Science.gov

Sample records for mhd waves effects

  1. Resonant behaviour of MHD waves on magnetic flux tubes. III - Effect of equilibrium flow

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Hollweg, Joseph V.; Sakurai, Takashi

    1992-01-01

    The Hollweg et al. (1990) analysis of MHD surface waves in a stationary equilibrium is extended. The conservation laws and jump conditions at Alfven and slow resonance points obtained by Sakurai et al. (1990) are generalized to include an equilibrium flow, and the assumption that the Eulerian perturbation of total pressure is constant is recovered as the special case of the conservation law for an equilibrium with straight magnetic field lines and flow along the magnetic field lines. It is shown that the conclusions formulated by Hollweg et al. are still valid for the straight cylindrical case. The effect of curvature is examined.

  2. Simulation of wave interactions with MHD

    SciTech Connect

    Batchelor, Donald B; Abla, G; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2008-07-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are twofold: (1) improve our understanding of interactions that both radio frequency (RF) wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (2) develop an integrated computational system for treating multiphysics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project. The Integrated Plasma Simulator (IPS) has been implemented. Presented here are initial physics results on RF effects on MHD instabilities in tokamaks as well as simulation results for tokamak discharge evolution using the IPS.

  3. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    SciTech Connect

    Tataronis, J. A.

    2004-06-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfvkn continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named “accumulation continuum” and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory.

  4. Multi-dimensional MHD simple waves

    SciTech Connect

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1996-07-20

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density {rho}, gas pressure p, fluid velocity u, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function {phi}(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function {phi} satisfies an implicit equation of the form f({phi})=r{center_dot}n({phi})-{lambda}({phi})t, where n({phi})={nabla}{phi}/|{nabla}{phi}| is the wave normal, {lambda}({phi})={omega}/k=-{phi}{sub t}/|{nabla}{phi}| is the normal speed of the wave front, and f({phi}) is an arbitrary differentiable function of {phi}. The formalism allows for more general simple waves than that usually dealt with in which n({phi}) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation and wave breaking for multi-dimensional waves.

  5. MHD Wave Modes Resolved in Fine-Scale Chromospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Verth, G.; Jess, D. B.

    2016-02-01

    Due to its complex and dynamic fine-scale structure, the chromosphere is a particularly challenging region of the Sun's atmosphere to understand. It is now widely accepted that to model chromospheric dynamics, even on a magnetohydrodynamic (MHD) scale, while also calculating spectral line emission, one must realistically include the effects of partial ionization and radiative transfer in a multi-fluid plasma under non-LTE conditions. Accurate quantification of MHD wave energetics must be founded on a precise identification of the actual wave mode being observed. This chapter focuses on MHD kink-mode identification, MHD sausage mode identification, and MHD torsional Alfvén wave identification. It then reviews progress in determining more accurate energy flux estimations of specific MHD wave modes observed in the chromosphere. The chapter finally examines how the discovery of these MHD wave modes has helped us advance the field of chromospheric magnetoseismology.

  6. Multi-dimensional MHD simple waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Ratkiewicz, R.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider a formalism for multi-dimensional simple MHD waves using ideas developed by Boillat. For simple wave solutions one assumes that all the physical variables (the density rho, gas pressure p, fluid velocity V, gas entropy S, and magnetic induction B in the MHD case) depend on a single phase function phi(r,t). The simple wave solution ansatz and the MHD equations then require that the phase function has the form phi = r x n(phi) - lambda(phi)t, where = n(phi) = Delta phi / (absolute value of Delta phi) is the wave normal and lambda(phi) = omega/k = -phi t / (absolute value of Delta phi) is the normal speed of the wave front. The formalism allows for more general simple waves than that usually dealt with in which n(phi) is a constant unit vector that does not vary along the wave front. The formalism has implications for shock formation for multi-dimensional waves.

  7. MHD bending waves in a current sheet

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Suess, S. T.

    1986-01-01

    Transverse MHD bending waves are considered in an isothermal and compressible two-dimensional current sheet of finite thickness in which the magnetic field changes direction and strength. The general form of the wave equation is obtained. It is shown that rotation of the magnetic field across the current sheet prevents the existence of singular points so that continuous spectrum solutions and the concomitant wave decay disappear. Instead, normal modes exist and closed integral solution for arbitrary current sheet structure are found. The results are discussed in terms of small-scale waves on the heliospheric current sheet.

  8. Amplitudes of MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Norton, Aimee Ann; Cally, Paul; Baldner, Charles; Kleint, Lucia; Tarbell, Theodore D.; De Pontieu, Bart; Scherrer, Philip H.; Rajaguru, Paul

    2016-05-01

    The conversion of p-modes into MHD waves by strong magnetic fields occurs mainly in the sub-photospheric layers. The photospheric signatures of MHD waves are weak due to low amplitudes at the beta=1 equipartion level where mode-conversion occurs. We report on small amplitude oscillations observed in the photosphere with Hinode SOT/SP in which we analyze time series for sunspots ARs 12186 (11.10.2014) and 12434 (17.10.2015). No significant magnetic field oscillations are recovered in the umbra or penumbra in the ME inversion. However, periodicities in the inclination angle are found at the umbral/penumbral boundary with 5 minute periods. Upward propagating waves are indicated in the intensity signals correlated between HMI and AIA at different heights. We compare SP results with the oscillations observed in HMI data. Simultaneous IRIS data shows transition region brightening above the umbral core.

  9. Studying Solar MHD Wave Propagation in Two Dimensions

    NASA Astrophysics Data System (ADS)

    McIntosh, S. W.; Bogdan, T. J.

    1999-05-01

    We present preliminary results on simulations of Magnetohydrodynamic (MHD) wave propagation in a two dimensional stratified model of the upper solar atmosphere. The simulations presented are obtained using the High-Order Godunov scheme of Zachary, Malagoli & Colella (1994). These simulations allow us to analyze quantitatively the coupling, resonances and absorption of MHD waves in a stratified plasma such as that of the Sun. In particular, we are able to observe the dynamic evolution of energy and momentum balances of the model atmosphere in response the wave propagation. In addition, we are able to study the phenomenology of MHD wave passage through particular regions of interest. We will concentrate mostly upon the physical manifestation of MHD waves propagating in ``network'' and ``internetwork'' regions and study the effect on physical parameters and the basic field structure imposed at outset. We believe that such simulations are important in that they compliment the high quality/temporal resolution data currently being acquired by the SOHO and TRACE spacecraft.

  10. NONLINEAR MHD WAVES IN A PROMINENCE FOOT

    SciTech Connect

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-10

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  11. Nonlinear MHD Waves in a Prominence Foot

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.

    2015-11-01

    We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.

  12. Shock Waves in Hall-MHD

    NASA Astrophysics Data System (ADS)

    Hagstrom, George; Hameiri, Eliezer

    2012-03-01

    Hall-MHD is a partial differential equation of degenerate parabolic type that describes the dynamics of an ideal two fluid plasma with massless electrons. We study shock waves and discontinuities in this system. We characterize planar travelling wave solutions and find solutions with discontinuities in the hydrodynamic variables. These solutions, which correspond to the ion-acoustic wave, arise due to the presence of hydrodynamic real characteristics in Hall-MHD. We demonstrate finite-time discontinuity formation for certain types of initial data with discontinuous derivatives and study the shock structure under different regularizations. We also explore the possible existence of solutions with discontinuous magnetic field. A non-algebraic, non-local set of jump conditions is derived under the assumption of [B]!=0. These conditions are used to study the contact discontinuity and it is shown that massless electrons crossing the surface of discontinuity may enter and leave at different locations. These conditions suggest the possible existence of mathematically novel shocks in Hall-MHD.

  13. Analysis and gyrokinetic simulation of MHD Alfven wave interactions

    NASA Astrophysics Data System (ADS)

    Nielson, Kevin Derek

    effect of wave amplitude upon the validity of our analytic solution, exploring the nature of strong turbulence. In the kinetic limit where k⊥ rhoi ≳ 1 where incompressible MHD is no longer a valid description, we illustrate how the nonlinear evolution departs from our analytic expression. The analytic theory we develop provides a framework from which more sophisticated of weak and strong inertial-range turbulence theories may be developed. Characterization of the limits of this theory may provide guidance in the development of kinetic Alfven wave turbulence.

  14. Numerical simulation of propagation of the MHD waves in sunspots

    NASA Astrophysics Data System (ADS)

    Parchevsky, K.; Kosovichev, A.; Khomenko, E.; Olshevsky, V.; Collados, M.

    2010-11-01

    We present results of numerical 3D simulation of propagation of MHD waves in sunspots. We used two self consistent magnetohydrostatic background models of sunspots. There are two main differences between these models: (i) the topology of the magnetic field and (ii) dependence of the horizontal profile of the sound speed on depth. The model with convex shape of the magnetic field lines near the photosphere has non-zero horizorntal perturbations of the sound speed up to the depth of 7.5 Mm (deep model). In the model with concave shape of the magnetic field lines near the photosphere Δ c/c is close to zero everywhere below 2 Mm (shallow model). Strong Alfven wave is generated at the wave source location in the deep model. This wave is almost unnoticeable in the shallow model. Using filtering technique we separated magnetoacoustic and magnetogravity waves. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. The sunspot causes anisotropy of the amplitude distribution along the wavefront and changes the shape of the wavefront. The amplitude of the waves is reduced inside the sunspot. This effect is stronger for the magnetogravity waves than for magnetoacoustic waves. The shape of the wavefront of the magnetogravity waves is distorted stronger as well. The deep model causes bigger anisotropy for both mgnetoacoustic and magneto gravity waves than the shallow model.

  15. Inductive-dynamic magnetosphere-ionosphere coupling via MHD waves

    NASA Astrophysics Data System (ADS)

    Tu, Jiannan; Song, Paul; Vasyliūnas, Vytenis M.

    2014-01-01

    In the present study, we investigate magnetosphere-ionosphere/thermosphere (M-IT) coupling via MHD waves by numerically solving time-dependent continuity, momentum, and energy equations for ions and neutrals, together with Maxwell's equations (Ampère's and Faraday's laws) and with photochemistry included. This inductive-dynamic approach we use is fundamentally different from those in previous magnetosphere-ionosphere (M-I) coupling models: all MHD wave modes are retained, and energy and momentum exchange between waves and plasma are incorporated into the governing equations, allowing a self-consistent examination of dynamic M-I coupling. Simulations, using an implicit numerical scheme, of the 1-D ionosphere/thermosphere system responding to an imposed convection velocity at the top boundary are presented to show how magnetosphere and ionosphere are coupled through Alfvén waves during the transient stage when the IT system changes from one quasi steady state to another. Wave reflection from the low-altitude ionosphere plays an essential role, causing overshoots and oscillations of ionospheric perturbations, and the dynamical Hall effect is an inherent aspect of the M-I coupling. The simulations demonstrate that the ionosphere/thermosphere responds to magnetospheric driving forces as a damped oscillator.

  16. Numerical study of MHD wave propagation in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Sieyra, M. V.; Schneiter, E. M.; Costa, A.; Esquivel, A.

    2017-07-01

    We present a 2D MHD simulation of wave propagation across the solar atmosphere considering the photosphere-chromosphere temperature and density stratification. The system is forced by typical p-mode perturbations. We reproduce observational results from SDO AIA.

  17. Propagation and Dissipation of MHD Waves in Coronal Holes

    NASA Astrophysics Data System (ADS)

    Dwivedi, B. N.

    2006-11-01

    bholadwivedi@gmail.com In view of the landmark result on the solar wind outflow, starting between 5 Mm and 20 Mm above the photosphere in magnetic funnels, we investigate the propagation and dissipation of MHD waves in coronal holes. We underline the importance of Alfvén wave dissipation in the magnetic funnels through the viscous and resistive plasma. Our results show that Alfvén waves are one of the primary energy sources in the innermost part of coronal holes where the solar wind outflow starts. We also consider compressive viscosity and thermal conductivity to study the propagation and dissipation of long period slow longitudinal MHD waves in polar coronal holes. We discuss their likely role in the line profile narrowing, and in the energy budget for coronal holes and the solar wind. We compare the contribution of longitudinal MHD waves with high frequency Alfvén waves.

  18. Effects of various velocity drivers on MHD wave propagation in the partially ionized solar atmosphere from 2D multi-fluid simulations

    NASA Astrophysics Data System (ADS)

    Maneva, Yana; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2017-04-01

    Partial ionization effects related to electron-neutral and ion-neutral interactions play an important role in the weakly ionized solar chromosphere, where the number density of neutrals vastly exceeds the number density of protons. The interactions between the magnetized plasma and the neutral particles can significantly change the resistivity of the plasma and lead to additional heating. Such multi-species interactions cannot be described within the simple MHD single fluid models and the non-equilibrium partial ionization effects cannot be properly captured even when generalized MHD models including Ambipolar diffusion terms are taken into account. A more detailed approach to describe these processes in the solar chromosphere is to use multi-fluid numerical simulations where the neutrals and the plasma species are described as separate fluids, coupled through the chemical reactions, additional currents, friction and resistivity terms. In this study we have elaborate on our previous results and perform 2D two-fluid simulations with an electron-proton fluid and a separate neutral fluid using an improved model where the density and temperature dependence of the plasma viscosities and heat conduction for the neutrals is assumed. Previously we have investigated the chromospheric propagation of fast and slow waves generated by a fixed photospheric foot-point velocity driver. In this study we have varied the velocity driver's frequency and location. We have also distinguished between the types of drivers which excite pure slow/Alfvén waves or a mixture of slow and fast waves. Finally, we have studied the non-uniform heating caused by the waves.

  19. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  20. Vorticity equation for MHD fast waves in geospace environment

    NASA Technical Reports Server (NTRS)

    Yamauchi, M.; Lundin, R.; Lui, A. T. Y.

    1993-01-01

    The MHD vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass, a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion.

  1. Employing analogies for ducted MHD waves in dense coronal structures

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.

    1988-01-01

    Analogies of fast MHD waves propagating along a dense coronal structure are exploited to examine how the size and shape of the inhomogeneity affect the properties of the Love- and Pekeris-type waves. The profile's shape determines the dispersive nature of the waves. Excited impulsively, magnetic Love and Pekeris waves give rise to quasi-periodic oscillations with a duration and time scale that depend on the cross-sectional area and strength of the inhomogeneity. More diffuse coronal inhomogeneities support impulsively generated periodic oscillations, with the quasi-periodic signature being absent.

  2. Fundamental Studies On Development Of MHD (Magnetohydrodynamic) Generator Implement On Wave Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Majid, M. F. M. A.; Apandi, Muhamad Al-Hakim Md; Sabri, M.; Shahril, K.

    2016-02-01

    As increasing of agricultural and industrial activities each year has led to an increasing in demand for energy. Possibility in the future, the country was not able to offer a lot of energy and power demand. This means that we need to focus on renewable energy to supply the demand for energy. Energy harvesting is among a method that can contribute on the renewable energy. MHD power generator is a new way to harvest the energy especially Ocean wave energy. An experimental investigation was conducted to explore performance of MHD generator. The effect of intensity of NaCl Solution (Sea Water), flow rate of NaCl solution, magnetic strength and magnet position to the current produce was analyzed. The result shows that each factor is give a significant effect to the current produce, because of that each factor need to consider on develop of MHD generator to harvest the wave energy as an alternative way to support the demand for energy.

  3. Generation of Alfvén wave energy during magnetic reconnection in Hall MHD

    NASA Astrophysics Data System (ADS)

    Li, Lingjie; Ma, Zhiwei; Wang, Licheng

    2017-10-01

    The effect of the reconnection rate on the generation of Alfvén wave energy is systematically investigated using Hall magnetohydrodynamics (MHD). It is well known that a decrease in magnetic energy is proportional to the reconnection rate. It is found that an instantaneous increase in Alfvén wave energy in unit Alfvén time is the square dependence on the reconnection rate. The converted Alfvén wave energy is strongly enhanced due to the large increase in the reconnection rate in Hall MHD. For solar-terrestrial plasmas, the maximum converted Alfvén wave energy in unit Alfvén time with the Hall effect can be over 50 times higher than that without the Hall effect during magnetic reconnection.

  4. On nonlinear waves in Hall-MHD plasma

    NASA Astrophysics Data System (ADS)

    Miteva, R.; Mann, G.

    2008-10-01

    Low-frequency magnetic field fluctuations are observed in space plasmas, e.g. as upstream waves at the Earth's bow shock. Such upstream waves can steepen into very large amplitude wave phenomena, e.g. short large-amplitude magnetic structures (or SLAMS for short), shocklets or discrete wave packets. Such observations motivated us to study the nonlinear behavior of low-frequency and large-amplitude plasma waves in terms of the full nonlinear Hall-MHD framework. In the case of stationary (nonlinear) waves, the Hall-MHD equations can be rewritten in the so-called Sakai-Sonnerup system of equations that describe this plasma state and provide oscillatory and solitary types of solutions. An overall parameter study on the polarization characteristics, together with the magnetic field components and density variations of the different ranges of solutions, is presented here. These results can be further on applied to the theoretical treatment of particle interaction with such waves, e.g. at shocks in space plasmas, possibly leading to particle acceleration.

  5. MHD equilibria with diamagnetic effects

    NASA Astrophysics Data System (ADS)

    Tessarotto, M.; Zorat, R.; Johnson, J. L.; White, R. B.

    1997-11-01

    An outstanding issue in magnetic confinement is the establishment of MHD equilibria with enhanced flow shear profiles for which turbulence (and transport) may be locally effectively suppressed or at least substantially reduced with respect to standard weak turbulence models. Strong flows develop in the presence of equilibrium E× B-drifts produced by a strong radial electric field, as well as due to diamagnetic contributions produced by steep equilibrium radial profiles of number density, temperature and the flow velocity itself. In the framework of a kinetic description, this generally requires the construction of guiding-center variables correct to second order in the relevant expansion parameter. For this purpose, the Lagrangian approach developed recently by Tessarotto et al. [1] is adopted. In this paper the conditions of existence of such equilibria are analyzed and their basic physical properties are investigated in detail. 1 - M. Pozzo, M. Tessarotto and R. Zorat, in Theory of fusion Plasmas, E.Sindoni et al. eds. (Societá Italiana di Fisica, Editrice Compositori, Bologna, 1996), p.295.

  6. Latitudinal amplitude-phase structure of MHD waves: STARE radar and image magnetometer observations and modeling

    NASA Astrophysics Data System (ADS)

    Pilipenko, Vyacheslav; Kozyreva, Olga; Fedorov, Evgeniy; Uspenskiy, Mihail; Kauristi, Kirsti

    2016-09-01

    We have developed a numerical model that yields a steady-state distribution of field components of MHD wave in an inhomogeneous plasma box simulating the realistic magnetosphere. The problem of adequate boundary condition at the ionosphere-magnetosphere interface for coupled MHD mode is considered. To justify the model's assumptions, we have derived the explicit inequality showing when the ionospheric inductive Hall effect can be neglected upon the consideration of Alfven wave reflection from the ionospheric boundaries. The model predicts a feature of the ULF spatial amplitude/phase distribution that has not been noticed by the field line resonance theory: the existence of a region with opposite phase delays on the source side of the resonance. This theoretical prediction is supported by the amplitude-phase latitudinal structures of Pc5 waves observed by STARE radar and IMAGE magnetometers. A gradual decrease in azimuthal wave number m at smaller L-shells was observed at longitudinally separated radar beams.

  7. MHD dissipative flow and heat transfer of Casson fluids due to metachronal wave propulsion of beating cilia with thermal and velocity slip effects under an oblique magnetic field

    NASA Astrophysics Data System (ADS)

    Akbar, Noreen Sher; Tripathi, D.; Bég, O. Anwar; Khan, Z. H.

    2016-11-01

    A theoretical investigation of magnetohydrodynamic (MHD) flow and heat transfer of electrically-conducting viscoplastic fluids through a channel is conducted. The robust Casson model is implemented to simulate viscoplastic behavior of fluids. The external magnetic field is oblique to the fluid flow direction. Viscous dissipation effects are included. The flow is controlled by the metachronal wave propagation generated by cilia beating on the inner walls of the channel. The mathematical formulation is based on deformation in longitudinal and transverse velocity components induced by the ciliary beating phenomenon with cilia assumed to follow elliptic trajectories. The model also features velocity and thermal slip boundary conditions. Closed-form solutions to the non-dimensional boundary value problem are obtained under physiological limitations of low Reynolds number and large wavelength. The influence of key hydrodynamic and thermo-physical parameters i.e. Hartmann (magnetic) number, Casson (viscoplastic) fluid parameter, thermal slip parameter and velocity slip parameter on flow characteristics are investigated. A comparative study is also made with Newtonian fluids (corresponding to massive values of plastic viscosity). Stream lines are plotted to visualize trapping phenomenon. The computations reveal that velocity increases with increasing the magnitude of Hartmann number near the channel walls whereas in the core flow region (center of the channel) significant deceleration is observed. Temperature is elevated with greater Casson parameter, Hartmann number, velocity slip, eccentricity parameter, thermal slip and also Brinkmann (dissipation) number. Furthermore greater Casson parameter is found to elevate the quantity and size of the trapped bolus. In the pumping region, the pressure rise is reduced with greater Hartmann number, velocity slip, and wave number whereas it is enhanced with greater cilia length.

  8. MHD-waves in the geomagnetic tail: A review

    NASA Astrophysics Data System (ADS)

    Leonovich, Anatoliy; Mazur, Vitaliy; Kozlov, Daniil

    2015-03-01

    This article presents the review of experimental and theoretical studies on ultra-lowfrequency MHD oscillations of the geomagnetic tail. We consider the Kelvin-Helmholtz instability at the magnetopause, oscillations with a discrete spectrum in the "magic frequencies"range, the ballooning instability of coupled Alfvén and slow magnetosonic waves, and "flapping" oscillations of the current sheet of the geomagnetic tail. Over the last decade, observations from THEMIS, CLUSTER and Double Star satellites have been of great importance for experimental studies. The use of several spacecraft allows us to study the structure of MHD oscillations with high spatial resolution. Due to this, we can make a detailed comparison between theoretical results and those obtained from multi-spacecraft studies. To make such comparisons in theoretical studies, in turn, we have to use the numerical models closest to the real magnetosphere.

  9. Doppler displacements in kink MHD waves in solar flux tubes

    NASA Astrophysics Data System (ADS)

    Goossens, Marcel; Van Doorsselaere, Tom; Terradas, Jaume; Verth, Gary; Soler, Roberto

    Doppler displacements in kink MHD waves in solar flux tubes Presenting author: M. Goossens Co-authors: R. Soler, J. Terradas, T. Van Doorsselaere, G. Verth The standard interpretation of the transverse MHD waves observed in the solar atmosphere is that they are non-axisymmetric kink m=1) waves on magnetic flux tubes. This interpretation is based on the fact that axisymmetric and non-axisymmetric fluting waves do not displace the axis of the loop and the loop as a whole while kink waves indeed do so. A uniform transverse motion produces a Doppler displacement that is constant across the magnetic flux tube. A recent development is the observation of Doppler displacements that vary across the loop. The aim of the present contribution is to show that spatial variations of the Doppler displacements across the loop can be caused by kink waves. The motion associated with a kink wave is purely transverse only when the flux tube is uniform and sufficiently thin. Only in that case do the radial and azimuthal components of displacement have the same amplitude and is the azimuthal component a quarter of a period ahead of the radial component. This results in a unidirectional or transverse displacement. When the flux tube is non-uniform and has a non-zero radius the conditions for the generation of a purely transverse motion are not any longer met. In that case the motion in a kink wave is the sum of a transverse motion and a non-axisymmetric rotational motion that depends on the azimuthal angle. It can produce complicated variations of the Doppler displacement across the loop. I shall discuss the various cases of possible Doppler displacenents that can occur depending on the relative sizes of the amplitudes of the radial and azimuthal components of the displacement in the kink wave and on the orientation of the line of sight.

  10. Striae and MHD Waves in Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Goldsmith, Paul; Heyer, Mark H.; Yildiz, Umut; Snell, Ronald L.; Falgarone, Edith; Pineda, Jorge L.

    2017-01-01

    The origin of molecular striae aligned along the local magnetic field in the envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J=2-1 emission obtained with the 10m submillimeter telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsibe for the striae features. For both 12CO and 13CO, spatial variations of the J=2-1 to J=1-0 line ratio are small and are not spatially correlated with the striae locations. A medium comprised of small, unresolved cells of CO emission with a filling factor less than 1 is required to explain the average line ratios and brightness temperatures. We propose that the striae features result from the modulation of the velocities and the beam filling factor of the cells, as a result of magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Such waves are likely a common feature of molecular clouds that are sub-Alfvenic and may explain low column density, cirrus-like features that are observed to be aligned along the magnetic field direction.

  11. Eigen-Frequencies of MHD Wave Equations in the Presence of Longitudinal Stratification Density

    NASA Astrophysics Data System (ADS)

    Esmaeili, Shahriar; Nasiri, Mojtaba; Dadashi, Neda; Safari, Hossein

    2015-04-01

    Coronal Loops oscillations and MHD waves propagating in solar corona and transition region has been observed by TRACE telescope in 1999. In this Study, the MHD mode oscillations of the coronal plasma are studied. The aim is to identify the effect of structuring such as density on the frequencies of oscillations. We modeled the coronal medium as a zero-plasma with longitudinally density stratification. Magnetic flux tube oscillations are categorized into sausage, kink and torsion modes. The MHD equations are reduced and the governing equation are solved numerically using Finite Element Method. Eigenfrequencies and eigenfunctions are extracted. The torsional mode is analyzed. By changing the stratification parameter the antinodes move towards the footpoints and we also concluded that in the thin tube approximation, leakage modes are propagated.

  12. Energy exchange and wave action conservation for magnetohydrodynamic (MHD) waves in a general, slowly varying medium

    NASA Astrophysics Data System (ADS)

    Walker, A. D. M.

    2014-12-01

    Magnetohydrodynamic (MHD) waves in the solar wind and magnetosphere are propagated in a medium whose velocity is comparable to or greater than the wave velocity and which varies in both space and time. In the approximation where the scales of the time and space variation are long compared with the period and wavelength, the ray-tracing equations can be generalized and then include an additional first-order differential equation that determines the variation of frequency. In such circumstances the wave can exchange energy with the background: wave energy is not conserved. In such processes the wave action theorem shows that the wave action, defined as the ratio of the wave energy to the frequency in the local rest frame, is conserved. In this paper we discuss ray-tracing techniques and the energy exchange relation for MHD waves. We then provide a unified account of how to deal with energy transport by MHD waves in non-uniform media. The wave action theorem is derived directly from the basic MHD equations for sound waves, transverse Alfvén waves, and the fast and slow magnetosonic waves. The techniques described are applied to a number of illustrative cases. These include a sound wave in a medium undergoing a uniform compression, an isotropic Alfvén wave in a steady-state shear layer, and a transverse Alfvén wave in a simple model of the magnetotail undergoing compression. In each case the nature and magnitude of the energy exchange between wave and background is found.

  13. Vorticity equation for MHD fast waves in geospace environment

    SciTech Connect

    Yamauchi, M.; Lundin, R.; Lui, A.T.Y.

    1993-08-01

    The magnetohydrodynamic (MHD) vorticity equation is modified in order to apply it to nonlinear MHD fast waves or shocks when their extent along the magnetic field is limited. Field-aligned current (FAC) generation is also discussed on the basis of this modified vorticity equation. When the wave normal is not aligned to the finite velocity convection and the source region is spatially limited, a longitudinal polarization (u{sub {perpendicular}}{center_dot}J{sub {perpendicular}}) causes a pair of plus and minus charges inside the compressional plane waves or shocks, generating a pair of FACs. This polarization is not related to the separation between the electrons and ions caused by their difference in mass (i.e., Langmuir mode), a separation which is inherent to compressional waves. The resultant double field-aligned current structure exists both with and without the contributions from curvature drift, which is questionable in terms of its contribution to vorticity change from the viewpoint of single-particle motion. 14 refs., 3 figs.

  14. Is the magnetosphere a lens for MHD waves?

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.; Sharma, A. S.; Valdivia, J. A.

    1993-01-01

    A viewpoint of the magnetosphere as a lens for MHD waves is presented. Using a simple model of the variation of the Alfven speed as proportional to the local magnetic value given by the Earth's dipole field and that due to the magnetopause currents represented by a current loop, it is found that the near-Earth magnetotail, in the range 8-16 R(sub E), is the focus of the magnetospheric lens. This location is found to be quite insensitive to a wide variation of parameters. By using simple diffraction theory analysis it is found that the focal region extends about 1 R(sub E) about the neutral sheet in the north-south plane and 0.2 - 0.5 R(sub E) along the Sun-Earth line. Compressive MHD waves carried by the solar wind or created by the interaction of the wind with the magnetopause can be amplified by a factor of about 100 in the focal region and this has potentially important implications to substorm activity.

  15. Kelvin-Helmholtz Unstable Magnetotail Flow Channels: Deceleration and Radiation of MHD Waves

    NASA Astrophysics Data System (ADS)

    Turkakin, H.; Mann, I. R.; Rankin, R.

    2014-12-01

    The Kelvin-Helmholtz instability (KHI) of magnetotail flow channels associated with burstybulk flows (BBFs) is investigated. MHD oscillations of the channel in both kink and sausage modes areinvestigated for KHI, and both the primary and secondary KHIs are found that drive MHD waves. Theseinstabilities are likely to be important for flow channel braking where the KHI removes energy from the flow.At flow speeds above the peak growth rate, the MHD modes excited by KHI develop from surface modesinto propagating modes leading to the radiation of MHD waves from the flow channel. The coupling ofBBF-driven shear flow instabilities to MHD waves presented here represents a new paradigm to explain BBFexcitation of tail flapping. Our model can also explain, for the first time, the generation mechanism for theobservations of waves propagating toward both flanks and emitted from BBF channels in the magnetotail.

  16. MHD waves and instabilities for gravitating, magnetized configurations in motion

    NASA Astrophysics Data System (ADS)

    Keppens, Rony; Goedbloed, Hans J. P.

    Seismic probing of equilibrium configurations is of course well-known from geophysics, but has also been succesfully used to determine the internal structure of the Sun to an amazing accuracy. The results of helioseismology are quite impressive, although they only exploit an equilibrium structure where inward gravity is balanced by a pressure gradient in a 1D radial fashion. In principle, one can do the same for stationary, gravitating, magnetized plasma equilibria, as needed to perform MHD seismology in astrophysical jets or accretion disks. The introduction of (sheared) differential rotation does require the important switch from diagnosing static to stationary equilibrium configurations. The theory to describe all linear waves and instabilities in ideal MHD, given an exact stationary, gravitating, magnetized plasma equilibrium, in any dimensionality (1D, 2D, 3D) has been known since 1960, and is governed by the Frieman-Rotenberg equation. The full (mathematical) power of spectral theory governing physical eigenmode determination comes into play when using the Frieman-Rotenberg equation for moving equilibria, as applicable to astrophysical jets, accretion disks, but also solar flux ropes with stationary flow patterns. I will review exemplary seismic studies of flowing equilibrium configurations, covering solar to astrophysical configurations in motion. In that case, even essentially 1D configurations require quantification of the spectral web of eigenmodes, organizing the complex eigenfrequency plane.

  17. Large amplitude MHD waves upstream of the Jovian bow shock

    NASA Technical Reports Server (NTRS)

    Goldstein, M. L.; Smith, C. W.; Matthaeus, W. H.

    1983-01-01

    Observations of large amplitude magnetohydrodynamics (MHD) waves upstream of Jupiter's bow shock are analyzed. The waves are found to be right circularly polarized in the solar wind frame which suggests that they are propagating in the fast magnetosonic mode. A complete spectral and minimum variance eigenvalue analysis of the data was performed. The power spectrum of the magnetic fluctuations contains several peaks. The fluctuations at 2.3 mHz have a direction of minimum variance along the direction of the average magnetic field. The direction of minimum variance of these fluctuations lies at approximately 40 deg. to the magnetic field and is parallel to the radial direction. We argue that these fluctuations are waves excited by protons reflected off the Jovian bow shock. The inferred speed of the reflected protons is about two times the solar wind speed in the plasma rest frame. A linear instability analysis is presented which suggests an explanation for many of the observed features of the observations.

  18. Heating of solar and stellar chromospheres and coronae by MHD waves

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.

    1992-01-01

    The two general classes of models that deal with the required heating of stellar chromospheres and coronae assume that outer stellar atmospheres are heated by hydrodynamic or by magnetohydrodynamic (MHD) waves and that these waves are generated by turbulent motions in the stellar convection zones. This paper considers the types of MHD waves and the source of these waves in stars like sun, the efficiency of the generation of MHD waves, and the manner of propagation and energy dissipation of MHD waves. It is shown that the basic criteria for the validity of any theory of MHD wave heating must account for the mean level of heating observed in stellar chromospheres and coronae, and for the range of radiative losses observed for a given spectral type. It is also required that the MHD wave heating theory accounts for the existence of inhomogeneities in stellar atmospheres. The results obtained indicate that magnetic tube waves might supply enough energy for the chromospheric and coronal heating and might also account for the observed range of variations of stellar radiative losses for a given spectral type.

  19. Experimental, Numerical and Analytical Studies of the MHD-driven plasma jet, instabilities and waves

    NASA Astrophysics Data System (ADS)

    Zhai, Xiang

    This thesis describes a series of experimental, numerical, and analytical studies involving the Caltech magnetohydrodynamically (MHD)-driven plasma jet experiment. The plasma jet is created via a capacitor discharge that powers a magnetized coaxial planar electrodes system. The jet is collimated and accelerated by the MHD forces. We present three-dimensional ideal MHD finite-volume simulations of the plasma jet experiment using an astrophysical magnetic tower as the baseline model. A compact magnetic energy/helicity injection is exploited in the simulation analogous to both the experiment and to astrophysical situations. Detailed analysis provides a comprehensive description of the interplay of magnetic force, pressure, and flow effects. We delineate both the jet structure and the transition process that converts the injected magnetic energy to other forms. When the experimental jet is sufficiently long, it undergoes a global kink instability and then a secondary local Rayleigh-Taylor instability caused by lateral acceleration of the kink instability. We present an MHD theory of the Rayleigh-Taylor instability on the cylindrical surface of a plasma flux rope in the presence of a lateral external gravity. The Rayleigh-Taylor instability is found to couple to the classic current-driven instability, resulting in a new type of hybrid instability. The coupled instability, produced by combination of helical magnetic field, curvature of the cylindrical geometry, and lateral gravity, is fundamentally different from the classic magnetic Rayleigh-Taylor instability occurring at a two-dimensional planar interface. In the experiment, this instability cascade from macro-scale to micro-scale eventually leads to the failure of MHD. When the Rayleigh-Taylor instability becomes nonlinear, it compresses and pinches the plasma jet to a scale smaller than the ion skin depth and triggers a fast magnetic reconnection. We built a specially designed high-speed 3D magnetic probe and

  20. Axisymmetric and non-axisymmetric modulated MHD waves in magnetic flux tubes

    NASA Astrophysics Data System (ADS)

    Chargeishvili, B. B.; Japaridze, D. R.

    2016-02-01

    Nonlinear modulated both axisymmetric and non-axisymmetric MHD wave propagation in magnetic flux tubes is studied. In the cylindrical coordinates, ordinary differential equation with cubic nonlinearity is derived. In both cases of symmetry, the equation has solitary solutions. Modulation stability of the solutions is studied. The results of the study show that the propagation of axisymmetric soliton causes rising of plasma temperature in peripheral regions of a magnetic flux tube. In the non-axisymmetric case, it gives also temperature rising effect. Results of theoretical study are examined on idealized model of chromospheric spicule.

  1. NUMERICAL SIMULATION OF PROPAGATION AND SCATTERING OF THE MHD WAVES IN SUNSPOTS

    NASA Astrophysics Data System (ADS)

    Parchevsky, K.; Kosovichev, A. G.; Khomenko, E.; Collados, M.

    2009-12-01

    We present comparison of numerical simulation results of MHD wave propagation in two different magnitostatic models of sunspots refferred to as "deep" and "shallow" models. The "deep" model has convex shape of magnetic field lines near the photosphere and non-zero horizorntal perturbations of the sound speed up to the bottom of the model (7.5 Mm). The "shallow" model has concave shape of the magnetic field lines near the photosphere and horizontally uniform sound speed below 2 Mm. Common feature of MHD waves behaviour in these two models is that for weak magnetic field (less than 1kG at the photosphere) waves reduce their amplitude when they reach the center of the sunspot and restore the amplitude when pass the center. For the "deep" model this effect is bigger than for the "shallow" model. The wave amplitude inside sunspots depends on the strength of the magnetic field. For the "shallow" model with photospheric magnetic field of 2.2 kG the wave amplitude inside the sunspot becomes bigger than outside (opposite to the weak magnetic field). The wave amplitude depends on the distance of the source from the sunspot center. For the "shallow" model and source distance of 9 Mm from the sunspot center the wave amplitude at some moment (when the wavefront passes the sunspot center) becomes bigger inside the sunspot than outside. For the source distance of 12 Mm the wave amplitude remains smaller inside the sunspot than outside for all moments of time. Using filtering technique we separated magnetoacoustic and magnetogravity waves. Simulations show that the sunspot changes the shape of the wave front and amplitude of the f-modes significantly stronger than the p-modes. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. Strong Alfven wave is generated at the wave source location in the "deep" model. This wave exists in the "shallow" model as well, but with

  2. Stirring Coronal Spaghetti: Exploring Multiple Interactions Between MHD Waves and Density Fluctuations

    NASA Astrophysics Data System (ADS)

    Cranmer, Steven R.

    2016-05-01

    The solar corona has been revealed in the past few decades to be a highly dynamic nonequilibrium plasma environment. Both the loop-filled coronal base and the extended acceleration region of the solar wind appear to be strongly turbulent, and models that invoke the dissipation of incompressible Alfvenic fluctuations have had some success in explaining the heating. However, many of these models neglect the mounting evidence that density and pressure variations may play an important role in the mass and energy balance of this system. In this presentation I will briefly review observations of both compressible and incompressible MHD fluctuations in the corona and solar wind, and discuss future prospects with DKIST. I will also attempt to outline the many ways that these different fluctuation modes have been proposed to interact with one another -- usually with an eye on finding ways to enhance their dissipation and heating. One under-appreciated type of interaction is the fact that Alfven waves will undergo multiple reflections and refractions in a "background plasma" filled with localized density fluctuations. It is becoming increasingly clear that models must not only include the effects of longitudinal variability (e.g., magnetoacoustic waves and pulse-like jets) but also transverse "striations" that appear naturally in a structured magnetic field with small-scale footpoint variability. Future off-limb observations, such as those with DKIST's Cryo-NIRSP instrument, will be crucial for providing us with a detailed census of MHD waves and their mutual interactions in the corona.

  3. Solar wind turbulence: Observations of MHD effects

    NASA Technical Reports Server (NTRS)

    Bavassano, B.

    1995-01-01

    Since the first in-situ observations it was realized that the solar wind is permeated by large-amplitude variations on a very extended range of scales. In this paper an overview of our present state of knowledge for fluctuations in the magnetohydrodynamic (MHD) regime is given. These fluctuations are an important component of the solar wind variability and notably contribute to the overall energy and momentum flux. They generally have a turbulent character and their amplitude is large enough to suggest the presence of nonlinear effects. In recent years the use of high time-resolution data on an extended range of heliocentric distances has allowed major steps towards a satisfactory understanding of the solar wind MHD fluctuations. Their radial evolution in the expanding wind has been determined through detailed analyses of the variations in their spectral features. correlations. and anisotropics. The role of interplanetary sources has been carefully investigated. The influence of interactions with structures convected by the solar wind has been examined. Fluctuations have been studied in the light of theories developed to draw together the effects of both incompressibility and compressibility. Increasing attention has been devoted to the intermittent character of the turbulence. Finally, very recent observations by Ulysses at high heliographic latitudes have allowed the first in-situ analysis of turbulence features in polar regions of the heliosphere.

  4. Linear MHD Wave Propagation in Time-Dependent Flux Tube. II. Finite Plasma Beta

    NASA Astrophysics Data System (ADS)

    Williamson, A.; Erdélyi, R.

    2014-04-01

    The propagation of magnetohydrodynamic (MHD) waves is an area that has been thoroughly studied for idealised static and steady state magnetised plasma systems applied to numerous solar structures. By applying the generalisation of a temporally varying background density to an open magnetic flux tube, mimicking the observed slow evolution of such waveguides in the solar atmosphere, further investigations into the propagation of both fast and slow MHD waves can take place. The assumption of a zero-beta plasma (no gas pressure) was applied in Williamson and Erdélyi ( Solar Phys. 2013, doi:10.1007/s11207-013-0366-9, Paper I) is now relaxed for further analysis here. Firstly, the introduction of a finite thermal pressure to the magnetic flux tube equilibrium modifies the existence of fast MHD waves which are directly comparable to their counterparts found in Paper I. Further, as a direct consequence of the non-zero kinetic plasma pressure, a slow MHD wave now exists, and is investigated. Analysis of the slow wave shows that, similar to the fast MHD wave, wave amplitude amplification takes place in time and height. The evolution of the wave amplitude is determined here analytically. We conclude that for a temporally slowly decreasing background density both propagating magnetosonic wave modes are amplified for over-dense magnetic flux tubes. This information can be very practical and useful for future solar magneto-seismology applications in the study of the amplitude and frequency properties of MHD waveguides, e.g. for diagnostic purposes, present in the solar atmosphere.

  5. Plasma wave signatures in the magnetotail reconnection region - MHD simulation and ray tracing

    NASA Technical Reports Server (NTRS)

    Omura, Yoshiharu; Green, James L.

    1993-01-01

    An MHD simulation was performed to obtain a self-consistent model of magnetic field and plasma density near the X point reconnection region. The MHD model was used to perform extensive ray tracing calculations in order to clarify the propagation characteristics of the plasma waves near the X point reconnection region. The dynamic wave spectra possibly observed by the Geotail spacecraft during a typical cross-tail trajectory are reconstructed. By comparing the extensive ray tracing calculations with the plasma wave data from Geotail, it is possible to perform a kind of 'remote sensing' to identify the location and structure of potential X point reconnection regions.

  6. Numerical Simulation of Propagation and Transformation of the MHD Waves in Sunspots

    NASA Astrophysics Data System (ADS)

    Parchevsky, Konstantin; Zhao, J.; Kosovichev, A.

    2010-05-01

    Direct numerical simulation of propagation of MHD waves in stratified medium in regions with non-uniform magnetic field is very important for understanding of scattering and transformation of waves by sunspots. We present numerical simulations of wave propagation through the sunspot in 3D. We compare results propagation in two different magnitostatic models of sunspots refferred to as "deep" and "shallow" models. The "deep" model has convex shape of magnetic field lines near the photosphere and non-zero horizorntal perturbations of the sound speed up to the bottom of the model. The "shallow" model has concave shape of the magnetic field lines near the photosphere and horizontally uniform sound speed below 2 Mm. Waves reduce their amplitude when they reach the center of the sunspot and estore the amplitude when pass the center. For the "deep" model this effect is bigger than for the "shallow" model. The wave amplitude depends on the distance of the source from the sunspot center. For the "shallow" model and source distance of 9 Mm from the sunspot center the wave amplitude at some moment (when the wavefront passes the sunspot center) becomes bigger inside the sunspot than outside. For the source distance of 12 Mm the wave amplitude remains smaller inside the sunspot than outside for all moments of time. Using filtering technique we separated magnetoacoustic and magnetogravity waves. Simulations show that the sunspot changes the shape of the wave front and amplitude of the f-modes significantly stronger than the p-modes. It is shown, that inside the sunspot magnetoacoustic and magnetogravity waves are not spatially separated unlike the case of the horizontally uniform background model. We compared simulation results with the wave signals (Green's functions) extracted from the SOHO/MDI data for AR9787.

  7. Three-Dimensional MHD Models of Waves and Flows in Coronal Active Region Loops

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Wang, T.; Davila, J. M.

    2011-12-01

    Recent observations show that slow magnetosonic waves are present in active region loops, and are often associated with subsonic up-flows of coronal material. In order to study the relation between up-flows and waves we develop a 3D MHD model of an idealized bi-polar active region with flows in coronal loops. The model is initiated with a dipole magnetic field and gravitationally stratified isothermal atmosphere. To model the effects of flares, coronal material is injected in small-scale regions at the base of the model active region. The up-flows have sub-sonic speeds of ˜100 km/s and are steady or periodic, producing higher density loops by filling magnetic flux-tubes with injected material. We find that the up-flows produce fast and slow magnetosonic waves that propagate in the coronal loops. We perform a parametric study of up-flow magnitude and periodicity, and the relation with the resulting waves. As expected, we find that the up-flow speed decreases with loop height due to the diverge of the flux tubes, while the slow magnetosonic speed is independent of height. When the amplitude of the driving pulses is increased above the sound speed, we find that slow shocks are produced in the loops. Using the results of the 3D MHD model we show that observed slow magnetosonic waves in active region loops can be driven by impulsive flare-produced up-flows at the transition region/corona interface of active regions.

  8. Dissipative MHD solutions for resonant Alfven waves in 1-dimensional magnetic flux tubes

    NASA Technical Reports Server (NTRS)

    Goossens, Marcel; Ruderman, Michail S.; Hollweg, Joseph V.

    1995-01-01

    The present paper extends the analysis by Sakurai, Goossens, and Hollweg (1991) on resonant Alfven waves in nonuniform magnetic flux tubes. It proves that the fundamental conservation law for resonant Alfven waves found in ideal MHD by Sakurai, Goossens, and Hollweg remains valid in dissipative MHD. This guarantees that the jump conditions of Sakurai, Goossens, and Hollweg, that connect the ideal MHD solutions for xi(sub r), and P' across the dissipative layer, are correct. In addition, the present paper replaces the complicated dissipative MHD solutions obtained by Sakurai, Goossens, and Hollweg for xi(sub r), and P' in terms of double integrals of Hankel functions of complex argument of order 1/3 with compact analytical solutions that allow a straight- forward mathematical and physical interpretation. Finally, it presents an analytical dissipative MHD solution for the component of the Lagrangian displacement in the magnetic surfaces perpen- dicular to the magnetic field lines xi(sub perpendicular) which enables us to determine the dominant dynamics of resonant Alfven waves in dissipative MHD.

  9. On The Role of MHD Waves in Heating Localised Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Erdélyi, R.; Nelson, C. J.

    2016-04-01

    Satellite and ground-based observations from e.g. SOHO, TRACE, STEREO, Hinode, SDO and IRIS to DST/ROSA, IBIS, CoMP, STT/CRISP have provided a wealth of evidence of waves and oscillations present in a wide range of spatial scales of the magnetised solar atmosphere. Our understanding about localised solar structures has been considerably changed in light of these high spatial and time resolution observations. However, MHD waves not only enable us to perform sub-resolution magneto-seismology of magnetic waveguides but are also potential candidates to carry and damp the necessary non-thermal energy in these localised waveguides. First, we will briefly outline the basic recent developments in MHD wave theory focussing on linear waves. Next, we discuss the role of the most frequently studied wave classes, including the Alfven, and magneto-acoustic kink and sausage waves. The current theoretical (and often difficult) interpretations of the detected solar atmospheric wave and oscillatory phenomena within the framework of MHD will be shown. Last, the latest reported observational findings of potential MHD wave flux, in terms of localised plasma heating, in the solar atmosphere is discussed, bringing us closer to solve the coronal heating problem.

  10. Advances in Simulation of Wave Interaction with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; Abla, Gheni; D'Azevedo, Ed F; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, Joshua; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Foley, S.; Fu, GuoYong; Harvey, R. W.; Jaeger, Erwin Frederick; Jardin, S. C.; Jenkins, T; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; Lynch, Vickie E; McCune, Douglas; Ramos, J.; Schissel, D.; Schnack,; Wright, J.

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  11. Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Bonoli, P.; Bramley, Randall B; Breslau, Joshua; Elwasif, Wael R; Foley, S.; Jaeger, Erwin Frederick; Jardin, S. C.; Klasky, Scott A; Kruger, Scott E; Ku, Long-Poe; McCune, Douglas; Ramos, J.; Schissel, David P; Schnack, Dalton D

    2009-01-01

    The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: (1) recent improvements to the IPS, (2) application of the IPS for very high resolution simulations of ITER scenarios, (3) studies of resistive and ideal MHD stability in tokamak discharges using IPS facilities, and (4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.

  12. Integrated Physics Advances in Simulation of Wave Interactions with Extended MHD Phenomena

    SciTech Connect

    Batchelor, Donald B; D'Azevedo, Eduardo; Bateman, Glenn; Bernholdt, David E; Berry, Lee A; Bonoli, P.; Bramley, R; Breslau, J.; Chance, M.; Chen, J.; Choi, M.; Elwasif, Wael R; Fu, GuoYong; Harvey, R. W.; Houlberg, Wayne A; Jaeger, Erwin Frederick; Jardin, S. C.; Keyes, David E; Klasky, Scott A; Kruger, Scott; Ku, Long-Poe; McCune, Douglas; Schissel, D.; Schnack, D.; Wright, J. C.

    2007-06-01

    The broad scientific objectives of the SWIM (Simulation of Wave Interaction with MHD) project are: (A) To improve our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, and to substantially improve our capability for predicting and optimizing the performance of burning plasmas in devices such as ITER: and (B) To develop an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project (FSP).

  13. Shock-associated MHD waves - A model for interstellar density fluctuations

    NASA Technical Reports Server (NTRS)

    Spangler, Steven R.

    1988-01-01

    The possibility that the density fluctuations responsible for radio scintillations could be due to ion-beam-generated MHD waves near interstellar shock waves is discussed. This suggestion is inspired by spacecraft observations which reveal these phenomena near shocks in the solar system. The model quite naturally accounts for the scale on which these fluctuations occur; it is dictated by the wavelength of the unstable waves.

  14. Effects of water molecules of Ar-Cs MHD disk generator operated with strong MHD interaction

    SciTech Connect

    Ishikawa, M.; Kosugi, A.; Inui, Y.; Kabashima, S.

    1998-07-01

    Effects of water molecule impurity are studied on performance of a disk type MHD generator operated with Ar-Cs weakly ionized plasma. To reveal phenomena for a wide range of operation conditions, time-dependent one-dimensional analyses are carried out, where an up-wind, second order Chakravarthy TVD scheme is applied for the gasdynamics, while a Galerkin FEM is used for the electrodynamics. A simplified model is used for the water molecule impurity, where total effects of nonelastic collision between electrons and water molecules are estimated by the collision loss factor of electrons and also the electron momentum-transfer collision frequency is taken into account. The collision loss factor of electrons and the electron momentum-transfer collision frequency are taken from references, and the loss factor is assumed to be 700 independently of the electron temperature. On the Fuji-1 facilities at Tokyo Institute Technology, Japan, series of experiment A4105 were carried out with the Disk F-4 generator. Ar was heated with the heat-exchanger heated by the natural gas-air combustion and the metal cesium was used as the seeding material, while SCM maintained the magnetic field of 4.7 T at the center of disk and the very strong MHD interaction was realized. The thermal input was about 3 MW, the electrical output was about 500 kW with the enthalpy extraction ratio of about 17%. The numerical analyses have shown that the water molecule enhances the ionization instability at the low voltage loading because of insufficient Joule heating for electrons. The generator performance is degraded and the strong MHD interaction between the unstable plasma and the flow field induces slow and fast moving shock waves, leading to the very complicated flow field. The fast and slow moving shocks collide with each other, merge into a sharp shock moving downward, and then the shock front moves back slightly to maintain the pressure balance, collides again with another weak moving shock, and

  15. Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave

    NASA Astrophysics Data System (ADS)

    Bhatti, M. M.; Zeeshan, A.; Ellahi, R.

