction scheme and (to a lesser extent) the Riemann solver employed in the simulations. From the measured results, we infer the numerical resolution (as a function of the spatial reconstruction method) required to properly resolve the growth and saturation level of the magnetic field amplified by the magnetorotational instability in the post-collapsed core of massive stars. Our results show that it is most advantageous to resort to ultra-high-order methods (e.g., the ninth-order monotonicity-preserving method) to tackle this problem properly, in particular, in three-dimensional simulations.« less

  11. Single Null Negative Triangularity Tokamak for Power Handling

    NASA Astrophysics Data System (ADS)

    Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.

    2017-10-01

    Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.

  12. Advanced Plasma Shape Control to Enable High-Performance Divertor Operation on NSTX-U

    NASA Astrophysics Data System (ADS)

    Vail, Patrick; Kolemen, Egemen; Boyer, Mark; Welander, Anders

    2017-10-01

    This work presents the development of an advanced framework for control of the global plasma shape and its application to a variety of shape control challenges on NSTX-U. Operations in high-performance plasma scenarios will require highly-accurate and robust control of the plasma poloidal shape to accomplish such tasks as obtaining the strong-shaping required for the avoidance of MHD instabilities and mitigating heat flux through regulation of the divertor magnetic geometry. The new control system employs a high-fidelity model of the toroidal current dynamics in NSTX-U poloidal field coils and conducting structures as well as a first-principles driven calculation of the axisymmetric plasma response. The model-based nature of the control system enables real-time optimization of controller parameters in response to time-varying plasma conditions and control objectives. The new control scheme is shown to enable stable and on-demand plasma operations in complicated magnetic geometries such as the snowflake divertor. A recently-developed code that simulates the nonlinear evolution of the plasma equilibrium is used to demonstrate the capabilities of the designed shape controllers. Plans for future real-time implementations on NSTX-U and elsewhere are also presented. Supported by the US DOE under DE-AC02-09CH11466.

  13. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  14. Coupling MHD and PIC models in 2 dimensions

    NASA Astrophysics Data System (ADS)

    Daldorff, L.; Toth, G.; Sokolov, I.; Gombosi, T. I.; Lapenta, G.; Brackbill, J. U.; Markidis, S.; Amaya, J.

    2013-12-01

    Even for extended fluid plasma models, like Hall, anisotropic ion pressure and multi fluid MHD, there are still many plasma phenomena that are not well captured. For this reason, we have coupled the Implicit Particle-In-Cell (iPIC3D) code with the BATSRUS global MHD code. The PIC solver is applied in a part of the computational domain, for example, in the vicinity of reconnection sites, and overwrites the MHD solution. On the other hand, the fluid solver provides the boundary conditions for the PIC code. To demonstrate the use of the coupled codes for magnetospheric applications, we perform a 2D magnetosphere simulation, where BATSRUS solves for Hall MHD in the whole domain except for the tail reconnection region, which is handled by iPIC3D.

  15. Modeling MHD Stagnation Point Flow of Thixotropic Fluid with Non-uniform Heat Absorption/Generation

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Shah, Faisal; Khan, Muhammad Ijaz; Alsaedi, Ahmed; Yasmeen, Tabassum

    2017-12-01

    Here magnetohydrodynamic (MHD) stagnation point flow by nonlinear stretching sheet is discussed. Variable thickness of sheet is accounted. In addition non-uniform heat generation/absorption concept is retained. Numerical treatment to arising nonlinear system is presented. Shooting procedure is adopted for numerical treatment. Graphs and tables lead to physical description of results. It is observed that skin friction enhances for ( H a) and it decays for different rising values of ( K 1), ( K 2) and ( n). Further temperature gradient increases for higher estimation of (Pr) and decreases for larger ( H a). Major findings of present analysis are presented.

  16. Assessment of the MHD capability in the ATHENA code using data from the ALEX facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1989-03-01

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility.

  17. Computer Simulation of the VASIMR Engine

    NASA Technical Reports Server (NTRS)

    Garrison, David

    2005-01-01

    The goal of this project is to develop a magneto-hydrodynamic (MHD) computer code for simulation of the VASIMR engine. This code is designed be easy to modify and use. We achieve this using the Cactus framework, a system originally developed for research in numerical relativity. Since its release, Cactus has become an extremely powerful and flexible open source framework. The development of the code will be done in stages, starting with a basic fluid dynamic simulation and working towards a more complex MHD code. Once developed, this code can be used by students and researchers in order to further test and improve the VASIMR engine.

  18. The Pulse Detonation Rocket Induced MHD Ejector (PDRIME) Concept (Preprint)

    DTIC Science & Technology

    2008-06-10

    flight applications. Thrust augmentation , such as PDE- ejector configurations, can potentially alleviate this problem. Here, we study the potential...flow, to assist in augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams...and the ejector operates. This is one of several configurations in which the PDRIME concept could be used for thrust augmentation in advanced

  19. The numerical modelling of MHD astrophysical flows with chemistry

    NASA Astrophysics Data System (ADS)

    Kulikov, I.; Chernykh, I.; Protasov, V.

    2017-10-01

    The new code for numerical simulation of magnetic hydrodynamical astrophysical flows with consideration of chemical reactions is given in the paper. At the heart of the code - the new original low-dissipation numerical method based on a combination of operator splitting approach and piecewise-parabolic method on the local stencil. The chemodynamics of the hydrogen while the turbulent formation of molecular clouds is modeled.

  20. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohydrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regime where microinstabilities could potentially be significant.

  1. Microinstabilities in the Gasdynamic Mirror Propulsion System

    NASA Technical Reports Server (NTRS)

    Emrich, William

    2005-01-01

    The gasdynamic mirror has been proposed as a concept which could form the basis of a highly efficient fusion rocket engine. Gasdynamic mirrors differ from most other mirror type plasma confinement schemes in that they have much larger aspect ratios and operate at somewhat higher plasma densities. There are several types of instabilities which are known to plague mirror type confinement schemes. These instabilities fall into two general classes. One class of instability is the Magnetohdrodynamic or MHD instability which induces gross distortions in the plasma geometry. The other class of instability is the "loss cone" microinstability which leads to general plasma turbulence. The "loss cone" microinstability is caused by velocity space asymmetries resulting from the loss of plasma having constituent particle velocities within the angle of the magnetic mirror "loss cone." These instabilities generally manifest themselves in high temperature, moderately dense plasmas. The present study indicates that a GDM configured as a rocket engine might operate in a plasma regine where microinstabilities could potentially be significant.

  2. Magnetohydrodynamic Propulsion for the Classroom

    NASA Astrophysics Data System (ADS)

    Font, Gabriel I.; Dudley, Scott C.

    2004-10-01

    The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.

  3. Resolving the Kinetic Reconnection Length Scale in Global Magnetospheric Simulations with MHD-EPIC

    NASA Astrophysics Data System (ADS)

    Toth, G.; Chen, Y.; Cassak, P.; Jordanova, V.; Peng, B.; Markidis, S.; Gombosi, T. I.

    2016-12-01

    We have recently developed a new modeling capability: the Magnetohydrodynamics with Embedded Particle-in-Cell (MHD-EPIC) algorithm with support from Los Alamos SHIELDS and NSF INSPIRE grants. We have implemented MHD-EPIC into the Space Weather Modeling Framework (SWMF) using the implicit Particle-in-Cell (iPIC3D) and the BATS-R-US extended magnetohydrodynamic codes. The MHD-EPIC model allows two-way coupled simulations in two and three dimensions with multiple embedded PIC regions. Both BATS-R-US and iPIC3D are massively parallel codes. The MHD-EPIC approach allows global magnetosphere simulations with embedded kinetic simulations. For small magnetospheres, like Ganymede or Mercury, we can easily resolve the ion scales around the reconnection sites. Modeling the Earth magnetosphere is very challenging even with our efficient MHD-EPIC model due to the large separation between the global and ion scales. On the other hand the large separation of scales may be exploited: the solution may not be sensitive to the ion inertial length as long as it is small relative to the global scales. The ion inertial length can be varied by changing the ion mass while keeping the MHD mass density, the velocity, and pressure the same for the initial and boundary conditions. Our two-dimensional MHD-EPIC simulations for the dayside reconnection region show in fact, that the overall solution is not sensitive to ion inertial length. The shape, size and frequency of flux transfer events are very similar for a wide range of ion masses. Our results mean that 3D MHD-EPIC simulations for the Earth and other large magnetospheres can be made computationally affordable by artificially increasing the ion mass: the required grid resolution and time step in the PIC model are proportional to the ion inertial length. Changing the ion mass by a factor of 4, for example, speeds up the PIC code by a factor of 256. In fact, this approach allowed us to perform an hour-long 3D MHD-EPIC simulations for the Earth magnetosphere.

  4. Nonlinear Dynamics of Non-uniform Current-Vortex Sheets in Magnetohydrodynamic Flows

    NASA Astrophysics Data System (ADS)

    Matsuoka, C.; Nishihara, K.; Sano, T.

    2017-04-01

    A theoretical model is proposed to describe fully nonlinear dynamics of interfaces in two-dimensional MHD flows based on an idea of non-uniform current-vortex sheet. Application of vortex sheet model to MHD flows has a crucial difficulty because of non-conservative nature of magnetic tension. However, it is shown that when a magnetic field is initially parallel to an interface, the concept of vortex sheet can be extended to MHD flows (current-vortex sheet). Two-dimensional MHD flows are then described only by a one-dimensional Lagrange parameter on the sheet. It is also shown that bulk magnetic field and velocity can be calculated from their values on the sheet. The model is tested by MHD Richtmyer-Meshkov instability with sinusoidal vortex sheet strength. Two-dimensional ideal MHD simulations show that the nonlinear dynamics of a shocked interface with density stratification agrees fairly well with that for its corresponding potential flow. Numerical solutions of the model reproduce properly the results of the ideal MHD simulations, such as the roll-up of spike, exponential growth of magnetic field, and its saturation and oscillation. Nonlinear evolution of the interface is found to be determined by the Alfvén and Atwood numbers. Some of their dependence on the sheet dynamics and magnetic field amplification are discussed. It is shown by the model that the magnetic field amplification occurs locally associated with the nonlinear dynamics of the current-vortex sheet. We expect that our model can be applicable to a wide variety of MHD shear flows.

  5. High-rep-rate Thomson scattering for LHD

    NASA Astrophysics Data System (ADS)

    den Hartog, D. J.; Borchardt, M. T.; Holly, D. J.; Schmitz, O.; Yasuhara, R.; Yamada, I.; Funaba, H.; Osakabe, M.; Morisaki, T.

    2017-10-01

    A high-rep-rate pulse-burst laser system is being built for the LHD Thomson scattering (TS) diagnostic. This laser will have two operating scenarios, a fast-burst sequence of 15 kHz rep rate for at least 15 ms, and a slow-burst sequence of 1 kHz for at least 50 ms. There will be substantial flexibility in burst sequences for tailoring to experimental requirements. This new laser system will operate alongside the existing lasers in the LHD TS diagnostic, and will use the same beamline. This increase in temporal resolution capability complements the high spatial resolution (144 points) of the LHD TS diagnostic, providing unique measurement capability unmatched on any other fusion experiment. The new pulse-burst laser is a straightforward application of technology developed at UW-Madison, consisting of a Nd:YAG laser head with modular flashlamp drive units and a customized control system. Variable pulse-width drive of the flashlamps is accomplished by IGBT (insulated gate bipolar transistor) switching of electrolytic capacitor banks. Direct control of the laser Pockels cell drive enables optimal pulse energy extraction, producing >1.5 J q-switched pulses with 20 ns FWHM. Burst operation of this laser system will be used to capture fast time evolution of the electron temperature and density profiles during events such as ELMs, RMP perturbations, and various MHD modes. This work is supported by the U. S. Department of Energy and the National Institute for Fusion Science (Japan).

  6. Accelerating 3D Hall MHD Magnetosphere Simulations with Graphics Processing Units

    NASA Astrophysics Data System (ADS)

    Bard, C.; Dorelli, J.