    2017-09-01

    In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.

  16. Development of MHD Wave Diagnostic and Models of Coronal Active Regions

    NASA Astrophysics Data System (ADS)

    Ofman, L.; Thompson, B. J.; Davila, J. M.

    2004-05-01

    We investigate the generation, propagation, and damping of MHD waves in active regions, with the goal to develop a diagnostic tool of active region structure, dynamics, and stability. We used 3D MHD model to study the generation and the propagation of EIT waves in a simple model of an active regions, and the interaction of EIT waves with the active region magnetic field. We model the oscillation of active region loops numerically using the 3D MHD model active regions. Such oscillations have been recently observed by TRACE. We use photospheric magnetograms as the boundary conditions for the magnetic field model, and construct an initial field using force-free extrapolation. Finite plasma temperature, density, and gravity are included in the model. We construct loop density structures in the model, guided by TRACE and EIT observations in the EUV. We demonstrate that by comparing the results of the MHD models of waves in an active region to observations we will be able to construct a diagnostic tool for the physical properties of the active regions, such as magnetic field and density structure.

  17. Realistic Modeling of Fast MHD Wave Trains in Coronal Active Regions

    NASA Astrophysics Data System (ADS)

    Ofman, Leon; Sun, Xudong

    2017-08-01

    Motivated by recent SDO/AIA observations we have developed realistic modeling of quasi-periodic, fast-mode propagating MHD wave trains (QFPs) using 3D MHD model initiated with potential magnetic field extrapolated from the solar coronal boundary. Localized quasi-periodic pulsations associated with C-class flares that drive the waves (as deduced from observations) are modeled with transverse periodic displacement of magnetic field at the lower coronal boundary. The modeled propagating speed and the form of the wave expansions matches the observed fast MHD waves speed >1000 km/s and topology. We study the parametric dependence of the amplitude, propagation, and damping of the waves for a range of key model parameters, such as the background temperature, density, and the location of the flaring site within the active region. We investigate the interaction of multiple QFP wave trains excited by adjacent flaring sources. We use the model results to synthesize EUV intensities in multiple AIA channels and obtain the model parameters that best reproduce the properties of observed QFPs, such as the recent DEM analysis. We discuss the implications of our modeling results for the seismological application of QFPs for the diagnostic of the active region field, flare pulsations, end estimate the energy flux carried by the waves.

  18. Hybrid simulations of the interaction of hot gyrokinetic particles with MHD waves

    SciTech Connect

    Belova, E.V.; Denton, R.E.; Hudson, M.K.; Chan, A.A.

    1996-12-31

    A self-consistent study of the interaction of energetic ions with low-frequency MHD waves is performed using hybrid MHD-gyrokinetic particle simulations. In particular, the excitation of magnetospheric hydromagnetic waves by magnetic drift-bounce resonance with energetic ring current ions is investigated. In the model, energetic ions are treated as gyrokinetic particles using fully electromagnetic gyro-center equations, while the cold background plasma is treated as a fluid. The particles are coupled to the fluid equations through their current which appear in the bulk plasma momentum equation: where {rho}{sub b}, V{sub b} and p{sub b} are bulk plasma density, velocity and pressure, n{sub h} and j{sub h} axe hot ion density and current density. Other equations for the bulk plasma axe that of the MHD equations including E = - V{sub b} x B/c. It is assumed that n{sub h} {much_lt} n{sub b}. Spatial gyroaveraging in the gyro-center equations of motion as well as transformation to physical space axe performed by using four or eight point gyroangle distribution, in order to include the finite Larmor radius effects. In test runs, good conservation of the total energy was obtained and the finite Larmor radius effects were well reproduced for k{sub {perpendicular}}{rho}{sub h} {approximately} 1. Since magnetic drift-bounce resonant instability is driven by radial pressure gradients and requires resonance between azimuthal ion drift motion and bounce motion along magnetic field line, 3-D simulations are necessary for its investigation. The use of a multiple spatial scale expansion method enables to separate the equilibrium spatial scale lengths from those of the perturbations. In this case the zero-order ion pressure and magnetic field gradients become input parameters for the 2-D simulation. The 2-D numerical model with fixed background inhomogeneity was developed and it is used to study the drift-bounce resonant instability in 2-D box geometry.

  19. Modeling Observed Decay-less Oscillations as Resonantly Enhanced Kelvin-Helmholtz Vortices from Transverse MHD Waves and Their Seismological Application

    NASA Astrophysics Data System (ADS)

    Antolin, P.; De Moortel, I.; Van Doorsselaere, T.; Yokoyama, T.

    2016-10-01

    In the highly structured solar corona, resonant absorption is an unavoidable mechanism of energy transfer from global transverse MHD waves to local azimuthal Alfvén waves. Due to its localized nature, direct detection of this mechanism is extremely difficult. Yet, it is the leading theory explaining the observed fast damping of the global transverse waves. However, at odds with this theoretical prediction are recent observations that indicate that in the low-amplitude regime such transverse MHD waves can also appear decay-less, a still unsolved phenomenon. Recent numerical work has shown that Kelvin-Helmholtz instabilities (KHI) often accompany transverse MHD waves. In this work, we combine 3D MHD simulations and forward modeling to show that for currently achieved spatial resolution and observed small amplitudes, an apparent decay-less oscillation is obtained. This effect results from the combination of periodic brightenings produced by the KHI and the coherent motion of the KHI vortices amplified by resonant absorption. Such an effect is especially clear in emission lines forming at temperatures that capture the boundary dynamics rather than the core, and reflects the low damping character of the local azimuthal Alfvén waves resonantly coupled to the kink mode. Due to phase mixing, the detected period can vary depending on the emission line, with those sensitive to the boundary having shorter periods than those sensitive to the loop core. This allows us to estimate the density contrast at the boundary.

  20. MODE IDENTIFICATION OF MHD WAVES IN AN ACTIVE REGION OBSERVED WITH HINODE/EIS

    SciTech Connect

    Kitagawa, N.; Yokoyama, T.; Imada, S.; Hara, H.

    2010-09-20

    In order to better understand the possibility of coronal heating by MHD waves, we analyze Fe XII 195.12A data observed with the EUV Imaging Spectrometer on board Hinode. We performed a Fourier analysis of EUV intensity and Doppler velocity time series data in the active region corona. Notable intensity and Doppler velocity oscillations were found for two moss regions out of the five studied, while only small oscillations were found for five apexes of loops. The amplitudes of the oscillations were 0.4%-5.7% for intensity and 0.2-1.2 km s{sup -1} for Doppler velocity. In addition, oscillations of only the Doppler velocity were seen relatively less often in the data. We compared the amplitudes of intensity and those of Doppler velocity in order to identify MHD wave modes and calculated the phase delays between Fourier components of intensity and those of Doppler velocity. The results are interpreted in terms of MHD waves as follows: (1) few kink modes or torsional Alfven mode waves were seen in both moss regions and the apexes of loops, (2) upwardly propagating and standing slow mode waves were found in moss regions, and (3) consistent with previous studies, estimated values of energy flux of the waves were several orders of magnitude lower than that required for heating active regions.

  1. Guided MHD waves as a coronal diagnostic tool

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    A description is provided of how fast magnetoacoustic waves are ducted along regions of low Alfven velocity (high density) in the corona, exhibiting a distinctive wave signature which may be used as a diagnostic probe of in situ coronal conditions (magnetic field strength, density inhomogeneity, etc.). Some observational knowledge of the start time of the impulsive wave source, possibly a flare, the start and end times of the generated wave event, and the frequency of the pulsations in that event permits a seismological deduction of the physical properties of the coronal medium in which the wave propagated. With good observations the theory offers a new means of probing the coronal atmosphere.

  2. Numerical simulation of MHD shock waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.; Dryer, M.

    1978-01-01

    The effects of the interplanetary magnetic field on the propagation speed of shock waves through an ambient solar wind are examined by numerical solutions of the time-dependent nonlinear equations of motion. The magnetic field always increases the velocity of strong shocks. Although the field may temporarily slow down weak shocks inside 1 AU, it eventually also causes weak shocks to travel faster than they would without the magnetic field at larger distances. Consistent with the increase in the shock velocity, the gas pressure ratio across a shock is reduced considerably in the presence of the magnetic field. The numerical method is used to simulate (starting at 0.3 AU) the large deceleration of a shock observed in the lower corona by ground-based radio instrumentation and the more gradual deceleration of the shock in the solar wind observed by the Pioneer 9 and Pioneer 10 spacecraft.

  3. The generation and damping of propagating MHD kink waves in the solar atmosphere

    SciTech Connect

    Morton, R. J.; Verth, G.; Erdélyi, R.; Hillier, A. E-mail: g.verth@sheffield.ac.uk

    2014-03-20

    The source of the non-thermal energy required for the heating of the upper solar atmosphere to temperatures in excess of a million degrees and the acceleration of the solar wind to hundreds of kilometers per second is still unclear. One such mechanism for providing the required energy flux is incompressible torsional Alfvén and kink magnetohydrodynamic (MHD) waves, which are magnetically dominated waves supported by the Sun's pervasive and complex magnetic field. In particular, propagating MHD kink waves have recently been observed to be ubiquitous throughout the solar atmosphere, but, until now, critical details of the transport of the kink wave energy throughout the Sun's atmosphere were lacking. Here, the ubiquity of the waves is exploited for statistical studies in the highly dynamic solar chromosphere. This large-scale investigation allows for the determination of the chromospheric kink wave velocity power spectra, a missing link necessary for determining the energy transport between the photosphere and corona. Crucially, the power spectra contain evidence for horizontal photospheric motions being an important mechanism for kink wave generation in the quiescent Sun. In addition, a comparison with measured coronal power spectra is provided for the first time, revealing frequency-dependent transmission profiles, suggesting that there is enhanced damping of kink waves in the lower corona.

  4. Determining the Importance of Energy Transfer between Magnetospheric Regions via MHD Waves using Constellations of Spacecraft

    NASA Technical Reports Server (NTRS)

    Cattell, Cynthia A.

    2004-01-01

    This grant was focused on research in two specific areas: (1) development of new techniques and software for assimilation, analysis and visualization of data from multiple satellites making in-situ measurements; and (2) determination of the role of MHD waves in energy transport during storms and substorms. Results were obtained in both areas and presented at national meetings and in publications. The talks and papers that were supported in part or fully by this grant are listed in this paper.

  5. Numerical modelling of MHD waves in the solar chromosphere.

    PubMed

    Carlsson, Mats; Bogdan, Thomas J

    2006-02-15

    Acoustic waves are generated by the convective motions in the solar convection zone. When propagating upwards into the chromosphere they reach the height where the sound speed equals the Alfvén speed and they undergo mode conversion, refraction and reflection. We use numerical simulations to study these processes in realistic configurations where the wavelength of the waves is similar to the length scales of the magnetic field. Even though this regime is outside the validity of previous analytic studies or studies using ray-tracing theory, we show that some of their basic results remain valid: the critical quantity for mode conversion is the angle between the magnetic field and the k-vector: the attack angle. At angles smaller than 30 degrees much of the acoustic, fast mode from the photosphere is transmitted as an acoustic, slow mode propagating along the field lines. At larger angles, most of the energy is refracted/reflected and returns as a fast mode creating an interference pattern between the upward and downward propagating waves. In three-dimensions, this interference between waves at small angles creates patterns with large horizontal phase speeds, especially close to magnetic field concentrations. When damping from shock dissipation and radiation is taken into account, the waves in the low-mid chromosphere have mostly the character of upward propagating acoustic waves and it is only close to the reflecting layer we get similar amplitudes for the upward propagating and refracted/reflected waves. The oscillatory power is suppressed in magnetic field concentrations and enhanced in ring-formed patterns around them. The complex interference patterns caused by mode-conversion, refraction and reflection, even with simple incident waves and in simple magnetic field geometries, make direct inversion of observables exceedingly difficult. In a dynamic chromosphere it is doubtful if the determination of mean quantities is even meaningful.

  6. A new approach to low-frequency ``MHD-like'' waves in magnetospheric plasmas

    NASA Astrophysics Data System (ADS)

    Hurricane, Omar A.; Pellat, René; Coroniti, Ferdinan V.

    1995-10-01

    This paper explores the consequences of enforcing the quasi-neutrality (QN) condition on a magnetotail and auroral plasma. We show that this condition has never been handled correctly in the literature when the bounce motion of particles is involved, for either adiabatic or stochastic ion motion. Correct treatment yields a global electrostatic potential which is constant along the magnetic field line. We describe how the stability results of Hurricane et al. (1995) are modified. We show that the QN condition modifies the classical MHD analysis of symmetric interchange/ballooning modes with respect to low-frequency MHD waves. An additional consequence of the QN condition on MHD-like waves is a modification of the plasma equation of state. More precisely, we show that the plasma remains isothermal during such wave propagation. For antisymmetric modes there is no associated electrostatic potential, but we give the necessary corrections to the standard analysis upon entering a stochastic ion regime. Last, we show how the electrostatic potential couples to the ionosphere, revealing a new understanding of auroral arcs. .

  7. Flare-induced MHD disturbances in the corona - Moreton waves and type 2 shocks

    NASA Technical Reports Server (NTRS)

    Uchida, Y.

    1973-01-01

    The propagation in the corona of the magnetohydrodynamic (MHD) disturbance possibly emitted at the explosive stage in the initial phase of a flare is considered. The behavior of the MHD fast-mode wavefront, whose source is located at the flare, is calculated by using eiconal-characteristic method in the High Altitude Observatory (HAO) realistic models of coronal magnetic field and density for the days of some particular flare events. It is shown as the result that the peculiar behavior of Moreton's surface wave and the peculiar appearance in the shape and position of the type 2 burst sources can be consistently understood by considering the refraction, focussing, and formation of shocks of MHD fast-mode disturbance in the actual distribution of Alfven velocity in the corona. Moreton waves seem to appear only when the flare explosion happens to occur at the edge of an active region and faces a low-Alfven-velocity region lying on the surface. The wave, which is initially emitted isotropically is refracted into a direction in which the condition for down-refraction holds to allow chromospheric reentrance of disturbance.

  8. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Toffoletto, F. R.; Wiltberger, M.

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  9. Global MHD modeling of resonant ULF waves: Simulations with and without a plasmasphere.

    PubMed

    Claudepierre, S G; Toffoletto, F R; Wiltberger, M

    2016-01-01

    We investigate the plasmaspheric influence on the resonant mode coupling of magnetospheric ultralow frequency (ULF) waves using the Lyon-Fedder-Mobarry (LFM) global magnetohydrodynamic (MHD) model. We present results from two different versions of the model, both driven by the same solar wind conditions: one version that contains a plasmasphere (the LFM coupled to the Rice Convection Model, where the Gallagher plasmasphere model is also included) and another that does not (the stand-alone LFM). We find that the inclusion of a cold, dense plasmasphere has a significant impact on the nature of the simulated ULF waves. For example, the inclusion of a plasmasphere leads to a deeper (more earthward) penetration of the compressional (azimuthal) electric field fluctuations, due to a shift in the location of the wave turning points. Consequently, the locations where the compressional electric field oscillations resonantly couple their energy into local toroidal mode field line resonances also shift earthward. We also find, in both simulations, that higher-frequency compressional (azimuthal) electric field oscillations penetrate deeper than lower frequency oscillations. In addition, the compressional wave mode structure in the simulations is consistent with a radial standing wave oscillation pattern, characteristic of a resonant waveguide. The incorporation of a plasmasphere into the LFM global MHD model represents an advance in the state of the art in regard to ULF wave modeling with such simulations. We offer a brief discussion of the implications for radiation belt modeling techniques that use the electric and magnetic field outputs from global MHD simulations to drive particle dynamics.

  10. MHD waves and oscillations in the solar plasma. Introduction.

    PubMed

    Erdélyi, Robert

    2006-02-15

    The Sun's magnetic field is responsible for many spectacularly dynamic and intricate phenomena, such as the 11 year solar activity cycle, the hot and tenuous outer atmosphere called the solar corona, and the continuously expanding stream of solar particles known as the solar wind.Recently, there has been an enormous increase in our understanding of the role of solar magnetism in producing the observed complex atmosphere of the Sun. One such advance has occurred in the detection, by several different high-resolution space instruments on-board the Solar and Heliospheric Observatory and Transition Region and Coronal Explorer satellites, of magnetic waves and oscillations in the solar corona. The new subjects of solar atmospheric and coronal seismology are undergoing rapid development. The aim of this Scientific Discussion Meeting was to address the progress made through observational, theoretical and numerical studies of wave phenomena in the magnetic solar plasma. Major theoretical and observational advances were reported by a wide range of international scientists and pioneers in this field, followed by lively discussions and poster sessions on the many intriguing questions raised by the new results. Theoretical and observational aspects of magnetohydrodynamic waves and oscillations in general, and how these wave phenomena differ in various regions of the Sun, including sunspots, the transient lower atmosphere and the corona (in magnetic loops, plumes and prominences), were addressed through invited review papers and selected poster presentations. The results of these deliberations are collected together in this volume.

  11. Interaction of solitary waves in longitudinal magnetic field in two-fluid MHD

    NASA Astrophysics Data System (ADS)

    Gavrikov, M. B.; Savelyev, V. V.

    2017-01-01

    The interaction of solitary waves in a model of two-fluid MHD is studied analytically and numerically in the most general case of waves in cold plasma in longitudinal magnetic field. The distinctive feature of this work is the use of “exact” equations rather than an approximate approach (a model equation). Numerical analysis of the solutions of this system of eight partial differential equations shows that the the interaction of solitary waves found in this case is the same (with great accuracy) as that of solitons, i.e., solitary waves that are solutions of various model equations. The solitary waves considered here transport plasmoids with velocities of the order of the Alfven velocity. The main finite-difference method used here for solving the said equations is a natural generalization of the classical two-step Lax-Wendorff scheme.

  12. Numerical Stability Analysis of Linear Wave Propagation in Extended MHD Modeling

    NASA Astrophysics Data System (ADS)

    Gan, Yu; Jardin, Stephen

    2006-10-01

    Extended MHD (2-fluid) modeling of fusion plasmas using a split semi-implicit time-advance based on a particular high-order finite element with C^1 continuity has been shown to offer significant advantages in efficiency and accuracy[1,2]. However, the method requires the introduction of several viscosity and hyper-viscosity coefficients to provide robust numerical stability. As a code-validation exercise, we report on a systematic study of the simulation of wave propagation in the linear regime. We initialize the simulation in a stable linear eigenmode of the extended MHD equations and follow the evolution to measure the numerical dispersion relation for the 3 sets of MHD waves. We present results showing how the stability, dispersion and dissipation depend on grid size, time step, and the magnitude of the viscosity and hyper-viscosity coefficients. These linear perturbation tests act as useful benchmarks and guides for numerical stability for nonlinear simulations. [1] S. Jardin, J. Comput. Phys. 200 (2004) 133 [2] S. Jardin and J. Breslau, Phys. Plasmas 12, 056101 (2005)

  13. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Technical Reports Server (NTRS)

    Hollweg, Joseph V.

    1990-01-01

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  14. Ultralow frequency MHD waves in Jupiter's middle magnetosphere

    NASA Technical Reports Server (NTRS)

    Khurana, Krishan K.; Kivelson, Margaret G.

    1989-01-01

    Ultralow frequency (ULF) magnetohydrodynamic pulsations (periods between 10 and 20 min) were observed on July 8-11, 1979 as Voyager 2 traveled through the middle magnetosphere of Jupiter between radial distances of 10 R(J) and 35 R(J). The particle and magnetic pressure perturbations associated with the waves were anticorrelated. The electron and ion perturbations on the dayside were in phase. The pressure perturbations occurred both within and outside of the plasma sheet. Perturbations in the transverse components of the magnetic field were associated with the compressional perturbations but the transverse power peaked within the plasma sheet of Jupiter and diminished rapidly outside of it.

  15. MHD waves on solar magnetic flux tubes - Tutorial review

    NASA Astrophysics Data System (ADS)

    Hollweg, Joseph V.

    Some of the highly simplified models that have been developed for solar magnetic flux tubes, which are intense photospheric-level fields confined by external gas pressure but able to vary rapidly with height, are presently discussed with emphasis on the torsional Alfven mode's propagation, reflection, and non-WKB properties. The 'sausage' and 'kink' modes described by the thin flux-tube approximation are noted. Attention is also given to the surface waves and resonance absorption of X-ray-emitting loops, as well as to the results of recent work on the resonant instabilities that occur in the presence of bulk flows.

  16. Numerical investigation of unsteady real gas flowfields with MHD effects

    NASA Astrophysics Data System (ADS)

    Munipalli, Ramakanth

    1998-12-01

    The design of ground based test facilities to simulate high temperature flight environments has received much attention in recent years. This dissertation deals with the numerical simulation of such facilities in order to assist their design and estimate their importance in modern aerodynamic research. The central problem addressed here is the simulation of a Magnetohydrodynamics (MHD) based accelerator which can potentially improve the test Mach number range of conventional facilities while at the same time providing realistic gas chemistry at the appropriate flight conditions. The study uses two types of gas models: (a) an equilibrium model in which the flow is assumed to be in thermochemical equilibrium at all points and (b) a nonequilibrium model based on finite rate chemistry and two distinct flow temperatures. The latter is utilized to study accelerators based on nonequilibrium ionization. The effect of finite rate processes on MHD accelerators is studied. Equilibrium air models are used to validate nonequilibrium air calculations and to study the effect of adding seed material to increase electrical conductivity at relatively low temperatures. Some comparisons with experimental data are made to validate the basic gas models and numerical schemes. Simplified solutions to the Maxwell equations are used to simulate the electromagnetic field. Some general considerations in the design of seeded MHD accelerators are studied. Upwind based flux split schemes based on Roe's scheme are used to solve the flow equations. Steady and unsteady solutions are presented for a variety of MHD related problems.

  17. ON THE PROPERTIES OF SLOW MHD SAUSAGE WAVES WITHIN SMALL-SCALE PHOTOSPHERIC MAGNETIC STRUCTURES

    SciTech Connect

    Freij, N.; Ruderman, M. S.; Erdélyi, R.; Dorotovič, I.; Morton, R. J.; Karlovský, V. E-mail: ivan.dorotovic@suh.sk E-mail: m.s.ruderman@sheffield.ac.uk E-mail: robertus@sheffield.ac.uk

    2016-01-20

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  18. On the Properties of Slow MHD Sausage Waves within Small-scale Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Freij, N.; Dorotovič, I.; Morton, R. J.; Ruderman, M. S.; Karlovský, V.; Erdélyi, R.

    2016-01-01

    The presence of magnetoacoustic waves in magnetic structures in the solar atmosphere is well-documented. Applying the technique of solar magneto-seismology (SMS) allows us to infer the background properties of these structures. Here, we aim to identify properties of the observed magnetoacoustic waves and study the background properties of magnetic structures within the lower solar atmosphere. Using the Dutch Open Telescope and Rapid Oscillations in the Solar Atmosphere instruments, we captured two series of high-resolution intensity images with short cadences of two isolated magnetic pores. Combining wavelet analysis and empirical mode decomposition (EMD), we determined characteristic periods within the cross-sectional (i.e., area) and intensity time series. Then, by applying the theory of linear magnetohydrodynamics (MHD), we identified the mode of these oscillations within the MHD framework. Several oscillations have been detected within these two magnetic pores. Their periods range from 3 to 20 minutes. Combining wavelet analysis and EMD enables us to confidently find the phase difference between the area and intensity oscillations. From these observed features, we concluded that the detected oscillations can be classified as slow sausage MHD waves. Furthermore, we determined several key properties of these oscillations such as the radial velocity perturbation, the magnetic field perturbation, and the vertical wavenumber using SMS. The estimated range of the related wavenumbers reveals that these oscillations are trapped within these magnetic structures. Our results suggest that the detected oscillations are standing harmonics, and this allows us to estimate the expansion factor of the waveguides by employing SMS. The calculated expansion factor ranges from 4 to 12.

  19. Nonlinear Alfvén wave propagating in ideal MHD plasmas

    NASA Astrophysics Data System (ADS)

    Zheng, Jugao; Chen, Yinhua; Yu, Mingyang

    2016-01-01

    The behavior of nonlinear Alfvén waves propagating in ideal MHD plasmas is investigated numerically. It is found that in a one-dimensional weakly nonlinear system an Alfvén wave train can excite two longitudinal disturbances, namely an acoustic wave and a ponderomotively driven disturbance, which behave differently for β \\gt 1 and β \\lt 1, where β is the ratio of plasma-to-magnetic pressures. In a strongly nonlinear system, the Alfvén wave train is modulated and can steepen to form shocks, leading to significant dissipation due to appearance of current sheets at magnetic-pressure minima. For periodic boundary condition, we find that the Alfvén wave transfers its energy to the plasma and heats it during the shock formation. In two-dimensional systems, fast magneto-acoustic wave generation due to Alfvén wave phase mixing is considered. It is found that the process depends on the amplitude and frequency of the Alfvén waves, as well as their speed gradients and the pressure of the background plasma.

  20. A global 3-D MHD model of the solar wind with Alfven waves

    NASA Technical Reports Server (NTRS)

    Usmanov, A. V.

    1995-01-01

    A fully three-dimensional solar wind model that incorporates momentum and heat addition from Alfven waves is developed. The proposed model upgrades the previous one by considering self-consistently the total system consisting of Alfven waves propagating outward from the Sun and the mean polytropic solar wind flow. The simulation region extends from the coronal base (1 R(sub s) out to beyond 1 AU. The fully 3-D MHD equations written in spherical coordinates are solved in the frame of reference corotating with the Sun. At the inner boundary, the photospheric magnetic field observations are taken as boundary condition and wave energy influx is prescribed to be proportional to the magnetic field strength. The results of the model application for several time intervals are presented.

  1. Ultra-High-Resolution Observations of MHD Waves in Photospheric Magnetic Structures

    NASA Astrophysics Data System (ADS)

    Jess, D. B.; Verth, G.

    2016-02-01

    This chapter reviews the recent observations of waves and oscillations manifesting in fine-scale magnetic structures in the solar photosphere, which are often interpreted as the "building blocks' of the magnetic Sun. The authors found, through phase relationships between the various waveforms, that small-scale magnetic bright points (MBPs) in the photosphere demonstrated signatures of specific magnetoacoustic waves, in particular the sausage and kink modes. Modern magnetohydrodynamic (MHD) simulations of the lower solar atmosphere clearly show how torsional motions can easily be induced in magnetic elements in the photosphere through the processes of vortical motions and/or buffeting by neighboring granules. The authors detected significant power associated with high-frequency horizontal motions, and suggested that these cases may be especially important in the creation of a turbulent environment that efficiently promotes Alfvén wave dissipation.

  2. Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves

    NASA Technical Reports Server (NTRS)

    Webb, G. M.; Brio, M.; Zank, G. P.

    1995-01-01

    In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.

  3. Possible signatures of nonlinear MHD waves in the solar wind: UVCS observations and models

    NASA Technical Reports Server (NTRS)

    Ofman, L.; Romoli, M.; Davila, J. M.; Poletto, G.; Kohl, J.; Noci, G.

    1997-01-01

    Recent ultraviolet coronagraph spectrometer (UVCS) white light channel observations are discussed. These data indicated quasi-periodic variations in the polarized brightness in the polar coronal holes. The Fourier power spectrum analysis showed significant peaks at about six minutes and possible fluctuations on longer time scales. The observations are consistent with the predictions of the nonlinear solitary-like wave model. The purpose of a planned study on plume and inter-plume regions of coronal holes, motivated by the result of a 2.5 magnetohydrodynamic model (MHD), is explained.

  4. A semi-implicit Hall-MHD solver using whistler wave preconditioning

    NASA Astrophysics Data System (ADS)

    Arnold, Lukas; Dreher, Jürgen; Grauer, Rainer

    2008-04-01

    The dispersive character of the Hall-MHD solutions, in particular the whistler waves, is a strong restriction to numerical treatments of this system. Numerical stability demands a time step dependence of the form Δt∝( for explicit calculations. A new semi-implicit scheme for integrating the induction equation is proposed and applied to a reconnection problem. It is based on a fix point iteration with a physically motivated preconditioning. Due to its convergence properties, short wavelengths converge faster than long ones, thus it can be used as a smoother in a nonlinear multigrid method.

  5. Current distribution and nonuniformity effects in MHD disk generators

    NASA Astrophysics Data System (ADS)

    Roseman, D. F.

    1982-08-01

    Current distribution and nonuniformity effects in combustion driven MHD disk generators were studied. The importance of these phenomena to baseload power generation was investigated. The peg wall construction allowed current and voltage distributions to be measured. The channel was operated with plasma temperatures up to 2750 K and magnetic field strengths up to 5.5 Tesla. The magnitudes of the currents and voltages were reduced by significant loss mechanisms, primarily electrode losses and current leakage through the wall caused by potassium seed penetration of the castable ceramic between the pegs. A simple circuit model accounting for these losses was developed to be compared with analytical calculations. Under normal uniform electrical loading the distributions measured in the channel were uniform as expected. Nonuniform electrical loading was used to produce and measure effects on the current distribution that occur only in the presence of high magnetic fields as required for MHD power generation.

  6. Overview of the Simulation of Wave Interactions with MHD Project (SWIM)

    NASA Astrophysics Data System (ADS)

    Batchelor, Donald

    2010-11-01

    The SWIM center has the scientific objectives of: improving our understanding of interactions that both RF wave and particle sources have on extended-MHD phenomena, improving our capability for predicting and optimizing the performance of burning plasmas, developing an integrated computational system for treating multi-physics phenomena with the required flexibility and extensibility to serve as a prototype for the Fusion Simulation Project, addressing mathematics issues related to the multi-scale, coupled physics of RF waves and extended MHD, and optimizing the integrated system on high performance computers. Our Center has now built an end-to-end computational system that allows existing physics codes to be able to function together in a parallel environment and connects them to utility software components and data management systems. We have used this framework to couple together state-of-the-art fusion energy codes to produce a unique and world-class simulation capability. A physicist's overview of the Integrated Plasma Simulator (IPS) will be given and applications described. For example the IPS is being employed to support ITER with operational scenario studies.

  7. MAGNETOHYDRODYNAMIC WAVES AND CORONAL HEATING: UNIFYING EMPIRICAL AND MHD TURBULENCE MODELS

    SciTech Connect

    Sokolov, Igor V.; Van der Holst, Bart; Oran, Rona; Jin, Meng; Manchester, Ward B. IV; Gombosi, Tamas I.; Downs, Cooper; Roussev, Ilia I.; Evans, Rebekah M.

    2013-02-10

    We present a new global model of the solar corona, including the low corona, the transition region, and the top of the chromosphere. The realistic three-dimensional magnetic field is simulated using the data from the photospheric magnetic field measurements. The distinctive feature of the new model is incorporating MHD Alfven wave turbulence. We assume this turbulence and its nonlinear dissipation to be the only momentum and energy source for heating the coronal plasma and driving the solar wind. The difference between the turbulence dissipation efficiency in coronal holes and that in closed field regions is because the nonlinear cascade rate degrades in strongly anisotropic (imbalanced) turbulence in coronal holes (no inward propagating wave), thus resulting in colder coronal holes, from which the fast solar wind originates. The detailed presentation of the theoretical model is illustrated with the synthetic images for multi-wavelength EUV emission compared with the observations from SDO AIA and STEREO EUVI instruments for the Carrington rotation 2107.

  8. Dispersive Magnetosonic Waves and Turbulence in the Heliosheath: Multi-Fluid MHD Reconstruction of Voyager 2 Observations

    NASA Astrophysics Data System (ADS)

    Zieger, B.; Opher, M.; Toth, G.

    2016-12-01

    Recently we demonstrated that our three-fluid MHD model of the solar wind plasma (where cold thermal solar wind ions, hot pickup ions, and electrons are treated as separate fluids) is able to reconstruct the microstructure of the termination shock observed by Voyager 2 [Zieger et al., 2015]. We constrained the unknown pickup ion abundance and temperature and confirmed the presence of a hot electron population at the termination shock, which has been predicted by a number of previous theoretical studies [e.g. Chasei and Fahr, 2014; Fahr et al., 2014]. We showed that a significant part of the upstream hydrodynamic energy is transferred to the heating of pickup ions and "massless" electrons. As shown in Zieger et al., [2015], three-fluid MHD theory predicts two fast magnetosonic modes, a low-frequency fast mode or solar wind ion (SW) mode and a high-frequency fast mode or pickup ion (PUI) mode. The coupling of the two ion populations results in a quasi-stationary nonlinear mode or oscilliton, which appears as a trailing wave train downstream of the termination shock. In single-fluid plasma, dispersive effects appear on the scale of the Debye length. However, in a non-equilibrium plasma like the solar wind, where solar wind ions and PUIs have different temperatures, dispersive effects become important on fluid scales [see Zieger et al., 2015]. Here we show that the dispersive effects of fast magnetosonic waves are expected on the scale of astronomical units (AU), and dispersion plays an important role producing compressional turbulence in the heliosheath. The trailing wave train of the termination shock (the SW-mode oscilliton) does not extend to infinity. Downstream propagating PUI-mode waves grow until they steepen into PUI shocklets and overturn starting to propagate backward. The upstream propagating PUI-mode waves result in fast magnetosonic turbulence and limit the downstream extension of the oscilliton. The overturning distance of the PUI-mode, where these waves

  9. Dispersive ducting of MHD waves in the plasma sheet - A source of Pi2 wave bursts

    NASA Technical Reports Server (NTRS)

    Edwin, P. M.; Roberts, B.; Hughes, W. J.

    1986-01-01

    Fast magnetoacoustic waves can be ducted by plasma inhomogeneities such as the plasma sheet. As this ducting is dispersive an impulsive source will give rise to a well-defined, quasi-periodic wave packet with time-scales determined by the width of the inhomogeneity and characteristic speeds in the wave duct and surrounding medium. The duration of the wave packet depends upon the distance from the source. It is argued that an impulsive source in the plasma sheet at substorm onset will produce a wave packet near earth with characteristics similar to pi2 wave bursts and put this idea forward as a mechanism for the generation of pi2 pulsations.

  10. Magnetopause surface waves triggered by a rotating IMF with the global MHD SWMF/BAT-S-RUS model

    NASA Astrophysics Data System (ADS)

    Andriyas, T.; Spencer, E. A.

    2010-12-01

    The solar wind driving of magnetopause surface waves is only partly understood. In particular we do not have a picture of the magnetopause surface wave properties and behavior when a magnetic cloud event, which sometimes involves a rotating IMF, impinges on the magnetosphere. Here we investigate the effect of a twisting or rotational IMF under moderate solar wind velocity (about 500 km/s) upon the magnetosphere with the Global MHD BATS-R-US code. Synthetic solar wind data is constructed to simulate the most important features of a magnetic cloud event, but without including shock features. A sinusoidally varying By component accompanied by a cosinusoidally varying Bz component of the IMF is input into the model with magnitude 10-20 nT. The synthetic data is representative of the magnetic cloud event that occurred on October 3-7 2000. We use the results of the simulation to infer the modes, properties, and particularly the phase speed and wavelength of the surface wave structures.

  11. Kinetic effects of energetic particles on resistive MHD stability.

    PubMed

    Takahashi, R; Brennan, D P; Kim, C C

    2009-04-03

    We show that the kinetic effects of energetic particles can play a crucial role in the stability of the m/n=2/1 tearing mode in tokamaks (e.g., JET, JT-60U, and DIII-D), where the fraction of energetic particle beta(frac) is high. Using model equilibria based on DIII-D experimental reconstructions, the nonideal MHD linear stability of cases unstable to the 2/1 mode is investigated including a deltaf particle-in-cell model for the energetic particles coupled to the nonlinear 3D resistive MHD code NIMROD [C. C. Kim et al., Phys. Plasmas 15, 072507 (2008)10.1063/1.2949704]. It is observed that energetic particles have significant damping and stabilizing effects at experimentally relevant beta, beta(frac), and S, and excite a real frequency of the 2/1 mode. Extrapolation of the results is discussed for implications to JET and ITER, where the effects are projected to be significant.

  12. Effective method for MHD retrofit of power plants

    SciTech Connect

    Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

    1981-10-01

    Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

  13. Non-MHD effects in the nonlinear development of the MHD-scale Rayleigh-Taylor instability

    NASA Astrophysics Data System (ADS)

    Umeda, Takayuki; Wada, Yasutaka

    2017-07-01

    The nonlinear evolution of the Rayleigh-Taylor instability (RTI) at a density shear layer transverse to magnetic field in a collisionless plasma is investigated by means of a fully kinetic Vlasov simulation with two spatial and two velocity dimensions. The primary RTI in the MHD regime develops symmetrically in a coordinate axis parallel to gravity as seen in the previous MHD simulations. The primary RTI in the Hall-MHD regime develops asymmetrically in a coordinate axis parallel to gravity. A compressible flow is formed at the secondary density shear layer by the Hall effect, which generates a strong scalar pressure gradient of ions. A Hall electric field due to the diamagnetic current results in the asymmetric flow at the tip of the finger structure. In the primary RTI with the ion gyro kinetic effect, secondary RTI with a wavelength shorter than the wavelength of the primary RTI is generated at the saturation stage of the primary RTI. A seed perturbation for the secondary RTI is excited by another secondary instability due to the coupling between the electron stress tensor and the Hall electric field. The heat flux term plays an important role in the time development of the total pressure. On the other hand, the contribution of the ion stress tensor is small in both the electric current and the total pressure.

  14. Resonant behaviour of MHD waves on magnetic flux tubes. I - Connection formulae at the resonant surfaces. II - Absorption of sound waves by sunspots

    NASA Technical Reports Server (NTRS)

    Sakurai, Takashi; Goossens, Marcel; Hollweg, Joseph V.

    1991-01-01

    The present method of addressing the resonance problems that emerge in such MHD phenomena as the resonant absorption of waves at the Alfven resonance point avoids solving the fourth-order differential equation of dissipative MHD by recourse to connection formulae across the dissipation layer. In the second part of this investigation, the absorption of solar 5-min oscillations by sunspots is interpreted as the resonant absorption of sounds by a magnetic cylinder. The absorption coefficient is interpreted (1) analytically, under certain simplifying assumptions, and numerically, under more general conditions. The observed absorption coefficient magnitude is explained over suitable parameter ranges.

  15. The Foggy EUV Corona and Coronal Heating by MHD Waves from Explosive Reconnection Events

    NASA Technical Reports Server (NTRS)

    Moore, Ron L.; Cirtain, Jonathan W.; Falconer, David A.

    2008-01-01

    In 0.5 arcsec/pixel TRACE coronal EUV images, the corona rooted in active regions that are at the limb and are not flaring is seen to consist of (1) a complex array of discrete loops and plumes embedded in (2) a diffuse ambient component that shows no fine structure and gradually fades with height. For each of two not-flaring active regions, found that the diffuse component is (1) approximately isothermal and hydrostatic and (2) emits well over half of the total EUV luminosity of the active-region corona. Here, from a TRACE Fe XII coronal image of another not-flaring active region, the large sunspot active region AR 10652 when it was at the west limb on 30 July 2004, we separate the diffuse component from the discrete loop component by spatial filtering, and find that the diffuse component has about 60% of the total luminosity. If under much higher spatial resolution than that of TRACE (e. g., the 0.1 arcsec/pixel resolution of the Hi-C sounding-rocket experiment proposed by J. W. Cirtain et al), most of the diffuse component remains diffuse rather being resolved into very narrow loops and plumes, this will raise the possibility that the EUV corona in active regions consists of two basically different but comparably luminous components: one being the set of discrete bright loops and plumes and the other being a truly diffuse component filling the space between the discrete loops and plumes. This dichotomy would imply that there are two different but comparably powerful coronal heating mechanisms operating in active regions, one for the distinct loops and plumes and another for the diffuse component. We present a scenario in which (1) each discrete bright loop or plume is a flux tube that was recently reconnected in a burst of reconnection, and (2) the diffuse component is heated by MHD waves that are generated by these reconnection events and by other fine-scale explosive reconnection events, most of which occur in and below the base of the corona where they are

  16. A new approach to low-frequency {open_quotes}MHD-like{close_quotes} waves in magnetospheric plasmas

    SciTech Connect

    Hurricane, O.A.; Pellat, R.; Coroniti, F.V.

    1995-10-01

    This paper explores the consequences of enforcing the quasi-neutrality (QN) condition on a magnetotail and auroral plasma. The authors show that this condition has never been handled correctly in the literature when the bounce motion of particles is involved, for either adiabatic or stochastic ion motion. Correct treatment yields a global electrostatic potential which is constant along the magnetic field line. They describe how the stability results of Hurricane et al. are modified. They show that the QN condition modifies the classical MHD analysis of symmetric interchange/ballooning modes with respect to low-frequency MHD waves. An additional consequence of the QN condition on MHD-like waves is a modification of the plasma equation of state. More precisely, the authors show that the plasma remains isothermal during such wave propagation. For antisymmetric modes there is no associated electrostatic potential, but they give the necessary corrections to the standard analysis upon entering a stochastic ion regime. Last, they show how the electrostatic potential couples to the ionosphere, revealing a new understanding of auroral arcs. 15 refs.

  17. EDITORIAL: 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control 15th Workshop on MHD Stability Control: 3D Magnetic Field Effects in MHD Control

    NASA Astrophysics Data System (ADS)

    Buttery, Richard

    2011-08-01

    This annual workshop on MHD Stability Control has been held since 1996 with a focus on understanding and developing control of MHD instabilities for future fusion reactors. The workshop generally covers a wide range of stability topics: from disruptions, to tearing modes, error fields, ELMs, resistive wall modes (RWMs) and ideal MHD. It spans many device types, particularly tokamaks, stellarators and reversed field pinches, to pull out commonalities in the physics and improve understanding. In 2010 the workshop was held on 15-17 November at the University of Wisconsin in Madison and was combined with the annual US-Japan MHD Workshop. The theme was `3D Magnetic Field Effects in MHD Control', with a focus on multidisciplinary sessions exploring issues of plasma response to 3D fields, the manifestation of such fields in the plasma, and how they influence stability. This has been a topic of renewed interest, with utilisation of 3D fields for ELM control now planned in ITER, and a focus on the application of such fields for error field correction, disruption avoidance, and RWM control. Key issues included the physics of the interaction, types of coils and harmonic spectra needed to control instabilities, and subsidiary effects such as braking (or rotating) the plasma. More generally, a wider range of issues were discussed including RWM physics, tearing mode physics, disruption mitigation, ballooning stability, the snowflake divertor concept, and the line tied pinch! A novel innovation to the meeting was a panel discussion session, this year on Neoclassical Toroidal Viscosity, which ran well; more will be tried next year. In this special section of Plasma Physics and Controlled Fusion we present several of the invited and contributed papers from the 2010 workshop, which have been subject to the normal refereeing procedures of the journal. These papers give a sense of the exceptional quality of the presentations at this workshop, all of which may be found at http://fusion.gat.com/conferences/mhd

  18. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems

    SciTech Connect

    Barnes, P.R. ); Tesche, F.M. , Dallas, TX ); Vance, E.F. , Fort Worth, TX )

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  19. Comparison of three artificial models of the MHD effect on the electrocardiogram

    PubMed Central

    Oster, Julien; Llinares, Raul; Payne, Stephen; Tse, Zion Tsz Ho; Schmidt, Ehud Jeruham; Clifford, Gari D.

    2013-01-01

    The Electrocardiogram (ECG) is often acquired during Magnetic Resonance Imaging (MRI) for both image acquisition synchronisation with heart activity and patient monitoring to alert for life-threatening events. Accurate ECG analysis is mandatory for cutting-edge applications, such as MRI guided interventions. Nevertheless, the majority of the clinical analysis of ECG acquired inside MRI is made difficult by the superposition of a voltage called the MagnetoHydroDynamic (MHD) effect. MHD is induced by the flow of electrically charged particles in the blood perpendicular to the static magnetic field, which creates a potential of the order of magnitude of the ECG and temporally coincident with the repolatisation period. In this study, a new MHD model is proposed which is an extension of several existing models and incorporates MRI-based blood flow measurements made across the aortic arch. The model is extended to several cardiac cycles to allow the simulation of a realistic ECG acquisition during MRI examination and the quality assessment of MHD suppression techniques. A comparison of two existing models is made with our new model and with an estimate of the MHD voltage observed during a real MRI scan. Results indicate a good agreement between our proposed model and the estimated MHD for most leads, although there are clearly some descrepencies with the observed signal which are likely to be due to remaining deficiencies in the model. However, the results demonstrate that our new model provides a closer approximation to observed MHD effects and a better depiction of the complexity of the MHD effect compared to the previously published models. The source code will be made freely available under and open source license to facilitate collaboration and allow more rapid development of more accurate models of the MHD effect. PMID:24761753

  20. A test of the Hall-MHD model: Application to low-frequency upstream waves at Venus

    NASA Technical Reports Server (NTRS)

    Orlowski, D. S.; Russell, C. T.; Krauss-Varban, D.; Omidi, N.

    1994-01-01

    Early studies suggested that in the range of parameter space where the wave angular frequency is less than the proton gyrofrequency and the plasma beta, the ratio of the thermal to magnetic pressure, is less than 1 magnetohydrodynamics provides an adequate description of the propagating modes in a plasma. However, recently, Lacombe et al. (1992) have reported significant differences between basic wave characteristics of the specific propagation modes derived from linear Vlasov and Hall-magnetohydrodynamic (MHD) theories even when the waves are only weakly damped. In this paper we compare the magnetic polarization and normalization magnetic compression ratio of ultra low frequency (ULF) upstream waves at Venus with magnetic polarization and normalized magnetic compression ratio derived from both theories. We find that while the 'kinetic' approach gives magnetic polarization and normalized magnetic compression ratio consistent with the data in the analyzed range of beta (0.5 less than beta less than 5) for the fast magnetosonic mode, the same wave characteristics derived from the Hall-MHD model strongly depend on beta and are consistent with the data only at low beta for the fast mode and at high beta for the intermediate mode.

  1. Interpreting Solar EUV Wave Observations from Different Viewing Angles Using an MHD Model

    NASA Astrophysics Data System (ADS)

    Hoilijoki, S.; Pomoell, J.; Vainio, R.; Palmroth, M.; Koskinen, H. E. J.

    2013-09-01

    We study the effect of projection and line-of-sight integration on the interpretation of the morphology and kinematics of EUV waves. We have performed a three-dimensional magnetohydrodynamic simulation of a coronal mass ejection (CME) erupting in an environment that mimics the low solar corona and calculated the resulting emission measure of the event from five different viewing angles. Our study provides more quantitative information about the impact of the viewing angle and projection effect on the properties of EUV waves than previous studies on the subject. Analyzing the emission measure of the lower corona reveals wave-like increases that move away from the eruption site, which we interpret as EUV waves. Behind the EUV wave front we can recognize coronal dimming regions. A comparison of the emission measure and calculated density supports the view that EUV waves are true waves. Our results show that the origin of the observed EUV wave is height-dependent, which means that the measured speed and the morphology depend on the viewing direction. Consequently, care should be taken when EUV observations are used to infer the true propagation speeds of EUV wave fronts.

  2. A Numerical Study of Resistivity and Hall Effects for a Compressible MHD Model

    NASA Technical Reports Server (NTRS)

    Yee, H. C.; Sjogreen, B.

    2005-01-01

    The effect of resistive, Hall, and viscous terms on the flow structure compared with compressible ideal MHD is studied numerically for a one-fluid non-ideal MHD model. The goal of the present study is to shed some light on the emerging area of non-ideal MHD modeling and simulation. Numerical experiments are performed on a hypersonic blunt body flow with future application to plasma aerodynamics flow control in reentry vehicles. Numerical experiments are also performed on a magnetized time-developing mixing layer with possible application to magnetic/turbulence mixing.

  3. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    NASA Astrophysics Data System (ADS)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  4. Methodology to assess the effects of magnetohydrodynamic electromagnetic pulse (MHD-EMP) on power systems

    SciTech Connect

    Legro, J.R.; Abi-Samra, N.C.; Crouse, J.C.; Tesche, F.M.

    1985-01-01

    This paper summarizes a method to evaluate the possible effects of magnetohydrodynamic-electromagnetic pulse (MHD-EMP) on power systems. This method is based on the approach adapted to study the impact of geomagnetic storms on power systems. The paper highlights the similarities and differences between the two phenomena. Also presented are areas of concern which are anticipated from MHD-EMP on the overall system operation. 12 refs., 1 fig.

  5. Extended MHD Effects in High Energy Density Experiments

    NASA Astrophysics Data System (ADS)

    Seyler, Charles

    2016-10-01

    The MHD model is the workhorse for computational modeling of HEDP experiments. Plasma models are inheritably limited in scope, but MHD is expected to be a very good model for studying plasmas at the high densities attained in HEDP experiments. There are, however, important ways in which MHD fails to adequately describe the results, most notably due to the omission of the Hall term in the Ohm's law (a form of extended MHD or XMHD). This talk will discuss these failings by directly comparing simulations of MHD and XMHD for particularly relevant cases. The methodology is to simulate HEDP experiments using a Hall-MHD (HMHD) code based on a highly accurate and robust Discontinuous Galerkin method, and by comparison of HMHD to MHD draw conclusions about the impact of the Hall term. We focus on simulating two experimental pulsed power machines under various scenarios. We examine the MagLIF experiment on the Z-machine at Sandia National Laboratories and liner experiments on the COBRA machine at Cornell. For the MagLIF experiment we find that power flow in the feed leads to low density plasma ablation into the region surrounding the liner. The inflow of this plasma compresses axial magnetic flux onto the liner. In MHD this axial flux tends to resistively decay, whereas in HMHD a force-free current layer sustains the axial flux on the liner leading to a larger ratio of axial to azimuthal flux. During the liner compression the magneto-Rayleigh-Taylor instability leads to helical perturbations due to minimization of field line bending. Simulations of a cylindrical liner using the COBRA machine parameters can under certain conditions exhibit amplification of an axial field due to a force-free low-density current layer separated by some distance from the liner. This results in a configuration in which there is predominately axial field on the liner inside the current layer and azimuthal field outside the layer. We are currently attempting to experimentally verify the simulation

  6. MHD Energy Bypass Scramjet Performance with Real Gas Effects

    NASA Technical Reports Server (NTRS)

    Park, Chul; Mehta, Unmeel B.; Bogdanoff, David W.

    2000-01-01

    The theoretical performance of a scramjet propulsion system incorporating an magneto-hydro-dynamic (MHD) energy bypass scheme is calculated. The one-dimensional analysis developed earlier, in which the theoretical performance is calculated neglecting skin friction and using a sudden-freezing approximation for the nozzle flow, is modified to incorporate the method of Van Driest for turbulent skin friction and a finite-rate chemistry calculation in the nozzle. Unlike in the earlier design, in which four ramp compressions occurred in the pitch plane, in the present design the first two ramp compressions occur in the pitch plane and the next two compressions occur in the yaw plane. The results for the simplified design of a spaceliner show that (1) the present design produces higher specific impulses than the earlier design, (2) skin friction substantially reduces thrust and specific impulse, and (3) the specific impulse of the MHD-bypass system is still better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Results suggest that the energy management with MHD principles offers the possibility of improving the performance of the scramjet. The technical issues needing further studies are identified.

  7. Peristaltic MHD Convective flow of Walter’s-B Fluid through a Biddable walled channel with Slip Effect

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2017-08-01

    The combined effects on peristaltic MHD Convective flow of an electrically conducting Walters-B fluid through a biddable walled channel have been studied. Using small wave number move towards, the nonlinear model differential equations are obtained and tackled analytically by regular perturbation method. Expressions for the stream function, velocity, temperature, skin-friction coefficient and heat transfer coefficient are constructed. Pertinent results are presented graphically and discussed quantitatively. It is found that the velocity distribution depresses while the fluid temperature rises with an increase in Hartmann number. The trapping phenomenon is observed and the size of trapped bolus increases with an increase in Hartmann number.

  8. The Magnetic Coupling of Chromospheres and Winds From Late Type Evolved Stars: Role of MHD Waves

    NASA Astrophysics Data System (ADS)

    Airapetian, Vladimir; Leake, James; Carpenter, Kenneth

    2015-08-01

    Stellar chromospheres and winds represent universal attributes of stars on the cool portion of H-R diagram. In this paper we derive observational constrains for the chromospheric heating and wind acceleration from cool evolved stars and examine the role of Alfven waves as a viable source of energy dissipation and momentum deposition. We use a 1.5D magnetohydrodynamic code with a generalized Ohm's law to study propagation of Alfven waves generated along a diverging magnetic field in a stellar photosphere at a single frequency. We demonstrate that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfven waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere model due to resistive (Joule) dissipation of electric currents on Pedersen resistivity are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfven waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfven waves becomes significant in the outer chromosphere within 1 stellar radius from the photosphere that initiates a slow and massive winds from red giants and supergiants.

  9. Multi-instrument observations of a failed flare eruption associated with MHD waves in a loop bundle

    NASA Astrophysics Data System (ADS)

    Nisticò, G.; Polito, V.; Nakariakov, V. M.; Del Zanna, G.

    2017-04-01

    Context. We present observations of a B7.9-class flare that occurred on the 24th January, 2015, using the Atmospheric Imaging Assembly (AIA) of the Solar Dynamics Observatory (SDO), the EUV Imaging Spectrometer (EIS) and the X-Ray Telescope of Hinode. The flare triggers the eruption of a dense cool plasma blob as seen in AIA 171 Å, which is unable to completely break out and remains confined within a local bundle of active region loops. During this process, transverse oscillations of the threads are observed. The cool plasma is then observed to descend back to the chromosphere along each loop strand. At the same time, a larger diffuse co-spatial loop observed in the hot wavebands of SDO/AIA and Hinode/XRT is formed, exhibiting periodic intensity variations along its length. Aims: The formation and evolution of magnetohydrodynamic (MHD) waves depend upon the values of the local plasma parameters (e.g. density, temperature and magnetic field), which can hence be inferred by coronal seismology. In this study we aim to assess how the observed MHD modes are affected by the variation of density and temperature. Methods: We combined analysis of EUV/X-ray imaging and spectroscopy using SDO/AIA, Hinode/EIS and XRT. Results: The transverse oscillations of the cool loop threads are interpreted in terms of vertically polarised kink oscillations. The fitting procedure applied to the loop displacement time series gives a period of 3.5 to 4 min, and an amplitude of 5 Mm. The oscillations are strongly damped showing very low quality factor (1.5-2), which is defined as the ratio of the damping time and the oscillation period. The weak variation of the period of the kink wave, which is estimated from the fitting analysis, is in agreement with the density variations due to the presence of the plasma blob inferred from the intensity light curve at 171 Å. The coexisting intensity oscillations along the hot loop are interpreted as a slow MHD wave with a period of 10 min and phase

  10. Three-dimensional, time-dependent, MHD model of a solar flare-generated interplanetary shock wave

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.; Han, S. M.

    1986-01-01

    A three-dimensional time-dependent MHD model of the propagation of an interplanetary shock wave into an ambient three-dimensional heliospheric solar wind is initialized with a peak velocity of 1000 km/s at the center of a right circular cone of 18 deg included angle at 18 solar radii. Differences from a previous 2-1/2 simulation (Wu et al., 1983; Gislason et al., 1984; Dryer et al., 1984) include diminuation of the solar peak velocity and concentration of the peak density at each radius. The IMF magnitude starts with high-latitude peaks, and helical-like IMF rotation is noted due to a large-amplitude nonlinear Alfven wave in the shocked plasma.

  11. The energy associated with MHD waves generation in the solar wind plasma

    NASA Technical Reports Server (NTRS)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  12. The energy associated with MHD waves generation in the solar wind plasma

    NASA Technical Reports Server (NTRS)

    delaTorre, A.

    1995-01-01

    Gyrotropic symmetry is usually assumed in measurements of electron distribution functions in the heliosphere. This prevents the calculation of a net current perpendicular to the magnetic field lines. Previous theoretical results derived by one of the authors for a collisionless plasma with isotropic electrons in a strong magnetic field have shown that the excitation of MHD modes becomes possible when the external perpendicular current is non-zero. We consider then that any anisotropic electron population can be thought of as 'external', interacting with the remaining plasma through the self-consistent electromagnetic field. From this point of view any perpendicular current may be due to the anisotropic electrons, or to an external source like a stream, or to both. As perpendicular currents cannot be derived from the measured distribution functions, we resort to Ampere's law and experimental data of magnetic field fluctuations. The transfer of energy between MHD modes and external currents is then discussed.

  13. HYBRID AND HALL-MHD SIMULATIONS OF COLLISIONLESS RECONNECTION: EFFECTS OF PLASMA PRESSURE TENSOR

    SciTech Connect

    L. YIN; D. WINSKE; ET AL

    2001-05-01

    In this study we performed two-dimensional hybrid (particle ions, massless fluid electrons) and Hall-MHD simulations of collisionless reconnection in a thin current sheet. Both calculations include the full electron pressure tensor (instead of a localized resistivity) in the generalized Ohm's law to initiate reconnection, and in both an initial perturbation to the Harris equilibrium is applied. First, electron dynamics from the two calculations are compared, and we find overall agreement between the two calculations in both the reconnection rate and the global configuration. To address the issue of how kinetic treatment for the ions affects the reconnection dynamics, we compared the fluid-ion dynamics from the Hall-MHD calculation to the particle-ion dynamics obtained from the hybrid simulation. The comparison demonstrates that off-diagonal elements of the ion pressure tensor are important in correctly modeling the ion out-of-plane momentum transport from the X point. It is that these effects can be modeled efficiently using a particle Hall-MHD simulation method in which particle ions used in a predictor/corrector to implement the ion gyro-radius corrections. We also investigate the micro- macro-scale coupling in the magnetotail dynamics by using a new integrated approach in which particle Hall-MHD calculations are embedded inside a MHD simulation. Initial results of the simulation concerning current sheet thinning and reconnection dynamics are discussed.

  14. Global ULF wave analysis of radial diffusion coefficients using a global MHD model for the 17 March 2015 storm

    NASA Astrophysics Data System (ADS)

    Li, Zhao; Hudson, Mary; Paral, Jan; Wiltberger, Michael; Turner, Drew

    2016-07-01

    The 17-18 March 2015 storm is the largest geomagnetic storm in the Van Allen Probes era to date. The Lyon-Fedder-Mobarry global MHD model has been run for this event using ARTEMIS data as solar wind input. The ULF wave power spectral density of the azimuthal electric field and compressional magnetic field is analyzed in the 0.5-8.3 mHz range. The lowest three azimuthal modes account for 70% of the total power during quiet times. However, during high activity, they are not exclusively dominant. The calculation of the radial diffusion coefficient is presented. We conclude that the electric field radial diffusion coefficient is dominant over the magnetic field coefficient by one to two orders of magnitude. This result contrasts with the dominant magnetic field diffusion coefficient used in most 3-D diffusion models.

  15. MHD effects on a thermo-solutal stratified nanofluid flow on an exponentially radiating stretching sheet

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Rashid, M.; Imtiaz, M.; Alsaedi, A.

    2017-03-01

    This study is focused on the heat and mass transfer effects in a magnetohydrodynamic (MHD) flow of a viscous nanofluid saturating a porous medium past an exponentially radiating stretching sheet. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. It is noted that stratification affects the local Nusselt and Sherwood numbers.

  16. Saturnian Local Time Effects in Titan's Interaction- A multi-fluid MHD study

    NASA Astrophysics Data System (ADS)

    Ma, Yingjuan; Russell, Chris; Nagy, Andrew; Toth, Gabor; Dougherty, Michele; Cravens, Tom

    2013-04-01

    We use a multi-fluid MHD model to study the effects of Saturnian Local Time(SLT). The multi-fluid model improves the previously used 7-species single-fluid MHD model by solving the density, velocity and pressure equations for each of the seven ion fluids. This model allows the motion of the different ion fluids to be decoupled. The model is first applied to an idealized case and the results are compared in detail with that of the 7-species single-fluid MHD model to illustrate the importance of the multi-fluid effects. Simulation results show that the multi-fluid model is able to reproduce asymmetric results along the convection electric field direction. The velocities patterns are different for different mass ion fluids. The heavier the ion is, the more significant is the flow along the convection electric field direction. Also the multi-fluid MHD model predicts that more heavy ions are escaping from the satellite as compared with the single-fluid model. We also apply the model to test the effects of SLT and find that the escaping fluxes of heavy ions vary significantly with SLT.

  17. Study of extended MHD effects on interchange modes in spheromak equilibria

    NASA Astrophysics Data System (ADS)

    Howell, E. C.; Sovinec, C. R.

    2014-10-01

    A study of extended MHD effects on linear interchange modes is performed using the NIMROD code [Sovinec & King JCP 2010]. A linear cylindrical equilibrium model is adapted from [Jardin NF 1982] to allow finite toroidal current at the edge. These equilibria are representative of SSPX discharges where currents are driven on the open field to keep the safety factor above 1/2 across the profile [McLean et al., POP 2006]. These spheromaks have weak magnetic shear, and interchange stability is an important consideration. The Suydam parameter, D, is scaled to study resistive and ideal interchange modes. The calculated MHD growth rate increases with D. The resistive interchange scaling γ ~η 1 / 3 is observed for D <1/4 . Calculations using the full extended MHD model are performed for a range of hall parameters Λ. This model includes gyro-viscosity, the hall term, equilibrium diamagnetic flows, and the cross-field diamagnetic heat flux. Two fluid effects in the full model are always destabilizing at large Λ. However, some cases exhibit a range of Λ where the growth rate for the full model is reduced relative to the MHD growth rate. Work supported by US DOE.

  18. Full wave effects on the lower hybrid wave spectrum and driven current profile in tokamak plasmas

    SciTech Connect

    Shiraiwa, S.; Ko, J.; Meneghini, O.; Parker, R.; Schmidt, A. E.; Greenwald, M.; Hubbard, A. E.; Hughes, J.; Ma, Y.; Podpaly, Y.; Rice, J. E.; Wallace, G.; Wolfe, S. M.; C-Mod Group, Alcator; Scott, S.; Wilson, J. R.

    2011-08-15

    A numerical modeling of current profile modification by lower hybrid current drive (LHCD) using a fullwave/Fokker-Planck simulation code is presented. A MHD stable LHCD discharge on Alcator C-Mod was analyzed, and the current profile from full wave simulations was found to show better agreement with the experiment than a ray-tracing code. Comparison of full wave and ray-tracing simulation shows that, although ray-tracing can reproduce the stochastic wave spectrum broadening, the full wave calculation predicts even wider spectrum broadening, and the wave spectrum fills all of the kinematically allowed domain. This is the first demonstration of LHCD current profile modeling using a full wave simulation code in a multi-pass absorption regime, showing the clear impact of full wave effects on the LHCD driven current profile.

  19. Line-tied MHD modes: effect of plasma pressure, axial boundary condition and axial flow

    NASA Astrophysics Data System (ADS)

    Arcudi, Francesco; Delzanno, Gian Luca; Finn, John M.

    2008-11-01

    Recent 3D nonlinear magnetohydrodynamic (MHD) simulations of astrophysical jets [1] showed a narrow jet-like region with very tightly wound magnetic fields, very suggestive of jet observations. These results were unexpected because such tightly wound magnetic fields should be violently MHD unstable. In order to make direct contact with the simulations of Ref. [1], we present a linear stability study in resistive MHD in cylindrical geometry. In this work, stability is studied including axial flows and finite plasma pressure. We also changed the axial boundary conditions to model those typical of astrophysical jets and laboratory experiments, using line-tying at one end of the field lines and non-line-tied boundary conditions at the other end [2]. The numerical results show that pressure strongly shifts the marginal stability threshold relative to the Kruskal-Shafranov threshold and a monotonically increasing pressure profile stabilizes the plasma. On the other hand, non-line-tied boundary conditions have little effect on marginal stability for typical parameters. All the results are supported by analytical studies based on reduced ideal MHD. [1] H. Li, G. Lapenta, J. M. Finn, S. Li, and S. A. Colgate, Astrophys. J. 643, 92 (2006). [2] D. D. Ryutov, I. Furno, T. P. Intrator, S. Abbate, and T. Madziwa-Nussinov, Phys. Plasmas 13, 032105 (2006).

  20. Slow-Mode MHD Wave Penetration into a Coronal Null Point due to the Mode Transmission

    NASA Astrophysics Data System (ADS)

    Afanasyev, Andrey N.; Uralov, Arkadiy M.

    2016-11-01

    Recent observations of magnetohydrodynamic oscillations and waves in solar active regions revealed their close link to quasi-periodic pulsations in flaring light curves. The nature of that link has not yet been understood in detail. In our analytical modelling we investigate propagation of slow magnetoacoustic waves in a solar active region, taking into account wave refraction and transmission of the slow magnetoacoustic mode into the fast one. The wave propagation is analysed in the geometrical acoustics approximation. Special attention is paid to the penetration of waves in the vicinity of a magnetic null point. The modelling has shown that the interaction of slow magnetoacoustic waves with the magnetic reconnection site is possible due to the mode transmission at the equipartition level where the sound speed is equal to the Alfvén speed. The efficiency of the transmission is also calculated.

  1. Mitigation of magnetohydrodynamic electromagnetic pulse (MHD-EMP) effects from commerical electric power systems. Power Systems Technology Program

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; Vance, E.F.

    1992-03-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth`s magnetic field and produces a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). This can adversely affect electrical power systems. In this report, the effects of this nuclear environment on critical facilities connected to the commercial power system are considered. Methods of mitigating the MHD-EMP impacts are investigated, and recommended protection schemes are presented. Guidelines for testing facilities to determine the effects of MHD-EMP and to validate the mitigation methods also are discussed.

  2. Mitigation of Magnetohydrodynamic Electromagnetic Pulse (MHD-EMP) Effects from Commercial Electric Power Systems

    DTIC Science & Technology

    1992-03-01

    DEPARTMENT OF ENERGY 3 . under contract DE-AC05-84OR21400 . . , r4 a 1 j/ Avq ’a: lter Code .DsI l S --\\ [’,I s t 7 -qn:’ jor TABLE OF CONTENTS...1 2. M HD-EM P EFFECTS ....................................................................................... 3 2.1. G...eneral ................................................................................................ 3 2.2. MHD-EMP Effects on Commercial Power

  3. Computation of the MHD modes with rotation and kinetic effects: AEGIS

    NASA Astrophysics Data System (ADS)

    Zheng, L.-J.; Kotschenreuther, M.; Turnbull, A.; Waelbroeck, F.; van Dam, J. W.; Berk, H.

    2003-10-01

    A new linear MHD eigenvalue code called AEGIS (Adaptive EiGenfunction Independent Shooting) is being developed at the IFS. The benchmarking of AEGIS with GATO is underway and will be presented. Plasma rotation is being included, with the effect of rotation-enhanced plasma compressibility also taken into account. As a first step in including rotational effects, the ideal MHD model is being employed. Details of the numerical scheme will be described, along with preliminary numerical results. The plan to include kinetic compressiblity will be discussed. With this new code, rotational stabilization of resistive wall modes can be rigorously calculated for the first time. The algorithm also allows FLR effects to be included. Many helpful suggestions from A. Glasser are acknowledged.

  4. Effects of broken solenoidal condition of magnetic field in MHD simulation for large helical device plasmas

    NASA Astrophysics Data System (ADS)

    Takado, W.; Matsumoto, Y.; Watanabe, K. Y.; Tomioka, S.; Oikawa, S.

    2017-09-01

    We studied the effects of the broken solenoidal condition of a magnetic field in linear magnetohydrodynamics (MHD) simulations based on a real coordinate system for Large Helical Device plasmas. Artificial errors of various orders in this condition were introduced into linear MHD simulations and compared. Spurious Fourier modes were observed to be dominant because of the error in the condition. We suggested a criterion, which is expressed as the condition that the ratio of the error force to the Lorentz force is much smaller than 100%, for estimating an acceptable limit of the solenoidal condition error through the simulation results. The effects of a large error in the condition of the analysis of a specified single-mode instability were investigated in addition. Adding a large error in the condition resulted in certain undesirable modes becoming dominant, whereas the desirable mode did not dominate. Thus, a large error in the condition can be harmful to analysis with a focus on specified modes.

  5. Influence of MHD effects and edge conditions on ITER helium ash accumulation and sustained ignition

    SciTech Connect

    Redi, M.H.; Cohen, S.A.

    1990-06-01

    Dilution of reacting species by build-up of helium ash and its effect on ignition in the ITER tokamak have been studies in a series of simulations with the one-dimensional BALDUR transport code. Thermal diffusivities, obtained from ITER scaling laws and with radial variations observed in JET, gave {tau}{sub E} {approx} 2--4 sec. Refueling of deuterium and tritium maintained constant electron density, while carbon recycling was 100% and the helium ash recycling was varied from 1.0 to 0.5. Including MHD effects, specifically sawteeth and beta limits, we find that ignition can be sustained for 200 seconds with R{sub helium} = 0.95. These simulations, the only non-zero-dimensional, time-dependent simulations thus far made for ITER plasmas, emphasize that edge plasma conditions, MHD behavior, and helium particle transport are critical synergistic issues for sustained ignition. 27 refs., 2 figs., 1 tab.

  6. NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION

    SciTech Connect

    Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien

    2011-09-10

    Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.

  7. MHD Convective rotating flow past an oscillating porous plate with chemical reaction and Hall effects

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Gangadhar Reddy, M.

    2016-09-01

    In this paper, we have considered Hall effects on the unsteady MHD free convective rotating flow of visco-elastic fluid with heat and mass transfer near oscillating porous plate. The equations of the flow are solved by perturbation method for small elastic parameter. The analytical expressions for the velocity, temperature, concentration have been derived and also its behaviour is computationally discussed with the help of graphs. The skin friction, Nusselt number, and Sherwood number are also obtained analytically and their behaviour discussed.

  8. The Effect of Finite Conductivity on MHD Instabilities in Axisymmetric Shaped Charge Jets

    DTIC Science & Technology

    1992-03-01

    200words) In an earlier report by Powell and Littlefield, the effect of azimuthal magnetic fields on the stability of an axisymmetric shaped charge jet...conductivity on the stability of the jet. An axial electric current is introduced in the jet at time f = 0 and permitted to diffuse over time. Linear perturbtion...29 electromagnetic disruption, shaped charge jets, jet stability , MHD stability , 16. PRICE CODE magnetic fields 17. SECURITY CLASSIFICATION 18

  9. Multiwavelength Studies of MHD Waves in the Solar Chromosphere. An Overview of Recent Results

    NASA Astrophysics Data System (ADS)

    Jess, D. B.; Morton, R. J.; Verth, G.; Fedun, V.; Grant, S. D. T.; Giagkiozis, I.

    2015-07-01

    The chromosphere is a thin layer of the solar atmosphere that bridges the relatively cool photosphere and the intensely heated transition region and corona. Compressible and incompressible waves propagating through the chromosphere can supply significant amounts of energy to the interface region and corona. In recent years an abundance of high-resolution observations from state-of-the-art facilities have provided new and exciting ways of disentangling the characteristics of oscillatory phenomena propagating through the dynamic chromosphere. Coupled with rapid advancements in magnetohydrodynamic wave theory, we are now in an ideal position to thoroughly investigate the role waves play in supplying energy to sustain chromospheric and coronal heating. Here, we review the recent progress made in characterising, categorising and interpreting oscillations manifesting in the solar chromosphere, with an impetus placed on their intrinsic energetics.

  10. Modeling of substorm development with a kinematic effect by the global MHD simulations

    NASA Astrophysics Data System (ADS)

    den, Mitsue; Fujita, Shigeru; Tanaka, Takashi; Horiuchi, Ritoku

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Recently, Tanaka and Fujita reproduced substorm evoution process by numerical simulation with the global MHD code. In the MHD framework, the dissipation model is used for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dessipation model employed there, gave a large effect for the substorm development though that viscosity was assumed to be a constant parameter. It is well known that magnetric reconnection is controlled by microscopic kinetic mechanism. Horiuchi et al. investigated the roles of microscopic plasma instabilities on the violation of the frozen-in condition by examining the force balance equation based on explicit electromagnetic particle simulation for an ion-scale current sheet, and concluded that the growth of drift kink instability can create anomalous resistivity leading to the excitation of collisionless reconnection. They estimated the effective resistivity based on the particle simulation data. In this paper, we perform substorm simulation by using the global MHD code with this anomalous resistivity obtained in their microscopic approach istead of the emprical resistivity model, and investigate the relationship between the substorm development and the anomalous resistivity model.

  11. Experimental facility for studying MHD effects in liquid metal cooled blankets

    SciTech Connect

    Reed, C.B.; Dauzvardis, P.V.; Picologiou, B.F.

    1985-07-01

    The capabilities of a facility, brought into service to collect data on magnetohydrodynamic (MHD) effects pertinent to liquid-metal-cooled fusion reactor blankets, are presented. The facility, designed to extend significantly the existing data base on liquid metal MHD, employs eutectic NaK as the working fluid in a room temperature closed loop. The instrumentation system is capable of collecting detailed data on pressure, voltage, and velocity distributions at any axial position within the bore of a 2 Tesla conventional electromagnet. The axial distribution of the magnetic field can be uniform or varying with either rapid or slow spatial variations. The magnet gap dimensions, for the uniform field of 2T, are 15.3 cm high x 0.76 m wide x 1.83 m long. NaK was circulated in December 1984 and the magnet was energized in March 1985. Shakedown tests in a round pipe test section are currently underway.

  12. The effect of line-tying on the radiative MHD stability of coronal plasmas with radial pressure profile

    NASA Technical Reports Server (NTRS)

    An, C.-H.

    1984-01-01

    The role of photospheric line-tying, i.e., solar coronal loop structures, was investigated in terms of the effect on radiative modes and the influence that different radial pressure profiles exert on the effects of line-tying on radiative MHD stability. Energy is assumed dissipated by heat conduction and radiation and zero- and first-order solutions are obtained for the radiative time scales. Line-tying is a magnetic tension in the zero-order MHD mode and produces stability. Heat conduction occurs along bent field lines in first-order MHD modes when plasmas cross the field lines. Irradiated cool-core loops can experience MHD instabilities in the cylinder center, while line-tying can stabilize the plasma in the surrounding hot medium. Line-tying also adds stability to magnetosonic and condensation modes.

  13. Energetic particle effects on n=1 MHD instabilities in a DIII-D hybrid discharge

    NASA Astrophysics Data System (ADS)

    Brennan, D. P.; Halfmoon, M. R.; Kim, C. C.; La Haye, R. J.

    2012-03-01

    The δf kinetic-MHD model in the 3-D extended MHD code NIMROD is used to perform a simulation study of energetic particle effects on the n=1 mode in a DIII-D hybrid discharge. The hybrid has low qmin>˜1 at high confinement, and is a candidate operational scenario for burning plasma experiments. However hybrid discharges are limited to moderate βN by the m/n=2/1 instability. Using realistic DIII-D equilibria, the stability of the n=1 mode is computed over a (qmin,βN) space. Unstable modes are driven by energetic particles far into the MHD stable region in this space. The drive is associated with the fishbone mode or BAE mode, depending on qmin. The stability boundary is found near the experimental (qmin,βN), where the unstable mode has a m/n=1/1 component localized near the axis. Experimentally, a m/n=1/1 structure is observed in agreement with the computed mode in key physical respects. At higher qmin and βN a mode with a broad m/n=2/1 structure is unstable. This suggests that the m/n=2/1 mode is triggered by energetic particles in these discharges, as βN is increased. A group of several similar discharges shows strong agreement with this computational explanation of onset.

  14. MHD Modeling of Coronal Large-Amplitude Waves Related to CME Lift-off

    NASA Astrophysics Data System (ADS)

    Pomoell, J.; Vainio, R.; Kissmann, R.

    2008-12-01

    We have employed a two-dimensional magnetohydrodynamic simulation code to study mass motions and large-amplitude coronal waves related to the lift-off of a coronal mass ejection (CME). The eruption of the filament is achieved by an artificial force acting on the plasma inside the flux rope. By varying the magnitude of this force, the reaction of the ambient corona to CMEs with different acceleration profiles can be studied. Our model of the ambient corona is gravitationally stratified with a quadrupolar magnetic field, resulting in an ambient Alfvén speed that increases as a function of height, as typically deduced for the low corona. The results of the simulations show that the erupting flux rope is surrounded by a shock front, which is strongest near the leading edge of the erupting mass, but also shows compression near the solar surface. For rapidly accelerating filaments, the shock front forms already in the low corona. Although the speed of the driver is less than the Alfvén speed near the top of the atmosphere, the shock survives in this region as well, but as a freely propagating wave. The leading edge of the shock becomes strong early enough to drive a metric type II burst in the corona. The speed of the weaker part of the shock front near the surface is lower, corresponding to the magnetosonic speed there. We analyze the (line-of-sight) emission measure of the corona during the simulation and recognize a wave receding from the eruption site, which strongly resembles EIT waves in the low corona. Behind the EIT wave, we clearly recognize a coronal dimming, also observed during CME lift-off. We point out that the morphology of the hot downstream region of the shock would be that of a hot erupting loop, so care has to be taken not to misinterpret soft X-ray imaging observations in this respect. Finally, the geometry of the magnetic field around the erupting mass is analyzed in terms of precipitation of particles accelerated in the eruption complex. Field

  15. Mode properties of low-frequency waves: Kinetic theory versus Hall-MHD

    NASA Technical Reports Server (NTRS)

    Krauss-Varban, D.; Omidi, N.; Quest, K. B.

    1994-01-01

    In fluid theory, the ordering of low-frequency modes in a homogeneous plasma is based on the phase velocity, since modes do not intersect each other in dispersion diagrams as a function of wavenumber or other parameters. In linear kinetic theory, modes cross each other. Thus a consistent and useful classification should be based on the physical properties of the modes instead. This paper attempts such a classification by documeting the dispersion and general mode properties of the low-frequency waves (omega much less than (OMEGA(sub ci) OMEGA(sub ce) (exp 1/2)), where OMEGA(sub ci), OMEGA(sub ce) are the cyclotron frequencies of the ions and electrons, respectively) in kinetic theory, and by comparing them to the results of two-fluid theory. Kinetic theory gives a seperate Alfven/ion-cyclotron (A/IC) wave with phase speed Omega/k approximately = v(sub A) cos theta for omega much less than OMEGA(sub ci), where v(sub A) is the Alfven velocity and theta the angle of propagation between wave vector k and background magnetic field B(sub o). For a given wavenumber, the magnetosonic mode is a double-valued solution with a singular point in theta, beta parameter space, where beta is the ratio of thermal pressure to magnetic pressure. It is shown that a branch cut starting at the singular point theta approximately 30 deg, beta approximately 3 and leading to larger beta gives a practical and consitent seperation of this double-valued magnetosonic solution. Selection of this branch cut results in a moderately damped fast/magnetos onic and a heavily damped slow/sound wave. A comprehensive review of the polarization, compressibility and other mode properties is given and shown to be consistent with the selected branch cut. At small wavenumbers, the kinetic mode properties typically start to deviate significantly from their fluid counterparts at beta approximately 0.5. At larger beta, there is no longer a consistent correspondence between the fluid and kinetic modes. Kinetic

  16. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    SciTech Connect

    Omelchenko, Yuri A.

    2016-08-08

    Global interactions of energetic ions with magnetoplasmas and neutral gases lie at the core of many space and laboratory plasma phenomena ranging from solar wind entry into and transport within planetary magnetospheres and exospheres to fast-ion driven instabilities in fusion devices to astrophysics-in-lab experiments. The ability of computational models to properly account for physical effects that underlie such interactions, namely ion kinetic, ion cyclotron, Hall, collisional and ionization processes is important for the success and planning of experimental research in plasma physics. Understanding the physics of energetic ions, in particular their nonlinear resonance interactions with Alfvén waves, is central to improving the heating performance of magnetically confined plasmas for future energy generation. Fluid models are not adequate for high-beta plasmas as they cannot fully capture ion kinetic and cyclotron physics (e.g., ion behavior in the presence of magnetic nulls, shock structures, plasma interpenetration, etc.). Recent results from global reconnection simulations show that even in a MHD-like regime there may be significant differences between kinetic and MHD simulations. Therefore, kinetic modeling becomes essential for meeting modern day challenges in plasma physics. The hybrid approximation is an intermediate approximation between the fluid and fully kinetic approximations. It eliminates light waves, removes the electron inertial temporal and spatial scales from the problem and enables full-orbit ion kinetics. As a result, hybrid codes have become effective tools for exploring ion-scale driven phenomena associated with ion beams, shocks, reconnection and turbulence that control the large-scale behavior of laboratory and space magnetoplasmas. A number of numerical issues, however, make three-dimensional (3D) large-scale hybrid simulations of inhomogeneous magnetized plasmas prohibitively expensive or even impossible. To resolve these difficulties

  17. Modeling of magnetic reconnection in the magnetotail using global MHD simulation with an effective resistivity model

    NASA Astrophysics Data System (ADS)

    Den, M.; Horiuchi, R.; Fujita, S.; Tanaka, T.

    2011-12-01

    Magnetic reconnection is considered to play an important role in space phenomena such as substorm in the Earth's magnetosphere. Tanaka and Fujita reproduced substorm evolution process by numerical simulation with the global MHD code [1]. In the MHD framework, the dissipation model is introduced for modeling of the kinetic effects. They found that the normalized reconnection viscosity, one of the dissipation model employed there, gave a large effect for the dipolarization, central phenomenon in the substorm development process, though that viscosity was assumed to be a constant parameter. It is well known that magnetic reconnection is controlled by microscopic kinetic mechanism. Frozen-in condition is broken due to particle kinetic effects and collisionless reconnection is triggered when current sheet is compressed as thin as ion kinetic scales under the influence of external driving flow [2, 3]. Horiuchi and his collaborators showed that reconnection electric field generated by microscopic physics evolves inside ion meandering scale so as to balance the flux inflow rate at the inflow boundary, which is controlled by macroscopic physics [2]. That is, effective resistivity generated through this process can be expressed by balance equation between micro and macro physics. In this paper, we perform substorm simulation by using the global MHD code developed by Tanaka [3] with this effective resistivity instead of the empirical resistivity model. We obtain the AE indices from simulation data, in which substorm onset can be seen clearly, and investigate the relationship between the substorm development and the effective resistivity model. [1] T. Tanaka, A, Nakamizo, A. Yoshikawa, S. Fujita, H. Shinagawa, H. Shimazu, T. Kikuchi, and K. K. Hashimoto, J. Geophys. Res. 115 (2010) A05220,doi:10.1029/2009JA014676. [2] W. Pei, R. Horiuchi, and T. Sato, Physics of Plasmas,Vol. 8 (2001), pp. 3251-3257. [3] A. Ishizawa, and R. Horiuchi, Phys. Rev. Lett., Vol. 95, 045003 (2005). [4

  18. MHD instabilities developing in a conductor exploding in the skin effect mode

    NASA Astrophysics Data System (ADS)

    Oreshkin, V. I.; Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Mesyats, G. A.; Oreshkin, E. V.; Ratakhin, N. A.; Rybka, D. V.

    2016-12-01

    The results of experiments with exploding copper conductors, performed on the MIG facility (providing currents of amplitude of about 2.5 MA and rise time of 100 ns), are analyzed. With an frame optical camera, large-scale instabilities of wavelength 0.2-0.5 mm were detected on the conductor surface. The instabilities show up as plasma "tongues" expanding with a sound velocity in the opposite direction to the magnetic field gradient. Analysis performed using a two-dimensional MHD code has shown that the structures observed in the experiments were formed most probably due to flute instabilities. The growth of flute instabilities is predetermined by the development of thermal instabilities near the conductor surface. The thermal instabilities arise behind the front of the nonlinear magnetic diffusion wave propagating through the conductor. The wavefront on its own is not subject to thermal instabilities.

  19. Numerical MHD modelling of composite SNR: The effect of pulsar birth period on pulsar wind parameters

    NASA Astrophysics Data System (ADS)

    de Jager, Ocker

    The γ-ray flux Fγ of a pulsar wind nebula in the GLAST/LAT domain can be shown to depend 2 on the pulsar birth period P0 as Fγ ∝ 1/P0 . Furthermore, it is also known that the PWN size depends on P0 , with the PWN radius overtaking the SNR forward shock if P0 is in the few millisecond domain. Whereas this is an interesting field of study, longer birth periods lead to slower PWN expansion, in which case the reverse shock compresses the PWN, One can therefore follow the time history of adiabatic losses versus adiabatic heating, which is important for multiwavelength modelling. We model composite SNRs as the time evolution of a PWN with its associated SNR forward/reverse shock and reflection wave. The effect of magnetic field is included via Faraday's induction equation. A high resolution numerical simulation scheme is followed whereby the explosion of a SNR with total explosion energy Esnr , ejecta mass Mej , ISM density ρISM and PWN energy via its pulsar birth period P0 , are followed through the Euler equations, describing inviscid flow. They are solved giving ρi (density), vi (velocity) and Pi (the pressure) with time. These equations correspond to the Navier-Stokes equations with zero viscosity and heat conduction terms. They describe the balance of mass, momentum and energy of different fluids, e.g. i = 1, 2, 3, ... and the interaction between these fluids are described by a source term Q(t), which, in the case of the PWN, is described by the spindown of the pulsar. We consider a two fluid scenario with non-relativistic (SNR) and relativistic (PWN) speeds (i = 1, 2), i.e. adiabatic indices of 5/3 and 4/3 respectively. The compressed ISM magnetic field is calculated through Faraday's Law. Note however that this is not a full MHD treatment since no backreaction on the fluid is considered. For the SNR we only consider the field of the ISM which gets compressed as the ISM is swept-up by the forward shock of the SNR. The same induction equation is also used to

  20. The onset of MHD nanofluid convection with Hall current effect

    NASA Astrophysics Data System (ADS)

    Yadav, Dhananjay; Lee, Jinho

    2015-08-01

    In this paper, the combined effects of Hall current and magnetic field on the onset of convection in an electrically conducting nanofluid layer heated from below is investigated. A physically more realistic boundary condition on the nanoparticle volume fraction is taken i.e. the nanoparticle flux is assumed to be zero rather than prescribing a nanoparticle volume fraction on the rigid impermeable boundaries. The employed model incorporates the effects of Brownian motion and thermophoresis. The resulting eigenvalue problem is solved using the Galerkin method. The results obtained during the analysis are presented graphically for an alumina-water nanofluid. It is observed that the effect of smaller values of the Hall current parameter and the nanoparticle parameters accelerate the onset of convection, while larger values of the Hall current parameter (≥ 15) have no effect on the system stabilities.

  1. Striations in the Taurus molecular cloud: Kelvin-Helmholtz instability or MHD waves?

    NASA Astrophysics Data System (ADS)

    Heyer, M.; Goldsmith, P. F.; Yıldız, U. A.; Snell, R. L.; Falgarone, E.; Pineda, J. L.

    2016-10-01

    The origin of striations aligned along the local magnetic field direction in the translucent envelope of the Taurus molecular cloud is examined with new observations of 12CO and 13CO J = 2-1 emission obtained with the 10-m Submillimeter Telescope of the Arizona Radio Observatory. These data identify a periodic pattern of excess blue and redshifted emission that is responsible for the striations. For both 12CO and 13CO, spatial variations of the J = 2-1 to J = 1-0 line ratio are small and are not spatially correlated with the striation locations. A medium comprised of unresolved CO emitting substructures (cells) with a beam area filling factor less than unity at any velocity is required to explain the average line ratios and brightness temperatures. We propose that the striations are generated from the modulation of velocities and beam filling factor of the cells as a result of either the Kelvin-Helmholtz instability or magnetosonic waves propagating through the envelope of the Taurus molecular cloud. Both processes are likely common features in molecular clouds that are sub-Alfvénic and may explain low column density, cirrus-like features similarly aligned with the magnetic field observed throughout the interstellar medium in far-infrared surveys of dust emission.

  2. Experimental determination of the MHD-EMP effects on power distribution transformers

    SciTech Connect

    McConnell, B.W.; Barnes, P.R. ); Tesche, F.M. , Dallas, TX )

    1991-01-01

    It is a well-established fact that geomagnetic storms influence electrical power transmission and distribution systems. Previous cases of such storms in the northern latitudes have resulted in occasional power disruptions, and in some cases, damage to transformers. These effects are caused by a time variation of the earth's magnetic field creating an induced electric field along the surface of the earth. This E-field acts as a voltage source along long power transmission or distribution lines, and if the line is connected to the earth at both ends, a quasi-dc current can flow. This current can cause unwanted saturation in the magnetic cores of transformers in the power system, and this, in turn produces harmonic distortion and transformer heating. This can lead to system upset (shutdown) and possibly transformer burn-out. The detonation of a high altitude nuclear explosion is also known to affect the magnetosphere, producing late-time variations of the earth's magnetic field for several hundreds of seconds. Known as the magnetohydrodynamic electromagnetic pulse (MHD-EMP), or E{sub 3}, this environment is of particular concern to electrical power systems in the event of a nuclear attack. Although the MHD-EMP induced currents can be significantly larger in magnitude, they last for a shorter period of time than do those from a geomagnetic storm. The effect of this environment compounds the adverse effects of the early-time high altitude EMP (HEMP) environment, posing a potentially serious threat to the electrical system. The present paper documents an experimental program designed to better understand the behavior of distribution-class transformers subjected to quasi-dc current excitation. Given the knowledge of the MHD-EMP-induced current flowing in a long power line, and the transformer response characteristics obtained in this program, it will be possible to make more accurate assessments of the behavior of the overall power system to EMP. 7 refs., 5 figs.

  3. MHD Effects on Vapor Flow in a Conductive Fluid

    SciTech Connect

    Anderson, M.H.; Bonazza, R.; Corradini, M.L.

    2003-09-15

    Several advanced fusion reactor design concepts for MFE power generation incorporate liquid metal as a protective layer or heat transfer medium. The presence of high magnetic fields, necessary to confine the plasma fuel in the core region of the device, effect these liquid metal systems. Recently computational methods have just begun to be able to give some insight into the effects of these high magnetic fields on the liquid metal systems, however experimental data is needed to verify the results of the computations and determine feasibility where computational methods are not possible due to computer resources or the lack of suitable models to deal with turbulence suppression. A series of experiments conducted with helium gas injection (16 - 85 cm{sup 3}/s) through a 1.6 mm injector into a 2.54 cm liquid metal pool (NaK) with a horizontal magnetic field from 0-6T have been conducted to evaluate a particular reactor power extraction process and to serve as a data base for computational comparison.

  4. Effects of MHD instabilities on neutral beam current drive

    SciTech Connect

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; Fredrickson, E. D.; Gerhardt, S. P.; White, R. B.

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CD efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.

  5. Effects of MHD instabilities on neutral beam current drive

    DOE PAGES

    Podestà, M.; Gorelenkova, M.; Darrow, D. S.; ...

    2015-04-17

    One of the primary tools foreseen for heating, current drive (CD) and q-profile control in future fusion reactors such as ITER and a Fusion Nuclear Science Facility is the neutral beam injection (NBI). However, fast ions from NBI may also provide the drive for energetic particle-driven instabilities (e.g. Alfvénic modes (AEs)), which in turn redistribute fast ions in both space and energy, thus hampering the control capabilities and overall efficiency of NB-driven current. Based on experiments on the NSTX tokamak (M. Ono et al 2000 Nucl. Fusion 40 557), the effects of AEs and other low-frequency magneto-hydrodynamic instabilities on NB-CDmore » efficiency are investigated. When looking at the new fast ion transport model, which accounts for particle transport in phase space as required for resonant AE perturbations, is utilized to obtain consistent simulations of NB-CD through the tokamak transport code TRANSP. It is found that instabilities do indeed reduce the NB-driven current density over most of the plasma radius by up to ~50%. Moreover, the details of the current profile evolution are sensitive to the specific model used to mimic the interaction between NB ions and instabilities. Finally, implications for fast ion transport modeling in integrated tokamak simulations are briefly discussed.« less

  6. Integration of Extended MHD and Kinetic Effects in Global Magnetosphere Models

    NASA Astrophysics Data System (ADS)

    Germaschewski, K.; Wang, L.; Maynard, K. R. M.; Raeder, J.; Bhattacharjee, A.

    2015-12-01

    Computational models of Earth's geospace environment are an important tool to investigate the science of the coupled solar-wind -- magnetosphere -- ionosphere system, complementing satellite and ground observations with a global perspective. They are also crucial in understanding and predicting space weather, in particular under extreme conditions. Traditionally, global models have employed the one-fluid MHD approximation, which captures large-scale dynamics quite well. However, in Earth's nearly collisionless plasma environment it breaks down on small scales, where ion and electron dynamics and kinetic effects become important, and greatly change the reconnection dynamics. A number of approaches have recently been taken to advance global modeling, e.g., including multiple ion species, adding Hall physics in a Generalized Ohm's Law, embedding local PIC simulations into a larger fluid domain and also some work on simulating the entire system with hybrid or fully kinetic models, the latter however being to computationally expensive to be run at realistic parameters. We will present an alternate approach, ie., a multi-fluid moment model that is derived rigorously from the Vlasov-Maxwell system. The advantage is that the computational cost remains managable, as we are still solving fluid equations. While the evolution equation for each moment is exact, it depends on the next higher-order moment, so that truncating the hiearchy and closing the system to capture the essential kinetic physics is crucial. We implement 5-moment (density, momentum, scalar pressure) and 10-moment (includes pressure tensor) versions of the model, and use local approximations for the heat flux to close the system. We test these closures by local simulations where we can compare directly to PIC / hybrid codes, and employ them in global simulations using the next-generation OpenGGCM to contrast them to MHD / Hall-MHD results and compare with observations.

  7. Numerical study of Hall effects on counter-helicity spheromak merging by two-dimensional Hall-MHD simulations

    NASA Astrophysics Data System (ADS)

    Kaminou, Yasuhiro; Guo, Xuehan; Inomoto, Michiaki; Ono, Yasushi; Horiuchi, Ritoku

    2017-03-01

    Hall effects on counter-helicity spheromak merging were investigated by two-dimensional MHD and Hall-MHD simulations of merging two axisymmetric toroidal flux tubes. In Hall-MHD cases, the structure of the reconnection current sheet and reconnection outflow are modified from the MHD case due to the Hall effect. We compared two cases (called "case-O" and "case-I") of counter-helicity merging, which are distinguished by the polarity of toroidal magnetic fluxes. Radial motion of the reconnection X-point is controlled by poloidal electron flow accompanying the toroidal flux of the merging two spheromaks, and this creates a large difference in the current sheet and flow structure between the two cases of the Hall-MHD regime. The radial shift of the reconnection X-point depending on the polarity of toroidal magnetic flux of the spheromaks breaks the symmetry between the two cases. It was also found that there widely exists separation of ion and electron flow which are affected by the modification of the current sheet structure due to the radial shift of the X-point in the downstream side of the merging, and its spatial scale of the distribution of the Hall electric field is larger than the ion skin depth.

  8. Analysis of Helicities and Hall and MHD Dynamo Effects in Two-Fluid Reversed-Field Pinch Simulations

    NASA Astrophysics Data System (ADS)

    Sauppe, Joshua; Sovinec, Carl

    2015-11-01

    Relaxation in the RFP is studied numerically with extended-MHD modeling that includes the Hall term and ion gyroviscous stress. Previous results show significant coupling between magnetic relaxation and parallel flow evolution [King PoP 19, 055905]. Computations presented here display quasi-periodic relaxation events with current relaxation through MHD and Hall dynamo drives. The MHD dynamo always relaxes currents while the Hall dynamo may add or subtract from it, but the total dynamo drive is similar to single-fluid MHD computations. Changes in plasma momentum are due to viscous coupling to the wall and fluctuation-induced Maxwell stresses transport momentum radially inward when two-fluid effects are included. The magnetic helicity and hybrid helicity, a two-fluid extension of magnetic helicity that includes cross and kinetic helicity [Turner, 1986], are well-conserved relative to magnetic energy at each event. The cross helicity is well-conserved in single-fluid MHD but is significantly affected by both two-fluid effects and ion gyroviscosity. The plasma parallel current evolves towards the predicted flat profile; however, the plasma flow does not. Work supported through NSF grant PHY-0821899 and DOE grant DE-FG02-06ER54850.

  9. The effects of differential flow between rational surfaces on toroidal resistive MHD modes

    NASA Astrophysics Data System (ADS)

    Brennan, Dylan; Halfmoon, Michael; Rhodes, Dov; Cole, Andrew; Okabayashi, Michio; Paz-Soldan, Carlos; Finn, John

    2016-10-01

    Differential flow between resonant surfaces can strongly affect the coupling and penetration of resonant components of resistive modes, and yet this mechanism is not yet fully understood. This study focuses on the evolution of tearing instabilities and the penetration of imposed resonant magnetic perturbations (RMPs) in tokamak configurations relevant to DIII-D and ITER, including equilibrium flow shear. It has been observed on DIII-D that the onset of tearing instabilities leading to disruption is often coincident with a loss of differential rotation between a higher m/n tearing surface (normally the 4/3 or 3/2) and a lower m/n tearing surface (normally the 2/1). Imposing RMPs can strongly affect this coupling and the torques between the modes. We apply the nonlinear 3-D resistive magnetohydrodynamic (MHD) code NIMROD to study the mechanisms by which these couplings occur. Reduced MHD analyses are applied to study the effects of differential flow between resonant surfaces in the simulations. Interaction between resonant modes can cause significant energy transfer between them, effectively stabilizing one mode while the other grows. The flow mitigates this transfer, but also affects the individual modes. The combination of these effects determines the nonlinear outcome. Supported by US DOE Grants DE-SC0014005 and DE-SC0014119.

  10. Investigation of Neutral Wind Effects on the Global Joule Heating Rate Using MHD and TI Models

    NASA Astrophysics Data System (ADS)

    Kalafatoglu, E.; Kaymaz, Z.

    2013-12-01

    Precise calculation of global Joule heating rate is a long standing question in thermosphere-ionosphere coupling processes. The absence of the complete and direct, in-situ measurements of the parameters involved in the calculation of Joule heating such as the conductivity of the medium, small-scale variations of electric fields, and neutral winds at the ionospheric heights poses a great uncertainty in its determination. In this work, we study the effects of the neutral wind on the global Joule heating rate. Most of the time, owing to above mentioned difficulties the effects of the neutral wind have been neglected in the calculations. We investigate their effects using BATSRUS MHD model, TIEGCM and GITM. Using horizontal current density, Cowling conductivity, and Pedersen conductivities from the MHD model, we calculate the joule heating rate with and without the neutral wind contribution. We apply the procedure for March 2008 magnetospheric substorm events and quantify the differences to show the neutral wind contribution. We compare the results with those obtained using neutral wind velocities from TIEGCM and GITM models. This way while we compare and demonstrate the discrepancies between the models, we also provide an assessment for the integration of thermospheric and magnetospheric models.

  11. A kinetic-MHD model for low frequency phenomena

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    A hybrid kinetic-MHD model for describing low-frequency phenomena in high beta anisotropic plasmas that consist of two components: a low energy core component and an energetic component with low density. The kinetic-MHD model treats the low energy core component by magnetohydrodynamic (MHD) description, the energetic component by kinetic approach such as the gyrokinetic equation, and the coupling between the dynamics of these two components through plasma pressure in the momentum equation. The kinetic-MHD model optimizes both the physics contents and the theoretical efforts in studying low frequency MHD waves and transport phenomena in general magnetic field geometries, and can be easily modified to include the core plasma kinetic effects if necessary. It is applicable to any magnetized collisionless plasma system where the parallel electric field effects are negligibly small. In the linearized limit two coupled eigenmode equations for describing the coupling between the transverse Alfven type and the compressional Alfven type waves are derived. The eigenmode equations are identical to those derived from the full gyrokinetic equation in the low frequency limit and were previously analyzed both analytically nd numerically to obtain the eigenmode structure of the drift mirror instability which explains successfully the multi-satellite observation of antisymmetric field-aligned structure of the compressional magnetic field of Pc 5 waves in the magnetospheric ring current plasma. Finally, a quadratic form is derived to demonstrate the stability of the low-frequency transverse and compressional Alfven type instabilities in terms of the pressure anisotropy parameter {tau} and the magnetic field curvature-pressure gradient parameter. A procedure for determining the stability of a marginally stable MHD wave due to wave-particle resonances is also presented.

  12. Singular Currents Near Magnetic Islands in MHD Equilibria: Effects of Pressure Variation Within Flux Surfaces and of Symmetry

    NASA Astrophysics Data System (ADS)

    Reiman, Allan

    2016-10-01

    We present an analytic calculation of the MHD equilibrium current near a magnetic island that includes the effect of the pressure variation on the flux surfaces in that region. The current has logarithmic singularities at the X-lines of magnetic islands in non-stellarator-symmetric equilibria. The singular components vanish in stellarator-symmetric MHD equilibria. (Equilibria invariant under combined reflection in the poloidal and toroidal angles. Tokamaks with balanced double-null divertors are stellarator symmetric, but single-null tokamaks are not.) These equilibrium solutions are to be contrasted with equilibria having B . ∇p = 0 , where the singular components of the pressure-driven currents vanish regardless of the symmetry. They are also to be contrasted with 3D MHD equilibrium solutions that have simply nested flux surfaces, where the pressure-driven current goes like 1 / x near rational surfaces, where x is the distance from the rational surface. (Except in the case of quasi-symmetric flux surfaces.) We work with a closed subset of the MHD equilibrium equations that involves only perpendicular force balance, and is decoupled from parallel force balance. It is not correct to use the parallel component of the conventional MHD force balance equation, B . ∇p = 0 , near magnetic islands. DOE contract DEAC02-76CH03073.