    2017-12-01

    The resolution required to simulate planetary magnetospheres with Hall magnetohydrodynamics result in program sizes approaching several hundred million grid cells. These would take years to run on a single computational core and require hundreds or thousands of computational cores to complete in a reasonable time. However, this requires access to the largest supercomputers. Graphics processing units (GPUs) provide a viable alternative: one GPU can do the work of roughly 100 cores, bringing Hall MHD simulations of Ganymede within reach of modest GPU clusters ( 8 GPUs). We report our progress in developing a GPU-accelerated, three-dimensional Hall magnetohydrodynamic code and present Hall MHD simulation results for both Ganymede (run on 8 GPUs) and Mercury (56 GPUs). We benchmark our Ganymede simulation with previous results for the Galileo G8 flyby, namely that adding the Hall term to ideal MHD simulations changes the global convection pattern within the magnetosphere. Additionally, we present new results for the G1 flyby as well as initial results from Hall MHD simulations of Mercury and compare them with the corresponding ideal MHD runs.

  7. Emission of magnetosound from MHD-unstable shear flow boundaries

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Rankin, R.; Mann, I. R.

    2016-09-01

    The emission of propagating MHD waves from the boundaries of flow channels that are unstable to the Kelvin-Helmholtz Instability (KHI) in magnetized plasma is investigated. The KHI and MHD wave emission are found to be two competing processes. It is shown that the fastest growing modes of the KHI surface waves do not coincide with efficient wave energy transport away from a velocity shear boundary. MHD wave emission is found to be inefficient when growth rates of KHI surface waves are maximum, which corresponds to the situation where the ambient magnetic field is perpendicular to the flow channel velocity vector. The efficiency of wave emission increases with increasing magnetic field tension, which in Earth's magnetosphere likely dominates along the nightside magnetopause tailward of the terminator, and within earthward Bursty Bulk Flows (BBFs) in the inner plasma sheet. MHD wave emission may also dominate in Supra-Arcade Downflows (SADs) in the solar corona. Our results suggest that efficient emission of propagating MHD waves along BBF and SAD boundaries can potentially explain observations of deceleration and stopping of BBFs and SADs.

  8. Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines

    NASA Astrophysics Data System (ADS)

    Cole, Lord Kahil

    A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be significantly altered by reasonable applied magnetic fields (Bz ≤ 8T), but that it takes a stronger applied field (Bz > 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.

  9. Magnetogasdynamic Power Extraction and Flow Conditioning for a Gas Turbine

    NASA Technical Reports Server (NTRS)

    Adamovich, Igor V.; Rich, J. William; Schneider, Steven; Blankson, Isaiah

    2003-01-01

    An extension of the Russian AJAX concept to a turbojet is being explored. This magnetohydrodynamic (MHD) energy bypass engine cycle incorporating conventional gas turbine technology has MHD flow conditioning at the inlet to electromagnetically extract part of the inlet air kinetic energy. The electrical power generated can be used for various on-board vehicle requirements including plasma flow control around the vehicle or it may be used for augmenting the expanding flow in the high speed nozzle by MHD forces to generate more thrust. In order to achieve this interaction, the air needs to be ionized by an external means even up to fairly high flight speeds, and the leading candidates may be classified as electrical discharge devices. The present kinetic modeling calculations suggest that the use of electron beams with characteristics close to the commercially available e-beam systems (electron energy approx. 60 keV, beam current approx. 0.2 mA/sq cm) to sustain ionization in intermediate pressure, low-temperature (P = 0.1 atm, T = 300 K) supersonic air flows allows considerable reduction of the flow kinetic energy (up to 10 to 20 percent in M = 3 flows). The calculations also suggest that this can be achieved at a reasonable electron beam efficiency (eta approx. 5), even if the e-beam window losses are taken into account. At these conditions, the exit NO and O atom concentrations due to e-beam initiated chemical reactions do not exceed 30 ppm. Increasing the beam current up to approx. 2 mA/sq cm, which corresponds to a maximum electrical conductivity of sigma(sub max) approx. 0.8 mho/m at the loading parameter of K = 0.5, would result in a much greater reduction of the flow kinetic energy (up to 30 to 40 percent). The MHD channel efficiency at these conditions would be greatly reduced (to eta approx. 1) due to increased electron recombination losses in the channel. At these conditions, partial energy conversion from kinetic energy to heat would result in a significant total pressure loss (P(sub 0)/P(sub 0i) approx. 0.3). The total pressure loss can be reduced operating at the loading parameter closer to unity, at the expense of the reduced electrical power output. Raising the beam current would also result in the increase of the exit O atom concentrations (up to 600 ppm) and NO (up to 150 ppm).

  10. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  11. Experimental identification of nonlinear coupling between (intermediate, small)-scale microturbulence and an MHD mode in the core of a superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Sun, P. J.; Li, Y. D.; Ren, Y.; Zhang, X. D.; Wu, G. J.; Xu, L. Q.; Chen, R.; Li, Q.; Zhao, H. L.; Zhang, J. Z.; Shi, T. H.; Wang, Y. M.; Lyu, B.; Hu, L. Q.; Li, J.; The EAST Team

    2018-01-01

    In this paper, we present clear experimental evidence of core region nonlinear coupling between (intermediate, small)-scale microturbulence and an magnetohydrodynamics (MHD) mode during the current ramp-down phase in a set of L-mode plasma discharges in the experimental advanced superconducting tokamak (EAST, Wan et al (2006 Plasma Sci. Technol. 8 253)). Density fluctuations of broadband microturbulence (k\\perpρi˜2{-}5.2 ) and the MHD mode (toroidal mode number m = -1 , poloidal mode number n = 1 ) are measured simultaneously, using a four-channel tangential CO2 laser collective scattering diagnostic in core plasmas. The nonlinear coupling between the broadband microturbulence and the MHD mode is directly demonstrated by showing a statistically significant bicoherence and modulation of turbulent density fluctuation amplitude by the MHD mode.

  12. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test ofmore » that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs.« less

  13. On Hydromagnetic Waves in Atmospheres with Application to the Sun

    NASA Astrophysics Data System (ADS)

    Campos, L. M. B. C.

    Sir James Lighthill has an exceptionally wide range of research interests; one of them is magnetohydrodynamics (MHD). In a major paper (Lighthill, 1959), he considers MHD waves in general, and in particular Alfvén waves with the Hall effect. He analyzes the radiation field using a method of asymptotic estimation of Fourier integrals, which was further developed in subsequent papers (Lighthill, 1964). This method is applied to internal or acoustic-gravity waves in his book on waves in fluids (Lighthill, 1978), which includes an appendix on MHD waves. As an applied mathematician, Sir James was always aware of the applications of his theories; in the case of MHD waves he considered their role in the heating of the solar atmosphere (Lighthill, 1967). In this presentation in honor of Sir James Lighthill, I choose to address the subject of hydromagnetic waves, with application to the solar atmosphere and wind, for two reasons: first it is less likely to be covered by other authors than, say, his better known work on aerodynamics, aeroacoustics, or biofluiddynamics; and I feel a volume in honor of Sir James should reflect his significant contributions to MHD. The second motivation is that about two decades ago, Sir James suggested that I consider magneto-atmospheric waves and their role in the solar atmosphere, and this may be an appropriate occasion to report on what was made of this suggestion. Sir James has a rare ability not only to initiate new areas of research but also to pinpoint subjects ripe for significant development, and this is also substantiated in the field of atmospheric waves. In the present communication paper I consider all three MHD modes (Alfvén, slow, and fast), including viscous and resistive dissipation, cases with external magnetic fields of varying strength and direction (spherical and spiral waves), and the Hall effect and some instances of nonlinear effects; application to the solar atmosphere and wind shows that MHD waves play a major role in energy and mass balance in the solar system. The case of weakly dissipative nonlinear magnetosonic waves relates to another celebrated paper on viscous effects on large amplitude sound waves (Lighthill, 1956). Although I have research interests influenced by, or in common with, Sir James, in other areas, such as aeroacoustics (e.g., Campos, 1986), aeronautics (Campos et al., 1995), and applied mathematics (Campos, 1984a, 1994a), I chose to concentrate on magneto-atmospheric waves and the Sun, as an expression of gratitude for Sir James's inspiring suggestion.

  14. MHD Stability of Axisymmetric Plasmas In Closed Line Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Simakov, Andrei N.; Catto, Peter J.; Ramos, Jesus J.; Hastie, R. J.

    2003-04-01

    The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD energy principle is employed to study stability of pressure driven Alfvén modes. A point dipole is considered in detail to demonstrate that equilibria exist, which are MHD stable for arbitrary beta. Effects of sound waves and plasma resistivity are investigated next for point dipole equilibria by means of resistive MHD theory.

  15. Laser and solar-photovoltaic space power systems comparison. II.

    NASA Technical Reports Server (NTRS)

    De Young, R. J.; Stripling, J.; Enderson, T. M.; Humes, D. H.; Davis, W. T.

    1984-01-01

    A comparison of total system cost is made between solar photovoltaic and laser/receiver systems. The laser systems assume either a solar-pumped CO2 blackbody transfer laser with MHD receiver or a solar pumped liquid neodymium laser with a photovoltaic receiver. Total system costs are less for the laser systems below 300 km where drag is significant. System costs are highly dependent on altitude.

  16. Multi-Fluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms, Initial Results

    NASA Technical Reports Server (NTRS)

    Gkocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J. C.; Kistler, L. M.

    2010-01-01

    The magnetosphere contains a significant amount of ionospheric O{+}, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the BATS-R-US model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multi-fluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single- fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multi-fluid MHD model (with outflow) gives comparable results to the multi-species MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multi-species and multi-fluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H{+} and O(+}, which is not possible when utilizing the other techniques considered.

  17. Multifluid Block-Adaptive-Tree Solar Wind Roe-Type Upwind Scheme: Magnetospheric Composition and Dynamics During Geomagnetic Storms-Initial Results

    NASA Technical Reports Server (NTRS)

    Glocer, A.; Toth, G.; Ma, Y.; Gombosi, T.; Zhang, J.-C.; Kistler, L. M.

    2009-01-01

    The magnetosphere contains a significant amount of ionospheric O+, particularly during geomagnetically active times. The presence of ionospheric plasma in the magnetosphere has a notable impact on magnetospheric composition and processes. We present a new multifluid MHD version of the Block-Adaptive-Tree Solar wind Roe-type Upwind Scheme model of the magnetosphere to track the fate and consequences of ionospheric outflow. The multifluid MHD equations are presented as are the novel techniques for overcoming the formidable challenges associated with solving them. Our new model is then applied to the May 4, 1998 and March 31, 2001 geomagnetic storms. The results are juxtaposed with traditional single-fluid MHD and multispecies MHD simulations from a previous study, thereby allowing us to assess the benefits of using a more complex model with additional physics. We find that our multifluid MHD model (with outflow) gives comparable results to the multispecies MHD model (with outflow), including a more strongly negative Dst, reduced CPCP, and a drastically improved magnetic field at geosynchronous orbit, as compared to single-fluid MHD with no outflow. Significant differences in composition and magnetic field are found between the multispecies and multifluid approach further away from the Earth. We further demonstrate the ability to explore pressure and bulk velocity differences between H+ and O+, which is not possible when utilizing the other techniques considered

  18. MHD technology transfer, integration, and review committee

    NASA Astrophysics Data System (ADS)

    1990-05-01

    As part of Task 8 of the magnetohydrodynamic (MHD) Integrated Topping Cycle (ITC) project, TRW was given the responsibility to organize, charter and co-chair, with the Department of Energy (DOE), an MHD Technology Transfer, Integration and Review Committee (TTIRC). The TTIRC consists of an Executive Committee (EC) which acts as the governing body, and a General Committee (GC), also referred to as the main or full committee, consisting of representatives from the various POC contractors, participating universities and national laboratories, utilities, equipment suppliers, and other potential MHD users or investors. The purpose of the TTIRC is to: (1) review all Proof-of-Concept (POC) projects and schedules in the national MHD program; to assess their compatibility with each other and the first commercial MHD retrofit plant; (2) establish and implement technology transfer formats for users of this technology; (3) identify interfaces, issues, and funding structures directly impacting the success of the commercial retrofit; (4) investigate and identify the manner in which, and by whom, the above should be resolved; and (5) investigate and assess other participation (foreign and domestic) in the U.S. MHD Program. There are seven sections: introduction; Executive Committee and General Committee activity; Committee activities related to technology transfer; ongoing POC integration activities being performed under the auspices of the Executive Committee; recommendations passed on to the DOE by the Executive Committee; Planned activities for the next six months.