  13. Hall effect on MHD flow and heat transfer over a stretching sheet with variable thickness

    NASA Astrophysics Data System (ADS)

    Prasad, K. V.; Vajravelu, K.; Vaidya, Hanumesh

    2016-07-01

    We investigate the MHD flow and heat transfer of an electrically conducting fluid over a stretching sheet with variable thickness. The wall temperature and the wall velocity are assumed to vary. The effects of external magnetic field along the sheet and the Hall currents are considered. The governing equations are solved numerically using an implicit finite difference scheme. The obtained numerical results are compared with the available results in the literature for some special cases and the results are found to be in very good agreement. The effects of the physical parameters on the velocity and temperature fields are presented graphically and analyzed. The effect of the Hall current gives rise to a cross flow. Moreover, the Hall current and the magnetic field have strong effect on the flow and heat transfer characteristics, i.e., shear stress and the Nusselt number.

  14. MHD Spectroscopy

    SciTech Connect

    Heeter, R F; Fasoli, A; Testa, D; Sharapov, S; Berk, H L; Breizman, B; Gondhalekar, A; Mantsinen, M

    2004-03-23

    Experiments are conducted on the JET tokamak to assess the diagnostic potential of MHD active and passive spectroscopy, for the plasma bulk and its suprathermal components, using Alfv{acute e}n Eigenmodes (AEs) excited by external antennas and by energetic particles. The measurements of AE frequencies and mode numbers give information on the bulk plasma. Improved equilibrium reconstruction, in particular in terms of radial profiles of density and safety factor, is possible from the comparison between the antenna driven spectrum and that calculated theoretically. Details of the time evolution of the non-monotonic safety factor profile in advanced scenarios can be reconstructed from the frequency of ICRH-driven energetic particle modes. The plasma effective mass can be inferred from the resonant frequency of externally driven AEs in discharges with similar equilibrium profiles. The stability thresholds and the nonlinear development of the instabilities can give clues on energy and spatial distribution of the fast particle population. The presence of unstable AEs provides lower limits in the energy of ICRH generated fast ion tails. Fast ion pressure gradients and their evolution can be inferred from the stability of AEs at different plasma radial positions. Finally, the details of the AE spectrum in the nonlinear stage can be used to obtain information about the fast particle velocity space diffusion.

  15. Simultaneous effects of MHD and partial slip on peristaltic flow of Jeffery fluid in a rectangular duct

    NASA Astrophysics Data System (ADS)

    Ellahi, R.; Hussain, F.

    2015-11-01

    The purpose of this paper is to study the closed-form solutions of peristaltic flow of Jeffery fluid under the simultaneous effects of magnetohydrodynamics (MHD) and partial slip conditions in a rectangular duct. The influence of wave train propagation is also taken into account. The analysis of mathematical model consists of continuity and the momentum equations are carried out under long wavelength (0 < < → ∞) and low Reynolds number (Re → 0) assumptions. The governing equations are first reduced to the dimensionless system of partial differential equation using the appropriate variables and afterwards exact solutions are obtained by applying the method of separation of variables. The role of pertinent parameters such as Hartmann number M, slip parameter β1, volumetric flow rate Q, Jeffery parameter λ1 and the aspect ratio β against the velocity profile, pressure gradient and pressure rise is illustrated graphically. The streamlines have also been presented to discuss the trapping bolus discipline. Comparison with the existing studies is made as a limiting case of the considered problem.at the end.

  16. Slip effects on MHD flow and heat transfer of ferrofluids over a moving flat plate

    NASA Astrophysics Data System (ADS)

    Ramli, Norshafira; Ahmad, Syakila; Pop, Ioan

    2017-08-01

    In this study, the problem of MHD flow and heat transfer of ferrofluids over a moving flat plate with slip effect and uniform heat flux is considered. The governing ordinary differential equations are solved via shooting method. The effect of slip parameter on the dimensionless velocity, temperature, skin friction and Nusselt numbers are numerically studied for the three selected ferroparticles; magnetite (Fe3O4), cobalt ferrite (CoFe2O4) and Mn-Zn ferrite (Mn-ZnFe2O4) with water-based fluid. The results indicate that dual solutions exist for a plate moving towards the origin. It is found that the slip process delays the boundary layer separation. Moreover, the velocity and thermal boundary-layer thicknesses decrease in the first solution while increase with the increase of the value of slip parameters in second solution.

  17. Effects of sudden commencement on the ionosphere: PFISR observations and global MHD simulation

    NASA Astrophysics Data System (ADS)

    Zou, Shasha; Ozturk, Dogacan; Varney, Roger; Reimer, Ashton

    2017-04-01

    Sudden commencement (SC) induced by solar wind pressure enhancement can produce significant global impact on the coupled magnetosphere-ionosphere (MI) system, and its effects have been studied extensively using ground magnetometers and coherent scatter radars. However, very limited observations have been reported about the effects of SC on the ionospheric plasma. Here we report detailed Poker Flat Incoherent Scatter Radar (PFISR) observations of the ionospheric response to SC during the 17 March 2015 storm. PFISR observed lifting of the F region ionosphere, transient field-aligned ion upflow, prompt but short-lived ion temperature increase, subsequent F region density decrease, and persistent electron temperature increase. A global magnetohydrodynamic (MHD) simulation has been carried out to characterize the SC-induced current, convection, and magnetic perturbations. Simulated magnetic perturbations at Poker Flat show a satisfactory agreement with observations. The simulation provides a global context for linking localized PFISR observations to large-scale dynamic processes in the MI system.

  18. Simultaneous effects of slip and wall properties on MHD peristaltic motion of nanofluid with Joule heating

    NASA Astrophysics Data System (ADS)

    Hayat, T.; Nisar, Z.; Ahmad, B.; Yasmin, H.

    2015-12-01

    This paper is devoted to the magnetohydrodynamic (MHD) peristaltic transport of nanofluid in a channel with wall properties. Flow analysis is addressed in the presence of viscous dissipation, partial slip and Joule heating effects. Mathematical modelling also includes the salient features of Brownian motion and thermophoresis. Both analytic and numerical solutions are provided. Comparison between the solutions is shown in a very good agreement. Attention is focused to the Brownian motion parameter, thermophoresis parameter, Hartman number, Eckert number and Prandtl number. Influences of various parameters on skin friction coefficient, Nusselt and Sherwood numbers are also investigated. It is found that both the temperature and nanoparticles concentration are increasing functions of Brownian motion and thermophoresis parameters.

  19. Hall Effects on Mhd Flow Past an Accelerated Plate with Heat Transfer

    NASA Astrophysics Data System (ADS)

    Sundarnath, J. K.; Muthucumarswamy, R.

    2015-02-01

    Hall current and rotation on an MHD flow past an accelerated horizontal plate relative to a rotating fluid, in the presence of heat transfer has been analyzed. The effects of the Hall parameter, Hartmann number, rotation parameter (non-dimensional angular velocity), Grashof's number and Prandtl number on axial and transverse velocity profiles are presented graphically. It is found that with the increase in the Hartmann number, the axial and transverse velocity components increase in a direction opposite to that of obtained by increasing the Hall parameter and rotation parameter. Also, when Ω=M2m /(1 + m2 ) , it is observed that the transverse velocity component vanishes and axial velocity attains a maximum value.

  20. LIGKA: A linear gyrokinetic code for the description of background kinetic and fast particle effects on the MHD stability in tokamaks

    SciTech Connect

    Lauber, Ph. Guenter, S.; Koenies, A.; Pinches, S.D.

    2007-09-10

    In a plasma with a population of super-thermal particles generated by heating or fusion processes, kinetic effects can lead to the additional destabilisation of MHD modes or even to additional energetic particle modes. In order to describe these modes, a new linear gyrokinetic MHD code has been developed and tested, LIGKA (linear gyrokinetic shear Alfven physics) [Ph. Lauber, Linear gyrokinetic description of fast particle effects on the MHD stability in tokamaks, Ph.D. Thesis, TU Muenchen, 2003; Ph. Lauber, S. Guenter, S.D. Pinches, Phys. Plasmas 12 (2005) 122501], based on a gyrokinetic model [H. Qin, Gyrokinetic theory and computational methods for electromagnetic perturbations in tokamaks, Ph.D. Thesis, Princeton University, 1998]. A finite Larmor radius expansion together with the construction of some fluid moments and specification to the shear Alfven regime results in a self-consistent, electromagnetic, non-perturbative model, that allows not only for growing or damped eigenvalues but also for a change in mode-structure of the magnetic perturbation due to the energetic particles and background kinetic effects. Compared to previous implementations [H. Qin, mentioned above], this model is coded in a more general and comprehensive way. LIGKA uses a Fourier decomposition in the poloidal coordinate and a finite element discretisation in the radial direction. Both analytical and numerical equilibria can be treated. Integration over the unperturbed particle orbits is performed with the drift-kinetic HAGIS code [S.D. Pinches, Ph.D. Thesis, The University of Nottingham, 1996; S.D. Pinches et al., CPC 111 (1998) 131] which accurately describes the particles' trajectories. This allows finite-banana-width effects to be implemented in a rigorous way since the linear formulation of the model allows the exchange of the unperturbed orbit integration and the discretisation of the perturbed potentials in the radial direction. Successful benchmarks for toroidal Alfven

  1. Accuracy of MHD simulations: Effects of simulation initialization in GUMICS-4

    NASA Astrophysics Data System (ADS)

    Lakka, Antti; Pulkkinen, Tuija; Dimmock, Andrew; Osmane, Adnane; Palmroth, Minna; Honkonen, Ilja

    2016-04-01

    We conducted a study aimed at revealing how different global magnetohydrodynamic (MHD) simulation initialization methods affect the dynamics in different parts of the Earth's magnetosphere-ionosphere system. While such magnetosphere-ionosphere coupling codes have been used for more than two decades, their testing still requires significant work to identify the optimal numerical representation of the physical processes. We used the Grand Unified Magnetosphere-Ionosphere Coupling Simulation (GUMICS-4), the only European global MHD simulation being developed by the Finnish Meteorological Institute. GUMICS-4 was put to a test that included two stages: 1) a 10 day Omni data interval was simulated and the results were validated by comparing both the bow shock and the magnetopause spatial positions predicted by the simulation to actual measurements and 2) the validated 10 day simulation run was used as a reference in a comparison of five 3 + 12 hour (3 hour synthetic initialisation + 12 hour actual simulation) simulation runs. The 12 hour input was not only identical in each simulation case but it also represented a subset of the 10 day input thus enabling quantifying the effects of different synthetic initialisations on the magnetosphere-ionosphere system. The used synthetic initialisation data sets were created using stepwise, linear and sinusoidal functions. Switching the used input from the synthetic to real Omni data was immediate. The results show that the magnetosphere forms in each case within an hour after the switch to real data. However, local dissimilarities are found in the magnetospheric dynamics after formation depending on the used initialisation method. This is evident especially in the inner parts of the lobe.

  2. Effect of Trapped Energetic Ions on MHD Activity in Spherical Tori

    SciTech Connect

    R.B. White; Ya.I. Kolesnichenko; V.V. Lutsenko; V.S. Marchenko

    2002-05-30

    It is shown that the increase of beta (the ratio of plasma pressure to the magnetic field pressure) may change the character of the influence of trapped energetic ions on MHD stability in spherical tori. Namely, the energetic ions, which stabilize MHD modes (such as the ideal-kink mode, collisionless tearing mode, and semi-collisional tearing mode) at low beta, have a destabilizing influence at high beta unless the radial distribution of the energetic ions is very peaked.

  3. MHD Model Estimates of the Contribution of Driven, Linear, Non-Plane Wave Dissipation to Chromospheric Heating Using a Complete Electrical Conductivity Tensor

    NASA Astrophysics Data System (ADS)

    Goodman, M. L.

    2008-12-01

    Analytic solutions of an MHD model that includes an anisotropic, inhomogeneous electrical conductivity tensor containing Hall, Pedersen, and Spitzer conductivities are used to compute resistive heating rates as a function of height z from the photosphere to the lower corona due to dissipation of driven, linear, non- plane waves. The background state of the atmosphere is assumed to be an FAL atmosphere. This state is linearly perturbed by a harmonic perturbation of frequency ν. The height dependence of the perturbation in the presence of the inhomogeneous background state is determined by solving the MHD equations given the harmonic, horizontal, driving magnetic field Bx1 at the photosphere, the constant vertical magnetic field Bz, and the magnetic field strength Bcond(z) that enters the electrical conductivity tensor. The variation of the heating rates per unit volume and mass with ν, Bx1, and Bcond(0) are determined. The heating rates are found to be ∝ Bcond(0)2 Bx12, and to increase with ν. The Pedersen resistivity is ∝ Bcond(0)2. It is several orders of magnitude greater than the Spitzer resistivity in the chromosphere, and determines the rate of heating by Pedersen current dissipation in the chromosphere. The Pedersen current is essentially a proton current in the chromosphere. The onset of Pedersen current dissipation rates large enough to balance the net radiative loss from the chromosphere occurs near the height of the FAL temperature minimum, and is triggered by the product of the electron and proton magnetizations first exceeding unity. The magnetizations and heating rate increase rapidly with height beginning near the temperature minimum. For the special case of Bz = 200 G, Bx1=140 G, and 400 ≤ Bcond(0) ≤ 1500 G the driver frequency for which the period averaged chromospheric heating flux FCh = 5 × 106 ergs-cm-2-sec-1 has the corresponding range of 91 ≥ ν ≥ 25 mHz. Larger magnetic field strengths correspond to lower frequencies for a

  4. Chemical reaction and radiation effects on MHD flow past an exponentially stretching sheet with heat sink

    NASA Astrophysics Data System (ADS)

    Nur Wahida Khalili, Noran; Aziz Samson, Abdul; Aziz, Ahmad Sukri Abdul; Ali, Zaileha Md

    2017-09-01

    In this study, the problem of MHD boundary layer flow past an exponentially stretching sheet with chemical reaction and radiation effects with heat sink is studied. The governing system of PDEs is transformed into a system of ODEs. Then, the system is solved numerically by using Runge-Kutta-Fehlberg fourth fifth order (RKF45) method available in MAPLE 15 software. The numerical results obtained are presented graphically for the velocity, temperature and concentration. The effects of various parameters are studied and analyzed. The numerical values for local Nusselt number, skin friction coefficient and local Sherwood number are tabulated and discussed. The study shows that various parameters give significant effect on the profiles of the fluid flow. It is observed that the reaction rate parameter affected the concentration profiles significantly and the concentration thickness of boundary layer decreases when reaction rate parameter increases. The analysis found is validated by comparing with the results previous work done and it is found to be in good agreement.

  5. Effects of Magnetic Field on the Turbulent Wake of a Cylinder in MHD Channel Flow

    SciTech Connect

    John Rhoads; Edlundd, Eric; Ji, Hantao

    2013-04-01

    Results from a free-surface MHD flow experiment are presented detailing the modi cation of vortices in the wake of a circular cylinder with its axis parallel to the applied magnetic fi eld. Experiments were performed with a Reynolds number near Re ~ 104 as the interaction parameter, N = |j x B| / |ρ (υ • ∇), was increased through unity. By concurrently sampling the downstream fluid velocity at sixteen cross-stream locations in the wake, it was possible to extract an ensemble of azimuthal velocity profi les as a function of radius for vortices shed by the cylinder at varying strengths of magnetic field. Results indicate a signi cant change in vortex radius and rotation as N is increased. The lack of deviations from the vortex velocity pro file at high magnetic fi elds suggests the absence of small-scale turbulent features. By sampling the wake at three locations downstream in subsequent experiments, the decay of the vortices was examined and the effective viscosity was found to decrease as N-049±0.4. This reduction in effective viscosity is due to the modi cation of the small-scale eddies by the magnetic fi eld. The slope of the energy spectrum was observed to change from a k-1.8 power-law at low N to a k-3.5 power-law for N > 1. Together, these results suggest the flow smoothly transitioned to a quasi-two-dimensional state in the range 0 < N < 1.

  6. Establishment of the thermoelectric effect in Kaluza's MHD through the kinetic theory

    NASA Astrophysics Data System (ADS)

    Sagaceta-Mejia, A. R.; Garcia-Perciante, A. L.; Sandoval-Villalbazo, A.

    2015-11-01

    The study of the behavior of charged gases in curved space-times is an active research area in which cross effects, such as thermoelectricity, have not been studied in depth. In our kinetic description of transport theory the electric charge is introduced into the fifth component of the particle velocity, following the idea first proposed by Kaluza in 1919. Using Chapman-Enskog's method, the first order in the gradients correction to the gas distribution function is established, noticing that some of the thermodynamic forces present in the system are associated with the space-time curvature. It is shown that with this distribution function, it is possible to obtain the well-known expressions that relate the heat flux with the electric field in a dilute gas, without resorting to the steady state approximation. This formalism corresponds to an extension of the result obtained for the case of the direct effect between the particle flux and the electric field within Kaluza's MHD (A. Sandoval-Villalbazo, A. R. Sagaceta-Mejía, A. L. García- Perciante; Journal of Non-Equilibrium Thermodynamics, 2015, Vol. 40, pp. 93-101.) The authors acknowledge support from CONACyT through grant CB2011/167563.

  7. Effect of Induced Magnetic Field on MHD Mixed Convection Flow in Vertical Microchannel

    NASA Astrophysics Data System (ADS)

    Jha, B. K.; Aina, B.

    2017-08-01

    The present work presents a theoretical investigation of an MHD mixed convection flow in a vertical microchannel formed by two electrically non-conducting infinite vertical parallel plates. The influence of an induced magnetic field arising due to motion of an electrically conducting fluid is taken into consideration. The governing equations of the motion are a set of simultaneous ordinary differential equations and their exact solutions in dimensionless form have been obtained for the velocity field, the induced magnetic field and the temperature field. The expressions for the induced current density and skin friction have also been obtained. The effects of various non-dimensional parameters such as rarefaction, fluid wall interaction, the Hartmann number and the magnetic Prandtl number on the velocity, the induced magnetic field, the temperature, the induced current density, and skin friction have been presented in a graphical form. It is found that the effect of the Hartmann number and magnetic Prandtl number on the induced current density is found to have a decreasing nature at the central region of the microchannel.

  8. SPATIAL DAMPING OF PROPAGATING KINK WAVES DUE TO RESONANT ABSORPTION: EFFECT OF BACKGROUND FLOW

    SciTech Connect

    Soler, R.; Goossens, M.; Terradas, J.

    2011-06-20

    Observations show the ubiquitous presence of propagating magnetohydrodynamic (MHD) kink waves in the solar atmosphere. Waves and flows are often observed simultaneously. Due to plasma inhomogeneity in the direction perpendicular to the magnetic field, kink waves are spatially damped by resonant absorption. The presence of flow may affect the wave spatial damping. Here, we investigate the effect of longitudinal background flow on the propagation and spatial damping of resonant kink waves in transversely nonuniform magnetic flux tubes. We combine approximate analytical theory with numerical investigation. The analytical theory uses the thin tube (TT) and thin boundary (TB) approximations to obtain expressions for the wavelength and the damping length. Numerically, we verify the previously obtained analytical expressions by means of the full solution of the resistive MHD eigenvalue problem beyond the TT and TB approximations. We find that the backward and forward propagating waves have different wavelengths and are damped on length scales that are inversely proportional to the frequency as in the static case. However, the factor of proportionality depends on the characteristics of the flow, so that the damping length differs from its static analog. For slow, sub-Alfvenic flows the backward propagating wave gets damped on a shorter length scale than in the absence of flow, while for the forward propagating wave the damping length is longer. The different properties of the waves depending on their direction of propagation with respect to the background flow may be detected by the observations and may be relevant for seismological applications.

  9. Millimeter Wave Ocular Effects

    DTIC Science & Technology

    1987-02-20

    illustrates the rabbit head in holder by photography (a), thermography (b) and thermographic profile (c). The temperature of the cornea was measured using an...and graphs of profiles of the 40 temperatures difference (final-initial) of the rabbit cornea heated by the focused beam of millimeter waves from the...antenna. 5. Cooling of the cornea by air flow. 43 6. Temperature as a function of power applied using 45 continuous wave millimeter waves of

  10. MHD heat and mass transfer flow over a permeable stretching/shrinking sheet with radiation effect

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2016-06-01

    The steady two-dimensional magnetohydrodynamic (MHD) flow past a permeable stretching/shrinking sheet with radiation effects is investigated. The similarity transformation is introduced to transform the governing partial differential equations into a system of ordinary differential equations before being solved numerically using a shooting method. The results are obtained for the skin friction coefficient, the local Nusselt number and the local Sherwood number as well as the velocity, temperature and the concentration profiles for some values of the governing parameters, namely, suction/injection parameter S, stretching/shrinking parameter λ, magnetic parameter M, radiation parameter R, heat source/sink Q and chemical rate parameter K. For the shrinking case, there exist two solutions for a certain range of parameters, but the solution is unique for the stretching case. The stability analysis verified that the upper branch solution is linearly stable and physically reliable while the lower branch solution is not. For the reliable solution, the skin friction coefficient increases in the present of magnetic field. The heat transfer rate at the surface decreases in the present of radiation.

  11. Thermophysical effects of carbon nanotubes on MHD flow over a stretching surface

    NASA Astrophysics Data System (ADS)

    Ul Haq, Rizwan; Khan, Zafar Hayat; Khan, Waqar Ahmed

    2014-09-01

    This article is intended for investigating the effects of magnetohydrodynamics (MHD) and volume fraction of carbon nanotubes (CNTs) on the flow and heat transfer in two lateral directions over a stretching sheet. For this purpose, three types of base fluids specifically water, ethylene glycol and engine oil with single and multi-walled carbon nanotubes are used in the analysis. The convective boundary condition in the presence of CNTs is presented first time and not been explored so far. The transformed nonlinear differential equations are solved by the Runge-Kutta-Fehlberg method with a shooting technique. The dimensionless velocity and shear stress are obtained in both directions. The dimensionless heat transfer is determined on the surface. Three different models of thermal conductivity are comparable for both CNTs and it is found that the Xue [1] model gives the best approach to guess the superb thermal conductivity in comparison with the Maxwell [2] and Hamilton and Crosser [3] models. And finally, another finding suggests the engine oil provides the highest skin friction and heat transfer rates.

  12. The Effects of Differential Rotation on the Magnetic Structure of the Solar Corona: MHD Simulations

    NASA Technical Reports Server (NTRS)

    Lionello, Roberto; Riley, Pete; Linker, Jon A.; Mikic, Zoran

    2004-01-01

    Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang et al., which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang et al.. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

  13. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    NASA Technical Reports Server (NTRS)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  14. Weakly nonlinear magnetohydrodynamic wave interactions

    SciTech Connect

    Webb, G.M.; Brio, M.; Kruse, M.T.; Zank, G.P.

    1999-06-01

    Equations describing weakly nonlinear magnetohydrodynamic (MHD) wave interactions in one Cartesian space dimension are discussed. For wave propagation in uniform media, the wave interactions of interest consist of: (a) three-wave resonant interactions in which high frequency waves, may evolve on long space and time scales if the wave phases satisfy the resonance conditions; (b) Burgers self-wave steepening for the magnetoacoustic waves, and (c) mean wave field effects, in which a particular wave interacts with the mean wave field of the other waves. For wave propagation in non-uniform media, further linear wave mixing terms appear in the equations. The equations describe four types of resonant triads: slow-fast magnetosonic wave interaction; Alfv{acute e}n-entropy wave interaction; Alfv{acute e}n-magnetosonic wave interaction; and magnetosonic-entropy wave interaction. The formalism is restricted to coherent wave interactions. {copyright} {ital 1999 American Institute of Physics.}

  15. MHD turbulent processes

    NASA Technical Reports Server (NTRS)

    Montgomery, David

    1988-01-01

    Three areas of study in MHD turbulence are considered. These are the turbulent relaxation of the toroidal Z pinch, density fluctuations in MHD fluids, and MHD cellular automata. A Boolean computer game that updates a cellular representation in parallel and that has macroscopic averages converging to solutions of the two-dimensional MHD equations is discussed.

  16. Thermo-Diffusion and Diffuso-Thermo Effects on MHD Squeezing Flow Between Parallel Disks

    NASA Astrophysics Data System (ADS)

    Khan, Sheikh Irfanullah; Mohyud-Din, Syed Tauseef; Bin-Mohsin, Bandar

    In this article, Magnetohydrodynamic (MHD) squeezing flow between two parallel disks is considered. The upper disk is taken to be solid and the lower one is permeable. Soret and Dufour effects are measured to explore the thermal-diffusion and diffusion-thermo effects. Governing PDEs are converted into system of ODEs with the support of suitable similarity transforms. Homotopy analysis method (HAM) has been employed to obtain the expressions for velocity, temperature and concentration profiles. Effects of different emerging parameters such as squeezing number S, Hartman number M, Prandtl number Pr, Eckert number Ec, dimensionless length δ and Schmidt number Sc on the flow are also discussed with the help of graphs for velocity, temperature and concentration. The local Nusselt and Sherwood numbers along with convergence of the series solutions are presented with the help of graphs. From the results obtained, we observed that the physical quantities like skin friction coefficient increases with increasing value of Hartmann number M in the blowing case (A<0) whereas a fall is observed in the suction case (A>0). However, the rate of heat transfer at upper wall increases with increasing values of Dufour number Du and Soret number Sr for both the suction (A>0) and blowing flow (A<0), whereas, for the larger values of Dufour number Du and smaller values of Soret number Sr, a rapid fall is observed in Sherwood number Sh for both the suction (A>0) and blowing (A<0) cases. A numerical solution is obtained by employing Runge-Kutta method of order four (RK-4) to check the validity and reliability of the developed algorithm. A well agreement is found between both the solutions.

  17. Effects of stochastic field lines on the pressure driven MHD instabilities in the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Ohdachi, Satoshi; Watanabe, Kiyomasa; Sakakibara, Satoru; Suzuki, Yasuhiro; Tsuchiya, Hayato; Ming, Tingfeng; Du, Xiaodi; LHD Expriment Group Team

    2014-10-01

    In the Large Helical Device (LHD), the plasma is surrounded by the so-called magnetic stochastic region, where the Kolmogorov length of the magnetic field lines is very short, from several tens of meters and to thousands meters. Finite pressure gradient are formed in this region and MHD instabilities localized in this region is observed since the edge region of the LHD is always unstable against the pressure driven mode. Therefore, the saturation level of the instabilities is the key issue in order to evaluate the risk of this kind of MHD instabilities. The saturation level depends on the pressure gradient and on the magnetic Reynolds number; there results are similar to the MHD mode in the closed magnetic surface region. The saturation level in the stochastic region is affected also by the stocasticity itself. Parameter dependence of the saturation level of the MHD activities in the region is discussed in detail. It is supported by NIFS budget code ULPP021, 028 and is also partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research 26249144, by the JSPS-NRF-NSFC A3 Foresight Program NSFC: No. 11261140328.

  18. Slow shock and rotational discontinuity in MHD and Hall MHD models with anisotropic pressure

    NASA Astrophysics Data System (ADS)

    Hau, L.-N.; Wang, B.-J.

    2016-07-01

    Pressure anisotropy may modify the characteristics of magnetohydrodynamic (MHD) waves, in particular, the slow mode wave and the corresponding shocks and discontinuities. In this study the formation of slow shocks (SSs) in anisotropic plasmas is examined by solving the gyrotropic MHD and Hall MHD equations numerically for one-dimensional Riemann problem. The MHD shocks and discontinuities are generated by imposing a finite normal magnetic field on the Harris type current sheet with a guide magnetic By component. It is shown that anomalous SSs moving faster than the intermediate wave or with positive density-magnetic field correlation may be generated in gyrotropic MHD and Hall MHD models. Moreover, for some parameter values SSs may exhibit upstream wave trains with right-handed polarization in contrast with the earlier prediction that SSs shall possess downstream left-hand polarized wave trains based on the isotropic Hall MHD theory. For the cases of By ≠ 0, SSs with increased density and decreased magnetic field followed by noncoplanar intermediate mode or rotational discontinuity (RD)-like structures similar to the compound SS-RD structures observed in space plasma environments may possibly form in symmetric and asymmetric current layers. The Walén relation of these anomalous RDs without the correction of pressure anisotropy may significantly be violated.

  19. Unsteady heat and mass transfer in MHD flow over an oscillatory stretching surface with Soret and Dufour effects

    NASA Astrophysics Data System (ADS)

    Zheng, Lian-Cun; Jin, Xin; Zhang, Xin-Xin; Zhang, Jun-Hong

    2013-10-01

    In this paper, we study the unsteady coupled heat and mass transfer of two-dimensional MHD fluid over a moving oscillatory stretching surface with Soret and Dufour effects. Viscous dissipation effects are adopted in the energy equation. A uniform magnetic field is applied vertically to the flow direction. The governing equations are reduced to non-linear coupled partial differential equations and solved by means of homotopy analysis method (HAM). The effects of some physical parameters such as magnetic parameter, Dufour number, Soret number, the Prandtl number and the ratio of the oscillation frequency of the sheet to its stretching rate on the flow and heat transfer characteristics are illustrated and analyzed.

  20. Nuclear MHD Converter

    DTIC Science & Technology

    2007-11-02

    model the Power Conversion Unit (gas reactor + nozzle and MHD channel), and the cross sections derived from Task 1.. The configuration extends ...8 1.1 Project Objectives 8 1.2 Report Organization 9 Tables and Figures 10 2 PROJECT DESCRIPTION 11 3 REFLECTOR MODELING 13 3.1 Symbols...outlet. This conclusion remains true even if the effect of dissociation and attachment are included in the numerical model . Furthermore, a

  1. Soret and Dufour effects on MHD viscoelastic fluid flow through a vertical flat plate with constant suction

    NASA Astrophysics Data System (ADS)

    Hossain, Sheikh Imamul; Alam, Md. Mahmud

    2016-07-01

    An attempt is made to represent the numerical solution of magnetohydrodynamics (MHD) viscoelastic fluid flow through an infinite vertical flat plate with constant suction in the presence of Soret and Dufour effects. The expressions of non-dimensional, coupled partial momentum, energy and concentration differential equations are obtained with the help of the usual non-dimensional variables. Implicit finite difference method is imposed to obtain the non-dimensional equations. Also the stability conditions and convergence criteria are analyzed. The effects of the various parameters entering into the problem on shear stress, Nusselt number, and Sherwood number are demonstrated graphically with physical interpretation.

  2. Convective heat and mass transfer on MHD peristaltic flow of Williamson fluid with the effect of inclined magnetic field

    NASA Astrophysics Data System (ADS)

    Veera Krishna, M.; Swarnalathamma, B. V.

    2016-05-01

    In this paper, we discussed the peristaltic MHD flow of an incompressible and electrically conducting Williamson fluid in a symmetric planar channel with heat and mass transfer under the effect of inclined magnetic field. Viscous dissipation and Joule heating are also taken into consideration. Mathematical model is presented by using the long wavelength and low Reynolds number approximations. The differential equations governing the flow are highly nonlinear and thus perturbation solution for small Weissenberg number (We < 1) is presented. Effects of the heat and mass transfer on the longitudinal velocity, temperature and concentration are studied in detail. Main observations are presented in the concluding section. The streamlines pattern is also given due attention.

  3. Viscous dissipation and thermal radiation effects on the magnetohydrodynamic (MHD) flow and heat transfer over a stretching slender cylinder

    NASA Astrophysics Data System (ADS)

    Kalteh, M.; Ghorbani, S.; Khademinejad, T.

    2016-05-01

    An axisymmetric magnetohydrodynamic (MHD) boundary layer flow and heat transfer of a fluid over a slender cylinder are investigated numerically. The effects of viscous dissipation, thermal radiation, and surface transverse curvature are taken into account in the simulations. For this purpose, the governing partial differential equations are transformed to ordinary differential equations by using appropriate similarity transformations. The resultant ordinary differential equations along with appropriate boundary conditions are solved by the fourth-order Runge-Kutta method combined with the shooting technique. The effects of various parameters on the velocity and temperature profiles, local skin friction coefficient, and Nusselt number are analyzed.

  4. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium

    PubMed Central

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland’s approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems. PMID:26808387

  5. Soret and Dufour Effects on MHD Peristaltic Flow of Jeffrey Fluid in a Rotating System with Porous Medium.

    PubMed

    Hayat, Tasawar; Rafiq, Maimona; Ahmad, Bashir

    2016-01-01

    The objective of present paper is to examine the peristaltic flow of magnetohydrodynamic (MHD) Jeffrey fluid saturating porous space in a channel through rotating frame. Unlike the previous attempts, the flow formulation is based upon modified Darcy's law porous medium effect in Jeffrey fluid situation. In addition the impacts due to Soret and Dufour effects in the radiative peristaltic flow are accounted. Rosseland's approximation has been utilized for the thermal radiative heat flux. Lubrication approach is implemented for the simplification. Resulting problems are solved for the stream function, temperature and concentration. Graphical results are prepared and analyzed for different parameters of interest entering into the problems.

  6. Modeling radiation belt radial diffusion in ULF wave fields: 1. Quantifying ULF wave power at geosynchronous orbit in observations and in global MHD model

    NASA Astrophysics Data System (ADS)

    Huang, Chia-Lin; Spence, Harlan E.; Singer, Howard J.; Hughes, W. Jeffrey

    2010-06-01

    To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5-8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere.

  7. MHD turbulence in the solar wind: highlights on the effects of expansion

    NASA Astrophysics Data System (ADS)

    Verdini, Andrea; Grappin, Roland; Müller, Wolf Christian; Landi, Simone; Hellinger, Petr; Matteini, Lorenzo; Franci, Luca; Velli, Marco

    2015-04-01

    Properties of solar wind fluctuations are often interpreted as those of a homogenous turbulent plasma, at MHD or ion scales. However solar wind turbulence is not homogenous, being embedded in a spherically expanding flow of approximately constant speed. We briefly review some of the recent results on MHD turbulence obtained with the Expanding Box Model (EBM), which reveal the influence of expansion on the spectral anisotropy, the component anisotropy, and the z+/z- imbalance. We then focus on structure functions, computed in frames attached to the local or global mean field, and show that most of the observed features are well reproduced in our EBM simulations. We finally comment on the role of expansion in determining the injection scale of solar wind turbulence and its anisotropy.

  8. Substorm effects in MHD and test particle simulations of magnetotail dynamics

    SciTech Connect

    Birn, J.; Hesse, M.

    1998-12-31

    Recent magnetohydrodynamic simulations demonstrate that a global tail instability, initiated by localized breakdown of MHD, can cause plasmoid formation and ejection as well as dipolarization and the current diversion of the substorm current wedge. The connection between the reconnection process and the current wedge signatures is provided by earthward flow from the reconnection site. Its braking and diversion in the inner magnetosphere causes dipolarization and the magnetic field distortions of the current wedge. The authors demonstrate the characteristic properties of this process and the current systems involved. The strong localized electric field associated with the flow burst and the dipolarization is also the cause of particle acceleration and energetic particle injections. Test particle simulations of orbits in the MHD fields yield results that are quite consistent with observed injection signatures.

  9. ULF Wave Analysis and Radial Diffusion Calculation Using a Global MHD Model for the 17 March 2015 Storm and Comparison with the 17 March 2013 Storm

    NASA Astrophysics Data System (ADS)

    Li, Z.; Hudson, M.; Paral, J.; Wiltberger, M. J.; Boyd, A. J.; Turner, D. L.

    2016-12-01

    The 17 March 2015 `St. Patrick's Day Storm' is the largest geomagnetic storm to date of Solar Cycle 24, with a Dst of -223 nT. The magnetopause moved inside geosynchronous orbit under high solar wind dynamic pressure and strong southward IMF Bz causing loss, however a subsequent drop in pressure allowed for rapid rebuilding of the radiation belts. Local heating has been modeled by other groups for this and the 17 March 2013 storm, only slightly weaker and showing a similar effect on electrons: first a rapid dropout due to inward motion of the magnetopause followed by rapid increase in flux above the pre-storm level and an even greater slow increase likely due to radial diffusion. The latter can be seen in temporal evolution of the electron phase space density measured by the Energetic Particle, Composition, and Thermal Plasma Suite (ECT) instrument on Van Allen Probes. Using the Lyon-Fedder-Mobarry global MHD model driven by upstream solar wind measurements with the Magneotsphere-Ionosphere Coupler (MIX), we have simulated both `St. Patrick's Day'events, analyzing LFM electric and magnetic fields to calculate radial diffusion coefficients. These coefficients have been implemented in a radial diffusion code using the measured electron phase space density profile following the local heating and as the outer boundary condition for subsequent temporally evolution over the next 12 days, beginning 18 March 2015. Agreement with electron phase space density at 1000 MeV/G measured by the MagEIS component of the ECT instrument on Van Allen Probes (30 keV - 4 MeV) was much improved using radial diffusion coefficients from the MHD simulations relative to coefficients parametrized by a global geomagnetic activity index.

  10. Hall effects on unsteady MHD reactive flow of second grade fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Krishna, M. Veera; Swarnalathamma, B. V.

    2017-07-01

    We considered the transient MHD flow of a reactive second grade fluid through porous medium between two infinitely long horizontal parallel plates when one of the plate is set into uniform accelerated motion in the presence of a uniform transverse magnetic field under Arrhenius reaction rate. The governing equations are solved by Laplace transform technique. The effects of the pertinent parameters on the velocity, temperature are discussed in detail. The shear stress and Nusselt number at the plates are also obtained analytically and computationally discussed with reference to governing parameters.

  11. 3D MHD Models of Active Region Loops

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2004-01-01

    Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.

  12. Effect of varying strength and orientation of local interstellar magnetic field on configuration of exterior heliosphere: 3D MHD simulations

    NASA Astrophysics Data System (ADS)

    Ratkiewicz, R.; Barnes, A.; Molvik, G. A.; Spreiter, J. R.; Stahara, S. S.; Vinokur, M.; Venkateswaran, S.

    1998-07-01

    The aim of this paper is to present the effects of varying magnitude and orientation of the local interstellar magnetic field on the heliospheric boundary region (the region between the termination shock and the bow shock containing the heliopause). Other effects such as interstellar neutrals, cosmic rays and the asymmetry of the solar wind caused by its heliolatitude dependence are disregarded. We calculate the shape and structure of the heliospheric boundary region for different interstellar Alfvenic Mach numbers and various inclination angles between Very Local InterStellar Medium (VLISM) velocity and magnetic field vectors using a fully three-dimensional MHD computational analysis. The new results show the asymmetry of this region for inclination angles 0(deg) < alpha < 90(deg) and are in agreement with the Newtonian approximation theory (Fahr et al. 1986, 1988) concerning trends in the heliopause orientation and location. Unlike the NA model which only qualitatively indicates the effects of the VLISM magnetic field on the heliospheric boundary region the present 3D MHD calculations reveal fully the nature of these effects by capturing all discontinuities including the termination shock, heliopause and bow shock. The numerical scheme employed in this study is fully implicit and conservative, using a Roe-type Riemann solver in a generalized coordinate system.

  13. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  14. MHD Power Generation

    ERIC Educational Resources Information Center

    Kantrowitz, Arthur; Rosa, Richard J.

    1975-01-01

    Explains the operation of the Magnetohydrodynamic (MHD) generator and advantages of the system over coal, oil or nuclear powered generators. Details the development of MHD generators in the United States and Soviet Union. (CP)

  15. MHD-EMP protection guidelines

    NASA Astrophysics Data System (ADS)

    Barnes, P. R.; Vance, E. F.

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohydrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after an exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  16. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-01-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth's magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it's global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  17. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  18. A theory for narrow-banded radio bursts at Uranus - MHD surface waves as an energy driver

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Curtis, S. A.; Desch, M. D.; Lepping, R. P.

    1992-01-01

    A possible scenario for the generation of the narrow-banded radio bursts detected at Uranus by the Voyager 2 planetary radio astronomy experiment is described. In order to account for the emission burstiness which occurs on time scales of hundreds of milliseconds, it is proposed that ULF magnetic surface turbulence generated at the frontside magnetopause propagates down the open/closed field line boundary and mode-converts to kinetic Alfven waves (KAW) deep within the polar cusp. The oscillating KAW potentials then drive a transient electron stream that creates the bursty radio emission. To substantiate these ideas, Voyager 2 magnetometer measurements of enhanced ULF magnetic activity at the frontside magnetopause are shown. It is demonstrated analytically that such magnetic turbulence should mode-convert deep in the cusp at a radial distance of 3 RU.

  19. MHD Effect on Unsteady Mixed Convection Boundary Layer Flow past a Circular Cylinder with Constant Wall Temperature

    NASA Astrophysics Data System (ADS)

    Ismail, M. A.; Mohamad, N. F.; Ilias, M. R.; Shafie, S.

    2017-09-01

    Magnetohydrodynamic (MHD) effect is a study on motion of electrical-conducting fluid under magnetic fields. This effect has great intention due to its applications such as design of heat exchanger and nuclear reactor. In the problem in fluid motion, flow of separation can reduced the effectiveness of the system as well as can increased the energy lost. This study will present the results on reducing the flow separation by considering magnetic effect. In this study, unsteady mixed convection boundary layer flow past a circular cylinder is given attention. Focus of study is on the separation times that affected by the magnetic fields. The mathematical models in the form of partial differential equations are transformed into nonlinear coupled ordinary differential equations and solved numerically using an implicit finite-difference scheme known as Keller-box method. The effect of magnetic parameter on velocity and temperature profiles as well as skin friction and Nusselt number are studied.

  20. Absence of Complete Finite-Larmor-Radius Stabilization in Extended MHD

    SciTech Connect

    Zhu, P.; Schnack, D. D.; Ebrahimi, F.; Zweibel, E. G.; Suzuki, M.; Hegna, C. C.; Sovinec, C. R.

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-{beta} or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  1. Absence of complete finite-Larmor-radius stabilization in extended MHD.

    PubMed

    Zhu, P; Schnack, D D; Ebrahimi, F; Zweibel, E G; Suzuki, M; Hegna, C C; Sovinec, C R

    2008-08-22

    The dominant finite-Larmour-radius (FLR) stabilization effects on interchange instability can be retained by taking into account the ion gyroviscosity or the generalized Ohm's law in an extended MHD model. However, recent simulations and theoretical calculations indicate that complete FLR stabilization of the interchange mode may not be attainable by ion gyroviscosity or the two-fluid effect alone in the framework of extended MHD. For a class of plasma equilibria in certain finite-beta or nonisentropic regimes, the critical wave number for complete FLR stabilization tends toward infinity.

  2. Edge biasing effects on MHD instabilities and plasma response to external magnetic perturbations in HBT-EP

    NASA Astrophysics Data System (ADS)

    Debono, Bryan; Maurer, Dave; Mauel, Michael; L., Jeff; Daisuke, S.; Niko, R.; Navratil, Gerald; A., Sarah; B., Pat; Pedersen, Thomas; HBT-EP Team

    2011-10-01

    A biased electrode inserted into a tokamak plasma edge can be used to apply torque on the plasma and change the rotation rate of MHD instabilities, including the resistive wall mode (RWM). RWM's in HBT-EP have a natural frequency of +4-9 kHz, however with appropriate bias the plasma rotation can be adjusted both positively and negatively. We present a study of the effect of biased plasma rotation on MHD instabilities; a comparison is made between plasma rotation rate and the plasma response to external resonant magnetic perturbations (RMP). The Boozer tokamak plasma reluctance equation ρ = -(1/s - iα + 1) 1/Lp suggests that the plasma response to RMP's is greatly enhanced as the toroidal torque dissapation coefficient α --> 0 . Moderate biasing (~ 50V) slows down the RWM rotation to 2-3kHz, and an increase in the plasma responsivity to RMP's is seen. Strong positive bias (~ + 300 V) accelerates the mode in the direction opposite to its natural rotation at ~ -40 kHz. At this high rotation frequency the mode is being dragged at too rapid a rate for it to penetrate the wall. Therefore, the conducting shells behave like an ideal wall and a saturated ideal external kink is observed instead of a RWM.

  3. SciDAC - Center for Simulation of Wave Interactions with MHD -- General Atomics Support of ORNL Collaboration

    SciTech Connect

    Abla, G

    2012-11-09

    The Center for Simulation of Wave Interactions with Magnetohydrodynamics (SWIM) project is dedicated to conduct research on integrated multi-physics simulations. The Integrated Plasma Simulator (IPS) is a framework that was created by the SWIM team. It provides an integration infrastructure for loosely coupled component-based simulations by facilitating services for code execution coordination, computational resource management, data management, and inter-component communication. The IPS framework features improving resource utilization, implementing application-level fault tolerance, and support of the concurrent multi-tasking execution model. The General Atomics (GA) team worked closely with other team members on this contract, and conducted research in the areas of computational code monitoring, meta-data management, interactive visualization, and user interfaces. The original website to monitor SWIM activity was developed in the beginning of the project. Due to the amended requirements, the software was redesigned and a revision of the website was deployed into production in April of 2010. Throughout the duration of this project, the SWIM Monitoring Portal (http://swim.gat.com:8080/) has been a critical production tool for supporting the project's physics goals.

  4. Diamagnetic Effects on Asymmetric Reconnection: A Comparative PIC and Hall MHD Study

    NASA Astrophysics Data System (ADS)

    Abbott, Stephen; Germaschewski, Kai; Bhattacharjee, Amitava

    2010-11-01

    We present a comparative study of reconnection in a Harris current sheet with a guide field, modified by the addition of an equilibrium pressure gradient at the reconnection layer to introduce diamagnetic drifts, using Hall MHD and particle-in-cell (PIC) simulations. Previous kinetic studies of a similar configuration in magnetopause conditions showed significant decoupling of X-point and island drift speeds as the pressure gradient was suppressed across the growing island while steepening near the X-point, resulting in reduced reconnection rates. One goal of our comparative study is to investigate how much of the relevant kinetic physics is captured by two-fluid simulations, and differences that occur as the magnitude of the guide field is varied. We also extend the parameter space to stronger guide fields and higher β, relevant to fusion plasmas. Our Hall MHD simulations utilize the Magnetic Reconnection Code (MRC), which features a Generalized Ohm's Law including the Hall term and electron pressure gradient. It supports non-uniform grids and implicit time-stepping. PIC results are provided by the Particle Simulation Code (PSC). We focus on the nonlinear evolution of reconnection rates and the asymmetric structure of the X-point, and test the validity of recent expressions for the asymmetric reconnection rate recently proposed in the literature.

  5. MHD energy fluxes for late type dwarfs

    NASA Technical Reports Server (NTRS)

    Rosner, R.; Musielak, Z. E.

    1987-01-01

    The efficiency of MHD wave generation by turbulent motions in stratified stellar atmospheres with embedded uniform magnetic fields is calculated. In contradiction with previous results, it is shown that there is no significant increase in the efficiency of wave generation because of the presence of magnetic fields, at least within the theory's limits of applicability. It is shown that MHD energy fluxes for late-type stars are less than those obtained for acoustic waves in a magnetic-field-free atmosphere, and do not vary enough for a given spectral type in order to explain observed UV and X-ray fluxes. Thus, the results show that MHD energy fluxes obtained if stellar surface magnetic fields are uniform cannot explain the observed stellar coronal emissions.

  6. Supersonic MHD generator system

    SciTech Connect

    Rahman, M.A.

    1983-11-29

    An improved MHD electrical power generating system of the type having a MHD topping cycle and a steam generating bottoming cycle is disclosed. The system typically includes a combustion system, a conventional MHD generator and a first diffuser radiant boiler. The improvement comprises a first supersonic MHD generator and ramjet engine configuration operatively connected in series with each other and with the conventional MHD generator. The first supersonic MHD generator and ramjet engine configuration increase the power output and improve the operating efficiency of the electrical generating system. A diffuser system is also disclosed which is in fluid communication with the supersonic MHD generator and the ramjet engine for collecting bypass plasma gas to be used for heating a second radiant boiler adapted for powering a steam turbine generator.

  7. MHD Field Line Resonances and Global Modes in Three-Dimensional Magnetic Fields

    SciTech Connect

    C.Z. Cheng

    2002-05-30

    By assuming a general isotropic pressure distribution P = P (y,a), where y and a are three-dimensional scalar functions labeling the field lines with B = -y x -a, we have derived a set of MHD eigenmode equations for both global MHD modes and field line resonances (FLR). Past MHD theories are restricted to isotropic pressures with P = P (y only). The present formulation also allows the plasma mass density to vary along the field line. The linearized ideal-MHD equations are cast into a set of global differential equations from which the field line resonance equations of the shear Alfvin waves and slow magnetosonic modes are naturally obtained for general three-dimensional magnetic field geometries with flux surfaces. Several new terms associated with the partial derivative of P with respect to alpha are obtained. In the FLR equations, a new term is found in the shear Alfvin FLR equation due to the geodesic curvature and the pressure gradient in the poloidal flux surface. The coupling between the shear Alfvin waves and the magnetosonic waves is through the combined effects of geodesic magnetic field curvature and plasma pressure as previously derived. The properties of the FLR eigenfunctions at the resonance field lines are investigated, and the behavior of the FLR wave solutions near the FLR surface are derived. Numerical solutions of the FLR equations for three-dimensional magnetospheric fields in equilibrium with high plasma pressure will be presented in a future publication.

  8. MHD Instability of Evening Arcs in the Inner Plasma Sheet

    NASA Astrophysics Data System (ADS)

    Toffoletto, F.; Wolf, R.; Suresh, A.; Yang, J.

    2016-12-01

    When the RCM-E (Rice Convection Model-Equilibrium) code is run for substantial periods with strong convective driving, the results consistently exhibit thin sheets of Birkeland current, corresponding to sharp increases in PV5/3 with radial distance in the equatorial plane. (Here V is the flux tube volume per unit magnetic flux, and P is particle pressure.) We associate thin sheets of upward current with auroral arcs and are investigating the MHD stability of such arcs, with an eye toward explaining auroral beads. The arcs are stable against interchange, because both V and PV5/3 increase outward. However, an arc and its associated Birkeland currents imply velocity shear, and previous authors have suggested the development of Kelvin-Helmholtz instability, which competes with the basic stability against interchange. We have investigated this competition using ideal MHD for a simplified wedge magnetosphere, in which field lines are concentric circles. The radial gradients of the pressure and shear velocity are adjustable. If we assume that the magnetospheric velocity shear has a form that would result from the strong upward current in the arc and associated magnetosphere-ionosphere coupling, we find stable buoyancy waves, no waves, or unstable Kelvin-Helmholtz waves, for shear that is weak, intermediate, or strong, respectively, relative to the interchange stabilization. If we assume that the shear results from field-aligned potential drops above the arc, we find instability only for short wavelengths and strong shear. A rough criterion is derived for ideal-MHD Kelvin-Helmholtz instability at an interchange-stable boundary. Growth-rate calculations are also being carried out for Hall MHD, in an attempt to estimate the effects of fast gradient drift on arc field lines.

  9. Genetic Effects of Electromagnetic Waves

    NASA Astrophysics Data System (ADS)

    Aroutiounian, Rouben; Hovhannisyan, Galina; Gasparian, Gennady

    The genetic effects of electromagnetic waves can be detected by different test-systems. The mutagenic effect of ionizing radiation can be developed on the levels of DNA and/or chromosomes. In numerous researches efficiency of micronucleus assay, alkaline single-cell gel electrophoresis, chromosomal aberrations test and FISH-technique and their different combinations for the detection of ionizing radiation-induced genotoxic effects are discussed. Also some molecular-biological approaches developed in the last years are presented.