  19. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  20. The Magnetic Reconnection Code: an AMR-based fully implicit simulation suite

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Bhattacharjee, A.; Ng, C.-S.

    2006-12-01

    Extended MHD models, which incorporate two-fluid effects, are promising candidates to enhance understanding of collisionless reconnection phenomena in laboratory, space and astrophysical plasma physics. In this paper, we introduce two simulation codes in the Magnetic Reconnection Code suite which integrate reduced and full extended MHD models. Numerical integration of these models comes with two challenges: Small-scale spatial structures, e.g. thin current sheets, develop and must be well resolved by the code. Adaptive mesh refinement (AMR) is employed to provide high resolution where needed while maintaining good performance. Secondly, the two-fluid effects in extended MHD give rise to dispersive waves, which lead to a very stringent CFL condition for explicit codes, while reconnection happens on a much slower time scale. We use a fully implicit Crank--Nicholson time stepping algorithm. Since no efficient preconditioners are available for our system of equations, we instead use a direct solver to handle the inner linear solves. This requires us to actually compute the Jacobian matrix, which is handled by a code generator that calculates the derivative symbolically and then outputs code to calculate it.

  1. Fluctuation driven EMFs in the Madison Dynamo Experiment

    NASA Astrophysics Data System (ADS)

    Kaplan, Elliot; Brown, Ben; Clark, Mike; Nornberg, Mark; Rahbarnia, Kian; Rasmus, Alex; Taylor, Zane; Forest, Cary

    2013-04-01

    The Madison Dynamo Experiment is a 1 m diameter sphere filled with liquid Sodium designed to study MHD in a simply connected geometry. Two impellers drive a two-vortex flow, based on the calculations of Dudley and James, intended to excite system-scale dynamo instability. We present a collection of results from experiments measuring hydrodynamic fluctuations and their MHD effects. An equatorial baffle was added to the experiment in order to diminish the large-eddy hydrodynamic fluctuations by stabilizing the shear layer between the two counter-rotating flow cells. The change in the fluctuation levels was inferred from the change in the spatial spectrum of the induced magnetic field. This reduction correlated with a 2.4 times increase in the induced toroidal magnetic field (a proxy measure of the effective resistivity). Furthermore, the local velocity fluctuations were directly measured by the addition of a 3-d emf probe (a strong permanent magnet inserted into the flow with electrical leads to measure the induced voltage, and magnetic probes to determine the magnetic fluctuations). The measured emfs are consistent with the enhanced magnetic diffusivity interpretation of mean-field MHD.

  2. A Science Cloud: OneSpaceNet

    NASA Astrophysics Data System (ADS)

    Morikawa, Y.; Murata, K. T.; Watari, S.; Kato, H.; Yamamoto, K.; Inoue, S.; Tsubouchi, K.; Fukazawa, K.; Kimura, E.; Tatebe, O.; Shimojo, S.

    2010-12-01

    Main methodologies of Solar-Terrestrial Physics (STP) so far are theoretical, experimental and observational, and computer simulation approaches. Recently "informatics" is expected as a new (fourth) approach to the STP studies. Informatics is a methodology to analyze large-scale data (observation data and computer simulation data) to obtain new findings using a variety of data processing techniques. At NICT (National Institute of Information and Communications Technology, Japan) we are now developing a new research environment named "OneSpaceNet". The OneSpaceNet is a cloud-computing environment specialized for science works, which connects many researchers with high-speed network (JGN: Japan Gigabit Network). The JGN is a wide-area back-born network operated by NICT; it provides 10G network and many access points (AP) over Japan. The OneSpaceNet also provides with rich computer resources for research studies, such as super-computers, large-scale data storage area, licensed applications, visualization devices (like tiled display wall: TDW), database/DBMS, cluster computers (4-8 nodes) for data processing and communication devices. What is amazing in use of the science cloud is that a user simply prepares a terminal (low-cost PC). Once connecting the PC to JGN2plus, the user can make full use of the rich resources of the science cloud. Using communication devices, such as video-conference system, streaming and reflector servers, and media-players, the users on the OneSpaceNet can make research communications as if they belong to a same (one) laboratory: they are members of a virtual laboratory. The specification of the computer resources on the OneSpaceNet is as follows: The size of data storage we have developed so far is almost 1PB. The number of the data files managed on the cloud storage is getting larger and now more than 40,000,000. What is notable is that the disks forming the large-scale storage are distributed to 5 data centers over Japan (but the storage system performs as one disk). There are three supercomputers allocated on the cloud, one from Tokyo, one from Osaka and the other from Nagoya. One's simulation job data on any supercomputers are saved on the cloud data storage (same directory); it is a kind of virtual computing environment. The tiled display wall has 36 panels acting as one display; the pixel (resolution) size of it is as large as 18000x4300. This size is enough to preview or analyze the large-scale computer simulation data. It also allows us to take a look of multiple (e.g., 100 pictures) on one screen together with many researchers. In our talk we also present a brief report of the initial results using the OneSpaceNet for Global MHD simulations as an example of successful use of our science cloud; (i) Ultra-high time resolution visualization of Global MHD simulations on the large-scale storage and parallel processing system on the cloud, (ii) Database of real-time Global MHD simulation and statistic analyses of the data, and (iii) 3D Web service of Global MHD simulations.

  3. Local properties of magnetic reconnection in nonlinear resistive- and extended-magnetohydrodynamic toroidal simulations of the sawtooth crash

    DOE PAGES

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; ...

    2016-12-15

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beidler, M. T.; Cassak, P. A.; Jardin, S. C.

    We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C 1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m, n) = (1, 1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibitmore » a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. Furthermore, this study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.« less

  5. Relativistic self-similar dynamic gravitational collapses of a quasi-spherical general polytropic magnetofluid

    NASA Astrophysics Data System (ADS)

    Lou, Yu-Qing; Xia, Yu-Kai

    2017-05-01

    We study magnetohydrodynamic (MHD) self-similar collapses and void evolution, with or without shocks, of a general polytropic quasi-spherical magnetofluid permeated by random transverse magnetic fields under the Paczynski-Wiita gravity that captures essential general relativistic effects of a Schwarzschild black hole (BH) with a growing mass. Based on the derived set of non-linear MHD ordinary differential equations, we obtain various asymptotic MHD solutions, the geometric and analytical properties of the magnetosonic critical curve (MSCC) and MHD shock jump conditions. Novel asymptotic MHD solution behaviours near the rim of central expanding voids are derived analytically. By exploring numerical global MHD solutions, we identify allowable boundary conditions at large radii that accommodate a smooth solution and show that a reasonable amount of magnetization significantly increases the mass accretion rate in the expansion-wave-collapse solution scenario. We also construct the counterparts of envelope-expansion-core-collapse solutions that cross the MSCC twice, which are found to be closely paired with a sequence of global smooth solutions satisfying a novel type of central MHD behaviours. MHD shocks with static outer and various inner flow profiles are also examined. Astrophysical applications include dynamic core collapses of magnetized massive stars and compact objects as well as formation of supermassive, hypermassive, dark matter and mixed matter BHs in the Universe, including the early Universe. Such gigantic BHs can be detected in X-ray/gamma-ray sources, quasars, ultraluminous infrared galaxies or extremely luminous infrared galaxies and dark matter overwhelmingly dominated elliptical galaxies as well as massive dark matter halos, etc. Gravitational waves and electromagnetic wave emissions in broad band (including e.g., gamma-ray bursts and fast radio bursts) can result from this type of dynamic collapses of forming BHs involving magnetized media.

  6. Cloning and characterization of the SERK1 gene in triploid Pingyi Tiancha [Malus hupehensis (Pamp.) Rehd. var. pingyiensis Jiang] and a tetraploid hybrid strain.

    PubMed

    Zhang, L J; Dong, W X; Guo, S M; Wang, Y X; Wang, A D; Lu, X J

    2015-11-19

    This study aims to explore the roles of somatic embryogenesis receptor-like kinase (SERK) in Malus hupehensis (Pingyi Tiancha). The full-length sequences of SERK1 in triploid Pingyi Tiancha (3n) and a tetraploid hybrid strain 33# (4n) were cloned, sequenced, and designated as MhSERK1 and MhdSERK1, respectively. Multiple alignments of amino acid sequences were conducted to identify similarity between MhSERK1 and MhdSERK1 and SERK sequences in other species, and a neighbor-joining phylogenetic tree was constructed to elucidate their phylogenetic relations. Expression levels of MhSERK1 and MhdSERK1 in different tissues and developmental stages were investigated using quantitative real-time PCR. The coding sequence lengths of MhSERK1 and MhdSERK1 were 1899 bp (encoding 632 amino acids) and 1881 bp (encoding 626 amino acids), respectively. Sequence analysis demonstrated that MhSERK1 and MhdSERK1 display high similarity to SERKs in other species, with a conserved intron/exon structure that is unique to members of the SERK family. Additionally, the phylogenetic tree showed that MhSERK1 and MhdSERK1 clustered with orange CitSERK (93%). Furthermore, MhSERK1 and MhdSERK1 were mainly expressed in the reproductive organs, in particular the ovary. Their expression levels were highest in young flowers and they differed among different tissues and organs. Our results suggest that MhSERK1 and MhdSERK1 are related to plant reproduction, and that MhSERK1 is related to apomixis in triploid Pingyi Tiancha.

  7. Concept for a high performance MHD airbreathing-IEC fusion rocket

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Nadler, J.; Shaban, Y.; Momota, H.; Burton, E.

    2001-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight, and additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. .

  8. The STD/MHD codes - Comparison of analyses with experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc. [for MHD generator flows

    NASA Technical Reports Server (NTRS)

    Vetter, A. A.; Maxwell, C. D.; Swean, T. F., Jr.; Demetriades, S. T.; Oliver, D. A.; Bangerter, C. D.

    1981-01-01

    Data from sufficiently well-instrumented, short-duration experiments at AEDC/HPDE, Reynolds Metal Co., and Hercules, Inc., are compared to analyses with multidimensional and time-dependent simulations with the STD/MHD computer codes. These analyses reveal detailed features of major transient events, severe loss mechanisms, and anomalous MHD behavior. In particular, these analyses predicted higher-than-design voltage drops, Hall voltage overshoots, and asymmetric voltage drops before the experimental data were available. The predictions obtained with these analyses are in excellent agreement with the experimental data and the failure predictions are consistent with the experiments. The design of large, high-interaction or advanced MHD experiments will require application of sophisticated, detailed and comprehensive computational procedures in order to account for the critical mechanisms which led to the observed behavior in these experiments.

  9. Magnetohydrodynamic Turbulence and the Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2016-01-01

    Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.

  10. Resonant behavior of MHD waves on magnetic flux tubes. IV - Total resonant absorption and MHD radiating eigenmodes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.

    1993-01-01

    Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.

  11. Global Particle-in-Cell Simulations of Mercury's Magnetosphere

    NASA Astrophysics Data System (ADS)

    Schriver, D.; Travnicek, P. M.; Lapenta, G.; Amaya, J.; Gonzalez, D.; Richard, R. L.; Berchem, J.; Hellinger, P.