  10. COSMIC-RAY PITCH-ANGLE SCATTERING IN IMBALANCED MHD TURBULENCE SIMULATIONS

    SciTech Connect

    Weidl, Martin S.; Jenko, Frank; Teaca, Bogdan; Schlickeiser, Reinhard

    2015-09-20

    Pitch-angle scattering rates for cosmic-ray particles in MHD simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfvén waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.

  11. Thermal radiation and mass transfer effects on unsteady MHD free convection flow past a vertical oscillating plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    Unsteady MHD free convection flow past a vertical porous plate in porous medium with radiation, diffusion thermo, thermal diffusion and heat source are analyzed. The governing non-linear, partial differential equations are transformed into dimensionless by using non-dimensional quantities. Then the resultant dimensionless equations are solved numerically by applying an efficient, accurate and conditionally stable finite difference scheme of explicit type with the help of a computer programming language Compaq Visual Fortran. The stability and convergence analysis has been carried out to establish the effect of velocity, temperature, concentration, skin friction, Nusselt number, Sherwood number, stream lines and isotherms line. Finally, the effects of various parameters are presented graphically and discussed qualitatively.

  12. Thermal radiation effect on MHD flow and heat transfer of Williamson nanofluids over a stretching sheet with Newtonian heating

    NASA Astrophysics Data System (ADS)

    Bing, Kho Yap; Hussanan, Abid; Mohamed, Muhammad Khairul Anuar; Sarif, Norhafizah Mohd; Ismail, Zulkhibri; Salleh, Mohd Zuki

    2017-04-01

    In this paper, the boundary layer magnetohydrodynamics (MHD) flow of Williamson nanofluids over a stretching sheet with Newtonian heating in the presence of thermal radiation effect is analyzed. Using a similarity transformation, the governing equations are reduced to a set of nonlinear ordinary differential equations (ODEs). These equations are solved numerically using a shooting method. The effects of Williamson parameter, magnetic parameter, radiation parameter, Prandtl number, Lewis number, Schmidt number, heat capacities ratio, thermophoretic diffusivity and conjugate parameter on velocity, temperature and concentration fields are shown graphically and discussed. It is found that the rate of heat transfer is higher for Williamson nanofluids compared to the classical viscous fluid. Also, the comparisons with existing results are provided in the literature.

  13. Ion temperature effects on magnetotail Alfvén wave propagation and electron energization: ION TEMPERATURE EFFECTS ON ALFVÉN WAVES

    SciTech Connect

    Damiano, P. A.; Johnson, J. R.; Chaston, C. C.

    2015-07-01

    A new 2-D self-consistent hybrid gyrofluid-kinetic electron model in dipolar coordinates is presented and used to simulate dispersive-scale Alfvén wave pulse propagation from the equator to the ionosphere along an L = 10 magnetic field line. The model is an extension of the hybrid MHD-kinetic electron model that incorporates ion Larmor radius corrections via the kinetic fluid model of Cheng and Johnson (1999). It is found that consideration of a realistic ion to electron temperature ratio decreases the propagation time of the wave from the plasma sheet to the ionosphere by several seconds relative to a ρi=0 case (which also implies shorter timing for a substorm onset signal) and leads to significant dispersion of wave energy perpendicular to the ambient magnetic field. Additionally, ion temperature effects reduce the parallel current and electron energization all along the field line for the same magnitude perpendicular electric field perturbation.

  14. Assessing wave energy effects on biodiversity: the wave hub experience.

    PubMed

    Witt, M J; Sheehan, E V; Bearhop, S; Broderick, A C; Conley, D C; Cotterell, S P; Crow, E; Grecian, W J; Halsband, C; Hodgson, D J; Hosegood, P; Inger, R; Miller, P I; Sims, D W; Thompson, R C; Vanstaen, K; Votier, S C; Attrill, M J; Godley, B J

    2012-01-28

    Marine renewable energy installations harnessing energy from wind, wave and tidal resources are likely to become a large part of the future energy mix worldwide. The potential to gather energy from waves has recently seen increasing interest, with pilot developments in several nations. Although technology to harness wave energy lags behind that of wind and tidal generation, it has the potential to contribute significantly to energy production. As wave energy technology matures and becomes more widespread, it is likely to result in further transformation of our coastal seas. Such changes are accompanied by uncertainty regarding their impacts on biodiversity. To date, impacts have not been assessed, as wave energy converters have yet to be fully developed. Therefore, there is a pressing need to build a framework of understanding regarding the potential impacts of these technologies, underpinned by methodologies that are transferable and scalable across sites to facilitate formal meta-analysis. We first review the potential positive and negative effects of wave energy generation, and then, with specific reference to our work at the Wave Hub (a wave energy test site in southwest England, UK), we set out the methodological approaches needed to assess possible effects of wave energy on biodiversity. We highlight the need for national and international research clusters to accelerate the implementation of wave energy, within a coherent understanding of potential effects-both positive and negative.

  15. MHD Jeffrey nanofluid past a stretching sheet with viscous dissipation effect

    NASA Astrophysics Data System (ADS)

    Zokri, S. M.; Arifin, N. S.; Salleh, M. Z.; Kasim, A. R. M.; Mohammad, N. F.; Yusoff, W. N. S. W.

    2017-09-01

    This study investigates the influence of viscous dissipation on magnetohydrodynamic (MHD) flow of Jeffrey nanofluid over a stretching sheet with convective boundary conditions. The nonlinear partial differential equations are reduced into the nonlinear ordinary differential equations by utilizing the similarity transformation variables. The Runge-Kutta Fehlberg method is used to solve the problem numerically. The numerical solutions obtained are presented graphically for several dimensionless parameters such as Brownian motion, Lewis number and Eckert number on the specified temperature and concentration profiles. It is noted that the temperature profile is accelerated due to increasing values of Brownian motion parameter and Eckert number. In contrast, both the Brownian motion parameter and Lewis number have caused the deceleration in the concentration profiles.

  16. Magnus: A New Resistive MHD Code with Heat Flow Terms

    NASA Astrophysics Data System (ADS)

    Navarro, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.

    2017-07-01

    We present a new magnetohydrodynamic (MHD) code for the simulation of wave propagation in the solar atmosphere, under the effects of electrical resistivity—but not dominant—and heat transference in a uniform 3D grid. The code is based on the finite-volume method combined with the HLLE and HLLC approximate Riemann solvers, which use different slope limiters like MINMOD, MC, and WENO5. In order to control the growth of the divergence of the magnetic field, due to numerical errors, we apply the Flux Constrained Transport method, which is described in detail to understand how the resistive terms are included in the algorithm. In our results, it is verified that this method preserves the divergence of the magnetic fields within the machine round-off error (˜ 1× {10}-12). For the validation of the accuracy and efficiency of the schemes implemented in the code, we present some numerical tests in 1D and 2D for the ideal MHD. Later, we show one test for the resistivity in a magnetic reconnection process and one for the thermal conduction, where the temperature is advected by the magnetic field lines. Moreover, we display two numerical problems associated with the MHD wave propagation. The first one corresponds to a 3D evolution of a vertical velocity pulse at the photosphere-transition-corona region, while the second one consists of a 2D simulation of a transverse velocity pulse in a coronal loop.

  17. MHD waveguides in space plasma

    SciTech Connect

    Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.

    2010-07-15

    The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, {omega}) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.

  18. Internal Gravity Waves in the Magnetized Solar Atmosphere. I. Magnetic Field Effects

    NASA Astrophysics Data System (ADS)

    Vigeesh, G.; Jackiewicz, J.; Steiner, O.

    2017-02-01

    Observations of the solar atmosphere show that internal gravity waves are generated by overshooting convection, but are suppressed at locations of magnetic flux, which is thought to be the result of mode conversion into magnetoacoustic waves. Here, we present a study of the acoustic-gravity wave spectrum emerging from a realistic, self-consistent simulation of solar (magneto)convection. A magnetic field free, hydrodynamic simulation and a magnetohydrodynamic (MHD) simulation with an initial, vertical, homogeneous field of 50 G flux density were carried out and compared with each other to highlight the effect of magnetic fields on the internal gravity wave propagation in the Sun’s atmosphere. We find that the internal gravity waves are absent or partially reflected back into the lower layers in the presence of magnetic fields and argue that the suppression is due to the coupling of internal gravity waves to slow magnetoacoustic waves still within the high-β region of the upper photosphere. The conversion to Alfvén waves is highly unlikely in our model because there is no strongly inclined magnetic field present. We argue that the suppression of internal waves observed within magnetic flux concentrations may also be due to nonlinear breaking of internal waves due to vortex flows that are ubiquitously present in the upper photosphere and the chromosphere.

  19. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1981-01-01

    The effects of MHD channel end regions on the overall power generation were considered. The peak plant thermodynamic efficiency was found to be slightly lower than for the active region (41%). The channel operating point for the peak efficiency was shifted to the supersonic mode (Mach No., M sub c approx. 1.1) rather than the previous subsonic operation (M sub c approx. 0.9). The sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure is also discussed. In addition, methods for operating the channel in a constant-current mode are investigated. This mode is highly desirable from the standpoint of simplifying the current and voltage consolidation for the inverter system. This simplification could result in significant savings in the cost of the equipment. The initial results indicate that this simplification is possible, even under a strict Hall field constraint, with resonable plant thermodynamic efficiency (40.5%).

  20. Viscous Dissipation and Thermal Radiation effects in MHD flow of Jeffrey Nanofluid through Impermeable Surface with Heat Generation/Absorption

    NASA Astrophysics Data System (ADS)

    Sharma, Kalpna; Gupta, Sumit

    2017-06-01

    This paper investigates steady two dimensional flow of an incompressible magnetohydrodynamic (MHD) boundary layer flow and heat transfer of nanofluid over an impermeable surface in presence of thermal radiation and viscous dissipation. By using similarity transformation, the arising governing equations of momentum, energy and nanoparticle concentration are transformed into coupled nonlinear ordinary differential equations, which are than solved by homotopy analysis method (HAM). The effect of different physical parameters, namely, Prandtl number Pr, Eckert number Ec, Magnetic parameter M, Brownian motion parameter Nb, Thermophoresis parameter Nt, Lewis parameter Le and Radiation parameter Rd on the velocity, temperature and concentration profiles along with the Nusselt number and skin friction coefficient are discussed graphically and in tabular form in details. The present results are also compared with existing limiting solutions.

  1. MHD-EMP analysis and protection. Technical report. [MHD-EMP (magnetohydrodynamic-electromagnetic pulse)

    SciTech Connect

    Barnes, P.R.; Tesche, F.M.; McConnell, B.W.; Vance, E.F.

    1993-09-01

    A large nuclear detonation at altitudes of several hundred kilometers above the earth distorts the earth's magnetic field and produces a strong magnetohydrodynamic-electromagnetic pulse (MHD-EMP). MHD-EMP is similar to solar geomagnetic storms in its global and low frequency (less than 1 Hz) nature except that it can be more intense with a shorter duration. It will induce quasi-dc currents in long lines. The MHD-EMP induced currents may cause large voltage fluctuations and severe harmonic distortion in commercial electric power systems. Several MHD-EMP coupling models for predicting the induced current on a wide variety of conducting structures are described, various simulation concepts are summarized, and the results from several MHD-EMP tests are presented. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building, and the commercial power harmonics and voltage swings must be addressed. It is found that facilities can be protected against MHD-EMP by using methods which are consistent with standard engineering practices. MHD-EMP Interaction Analysis, Power Line Model, MHD-EMP Protection Guidelines, Transformer Test.

  2. Eigenanalysis of Ideal Hall MHD Turbulence

    NASA Astrophysics Data System (ADS)

    Fu, T.; Shebalin, J. V.

    2011-12-01

    Ideal, incompressible, homogeneous, Hall magnetohydrodynamic (HMHD) turbulence may be investigated through a Fourier spectral method. In three-dimensional periodic geometry, the independent Fourier coefficients represent a canonical ensemble described by a Gaussian probability density. The canonical ensemble is based on the conservation of three invariants: total energy, generalized helicity, and magnetic helicity. Generalized helicity in HMHD takes the place of cross helicity in MHD. The invariants determine the modal probability density giving the spectral structure and equilibrium statistics of ideal HMHD, which are compared to known MHD results. New results in absolute equilibrium ensemble theory are derived using a novel approach that involves finding the eigenvalues of a Hermitian covariance matrix for each modal probability density. The associated eigenvectors transform the original phase space variables into eigenvariables through a special unitary transformation. These are the normal modes which facilitate the analysis of ideal HMHD non-linear dynamics. The eigenanalysis predicts that the low wavenumber modes with very small eigenvalues may have mean values that are large compared to their standard deviations, contrary to the ideal ensemble prediction of zero mean values. (Expectation values may also be relatively large at the highest wave numbers, but the addition of even small levels of dissipation removes any relevance this may have for real-world turbulence.) This behavior is non-ergodic over very long times for a numerical simulation and is termed 'broken ergodicity'. For fixed values of the ideal invariants, the effect is seen to be enhanced with increased numerical grid size. Broken ergodicity at low wave number modes gives rise to large-scale, quasi-stationary, coherent structure. Physically, this corresponds to plasma relaxation to force-free states. For real HMHD turbulence with dissipation, broken ergodicity and coherent structure are still

  3. Explosive MHD Generators

    NASA Astrophysics Data System (ADS)

    Lebedev, E. F.; Ostashev, V. E.; Fortov, V. E.

    2004-11-01

    Explosive driven MHD generators (EMHD) occupy an intermediate position between destroyed Explosive Flux Compression Generators and solid-propellant- pulsed MHD generators. Studies revealed the negative consequences of destroying a plasma liner through Rayleigh-Taylor instability. The real efficiency of conversion of condensed HE charge chemical energy reaches ~10% if the magnetic field in a MHD channel is approximately 8-10 T. Accommodation of 20-30 linear MHD channels into a toroidal magnet seems to be optimal for EMHD generator design. This device may operate repeatedly with a frequency of up to 6.5×103pps.

  4. Effects of Induction and Magnetopause Reconnection on Mercury's Magnetosphere: MESSENGER Observations and Global MHD Simulations with Coupled Planetary Interior

    NASA Astrophysics Data System (ADS)

    Jia, X.; Slavin, J. A.; Poh, G.; Toth, G.; Gombosi, T. I.

    2016-12-01

    It has long been suggested that two processes, i.e., erosion of the dayside magnetosphere due to strong magnetopause reconnection and the shielding effect of the induction currents at the planetary core, compete against each other in governing the structure of Mercury's magnetosphere. We have combined analysis of MESSENGER data during extreme solar wind conditions with global MHD simulations to assess the relative importance of the two processes. Following the study of Slavin et al. (2014), we have analyzed an additional set of MESSENGER magnetopause crossings to determine the dependence of the magnetopause standoff distance on solar wind parameters. We have also employed the global MHD model of Jia et al. (2015) that electromagnetically couples Mercury's interior to the surrounding space environment to simulate the response of the system to solar wind forcing for a wide range of solar wind and IMF conditions. We find that while the magnetopause standoff distance decreases with increasing solar wind pressure, just as expected, its dependence on the external pressure follows closely a power-law relationship with an index of -1/6, rather than a steeper power-law falling-off expected for the case with only induction present. Our results suggest that for the external conditions examined, induction and magnetopause reconnection appear to play equally important roles in determining the global configuration of Mercury's magnetosphere, consistent with the finding obtained by Slavin et al. (2014). We also find that the magnetospheric current systems produce magnetic perturbations that are spatially non-uniform in nature, resulting in induced magnetic field at the core that contains significant power in both the dipole and high order moments. Based on the simulation results, we determine how the induced field varies with the solar wind conditions, and provide quantitative constraints on the ability of Mercury's core to shield the planetary surface from direct solar wind

  5. Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects

    NASA Astrophysics Data System (ADS)

    Sher Akbar, Noreen; Bintul Huda, A.; Tripathi, D.

    2016-09-01

    We investigate the velocity slip and thermal slip effects on peristaltically driven thermal transport of nanofluids through the vertical parallel plates under the influence of transverse magnetic field. The wall surface is propagating with sinusoidal wave velocity c. The flow characteristics are governed by the mass, momentum and energy conservation principle. Low Reynolds number and large wavelength approximations are taken into consideration to simplify the non-linear terms. Analytical solutions for axial velocity, temperature field, pressure gradient and stream function are obtained under certain physical boundary conditions. Two types of nanoparticles, SiO2 and Ag, are considered for analysis with water as base fluid. This is the first article in the literature that discusses the SiO2 and Ag nanoparticles for a peristaltic flow with variable viscosity. The effects of physical parameters on velocity, temperature, pressure and trapping are discussed. A comparative study of SiO2 nanofluid, Ag nanofluid and pure water is also presented. This model is applicable in biomedical engineering to make thermal peristaltic pumps and other pumping devices like syringe pumps, etc. It is observed that pressure for pure water is maximum and pressure for Ag nanofluid is minimum.

  6. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-04-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate. Two phenomena that can effect the analysis of slag leakage current have been investigated and found significant. These are: (1) transverse current along the slag layer in the insulator walls of an MHD duct, and (2) electrode surface voltage drops. Both tend to reduce the value inferred for average plasma conductivity and increase the value inferred for axial leakage current. These two effects in combination are potentially capable of explaining the high leakage inferred. Corrosion on the water side of metal MHD duct wall elements has been examined in CDIF and Mark 7 generators. It appears to be controllable by adjusting the pH of the water and/or by controlling the dissolved oxygen content.

  7. Effects of Wave Nonlinearity on Wave Attenuation by Vegetation

    NASA Astrophysics Data System (ADS)

    Wu, W. C.; Cox, D. T.

    2014-12-01

    The need to explore sustainable approaches to maintain coastal ecological systems has been widely recognized for decades and is increasingly important due to global climate change and patterns in coastal population growth. Submerged aquatic vegetation and emergent vegetation in estuaries and shorelines can provide ecosystem services, including wave-energy reduction and erosion control. Idealized models of wave-vegetation interaction often assume rigid, vertically uniform vegetation under the action of waves described by linear wave theory. A physical model experiment was conducted to investigate the effects of wave nonlinearity on the attenuation of random waves propagating through a stand of uniform, emergent vegetation in constant water depth. The experimental conditions spanned a relative water depth from near shallow to near deep water waves (0.45 < kh <1.49) and wave steepness from linear to nonlinear conditions (0.03 < ak < 0.18). The wave height to water depth ratios were in the range 0.12 < Hs/h < 0.34, and the Ursell parameter was in the range 2 < Ur < 68. Frictional losses from the side wall and friction were measured and removed from the wave attenuation in the vegetated cases to isolate the impact of vegetation. The normalized wave height attenuation decay for each case was fit to the decay equation of Dalrymple et al. (1984) to determine the damping factor, which was then used to calculate the bulk drag coefficients CD. This paper shows that the damping factor is dependent on the wave steepness ak across the range of relative water depths from shallow to deep water and that the damping factor can increase by a factor of two when the value of ak approximately doubles. In turn, this causes the drag coefficient CD to decrease on average by 23%. The drag coefficient can be modeled using the Keulegan-Carpenter number using the horizontal orbital wave velocity estimate from linear wave theory as the characteristic velocity scale. Alternatively, the Ursell

  8. Role of MHD activity in LH-assisted discharges in the PBX-M tokamak

    SciTech Connect

    Talvard, M.; Bell, R.E.; Bernabei, S.; Kaye, S.; Okabayashi, M.; Sesnic, S.; von Goeler, S.

    1995-01-01

    A data base for the 1993 run period of PBX-M has been documented (i) to investigate whether it was possible to forecast the development of MHD instabilities often observed in LH assisted discharges and (ii) to detail the origin, the nature and the effects of those instabilities. The deposition radius of the RF current, the plasma internal inductance and the LH power are used to separate MHD active and quiescent regimes prior the MHD onset. 1/1, 2/1, 3/1 global modes driven by the m = 2, n = 1 component are observed in discharges with LHCD. The destabilization is attributed to an increase of the current density gradient within the q = 2 surface. MHD fluctuations reduce the soft x-ray and hard x-ray intensities mainly around the RF current deposition radius. Minor disruptions with large inversion radii and mode locking are analyzed. Pi possible precursor to the MHD is evidenced on the hard x-ray horizontal profiles. A resonance between fast trapped electrons and turbulent waves present in the background plasma is proposed to support the observations.

  9. Multi-fluid Modeling of Magnetosonic Wave Propagation in the Solar Chromosphere: Effects of Impact Ionization and Radiative Recombination

    NASA Astrophysics Data System (ADS)

    Maneva, Yana G.; Alvarez Laguna, Alejandro; Lani, Andrea; Poedts, Stefaan

    2017-02-01

    In order to study chromospheric magnetosonic wave propagation including, for the first time, the effects of ion–neutral interactions in the partially ionized solar chromosphere, we have developed a new multi-fluid computational model accounting for ionization and recombination reactions in gravitationally stratified magnetized collisional media. The two-fluid model used in our 2D numerical simulations treats neutrals as a separate fluid and considers charged species (electrons and ions) within the resistive MHD approach with Coulomb collisions and anisotropic heat flux determined by Braginskiis transport coefficients. The electromagnetic fields are evolved according to the full Maxwell equations and the solenoidality of the magnetic field is enforced with a hyperbolic divergence-cleaning scheme. The initial density and temperature profiles are similar to VAL III chromospheric model in which dynamical, thermal, and chemical equilibrium are considered to ensure comparison to existing MHD models and avoid artificial numerical heating. In this initial setup we include simple homogeneous flux tube magnetic field configuration and an external photospheric velocity driver to simulate the propagation of MHD waves in the partially ionized reactive chromosphere. In particular, we investigate the loss of chemical equilibrium and the plasma heating related to the steepening of fast magnetosonic wave fronts in the gravitationally stratified medium.

  10. MHD memes

    NASA Astrophysics Data System (ADS)

    Dewar, R. L.; Mills, R.; Hole, M. J.

    2009-05-01

    The celebration of Allan Kaufman's 80th birthday was an occasion to reflect on a career that has stimulated the mutual exchange of ideas (or memes in the terminology of Richard Dawkins) between many researchers. This paper will revisit a meme Allan encountered in his early career in magnetohydrodynamics, the continuation of a magnetohydrodynamic mode through a singularity, and will also mention other problems where Allan's work has had a powerful cross-fertilizing effect in plasma physics and other areas of physics and mathematics. To resolve the continuation problem we regularize the Newcomb equation, solve it in terms of Legendre functions of imaginary argument, and define the small weak solutions of the Newcomb equation as generalized functions in the manner of Lighthill, i.e. via a limiting sequence of analytic functions that connect smoothly across the singularity.

  11. MHD-EMP protection guidelines

    SciTech Connect

    Barnes, P.R.; Vance, E.F.

    1992-03-01

    A nuclear detonation at altitudes several hundred kilometers above the earth will severely distort the earth`s magnetic field and result in a strong magnetohyrodynamic electromagnetic pulse (MHD-EMP). The geomagnetic disturbance interacts with the soil to induce current and horizontal electric gradients. The geomagnetic disturbance interacts with the soil to induced current and horizontal electric gradients in the earth. MHD-EMP, also called E3 since it is the third component of the high-altitude EMP (HEMP), lasts over 100 s after the exoatmospheric burst. MHD-EMP is similar to solar geomagnetic storms in it`s global and low frequency (less than 1 Hz) nature except that E3 can be much more intense with a far shorter duration. When the MHD-EMP gradients are integrated over great distances by power lines, communication cables, or other long conductors, the induced voltages are significant. (The horizontal gradients in the soil are too small to induce major responses by local interactions with facilities.) The long pulse waveform for MHD-EMP-induced currents on long lines has a peak current of 200 A and a time-to-half-peak of 100 s. If this current flows through transformer windings, it can saturate the magnetic circuit and cause 60 Hz harmonic production. To mitigate the effects of MHD-EMP on a facility, long conductors must be isolated from the building and the commercial power harmonics and voltage swings must be addressed. The transfer switch would be expected to respond to the voltage fluctuations as long as the harmonics have not interfered with the switch control circuitry. The major sources of MHD-EMP induced currents are the commercial power lines and neutral; neutral current indirect coupling to the facility power or ground system via the metal fence, powered gate, parking lights, etc; metal water pipes; phone lines; and other long conductors that enter or come near the facility. The major source of harmonics is the commercial power system.

  12. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.

    1985-01-01

    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  13. Shear Alfven waves with Landau and collisional effects

    SciTech Connect

    Hedrick, C.L.; Leboeuf, J.; Spong, D.A.

    1995-06-01

    Shear Alfven waves can be driven unstable by hot particles such as alpha particles in an ignited fusion device or hot ions in existing devices. Motivated by rather collisional Wendelstein 7 Advanced Stellarator (W7-AS) [Phys. Rev. Lett. {bold 72}, 1220 (1994)] beam-driven global Alfven instability experiments, the effect of electron and ion collisions on these modes has been examined. Collisions broaden and suppress the peak associated with Landau effects. This broadening makes ion damping more important, while the electron damping is suppressed. Additional resistive effects provide increased damping for the main part of the spectrum, which can have a rather high phase velocity. Of more general interest is the fact that collisional and collisionless resistivity has a numerically stabilizing effect that is known to be important for nonlinear resistive magnetohydrodynamics (MHD). This can preclude the need for introducing and testing the sensitivity to similar ad hoc effects. Numerical and analytic results for both a particle-conserving Krook collision operator and a Lorentz (pitch angle) collision operator are compared and contrasted.

  14. End region and current consolidation effects upon the performance of an MHD channel for the ETF conceptual design. [Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Wang, S. Y.; Smith, J. M.

    1982-01-01

    It is noted that operating conditions which yielded a peak thermodynamic efficiency (41%) for an EFT-size MHD/steam power plant were previously (Wang et al., 1981; Staiger, 1981) identified by considering only the active region (the primary portion for power production) of an MHD channel. These previous efforts are extended here to include an investigation of the effects of the channel end regions on overall power generation. Considering these effects, the peak plant thermodynamic efficiency is found to be slightly lowered (40.7%); the channel operating point for peak efficiency is shifted to the supersonic mode (Mach number of approximately 1.1) rather than the previous subsonic operation (Mach number of approximately 0.9). Also discussed is the sensitivity of the channel performance to the B-field, diffuser recovery coefficient, channel load parameter, Mach number, and combustor pressure.

  15. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics - Revisiting Perturbative Hybrid Kinetic-MHD Theory.

    PubMed

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-05-10

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle's Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas.

  16. Flow-Induced New Channels of Energy Exchange in Multi-Scale Plasma Dynamics – Revisiting Perturbative Hybrid Kinetic-MHD Theory

    PubMed Central

    Shiraishi, Junya; Miyato, Naoaki; Matsunaga, Go

    2016-01-01

    It is found that new channels of energy exchange between macro- and microscopic dynamics exist in plasmas. They are induced by macroscopic plasma flow. This finding is based on the kinetic-magnetohydrodynamic (MHD) theory, which analyses interaction between macroscopic (MHD-scale) motion and microscopic (particle-scale) dynamics. The kinetic-MHD theory is extended to include effects of macroscopic plasma flow self-consistently. The extension is realised by generalising an energy exchange term due to wave-particle resonance, denoted by δ WK. The first extension is generalisation of the particle’s Lagrangian, and the second one stems from modification to the particle distribution function due to flow. These extensions lead to a generalised expression of δ WK, which affects the MHD stability of plasmas. PMID:27160346

  17. Space-based laser-driven MHD generator: Feasibility study

    NASA Technical Reports Server (NTRS)

    Choi, S. H.

    1986-01-01

    The feasibility of a laser-driven MHD generator, as a candidate receiver for a space-based laser power transmission system, was investigated. On the basis of reasonable parameters obtained in the literature, a model of the laser-driven MHD generator was developed with the assumptions of a steady, turbulent, two-dimensional flow. These assumptions were based on the continuous and steady generation of plasmas by the exposure of the continuous wave laser beam thus inducing a steady back pressure that enables the medium to flow steadily. The model considered here took the turbulent nature of plasmas into account in the two-dimensional geometry of the generator. For these conditions with the plasma parameters defining the thermal conductivity, viscosity, electrical conductivity for the plasma flow, a generator efficiency of 53.3% was calculated. If turbulent effects and nonequilibrium ionization are taken into account, the efficiency is 43.2%. The study shows that the laser-driven MHD system has potential as a laser power receiver for space applications because of its high energy conversion efficiency, high energy density and relatively simple mechanism as compared to other energy conversion cycles.

  18. MHD Turbulence and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V

    2014-01-01

    investigation, by greatly extending the statistical theory of ideal MHD turbulence. The mathematical details of broken ergodicity, in fact, give a quantitative explanation of how coherent structure, dynamic alignment and force-free states appear in turbulent magnetofluids. The relevance of these ideal results to real MHD turbulence occurs because broken ergodicity is most manifest in the ideal case at the largest length scales and it is in these largest scales that a real magnetofluid has the least dissipation, i.e., most closely approaches the behavior of an ideal magnetofluid. Furthermore, the effects grow stronger when cross and magnetic helicities grow large with respect to energy, and this is exactly what occurs with time in a real magnetofluid, where it is called selective decay. The relevance of these results found in ideal MHD turbulence theory to the real world is that they provide at least a qualitative explanation of why confined turbulent magnetofluids, such as the liquid iron that fills the Earth's outer core, produce stationary, large-scale magnetic fields, i.e., the geomagnetic field. These results should also apply to other planets as well as to plasma confinement devices on Earth and in space, and the effects should be manifest if Reynolds numbers are high enough and there is enough time for stationarity to occur, at least approximately. In the presentation, details will be given for both theoretical and numerical results, and references will be provided.

  19. Hall effects on the Walén relation in rotational discontinuities and Alfvén waves

    NASA Astrophysics Data System (ADS)

    Wu, B. H.; Lee, L. C.

    2000-08-01

    For Alfvénic fluctuations in magnetohydrodynamics (MHD) the perturbed transverse velocity Vt and magnetic field Bt can be related by the Walén relation, Vt = ±Bt/(μ0ρ)1/2 ≡;±VAt, where ρ is the plasma density, VAt is the transverse Alfvén velocity, and the plus (minus) sign is for antiparallel (parallel) propagation. However, observations of Vt and Bt for Alfvén waves and rotational discontinuities in the solar wind and at the magnetopause showed an obvious deviation from the relation. In this paper, modifications of the Walén relation for linear and nonlinear Alfvén waves and rotational discontinuities (RDs) are examined in the Hall-MHD formulation. Let Vit (≈ Vt) be the transverse ion velocity and Vet be the transverse electron velocity. It is found that Vit = ±Bt(z)/(μ0ρ1)1/2 = ±(ρ(z)/ρ1)1/2 VAt(z) and Vet = ±(ρ1/μ0)1/2Bt(z)/ρ(z) = ±(ρ1/ρ(z))1/2 VAt(z)for RDs in Hall-MHD, where ρ1 is the upstream plasma density. The ion and electron Walén ratios are defined as Ai = Vit/VAt and Ae = Vet/VAt, respectively. It is found in Hall-MHD that ?, AiAe = 1 and Ai < 1 (Ai > 1) for Alfvén waves and RDs with right-hand (left-hand) polarization. The Hall dispersive effect may modify the ion Walén ratio by ΔAi≈±0.14 for the magnetopause RDs and by ΔAi≈±0.07 for the interplanetary RDs.

  20. Effect of Energetic-Ion-Driven MHD Instabilities on Energetic-Ion-Transport in Compact Helical System and Large Helical Device

    SciTech Connect

    Isobe, M.; Ogawa, K.; Toi, K.; Osakabe, M.; Nagaoka, K.; Shimizu, A.; Spong, Donald A; Okumura, S.

    2010-01-01

    This paper describes 1) representative results on excitation of energetic-particle mode (EPM) and toroidicity-induced Alfven eigenmode (TAE) and consequent beam-ion losses in CHS, and 2) recent results on beam-ion transport and/or losses while EPMs are destabilized in LHD. Bursting EPMs and TAEs are often excited by co-injected beam ions in the high-beam ion pressure environment and give a significant effect on co-going beam ions in both experiments. It seems that in CHS, resonant beam ions are lost within a relatively short-time scale once they are anomalously transported due to energetic-ion driven MHD modes, whereas unlike CHS, redistribution of beam ions due to energetic-ion driven MHD modes is seen in LHD, suggesting that not all anomalously transported beam ions escape from the plasma.

  1. Test of an MHD code for cosmological applications

    NASA Astrophysics Data System (ADS)

    Stasyszyn, F.; Dolag, K.

    2009-08-01

    We build up a comprehensive MHD test suit containing various shock tube tests and different planar MHD test problems (like the Orzang-Tang Vortex, Blast Waves and a Rotor test). To test the MHD implementation (Dolag & Stasyszyn, in prep.) within the cosmological SPH code Gadget 13, we performed fully consistently three dimensional setups to test the code under the same conditions as used the cosmological applications. The results were compared with the idealized solutions obtained in 1D/2D using Athena 3.0 (Gardiner & Stone 2006), showing us that the SPH MHD implementation performs very well. We also compare different regularization schemes of SPH MHD suggested in the literature, and calibrate theses schemes inferring optimal values for the numerical parameters involved. The Implementation of a Hyperbolic/Parabolic divergence cleaning scheme as suggested by Dedner (Dedner et al. 2002) have been also tested, finding good agreement with the results reported in the literature (Price & Monaghan 2005).

  2. MHD control in burning plasmas MHD control in burning plasmas

    NASA Astrophysics Data System (ADS)

    Donné, Tony; Liang, Yunfeng

    2012-07-01

    Fusion physics focuses on the complex behaviour of hot plasmas confined by magnetic fields with the ultimate aim to develop a fusion power plant. In the future generation of tokamaks like ITER, the power generated by the fusion reactions substantially exceeds the external input power (Pfusion}/Pin >= 10). When this occurs one speaks of a burning plasma. Twenty per cent of the generated fusion power in a burning plasma is carried by the charged alpha particles, which transfer their energy to the ambient plasma in collisions, a process called thermalization. A new phenomenon in burning plasmas is that the alpha particles, which form a minority but carry a large fraction of the plasma kinetic energy, can collectively drive certain types of magneto-hydrodynamic (MHD) modes, while they can suppress other MHD modes. Both types of MHD modes can have desirable effects on the plasma, as well as be detrimental to the plasma. For example, the so-called sawtooth instability, on the one hand, is largely responsible for the transport of the thermalized alpha particles out of the core, but, on the other hand, may result in the loss of the energetic alphas before they have fully thermalized. A further undesirable effect of the sawtooth instability is that it may trigger other MHD modes such as neoclassical tearing modes (NTMs). These NTMs, in turn, are detrimental to the plasma confinement and in some cases may even lead to disruptive termination of the plasma. At the edge of the plasma, finally, so-called edge localized modes or ELMs occur, which result in extremely high transient heat and particle loads on the plasma-facing components of a reactor. In order to balance the desired and detrimental effects of these modes, active feedback control is required. An additional complication occurs in a burning plasma as the external heating power, which is nowadays generally used for plasma control, is small compared to the heating power of the alpha particles. The scientific challenge

  3. Variation of effective roll number on MHD Rayleigh-Benard convection confined in a small-aspect ratio box

    NASA Astrophysics Data System (ADS)

    Tasaka, Yuji; Yanagisawa, Takatoshi; Vogt, Tobias; Eckert, Sven

    2015-11-01

    MHD Rayleigh-Benard convection was studied experimentally using a box filled with liquid metal with five in aspect ratio and square horizontal cross section. Applying horizontal magnetic field organizes the convection motion into quasi-two dimensional rolls arranged parallel to the magnetic field. The number of rolls has tendency, decreases with increasing Rayleigh number Ra and increases with increasing Chandrasekhar number Q. To fit the box with relatively smaller aspect ratio, the convection rolls take regime transition accompanying variation of the roll number against variations of Ra and Q. We explored convection regimes in a ranges, 2 ×103 < Q <104 and 5 ×103 < Ra < 3 ×105 using ultrasonic velocity profiling that can capture time variations of instantaneous velocity profile. In a range Ra / Q ~ 10 , we found periodic flow reversals in which five rolls periodically change the direction of their circulation with gradual skew of rolls. We performed POD analysis on the spatio-temporal velocity distribution obtained by UVP and indicated that that the periodic flow reversals consist of periodic emergence of 4-rolls mode in dominant 5-rolls mode. POD analysis also provided evaluation of effective number of rolls as a more objective approach.

  4. MHD shocks in coronal mass ejections

    NASA Technical Reports Server (NTRS)

    Steinolfson, R. S.

    1991-01-01

    The primary objective of this research program is the study of the magnetohydrodynamic (MHD) shocks and nonlinear simple waves produced as a result of the interaction of ejected lower coronal plasma with the ambient corona. The types of shocks and nonlinear simple waves produced for representative coronal conditions and disturbance velocities were determined. The wave system and the interactions between the ejecta and ambient corona were studied using both analytic theory and numerical solutions of the time-dependent, nonlinear MHD equations. Observations from the SMM coronagraph/polarimeter provided both guidance and motivation and are used extensively in evaluating the results. As a natural consequence of the comparisons with the data, the simulations assisted in better understanding the physical interactions in coronal mass ejections (CME's).

  5. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    DOE PAGES

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; ...

    2017-04-28

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. Inmore » this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8–1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.« less

  6. Role of a continuous MHD dynamo in the formation of 3D equilibria in fusion plasmas

    NASA Astrophysics Data System (ADS)

    Piovesan, P.; Bonfiglio, D.; Cianciosa, M.; Luce, T. C.; Taylor, N. Z.; Terranova, D.; Turco, F.; Wilcox, R. S.; Wingen, A.; Cappello, S.; Chrystal, C.; Escande, D. F.; Holcomb, C. T.; Marrelli, L.; Paz-Soldan, C.; Piron, L.; Predebon, I.; Zaniol, B.; DIII-D, The; RFX-Mod Teams

    2017-07-01

    Stationary 3D equilibria can form in fusion plasmas via saturation of magnetohydrodynamic (MHD) instabilities or stimulated by external 3D fields. In these cases the current profile is anomalously broad due to magnetic flux pumping produced by the MHD modes. Flux pumping plays an important role in hybrid tokamak plasmas, maintaining the minimum safety factor above unity and thus removing sawteeth. It also enables steady-state hybrid operation, by redistributing non-inductive current driven near the center by electron cyclotron waves. A validated flux pumping model is not yet available, but it would be necessary to extrapolate hybrid operation to future devices. In this work flux pumping physics is investigated for helical core equilibria stimulated by external 3D fields in DIII-D hybrid plasmas. We show that flux pumping can be produced in a continuous way by an MHD dynamo emf. The same effect maintains helical equilibria in reversed-field pinch (RFP) plasmas. The effective MHD dynamo loop voltage is calculated for experimental 3D equilibrium reconstructions, by balancing Ohm’s law over helical flux surfaces, and is consistent with the expected current redistribution. Similar results are also obtained with more sophisticated nonlinear MHD simulations. The same modelling approach is applied to helical RFP states forming spontaneously in RFX-mod as the plasma current is raised above 0.8-1 MA. This comparison allows to identify the underlying physics common to tokamak and RFP: a helical core displacement modulates parallel current density along flux tubes, which requires a helical electrostatic potential to build up, giving rise to a helical MHD dynamo flow.

  7. MHD Flow Control

    DTIC Science & Technology

    2006-09-01

    tested is a model to simulate the hypersonic intake configuration. The corresponding photo is presented in Fig. 49. 75 i I I I I I I Figure 49. The third... hypersonic air stream within the propulsion system inlet. The extra benefit of this proposed Project is the experimental facility to be used for experimental...plasma aerodynamics, and in particular, MHD control of external and internal flows. The MHD control of the external hypersonic flow over the simplest

  8. MHD heat and seed recovery technology project

    SciTech Connect

    Petrick, M.; Johnson, T. R.

    1980-08-01

    The MHD Heat and Seed Recovery Technology Project at Argonne National Laboratory is obtaining information for the design and operation of the steam plant downstream of the MHD channel-diffuser, and of the seed regeneration process. The project goal is to supply the engineering data required in the design of components for prototype and demonstration MHD facilities. The work is being done in close cooperation with the Heat Recovery-Seed Recovery facility, which will be a 20-MW pilot plant of the MHD steam bottoming system. The primary effort of the HSR Technology Project is directed toward experimental investigations of critical issues, such as 1) NO/sub x/ behavior in the radiant boiler and secondary combustor; 2) radiant boiler design to meet the multiple requirements of steam generation, NO/sub x/ decomposition, and seed slag separation; 3) effects of solid or liquid seed deposits on heat transfer and gas flow in the steam and air heaters; 4) formation, growth, and deposition of seed-slag particles, 5) character of the combustion gas effluents, and 6) the corrosion and erosion of ceramic and metallic materials of construction. These investigations are performed primarily in a 2-MW test facility, Argonne MHD Process Engineering Laboratory (AMPEL). Other project activities are related to studies of the thermochemistry of the seed-slag combustion gas system, identification of ceramic and metallic materials for service in the MHD-steam plant, and evaluation of seed regeneration processes. Progress is reported.

  9. Global MHD simulations of plasmaspheric plumes

    NASA Astrophysics Data System (ADS)

    Lyon, J.; Ouellette, J.; Merkin, V. G.

    2015-12-01

    The plasmasphere represents a separate population from the rest of themagnetosphere, generally high density but cold. When the solar windturns strongly southward this plasma is convected toward the daysidemagnetopause and affects the interaction of the solar wind with themagnetosphere. We have used multi-fluid simulations using the LFMglobal MHD code to model this interaction. The plasmasphere isinitialized as a cold (~1eV) hydrogen plasma in a quiet northward IMFstate with a density distribution appropriate for K_p = 1. Thecorotation potential from the ionosphere spins up the plasmasphereinto rough corotation. After a initialization period of hours, asouthward IMF is introduced and the enhanced convection initiates asurge of plasmaspheric density to the dayside. We discuss two aspectsof this interaction, the effects on dayside reconnection and on theKelvin-Helmholtz instability (KHI). We find that the mass loading ofmagnetospheric flux tubes slows local reconnection rates, though notas much as predicted by Borovsky et al. [2013]. We findthat the total reconnection rate is reduced, although not as much aswould be predicted by just the sub-solar reconnection rate. The KHIis somewhat reduced by the plasmaspheric loading of density in the lowlatitude boundary layer. It has been suggested that the presence ofthe plasmasphere may lead to enhanced ULF wave power in the interiorof the magnetosphere from the KHI waves. We find only a minimal effect during northward IMF. For southward IMF, the situation is complicated by the interaction of KHI with non-steady reconnection.

  10. MHD waves detected by ice at distances > 28 x 10/sup 6/ km from Comet Halley: Cometary or solar wind origin

    SciTech Connect

    Tsurutani, B.T.; Brinca, A.L.; Smith, E.J.; Thorne, R.M.; Scarf, F.L.; Gosling, J.T.; Ipavich, F.M.

    1986-01-01

    Spectral analyses of the high resolution magnetic field data are employed to determine if there is evidence of cometary heavy ion pickup when ICE was closest to Halley, approx.28 x 10/sup 6/ km. No evidence is found for the presence of heavy ion cyclotron waves. However, from this search, two new wave modes are discovered in the solar wind: electromagnetic ion cyclotron waves and drift mirror mode waves. Both modes have scales of 10 to 60 s (1 to 6 T/sub p/) in the spacecraft frame. The possibility of wave generation by cometary hydrogen pickup is explored. Theoretical arguments and further experimental evidence indicates that cometary origin is improbable. The most likely source is plasma instabilities associated with solar wind stream-stream interactions. VLF electrostatic emissions are found to occur in field minima or at gradients of the drift mirror structures. Possible generation mechanisms of drift mirror mode waves, cyclotron waves and electrostatic waves are discussed.

  11. INCORPORATING AMBIPOLAR AND OHMIC DIFFUSION IN THE AMR MHD CODE RAMSES

    SciTech Connect

    Masson, J.; Mulet-Marquis, C.; Chabrier, G.; Teyssier, R.

    2012-08-01

    We have implemented non-ideal magnetohydrodynamics (MHD) effects in the adaptive mesh refinement code RAMSES, namely, ambipolar diffusion and Ohmic dissipation, as additional source terms in the ideal MHD equations. We describe in details how we have discretized these terms using the adaptive Cartesian mesh, and how the time step is diminished with respect to the ideal case, in order to perform a stable time integration. We have performed a large suite of test runs, featuring the Barenblatt diffusion test, the Ohmic diffusion test, the C-shock test, and the Alfven wave test. For the latter, we have performed a careful truncation error analysis to estimate the magnitude of the numerical diffusion induced by our Godunov scheme, allowing us to estimate the spatial resolution that is required to address non-ideal MHD effects reliably. We show that our scheme is second-order accurate, and is therefore ideally suited to study non-ideal MHD effects in the context of star formation and molecular cloud dynamics.

  12. Effects of stress waves on cells

    SciTech Connect

    Campbell, H L; Da Silva, L B; Visuri, S R

    1998-03-02

    Laser induced stress waves are being used in a variety of medical applications, including drug delivery and targeted tissue disruption. Stress waves can also be an undesirable side effect in laser procedures such as ophthalmology and angioplasty. Thus, a study of the effects of stress waves on a cellular level is useful. Thermoelastic stress waves were produced using a Q-switched frequency-doubled Nd:YAG laser (@.=532nm) with a pulse duration of 4 ns. The laser radiation was delivered to an absorbing media. A thermoelastic stress wave was produced in the absorbing media and propagated into plated cells. The energy per pulse delivered to a sample and the spot size were varied. Stress waves were quantified. We assayed for cell viability and damage using two methods. The laser parameters within which cells maintain viability were investigated and thresholds for cell damage were defined. A comparison of cell damage thresholds for different cell lines was made.

  13. Thermophysical effects of water driven copper nanoparticles on MHD axisymmetric permeable shrinking sheet: Dual-nature study.

    PubMed

    Ul Haq, Rizwan; Rajotia, D; Noor, N F M

    2016-03-01

    The present study is dedicated to analyze the dual-nature solutions of the axisymmetric flow of a magneto-hydrodynamics (MHD) nanofluid over a permeable shrinking sheet. In those phenomena where the fluid flow is due to the shrinking surface, some reverse behaviors of the flow arise because of vorticity effects. Despite of heat transfer analysis, the main purpose of the present study is to attain the solutions of the complex nature problem that appear in reverse flow phenomena. Thermophysical properties of both base fluid (water) and nanoparticles (copper) are also taken into account. By means of similarity transformation, partial differential equations are converted into a system of coupled nonlinear ordinary differential equations and then solved via the Runge-Kutta method. These results are divided separately into two cases: the first one is the unidirectional shrinking along the surface (m = 1) and the other one is for axisymmetric shrinking phenomena (m = 2) . To enhance the thermal conductivity of base fluid, nanoparticle volume fractions (0≤φ ≤ 0.2)) are incorporated within the base fluid. The numerical investigation explores the condition of existence, non-existence and the duality of similarity solution depends upon the range of suction parameter (S) and Hartmann number (M). The reduced skin friction coefficient and local Nusselt number are plotted to analyze the fluid flow and heat transfer at the surface of the shrinking sheet. Streamlines and isotherms are also plotted against the engineering control parameters to analyze the flow behavior and heat transfer within the whole domain. Throughout this analysis it is found that both nanoparticle volume fraction and Hartmann number are increasing functions of both skin friction coefficient and Nusselt number.

  14. Tunnel effect wave energy detection

    NASA Technical Reports Server (NTRS)

    Kaiser, William J. (Inventor); Waltman, Steven B. (Inventor); Kenny, Thomas W. (Inventor)

    1995-01-01

    Methods and apparatus for measuring gravitational and inertial forces, magnetic fields, or wave or radiant energy acting on an object or fluid in space provide an electric tunneling current through a gap between an electrode and that object or fluid in space and vary that gap with any selected one of such forces, magnetic fields, or wave or radiant energy acting on that object or fluid. These methods and apparatus sense a corresponding variation in an electric property of that gap and determine the latter force, magnetic fields, or wave or radiant energy in response to that corresponding variation, and thereby sense or measure such parameters as acceleration, position, particle mass, velocity, magnetic field strength, presence or direction, or wave or radiant energy intensity, presence or direction.

  15. Reduced MHD Equations For Low Aspect Ratio Tokamaks

    NASA Astrophysics Data System (ADS)

    Callen, J. D.; Hegna, C. C.; Kruger, S. E.

    1997-11-01

    The usual derivations [1] of reduced MHD equations for describing tokamak plasmas use a large aspect ratio expansion to remove, to lowest order, the compressional Alfven wave response that enforces the axisymmetric ideal MHD (Grad-Shafranov) equilibrium. For very low aspect ratio tokamaks such an approach is invalid, even though [2] the radially localized compressional Alfven waves that enforce ideal MHD equilibrium still have higher frequencies than the shear Alfven waves that appear in reduced MHD descriptions. We are beginning to explore and will discuss a multiple time scale approach that does not explicitly require a large aspect ratio expansion in order to develop a reduced MHD description appropriate for low aspect ratio tokamak plasmas. The relationship of this approach to geometric-properties-based formulations of the ideal MHD energy principle [3] will also be discussed. [1] H.R. Strauss, Phys. Fluids 19, 134 (1976); 20, 1354 (1977). [2] R.D. Hazeltine and J.D. Meiss, Plasma Confinement (Addison-Wesley, Redwood City, CA, 1992), Chapter 7. [3] R.L. Dewar, D.A. Monticello, W.N.-C. Sy, Phys. Fluids 27, 1723 (1984); J.M. Greene, Phys. Plasmas 3, 8(1996).

  16. Effects of ion-slip current on MHD free convection flow in a temperature stratified porous medium in a rotating system

    NASA Astrophysics Data System (ADS)

    Hossain, Delowar; Samad, Abdus; Alam, Mahmud

    2017-06-01

    The ion-slip effects on unsteady MHD free convection flow past an infinite vertical porous plate with the effect of temperature stratified porous medium in a rotating system with viscous dissipation and Joule heating has been studied numerically. Introducing a time dependent suction to the plate, a similarity procedure has been adopted by taking a time dependent similarity parameter. The governing differential equations are transformed by introducing usual similarity variables. The resultant equations are solved numerically using Runge-Kutta method along with shooting technique. Resulting non-dimensional velocity and temperature profiles are then presented graphically for different values of the parameters entering into the problem.

  17. Effect of capillary waves on surface tension

    NASA Technical Reports Server (NTRS)

    Kayser, R. F.

    1986-01-01

    The present study is concerned with the effect which a cutting off of the capillary waves has on surface tension, taking into account a calculation based on capillary-wave theory. For simplicity, three-dimensional systems are considered, and capillary-wave theory is used to calculate sigma-k, the surface tension of an interface where only those modes with at least one wave-vector component greater than k are allowed. Attention is given to a review of capillary-wave theory, the calculation of surface tensions, a determination of the range of validity of capillary-wave theory, and some numerical examples. The quantitative behavior of sigma-k and its relation to the surface tension of a finite-size system are considered. The most surprising result is that sigma-k can be significantly larger than the unconstrained surface tension.