    2017-12-01

    Spacecraft observations of Mercury's magnetosphere have shown that kinetic ion and electron particle effects play a major role in the transport, acceleration, and loss of plasma within the magnetospheric system. Kinetic processes include reconnection, the breakdown of particle adiabaticity and wave-particle interactions. Because of the vast range in spatial scales involved in magnetospheric dynamics, from local electron Debye length scales ( meters) to solar wind/planetary magnetic scale lengths (tens to hundreds of planetary radii), fully self-consistent kinetic simulations of a global planetary magnetosphere remain challenging. Most global simulations of Earth's and other planet's magnetosphere are carried out using MHD, enhanced MHD (e.g., Hall MHD), hybrid, or a combination of MHD and particle in cell (PIC) simulations. Here, 3D kinetic self-consistent hybrid (ion particle, electron fluid) and full PIC (ion and electron particle) simulations of the solar wind interaction with Mercury's magnetosphere are carried out. Using the implicit PIC and hybrid simulations, Mercury's relatively small, but highly kinetic magnetosphere will be examined to determine how the self-consistent inclusion of electrons affects magnetic reconnection, particle transport and acceleration of plasma at Mercury. Also the spatial and energy profiles of precipitating magnetospheric ions and electrons onto Mercury's surface, which can strongly affect the regolith in terms of space weathering and particle outflow, will be examined with the PIC and hybrid codes. MESSENGER spacecraft observations are used both to initiate and validate the global kinetic simulations to achieve a deeper understanding of the role kinetic physics play in magnetospheric dynamics.

  12. Evidence for Precursors of the Coronal Hole Jets in Solar Bright Points

    NASA Astrophysics Data System (ADS)

    Bagashvili, Salome R.; Shergelashvili, Bidzina M.; Japaridze, Darejan R.; Kukhianidze, Vasil; Poedts, Stefaan; Zaqarashvili, Teimuraz V.; Khodachenko, Maxim L.; De Causmaecker, Patrick

    2018-03-01

    A set of 23 observations of coronal jet events that occurred in coronal bright points has been analyzed. The focus was on the temporal evolution of the mean brightness before and during coronal jet events. In the absolute majority of the cases either single or recurrent coronal jets (CJs) were preceded by slight precursor disturbances observed in the mean intensity curves. The key conclusion is that we were able to detect quasi-periodical oscillations with characteristic periods from sub-minute up to 3–4 minute values in the bright point brightness that precedes the jets. Our basic claim is that along with the conventionally accepted scenario of bright-point evolution through new magnetic flux emergence and its reconnection with the initial structure of the bright point and the coronal hole, certain magnetohydrodynamic (MHD) oscillatory and wavelike motions can be excited and these can take an important place in the observed dynamics. These quasi-oscillatory phenomena might play the role of links between different epochs of the coronal jet ignition and evolution. They can be an indication of the MHD wave excitation processes due to the system entropy variations, density variations, or shear flows. It is very likely a sharp outflow velocity transverse gradients at the edges between the open and closed field line regions. We suppose that magnetic reconnections can be the source of MHD waves due to impulsive generation or rapid temperature variations, and shear flow driven nonmodel MHD wave evolution (self-heating and/or overreflection mechanisms).

  13. Magnetohydrodynamic Augmentation of Pulse Detonation Rocket Engines (Preprint)

    DTIC Science & Technology

    2010-09-28

    augmentation of the thrust . Ejectors typically transfer energy between streams through shear stress between separate flow streams, where a portion of the...the opportunity to extract energy and apply it to a separate stream where the net thrust can be increased. With MHD augmentation , such as in the Pulse...with the PDRIME for separate or additional thrust augmentation . Results show potential performance gains under many flight and operating conditions

  14. Sub-Alfvénic reduced magnetohydrodynamic equations for tokamaks

    NASA Astrophysics Data System (ADS)

    Sengupta, W.; Hassam, A. B.; Antonsen, T. M.

    2017-06-01

    A reduced set of magnetohydrodynamic (MHD) equations is derived, applicable to large aspect ratio tokamaks and relevant for dynamics that is sub-Alfvénic with respect to ideal ballooning modes. This ordering optimally allows sound waves, Mercier modes, drift modes, geodesic-acoustic modes (GAM), zonal flows and shear Alfvén waves. Wavelengths long compared to the gyroradius but comparable to the minor radius of a typical tokamak are considered. With the inclusion of resistivity, tearing modes, resistive ballooning modes, Pfirsch-Schluter cells and the Stringer spin-up are also included. A major advantage is that the resulting system is two-dimensional in space, and the system incorporates self-consistent and dynamic Shafranov shifts. A limitation is that the system is valid only in radial domains where the tokamak safety factor, , is close to rational. In the tokamak core, the system is well suited to study the sawtooth discharge in the presence of Mercier modes. The systematic ordering scheme and methodology developed are versatile enough to reduce the more general collisional two-fluid equations or possibly the Vlasov-Maxwell system in the MHD ordering.

  15. Soret and Dufour effects on MHD peristaltic flow of Prandtl fluid in a rotating channel

    NASA Astrophysics Data System (ADS)

    Hayat, Tasawar; Zahir, Hina; Tanveer, Anum; Alsaedi, Ahmed

    2018-03-01

    An analysis has been arranged to study the magnetohydrodynamics (MHD) peristaltic flow of Prandtl fluid in a channel with flexible walls. Both fluid and channel are in a state of solid body rotation. Simultaneous effects of heat and mass transfer with thermal-diffusion (Soret) and diffusion-thermo (Dufour) effects are considered. Convective conditions for heat and mass transfer in the formulation are adopted. Ordinary differential systems using low Reynolds number and long wavelength approximation are obtained. Resulting equations have been solved numerically. The discussion of axial and secondary velocities, temperature, concentration and heat transfer coefficient with respect to emerging parameters embedded in the flow model is presented after sketching plots.

  16. Magnetohydrodynamic Modeling of the Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond

    2005-01-01

    Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.

  17. Computational and experimental investigation of plasma deflagration jets and detonation shocks in coaxial plasma accelerators

    NASA Astrophysics Data System (ADS)

    Subramaniam, Vivek; Underwood, Thomas C.; Raja, Laxminarayan L.; Cappelli, Mark A.

    2018-02-01

    We present a magnetohydrodynamic (MHD) numerical simulation to study the physical mechanisms underlying plasma acceleration in a coaxial plasma gun. Coaxial plasma accelerators are known to exhibit two distinct modes of operation depending on the delay between gas loading and capacitor discharging. Shorter delays lead to a high velocity plasma deflagration jet and longer delays produce detonation shocks. During a single operational cycle that typically consists of two discharge events, the plasma acceleration exhibits a behavior characterized by a mode transition from deflagration to detonation. The first of the discharge events, a deflagration that occurs when the discharge expands into an initially evacuated domain, requires a modification of the standard MHD algorithm to account for rarefied regions of the simulation domain. The conventional approach of using a low background density gas to mimic the vacuum background results in the formation of an artificial shock, inconsistent with the physics of free expansion. To this end, we present a plasma-vacuum interface tracking framework with the objective of predicting a physically consistent free expansion, devoid of the spurious shock obtained with the low background density approach. The interface tracking formulation is integrated within the MHD framework to simulate the plasma deflagration and the second discharge event, a plasma detonation, formed due to its initiation in a background prefilled with gas remnant from the deflagration. The mode transition behavior obtained in the simulations is qualitatively compared to that observed in the experiments using high framing rate Schlieren videography. The deflagration mode is further investigated to understand the jet formation process and the axial velocities obtained are compared against experimentally obtained deflagration plasma front velocities. The simulations are also used to provide insight into the conditions responsible for the generation and sustenance of the magnetic pinch. The pinch width and number density distribution are compared to experimentally obtained data to calibrate the inlet boundary conditions used to set up the plasma acceleration problem.

  18. Long Pulse Operation on Tore-Supra: Towards Steady State

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moreau, P.; Bucalossi, J.; Brosset, C.

    The experimental programme of Tore Supra is devoted to the study of technology and physics issues associated to long-duration high performance discharges. This new domain of operation requires simultaneously and in steady state: heat removal capability, particle exhaust, fully non-inductive current drive, advanced technology integration and real time plasma control. The long discharge allows for addressing new time scale physic such as the wall particle retention and erosion. Moreover, the physics of fully non-inductive discharges is full of novelty, namely: the MHD stability, the slow spontaneous oscillation of the central electron temperature or the outstanding inward particle pinch.

  19. 9 CFR 3.104 - Space requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... required minimum horizontal dimension (MHD) of a pool for Group I cetaceans shall be 7.32 meters (24.0 feet... area requirements are met based on an MHD of 7.32 meters (24.0 feet) or two times the average adult... maturity. (ii) The MHD of a pool for Group II cetaceans shall be 7.32 meters (24.0 feet) or four times the...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less

  1. Fast Magnetotail Reconnection: Challenge to Global MHD Modeling

    NASA Astrophysics Data System (ADS)

    Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.

    2005-05-01

    Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.

  2. Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2010-01-01

    Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures

  3. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  4. DAMPING OF MAGNETOHYDRODYNAMIC TURBULENCE IN PARTIALLY IONIZED PLASMA: IMPLICATIONS FOR COSMIC RAY PROPAGATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Siyao; Yan, Huirong; Lazarian, A., E-mail: syxu@pku.edu.cn, E-mail: huirong.yan@desy.de, E-mail: lazarian@astro.wisc.edu

    2016-08-01

    We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of theirmore » propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.« less

  5. C-Mod MHD stability analysis with LHCD

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Fatima; Bhattacharjee, A.; Delgado, L.; Scott, S.; Wilson, J. R.; Wallace, G. M.; Shiraiwa, S.; Mumgaard, R. T.

    2016-10-01

    In lower hybrid current drive (LHCD) experiments on the Alcator C-Mod, sawtooth activity could be suppressed as the safety factor q on axis is raised above unity. However, in some of these experiments, after applying LHCD, the onset of MHD mode activity caused the current drive efficiency to significantly drop. Here, we study the stability of these experiments by performing MHD simulations using the NIMROD code starting with experimental EFIT equilibria. First, consistent with the LHCD experiment with no signature of MHD activity, MHD mode activity was also absent in the simulations. Second, for experiments with MHD mode activity, we find that a core n=1 reconnecting mode with dominate poloidal modes of m=2,3 is unstable. This mode is a resistive current-driven mode as its growth rate scales with a negative power of the Lundquist number in the simulations. In addition, with further enhanced reversed-shear q profile in the simulations, a core double tearing mode is found to be unstable. This work is supported by U.S. DOE cooperative agreement DE-FC02-99ER54512 using the Alcator C-Mod tokamak, a DOE Office of Science user facility.

  6. Formation and Evolution of Target Patterns in Cahn-Hilliard Flows: An Extension of the Flux Expulsion Studies in MHD

    NASA Astrophysics Data System (ADS)

    Fan, Xiang; P H Diamond Collaboration; Luis Chacon Collaboration

    2017-10-01

    Spinodal decomposition is a second order phase transition for a binary liquid mixture to evolve from a miscible phase (e.g., water + alcohol) to two co-existing phases (e.g., water + oil). The Cahn-Hilliard model for spinodal decomposition is analogous to 2D MHD. We study the evolution of the concentration field in a single eddy in the 2D Cahn-Hilliard system to better understand scalar mixing processes in that system. This study extends investigations of the classic studies of flux expulsion in 2D MHD and homogenization of potential vorticity in 2D fluids. Simulation results show that there are three stages in the evolution: (A) formation of a ``jelly roll'' pattern, for which the concentration field is constant along spirals; (B) a change in isoconcentration contour topology; and (C) formation of a target pattern, for which the isoconcentration contours follow concentric annuli. In the final target pattern stage, the isoconcentration bands align with stream lines. The results indicate that the target pattern is a metastable state. Band merger process continues on a time scale exponentially long relative to the eddy turnover time. The band merger process resembles step merger in drift-ZF staircases. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences, under Award Number DE-FG02-04ER54738.

  7. Theoretical features of MHD equilibria with flow

    NASA Astrophysics Data System (ADS)

    Beklemishev, Alexei; Tessarotto, Massimo

    2002-11-01

    The effect produced on plasma dynamics by plasma flows, especially those produced by strong E× B-drifts represent an important theoretical issue in magnetic confinement. These include in particular Stellarator equilibria in the presence of weak flows, with velocity much smaller in magnitude than the ion thermal velocity [1]. Strong flows, however, more generally can be produced locally in a variety of physical situations (for example due to strong radial electric fields, neutral beams, RF heating, etc.). These flows can be important in establishing advanced operational regimes, such as the recently discovered HDH mode in the W7-AS Stellarator [2]. Goal of this work is to investigate theoretical features of the MHD equilibria in the presence of strong flows, with particular reference to conditions of existence of kinetic equilibria, particle adiabatic and/or bounce-averaged invariants. References 1 - M. Tessarotto, J.L. Johnson, R.B. White and L.J. Zheng, Phys. Plasmas 3, 2653 (1996); 2 - K. McCormick et al., Phys. Rev. Lett. 89, 15001 (2002).

  8. Stability analysis of the high poloidal bet scenario on DIII-Dtowards operation athigher plasma current

    NASA Astrophysics Data System (ADS)

    Guo, W. F.; Gong, X. Z.; Huang, J.; Ren, Q. L.; Qian, J. P.; Ding, S. Y.; Pan, C. K.; Li, G. Q.; Xia, T. Y.; Garofalo, A. M.; Lao, L.; Hyatt, A.; Ferron, J.; Meneghini, O.; Liu, Y. Q.; McClenaghan, J.; Holcomb, C. T.

    2017-10-01

    The high poloidal beta scenario with plasma current IP 600 kA and large-radius internal transport barrier (ITB) on DIII-D is subject to n =1 MHD kink modes when the current profile becomes very broad at internal inductance values li 0.5-0.6. It is desirable to extend this scenario to higer plasma current ( 1 MA) for highernormalized fusionperformance. However, higher current at constant normalized beta, ?N 3, would reducethe poloidal bet, ?P, below the threshold for ITB sustainment, observed at ?P 1.9. Thus, to avoid loss of the IT, ?N?? must be increased together with IP while avoiding the kink instability. MHD analysis is presented that explains possible paths to high ?N stability limit for the kink mode in tis scenario. Work supported by National Magnetic Confinement Fusion Program of Chin under 2015GB110001 and 2015GB102000 - National Natural Science Foundation of China under Grant No. 1147521 and by US DOE under DE-FC02-04ER54698.

  9. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the rotation axis.

  10. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  11. Boundary displacement measurements using multi-energy soft x-rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tritz, K., E-mail: ktritz@pppl.gov; Stutman, D.; Diallo, A.

    The Multi-Energy Soft X-ray (ME-SXR) system on NSTX provides radial profiles of soft X-ray emission, measured through a set of filters with varying thickness, which have been used to reconstruct the electron temperature on fast time scales (∼10 kHz). In addition to this functionality, here we show that the ME-SXR system can be used to measure the boundary displacement of the NSTX plasma with a few mm spatial resolution during magnetohydrodyamic (MHD) activity. Boundary displacement measurements can serve to inform theoretical predictions of neoclassical toroidal viscosity, and will be used to investigate other edge phenomena on NSTX-U. For example, boundary measurementsmore » using filtered SXR measurements can provide information on pedestal steepness and dynamic evolution leading up to and during edge localized modes (ELMs). Future applications include an assessment of a simplified, filtered SXR edge detection system as well as its suitability for real-time non-magnetic boundary feedback for ELMs, MHD, and equilibrium position control.« less

  12. Is Clinical Assessment of Addiction Severity of Individuals with Substance Use Disorder, Using the Addiction Severity Index, A Predictor of Future Inpatient Mental Health Hospitalization? A Nine-Year Registry Study.

    PubMed

    Padyab, Mojgan; Armelius, Bengt-Åke; Armelius, Kerstin; Nyström, Siv; Blom, Björn; Grönlund, Ann-Sofie; Lundgren, Lena

    2018-04-23

    In Sweden, the Addiction Severity Index (ASI) is the Swedish National Board of Health and Welfare's recommended substance use disorder assessment tool and used routinely for patient intakes. Our study of 213 individuals assessed for substance use disorder with the ASI used nine years of the National Patient Register and examined whether clinical social workers' assessments of addiction severity at baseline were associated with later hospitalizations for mental health disorder (MHD). ASI composite scores and interviewer severity rating were used to measure clients' problems in seven areas (mental health, family and social relationships, employment, alcohol, drug use, health, and legal) at baseline. A stepwise regression method was used to assess the relative importance of ASI composite scores, MHD hospitalization two years prior to baseline, age, and gender for MHD hospitalization seven years post-baseline. Almost two-thirds of the individuals (63%) were hospitalized at least once for MHD in the seven years post-baseline. At the multivariable level, MHD hospitalization prior to baseline was the strongest predictor of future MHD hospitalization, followed by ASI composite scores for drug use, employment, mental health and, last, male gender. A key finding is that higher ASI composite scores for drug use and mental health are predictors of future need for MHD treatment. Future studies will replicate this effort with a national population of individuals with substance use disorder.

  13. GPU Particle Tracking and MHD Simulations with Greatly Enhanced Computational Speed

    NASA Astrophysics Data System (ADS)

    Ziemba, T.; O'Donnell, D.; Carscadden, J.; Cash, M.; Winglee, R.; Harnett, E.

    2008-12-01

    GPUs are intrinsically highly parallelized systems that provide more than an order of magnitude computing speed over a CPU based systems, for less cost than a high end-workstation. Recent advancements in GPU technologies allow for full IEEE float specifications with performance up to several hundred GFLOPs per GPU, and new software architectures have recently become available to ease the transition from graphics based to scientific applications. This allows for a cheap alternative to standard supercomputing methods and should increase the time to discovery. 3-D particle tracking and MHD codes have been developed using NVIDIA's CUDA and have demonstrated speed up of nearly a factor of 20 over equivalent CPU versions of the codes. Such a speed up enables new applications to develop, including real time running of radiation belt simulations and real time running of global magnetospheric simulations, both of which could provide important space weather prediction tools.

  14. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  15. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-05

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  16. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOEpatents

    Berry, Gregory F.; Minkov, Vladimir; Petrick, Michael

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  17. Orszag Tang vortex - Kinetic study of a turbulent plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parashar, T. N.; Servidio, S.; Shay, M. A.

    Kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations based on particle in cell ions and fluid electrons. In magnetohydrodynamics (MHD) this configuration leads rapidly to broadband turbulence. An earlier study estimated the dissipation in the system. A comparison of MHD and hybrid simulations showed similar behavior at large scales but substantial differences at small scales. The hybrid magnetic energy spectrum shows a break at the scale where Hall term in the Ohm's law becomes important. The protons heat perpendicularly and most of the energy is dissipated through magnetic interactions. Here, the space time structure of themore » system is studied using frequency-wavenumber (k-omega) decomposition. No clear resonances appear, ruling out the cyclotron resonances as a likely candidate for the perpendicular heating. The only distinguishable wave modes present, which constitute a small percentage of total energy, are magnetosonic modes.« less

  18. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  19. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation results. Collaborator: Nathaniel D. Hamlin, School of Electrical and Computer Engineering, Cornell University, Ithaca, New York.

  20. A pilot randomized crossover trial assessing the safety and short-term effects of pomegranate supplementation in hemodialysis patients.

    PubMed

    Rivara, Matthew B; Mehrotra, Rajnish; Linke, Lori; Ruzinski, John; Ikizler, T Alp; Himmelfarb, Jonathan

    2015-01-01

    Oxidative stress and systemic inflammation are highly prevalent in patients undergoing maintenance hemodialysis (MHD) and are linked to excess cardiovascular risk. This study examined whether short-term supplementation with pomegranate juice and extract is safe and well tolerated by MHD patients. The secondary aim was to assess the effect of pomegranate supplementation on oxidative stress, systemic inflammation, monocyte function, and blood pressure. Prospective, randomized, crossover, pilot clinical trial (NCT01562340). The study was conducted from March to October 2012 in outpatient dialysis facilities in the Seattle metropolitan area. Twenty-four patients undergoing MHD (men, 64%; mean age, 61 ± 14 years) were randomly assigned to receive pomegranate juice or extract during a 4-week intervention period. After a washout period, all patients received the alternative treatment during a second 4-week intervention period. Patients assigned to receive pomegranate juice received 100 mL of juice before each dialysis session. Patients assigned to receive pomegranate extract were given 1,050 mg of extract daily. The main outcome measures were safety and tolerability of pomegranate juice and extract. Additional secondary outcomes assessed included serum lipids, laboratory biomarkers of inflammation (C-reactive protein and interleukin 6) and oxidative stress (plasma F2 isoprostanes and isofurans), monocyte cytokine production, and predialysis blood pressure. Both pomegranate juice and extract were safe and well tolerated by study participants. Over the study period, neither treatment had a significant effect on lipid profiles, plasma C-reactive protein, interleukin 6, F2-isoprostane or isofuran concentrations, predialysis systolic or diastolic blood pressure nor changed the levels of monocyte cytokine production. Both pomegranate juice and extract are safe and well tolerated by patients undergoing MHD but do not influence markers of inflammation or oxidative stress nor affect predialysis blood pressure. Copyright © 2015 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  1. Scaling laws in magnetized plasma turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boldyrev, Stanislav

    2015-06-28

    Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features ofmore » MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices, the solar wind, solar corona heating, and planetary magnetospheres; strong MHD turbulence, which is relevant for fusion devices, star formation, cosmic rays acceleration, scattering and trapping in galaxies, as well as many aspects of dynamics, distribution and composition of space plasmas, and the process of magnetic dynamo action, which explains the generation and the structure of magnetic fields in turbulent plasmas. The planned work will aim at developing new analytic approaches, conducting new numerical simulations with currently unmatched resolution, and training students in the methods of the modern theory of plasma turbulence. The work will be performed at the University of Wisconsin--Madison.« less

  2. GRADSPMHD: A parallel MHD code based on the SPH formalism

    NASA Astrophysics Data System (ADS)

    Vanaverbeke, S.; Keppens, R.; Poedts, S.

    2014-03-01

    We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a Sedov test including 15625 particles on a single CPU. Classification: 12. Nature of problem: Evolution of a plasma in the ideal MHD approximation. Solution method: The equations of magnetohydrodynamics are solved using the SPH method. Running time: The test provided takes approximately 20 min using 4 processors.

  3. A Global Magnetohydrodynamic Model of Jovian Magnetosphere

    NASA Technical Reports Server (NTRS)

    Walker, Raymond J.; Sharber, James (Technical Monitor)

    2001-01-01

    The goal of this project was to develop a new global magnetohydrodynamic model of the interaction of the Jovian magnetosphere with the solar wind. Observations from 28 orbits of Jupiter by Galileo along with those from previous spacecraft at Jupiter, Pioneer 10 and 11, Voyager I and 2 and Ulysses, have revealed that the Jovian magnetosphere is a vast, complicated system. The Jovian aurora also has been monitored for several years. Like auroral observations at Earth, these measurements provide us with a global picture of magnetospheric dynamics. Despite this wide range of observations, we have limited quantitative understanding of the Jovian magnetosphere and how it interacts with the solar wind. For the past several years we have been working toward a quantitative understanding of the Jovian magnetosphere and its interaction with the solar wind by employing global magnetohydrodynamic simulations to model the magnetosphere. Our model has been an explicit MHD code (previously used to model the Earth's magnetosphere) to study Jupiter's magnetosphere. We continue to obtain important insights with this code, but it suffers from some severe limitations. In particular with this code we are limited to considering the region outside of 15RJ, with cell sizes of about 1.5R(sub J). The problem arises because of the presence of widely separated time scales throughout the magnetosphere. The numerical stability criterion for explicit MHD codes is the CFL limit and is given by C(sub max)(Delta)t/(Delta)x less than 1 where C(sub max) is the maximum group velocity in a given cell, (Delta)x is the grid spacing and (Delta)t is the time step. If the maximum wave velocity is C(sub w) and the flow speed is C(sub f), C(sub max) = C(sub w) + C(sub f). Near Jupiter the Alfven wave speed becomes very large (it approaches the speed of light at one Jovian radius). Operating with this time step makes the calculation essentially intractable. Therefore under this funding we have been designing a new MHD model that will be able to compute solutions in the wide parameter regime of the Jovian magnetosphere.