  18. Nonlinear Talbot effect of rogue waves.

    PubMed

    Zhang, Yiqi; Belić, Milivoj R; Zheng, Huaibin; Chen, Haixia; Li, Changbiao; Song, Jianping; Zhang, Yanpeng

    2014-03-01

    Akhmediev and Kuznetsov-Ma breathers are rogue wave solutions of the nonlinear Schrödinger equation (NLSE). Talbot effect (TE) is an image recurrence phenomenon in the diffraction of light waves. We report the nonlinear TE of rogue waves in a cubic medium. It is different from the linear TE, in that the wave propagates in a NL medium and is an eigenmode of NLSE. Periodic rogue waves impinging on a NL medium exhibit recurrent behavior, but only at the TE length and at the half-TE length with a π-phase shift; the fractional TE is absent. The NL TE is the result of the NL interference of the lobes of rogue wave breathers. This interaction is related to the transverse period and intensity of breathers, in that the bigger the period and the higher the intensity, the shorter the TE length.

  19. Magnetic ocean wave effects in Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, C. R.; Chen, C. H.; Yen, H. Y.; Lin, J. Y.

    2016-12-01

    12 magnetic stations routinely monitor changes in the geomagnetic total intensity field are utilized in this study to examine magnetic ocean wave effects in Taiwan. The time-varied magnetic data are transferred into the frequency domain via the Fourier transform to investigate the frequency characteristics associated with ocean waves. Significant enhancements can be found from spectrums in the frequency band of about 0.05-0.3 Hz at stations located very close to the seashore. Frequency characteristics of magnetic data were compared with them of water-level heights monitored derived from nearby meteorological observation buoys operated by Weather Central Bureau. The agreement in the frequency characteristics suggests that the magnetic field is affected by ocean waves directly hitting the seashore in open oceans. In contrast, ocean waves with the double-frequency recorded by the marine metrological buoys reveal the locally dominate wave-wave interaction around bays.

  20. MHD generator electrode development

    NASA Astrophysics Data System (ADS)

    Retallick, F. D.; Dietrick, D. L.; Lloyd, I.; Rossing, B. R.; Smith, R.

    1981-08-01

    Metallurgical and engineering understanding of cold metallic electrode alternatives to the continued use of platinum as an anode clad material is discussed. The results of evaluating materials for MHD electrodes through use of a laboratory electrochemical and arc test are presented. Results for standard available materials as well as for some specially fabricated ones are presented. The development of a high temperature (11000 C to 14000 C) electrochemical test is outlined. Initial operation of the Westinghouse Electrode Systems Test Facility (WESTF), since major modification to include a magnet, is reported for a test section designed to operate as a small scale MHD generator and for test sections designed for the purpose of materials test evaluation in the operating MHD plasma environment.

  1. Dipole Alignment in Rotating MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; Fu, Terry; Morin, Lee

    2012-01-01

    We present numerical results from long-term CPU and GPU simulations of rotating, homogeneous, magnetohydrodynamic (MHD) turbulence, and discuss their connection to the spherically bounded case. We compare our numerical results with a statistical theory of geodynamo action that has evolved from the absolute equilibrium ensemble theory of ideal MHD turbulence, which is based on the ideal MHD invariants are energy, cross helicity and magnetic helicity. However, for rotating MHD turbulence, the cross helicity is no longer an exact invariant, although rms cross helicity becomes quasistationary during an ideal MHD simulation. This and the anisotropy imposed by rotation suggests an ansatz in which an effective, nonzero value of cross helicity is assigned to axisymmetric modes and zero cross helicity to non-axisymmetric modes. This hybrid statistics predicts a large-scale quasistationary magnetic field due to broken ergodicity , as well as dipole vector alignment with the rotation axis, both of which are observed numerically. We find that only a relatively small value of effective cross helicity leads to the prediction of a dipole moment vector that is closely aligned (less than 10 degrees) with the rotation axis. We also discuss the effect of initial conditions, dissipation and grid size on the numerical simulations and statistical theory.

  2. Magnetohydrodynamics (MHD) program evaluation

    SciTech Connect

    Not Available

    1983-05-01

    Conclusions and Recommendations: (1) Progress has been made in performance testing of virtually every critical MHD component and subsystem, except for seed regeneration. (2) No insurmountable technical barriers have been identified; however, the component tests have for the most part been of short duration and, in most instances, were conducted under simulated coal-fired conditions. Long duration, coal-fired integrated tests of the MHD power train and of the HRSR subsystem are required to demonstrate system operability and durability. (3) It would appear most appropriate that the first series of complete power train and HRSR tests be conducted at the 50 MW/sub t/ level. The major objectives of these tests should be to verify predicted performance and to show system operability and durability for a period of at least 2000 hours. (4) Assuming successful 50 MW/sub t/ duration tests, a 150 MW/sub t/ completely integrated (topping and bottoming cycles) utility demonstration test is then suggested (3:1 scale-up). (5) The final development step would involve the fabrication of a commercial size plant at a power level of 500 MW/sub t/ or greater. (6) The ultimate adoption of MHD as a means for electric power generation will not be solely determined by its technical performance; the economic climate and projections at the time the technology is mature will strongly influence utility decisions. (7) Estimated capital costs of early commercial MHD plants seem to range from 10% to 30% greater than those for PCF plants with scrubbers. However, because of the higher inherent efficiency of MHD relative to PCF plants (50% vs 35%), the cost of electric power (COE) from an MHD system can nevertheless be competitive for an appropriately broad range of economic scenarios. (8) Finally, it is recognized that a major investment will be necessary to bring the technology to a state of commercial readiness.

  3. The effect of wall suction/injection on MHD Marangoni convection boundary layer flow in nanofluid

    NASA Astrophysics Data System (ADS)

    Hamid, Rohana Abdul; Arifin, Norihan Md.

    2014-07-01

    The problem of Marangoni-driven boundary layer flow over a permeable flat surface in an electrically conducting nanofluid is considered in the present paper. Numerical solutions of the similarity equations are obtained using the shooting method. Three types of nanoparticles, namely copper (Cu), alumina (Al2O3) and titania (TiO2) are considered by using a water-based fluid to investigate the effect of nanoparticle volume fraction parameter φ of the nanofluid. It is found that the wall suction or injection has the significant effect on the velocity and temperature profiles.

  4. Pulse Detonation Rocket MHD Power Experiment

    NASA Technical Reports Server (NTRS)

    Litchford, Ron J.; Cook, Stephen (Technical Monitor)

    2002-01-01

    A pulse detonation research engine (MSFC (Marshall Space Flight Center) Model PDRE (Pulse Detonation Rocket Engine) G-2) has been developed for the purpose of examining integrated propulsion and magnetohydrodynamic power generation applications. The engine is based on a rectangular cross-section tube coupled to a converging-diverging nozzle, which is in turn attached to a segmented Faraday channel. As part of the shakedown testing activity, the pressure wave was interrogated along the length of the engine while running on hydrogen/oxygen propellants. Rapid transition to detonation wave propagation was insured through the use of a short Schelkin spiral near the head of the engine. The measured detonation wave velocities were in excess of 2500 m/s in agreement with the theoretical C-J velocity. The engine was first tested in a straight tube configuration without a nozzle, and the time resolved thrust was measured simultaneously with the head-end pressure. Similar measurements were made with the converging-diverging nozzle attached. The time correlation of the thrust and head-end pressure data was found to be excellent. The major purpose of the converging-diverging nozzle was to configure the engine for driving an MHD generator for the direct production of electrical power. Additional tests were therefore necessary in which seed (cesium-hydroxide dissolved in methanol) was directly injected into the engine as a spray. The exhaust plume was then interrogated with a microwave interferometer in an attempt to characterize the plasma conditions, and emission spectroscopy measurements were also acquired. Data reduction efforts indicate that the plasma exhaust is very highly ionized, although there is some uncertainty at this time as to the relative abundance of negative OH ions. The emission spectroscopy data provided some indication of the species in the exhaust as well as a measurement of temperature. A 24-electrode-pair segmented Faraday channel and 0.6 Tesla permanent

  5. Calculating Rotating Hydrodynamic and Magnetohydrodynamic Waves to Understand Magnetic Effects on Dynamical Tides

    NASA Astrophysics Data System (ADS)

    Wei, Xing

    2016-09-01

    To understand magnetic effects on dynamical tides, we study the rotating magnetohydrodynamic (MHD) flow driven by harmonic forcing. The linear responses are analytically derived in a periodic box under the local WKB approximation. Both the kinetic and Ohmic dissipations at the resonant frequencies are calculated, and the various parameters are investigated. Although magnetic pressure may be negligible compared to thermal pressure, the magnetic field can be important for the first-order perturbation, e.g., dynamical tides. It is found that the magnetic field splits the resonant frequency, namely the rotating hydrodynamic flow has only one resonant frequency, but the rotating MHD flow has two, one positive and the other negative. In the weak field regime the dissipations are asymmetric around the two resonant frequencies and this asymmetry is more striking with a weaker magnetic field. It is also found that both the kinetic and Ohmic dissipations at the resonant frequencies are inversely proportional to the Ekman number and the square of the wavenumber. The dissipation at the resonant frequency on small scales is almost equal to the dissipation at the non-resonant frequencies, namely the resonance takes its effect on the dissipation at intermediate length scales. Moreover, the waves with phase propagation that is perpendicular to the magnetic field are much more damped. It is also interesting to find that the frequency-averaged dissipation is constant. This result suggests that in compact objects, magnetic effects on tidal dissipation should be considered.

  6. Observations of wave effects on inlet circulation

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara; Raubenheimer, Britt; Elgar, Steve

    2014-07-01

    Observations of water levels, winds, waves, and currents in Katama Bay, Edgartown Channel, and Katama Inlet on Martha's Vineyard, Massachusetts are used to test the hypothesis that wave forcing is important to circulation in inlet channels of two-inlet systems and to water levels in the bay between the inlets. Katama Bay is connected to the Atlantic Ocean via Katama Inlet and to Vineyard Sound via Edgartown Channel. A numerical model based on the momentum and continuity equations that uses measured bathymetry and is driven with observed water levels in the ocean and sound, ocean waves, and local winds predicts the currents observed in Katama Inlet more accurately when wave forcing is included than when waves are ignored. During Hurricanes Irene and Sandy, when incident (12-m water depth) significant wave heights were greater than 5 m, breaking-wave cross-shore (along-inlet-channel) radiation stress gradients enhanced flows from the ocean into the bay during flood tides, and reduced (almost to zero during Irene) flows out of the bay during ebb tides. Model simulations without the effects of waves predict net discharge from the sound to the ocean both during Hurricane Irene and over a 1-month period with a range of conditions. In contrast, simulations that include wave forcing predict net discharge from the ocean to the sound, consistent with the observations.

  7. Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species

    NASA Astrophysics Data System (ADS)

    Sheikh, Mariam; Abbas, Zaheer

    2015-12-01

    The effects of chemical reaction and heat generation/absorption on MHD flow over an oscillatory stretching surface in a viscous fluid have been studied in the presence of thermophoresis. The porous plate is oscillated back and forth in its own plane and suction/injection is also taking into account. The similarity solution of the developed non-linear governing partial differential equations is constructed in the form of series using homotopy analysis method. The convergence of the obtained series solutions is discussed in the whole domain (0 ≤ η ≤ ∞) . A parametric study of the all governing parameters is accomplished and the physical results are shown graphically.

  8. Flow Shear Effects in the Onset Physics of Resistive MHD Instabilities in Tokamaks. Final report

    SciTech Connect

    Brennan, Dylan P.

    2013-04-24

    The progress in this research centers around the computational analysis of flow shear effects in the onset of a 3/2 mode driven by a 1/1 mode in DIII-D equilibria. The initial idea was to try and calculate, via nonlinear simulations with NIMROD, the effects of rotation shear on driven 3/2 and 2/1 seed island physics, in experimentally relevant DIIID equilibria. The simulations indicated that very small seed islands were directly driven, as shielding between the sawtooth and the surfaces is significant at the high Lundquist numbers of the experiment. Instead, long after the initial crash the difference in linear stability of the 3/2, which remained prevalent despite the flattening of the core profiles from the sawtooth, contributed to a difference in the eventual seed island evolution. Essentially the seed islands grew or decayed long after the sawtooth crash, and not directly from it. Effectively the dominant 1/1 mode was found to be dragging the coupled modes surrounding it at a high rate through the plasma at their surfaces. The 1/1 mode is locked to the local frame of the plasma in the core, where the flow rate is greatest. The resonant perturbations at the surrounding surfaces propagate in the 'high slip regime' in the language of Fitzpatrick. Peaked flux averaged jxb forces (see Figs. 1 and 2) agree with localized flow modifications at the surfaces in analogy with Ebrahimi, PRL 2007. We track the mode into nonlinear saturation and have found oscillatory states in the evolution. During a visit (11/09) to Tulsa by R.J. LaHaye (GA), it became clear that similar oscillatory states are observed in DIII-D for these types of discharges.

  9. Effect of melting on an MHD micropolar fluid flow toward a shrinking sheet with thermal radiation

    NASA Astrophysics Data System (ADS)

    Das, K.; Sarkar, A.

    2016-07-01

    The effect of melting on a steady boundary layer stagnation-point flow and heat transfer of an electrically conducting micropolar fluid toward a horizontal shrinking sheet in the presence of a uniform transverse magnetic field and thermal radiation is studied. A similarity transformation technique is adopted to obtain self-similar ordinary differential equations, which are solved numerically. The present results are found to be in good agreement with previously published data. Numerical results for the dimensionless velocity and temperature profiles, as well as for the skin friction and the rate of heat transfer are obtained.

  10. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    NASA Astrophysics Data System (ADS)

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Snyder, P. B.; Chang, C. S.

    2017-06-01

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. The neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] is used in carrying out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. Simulations with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. However, the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  11. MHD Mixed Convective Peristaltic Motion of Nanofluid with Joule Heating and Thermophoresis Effects

    PubMed Central

    Shehzad, Sabir Ali; Abbasi, Fahad Munir; Hayat, Tasawar; Alsaadi, Fuad

    2014-01-01

    The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are studied through graphs. It is noted that the concentration of nanoparticles near the boundaries is enhanced for larger thermophoresis parameter. However reverse situation is observed for an increase in the value of Brownian motion parameter. Further, the mass transfer rate at the wall significantly decreases when Brownian motion parameter is assigned higher values. PMID:25391147

  12. Effects of prescribed heat flux and transpiration on MHD axisymmetric flow impinging on stretching cylinder

    NASA Astrophysics Data System (ADS)

    Mabood, Fazle; Lorenzini, Giulio; Pochai, Nopparat; Ibrahim, Sheikh Muhammad

    2016-11-01

    A numerical treatment for axisymmetric flow and heat transfer due to a stretching cylinder under the influence of a uniform magnetic field and prescribed surface heat flux is presented. Numerical results are obtained for dimensionless velocity, temperature, skin friction coefficient and Nusselt number for several values of the suction/injection, magnetic and curvature parameters as well as the Prandtl number. The present study reveals that the controlling parameters have strong effects on the physical quantities of interest. It is seen that the magnetic field enhances the dimensionless temperature inside the thermal boundary layer, whereas it reduces the dimensionless velocity inside the hydrodynamic boundary layer. Heat transfer rate reduces, while the skin friction coefficient increases with magnetic field.

  13. Radiation effects on the MHD flow near the stagnation point of a stretching sheet: revisited

    NASA Astrophysics Data System (ADS)

    Pop, Ioan; Ishak, Anuar; Aman, Fazlina

    2011-10-01

    This paper considers the effects of radiation on the flow near the two-dimensional stagnation point of a stretching sheet immersed in a viscous and incompressible electrically conducting fluid in the presence of an applied constant magnetic field. The external velocity and the stretching velocity of the sheet are assumed to vary linearly with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations using a similarity transformation, before being solved numerically by the Keller-box method. The features of the heat transfer characteristics for different values of the governing parameters are analyzed and discussed. The results indicate that the heat transfer rate at the surface decreases in the presence of radiation.

  14. MHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effects.

    PubMed

    Shehzad, Sabir Ali; Abbasi, Fahad Munir; Hayat, Tasawar; Alsaadi, Fuad

    2014-01-01

    The primary objective of present investigation is to introduce the novel aspect of thermophoresis in the mixed convective peristaltic transport of viscous nanofluid. Viscous dissipation and Joule heating are also taken into account. Problem is modeled using the lubrication approach. Resulting system of equations is solved numerically. Effects of sundry parameters on the velocity, temperature, concentration of nanoparticles and heat and mass transfer rates at the wall are studied through graphs. It is noted that the concentration of nanoparticles near the boundaries is enhanced for larger thermophoresis parameter. However reverse situation is observed for an increase in the value of Brownian motion parameter. Further, the mass transfer rate at the wall significantly decreases when Brownian motion parameter is assigned higher values.

  15. CONNECTING THE SUN AND THE SOLAR WIND: THE FIRST 2.5-DIMENSIONAL SELF-CONSISTENT MHD SIMULATION UNDER THE ALFVEN WAVE SCENARIO

    SciTech Connect

    Matsumoto, Takuma; Suzuki, Takeru Ken

    2012-04-10

    The solar wind emanates from the hot and tenuous solar corona. Earlier studies using 1.5-dimensional simulations show that Alfven waves generated in the photosphere play an important role in coronal heating through the process of nonlinear mode conversion. In order to understand the physics of coronal heating and solar wind acceleration together, it is important to consider the regions from photosphere to interplanetary space as a single system. We performed 2.5-dimensional, self-consistent magnetohydrodynamic simulations, covering from the photosphere to the interplanetary space for the first time. We carefully set up the grid points with spherical coordinates to treat the Alfven waves in the atmosphere with huge density contrast and successfully simulate the solar wind streaming out from the hot solar corona as a result of the surface convective motion. The footpoint motion excites Alfven waves along an open magnetic flux tube, and these waves traveling upward in the non-uniform medium undergo wave reflection, nonlinear mode conversion from Alfven mode to slow mode, and turbulent cascade. These processes lead to the dissipation of Alfven waves and acceleration of the solar wind. It is found that the shock heating by the dissipation of the slow-mode wave plays a fundamental role in the coronal heating process, whereas the turbulent cascade and shock heating drive the solar wind.

  16. Solar-wind/magnetospheric dynamos: MHD-scale collective entry of the solar wind energy, momentum and mass into the magnetosphere

    NASA Technical Reports Server (NTRS)

    Song, Yan; Lysak, Robert L.

    1992-01-01

    A quasi open MHD (Magnetohydrodynamic) scale anomalous transport controlled boundary layer model is proposed, where the MHD collective behavior of magnetofluids (direct dynamo effect, anomalous viscous interaction and anomalous diffusion of the mass and the magnetic field) plays the main role in the conversion of the Solar Wind (SW) kinetic and magnetic energy into electromagnetic energy in the Magnetosphere (MSp). The so called direct and indirect dynamo effects are based on inductive and purely dissipative energy conversion, respectively. The self organization ability of vector fields in turbulent magnetofluids implies an inductive response of the plasma, which leads to the direct dynamo effect. The direct dynamo effect describes the direct formation of localized field aligned currents and the transverse Alfven waves and provides a source for MHD scale anomalous diffusivity and viscosity. The SW/MSp coupling depends on the dynamo efficiency.

  17. Hall Effects And Rotation Effects On MHD Flow Past An Exponentially Accelerated Vertical Plate With Combined Heat And Mass Transfer Effects

    NASA Astrophysics Data System (ADS)

    Thamizhsudar, M.; Pandurangan, J.; Muthucumaraswamy, R.

    2015-08-01

    A theoretical solution of flow past an exponentially accelerated vertical plate in the presence of Hall current and MHD relative to a rotating fluid with uniform temperature and mass diffusion is presented. The dimensionless equations are solved using the Laplace method. The axial and transverse velocity, temperature and concentration fields are studied for different parameters such as the Hall parameter (m), Hartmann number (M), Rotation parameter (Ω), Schmidt number, Prandtl number, thermal Grashof number (Gr) and mass Grashof number (Gc). It has been observed that the temperature of the plate decreases with increasing values of the Prandtl number and the concentration near the plate increases with decreasing values of Schmidt number. It is also observed that both axial and transverse velocities increase with decreasing values of the magnetic field parameter or rotation parameter, but the trend gets reversed with respect to the Hall parameter. The effects of parameters m, M, Ω, Gr and Gc on the axial and transverse velocity profiles are shown graphically.

  18. EMAPS: An Efficient Multiscale Approach to Plasma Systems with Non-MHD Scale Effects

    SciTech Connect

    Omelchenko, Yuri A.; Karimabadi, Homa

    2014-10-14

    Using Discrete-Event Simulation (DES) as a novel paradigm for time integration of large-scale physics-driven systems, we have achieved significant breakthroughs in simulations of multi-dimensional magnetized plasmas where ion kinetic and finite Larmor radius (FLR) and Hall effects play a crucial role. For these purposes we apply a unique asynchronous simulation tool: a parallel, electromagnetic Particle-in-Cell (PIC) code, HYPERS (Hybrid Particle Event-Resolved Simulator), which treats plasma electrons as a charge neutralizing fluid and solves a self-consistent set of non-radiative Maxwell, electron fluid equations and ion particle equations on a structured computational grid. HYPERS enables adaptive local time steps for particles, fluid elements and electromagnetic fields. This ensures robustness (stability) and efficiency (speed) of highly dynamic and nonlinear simulations of compact plasma systems such spheromaks, FRCs, ion beams and edge plasmas. HYPERS is a unique asynchronous code that has been designed to serve as a test bed for developing multi-physics applications not only for laboratory plasma devices but generally across a number of plasma physics fields, including astrophysics, space physics and electronic devices. We have made significant improvements to the HYPERS core: (1) implemented a new asynchronous magnetic field integration scheme that preserves local divB=0 to within round-off errors; (2) Improved staggered-grid discretizations of electric and magnetic fields. These modifications have significantly enhanced the accuracy and robustness of 3D simulations. We have conducted first-ever end-to-end 3D simulations of merging spheromak plasmas. The preliminary results show: (1) tilt-driven relaxation of a freely expanding spheromak to an m=1 Taylor helix configuration and (2) possibility of formation of a tilt-stable field-reversed configuration via merging and magnetic reconnection of two double-sided spheromaks with opposite helicities.

  19. MHD generator of electrical energy working on the gasification products of lignites

    NASA Astrophysics Data System (ADS)

    Derevianko, V. A.; Slavin, V. S.; Sokolov, V. S.

    1981-03-01

    An investigation is presented of an MHD generator of electrical energy fueled by gasification products of lignite coals using the T-layer effect which eliminates caustic additives. A quasi-one-dimensional theory of linear MHD processes is constructed on the basis of MHD equations; a design of an industrial generator is discussed.

  20. Disk MHD generator study

    NASA Technical Reports Server (NTRS)

    Retallick, F. D.

    1980-01-01

    Directly-fired, separately-fired, and oxygen-augmented MHD power plants incorporating a disk geometry for the MHD generator were studied. The base parameters defined for four near-optimum-performance MHD steam power systems of various types are presented. The finally selected systems consisted of (1) two directly fired cases, one at 1920 K (2996F) preheat and the other at 1650 K (2500 F) preheat, (2) a separately-fired case where the air is preheated to the same level as the higher temperature directly-fired cases, and (3) an oxygen augmented case with the same generator inlet temperature of 2839 (4650F) as the high temperature directly-fired and separately-fired cases. Supersonic Mach numbers at the generator inlet, gas inlet swirl, and constant Hall field operation were specified based on disk generator optimization. System pressures were based on optimization of MHD net power. Supercritical reheat stream plants were used in all cases. Open and closed cycle component costs are summarized and compared.

  1. Kapitza-Dirac effect with traveling waves

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Armen G.; Grigoryan, Karen K.; Götte, Jörg B.; Petrosyan, Rubik G.

    2015-08-01

    We report on the possibility of diffracting electrons from light waves traveling inside a dielectric medium. We show that, in the frame of reference which moves with the group velocity of light, the traveling wave acts as a stationary diffraction grating from which electrons can diffract, similar to the conventional Kapitza-Dirac effect. To characterize the Kapitza-Dirac effect with traveling light waves, we make use of the Hamiltonian Analogy between electron optics and quantum mechanics and apply the Helmholtz-Kirchhoff theory of diffraction.

  2. Non-linear Simulations of MHD Instabilities in Tokamaks Including Eddy Current Effects and Perspectives for the Extension to Halo Currents

    NASA Astrophysics Data System (ADS)

    Hoelzl, M.; Huijsmans, G. T. A.; Merkel, P.; Atanasiu, C.; Lackner, K.; Nardon, E.; Aleynikova, K.; Liu, F.; Strumberger, E.; McAdams, R.; Chapman, I.; Fil, A.

    2014-11-01

    The dynamics of large scale plasma instabilities can be strongly influenced by the mutual interaction with currents flowing in conducting vessel structures. Especially eddy currents caused by time-varying magnetic perturbations and halo currents flowing directly from the plasma into the walls are important. The relevance of a resistive wall model is directly evident for Resistive Wall Modes (RWMs) or Vertical Displacement Events (VDEs). However, also the linear and non-linear properties of most other large-scale instabilities may be influenced significantly by the interaction with currents in conducting structures near the plasma. The understanding of halo currents arising during disruptions and VDEs, which are a serious concern for ITER as they may lead to strong asymmetric forces on vessel structures, could also benefit strongly from these non-linear modeling capabilities. Modeling the plasma dynamics and its interaction with wall currents requires solving the magneto-hydrodynamic (MHD) equations in realistic toroidal X-point geometry consistently coupled with a model for the vacuum region and the resistive conducting structures. With this in mind, the non-linear finite element MHD code JOREK [1, 2] has been coupled [3] with the resistive wall code STARWALL [4], which allows us to include the effects of eddy currents in 3D conducting structures in non-linear MHD simulations. This article summarizes the capabilities of the coupled JOREK-STARWALL system and presents benchmark results as well as first applications to non-linear simulations of RWMs, VDEs, disruptions triggered by massive gas injection, and Quiescent H-Mode. As an outlook, the perspectives for extending the model to halo currents are described.

  3. Instability of periodic MHD shear flows

    SciTech Connect

    Zaqarashvili, T.V.; Oliver, R.; Ballester, J.L.; Belvedere, G.

    2004-11-12

    The stability of periodic MHD shear flows generated by an external transversal periodic force in magnetized plasma is studied. It is shown that the temporal behaviour of magnetosonic wave spatial Fourier harmonics in such flows is governed by Mathieu equation. Consequently the harmonics with the half frequency of the shear flows grow exponentially in time. Therefore the periodic shear motions are unstable to the perturbations of compressible magnetosonic waves. The motions represent the kinetic part of the transversal oscillation in magnetized plasma. Therefore due to the instability of periodic shear motions, the transversal oscillations may quickly be damped, so transferring their energy to compressible magnetosonic perturbations.

  4. Laser-powered MHD generators for space application

    NASA Technical Reports Server (NTRS)

    Jalufka, N. W.

    1986-01-01

    Magnetohydrodynamic (MHD) energy conversion systems of the pulsed laser-supported detonation (LSD) wave, plasma MHD, and liquid-metal MHD (LMMHD) types are assessed for their potential as space-based laser-to-electrical power converters. These systems offer several advantages as energy converters relative to the present chemical, nuclear, and solar devices, including high conversion efficiency, simple design, high-temperature operation, high power density, and high reliability. Of these systems, the Brayton cycle liquid-metal MHD system appears to be the most attractive. The LMMHD technology base is well established for terrestrial applications, particularly with regard to the generator, mixer, and other system components. However, further research is required to extend this technology base to space applications and to establish the technology required to couple the laser energy into the system most efficiently. Continued research on each of the three system types is recommended.

  5. New wave effects in nonstationary plasma

    NASA Astrophysics Data System (ADS)

    Schmit, Paul

    2012-10-01

    In plasma undergoing compression, embedded waves can have very unusual and possibly useful properties. For example, part of the mechanical energy of compressing plasma can be transferred controllably to hot electrons by seeding the plasma with plasma waves. Under compression, wherein wave action is conserved, the wave energy grows as its frequency and wavenumber change adiabatically, until, suddenly, the wave damps, resulting in switch-like production not only of heat [1], but also voltage and current [2]. These bursts can be controlled precisely in time by prescribing the compression script. Several classic problems in wave physics, including the bump-on-tail instability, exhibit new effects under compression [3]. In addition, the waves undergoing compression or expansion affect fundamental properties of plasma, such as the plasma compressibility; moreover, and rather remarkably, nonlinear waves, such as BGK modes, affect the plasma compressibility differently [4]. Wave-particle interactions mediated by plasma compression also can enhance the performance of plasma-based particle accelerators. To describe numerically all these effects, novel particle-in-cell simulations were developed. These findings point towards potentially beneficial applications, including in inertial confinement fusion and high energy density plasma physics, where extreme compression is exercised on dense plasma, which could be seeded with waves. [4pt] [1] P. F. Schmit, I. Y. Dodin, and N. J. Fisch, PRL 105, 175003 (2010).[0pt] [2] P. F. Schmit and N. J. Fisch, PRL 108, 215003 (2012).[0pt] [3] P. F. Schmit et al., J. Plasma Phys. 77, 629 (2011).[0pt] [4] P. F. Schmit, I. Y. Dodin, and N. J. Fisch, Phys. Plasmas 18, 042103 (2011).[0pt] [5] P. F. Schmit and N. J. Fisch, Phys. Plasmas 18, 102102 (2011).

  6. MHD Modeling of the Transition Region Using Realistic Transport Coefficients

    NASA Astrophysics Data System (ADS)

    Goodman, Michael L.

    1997-05-01

    Most of the transition region (TR) consists of a collision dominated plasma. The dissipation and transport of energy in such a plasma is accurately described by the well known classical transport coefficients which include the electrical and thermal conductivity, viscosity, and thermo- electric tensors. These tensors are anisotropic and are functions of local values of temperature, density, and magnetic field. They may be used in an MHD model to obtain a self consistent, physically realistic description of the TR. The physics of kinetic processes is included in the MHD model through the transport coefficients. As a first step in studying heating and cooling processes in the TR in a realistic, quantitative manner, a 1.5 dimensional, steady state MHD model with a specified temperature profile is considered. The momentum equation includes the inertial, pressure gradient, Lorentz, and gravitational forces. The Ohm's law includes the exact expressions for the electrical conductivity and thermo- electric tensors. The electrical conductivity relates the generalized electric field to the conduction current density while the thermo-electric tensor relates the temperature gradient to the thermo-electric current density. The total current density is the sum of the two. It is found that the thermo-electric current density can be as large as the conduction current density, indicating that thermo-electric effects are probably important in modeling the dynamics of energy dissipation, such as wave dissipation, in the TR. Although the temperature gradient is in the vertical direction, the thermo-electric current density is in the horizontal direction, indicating the importance of the effects of anisotropic transport. The transport coefficients are valid for all magnetic field strengths, and so may be used to study the physics of weakly as well as strongly magnetized regions of the TR. Numerical examples are presented.

  7. MHD simulations of Earth's bow shock at low Mach numbers: Standoff distances

    NASA Astrophysics Data System (ADS)

    Cairns, Iver H.; Lyon, J. G.

    1995-09-01

    Global, three-dimensional, ideal MHD simulations of Earth's bow shock are reported for low Alfven Mach numbers MA and quasi-perpendicular magnetic field orientations. The simulations use a hard, infinitely conducting magnetopause obstacle, with axisymmetric three-dimensional location given by a scaled standard model, to directly address previous gasdynamic (GD) and field-aligned MHD (FA-MHD) work. Tests of the simulated shocks' density jumps X for 1.4<~MA<~10 and the high MA shock location, and reproduction of the GD relation between magnetosheath thickness and X for quasi-gasdynamic MHD runs with MA>>MS, confirm that the MHD code is working correctly. The MHD simulations show the standoff distance as increasing monotonically with decreasing MA. Significantly larger as are found at low MA than predicted by GD and phenomenological MHD models and FA-MHD simulations, as required qualitatively by observations. The GD and FA-MHD predictions err qualitatively, predicting either constant or decreasing as with decreasing MA. This qualitative difference between quasiperpendicular MHD and FA-MHD simulations is direct evidence for as depending on the magnetic field orientation θ. The enhancement factor over the phenomenological MHD predictions at MA~2.4 agrees quantitatively with one observational estimate. A linear relationship is found between the magnetosheath thickness and X, modified both quantitatively and intrinsically by MHD effects from the GD result. The MHD and GD results agree in the high MA limit. An MHD theory is developed for as, restricted to sufficiently perpendicular θ and high sonic Mach numbers MS. It explains the simulation results with excellent accuracy. Observational and further simulation testing of this MHD theory, and of its predicted MA, θ, and MS effects, is desirable.

  8. Symmetry, Statistics and Structure in MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Here, we examine homogeneous MHD turbulence in terms of truncated Fourier series. The ideal MHD equations and the associated statistical theory of absolute equilibrium ensembles are symmetric under P, C and T. However, the presence of invariant helicities, which are pseudoscalars under P and C, dynamically breaks this symmetry. This occurs because the surface of constant energy in phase space has disjoint parts, called components: while ensemble averages are taken over all components, a dynamical phase trajectory is confined to only one component. As the Birkhoff-Khinchin theorem tells us, ideal MHD turbulence is thus non-ergodic. This non-ergodicity manifests itself in low-wave number Fourier modes that have large mean values (while absolute ensemble theory predicts mean values of zero). Therefore, we have coherent structure in ideal MHD turbulence. The level of non-ergodicity and amount of energy contained in the associated coherent structure depends on the values of the helicities, as well as on the presence, or not, of a mean magnetic field and/or overall rotation. In addition to the well known cross and magnetic helicities, we also present a new invariant, which we call the parallel helicity, since it occurs when mean field and rotation axis are aligned. The question of applicability of these results to real (i.e., dissipative) MHD turbulence is also examined. Several long-time numerical simulations on a 64(exp 3) grid are given as examples. It is seen that coherent structure begins to form before decay dominates over nonlinearity. The connection of these results with inverse spectral cascades, selective decay, and magnetic dynamos is also discussed.

  9. MHD Equation of State with Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Gong, Zhigang; Däppen, Werner; Zejda, Ladislav

    2001-01-01

    The Mihalas-Däppen-Hummer (MHD) equation of state does not include the effect of relativistic partially degenerate electrons, although nonrelativistic partial degeneracy is taken into account. The discovery of a relativistic correction in helioseismology forces us to perform an appropriate upgrade of the MHD equation of state. We have adopted the method of J. M. Aparicio to evaluate the relativistic Fermi-Dirac functions. Our calculations confirm the validity of the approximation used, which works well for the weakly relativistic electrons under solar-center conditions. However, our results will also provide reliable thermodynamic quantities in the stronger relativistic regime as found in more massive stars. Since a particular feature of the original MHD papers was an explicit list of the adopted free energy and its first- and second-order analytical derivatives, we give the corresponding relativistic quantities in the Appendix.

  10. Modeling the effect of wave-vegetation interaction on wave setup

    NASA Astrophysics Data System (ADS)

    van Rooijen, A. A.; McCall, R. T.; van Thiel de Vries, J. S. M.; van Dongeren, A. R.; Reniers, A. J. H. M.; Roelvink, J. A.

    2016-06-01

    Aquatic vegetation in the coastal zone attenuates wave energy and reduces the risk of coastal hazards, e.g., flooding. Besides the attenuation of sea-swell waves, vegetation may also affect infragravity-band (IG) waves and wave setup. To date, knowledge on the effect of vegetation on IG waves and wave setup is lacking, while they are potentially important parameters for coastal risk assessment. In this study, the storm impact model XBeach is extended with formulations for attenuation of sea-swell and IG waves, and wave setup effects in two modes: the sea-swell wave phase-resolving (nonhydrostatic) and the phase-averaged (surfbeat) mode. In surfbeat mode, a wave shape model is implemented to capture the effect of nonlinear wave-vegetation interaction processes on wave setup. Both modeling modes are verified using data from two flume experiments with mimic vegetation and show good skill in computing the sea-swell and IG wave transformation, and wave setup. In surfbeat mode, the wave setup prediction greatly improves when using the wave shape model, while in nonhydrostatic mode (nonlinear) intrawave effects are directly accounted for. Subsequently, the model is used for a range of coastal geomorphological configurations by varying bed slope and vegetation extent. The results indicate that the effect of wave-vegetation interaction on wave setup may be relevant for a range of typical coastal geomorphological configurations (e.g., relatively steep to gentle slope coasts fronted by vegetation).

  11. Anisotropic MHD model and some solutions

    SciTech Connect

    Kuznetsov, V. D.; Dzhalilov, N. S.

    2010-09-15

    MHD waves and instabilities in a collisionless anisotropic-pressure plasma are analyzed in an anisotropic MHD model based on the 16-moment approximation, and the results are found to agree well with those obtained in the low-frequency limit of the kinetic model. It is shown that accounting for heat fluxes leads to an asymmetry in the phase velocities of the wave modes with respect to the heat flux direction and also to a strong interaction between the modes, especially between the backward ones (those that propagate in a direction opposite to that of the heat flux). A correct description of the mirror instability is given. The resonant interaction of three backward modes-fast acoustic, fast magnetosonic, and slow acoustic-under the conditions for the onset of the classical firehose instability triggers a new type of instability the growth rate of which is faster than the maximum growth rate of the conventional firehose instability. The results prove that, in contrast to the familiar Chew-Goldberger-Low approximate model, the anisotropic MHD approach provides a correct description of the large-scale dynamics of collisionless anisotropic plasmas (such as solar corona, solar wind, and ionospheric and magnetospheric plasmas).

  12. Antiferromagnetic Spin Wave Field-Effect Transistor

    PubMed Central

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-01-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale. PMID:27048928

  13. Antiferromagnetic Spin Wave Field-Effect Transistor

    SciTech Connect

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.

  14. Antiferromagnetic Spin Wave Field-Effect Transistor

    DOE PAGES

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; ...

    2016-04-06

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. In conclusion, our findings open up the exciting possibilitymore » of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.« less

  15. Antiferromagnetic Spin Wave Field-Effect Transistor

    NASA Astrophysics Data System (ADS)

    Cheng, Ran; Daniels, Matthew W.; Zhu, Jian-Gang; Xiao, Di

    2016-04-01

    In a collinear antiferromagnet with easy-axis anisotropy, symmetry dictates that the spin wave modes must be doubly degenerate. Theses two modes, distinguished by their opposite polarization and available only in antiferromagnets, give rise to a novel degree of freedom to encode and process information. We show that the spin wave polarization can be manipulated by an electric field induced Dzyaloshinskii-Moriya interaction and magnetic anisotropy. We propose a prototype spin wave field-effect transistor which realizes a gate-tunable magnonic analog of the Faraday effect, and demonstrate its application in THz signal modulation. Our findings open up the exciting possibility of digital data processing utilizing antiferromagnetic spin waves and enable the direct projection of optical computing concepts onto the mesoscopic scale.

  16. Modeling ionospheric electron precipitation due to wave particle scattering in the magnetosphere and the feedback effect on the magnetospheric dynamics

    NASA Astrophysics Data System (ADS)

    Yu, Y.; Jordanova, V.; Ridley, A. J.; Albert, J.; Horne, R. B.; Jeffery, C. A.

    2015-12-01

    Electron precipitation down to the atmosphere caused by wave-particle scattering in the magnetosphere contribute significantly to the enhancement of auroral ionospheric conductivity. Global MHD models that are incapable of capturing kinetic physics in the inner magnetosphere usually adopt MHD parameters to specify the precipitation flux to estimate auroral conductivity, hence losing self-consistency in the global circulation of the magnetosphere-ionosphere system. In this study we improve the coupling structure in global models by connecting the physics-based (wave-particle scattering) electron precipitation with the ionospheric electrodynamics and investigate the feedback effect on the magnetospheric dynamics. We use BATS-R-US coupled with a kinetic ring current model RAM-SCB that solves pitch angle dependent particle distributions to study the global circulation dynamics during the Jan 25-26, 2013 storm event. Following tail injections, we found enhanced precipitation number and energy fluxes of tens of keV electrons being scattered into loss cone due to interactions with enhanced chorus and hiss waves in the magnetosphere. This results in a more profound auroral conductance and larger electric field imposing on the plasma transport in the magnetosphere. We also compared our results with previous methods in specifying the auroral conductance, such as empirical relation used in Ridley et al. (2004). It is found that our physics-based method develops a larger convection electric field in the near-Earth region and therefore leads to a more intense ring current.

  17. Hall effects on MHD flow of heat generating/absorbing fluid through porous medium in a rotating parallel plate channel

    NASA Astrophysics Data System (ADS)

    Swarnalathamma, B. V.; Krishna, M. Veera

    2017-07-01

    We studied heat transfer on MHD convective flow of viscous electrically conducting heat generating/absorbing fluid through porous medium in a rotating channel under uniform transverse magnetic field normal to the channel and taking Hall current. The flow is governed by the Brinkman's model. The diagnostic solutions for the velocity and temperature are obtained by perturbation technique and computationally discussed with respect to flow parameters through the graphs. The skin friction and Nusselt number are also evaluated and computationally discussed with reference to pertinent parameters in detail.

  18. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  19. Radial energy transport by magnetospheric ULF waves: Effects of magnetic curvature and plasma pressure

    NASA Technical Reports Server (NTRS)

    Kouznetsov, Igor; Lotko, William

    1995-01-01

    The 'radial' transport of energy by internal ULF waves, stimulated by dayside magnetospheric boundary oscillations, is analyzed in the framework of one-fluid magnetohydrodynamics. (the term radial is used here to denote the direction orthogonal to geomagnetic flux surfaces.) The model for the inhomogeneous magnetospheric plasma and background magnetic field is axisymmetric and includes radial and parallel variations in the magnetic field, magnetic curvature, plasma density, and low but finite plasma pressure. The radial mode structure of the coupled fast and intermediate MHD waves is determined by numerical solution of the inhomogeneous wave equation; the parallel mode structure is characterized by a Wentzel-Kramer-Brillouin (WKB) approximation. Ionospheric dissipation is modeled by allowing the parallel wave number to be complex. For boudnary oscillations with frequencies in the range from 10 to 48 mHz, and using a dipole model for the background magnetic field, the combined effects of magnetic curvature and finite plasma pressure are shown to (1) enhance the amplitude of field line resonances by as much as a factor of 2 relative to values obtained in a cold plasma or box-model approximation for the dayside magnetosphere; (2) increase the energy flux delivered to a given resonance by a factor of 2-4; and (3) broaden the spectral width of the resonance by a factor of 2-3. The effects are attributed to the existence of an 'Alfven buoyancy oscillation,' which approaches the usual shear mode Alfven wave at resonance, but unlike the shear Alfven mode, it is dispersive at short perpendicular wavelengths. The form of dispersion is analogous to that of an internal atmospheric gravity wave, with the magnetic tension of the curved background field providing the restoring force and allowing radial propagation of the mode. For nominal dayside parameters, the propagation band of the Alfven buoyancy wave occurs between the location of its (field line) resonance and that of the

  20. Proceedings of the workshop on nonlinear MHD and extended MHD

    SciTech Connect

    1998-12-01

    Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. Special topics reports for the reference tandem mirror fusion breeder: liquid metal MHD pressure drop effects in the packed bed blanket. Vol. 1

    SciTech Connect

    McCarville, T.J.; Berwald, D.H.; Wong, C.P.C.

    1984-09-01

    Magnetohydrodynamic (MHD) effects which result from the use of liquid metal coolants in magnetic fusion reactors include the modification of flow profiles (including the suppression of turbulence) and increases in the primary loop pressure drop and the hydrostatic pressure at the first wall of the blanket. In the reference fission-suppressed tandem mirror fusion breeder design concept, flow profile modification is a relatively minor concern, but the MHD pressure drop in flowing the liquid lithium coolant through an annular packed bed of beryllium/thorium pebbles is directly related to the required first wall structure thickness. As such, it is a major concern which directly impacts fissile breeding efficiency. Consequently, an improved model for the packed bed pressure drop has been developed. By considering spacial averages of electric fields, currents, and fluid flow velocities the general equations have been reduced to simple expressions for the pressure drop. The averaging approach results in expressions for the pressure drop involving a constant which reflects details of the flow around the pebbles. Such details are difficult to assess analytically, and the constant may eventually have to be evaluated by experiment. However, an energy approach has been used in this study to bound the possible values of the constant, and thus the pressure drop. In anticipation that an experimental facility might be established to evaluate the undetermined constant as well as to address other uncertainties, a survey of existing facilities is presented.

  2. Radial Diffusion study of the 1 June 2013 CME event using MHD simulations.

    NASA Astrophysics Data System (ADS)

    Patel, M.; Hudson, M.; Wiltberger, M. J.; Li, Z.; Boyd, A. J.

    2016-12-01

    The June 1, 2013 storm was a CME-shock driven geomagnetic storm (Dst = -119 nT) that caused a dropout affecting all radiation belt electron energies measured by the Energetic Particle, Composition and Thermal Plasma Suite (ECT) instrument on Van Allen Probes at higher L-shells following dynamic pressure enhancement in the solar wind. Lower energies (up to about 700 keV) were enhanced by the storm while MeV electrons were depleted throughout the belt. We focus on depletion through radial diffusion caused by the enhanced ULF wave activity due to the CME-shock. This study utilities the Lyon-Fedder-Mobarry (LFM) model, a 3D global magnetospheric simulation code based on the ideal MHD equations, coupled with the Magnetosphere Ionosphere Coupler (MIX) and Rice Convection Model (RCM). The MHD electric and magnetic fields with equations described by Fei et al. [JGR, 2006] are used to calculate radial diffusion coefficients (DLL). These DLL values are input into a radial diffusion code to recreate the dropouts observed by the Van Allen Probes. The importance of understanding the complex role that ULF waves play in radial transport and the effects of CME-driven storms on the relativistic energy electrons in the radiation belts can be accomplished using MHD simulations to obtain diffusion coefficients, initial phase space density and the outer boundary condition from the ECT instrument suite and a radial diffusion model to reproduce observed fluxes which compare favorably with Van Allen Probes ECT measurements.

  3. A transient MHD model applicable for the source of solar cosmic ray acceleration

    NASA Technical Reports Server (NTRS)

    Dryer, M.; Wu, S. T.

    1981-01-01

    A two-dimensional, time-dependent magnetohydrodynamic model is used to describe the possible mechanisms for the source of solar cosmic ray acceleration following a solar flare. The hypothesis is based on the propagation of fast mode MHD shocks following a sudden release of energy. In this presentation, the effects of initial magnetic topology and strength on the formation of MHD shocks have been studied. The plasma beta (thermal pressure/magnetic pressure) is considered as a measure of the initial, relative strength of the field. During dynamic mass motion, the Alfven Mach number is the more appropriate measure of the magnetic field's ability to control the outward motion. It is suggested that this model (computed self-consistently) provides the shock waves and the disturbed mass motion behind it as likely sources for solar cosmic ray acceleration.

  4. Collisionless Reconnection with Weak Slow Shocks Under Anisotropic MHD Approximation

    NASA Astrophysics Data System (ADS)

    Hirabayashi, K.; Hoshino, M.

    2014-12-01

    Magnetic reconnection accompanied by a pair of slow-mode shock waves, known as Petschek's theory, has been widely studied as an efficient mechanism to convert magnetically stored energy to thermal and/or kinetic energy in plasmas. Satellite observations in the Earth's magnetotail, on the other hand, report that the detection of slow shocks is rare compared with the theory. As an important step to bridge the gap between the observational fact and the Petschek-type reconnection, we performed one- and two- dimensional collisionless magnetohydrodynamic (MHD) simulations of magnetic reconnection paying special attention to the effect of temperature anisotropy. In high-beta plasmas such as a plasma sheet in the magnetotail, it is expected that even weak temperature anisotropy can greatly modify the dynamics. We demonstrate that the slow shocks do exist in the reconnection layer even under the anisotropic temperature. The resultant shocks, however, are weaker than those in isotropic MHD in terms of plasma compression. In addition, the amount of magnetic energy released across the shock is extremely small, that is, the shock is no longer switch-off type. In spite of the weakness of the shocks, the reconnection rates measured by the inflow velocities are kept at the same level as the isotropic cases. Once the slow shock forms, the downstream plasma is heated in highly anisotropic manner, and the firehose-sense anisotropy affects the wave structure in the system. In particular, it is remarkable that the sequential order of propagation of slow shocks and rotational discontinuities reverses depending upon the magnitude of a superposed guide field. Our result is consistent with the rareness of the slow shock detection in the magnetotail, and implies that shocks do not necessarily play an important role. Furthermore, a variety of wave structure of a reconnection layer shown here will help interpretation of observational data in collisionless reconnection.

  5. Revisiting MHD stability comparison theorems: Some surprising new results

    NASA Astrophysics Data System (ADS)

    Cerfon, Antoine; Freidberg, Jeffrey

    2009-05-01

    The classic MHD stability comparison theorems (Kruskal-Oberman, Rosenbluth-Rostoker) show that ideal MHD yields the most stringent stability limits according to the hierarchy δWCGL>δWKIN>δWMHD. This has long justified the use of ideal MHD for conservative predictions of MHD stability boundaries. We reexamine these theorems, with the following conclusions:(1) It is crucial to distinguish between ergodic and closed field line systems.(2) It is essential to account for resonant particles in the kinetic MHD model.(3) For ergodic systems the original kinetic MHD analysis over-estimates stability: δWKIN>δWMHD. Our new result predicts δWKIN=δWMHD.(4) For closed line systems plasma compressibility effects become important, and resonant particle effects vanish. Both the original and new analysis predict δWKIN>δWMHD. However, using a Vlasov-Fluid model with Vlasov ions and fluid electrons we show that both δWKIN and δWMHD, while mathematically correct, yield the wrong physical result. The V-F model shows that at marginal stability the compressibility stabilization term vanishes identically! For ergodic systems, marginal stability is always incompressible, so δWKIN=δWMHD=δWVF. For compressible modes in closed line systems, however, perpendicular resonant particle effects cancel the stabilizing effect of plasma compressibility predicted by ideal and kinetic MHD: δWKIN>δWMHD>δWVF.

  6. Broken Ergodicity in MHD Turbulence in a Spherical Domain

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.; wang, Yifan

    2011-01-01

    Broken ergodicity (BE) occurs in Fourier method numerical simulations of ideal, homogeneous, incompressible magnetohydrodynamic (MHD) turbulence. Although naive statistical theory predicts that Fourier coefficients of fluid velocity and magnetic field are zero-mean random variables, numerical simulations clearly show that low-wave-number coefficients have non-zero mean values that can be very large compared to the associated standard deviation. In other words, large-scale coherent structure (i.e., broken ergodicity) in homogeneous MHD turbulence can spontaneously grow out of random initial conditions. Eigenanalysis of the modal covariance matrices in the probability density functions of ideal statistical theory leads to a theoretical explanation of observed BE in homogeneous MHD turbulence. Since dissipation is minimal at the largest scales, BE is also relevant for resistive magnetofluids, as evidenced in numerical simulations. Here, we move beyond model magnetofluids confined by periodic boxes to examine BE in rotating magnetofluids in spherical domains using spherical harmonic expansions along with suitable boundary conditions. We present theoretical results for 3-D and 2-D spherical models and also present computational results from dynamical simulations of 2-D MHD turbulence on a rotating spherical surface. MHD turbulence on a 2-D sphere is affected by Coriolus forces, while MHD turbulence on a 2-D plane is not, so that 2-D spherical models are a useful (and simpler) intermediate stage on the path to understanding the much more complex 3-D spherical case.

  7. The memory effect for plane gravitational waves

    NASA Astrophysics Data System (ADS)

    Zhang, P.-M.; Duval, C.; Gibbons, G. W.; Horvathy, P. A.

    2017-09-01

    We give an account of the gravitational memory effect in the presence of the exact plane wave solution of Einstein's vacuum equations. This allows an elementary but exact description of the soft gravitons and how their presence may be detected by observing the motion of freely falling particles. The theorem of Bondi and Pirani on caustics (for which we present a new proof) implies that the asymptotic relative velocity is constant but not zero, in contradiction with the permanent displacement claimed by Zel'dovich and Polnarev. A non-vanishing asymptotic relative velocity might be used to detect gravitational waves through the "velocity memory effect", considered by Braginsky, Thorne, Grishchuk, and Polnarev.

  8. The effect of wave breaking on wave spectrum in water of finite depth

    NASA Technical Reports Server (NTRS)

    Tung, C. C.; Huang, N. E.

    1987-01-01

    An approximate method is devised to compute the energy-containing portion of the spectrum of waves in water of finite depth, taking into account the effect of wave breaking. It is assumed that there exists a linear and Gaussian ideal wave train whose spectrum is first calculated using the wave energy flux balance equation without considering wave breaking. The Miche wave-breaking criterion for waves in water of finite depth is then applied to limit the wave elevation and establish an expression for the breaking wave elevation in terms of the elevation and elevation's second time derivative of the ideal waves. Simple expressions for the mean value, the mean square value, and the spectrum of the breaking waves are then obtained, and numerical results are presented graphically.

  9. Homotopy analysis method for chemical reaction and thermophoresis effects on heat and mass transfer for mhd hiemenz flow over a porous wedge in the presence of heat radiation

    NASA Astrophysics Data System (ADS)

    Kandasamy, R.; Muhaimin, I.; Puvi Arasu, P.; Loganathan, P.

    2011-05-01

    An analytical technique, namely, the homotopy analysis method, is applied to analyze the effect of chemical reaction and thermophoresis particle deposition on the MHD mixed convective heat and mass transfer for a Hiemenz flow over a porous wedge in the presence of heat radiation. The fluid is assumed to be viscous and incompressible. Analytical and numerical calculations are carried out for different values of dimensionless parameters, and an analysis of the results obtained shows that the flow field is influenced appreciably by the buoyancy ratio as well as by the thermal diffusion and suction/injection parameters. The effects of these parameters on the process characteristics are investigated methodically, and typical results are illustrated. An explicit, totally analytical, and uniformly valid solution is derived which agrees well with numerical results.

  10. Conjugate effects of heat and mass transfer on MHD free convection flow over an inclined plate embedded in a porous medium.

    PubMed

    Ali, Farhad; Khan, Ilyas; Samiulhaq; Shafie, Sharidan

    2013-01-01

    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables.

  11. Conjugate Effects of Heat and Mass Transfer on MHD Free Convection Flow over an Inclined Plate Embedded in a Porous Medium

    PubMed Central

    Ali, Farhad; Khan, Ilyas; Samiulhaq; Shafie, Sharidan

    2013-01-01

    The aim of this study is to present an exact analysis of combined effects of radiation and chemical reaction on the magnetohydrodynamic (MHD) free convection flow of an electrically conducting incompressible viscous fluid over an inclined plate embedded in a porous medium. The impulsively started plate with variable temperature and mass diffusion is considered. The dimensionless momentum equation coupled with the energy and mass diffusion equations are analytically solved using the Laplace transform method. Expressions for velocity, temperature and concentration fields are obtained. They satisfy all imposed initial and boundary conditions and can be reduced, as special cases, to some known solutions from the literature. Expressions for skin friction, Nusselt number and Sherwood number are also obtained. Finally, the effects of pertinent parameters on velocity, temperature and concentration profiles are graphically displayed whereas the variations in skin friction, Nusselt number and Sherwood number are shown through tables. PMID:23840321

  12. Joule heating effects on MHD mixed convection of a Jeffrey fluid over a stretching sheet with power law heat flux: A numerical study

    NASA Astrophysics Data System (ADS)

    Babu, D. Harish; Narayana, P. V. Satya

    2016-08-01

    An analysis has been carried out to study the Joule heating effect on MHD heat transfer of an incompressible Jeffrey fluid due to a stretching porous sheet with power law heat flux and heat source. A constant magnetic field is applied normal to the stretching surface. The basic governing equations are reduced into the coupled nonlinear ordinary differential equations by using similarity transformations. The resulting equations are then solved numerically by shooting method with fourth order Runge-Kutta scheme. The effects of various physical parameters entering into the problem on dimensionless velocity and temperature distribution are discussed through graphs and tables. The results reveal that the momentum and thermal boundary layer thickness are significantly influenced by Deborah number (β), ratio of relaxation and retardation times parameter (λ), heat generation parameter (β*), Eckert number (Ec) and magnetic field parameter (M). A comparison with the previously published works shows excellent agreement.

  13. MHD Ballooning Instability in the Plasma Sheet

    SciTech Connect

    C.Z. Cheng; S. Zaharia

    2003-10-20

    Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum.

  14. Lacunae-based open boundary conditions for dissipative MHD

    NASA Astrophysics Data System (ADS)

    Meier, Eric; Glasser, A. H.; Lukin, V. S.; Shumlak, U.

    2010-11-01

    Hyperbolic-based open boundary conditions have proven to be inadequate for modeling dissipative MHD systems, especially when diffusive effects are dominant at the boundary, as is common, for example, at the ends of an FRC or a mirror plasma. Lacunae-based open boundary conditions (LOBC) are under development for modeling open boundaries in mixed hyperbolic-parabolic systems. Initial work on Lacunae-based BC was done by V.S. Ryaben'kii, S.V. Tsynkov et al. [1]. Lacunae are still regions behind trailing fronts that exist in wave-type solutions. To implement LOBC, a buffer region is appended to the domain of interest. In this buffer region, by taking advantage of the lacunae in the solution, outgoing waves are damped and reflection is prevented. Diffusive behavior is bounded by a Dirichlet or Neumann condition at the edge of the buffer region. Wave reflection is prevented and parabolic behavior is properly bounded. Progress developing LOBC in the SEL/HiFi spectral element code is presented.[4pt] [1] V.S. Ryaben'kii et al., Global discrete artificial boundary conditions for time-dependent wave propagation, J. Comp. Phys., 174 (2001) 712

  15. Evaluation of the Effects of Ketoconazole and Voriconazole on the Pharmacokinetics of Oxcarbazepine and Its Main Metabolite MHD in Rats by UPLC-MS-MS.

    PubMed

    Chen, Xinxin; Gu, Ermin; Wang, Shuanghu; Zheng, Xiang; Chen, Mengchun; Wang, Li; Hu, Guoxin; Cai, Jian-ping; Zhou, Hongyu

    2016-03-01

    Oxcarbazepine (OXC), a second-generation antiepileptic drug, undergoes rapid reduction with formation of the active metabolite 10,11-dihydro-10-hydroxy-carbazepine (MHD) in vivo. In this study, a method for simultaneous determination of OXC and MHD in rat plasma using ultra-performance liquid chromatography with tandem mass spectrometry (UPLC-MS-MS) was developed and validated. Under given chromatographic conditions, OXC, MHD and internal standard diazepam were separated well and quantified by electrospray positive ionization mass spectrometry in the multiple reaction monitoring transitions mode. The method validation demonstrated good linearity over the range of 10-2,000 ng/mL for OXC and 5-1,000 ng/mL for MHD. The lower limit of quantification was 5 ng/mL for OXC and 2.5 ng/mL for MHD, respectively. The method was successfully applied to the evaluation of the pharmacokinetics of OXC and MHD in rats, with or without pretreatment by ketoconazole (KET) and voriconazole (VOR). Statistics indicated that KET and VOR significantly affected the disposition of OXC and MHD in vivo, whereas VOR predominantly interfered with the disposition of MHD. This method is suitable for pharmacokinetic study in small animals.

  16. The effect of pre-existing islands on disruption mitigation in MHD simulations of DIII-D

    DOE PAGES

    Izzo, V. A.

    2017-02-27

    Locked-modes are the most likely cause of disruptions in ITER, so large islands are expected to be common when the ITER disruption mitigation system is deployed. MHD modeling of disruption mitigation by massive gas injection is carried out for DIII-D plasmas with stationary, pre-existing islands. Results show that the magnetic topology at the q=2 surface can affect the parallel spreading of injected impurities, and that, in particular, the break-up of large 2/1 islands into smaller 4/2 islands chains can favorably affect mitigation metrics. The direct imposition of a 4/2 mode is found to have similar results to the case inmore » which the 4/2 harmonic grows spontaneously.« less

  17. MHD-to-PIC transition for modeling of conduction and opening in a plasma opening switch

    NASA Astrophysics Data System (ADS)

    Schumer, J. W.

    2001-06-01

    The plasma opening switch (POS) is a critical element of some inductive-energy-storage pulsed-power generators. Detailed understanding of plasma redistribution and thinning during the POS conduction phase can be gained through magnetohydrodynamic fluid (MHD) simulations. As space-charge separation and kinetic effects become important late in the conduction phase (beginning of the opening phase), MHD methods become invalid and particle-in-cell (PIC) methods should be used. In this article, the applicability of MHD techniques is extended into PIC-like regimes by including non-ideal MHD phenomena such as the Hall effect and resistivity. The feasibility of the PIC technique is likewise extended into high-density, low-temperature MHD-like regimes by using a novel numerical cooling algorithm. At an appropriate time, an MHD-to-PIC transition must be accomplished in order to accurately simulate the POS opening phase. The mechanics for converting MHD (MACH2) output into PIC (MAGIC2d) input are introduced, as are the transition criteria determining when to perform this conversion. To establish these transition criteria, side-by-side MHD and PIC simulations are presented and compared. These separate simulations are then complemented by a proof-of-principle MHD-to-PIC transition, thereby demonstrating this MHD-to-PIC technique as a potentially viable tool for the simulation of POS plasmas. Practical limitations of the MHD-to-PIC transition method and applicability of the transition criteria to hybrid fluid-kinetic simulations are discussed.

  18. MHD turbulence model for global simulations of the solar wind and SEP acceleration

    SciTech Connect

    Sokolov, Igor V.; Roussev, Ilia I.

    2008-08-25

    The aim of the present work is to unify the various transport equations for turbulent waves that are used in different areas of space physics. We mostly focus on the magnetohydrodynamic (MHD) turbulence, in particular the Alfvenic turbulence.

  19. Investigation of the plasma shaping effects on the H-mode pedestal structure using coupled kinetic neoclassical/MHD stability simulations

    DOE PAGES

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; ...

    2017-06-08

    The effects of plasma shaping on the H-mode pedestal structure are investigated. High fidelity kinetic simulations of the neoclassical pedestal dynamics are combined with the magnetohydrodynamic (MHD) stability conditions for triggering edge localized mode (ELM) instabilities that limit the pedestal width and height in H-mode plasmas. We use the neoclassical kinetic XGC0 code [Chang et al., Phys. Plasmas 11, 2649 (2004)] to carry out a scan over plasma elongation and triangularity. As plasma profiles evolve, the MHD stability limits of these profiles are analyzed with the ideal MHD ELITE code [Snyder et al., Phys. Plasmas 9, 2037 (2002)]. In simulationsmore » with the XGC0 code, which includes coupled ion-electron dynamics, yield predictions for both ion and electron pedestal profiles. The differences in the predicted H-mode pedestal width and height for the DIII-D discharges with different elongation and triangularities are discussed. For the discharges with higher elongation, it is found that the gradients of the plasma profiles in the H-mode pedestal reach semi-steady states. In these simulations, the pedestal slowly continues to evolve to higher pedestal pressures and bootstrap currents until the peeling-ballooning stability conditions are satisfied. The discharges with lower elongation do not reach the semi-steady state, and ELM crashes are triggered at earlier times. The plasma elongation is found to have a stronger stabilizing effect than the plasma triangularity. For the discharges with lower elongation and lower triangularity, the ELM frequency is large, and the H-mode pedestal evolves rapidly. It is found that the temperature of neutrals in the scrape-off-layer (SOL) region can affect the dynamics of the H-mode pedestal buildup. But the final pedestal profiles are nearly independent of the neutral temperature. The elongation and triangularity affect the pedestal widths of plasma density and electron temperature profiles differently. This provides a new

  20. THE EFFECT OF A TWISTED MAGNETIC FIELD ON THE PERIOD RATIO P{sub 1}/P{sub 2} OF NONAXISYMMETRIC MAGNETOHYDRODYNAMIC WAVES

    SciTech Connect

    Karami, K.; Bahari, K. E-mail: K.Bahari@razi.ac.ir

    2012-10-01

    We consider nonaxisymmetric magnetohydrodynamic (MHD) modes in a zero-beta cylindrical compressible thin magnetic flux tube modeled as a twisted core surrounded by a magnetically twisted annulus, with both embedded in a straight ambient external field. The dispersion relation is derived and solved analytically and numerically to obtain the frequencies of the nonaxisymmetric MHD waves. The main result is that the twisted magnetic annulus does affect the period ratio P{sub 1}/P{sub 2} of the kink modes. For the kink modes, the magnetic twist in the annulus region can achieve deviations from P{sub 1}/P{sub 2} = 2 of the same order of magnitude as in the observations. Furthermore, the effect of the internal twist on the fluting modes is investigated.

  1. An MHD Model of the Solar Corona and Solar Wind

    NASA Astrophysics Data System (ADS)

    Mikic, Z.; Linker, J. A.; Colborn, J. A.

    1996-05-01

    The structure of the heliosphere, especially the regions of fast and slow solar wind, are strongly influenced by coronal magnetic structure near the Sun. Favorable comparisons between three-dimensional MHD models of the solar corona and eclipse observations have shown that it is possible to model the structure of the large-scale solar corona. However, these models use a simplified energy equation, in which the plasma is assumed to obey an adiabatic energy equation with a reduced polytropic index. As a consequence, even though the predicted streamer structure in the corona agrees fairly well with eclipse observations, the predicted solar wind speed is not realistic. We have improved this model by adding important dynamic and thermodynamic effects, including the presence of a transition region, thermal conduction, radiation, coronal heating, and Alfven wave acceleration. We will present results obtained with this improved model on the structure of the solar corona and solar wind.

  2. Closed cycle MHD generator with nonuniform gas-plasma flow driving recombinated plasma clots formed by high-energy electron beams

    SciTech Connect

    Danilov, V.V.; Laptev, S.S.; Slavin, V.S.

    1996-12-31

    A new concept of a closed cycle MHD generator without alkali seed has been suggested. The essence of it is the use of the high-energy electron beams technology for a nonuniform gas-plasma flow in MHD channel creation. At the inlet of MHD channel in supersonic flow of noble gas (He) the plasma clots with a density about 10{sup 15} cm{sup {minus}3} are formed by pulsed intense electron beams with energy about 100 keV. Gas flow drives these clots in a cross magnetic field along the MHD channel which has electrodes connected with a load by Faraday`s scheme. Because the nonuniform gas-plasma flow has not the conductivity in the Hall`s EMF direction a Faraday`s current can flow only through the narrow plasma layers. The energy dissipation and Joule`s heating in MHD channel support the nonequilibrium conductivity in these plasma layers. a gas flow pushes current layers and produces electric power at the expense of enthalpy extraction. The key element is a question of plasma layers stability in MHD channel. The most dangerous instability is the overheating instability. it is shown that taking into account the phenomenon of frozen conductivity for recombinated plasma which appears for noble gas at T{sub e} > 4,000 K the regime with {partial_derivative}{sigma}/{partial_derivative}T{sub e} < 0 can be realized. Due to the fulfillment of this condition the overheating instability is effectively suppressed. The numerical simulation has shown that a supersonic gas flow, containing about 4 current layers in MHD channel simultaneously, is braked without shock waves creation. Current layers provide no less than 30% enthalpy extraction and about 80% isentropic efficiency.

  3. Mirror force induced wave dispersion in Alfvén waves

    SciTech Connect

    Damiano, P. A.; Johnson, J. R.

    2013-06-15

    Recent hybrid MHD-kinetic electron simulations of global scale standing shear Alfvén waves along the Earth's closed dipolar magnetic field lines show that the upward parallel current region within these waves saturates and broadens perpendicular to the ambient magnetic field and that this broadening increases with the electron temperature. Using resistive MHD simulations, with a parallel Ohm's law derived from the linear Knight relation (which expresses the current-voltage relationship along an auroral field line), we explore the nature of this broadening in the context of the increased perpendicular Poynting flux resulting from the increased parallel electric field associated with mirror force effects. This increased Poynting flux facilitates wave energy dispersion across field lines which in-turn allows for electron acceleration to carry the field aligned current on adjacent field lines. This mirror force driven dispersion can dominate over that associated with electron inertial effects for global scale waves.

  4. Thermophoresis and variable viscosity effects on MHD mixed convective heat and mass transfer past a porous wedge in the presence of chemical reaction

    NASA Astrophysics Data System (ADS)

    Kandasamy, Ramasamy; Muhaimin, I.; Khamis, Azme B.

    2009-04-01

    An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.

  5. Output from MHD Models

    NASA Astrophysics Data System (ADS)

    Vlahakis, Nektarios

    2010-03-01

    Outflows emanating from the environment of stellar or galactic objects are a widespread phenomenon in astrophysics. Their morphology ranges from nearly spherically symmetric winds to highly collimated jets. In some cases, e.g., in jets associated with young stellar objects, the bulk outflow speeds are nonrelativistic, while in others, e.g., in jets associated with active galactic nuclei or gamma-ray bursts, it can even be highly relativistic. The main driving mechanism of collimated outflows is likely related to magnetic fields. These fields are able to tap the rotational energy of the compact object or disk, accelerate, and collimate matter ejecta. To zeroth order these outflows can be described by the highly intractable theory of magnetohydrodynamics (MHD). Even in systems where the assumptions of zero resistivity (ideal MHD), steady state, axisymmetry, one fluid description, and polytropic equation of state are applicable, the problem remains difficult. In this case the problem reduces to only two equations, corresponding to the two components of the momentum equation along the flow and in the direction perpendicular to the magnetic field (transfield direction). The latter equation is the most difficult to solve, but also the most important. It answers the question on the degree of the collimation, but also crucially affects the solution of the first, the acceleration efficiency and the bulk velocity of the flow. The first and second parts of this chapter refer to nonrelativistic and relativistic flows, respectively. These Parts can be read independently. In each one, the governing equations are presented and discussed, focusing on the case of flows that are magnetically dominated near the central source. The general characteristics of the solutions in relation to the acceleration and collimation mechanisms are analyzed. As specific examples of exact solutions of the full system of the MHD equations that satisfy all the analyzed general characteristics, self

  6. Understanding and Prediction of Nonlinear Effects in Wave Propagation

    DTIC Science & Technology

    2013-02-20

    by a JONSWAP wave spectrum with a significant wave height of Hs = 4m, a peak period of Tp =8s and an enhancement parameter =3.0. The time...for public release; distribution is unlimited In ocean wave-field evolution, nonlinear effects affect the propagation velocity of each wave component...exceeding wave height and/or wave crest height probability functions for wide ranges of nonlinear spectrum parameters, which will enable the

  7. Global MHD simulations of Mercury's magnetosphere with coupled planetary interior: Induction effect of the planetary conducting core on the global interaction

    NASA Astrophysics Data System (ADS)

    Jia, Xianzhe; Slavin, James A.; Gombosi, Tamas I.; Daldorff, Lars K. S.; Toth, Gabor; Holst, Bart

    2015-06-01

    Mercury's comparatively weak intrinsic magnetic field and its close proximity to the Sun lead to a magnetosphere that undergoes more direct space-weathering interactions than other planets. A unique aspect of Mercury's interaction system arises from the large ratio of the scale of the planet to the scale of the magnetosphere and the presence of a large-size core composed of highly conducting material. Consequently, there is strong feedback between the planetary interior and the magnetosphere, especially under conditions of strong external forcing. Understanding the coupled solar wind-magnetosphere-interior interaction at Mercury requires not only analysis of observations but also a modeling framework that is both comprehensive and inclusive. We have developed a new global MHD model for Mercury in which the planetary interior is modeled as layers of different electrical conductivities that electromagnetically couple to the surrounding plasma environment. This new modeling capability allows us to characterize the dynamical response of Mercury to time-varying external conditions in a self-consistent manner. Comparison of our model results with observations by the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft shows that the model provides a reasonably good representation of the global magnetosphere. To demonstrate the capability to model induction effects, we have performed idealized simulations in which Mercury's magnetosphere is impacted by a solar wind pressure enhancement. Our results show that due to the induction effect, Mercury's core exerts strong global influences on the way Mercury responds to changes in the external environment, including modifying the global magnetospheric structure and affecting the extent to which the solar wind directly impacts the surface. The global MHD model presented here represents a crucial step toward establishing a modeling framework that enables self-consistent characterization of Mercury

  8. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas

    SciTech Connect

    Turco, F. Hanson, J. M.; Navratil, G. A.; Turnbull, A. D.

    2015-02-15

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall β{sub N} limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing β{sub N}, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code [Liu et al., Phys. Plasmas 15, 112503 (2008)], which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ∼13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest β{sub N} levels (∼90% of the ideal no-wall limit). The toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high β{sub N}.

  9. MHD Program Plan, FY 1992

    NASA Astrophysics Data System (ADS)

    1991-10-01

    The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include the following: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector.

  10. MHD Augmentation of Rocket Engines Using Beamed Energy

    NASA Astrophysics Data System (ADS)

    Lineberry, John T.; Chapman, James N.; Litchford, Ron J.; Jones, Jonathan

    2003-05-01

    MHD technology and fundamental relations that pertain to accelerating a working fluid for propulsion of space vehicles are reviewed. Previous concepts on MHD propulsion have considered use of an on-board power supply to provide the electric power for the MHD thruster which is accompanied by an obvious weight penalty. In this study, an orbiting power station that beams microwave or laser power to the spacecraft is considered which eliminates this penalty making the thruster significantly more effective from the thrust-to-weight viewpoint. The objective of the study was to investigate augmenting a rocket motor to increase the ISP into the 2,500 seconds range using MHD acceleration. Mission scenarios are presented to parametrically compare the MHD augmented motor. Accelerator performance is calculated for an array of cases which vary the mass throughput, magnetic field strength and MHD interaction level. Performance improved with size, magnetic field strength and interaction level, although lower interaction levels can also produce attractive configurations. Accelerator efficiencies are typically 80-90%. The results display a large regime for improved performance in which the extent of the regime is critically dependent upon the weight of the power receiving equipment (rectenna). It is concluded that this system has potential when used with an orbiting power station that transmits power to the space vehicle by microwave radiation or laser beams. The most critical technology improvement needed is a reduced weight rectenna system but more development is also needed on the MHD accelerator, which is currently underway with NASA sponsorship.

  11. The Effects of Wave Escape on Fast Magnetosonic Wave Turbulence in Solar Flares

    NASA Technical Reports Server (NTRS)

    Pongkitiwanichakul, Peera; Chandran, Benjamin D. G.; Karpen, Judith T.; DeVore, C. Richard

    2012-01-01

    One of the leading models for electron acceleration in solar flares is stochastic acceleration by weakly turbulent fast magnetosonic waves ("fast waves"). In this model, large-scale flows triggered by magnetic reconnection excite large-wavelength fast waves, and fast-wave energy then cascades from large wavelengths to small wavelengths. Electron acceleration by large-wavelength fast-waves is weak, and so the model relies on the small-wavelength waves produced by the turbulent cascade. In order for the model to work, the energy cascade time for large-wavelength fast waves must be shorter than the time required for the waves to propagate out of the solar-flare acceleration region. To investigate the effects of wave escape, we solve the wave kinetic equation for fast waves in weak turbulence theory, supplemented with a homogeneous wave-loss term.We find that the amplitude of large-wavelength fast waves must exceed a minimum threshold in order for a significant fraction of the wave energy to cascade to small wavelengths before the waves leave the acceleration region.We evaluate this threshold as a function of the dominant wavelength of the fast waves that are initially excited by reconnection outflows.

  12. Environmental Effects for Gravitational-wave Astrophysics

    NASA Astrophysics Data System (ADS)

    Barausse, Enrico; Cardoso, Vitor; Pani, Paolo

    2015-05-01

    The upcoming detection of gravitational waves by terrestrial interferometers will usher in the era of gravitational-wave astronomy. This will be particularly true when space-based detectors will come of age and measure the mass and spin of massive black holes with exquisite precision and up to very high redshifts, thus allowing for better understanding of the symbiotic evolution of black holes with galaxies, and for high-precision tests of General Relativity in strong-field, highly dynamical regimes. Such ambitious goals require that astrophysical environmental pollution of gravitational-wave signals be constrained to negligible levels, so that neither detection nor estimation of the source parameters are significantly affected. Here, we consider the main sources for space-based detectors - the inspiral, merger and ringdown of massive black-hole binaries and extreme mass-ratio inspirals - and account for various effects on their gravitational waveforms, including electromagnetic fields, cosmological evolution, accretion disks, dark matter, “firewalls” and possible deviations from General Relativity. We discover that the black-hole quasinormal modes are sharply different in the presence of matter, but the ringdown signal observed by interferometers is typically unaffected. The effect of accretion disks and dark matter depends critically on their geometry and density profile, but is negligible for most sources, except for few special extreme mass-ratio inspirals. Electromagnetic fields and cosmological effects are always negligible. We finally explore the implications of our findings for proposed tests of General Relativity with gravitational waves, and conclude that environmental effects will not prevent the development of precision gravitational-wave astronomy.

  13. Geometric effects on stress wave propagation.

    PubMed

    Johnson, K L; Trim, M W; Horstemeyer, M F; Lee, N; Williams, L N; Liao, J; Rhee, H; Prabhu, R

    2014-02-01

    The present study, through finite element simulations, shows the geometric effects of a bioinspired solid on pressure and impulse mitigation for an elastic, plastic, and viscoelastic material. Because of the bioinspired geometries, stress wave mitigation became apparent in a nonintuitive manner such that potential real-world applications in human protective gear designs are realizable. In nature, there are several toroidal designs that are employed for mitigating stress waves; examples include the hyoid bone on the back of a woodpecker's jaw that extends around the skull to its nose and a ram's horn. This study evaluates four different geometries with the same length and same initial cross-sectional diameter at the impact location in three-dimensional finite element analyses. The geometries in increasing complexity were the following: (1) a round cylinder, (2) a round cylinder that was tapered to a point, (3) a round cylinder that was spiraled in a two dimensional plane, and (4) a round cylinder that was tapered and spiraled in a two-dimensional plane. The results show that the tapered spiral geometry mitigated the greatest amount of pressure and impulse (approximately 98% mitigation) when compared to the cylinder regardless of material type (elastic, plastic, and viscoelastic) and regardless of input pressure signature. The specimen taper effectively mitigated the stress wave as a result of uniaxial deformational processes and an induced shear that arose from its geometry. Due to the decreasing cross-sectional area arising from the taper, the local uniaxial and shear stresses increased along the specimen length. The spiral induced even greater shear stresses that help mitigate the stress wave and also induced transverse displacements at the tip such that minimal wave reflections occurred. This phenomenon arose although only longitudinal waves were introduced as the initial boundary condition (BC). In nature, when shearing occurs within or between materials

  14. Cometary MHD and chemistry

    NASA Technical Reports Server (NTRS)

    Wegmann, R.; Schmidt, H. U.; Huebner, W. F.; Boice, D. C.

    1987-01-01

    An MHD and chemical comet-coma model was developed, applying the computer program of Huebner (1985) for the detailed chemical evolution of a spherically expanding coma and the program of Schmidt and Wegman (1982) and Wegman (1987) for the MHD flow of plasma and magnetic field in a comet to the Giotto-mission data on the ion abundances measured by the HIS ion mass spectrometer. The physics and chemistry of the coma are modeled in great detail, including photoprocesses, gas-phase chemical kinetics, energy balance with a separate electron temperature, multifluid hydrodynamics with a transition to free molecular flow, fast-streaming atomic and molecular hydrogen, counter and cross streaming of the ionized species relative to the neutral species in the coma-solar wind interaction region with momentum exchange by elastic collisions, mass-loading through ion pick-up, and Lorentz forces of the advected magnetic field. The results, both inside and outside of the contact surface, are discussed and compared with the relevant HIS ion mass spectra.

  15. Exploración del modelo coronal MHD de Uchida

    NASA Astrophysics Data System (ADS)

    Francile, C.; Castro, J. I.; Flores, M.

    We present an analysis of the MHD model of an isothermal solar corona with radially symmetrical magnetic field and gravity. The solution in the approximation "WKB" was presented by Uchida (1968). The model is ex- plored for different coronal conditions and heights of initial perturbation to study the propagation of coronal waves and reproduce the observed char- acteristics of phenomena such as Moreton waves. Finally we discuss the obtained results. FULL TEXT IN SPANISH

  16. Insights into the gravitational wave memory effect

    NASA Astrophysics Data System (ADS)

    Bieri, Lydia

    2017-01-01

    A major breakthrough of General Relativity (GR) happened in 2015 with LIGO's first detection of gravitational waves. Typical sources for gravitational radiation are mergers of binary black holes, binary neutron stars and core-collapse supernovae. In these processes mass and momenta are radiated away in form of gravitational waves. GR predicts that these waves leave a footprint in the spacetime, that is they change the spacetime permanently, which results in a permanent displacement of test masses. This effect is called the memory. In this talk, I will explore the gravitational wave memory. We will see that there are two types of memory, one going back to Ya. B. Zel'dovich and A. G. Polnarev and one to D. Christodoulou. Then I will discuss recent work including my collaboration with D. Garfinkle, S.-T. Yau, P. Chen, focusing on how neutrinos or electromagnetic fields contribute to the memory effect, and work with D. Garfinkle and N. Yunes on cosmological memory. The author thanks NSF for support by grant DMS-1253149 to The University of Michigan.

  17. Magnetohydrodynamic (MHD) modelling of solar active phenomena via numerical methods

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Numerical ideal MHD models for the study of solar active phenomena are summarized. Particular attention is given to the following physical phenomena: (1) local heating of a coronal loop in an isothermal and stratified atmosphere, and (2) the coronal dynamic responses due to magnetic field movement. The results suggest that local heating of a magnetic loop will lead to the enhancement of the density of the neighboring loops through MHD wave compression. It is noted that field lines can be pinched off and may form a self-contained magnetized plasma blob that may move outward into interplanetary space.

  18. Effects of frequency on the wave form of propagated slow waves in canine gastric antral muscle.

    PubMed Central

    Publicover, N G; Sanders, K M

    1986-01-01

    Experiments were performed to test the effects of frequency on the wave form of electrical slow waves in canine antral circular muscle. At frequencies between 3.0 and 5.6 cycles per minute antral slow waves revealed an alternating wave form pattern. At physiological frequencies antral muscle was incapable of consistently propagating mechanically productive slow waves. Two components of the slow wave were identified on the basis of propagation refractory period. At inter-slow-wave intervals of 3-14 s, the amplitude and duration of the plateau phase wave decreased, but the upstroke phase of the slow wave was minimally affected. Intervals of 2.5-4 s resulted in a normal upstroke event but abolished the plateau. At shorter intervals the upstroke phase of the slow wave was greatly reduced or abolished. The absolute propagation refractory period averaged 2.8 +/- 0.9 s (n = 7) following repolarization of a 'conditioning' slow wave. Slow waves failed to propagate within the absolute propagation refractory period. Acetylcholine decreased the interval required for the plateau phase of the slow wave to recover and permitted conduction of mechanically productive slow waves at or above physiological frequencies. The data presented suggest that gastric motility is modulated by extrinsic and intrinsic factors which regulate slow-wave frequency. PMID:3701649

  19. Theory of Alfven wave heating in general toroidal geometry

    SciTech Connect

    Tataronis, J.A.; Salat, A.

    1981-09-01

    A general treatment of Alfven wave heating based on the linearized equations of ideal magnetohydrodynamics (MHD) is given. The conclusion of this study is that the geometry of the plasma equilium could play an important role on the effectiveness of this heating mechanism, and for certain geometries the fundamental equations may not possess solutions which satisfy prescribed boundary conditions.

  20. Analytical investigation of critical MHD phenomena

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Development and analysis of schemes for suppression of the startup overvoltage transient in the AEDC High Performance Demonstration Experiment (HPDE), analysis of performance enhancement due to electrode voltage drop reduction by use of pyrolytic graphites in the HPDE, prediction of optimal loading schemes for the HPDE, prediction of PHDE performance with a diagonal electrical connection, and predictions of the likelihood and effects of axial current leakage between adjacent electrodes in the HPDE are reviewed. Simulations of tests at the AEDC/HPDE with STD Research Corporation multidimensional and time dependent computer codes provided additional validation for the computer codes and shed light on physical mechanisms which govern performance and durability of MHD power generators. The magnetoaerothermal effect was predicted by STD Research Corporation to have a significant effect on the HPDE/MHD generator performance at high interaction.

  1. Using Coronal Hole Maps to Constrain MHD Models

    NASA Astrophysics Data System (ADS)

    Caplan, Ronald M.; Downs, Cooper; Linker, Jon A.; Mikic, Zoran

    2017-08-01

    In this presentation, we explore the use of coronal hole maps (CHMs) as a constraint for thermodynamic MHD models of the solar corona. Using our EUV2CHM software suite (predsci.com/chd), we construct CHMs from SDO/AIA 193Å and STEREO-A/EUVI 195Å images for multiple Carrington rotations leading up to the August 21st, 2017 total solar eclipse. We then contruct synoptic CHMs from synthetic EUV images generated from global thermodynamic MHD simulations of the corona for each rotation. Comparisons of apparent coronal hole boundaries and estimates of the net open flux are used to benchmark and constrain our MHD model leading up to the eclipse. Specifically, the comparisons are used to find optimal parameterizations of our wave turbulence dissipation (WTD) coronal heating model.

  2. Energy flux in 2-D MHD waveguide in the outer magnetosphere

    NASA Astrophysics Data System (ADS)

    Mazur, V. A.; Chuiko, D. A.

    2017-02-01

    The problems of large-scale wave propagation and amplification in the outer magnetosphere are considered. Kelvin-Helmholtz (KH) instability growth rate of the magnetospheric waveguide eigenmodes is investigated as a function of a coordinate along the magnetopause. The problem of solar wind MHD wave penetration into the waveguide is investigated for a broad range near Pc3 and Pc5 geomagnetic pulsation frequencies and realistic models of the magnetospheric waveguide. The expression for the waveguide eigenmode energy flux is obtained. This expression includes the effects of external wave penetration and mode amplification due to the KH instability, as well as losses due to dissipation in the vicinity of the Alfven resonance which are incorporated into the growth rate coefficient together with the instability.

  3. Oceanic Path Effects of Microseismic Waves

    NASA Astrophysics Data System (ADS)

    Chen, X.; Wen, L.

    2015-12-01

    Microseismic surface waves originating from sources in ocean would propagate along parts of oceanic path before being recorded by on-land seismic stations. Studying the path effects on waveform, travel-time, magnitude and other properties of these microseismic signals is important in accurately determining the location, strength and generating mechanism of the sources. Strong effects are observed in the microseismic signals generated by Hurricane Sandy in 2012, and verified by synthetic seismograms. We find that Sandy-related seismic signals are significantly affected by oceanic path: only seismic signals share a similar length of oceanic path are cross-correlated and a large portion of the correlated signals can be traced back to sources at the ocean-continent boundary within a narrow azimuthal range from the hurricane center. In this presentation, we report that these observations can be explained by strong path effect of wave propagation from a seismic source in the hurricane center. The strong directionality of waveform cross-correlation can be explained by the propagation effect that waveform characteristics of Rayleigh wave are mostly controlled by transitional propagating path from ocean to the continental region, resulting in seismic signals being correlated only among stations sharing similar length of oceanic path; the sources at the ocean-continent boundary can be attributed to strong seismic scattering in the ocean-continent boundary, generating apparent seismic "sources" there. We also compare the synthetic vertical/transverse magnitude ratio of Rayleigh waves in an anisotropic velocity model with observations. Our results indicate that these types of seismic observations would be particularly useful for studying seismic structure of crust and upper mantle in the ocean-continent area.

  4. MHD Energy Bypass Scramjet Engine

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.; Bogdanoff, David W.; Park, Chul; Arnold, Jim (Technical Monitor)

    2001-01-01

    Revolutionary rather than evolutionary changes in propulsion systems are most likely to decrease cost of space transportation and to provide a global range capability. Hypersonic air-breathing propulsion is a revolutionary propulsion system. The performance of scramjet engines can be improved by the AJAX energy management concept. A magneto-hydro-dynamics (MHD) generator controls the flow and extracts flow energy in the engine inlet and a MHD accelerator downstream of the combustor accelerates the nozzle flow. A progress report toward developing the MHD technology is presented herein. Recent theoretical efforts are reviewed and ongoing experimental efforts are discussed. The latter efforts also include an ongoing collaboration between NASA, the US Air Force Research Laboratory, US industry, and Russian scientific organizations. Two of the critical technologies, the ionization of the air and the MHD accelerator, are briefly discussed. Examples of limiting the combustor entrance Mach number to a low supersonic value with a MHD energy bypass scheme are presented, demonstrating an improvement in scramjet performance. The results for a simplified design of an aerospace plane show that the specific impulse of the MHD-bypass system is better than the non-MHD system and typical rocket over a narrow region of flight speeds and design parameters. Equilibrium ionization and non-equilibrium ionization are discussed. The thermodynamic condition of air at the entrance of the engine inlet determines the method of ionization. The required external power for non-equilibrium ionization is computed. There have been many experiments in which electrical power generation has successfully been achieved by magneto-hydrodynamic (MHD) means. However, relatively few experiments have been made to date for the reverse case of achieving gas acceleration by the MHD means. An experiment in a shock tunnel is described in which MHD acceleration is investigated experimentally. MHD has several

  5. MHD channel development, part 3

    NASA Astrophysics Data System (ADS)

    1989-12-01

    This is the final report of work performed by Avco Research Laboratory, Inc. for the U.S. Department of Energy, Pittsburgh Energy Technology Center. The overall objectives of this program were: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at the 50 MW(sub th) and ultimately at commercial sizes; and to design and fabricate specific hardware items to be tested at a site to be specified by DOE. Section 3.0, MHD Channel Design and Performance, reports experimental and analytical investigations related to MHD channel design and performance.

  6. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  7. MHD channel performance for potential early commercial MHD power plants

    NASA Technical Reports Server (NTRS)

    Swallom, D. W.

    1981-01-01

    The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation.

  8. In-situ MHD energy conversion for fusion. [R

    SciTech Connect

    Campbell, R.B.; Logan, B.G.; Hoffman, M.A.

    1986-06-01

    An advanced concept, in-situ MHD conversion, is described for converting fusion energy to electricity. Considerable cost savings can be realized because of the conversion of thermal energy to electricity achieved in the blanket by means of magnetohydrodynamic (MHD) generators. The external disk generator, also described, is another application of the MHD idea, which may have certain advantages over the in-situ scheme for advanced-fuel tokamaks. The feature that makes these schemes fusion-specific is the novel use of the electro-magnetic radiation naturally emitted by the plasma. The synchrotron radiation can be used either to heat the nonequilibrium MHD plasma, or possibly improve its stability. A Rankine cycle with cesium-seeded mercury as a working fluid is used in either case. Performance predictions by a quasi-one-dimensional model are presented. An experiment to determine the effect of microwave radiation on channel performance is planned.

  9. TRANSITION FROM KINETIC TO MHD BEHAVIOR IN A COLLISIONLESS PLASMA

    SciTech Connect

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping

    2015-10-01

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag–Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.

  10. Transition from Kinetic to MHD Behavior in a Collisionless Plasma

    NASA Astrophysics Data System (ADS)

    Parashar, Tulasi N.; Matthaeus, William H.; Shay, Michael A.; Wan, Minping

    2015-10-01

    The study of kinetic effects in heliospheric plasmas requires representation of dynamics at sub-proton scales, but in most cases the system is driven by magnetohydrodynamic (MHD) activity at larger scales. The latter requirement challenges available computational resources, which raises the question of how large such a system must be to exhibit MHD traits at large scales while kinetic behavior is accurately represented at small scales. Here we study this implied transition from kinetic to MHD-like behavior using particle-in-cell (PIC) simulations, initialized using an Orszag-Tang Vortex. The PIC code treats protons, as well as electrons, kinetically, and we address the question of interest by examining several different indicators of MHD-like behavior.

  11. Production of MHD fluid

    DOEpatents

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  12. MHD turbulent mixing layers

    SciTech Connect

    Esquivel, A.; Lazarian, A.; Benjamin, R.A.; Cho, J.; Leitner, S.N.

    2005-09-28

    Turbulent mixing layers have been proposed to explain observations of line ratios of highly ionized elements in the interstellar medium. We present preliminary results of numerical simulations of turbulent mixing layers in a magnetized medium. We developed a MHD code with radiative cooling. The magnetic field is expected to be a controlling factor by suppressing instabilities that lead to the turbulent mixing. Our results suggest that the difference in turbulent mixing in the unmagnetized case as compared to the case of a weak magnetic field, {beta} = Pgas/Pmag {approx} 10, is insignificant. With a more thorough exploration of parameter space, this work will provide more reliable diagnostics of turbulent mixing layers than those available today.

  13. Effects of simulated heat waves on ApoE-/- mice.

    PubMed

    Wang, Chunling; Zhang, Shuyu; Tian, Ying; Wang, Baojian; Shen, Shuanghe

    2014-01-28

    The effects of simulated heat waves on body weight, body temperature, and biomarkers of cardiac function in ApoE-/- mice were investigated. Heat waves were simulated in a meteorological environment simulation chamber according to data from a heat wave that occurred in July 2001 in Nanjing, China. Eighteen ApoE-/- mice were divided into control group, heat wave group, and heat wave BH4 group. Mice in the heat wave and BH4 groups were exposed to simulated heat waves in the simulation chamber. Mice in BH4 group were treated with gastric lavage with BH4 2 h prior to heat wave exposure. Results showed that the heat waves did not significantly affect body weight or ET-1 levels. However, mice in the heat wave group had significantly higher rectal temperature and NO level and lower SOD activity compared with mice in the control group (p < 0.01), indicating that heat wave had negative effects on cardiac function in ApoE-/- mice. Gastric lavage with BH4 prior to heat wave exposure significantly reduced heat wave-induced increases in rectal temperature and decreases in SOD activity. Additionally, pretreatment with BH4 further increased NO level in plasma. Collectively, these beneficial effects demonstrate that BH4 may potentially mitigate the risk of coronary heart disease in mice under heat wave exposure. These results may be useful when studying the effects of heat waves on humans.

  14. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great

  15. Efficient Low Dissipative High Order Schemes for Multiscale MHD Flows

    NASA Technical Reports Server (NTRS)

    Sjoegreen, Bjoern; Yee, Helen C.; Mansour, Nagi (Technical Monitor)

    2002-01-01

    Accurate numerical simulations of complex multiscale compressible viscous flows, especially high speed turbulence combustion and acoustics, demand high order schemes with adaptive numerical dissipation controls. Standard high resolution shock-capturing methods are too dissipative to capture the small scales and/or long-time wave propagations without extreme grid refinements and small time steps. An integrated approach for the control of numerical dissipation in high order schemes for the compressible Euler and Navier-Stokes equations has been developed and verified by the authors and collaborators. These schemes are suitable for the problems in question. Basically, the scheme consists of sixth-order or higher non-dissipative spatial difference operators as the base scheme. To control the amount of numerical dissipation, multiresolution wavelets are used as sensors to adaptively limit the amount and to aid the selection and/or blending of the appropriate types of numerical dissipation to be used. Magnetohydrodynamics (MHD) waves play a key role in drag reduction in highly maneuverable high speed combat aircraft, in space weather forecasting, and in the understanding of the dynamics of the evolution of our solar system and the main sequence stars. Although there exist a few well-studied second and third-order high-resolution shock-capturing schemes for the MHD in the literature, these schemes are too diffusive and not practical for turbulence/combustion MHD flows. On the other hand, extension of higher than third-order high-resolution schemes to the MHD system of equations is not straightforward. Unlike the hydrodynamic equations, the inviscid MHD system is non-strictly hyperbolic with non-convex fluxes. The wave structures and shock types are different from their hydrodynamic counterparts. Many of the non-traditional hydrodynamic shocks are not fully understood. Consequently, reliable and highly accurate numerical schemes for multiscale MHD equations pose a great

  16. Dynamo action in dissipative, forced, rotating MHD turbulence

    NASA Astrophysics Data System (ADS)

    Shebalin, John V.

    2016-06-01

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 643 grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  17. Dynamo action in dissipative, forced, rotating MHD turbulence

    SciTech Connect

    Shebalin, John V.

    2016-06-15

    Magnetohydrodynamic (MHD) turbulence is an inherent feature of large-scale, energetic astrophysical and geophysical magnetofluids. In general, these are rotating and are energized through buoyancy and shear, while viscosity and resistivity provide a means of dissipation of kinetic and magnetic energy. Studies of unforced, rotating, ideal (i.e., non-dissipative) MHD turbulence have produced interesting results, but it is important to determine how these results are affected by dissipation and forcing. Here, we extend our previous work and examine dissipative, forced, and rotating MHD turbulence. Incompressibility is assumed, and finite Fourier series represent turbulent velocity and magnetic field on a 64{sup 3} grid. Forcing occurs at an intermediate wave number by a method that keeps total energy relatively constant and allows for injection of kinetic and magnetic helicity. We find that 3-D energy spectra are asymmetric when forcing is present. We also find that dynamo action occurs when forcing has either kinetic or magnetic helicity, with magnetic helicity injection being more important. In forced, dissipative MHD turbulence, the dynamo manifests itself as a large-scale coherent structure that is similar to that seen in the ideal case. These results imply that MHD turbulence, per se, may play a fundamental role in the creation and maintenance of large-scale (i.e., dipolar) stellar and planetary magnetic fields.

  18. Kinematic dynamo of inertial waves

    NASA Astrophysics Data System (ADS)

    Herreman, Wietze; Le Gal, Patrice; Le Dizes, Stephane

    2008-11-01

    Inertial waves are natural oscillatory tridimensional perturbations in rapidly rotating flows. They can be driven to high amplitudes by an external oscillatory forcing such as precession, or by a parametric instability such as in the elliptical instability. Inertial waves were observed in a MHD-flow (Gans, 1971, JFM ; Kelley et al., 2008, GAFD) and could be responsable of dynamo action. For travelling waves, a constructive alpha-effect was identified (Moffatt, 1970, JFM), but it does not apply to confined inertial wave flows. Yet, recent numerical work demonstrated that precession driven MHD flows can sustain magnetic fields (Tilgner, 2005, POF; Wu & Roberts, 2008, GAFD). This motivates us to study more precisely how inertial waves can exhibit dynamo action. Using a numerical code in cylindrical geometry, we find that standing inertial waves can generate a kinematic dynamo. We show that the dynamo-action results from a second order interaction of the diffusive eigenmodes of the magnetic field with the inertial wave. Scaling laws are obtained, which allows us to to apply the results to flows of geophysical interest.

  19. 3D MHD Coronal Oscillations about a Magnetic Null Point: Application of WKB Theory

    NASA Astrophysics Data System (ADS)

    McLaughlin, J. A.; Ferguson, J. S. L.; Hood, A. W.

    2008-09-01

    This paper is a demonstration of how the WKB approximation can be used to help solve the linearised 3D MHD equations. Using Charpit’s method and a Runge Kutta numerical scheme, we have demonstrated this technique for a potential 3D magnetic null point, B=[ x, ɛ y,-( ɛ+1) z]. Under our cold-plasma assumption, we have considered two types of wave propagation: fast magnetoacoustic and Alfvén waves. We find that the fast magnetoacoustic wave experiences refraction towards the magnetic null point and that the effect of this refraction depends upon the Alfvén speed profile. The wave and thus the wave energy accumulate at the null point. We have found that current buildup is exponential and the exponent is dependent upon ɛ. Thus, for the fast wave there is preferential heating at the null point. For the Alfvén wave, we find that the wave propagates along the field lines. For an Alfvén wave generated along the fan plane, the wave accumulates along the spine. For an Alfvén wave generated across the spine, the value of ɛ determines where the wave accumulation will occur: fan plane ( ɛ=1), along the x-axis (0< ɛ<1) or along the y-axis ( ɛ>1). We have shown analytically that currents build up exponentially, leading to preferential heating in these areas. The work described here highlights the importance of understanding the magnetic topology of the coronal magnetic field for the location of wave heating.

  20. Munroe effect based on detonation wave collision

    NASA Astrophysics Data System (ADS)

    Miao, Yusong; Li, Xiaojie; Wang, Xiaohong; Yan, Honghao; Chen, Xiang

    2017-05-01

    Munroe effect has been more and more used in blasting engineering and most assembling energy technologies use a shaped charge device. In this paper, a new method is used to achieve detonation wave collision by detonating cord initiation system. A numerical simulation using LS-DYNA on detonation wave propagation and collision process caused by different initiation forms is implemented. Numerical results show that peak pressure by this new method can reach 2.42 times than the traditional method, and the growth of specific impulse at the explosive bottom is 49% compared to early results. Based on this numerical simulation, an experiment of explosive-determination of power be implemented, the experiment result can verify the simulation result well.

  1. MHD Flow and Heat Transfer of a Generalized Burgers’ Fluid Due to an Exponential Accelerating Plate with Effects of the Second Order Slip and Viscous Dissipation

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Zhao, Hao-Jie; Bai, Yu

    2017-06-01

    In classical study on generalized viscoelastic fluid, the momentum equation was derived by considering the fractional constitutive model, while the energy equation was ignored its effect. This paper presents an investigation for the magnetohydrodynamic (MHD) flow and heat transfer of an incompressible generalized Burgers’ fluid due to an exponential accelerating plate with the effect of the second order velocity slip. The energy equation and momentum equation are coupled by the fractional Burgers’ fluid constitutive model. Numerical solutions for velocity, temperature and shear stress are obtained using the modified implicit finite difference method combined with the G1-algorithm, whose validity is confirmed by the comparison with the analytical solution. Our results show that the influences of the fractional parameters α and β on the flow are opposite each other, which is just like the effects of the two parameters on the temperature. Moreover, the impact trends of the relaxation time λ 1 and retardation time λ 3 on the velocity are opposite each other. Increasing the boundary parameter will promote the temperature, but has little effect on the temperature boundary layer thickness. Supported by the National Natural Science Foundations of China under Grant Nos. 21576023, 51406008, and the National Key Research Program of China under Grant Nos. 2016YFC0700601, 2016YFC0700603, and 2016YFE0115500

  2. MHD channel development, part 4

    NASA Astrophysics Data System (ADS)

    1989-12-01

    This is the final report of work performed by Avco Research Laboratory, Inc. for the U.S. Department of Energy, Pittsburgh Energy Technology Center. The overall objectives of this program were: to contribute, by appropriate systematic experimental and analytical investigations, to the engineering data base necessary for the design and construction of MHD generators at the 50 MW(sub th) and ultimately at commercial sizes; and to design and fabricate specific hardware items to be tested at a site to be specified by DOE. The program consisted of a series of related tasks, which are described in subsequent sections of this report. Section 4.0, MHD Channel Construction and Lifetime, reports experimental investigations related to MHD channel reliability and lifetime, where the principal aim is to improve the constructability, maintainability, and reliability of coal-fired, long-duration MHD channels.