  4. Non-Inductively Driven Tokamak Plasmas at Near-Unity Toroidal Beta in the Pegasus Toroidal Experiment

    NASA Astrophysics Data System (ADS)

    Reusch, Joshua

    2017-10-01

    A major goal of the spherical tokamak research program is accessing a state of low internal inductance li, high elongation κ, high toroidal and normalized beta (βt and βN) , and low collisionality without solenoidal current drive. A new local helicity injection (LHI) system in the lower divertor region of the ultra-low aspect ratio Pegasus ST provides non-solenoidally driven plasmas that exhibit most of these characteristics. LHI utilizes compact, edge-localized current sources (Ainj 4 cm2, Iinj 8 kA, Vinj 1.5 kV) for plasma startup and sustainment, and can sustain more than 200 kA of plasma current. Plasma growth via LHI is enhanced by a transition from a regime of high kink-like MHD activity to one of reduced MHD activity at higher frequencies and presumably shorter wavelengths. The strong edge current drive provided by LHI results in a hollow current density profile with low li. The low aspect ratio (R0 / a 1.2) of Pegasus allows ready access to high κ and MHD stable operation at very high normalized plasma currents (IN =Ip /aBT> 15). Thomson scattering measurements indicate Te 100 eV and ne 1 ×19 m-3. The impurity Ti evolution is correlated in time with high frequency magnetic fluctuations, implying substantial reconnection ion heating is driven by the applied helicity injection. Doppler spectroscopy indicates Ti >=Te and that the anomalous ion heating scales consistently with two fluid reconnection theory. Taken together, these features provide access to very high βt plasmas. Equilibrium analyses indicate βt up to 100% and βN 6.5 is achieved. At increasingly low BT, the discharge disrupts at the no-wall ideal stability limit. In these high βt discharges, a minimum |B| well forms over 50% of the plasma volume. This unique magnetic configuration may be of interest for testing predictions of stabilizing drift wave turbulence and/or improving energetic particle confinement. This work supported by US DOE Grants DE-FG02-96ER54375 and DE-SC0006928.

  5. Exact Turbulence Law in Collisionless Plasmas: Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, P.; Verdini, A.; Landi, S.; Franci, L.; Matteini, L.

    2017-12-01

    An exact vectorial law for turbulence in homogeneous incompressible Hall-MHD is derived and tested in two-dimensional hybrid simulations of plasma turbulence. The simulations confirm the validity of the MHD exact law in the kinetic regime, the simulated turbulence exhibits a clear inertial range on large scales where the MHD cascade flux dominates. The simulation results also indicate that in the sub-ion range the cascade continues via the Hall term and that the total cascade rate tends to decrease at around the ion scales, especially in high-beta plasmas. This decrease is like owing to formation of non-thermal features, such as collisionless ion energization, that can not be retained in the Hall MHD approximation.

  6. Multi-region relaxed Hall magnetohydrodynamics with flow

    DOE PAGES

    Lingam, Manasvi; Abdelhamid, Hamdi M.; Hudson, Stuart R.

    2016-08-03

    The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposedmore » for deriving the partially relaxed states.« less

  7. NIMROD modeling of quiescent H-mode: reconstruction considerations and saturation mechanism

    NASA Astrophysics Data System (ADS)

    King, J. R.; Burrell, K. H.; Garofalo, A. M.; Groebner, R. J.; Kruger, S. E.; Pankin, A. Y.; Snyder, P. B.

    2017-02-01

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-{{n}φ} perturbations ({{n}φ}≃ 1 -5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad-Shafranov equation and extrapolates profiles to include scrape-off-layer currents. Evaluation of the transport from the turbulent-like MHD state leads to a relaxation of the density and temperature profiles.

  8. Exploitation of high resolution beam spectroscopy diagnostics on MAST

    NASA Astrophysics Data System (ADS)

    Michael, Clive; Debock, Maarten; Conway, Neil; Akers, Rob; Appel, Lynton; Field, Anthony; Walsh, Mike; Wisse, Marco

    2009-11-01

    Recent developments in beam spectroscopy on MAST, including CXRS, MSE and a pilot FIDA system have revealed new information about phenomena such as ITBs, MHD instabilities, transport and fast particle physics. For example, ITBs in the ion temperature and toroidal rotation have been observed with the 64ch CXRS system, while reverse-shear q profiles have been observed with the recently commissioned 35ch MSE system. Thus, the synergy of these diagnostics helps us to understand, among other things, the role of magnetic and rotational shear on ITBs. MSE measurements have also helped to understand MHD phenomena such as locked modes (characterized by changes in toroidal momentum, revealed by CXRS), sawteeth, and internal reconnection events. Finally, the temporal/spatial resolution and SNR of the MSE system have been exploited. Interesting results include the detection of low frequency (˜2kHz) magnetic field fluctuations, characterization of the radial structure of higher frequency (<100kHz) broadband and coherent density (BES) fluctuations, and the identification of short scale length features (˜1.8cm) in the current profile near the edge pedestal.

  9. Introduction to Plasma Physics

    NASA Astrophysics Data System (ADS)

    Gurnett, Donald A.; Bhattacharjee, Amitava

    2017-03-01

    Preface; 1. Introduction; 2. Characteristic parameters of a plasma; 3. Single particle motions; 4. Waves in a cold plasma; 5. Kinetic theory and the moment equations; 6. Magnetohydrodynamics; 7. MHD equilibria and stability; 8. Discontinuities and shock waves; 9. Electrostatic waves in a hot unmagnetized plasma; 10. Waves in a hot magnetized plasma; 11. Nonlinear effects; 12. Collisional processes; Appendix A. Symbols; Appendix B. Useful trigonometric identities; Appendix C. Vector differential operators; Appendix D. Vector calculus identities; Index.

  10. Combining MHD Airbreathing and Fusion Rocket Propulsion for Earth-to-Orbit Flight

    NASA Astrophysics Data System (ADS)

    Froning, H. D.; Miley, G. H.; Luo, Nie; Yang, Yang; Momota, H.; Burton, E.

    2005-02-01

    Previous studies have shown that Single-State-to-Orbit (SSTO) vehicle propellant can be reduced by Magnets-Hydro-Dynamic (MHD) processes that minimize airbreathing propulsion losses and propellant consumption during atmospheric flight. Similarly additional reduction in SSTO propellant is enabled by Inertial Electrostatic Confinement (IEC) fusion, whose more energetic reactions reduce rocket propellant needs. MHD airbreathing propulsion during an SSTO vehicle's initial atmospheric flight phase and IEC fusion propulsion during its final exo-atmospheric flight phase is therefore being explored. Accomplished work is not yet sufficient for claiming such a vehicle's feasibility. But takeoff and propellant mass for an MHD airbreathing and IEC fusion vehicle could be as much as 25 and 40 percent less than one with ordinary airbreathing and IEC fusion; and as much as 50 and 70 percent less than SSTO takeoff and propellant mass with MHD airbreathing and chemical rocket propulsion. Thus this unusual combined cycle engine shows great promise for performance gains beyond contemporary combined-cycle airbreathing engines.

  11. MHD Turbulence, div B = 0 and Lattice Boltzmann Simulations

    NASA Astrophysics Data System (ADS)

    Phillips, Nate; Keating, Brian; Vahala, George; Vahala, Linda

    2006-10-01

    The question of div B = 0 in MHD simulations is a crucial issue. Here we consider lattice Boltzmann simulations for MHD (LB-MHD). One introduces a scalar distribution function for the velocity field and a vector distribution function for the magnetic field. This asymmetry is due to the different symmetries in the tensors arising in the time evolution of these fields. The simple algorithm of streaming and local collisional relaxation is ideally parallelized and vectorized -- leading to the best sustained performance/PE of any code run on the Earth Simulator. By reformulating the BGK collision term, a simple implicit algorithm can be immediately transformed into an explicit algorithm that permits simulations at quite low viscosity and resistivity. However the div B is not an imposed constraint. Currently we are examining a new formulations of LB-MHD that impose the div B constraint -- either through an entropic like formulation or by introducing forcing terms into the momentum equations and permitting simpler forms of relaxation distributions.

  12. Magnetic evaluation of hydrogen pressures changes on MHD fluctuations in IR-T1 tokamak plasma

    NASA Astrophysics Data System (ADS)

    Alipour, Ramin; Ghanbari, Mohamad R.

    2018-04-01

    Identification of tokamak plasma parameters and investigation on the effects of each parameter on the plasma characteristics is important for the better understanding of magnetohydrodynamic (MHD) activities in the tokamak plasma. The effect of different hydrogen pressures of 1.9, 2.5 and 2.9 Torr on MHD fluctuations of the IR-T1 tokamak plasma was investigated by using of 12 Mirnov coils, singular value decomposition and wavelet analysis. The parameters such as plasma current, loop voltage, power spectrum density, energy percent of poloidal modes, dominant spatial structures and temporal structures of poloidal modes at different plasma pressures are plotted. The results indicate that the MHD activities at the pressure of 2.5 Torr are less than them at other pressures. It also has been shown that in the stable area of plasma and at the pressure of 2.5 Torr, the magnetic force and the force of plasma pressure are in balance with each other and the MHD activities are at their lowest level.

  13. Solving the MHD equations by the space time conservation element and solution element method

    NASA Astrophysics Data System (ADS)

    Zhang, Moujin; John Yu, S.-T.; Henry Lin, S.-C.; Chang, Sin-Chung; Blankson, Isaiah

    2006-05-01

    We apply the space-time conservation element and solution element (CESE) method to solve the ideal MHD equations with special emphasis on satisfying the divergence free constraint of magnetic field, i.e., ∇ · B = 0. In the setting of the CESE method, four approaches are employed: (i) the original CESE method without any additional treatment, (ii) a simple corrector procedure to update the spatial derivatives of magnetic field B after each time marching step to enforce ∇ · B = 0 at all mesh nodes, (iii) a constraint-transport method by using a special staggered mesh to calculate magnetic field B, and (iv) the projection method by solving a Poisson solver after each time marching step. To demonstrate the capabilities of these methods, two benchmark MHD flows are calculated: (i) a rotated one-dimensional MHD shock tube problem and (ii) a MHD vortex problem. The results show no differences between different approaches and all results compare favorably with previously reported data.

  14. Global Magnetohydrodynamic Simulation Using High Performance FORTRAN on Parallel Computers

    NASA Astrophysics Data System (ADS)

    Ogino, T.

    High Performance Fortran (HPF) is one of modern and common techniques to achieve high performance parallel computation. We have translated a 3-dimensional magnetohydrodynamic (MHD) simulation code of the Earth's magnetosphere from VPP Fortran to HPF/JA on the Fujitsu VPP5000/56 vector-parallel supercomputer and the MHD code was fully vectorized and fully parallelized in VPP Fortran. The entire performance and capability of the HPF MHD code could be shown to be almost comparable to that of VPP Fortran. A 3-dimensional global MHD simulation of the earth's magnetosphere was performed at a speed of over 400 Gflops with an efficiency of 76.5 VPP5000/56 in vector and parallel computation that permitted comparison with catalog values. We have concluded that fluid and MHD codes that are fully vectorized and fully parallelized in VPP Fortran can be translated with relative ease to HPF/JA, and a code in HPF/JA may be expected to perform comparably to the same code written in VPP Fortran.

  15. The magnetospheric and ionospheric response to a very strong interplanetary shock and coronal mass ejection

    NASA Astrophysics Data System (ADS)

    Ridley, A. J.; De Zeeuw, D. L.; Manchester, W. B.; Hansen, K. C.

    2006-01-01

    We present results from a coupled magnetospheric and ionospheric simulation of a very strong solar wind shock and coronal mass ejection (CME). The solar wind drivers that are used for this simulation were output from the Sun-to-Earth MHD simulation of the Carrington-like CME reported in Manchester et al. [Manchester IV, W., Ridley, A., Gombosi, T., De Zeeuw, D. Modeling the Sun-Earth propagation of a very fast cme. Adv. Space Res. 38 (this issue), 2006]. We use the University of Michigan's BATS-R-US MHD code to model the global magnetosphere and coupled height integrated ionosphere. As the interplanetary shock swept over the magnetosphere, a wave is observed to propagate through the system. This is evident both in the magnetosphere and ionosphere. On the dayside, the magnetospheric bowshock is shown to bifurcate. The inner shock is pushed close to the inner boundary, where it "bounces" and propagates back outwards to meet the outer bowshock, which is propagating inwards. The inward and outward motion of the bowshocks can be observed propagating down the flanks of the magnetosphere. In the ionosphere, the wave is manifested as two pairs of field-aligned currents moving antisunward. The first pair is opposite of the normal region-1 current system, while the second pair is in the same sense as the normal region-1 system. The ionospheric potential shows a behavior consistent with the field-aligned current pattern, given the strong gradient in the conductance from the dayside to the nightside. As the magnetic cloud flows over the system, the entire magnetopause boundary is observed to move inside of geosynchronous orbit (6.6 Re). At the time of the most extreme solar wind conditions, the magnetopause boundary encounters the inner edge of the magnetospheric simulation domain. During the magnetic cloud, the ionospheric cross-polar cap potential is shown to match the Siscoe et al. [Siscoe, G.L., Erickson, G., Sonnerup, B., Maynard, N., Schoendorf, J., Siebert, K., Weimer, D., White, W., Wilson, G. Hill model of transpolar potential saturation: comparisons with MHD simulations. J. Geophys. Res. 107, 1321, doi:10.1029/2001JA009176, 2002] formulation relating the ionospheric potential to the solar wind and IMF conditions. It is shown that by using this formulation, the extremely large potentials observed in the MHD results are most likely saturated.

  16. JANNAF 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee Joint Meeting. Volume 1

    NASA Technical Reports Server (NTRS)

    Fry, Ronald S. (Editor); Gannaway, Mary T. (Editor)

    1999-01-01

    Volume 1, the first of three volumes is a compilation of 16 unclassified/unlimited-technical papers presented at the Joint Army-Navy-NASA-Air Force (JANNAF) 24th Airbreathing Propulsion Subcommittee and 36th Combustion Subcommittee held jointly with the 181 Propulsion Systems Hazards Subcommittee. The meeting was held on 18-21 October 1999 at NASA Kennedy Space Center and The DoubleTree Oceanfront Hotel, Cocoa Beach, Florida. Topics covered include overviews of RBCC and PDE hypersonic technology, Hyper-X propulsion ground testing, development of JP-8 for hypersonic vehicle applications, numerical simulation of dual-mode SJ combustion, V&V of M&S computer codes, MHD SJ and Rocket Based Combined Cycle (RBCC) launch vehicle concepts, and Pulse Detonation Engine (PDE) propulsion technology development including fundamental investigations, modeling, aerodynamics, operation and performance.

  17. Magnetohydrodynamic (MHD) Magnet Modeling

    DTIC Science & Technology

    1979-06-01

    Relationship /4 to Structural Teeth and Cold Bore Tube 56 Force Cý.mponents on Saddlc Winding 84 57 Quarter Section of Magnet nesign at Midplane 85 58...Graphite/Epoxy Filament Wound 184 A-2 Concept B - Boron /Aluminum Structure 186 A-3 Concept i - Graphite/Epoxy Structure 187 A-4 Initial Stress Analysis...Wound A-15 MHD Magnet Modeling Manufacturing Sequence 205 Concept B - Boron /Aluminum Structure A-16 MHD Magnet Modeling Manufacturing Sequence 206

  18. The optimization air separation plants for combined cycle MHD-power plant applications

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.; Springmann, H.; Greenberg, R.

    1980-01-01

    Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.

  19. Solar driven liquid metal MHD power generator

    NASA Technical Reports Server (NTRS)

    Lee, J. H.; Hohl, F. (Inventor)

    1983-01-01

    A solar energy collector focuses solar energy onto a solar oven which is attached to a mixer which in turn is attached to the channel of a MHD generator. Gas enters the oven and a liquid metal enters the mixer. The gas/liquid metal mixture is heated by the collected solar energy and moves through the MHD generator thereby generating electrical power. The mixture is then separated and recycled.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strauss, H.R.

    This paper describes the code FEMHD, an adaptive finite element MHD code, which is applied in a number of different manners to model MHD behavior and edge plasma phenomena on a diverted tokamak. The code uses an unstructured triangular mesh in 2D and wedge shaped mesh elements in 3D. The code has been adapted to look at neutral and charged particle dynamics in the plasma scrape off region, and into a full MHD-particle code.

  1. The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description

    NASA Astrophysics Data System (ADS)

    Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.

    2017-09-01

    The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar convection by leading-order 2D Elsässer fluctuations, with critical balance being achieved when Alfvén wave sweeping balances passive scalar convection by leading-order 2D Elsässer fluctuations. Besides yielding predictions of 2D and slab spectra for Elsässer fluctuations, NI MHD shows that density fluctuations are advected by the majority or dominant incompressible velocity fluctuations. In the case of β ∼ 1 or ≪ 1, the density spectrum is Kolmogorov in the perpendicular wave number, thus providing a possible explanation for the observed extended Kolmogorov-like power law spectrum for electron density fluctuations in the interstellar medium.

  2. Numerical simulation of the kinetic effects in the solar wind

    NASA Astrophysics Data System (ADS)

    Sokolov, I.; Toth, G.; Gombosi, T. I.

    2017-12-01

    Global numerical simulations of the solar wind are usually based on the ideal or resistive MagnetoHydroDynamics (MHD) equations. Within a framework of MHD the electric field is assumed to vanish in the co-moving frame of reference (ideal MHD) or to obey a simple and non-physical scalar Ohm's law (resistive MHD). The Maxwellian distribution functions are assumed, the electron and ion temperatures may be different. Non-disversive MHD waves can be present in this numerical model. The averaged equations for MHD turbulence may be included as well as the energy and momentum exchange between the turbulent and regular motion. With the use of explicit numerical scheme, the time step is controlled by the MHD wave propagtion time across the numerical cell (the CFL condition) More refined approach includes the Hall effect vie the generalized Ohm's law. The Lorentz force acting on light electrons is assumed to vanish, which gives the expression for local electric field in terms of the total electric current, the ion current as well as the electron pressure gradient and magnetic field. The waves (whistlers, ion-cyclotron waves etc) aquire dispersion and the short-wavelength perturbations propagate with elevated speed thus strengthening the CFL condition. If the grid size is sufficiently small to resolve ion skindepth scale, then the timestep is much shorter than the ion gyration period. The next natural step is to use hybrid code to resolve the ion kinetic effects. The hybrid numerical scheme employs the same generalized Ohm's law as Hall MHD and suffers from the same constraint on the time step while solving evolution of the electromagnetic field. The important distiction, however, is that by sloving particle motion for ions we can achieve more detailed description of the kinetic effect without significant degrade in the computational efficiency, because the time-step is sufficient to resolve the particle gyration. We present the fisrt numerical results from coupled BATS-R-US+ALTOR code as applied to kinetic simulations of the solar wind.

  3. Nonlocality and the critical Reynolds numbers of the minimum state magnetohydrodynamic turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou Ye; Oughton, Sean

    2011-07-15

    Magnetohydrodynamic (MHD) systems can be strongly nonlinear (turbulent) when their kinetic and magnetic Reynolds numbers are high, as is the case in many astrophysical and space plasma flows. Unfortunately these high Reynolds numbers are typically much greater than those currently attainable in numerical simulations of MHD turbulence. A natural question to ask is how can researchers be sure that their simulations have reproduced all of the most influential physics of the flows and magnetic fields? In this paper, a metric is defined to indicate whether the necessary physics of interest has been captured. It is found that current computing resourcesmore » will typically not be sufficient to achieve this minimum state metric.« less

  4. Assessment of the MHD capability in the ATHENA code using data from the ALEX (Argonne Liquid Metal Experiment) facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, P.A.

    1988-10-28

    The ATHENA (Advanced Thermal Hydraulic Energy Network Analyzer) code is a system transient analysis code with multi-loop, multi-fluid capabilities, which is available to the fusion community at the National Magnetic Fusion Energy Computing Center (NMFECC). The work reported here assesses the ATHENA magnetohydrodynamic (MHD) pressure drop model for liquid metals flowing through a strong magnetic field. An ATHENA model was developed for two simple geometry, adiabatic test sections used in the Argonne Liquid Metal Experiment (ALEX) at Argonne National Laboratory (ANL). The pressure drops calculated by ATHENA agreed well with the experimental results from the ALEX facility. 13 refs., 4more » figs., 2 tabs.« less

  5. The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izzo, V. A.

    Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less

  6. Thermal diffusion effect on MHD mixed convective flow along a vertically inclined plate: A casson fluid flow

    NASA Astrophysics Data System (ADS)

    Prasad, D. V. V. Krishna; Chaitanya, G. S. Krishna; Raju, R. Srinivasa

    2018-05-01

    The nature of Casson fluid on MHD free convective flow of over an impulsively started infinite vertically inclined plate in presence of thermal diffusion (Soret), thermal radiation, heat and mass transfer effects is studied. The basic governing nonlinear coupled partial differential equations are solved numerically using finite element method. The relevant physical parameters appearing in velocity, temperature and concentration profiles are analyzed and discussed through graphs. Finally, the results for velocity profiles and the reduced Nusselt and Sherwood numbers are obtained and compared with previous results in the literature and are found to be in excellent agreement. Applications of the present study would be useful in magnetic material processing and chemical engineering systems.

  7. The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D

    DOE PAGES

    Izzo, V. A.

    2017-02-27

    Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less

  8. Validation of the SWMF Magnetosphere: Fields and Particles

    NASA Astrophysics Data System (ADS)

    Welling, D. T.; Ridley, A. J.

    2009-05-01

    The Space Weather Modeling Framework has been developed at the University of Michigan to allow many independent space environment numerical models to be executed simultaneously and coupled together to create a more accurate, all-encompassing system. This work explores the capabilities of the framework when using the BATS-R-US MHD code, Rice Convection Model (RCM), the Ridley Ionosphere Model (RIM), and the Polar Wind Outflow Model (PWOM). Ten space weather events, ranging from quiet to extremely stormy periods, are modeled by the framework. All simulations are executed in a manner that mimics an operational environment where fewer resources are available and predictions are required in a timely manner. The results are compared against in-situ measurements of magnetic fields from GOES, Polar, Geotail, and Cluster satellites as well as MPA particle measurements from the LANL geosynchronous spacecraft. Various metrics are calculated to quantify performance. Results when using only two to all four components are compared to evaluate the increase in performance as new physics are included in the system.

  9. Laser production and heating of plasma for MHD application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1988-01-01

    Experiments have been made on the production and heating of plasmas by the absorption of laser radiation. These experiments were performed to ascertain the feasibility of using laser-produced or laser-heated plasmas as the input for a magnetohydrodynamic (MHD) generator. Such a system would have a broad application as a laser-to-electricity energy converter for space power transmission. Experiments with a 100-J-pulsed CO2 laser were conducted to investigate the breakdown of argon gas by a high-intensity laser beam, the parameters (electron density and temperature) of the plasma produced, and the formation and propagation of laser-supported detonation (LSD) waves. Experiments were also carried out using a 1-J-pulsed CO2 laser to heat the plasma produced in a shock tube. The shock-tube hydrogen plasma reached electron densities of approximately 10 to the 17th/cu cm and electron temperatures of approximately 1 eV. Absorption of the CO2 laser beam by the plasma was measured, and up to approximately 100 percent absorption was observed. Measurements with a small MHD generator showed that the energy extraction efficiency could be very large with values up to 56 percent being measured.

  10. Real-time global MHD simulation of the solar wind interaction with the earth’s magnetosphere

    NASA Astrophysics Data System (ADS)

    Shimazu, H.; Kitamura, K.; Tanaka, T.; Fujita, S.; Nakamura, M. S.; Obara, T.

    2008-11-01

    We have developed a real-time global MHD (magnetohydrodynamics) simulation of the solar wind interaction with the earth’s magnetosphere. By adopting the real-time solar wind parameters and interplanetary magnetic field (IMF) observed routinely by the ACE (Advanced Composition Explorer) spacecraft, responses of the magnetosphere are calculated with MHD code. The simulation is carried out routinely on the super computer system at National Institute of Information and Communications Technology (NICT), Japan. The visualized images of the magnetic field lines around the earth, pressure distribution on the meridian plane, and the conductivity of the polar ionosphere, can be referred to on the web site (http://www2.nict.go.jp/y/y223/simulation/realtime/). The results show that various magnetospheric activities are almost reproduced qualitatively. They also give us information how geomagnetic disturbances develop in the magnetosphere in relation with the ionosphere. From the viewpoint of space weather, the real-time simulation helps us to understand the whole image in the current condition of the magnetosphere. To evaluate the simulation results, we compare the AE indices derived from the simulation and observations. The simulation and observation agree well for quiet days and isolated substorm cases in general.

  11. Large-Scale Dynamics of the Magnetospheric Boundary: Comparisons between Global MHD Simulation Results and ISTP Observations

    NASA Technical Reports Server (NTRS)

    Berchem, J.; Raeder, J.; Ashour-Abdalla, M.; Frank, L. A.; Paterson, W. R.; Ackerson, K. L.; Kokubun, S.; Yamamoto, T.; Lepping, R. P.

    1998-01-01

    Understanding the large-scale dynamics of the magnetospheric boundary is an important step towards achieving the ISTP mission's broad objective of assessing the global transport of plasma and energy through the geospace environment. Our approach is based on three-dimensional global magnetohydrodynamic (MHD) simulations of the solar wind-magnetosphere- ionosphere system, and consists of using interplanetary magnetic field (IMF) and plasma parameters measured by solar wind monitors upstream of the bow shock as input to the simulations for predicting the large-scale dynamics of the magnetospheric boundary. The validity of these predictions is tested by comparing local data streams with time series measured by downstream spacecraft crossing the magnetospheric boundary. In this paper, we review results from several case studies which confirm that our MHD model reproduces very well the large-scale motion of the magnetospheric boundary. The first case illustrates the complexity of the magnetic field topology that can occur at the dayside magnetospheric boundary for periods of northward IMF with strong Bx and By components. The second comparison reviewed combines dynamic and topological aspects in an investigation of the evolution of the distant tail at 200 R(sub E) from the Earth.

  12. Bifurcation in the MHD behaviour of a self-organizing system: the reversed field pinch (RFP)

    NASA Astrophysics Data System (ADS)

    Cappello, S.

    2004-12-01

    Within the framework of MHD modelling the RFP is shown to develop turbulent or laminar regimes switching from the former to the latter in a continuous way depending on the strength of dissipative forces (the higher they are the more laminar is the corresponding regime). In either of these cases interesting features can be observed such as the occurrence of quasi-periodic relaxation events involving reconnection processes, or the formation of stationary helical symmetric configurations. The first case corresponds to the conventional turbulent dynamo in the RFP where perturbations with multiple helical harmonic content are present. The second case corresponds to a global single helical deformation of the current channel. This simpler configuration is associated with a laminar electrostatic dynamo field and may also be found as a solution of a helical Ohmic equilibrium problem where a finite beta is necessary. The continuity of the transition between the two regimes suggests that the simple helical symmetric solution can provide a fruitful intuitive description of the RFP dynamo in general. Many of the MHD predictions are in good agreement with experimental findings and suggest possible improvements for the confinement properties of the RFP configuration.

  13. Analytical modeling of Cosmic Winds and Jets

    NASA Astrophysics Data System (ADS)

    Vlahakis, Nektarios

    1998-11-01

    A widespread phenomenon in astrophysics is the outflow of plasma from the environment of stellar or galactic objects. This plasma outflows range from nonuniform winds to highly collimated jets which are common to many stages of stellar evolution. For example, collimated outflows are found around young stars (e.g., as in HH 30), older mass losing stars (as in eta-Carinae), symbiotic stars (e.g. in R Aqr), planetary nebulae nuclei (as in the hourglass nebula), black hole X-ray transients (as in GRS 1915+105 and GRO J1655-40), low- and high-mass X-ray binaries and recently also in cataclysmic variables (e.g. T Pyxidis). Similarly, they are also found emerging from the nuclei of many radio galaxies and quasars. Nevertheless, despite their abundance the questions of the formation, acceleration and propagation of nonuniform winds and jets have not been fully resolved. One of the main difficulties in dealing with the theoretical problem posed by cosmical outflows is that their dynamics needs to be described - even to lowest order - by the highly intractable set of the MHD equations. As is well known, this is a nonlinear system of partial differential equations with several critical points, and only very few classes of solutions are available for axisymmetric systems obtained by assuming a separation of variables in several key functions. This hypothesis allows an analysis in a 2-D geometry of the full MHD equations which reduce then to a system of ordinary differential equations. By a systematic method we construct general classes of exact and self-consistent axisymmetric MHD solutions. The unifying scheme contains three large groups of exact MHD outflow models, (I) meridionally self-similar ones with spherical critical surfaces, (II) radially self-similar models with conical critical surfaces and (III) generalized self-similar models with arbitrary shape critical surfaces. This classification includes known polytropic models, such as the classical Parker description of a stellar wind and the Blandford and Payne (1982) model of a disk-wind; it also contains nonpolytropic models, such as those of winds/jets in Sauty and Tsinganos (1994), Lima et al (1996) and Trussoni et al (1997). Besides the unification of all known cases under a common scheme, several new classes emerge and some are briefly analyzed; they could be explored for a further understanding of the physical properties of MHD outflows from various magnetized astrophysical rotators. We also propose a new class of exact and self-consistent MHD solutions which describe steady and axisymmetric hydromagnetic outflows from the magnetized atmosphere of a rotating gravitating central object with possibly an orbiting accretion disk. The plasma is driven by a thermal pressure gradient, as well as by magnetic rotator and radiative forces. At the Alfvenic and fast critical points the appropriate criticality conditions are applied. The outflows start almost radially but after the Alfven transition and before the fast critical surface is encountered the magnetic pinching force bends the poloidal streamlines into a cylindrical jet-type shape. The terminal speed, Alfven number, cross-sectional area of the jet, as well as its final pressure and density obtain uniform values at large distances from the source. The goal of the study is to give an analytical discussion of the two-dimensional interplay of the thermal pressure gradient, gravitational, Lorentz and inertial forces in accelerating and collimating an MHD flow. A parametric study of the model is given, as well as a brief sketch of its applicability to a self-consistent modeling of collimated outflows from various astrophysical objects. For example, the obtained characteristics of the collimated outflow in agreement with those in jets associated with YSO's. General theoretical arguments and various analytic self-similar solutions have recently shown that magnetized and rotating astrophysical outflows may become asymptotically cylindrical, in agreement with observations of cosmical jets. A notable common feature in all such self-consistent, self-similar MHD solutions is that before final cylindrical collimation is achieved, the jet passes from a stage of oscillations in its radius, Mach number and other physical parameters. It is shown that under rather general assumptions this oscillatory behaviour of collimated outflows is not restricted to the few specific models examined so far, but instead it seems to be a rather general physical property of an MHD outflow which starts noncylindrically before it reaches collimation. It is concluded thence that astrophysical jets are topologically stable to small amplitude, time-independent perturbations in their asymptotically cylindrical shape. Also, similarly to the familiar fluid instabilities these oscillations may give rise to brightness enhancements along jets.

  14. Sharp Interface Algorithm for Large Density Ratio Incompressible Multiphase Magnetohydrodynamic Flows

    DTIC Science & Technology

    2013-01-01

    experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets for the proposed muon collider...validated through the comparison with experiments on liquid metal jets . The FronTier-MHD code has been used for simulations of liquid mercury targets...FronTier-MHD code have been performed using experimental and theoretical studies of liquid mercury jets in magnetic fields. Experimental studies of a

  15. Quasi-static MHD processes in earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Voigt, Gerd-Hannes

    1988-01-01

    An attempt is made to use the MHD equilibrium theory to describe the global magnetic field configuration of earth's magnetosphere and its time evolution under the influence of magnetospheric convection. To circumvent the difficulties inherent in today's MHD codes, use is made of a restriction to slowly time-dependent convection processes with convective velocities well below the typical Alfven speed. This restriction leads to a quasi-static MHD theory. The two-dimensional theory is outlined, and it is shown how sequences of two-dimensional equilibria evolve into a steady state configuration that is likely to become tearing mode unstable. It is then concluded that magnetospheric substorms occur periodically in earth's magnetosphere, thus being an integral part of the entire convection cycle.

  16. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE PAGES

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.; ...

    2016-09-30

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  17. Associations between mental health disorders and body mass index among military personnel.

    PubMed

    Smith, Tracey J; White, Alan; Hadden, Louise; Young, Andrew J; Marriott, Bernadette P

    2014-07-01

    To determine if overweight or obesity is associated with mental health disorder (MHD) symptoms among military personnel Methods: Secondary analysis using the 2005 Department of Defense Health Related Behaviors Survey (N = 15,195). Standard Body Mass Index (BMI) categories were used to classify participants' body composition. For women, obesity was associated with symptoms of serious psychological distress (SPD), post-traumatic stress disorder, and depression. For men, obesity and overweight was associated with symptoms of generalized anxiety disorder and SPD, respectively. Self-reported high personal stress was the strongest predictor of MHD symptoms and suicide attempts. Self-reported stress was a stronger predictor of MHD symptoms than BMI. There is potential value in screening personnel for personal stress as a MHD risk factor.

  18. NIMROD modeling of quiescent H-mode: Reconstruction considerations and saturation mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Jacob R.; Burrell, Keith H.; Garofalo, Andrea M.

    The extended-MHD NIMROD code (Sovinec and King 2010 J. Comput. Phys. 229 5803) models broadband-MHD activity from a reconstruction of a quiescent H-mode shot on the DIII-D tokamak (Luxon 2002 Nucl. Fusion 42 614). Computations with the reconstructed toroidal and poloidal ion flows exhibit low-n Φ perturbations (n Φ ≃1–5) that grow and saturate into a turbulent-like MHD state. The workflow used to project the reconstructed state onto the NIMROD basis functions re-solves the Grad–Shafranov equation and extrapolates profiles to include scrape-off-layer currents. In conclusion, evaluation of the transport from the turbulent-like MHD state leads to a relaxation of themore » density and temperature profiles.« less

  19. Observation of the ballooning mode that limits the operation space of the high-density super-dense-core plasma in the LHD

    NASA Astrophysics Data System (ADS)

    Ohdachi, S.; Watanabe, K. Y.; Tanaka, K.; Suzuki, Y.; Takemura, Y.; Sakakibara, S.; Du, X. D.; Bando, T.; Narushima, Y.; Sakamoto, R.; Miyazawa, J.; Motojima, G.; Morisaki, T.; LHD Experiment Group

    2017-06-01

    The central beta of the super-dense-core (SDC) plasma in the large helical device (LHD) is limited by a large scale MHD event called ‘core density collapse’ (CDC). The detailed measurement reveals that a new type of ballooning mode, quite localized in space and destabilized from the 3D nature of Heliotron devices, is the cause of the CDC. It is the first observation of an unstable mode in a region with global negative magnetic shear. Avoidance of the excitation of this mode is a key to expand the operational limit of the LHD.

  20. Magnetohydrodynamic modes analysis and control of Fusion Advanced Studies Torus high-current scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Villone, F.; Mastrostefano, S.; Calabrò, G.

    2014-08-15

    One of the main FAST (Fusion Advanced Studies Torus) goals is to have a flexible experiment capable to test tools and scenarios for safe and reliable tokamak operation, in order to support ITER and help the final DEMO design. In particular, in this paper, we focus on operation close to a possible border of stability related to low-q operation. To this purpose, a new FAST scenario has then been designed at I{sub p} = 10 MA, B{sub T} = 8.5 T, q{sub 95} ≈ 2.3. Transport simulations, carried out by using the code JETTO and the first principle transport model GLF23, indicate that, under these conditions, FASTmore » could achieve an equivalent Q ≈ 3.5. FAST will be equipped with a set of internal active coils for feedback control, which will produce magnetic perturbation with toroidal number n = 1 or n = 2. Magnetohydrodynamic (MHD) mode analysis and feedback control simulations performed with the codes MARS, MARS-F, CarMa (both assuming the presence of a perfect conductive wall and using the exact 3D resistive wall structure) show the possibility of the FAST conductive structures to stabilize n = 1 ideal modes. This leaves therefore room for active mitigation of the resistive mode (down to a characteristic time of 1 ms) for safety purposes, i.e., to avoid dangerous MHD-driven plasma disruption, when working close to the machine limits and magnetic and kinetic energy density not far from reactor values.« less

Top