  3. An experimental studies with disk MHD channels on argon plazma

    SciTech Connect

    Koneev, S.M.A.; Kovalev, L.K.; Larionoff, A.E.; Poltavets, V.N.

    1994-12-31

    The most interesting works carried out over the past few years in the field of MHD generating electric power are the ones studying disk MHD channels. The results published give a hope to overcome one of the MHD generator essential disadvantages - relatively low effectiveness of converting heat power into electric one. In some works performed by different authors and at different plants the coefficients of energy conversion achieving 20% have been obtained and there is a hint of the future possible increase of up to 40%. In the majority of experimental studies non-equilibrium ionized inertial gases (Ar, He) with alkali metal (Cs, K) were used as a working medium, the operating temperature being 1800-2000 K. The present paper is dedicated to an experimental test rig-with-a-disk-MHD-channel development for operating on thermally ionized Ar with the temperature of up to 9000 K and pressure 10 up to 10 Pa. For heating a working medium an electric arc in a special plazmotron is used. As the experiments on linear MHD channels have shown, along the whole working area the plasma is non-equilibrium with a substantial break off of an electron temperature providing conductivity of more then 100 Sm/m. The aim of creation this test rig is in simulating the processes of the working medium flow and electric energy generation in disk MHD channels. An important research element is calculation techniques debugging and acquiring experience of development and carrying out disk MHD generator studies for the following experimental full-scale MHD plants with a disk channel to be created.

  4. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Z.; Hilpert, M.; Bouwer, E. J.

    2014-12-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  5. Coupled effects of chemotaxis and growth on traveling bacterial waves

    NASA Astrophysics Data System (ADS)

    Yan, Zhifeng; Bouwer, Edward J.; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  6. Coupled effects of chemotaxis and growth on traveling bacterial waves.

    PubMed

    Yan, Zhifeng; Bouwer, Edward J; Hilpert, Markus

    2014-08-01

    Traveling bacterial waves are capable of improving contaminant remediation in the subsurface. It is fairly well understood how bacterial chemotaxis and growth separately affect the formation and propagation of such waves. However, their interaction is not well understood. We therefore perform a modeling study to investigate the coupled effects of chemotaxis and growth on bacterial migration, and examine their effects on contaminant remediation. We study the waves by using different initial electron acceptor concentrations for different bacteria and substrate systems. Three types of traveling waves can occur: a chemotactic wave due to the biased movement of chemotactic bacteria resulting from metabolism-generated substrate concentration gradients; a growth/decay/motility wave due to a dynamic equilibrium between bacterial growth, decay and random motility; and an integrated wave due to the interaction between bacterial chemotaxis and growth. Chemotaxis hardly enhances the bacterial propagation if it is too weak to form a chemotactic wave or its wave speed is less than half of the growth/decay/motility wave speed. However, chemotaxis significantly accelerates bacterial propagation once its wave speed exceeds the growth/decay/motility wave speed. When convection occurs, it speeds up the growth/decay/motility wave but slows down or even eliminates the chemotactic wave due to the dispersion. Bacterial survival proves particularly important for bacterial propagation. Therefore we develop a conceptual model to estimate the speed of growth/decay/motility waves.

  7. Channel and collateral effect of millimeter-wave multiplicate spectrum

    NASA Astrophysics Data System (ADS)

    Dong, Shuyi; Tang, Li; Di, Wenyuan; Zhang, Dongguo; Li, Ning; Zhao, Yongjiu

    1998-11-01

    Combining with acupuncture and moxibustion theory of China, this paper discussed acupuncture and moxibustion effect of millimeter wave multiplied with infrared ray and bass spectrum, and provided a feasible path for applications of millimeter wave in biomedical engineering.

  8. Modeling open boundaries in dissipative MHD simulation

    NASA Astrophysics Data System (ADS)

    Meier, E. T.; Glasser, A. H.; Lukin, V. S.; Shumlak, U.

    2012-04-01

    The truncation of large physical domains to concentrate computational resources is necessary or desirable in simulating many natural and man-made plasma phenomena. Three open boundary condition (BC) methods for such domain truncation of dissipative magnetohydrodynamics (MHD) problems are described and compared here. A novel technique, lacuna-based open boundary conditions (LOBC), is presented for applying open BC to dissipative MHD and other hyperbolic and mixed hyperbolic-parabolic systems of partial differential equations. LOBC, based on manipulating Calderon-type near-boundary sources, essentially damp hyperbolic effects in an exterior region attached to the simulation domain and apply BC appropriate for the remaining parabolic effects (if present) at the exterior region boundary. Another technique, approximate Riemann BC (ARBC), is adapted from finite volume and discontinuous Galerkin methods. In ARBC, the value of incoming flux is specified using a local, characteristic-based method. A third commonly-used open BC, zero-normal derivative BC (ZND BC), is presented for comparison. These open BC are tested in several gas dynamics and dissipative MHD problems. LOBC are found to give stable, low-reflection solutions even in the presence of strong parabolic behavior, while ARBC are stable only when hyperbolic behavior is dominant. Pros and cons of the techniques are discussed and put into context within the body of open BC research to date.

  9. Spherical-wave effects in photoelectron diffraction

    NASA Astrophysics Data System (ADS)

    Sagurton, M.; Bullock, E. L.; Saiki, R.; Kaduwela, A.; Brundle, C. R.; Fadley, C. S.; Rehr, J. J.

    1986-02-01

    The influence of spherical-wave (SW) effects on the analysis of photoelectron diffraction (PD) data is considered by comparing full SW single-scattering calculations with similar calculations based upon the plane-wave (PW) approximation and a new approximation for including SW effects (SW(1)) due to Rehr, Albers, Natoli, and Stern, as well as with experimental data involving both scanned-energy and scanned-angle measurements. In general, SW effects are found to be much more important in forward scattering and to explain prior empirical adjustments of PW x-ray PD scattering amplitudes at higher energies of >~500 eV. The more easily used SW(1) approximation is also seen to allow very well for SW effects. Not all PD data are expected to be equally sensitive to SW corrections. For example, scanned-energy data for S/Ni(001) emphasizing backscattering events are about equally well described by the PW and SW models, whereas higher-energy azimuthal-scan data for O/Ni(001) in which forward scattering is dominant require SW corrections to describe some, but not all, directions of emission quantitatively.

  10. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles.

    PubMed

    Qureshi, M Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M

    2016-12-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  11. Heat and Mass Transfer Analysis of MHD Nanofluid Flow with Radiative Heat Effects in the Presence of Spherical Au-Metallic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, M. Zubair Akbar; Rubbab, Qammar; Irshad, Saadia; Ahmad, Salman; Aqeel, M.

    2016-10-01

    Energy generation is currently a serious concern in the progress of human civilization. In this regard, solar energy is considered as a significant source of renewable energy. The purpose of the study is to establish a thermal energy model in the presence of spherical Au-metallic nanoparticles. It is numerical work which studies unsteady magnetohydrodynamic (MHD) nanofluid flow through porous disks with heat and mass transfer aspects. Shaped factor of nanoparticles is investigated using small values of the permeable Reynolds number. In order to scrutinize variation of thermal radiation effects, a dimensionless Brinkman number is introduced. The results point out that heat transfer significantly escalates with the increase of Brinkman number. Partial differential equations that govern this study are reduced into nonlinear ordinary differential equations by means of similarity transformations. Then using a shooting technique, a numerical solution of these equations is constructed. Radiative effects on temperature and mass concentration are quite opposite. Heat transfer increases in the presence of spherical Au-metallic nanoparticles.

  12. Effect of multiple slip on a chemically reactive MHD non-Newtonian nanofluid power law fluid flow over a stretching sheet with microorganism

    NASA Astrophysics Data System (ADS)

    Basir, Mohammad Faisal Mohd; Ismail, Fazreen Amira; Amirsom, Nur Ardiana; Latiff, Nur Amalina Abdul; Ismail, Ahmad Izani Md.

    2017-04-01

    The effect of multiple slip on a chemically reactive magnetohydrodynamic (MHD) non-Newtonian power law fluid flow over a stretching sheet with microorganism was numerically investigated. The governing partial differential equations were transformed into nonlinear ordinary differential equations using the similarity transformations developed by Lie group analysis. The reduced governing nonlinear ordinary differential equations were then numerically solved using the Runge-Kutta-Fehlberg fourth-fifth order method. Good agreement was found between the present numerical solutions with the existing published results to support the validity and the accuracy of the numerical computations. The influences of the velocity, thermal, mass and microorganism slips, the magnetic field parameter and the chemical reaction parameter on the dimensionless velocity, temperature, nanoparticle volume fraction, microorganism concentration, the distribution of the density of motile microorganisms have been illustrated graphically. The effects of the governing parameters on the physical quantities, namely, the local heat transfer rate, the local mass transfer rate and the local microorganism transfer rate were analyzed and discussed.

  13. Implicit Predictor-Corrector finite difference scheme for the ideal MHD simulations

    NASA Astrophysics Data System (ADS)

    Tsai, T.; Yu, H.; Lai, S.

    2012-12-01

    A innovative simulation code for ideal magnetohydrodynamics (MHD) is developed. We present a multiple-dimensional MHD code based on high-order implicit predictor-corrector finite difference scheme (high-order IPCFD scheme). High-order IPCFD scheme adopts high-order predictor-corrector scheme for the time integration and high-order central difference method as the spatial derivative solver. We use Elimination-of-the-Runoff-Errors (ERE) technology to avoid the numerical oscillations and numerical instability in the simulation results. In one-dimensional MHD problem, our simulation results show good agreement with the Brio & Wu MHD shock tube problem. The divergent B constraint remains fully satisfied, that is the divergent B equals to zero throughout the simulation. When solving the two-dimensional (2D) linear wave in MHD plasma, we clearly obtain the group-velocity Friedrichs diagrams of the MHD waves. Here we demonstrate 2D simulation results of rotor problem, Orszag-Tang vortex system, vortex type K-H instability, and kink type K-H instability by using our IPCFD MHD code and discuss the advantage of our simulation code.

  14. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2001-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear. time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that nonlinear waves are generated in coronal holes by torsional Alfv\\'{e}n waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the, fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature. and magnetic field geometry,) that will become available from the recently launched SOHO spacecraft.

  15. Acceleration of the Fast Solar Wind by Solitary Waves in Coronal Holes

    NASA Technical Reports Server (NTRS)

    Ofman, Leon

    2000-01-01

    The purpose of this investigation is to develop a new model for the acceleration of the fast solar wind by nonlinear, time-dependent multidimensional MHD simulations of waves in solar coronal holes. Preliminary computational studies indicate that solitary-like waves are generated in coronal holes nonlinearly by torsional Alfven waves. These waves in addition to thermal conduction may contribute considerably to the accelerate the solar wind. Specific goals of this proposal are to investigate the generation of nonlinear solitary-like waves and their effect on solar wind acceleration by numerical 2.5D MHD simulation of coronal holes with a broad range of plasma and wave parameters; to study the effect of random disturbances at the base of a solar coronal hole on the fast solar wind acceleration with a more advanced 2.5D MHD model and to compare the results with the available observations; to extend the study to a full 3D MHD simulation of fast solar wind acceleration with a more realistic model of a coronal hole and solar boundary conditions. The ultimate goal of the three year study is to model the fast solar wind in a coronal hole, based on realistic boundary conditions in a coronal hole near the Sun, and the coronal hole structure (i.e., density, temperature, and magnetic field geometry) that will become available from the recently launched SOHO spacecraft.

  16. Modelling the ocean site effect on seismic noise body waves

    NASA Astrophysics Data System (ADS)

    Gualtieri, L.; Stutzmann, E.; Farra, V.; Capdeville, Y.; Schimmel, M.; Ardhuin, F.; Morelli, A.

    2014-05-01

    Secondary microseismic noise is generated by non-linear interactions between ocean waves at the ocean surface. We present here the theory for computing the site effect of the ocean layer upon body waves generated by noise sources distributed along the ocean surface. By defining the wavefield as the superposition of plane waves, we show that the ocean site effect can be described as the constructive interference of multiply reflected P waves in the ocean that are then converted to either P or SV waves at the ocean-crust interface. We observe that the site effect varies strongly with period and ocean depth, although in a different way for body waves than for Rayleigh waves. We also show that the ocean site effect is stronger for P waves than for S waves. We validate our computation by comparing the theoretical noise body wave sources with the sources inferred from beamforming analysis of the three seismogram components recorded by the Southern California Seismic Network. We use rotated traces for the beamforming analysis, and we show that we clearly detect P waves generated by ocean gravity wave interactions along the track of typhoon Ioke (2006 September). We do not detect the corresponding SV waves, and we demonstrate that this is because their amplitude is too weak.

  17. Interpreting observations of molecular outflow sources: the MHD shock code mhd_vode

    NASA Astrophysics Data System (ADS)

    Flower, D. R.; Pineau des Forêts, G.

    2015-06-01

    The planar MHD shock code mhd_vode has been developed in order to simulate both continuous (C) type shock waves and jump (J) type shock waves in the interstellar medium. The physical and chemical state of the gas in steady-state may also be computed and used as input to a shock wave model. The code is written principally in FORTRAN 90, although some routines remain in FORTRAN 77. The documented program and its input data are described and provided as supplementary material, and the results of exemplary test runs are presented. Our intention is to enable the interested user to run the code for any sensible parameter set and to comprehend the results. With applications to molecular outflow sources in mind, we have computed, and are making available as supplementary material, integrated atomic and molecular line intensities for grids of C- and J-type models; these computations are summarized in the Appendices. Appendix tables, a copy of the current version of the code, and of the two model grids are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A63

  18. Wave and Wind Effects on Inlet Circulation

    NASA Astrophysics Data System (ADS)

    Raubenheimer, B.; Wargula, A.; Orescanin, M. M.; Hopkins, J.; Elgar, S.

    2014-12-01

    Observations and numerical simulations of the water circulation and morphological change in two separate, well-mixed inlets will be compared with each other. Tides, winds, waves, and currents were measured from May 1 to 28, 2012 in and near New River Inlet, NC. Offshore significant wave heights were 0 to 3 m, and wind speeds ranged from 0 to 16 m/s. The long, narrow inlet is about 1000 m wide where it opens onto the ebb shoal, narrows to 100 m wide about 1000 m inland, and connects to the Intracoastal Waterway (which connects to additional ocean inlets about 12 and 36 km north and south, respectively) about 3000 m inland. Tides in the inlet are progressive and inlet flows are in phase with water depths. Measurements also were collected during the summers of 2011-2014, including during Hurricanes Irene and Sandy (offshore significant wave heights > 5 m and winds > 15 m/s), in Katama Bay, MA, which connects to Vineyard Sound via Edgartown Channel and to the Atlantic Ocean via Katama Inlet. During this period, Katama Inlet migrated east about 1000 m, narrowed from 400 to 100 m wide, changed depth from 7 to 2 m, and lengthened from 200 to 1000 m. Tidal flows in Katama Inlet are forced by sea level gradients resulting from the 3-hr phase lag between tides in Vineyard Sound and the Atlantic Ocean. Analyses of the momentum balances suggest that waves drive flows into the mouths of the inlets during storms. The timing of the storms relative to ebb and flood, and wind effects, may affect the discharge and sediment transport through the inlet. Winds and waves also drive alongshore flows on the ebb shoals. Lateral flows at bends in New River Inlet, which may be important to the along-inlet transfer of momentum and to mixing, are affected by winds. The importance of connections to additional inlets in multi-inlet systems will be discussed. Funded by ONR, ASD(R&E), NSF, Sea Grant, and NDSEG.

  19. Statistical Theory of the Ideal MHD Geodynamo

    NASA Technical Reports Server (NTRS)

    Shebalin, J. V.

    2012-01-01

    A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the

  20. Measurements of sideband mode-coupling effects and linear MHD growth rates associated with the ponderomotive force

    SciTech Connect

    Meassick, S.

    1988-01-01

    Measurements of the interactions of rf waves in the ion cyclotron range of frequencies (ICRF) with flute interchange modes are presented. Interactions between the applied l = +1 rf wave and an m = {minus}1 flute mode give rise to sidebands above and below the rf frequency with mode numbers of l = 0 and l = +2 respectively. The contribution of the sideband terms to perturbed energy are shown to cancel 40% of the direct ponderomotive contribution for w/w{sub ci} = 1.25. This is less then the 90% predicted by self-consistent theories of the ponderomotive force for an applied l = +1 rf wave above the ion cyclotron frequency with a large separation between the plasma and the vacuum vessel. Measurements of the linear growth and decay rate of the flute instability in the presence of rf are presented. These measurements allow a determination of the net stabilizing force on the plasma. The measured growth rate is in good agreement with that calculated by considering only the curvature driven instability and the ponderomotive force.

  1. The Effect of a Twisted Magnetic Field on the Phase Mixing of the Kink Magnetohydrodynamic Waves in Coronal Loops

    NASA Astrophysics Data System (ADS)

    Ebrahimi, Zanyar; Karami, Kayoomars; Soler, Roberto

    2017-08-01

    There is observational evidence for the existence of a twisted magnetic field in the solar corona. This inspires us to investigate the effect of a twisted magnetic field on the evolution of magnetohydrodynamic (MHD) kink waves in coronal loops. With this aim, we solve the incompressible linearized MHD equations in a magnetically twisted nonuniform coronal flux tube in the limit of long wavelengths. Our results show that a twisted magnetic field can enhance or diminish the rate of phase mixing of the Alfvén continuum modes and the decay rate of the global kink oscillation depending on the twist model and the sign of the longitudinal (k z ) and azimuthal (m) wavenumbers. Also, our results confirm that in the presence of a twisted magnetic field, when the sign of one of the two wavenumbers m and k z is changed, the symmetry with respect to the propagation direction is broken. Even a small amount of twist can have an important impact on the process of energy cascading to small scales.

  2. MHD edge instabilities in toroidal plasmas

    NASA Astrophysics Data System (ADS)

    Sugiyama, Linda

    2015-11-01

    Different types of MHD edge instabilities in different toroidal magnetically confined plasmas are compared. Large scale numerical simulations show that the nonlinear evolution of an unstable edge mode in a shaped plasma with a single X-point and a surrounding open field line region has a number of common features in the full resistive MHD model for strongly unstable and weaker instabilities. These include the relation of the nonlinear mode structure and dominant toroidal harmonics to the linear eigenmode spectrum, the effects of the mode on reducing the edge pressure or density gradient, the inward penetration of a ballooning-type perturbation into the plasma interior, and the potential to drive a coherent axisymmetric poloidal rotation of the outer part of the plasma, exhibited at different strengths. The results can be compared to experiment to estimate the usefulness and validity of the MHD model for predicting edge stability and instability properties. Work supported by the U.S. DOE OFES under Awards DE-SC-0007883, DE-FG02-04ER54802, and DE-SC-0008737. Some computation carried out at NERSC.

  3. The Statistical Mechanics of Ideal MHD Turbulence

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2003-01-01

    Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.

  4. Fuel conservation and pollution control by MHD

    NASA Astrophysics Data System (ADS)

    Messerle, H. K.; Campbell, B.

    1980-06-01

    MHD generators, which directly convert thermal energy in a fluid into electricity, promise a more effective use of fuel for bulk power production than conventional steam plants, bettering efficiency by over 50% and reducing the generating cost by 20%. Using a Rankine steam cycle, overall power plant efficiency can increase from 33% to 50%, while fuel requirements can be reduced by one third and thermal pollution by one half. Since overall fuel consumption would drop, atmospheric pollution would be decreased, and coal consumption could be diverted to areas where oil is presently being used. The MHD generator structure and operation are discussed, and its general system requirements are explained. A table of energy use and an efficiency graph are provided for comparison purposes. Work is currently being done on a 2 MW open cycle MHD generator at the University of Sydney, Australia, and computer studies are in progress to evaluate the Faraday generator performance for the experimental 2 MW facility and larger power generators with segmented sets of electrodes.

  5. Propagation and damping of Alfvén waves in low solar atmosphere

    NASA Astrophysics Data System (ADS)

    Ryu, Chang-Mo; Huynh, Cong Tuan

    2017-10-01

    Propagation and damping of Alfvén waves in the inner solar corona are studied using a 2D magnetohydrodynamics (MHD) simulation code with realistic density and temperature profiles in a uniform background magnetic field. A linear wave is launched by ascribing a sinusoidal fluid motion at about 1000 km from the surface of the Sun, which is shown to generate Alfvénic wave motions along the height. The 2D MHD simulation shows that for B0 ≈ 3 G, Alfvén waves of about 10-2 Hz with an infinite horizontal length-scale can penetrate into the corona, transferring about 90 per cent their energies. This raises the possibility that the wave can be dissipated by various physical processes. The results show that the propagating wave can effectively damp via viscosity in the lower region of the corona, if a horizontal scale of granular size is incorporated.

  6. The blast wave mitigation effects of a magnetogasdynamic decelerator

    SciTech Connect

    Baty, Roy S; Lundgren, Ronald G; Tucker, Don H

    2009-01-01

    This work computes shock wave jump functions for viscous blast waves propagating in a magnetogasdynamic decelerator. The decelerator is assumed to be a one-dimensional channel with sides that are perfect conductors. An electric field applied on the walls of the channel produces a magnetogasdynamic pump, which decelerates the flow field induced by a blast wave. The blast wave jump functions computed here are compared to magnetogasdynamic results for steady supersonic channel flow to quantify potential blast mitigation effects. Theoretical shock wave jump functions are also presented for inviscid blast waves propagating in a one-dimensional channel with an electromagnetic field.

  7. Three-Dimensional Multiscale MHD Model of Cometary Plasma Environments

    NASA Technical Reports Server (NTRS)

    Gombosi, Tamas I.; DeZeeuw, Darren L.; Haberli, Roman M.; Powell, Kenneth G.

    1996-01-01

    First results of a three-dimensional multiscale MHD model of the interaction of an expanding cometary atmosphere with the magnetized solar wind are presented. The model starts with a supersonic and super-Alfvenic solar wind far upstream of the comet (25 Gm upstream of the nucleus) with arbitrary interplanetary magnetic field orientation. The solar wind is continuously mass loaded with cometary ions originating from a 10-km size nucleus. The effects of photoionization, electron impact ionization, recombination, and ion-neutral frictional drag are taken into account in the model. The governing equations are solved on an adaptively refined unstructured Cartesian grid using our new multiscale upwind scalar conservation laws-type numerical technique (MUSCL). We have named this the multiscale adaptive upwind scheme for MHD (MAUS-MHD). The combination of the adaptive refinement with the MUSCL-scheme allows the entire cometary atmosphere to be modeled, while still resolving both the shock and the diamagnetic cavity of the comet. The main findings are the following: (1) Mass loading decelerates the solar wind flow upstream of the weak cometary shock wave (M approximately equals 2, M(sub A) approximately equals 2), which forms at a subsolar standoff distance of about 0.35 Gm. (2) A cometary plasma cavity is formed at around 3 x 10(exp 3) km from the nucleus. Inside this cavity the plasma expands outward due to the frictional interaction between ions and neutrals. On the nightside this plasma cavity considerably narrows and a relatively fast and dense cometary plasma beam is ejected into the tail. (3) Inside the plasma cavity a teardrop-shaped inner shock is formed, which is terminated by a Mach disk on the nightside. Only the region inside the inner shock is the 'true' diamagnetic cavity. (4) The model predicts four distinct current systems in the inner coma: the density peak current, the cavity boundary current, the inner shock current, and finally the cross-tail current

  8. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    DOE PAGES

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; ...

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externallymore » applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.« less

  9. Modeling of fast neutral-beam-generated ion effects on MHD-spectroscopic observations of resistive wall mode stability in DIII-D plasmas [Modeling of fast neutral-beam-generated ion effects on MHD spectroscopic observations of RWM stability in DIII-D plasmas

    SciTech Connect

    Turco, Francesca; Turnbull, Alan D.; Hanson, Jeremy M.; Navratil, Gerald A.

    2015-02-03

    Experiments conducted at DIII-D investigate the role of drift kinetic damping and fast neutral beam injection (NBI)-ions in the approach to the no-wall βN limit. Modelling results show that the drift kinetic effects are significant and necessary to reproduce the measured plasma response at the ideal no-wall limit. Fast neutral-beam ions and rotation play important roles and are crucial to quantitatively match the experiment. In this paper, we report on the model validation of a series of plasmas with increasing βN, where the plasma stability is probed by active magnetohydrodynamic (MHD) spectroscopy. The response of the plasma to an externally applied field is used to probe the stable side of the resistive wall mode and obtain an indication of the proximity of the equilibrium to an instability limit. We describe the comparison between the measured plasma response and that calculated by means of the drift kinetic MARS-K code, which includes the toroidal rotation, the electron and ion drift-kinetic resonances, and the presence of fast particles for the modelled plasmas. The inclusion of kinetic effects allows the code to reproduce the experimental results within ~13% for both the amplitude and phase of the plasma response, which is a significant improvement with respect to the undamped MHD-only model. The presence of fast NBI-generated ions is necessary to obtain the low response at the highest βN levels (~90% of the ideal no-wall limit). Finally, the toroidal rotation has an impact on the results, and a sensitivity study shows that a large variation in the predicted response is caused by the details of the rotation profiles at high βN.

  10. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    SciTech Connect

    Chang, G.; Ruehl, K.; Jones, C. A.; Roberts, J.; Chartrand, C.

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs for large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.

  11. Numerical modeling of the effects of wave energy converter characteristics on nearshore wave conditions

    DOE PAGES

    Chang, G.; Ruehl, K.; Jones, C. A.; ...

    2015-12-24

    Modeled nearshore wave propagation was investigated downstream of simulated wave energy converters (WECs) to evaluate overall near- and far-field effects of WEC arrays. Model sensitivity to WEC characteristics and WEC array deployment scenarios was evaluated using a modified version of an industry standard wave model, Simulating WAves Nearshore (SWAN), which allows the incorporation of device-specific WEC characteristics to specify obstacle transmission. The sensitivity study illustrated that WEC device type and subsequently its size directly resulted in wave height variations in the lee of the WEC array. Wave heights decreased up to 30% between modeled scenarios with and without WECs formore » large arrays (100 devices) of relatively sizable devices (26 m in diameter) with peak power generation near to the modeled incident wave height. Other WEC types resulted in less than 15% differences in modeled wave height with and without WECs, with lesser influence for WECs less than 10 m in diameter. Wave directions and periods were largely insensitive to changes in parameters. Furthermore, additional model parameterization and analysis are required to fully explore the model sensitivity of peak wave period and mean wave direction to the varying of the parameters.« less

  12. Local effects of gravity wave propagation and saturation

    NASA Technical Reports Server (NTRS)

    Fritts, D. C.

    1985-01-01

    In recent years, gravity waves were recognized to play a major role in the dynamics of the middle atmosphere. Perhaps the major effect of such motions are the reversal of the vertical shear of the mean zonal wind and the occurrence of a large turbulent diffusivity in the mesosphere due to gravity wave saturation. Yet, despite the importance of these gravity wave effects, the processes and the consequences of gravity wave propagation and saturation are only beginning to be understood in detail. The linear saturation theory predicts drag and turbulent diffusion due to saturating wave motion. This theory, however, fails to address a number of issues that are certain to be important for gravity wave propagation and saturation in the middle atmosphere. These issues, including wave transience, wave superposition, local convective adjustment, and nonlinearity, are discussed.

  13. Spin reversal effect in hybrid s(±)-wave/p-wave Josephson junction.

    PubMed

    Wang, J; Chan, K S

    2010-06-09

    We report a theoretical study on a hybrid Josephson junction consisting of a proposed s( ± )-wave ferropnictide superconductor and a p-wave superconductor. It is found that the relative π phase shift intrinsic to the s( ± )-wave pairing can lead to an accumulated spin reversal effect at the junction interface and that the critical current has a vanishing point with the variation of the ratio of the interface resistances for each band. The spin reversal effect also appears with an increase of temperature and meanwhile the critical current exhibits a reentrant behavior. These findings can not appear for a usual s-wave state, so that they can be used to discriminate the s( ± )-wave pairing in superconducting ferropnictides from the conventional s-wave symmetry.

  14. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-03-01

    The Magnetohydrodynamics (MHD) Integrated Topping Cycle (ITC) Project represents the culmination of the proof-of-concept (POC) development stage in the US Department of Energy (DOE) program to advance MHD technology to early commercial development stage utility power applications. The project is a joint effort, combining the skills of three topping cycle component developers: TRW, Avco/TDS, and Westinghouse. TRW, the prime contractor and system integrator, is responsible for the 50 thermal megawatt (50 MW{sub t}) slagging coal combustion subsystem. Avco/TDS is responsible for the MHD channel subsystem (nozzle, channel, diffuser, and power conditioning circuits), and Westinghouse is responsible for the current consolidation subsystem. The ITC Project will advance the state-of-the-art in MHD power systems with the design, construction, and integrated testing of 50 MW{sub t} power train components which are prototypical of the equipment that will be used in an early commercial scale MHD utility retrofit. Long duration testing of the integrated power train at the Component Development and Integration Facility (CDIF) in Butte, Montana will be performed, so that by the early 1990's, an engineering data base on the reliability, availability, maintainability and performance of the system will be available to allow scaleup of the prototypical designs to the next development level. This Sixteenth Quarterly Technical Progress Report covers the period May 1, 1991 to July 31, 1991.

  15. Global MHD Simulations of Accretion Disks in Cataclysmic Variables. I. The Importance of Spiral Shocks

    NASA Astrophysics Data System (ADS)

    Ju, Wenhua; Stone, James M.; Zhu, Zhaohuan

    2016-06-01

    We present results from the first global 3D MHD simulations of accretion disks in cataclysmic variable (CV) systems in order to investigate the relative importance of angular momentum transport via turbulence driven by the magnetorotational instability (MRI) compared with that driven by spiral shock waves. Remarkably, we find that even with vigorous MRI turbulence, spiral shocks are an important component of the overall angular momentum budget, at least when temperatures in the disk are high (so that Mach numbers are low). In order to understand the excitation, propagation, and damping of spiral density waves in our simulations more carefully, we perform a series of 2D global hydrodynamical simulations with various equation of states, both with and without mass inflow via the Lagrangian point (L1). Compared with previous similar studies, we find the following new results. (1) The linear wave dispersion relation fits the pitch angles of spiral density waves very well. (2) We demonstrate explicitly that mass accretion is driven by the deposition of negative angular momentum carried by the waves when they dissipate in shocks. (3) Using Reynolds stress scaled by gas pressure to represent the effective angular momentum transport rate {α }{eff} is not accurate when mass accretion is driven by non-axisymmetric shocks. (4) Using the mass accretion rate measured in our simulations to directly measure α defined in standard thin-disk theory, we find 0.02≲ {α }{eff}≲ 0.05 for CV disks, consistent with observed values in quiescent states of dwarf novae. In this regime, the disk may be too cool and neutral for the MRI to operate and spiral shocks are a possible accretion mechanism. However, we caution that our simulations use unrealistically low Mach numbers in this regime and, therefore, future models with more realistic thermodynamics and non-ideal MHD are warranted.

  16. Effect of electromagnetic waves on human reproduction.

    PubMed

    Wdowiak, Artur; Mazurek, Paweł A; Wdowiak, Anita; Bojar, Iwona

    2017-03-31

    Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.

  17. The effect of microscale random Alfven waves on the propagation of large-scale Alfven waves

    NASA Astrophysics Data System (ADS)

    Namikawa, T.; Hamabata, H.

    1983-04-01

    The ponderomotive force generated by random Alfven waves in a collisionless plasma is evaluated taking into account mean magnetic and velocity shear and is expressed as a series involving spatial derivatives of mean magnetic and velocity fields whose coefficients are associated with the helicity spectrum function of random velocity field. The effect of microscale random Alfven waves through ponderomotive and mean electromotive forces generated by them on the propagation of large-scale Alfven waves is also investigated.

  18. Negative effective gravity in water waves by periodic resonator arrays.

    PubMed

    Hu, Xinhua; Chan, C T; Ho, Kai-Ming; Zi, Jian

    2011-04-29

    Based on analytic derivations and numerical simulations, we show that near a low resonant frequency water waves cannot propagate through a periodic array of resonators (bottom-mounted split tubes) as if water has a negative effective gravitational acceleration g(e) and positive effective depth h(e). This gives rise to a low-frequency resonant band gap in which water waves can be strongly reflected by the resonator array. For a damping resonator array, the resonant gap can also dramatically modify the absorption efficiency of water waves. The results provide a mechanism to block water waves and should find applications in ocean wave energy extraction.

  19. Spin effect on parametric interactions of waves in magnetoplasmas

    SciTech Connect

    Shahid, M.; Melrose, D. B.; Jamil, M.; Murtaza, G.

    2012-11-15

    The parametric decay instability of upper hybrid wave into low-frequency electromagnetic Shear Alfven wave and Ordinary mode radiation (O-mode) has been investigated in an electron-ion plasma immersed in the uniform external magnetic field. Incorporating quantum effect due to electron spin, the fluid model has been used to investigate the linear and nonlinear response of the plasma species for three-wave coupling in a magnetoplasma. It is shown that the spin of electrons has considerable effect on the parametric decay of upper hybrid wave into Ordinary mode radiation (O-mode) and Shear Alfven wave even in classical regime.

  20. Effect of Resolution on Propagating Detonation Wave

    SciTech Connect

    Menikoff, Ralph

    2014-07-10

    Simulations of the cylinder test are used to illustrate the effect of mesh resolution on a propagating detonation wave. For this study we use the xRage code with the SURF burn model for PBX 9501. The adaptive mesh capability of xRage is used to vary the resolution of the reaction zone. We focus on two key properties: the detonation speed and the cylinder wall velocity. The latter is related to the release isentrope behind the detonation wave. As the reaction zone is refined (2 to 15 cells for cell size of 62 to 8μm), both the detonation speed and final wall velocity change by a small amount; less than 1 per cent. The detonation speed decreases with coarser resolution. Even when the reaction zone is grossly under-resolved (cell size twice the reaction-zone width of the burn model) the wall velocity is within a per cent and the detonation speed is low by only 2 per cent.

  1. The generalized Doppler effect for surface waves

    NASA Astrophysics Data System (ADS)

    Michel, G.

    2016-11-01

    We investigate energy exchanges through scales occurring when a surface wave reflects on a harmonically oscillating wall. We first experimentally evidence the creation of Doppler-shifted waves and measure their height as a function of the oscillation amplitude. Then, we theoretically compute the amplitudes of these new waves in the gravity regime. Both results show that even without bulk non-linearities, oscillating paddles in a fluid container lead to a complex wave energy spectrum competing with the one predicted by wave turbulence. To exemplify this point, we characterize a simple one-dimensional model consisting of a linear wave equation in an oscillating cavity with distinct injection and dissipation mechanisms. It displays features usually associated with non-linearities, as self-similarity in a spectral domain (the so-called inertial range), appearance of energy at larger and/or lower scales than the forcing one and creation of shock waves.

  2. Realistic Modeling of Multi-Scale MHD Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Kitiashvili, Irina; Mansour, Nagi N.; Wray, Alan; Couvidat, Sebastian; Yoon, Seokkwan; Kosovichev, Alexander

    2014-01-01

    Realistic 3D radiative MHD simulations open new perspectives for understanding the turbulent dynamics of the solar surface, its coupling to the atmosphere, and the physical mechanisms of generation and transport of non-thermal energy. Traditionally, plasma eruptions and wave phenomena in the solar atmosphere are modeled by prescribing artificial driving mechanisms using magnetic or gas pressure forces that might arise from magnetic field emergence or reconnection instabilities. In contrast, our 'ab initio' simulations provide a realistic description of solar dynamics naturally driven by solar energy flow. By simulating the upper convection zone and the solar atmosphere, we can investigate in detail the physical processes of turbulent magnetoconvection, generation and amplification of magnetic fields, excitation of MHD waves, and plasma eruptions. We present recent simulation results of the multi-scale dynamics of quiet-Sun regions, and energetic effects in the atmosphere and compare with observations. For the comparisons we calculate synthetic spectro-polarimetric data to model observational data of SDO, Hinode, and New Solar Telescope.

  3. Coronal magnetohydrodynamic waves and oscillations: observations and quests.

    PubMed

    Aschwanden, Markus J

    2006-02-15

    Coronal seismology, a new field of solar physics that emerged over the last 5 years, provides unique information on basic physical properties of the solar corona. The inhomogeneous coronal plasma supports a variety of magnetohydrodynamics (MHD) wave modes, which manifest themselves as standing waves (MHD oscillations) and propagating waves. Here, we briefly review the physical properties of observed MHD oscillations and waves, including fast kink modes, fast sausage modes, slow (acoustic) modes, torsional modes, their diagnostics of the coronal magnetic field, and their physical damping mechanisms. We discuss the excitation mechanisms of coronal MHD oscillations and waves: the origin of the exciter, exciter propagation, and excitation in magnetic reconnection outflow regions. Finally, we consider the role of coronal MHD oscillations and waves for coronal heating, the detectability of various MHD wave types, and we estimate the energies carried in the observed MHD waves and oscillations: Alfvénic MHD waves could potentially provide sufficient energy to sustain coronal heating, while acoustic MHD waves fall far short of the required coronal heating rates.

  4. Strong curvature effects in Neumann wave problems

    SciTech Connect

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-08-15

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schroedinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  5. Strong curvature effects in Neumann wave problems

    NASA Astrophysics Data System (ADS)

    Willatzen, M.; Pors, A.; Gravesen, J.

    2012-08-01

    Waveguide phenomena play a major role in basic sciences and engineering. The Helmholtz equation is the governing equation for the electric field in electromagnetic wave propagation and the acoustic pressure in the study of pressure dynamics. The Schrödinger equation simplifies to the Helmholtz equation for a quantum-mechanical particle confined by infinite barriers relevant in semiconductor physics. With this in mind and the interest to tailor waveguides towards a desired spectrum and modal pattern structure in classical structures and nanostructures, it becomes increasingly important to understand the influence of curvature effects in waveguides. In this work, we demonstrate analytically strong curvature effects for the eigenvalue spectrum of the Helmholtz equation with Neumann boundary conditions in cases where the waveguide cross section is a circular sector. It is found that the linear-in-curvature contribution originates from parity symmetry breaking of eigenstates in circular-sector tori and hence vanishes in a torus with a complete circular cross section. The same strong curvature effect is not present in waveguides subject to Dirichlet boundary conditions where curvature contributions contribute to second-order in the curvature only. We demonstrate this finding by considering wave propagation in a circular-sector torus corresponding to Neumann and Dirichlet boundary conditions, respectively. Results for relative eigenfrequency shifts and modes are determined and compared with three-dimensional finite element method results. Good agreement is found between the present analytical method using a combination of differential geometry with perturbation theory and finite element results for a large range of curvature ratios.

  6. Effects of Surf Zone Sediment Properties on Shock Wave Behavior

    DTIC Science & Technology

    2016-06-07

    SEP 1999 2. REPORT TYPE 3. DATES COVERED 00-00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Effects of Surf Zone Sediment Properties on Shock Wave ...Effects of Surf Zone Sediment Properties on Shock Wave Behavior L. Dale Bibee Seafloor Geosciences – Code 7432 Naval Research Laboratory Stennis...mines is critically dependent upon the propagation effectiveness of shock waves from the charge to the mine. Data and modeling show that this

  7. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Astrophysics Data System (ADS)

    Ghosh, Sanjoy

    2001-06-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  8. Observational Tests of Recent MHD Turbulence Perspectives

    NASA Technical Reports Server (NTRS)

    Ghosh, Sanjoy; Guhathakurta, M. (Technical Monitor)

    2001-01-01

    This grant seeks to analyze the Heliospheric Missions data to test current theories on the angular dependence (with respect to mean magnetic field direction) of magnetohydrodynamic (MHD) turbulence in the solar wind. Solar wind turbulence may be composed of two or more dynamically independent components. Such components include magnetic pressure-balanced structures, velocity shears, quasi-2D turbulence, and slab (Alfven) waves. We use a method, developed during the first two years of this grant, for extracting the individual reduced spectra of up to three separate turbulence components from a single spacecraft time series. The method has been used on ISEE-3 data, Pioneer Venus Orbiter, Ulysses, and Voyager data samples. The correlation of fluctuations as a function of angle between flow direction and magnetic-field direction is the focus of study during the third year.

  9. The Effect of "Wave Breakers" on the Magnetohydrodynamic Instability in Aluminum Reduction Cells

    NASA Astrophysics Data System (ADS)

    Pedcenko, Alex; Molokov, Sergei; Bardet, Benoit

    2017-02-01

    We report the results of the experiments on the suppression of the MHD instability in a model of the aluminum reduction cells (Pedchenko et al. in EPL 88:24001, 2009). The idea behind the study is to introduce obstacles in the liquid metal to suppress the propagation of the rolling-pad instability wave. As a result, in some configurations with obstacles, we detect lowering of the wave amplitude, reduction of its propagation speed, and rise of the main parameters' thresholds, responsible for the instability onset.

  10. Magnetohydrodynamic (MHD) channel corner seal

    DOEpatents

    Spurrier, Francis R.

    1980-01-01

    A corner seal for an MHD duct includes a compressible portion which contacts the duct walls and an insulating portion which contacts the electrodes, sidewall bars and insulators. The compressible portion may be a pneumatic or hydraulic gasket or an open-cell foam rubber. The insulating portion is segmented into a plurality of pieces of the same thickness as the electrodes, insulators and sidewall bars and aligned therewith, the pieces aligned with the insulator being of a different size from the pieces aligned with the electrodes and sidewall bars to create a stepped configuration along the corners of the MHD channel.

  11. Problems in nonlinear resistive MHD

    SciTech Connect

    Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.

    1998-12-31

    Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1.

  12. Electron scattering and nonlinear trapping by oblique whistler waves: The critical wave intensity for nonlinear effects

    SciTech Connect

    Artemyev, A. V. Vasiliev, A. A.; Mourenas, D.; Krasnoselskikh, V. V.

    2014-10-15

    In this paper, we consider high-energy electron scattering and nonlinear trapping by oblique whistler waves via the Landau resonance. We use recent spacecraft observations in the radiation belts to construct the whistler wave model. The main purpose of the paper is to provide an estimate of the critical wave amplitude for which the nonlinear wave-particle resonant interaction becomes more important than particle scattering. To this aim, we derive an analytical expression describing the particle scattering by large amplitude whistler waves and compare the corresponding effect with the nonlinear particle acceleration due to trapping. The latter is much more rare but the corresponding change of energy is substantially larger than energy jumps due to scattering. We show that for reasonable wave amplitudes ∼10–100 mV/m of strong whistlers, the nonlinear effects are more important than the linear and nonlinear scattering for electrons with energies ∼10–50 keV. We test the dependencies of the critical wave amplitude on system parameters (background plasma density, wave frequency, etc.). We discuss the role of obtained results for the theoretical description of the nonlinear wave amplification in radiation belts.

  13. Heat Waves in the United States: Mortality Risk during Heat Waves and Effect Modification by Heat Wave Characteristics in 43 U.S. Communities

    PubMed Central

    Anderson, G. Brooke; Bell, Michelle L.

    2011-01-01

    Background Devastating health effects from recent heat waves, and projected increases in frequency, duration, and severity of heat waves from climate change, highlight the importance of understanding health consequences of heat waves. Objectives We analyzed mortality risk for heat waves in 43 U.S. cities (1987–2005) and investigated how effects relate to heat waves’ intensity, duration, or timing in season. Methods Heat waves were defined as ≥ 2 days with temperature ≥ 95th percentile for the community for 1 May through 30 September. Heat waves were characterized by their intensity, duration, and timing in season. Within each community, we estimated mortality risk during each heat wave compared with non-heat wave days, controlling for potential confounders. We combined individual heat wave effect estimates using Bayesian hierarchical modeling to generate overall effects at the community, regional, and national levels. We estimated how heat wave mortality effects were modified by heat wave characteristics (intensity, duration, timing in season). Results Nationally, mortality increased 3.74% [95% posterior interval (PI), 2.29–5.22%] during heat waves compared with non-heat wave days. Heat wave mortality risk increased 2.49% for every 1°F increase in heat wave intensity and 0.38% for every 1-day increase in heat wave duration. Mortality increased 5.04% (95% PI, 3.06–7.06%) during the first heat wave of the summer versus 2.65% (95% PI, 1.14–4.18%) during later heat waves, compared with non-heat wave days. Heat wave mortality impacts and effect modification by heat wave characteristics were more pronounced in the Northeast and Midwest compared with the South. Conclusions We found higher mortality risk from heat waves that were more intense or longer, or those occurring earlier in summer. These findings have implications for decision makers and researchers estimating health effects from climate change. PMID:21084239

  14. Tide Effects on Wave Attenuation and Wave Set-up on a Caribbean Coral Reef

    NASA Astrophysics Data System (ADS)

    Lugo-Fernández, A.; Roberts, H. H.; Wiseman, W. J., Jr.

    1998-10-01

    The effects of tides on wave attenuation and wave set-up were investigated at Great Pond Bay, a Caribbean reef located in St Croix, U.S. Virgin Islands. Measurements of wave pressure fluctuations were made at three stations across the reef profile. Total wave set-up was measured between the forereef and the reef crest or backreef lagoon. Wave spectra indicate significant filtering of energy at the peak frequencies as waves traveled across the reef. The energy dissipation calculations imply an average energy reduction of 62% between the forereef and reef crest. Mean energy reduction between the forereef and lagoon was 90%. Energy dissipation between the forereef and reef crest increased 15% between high and low tide and 6% between forereef and lagoon. Tidal reduction of water depth at the reef crest intensified wave breaking and this condition increased energy dissipation. Measurements of wave set-up ranged from 0·8 to 1·5 cm. Calculations of wave set-up using Tait's 1972 model showed good agreement with observations.

  15. Effective Gol'dberg number for diverging waves.

    PubMed

    Hamilton, Mark F

    2016-12-01

    An effective Gol'dberg number is proposed for determining the degree of nonlinear distortion achieved in a diverging wave field. For values that are large compared with unity, the degree of nonlinear waveform distortion is virtually the same as that for a plane wave characterized by the traditional Gol'dberg number having the same numerical value. Expressions for the effective Gol'dberg number are proposed for spherical and cylindrical waves, Gaussian beams, and exponential horns.

  16. MHD of Aircraft Re-entry: Limits and Perspectives

    SciTech Connect

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-16

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  17. MHD of Aircraft Re-entry: Limits and Perspectives

    NASA Astrophysics Data System (ADS)

    Seller, G.; Capitelli, M.; Longo, S.; Armenise, I.; Bruno, D.

    2005-05-01

    In the present work, starting from classical MHD scheme, based on Maxwell equations, Euler fluid dynamic equations and generalised Ohm law, a critical study of fluid dynamics, electromagnetism, chemical and physical behaviour of plasma is carried out, and then a aircraft re-entry MHD numerical scheme is implemented. This scheme is used for MHD calculations in different conditions, in the range of low magnetic force and intermediate electrical conductivity. Initial imposed magnetic fields are uniform, but also some cases with coil generated magnetic fields are considered. Calculations of magnetic field and induced currents are extended also inside the blunt body. Results show interesting physical and electromagnetic effects. Comparison with other methods shows possible development in keeping into account other physical and chemical effects.

  18. Common Hamiltonian and topological properties of extended MHD models

    NASA Astrophysics Data System (ADS)

    Miloshevich, George; Lingam, Manasvi; Morrison, Philip

    2016-10-01

    Extended MHD, a 1-fluid model endowed with 2-fluid effects (electron inertia and Hall drift) possesses a Hamiltonian structure. This formulation is described, as it unifies different classes of extended MHD models (including those that have mutually exclusive effects). The unification is further highlighted by showing that these models possess common topological invariants that are the generalizations of the fluid/magnetic helicity. They can be expressed naturally in a knot-theoretic framework via the Jones polynomial by exploiting techniques from Chern-Simons theory. It is also shown that extended MHD exhibits other commonalities such as: generalized Kelvin circulation theorems, and the existence of two Lie-dragged 2-forms closely connected with generalizations of the fluid vorticity. NSF Grant No. AGS-133894, DOE Grants No. DE-AC02-09CH-11466 and DE-FG02-04ER-54742.

  19. Magnetic reconnection in Hall-MHD including electron inertia

    NASA Astrophysics Data System (ADS)

    Gomez, D. O.; Andres, N.; Martin, L. N.; Dmitruk, P.

    2013-12-01

    Magnetic reconnection is an important energy conversion process in highly conducting plasmas, such as those present in the solar corona or in planetary magnetospheres. Within the framework of resistive one-fluid MHD, the Sweet-Parker model leads to extremely low reconnection rates for virtually all space physics applications. Kinetic plasma effects introduce new spatial and temporal scales into the theoretical description, which might significantly increase the reconnection rates. Within the more general framework of two-fluid MHD for a fully ionized hydrogen plasma, we retain the effects of the Hall current and electron inertia. We performed 2.5D Hall MHD simulations including electron inertia using a pseudo-spectral code which yields exact conservation (to round-off errors) of all the ideal invariants. We obtain finite reconnection rates even in the case of zero resistivity, thus showing the important influence of the electron inertia.

  20. Corrosion and arc erosion in MHD channels

    NASA Astrophysics Data System (ADS)

    Rosa, R. J.; Pollina, R. J.

    1991-10-01

    The objective of this task is to study the corrosion and arc erosion of MHD materials in a cooperative effort with, and to support, the MHD topping cycle program. Materials tested in the Avco Research Laboratory/Textron facility, or materials which have significant MHD importance, will be analyzed to document their physical deterioration. Conclusions shall be drawn about their wear mechanisms and lifetime in the MHD environment with respect to the following issues; sulfur corrosion, electrochemical corrosion, and arc erosion. The impact of any materials or slag conditions on the level of power output and on the level of leakage current in the MHD channel will also be noted, where appropriate.

  1. Transport in EHD flows distinct from HD and MHD flows

    NASA Astrophysics Data System (ADS)

    Kikuchi, H.

    2003-04-01

    EHD flows are typically composed of a charged (positively or negatively) fluid, though not all, that may be an electron fluid, an ion fluid or a dust fluid for a single fluid, or their mixtures for multi-component fluids in contrast to nonionized HD or plasma MHD flows. Electric or ponderomotive forces are newly exerted on EHD flows in addition to mechanical, viscous, and magnetic forces on HD and MHD flows. Accordingly, EHD flows hold electric pressure in addition to gas or plasma and magnetic pressure in HD and MHD flows. EHD flows hold space charge and displacement currents and are regarded as a dielectric or semiconducting fluid in contrast to nonionized HD flows or conducting plasma MHD flows. EHD flows are governed by a new equation of electric field transport in addition to fluid vortex transport (HD) and magnetic field transport (MHD), though their equations have to be supplemented by additional terms involving effects of space charge and electric fields, and are characterized by a new electric Reynolds number, R_E with spatial and temporal factors in addition to the fluid Reynolds number, R (spatial) and the magnetic Reynolds number, R_M (spatial) for HD and MHD flows. When R_E >> 1, however, the equation of electric field transport for EHD flows is reduced to the so-called Kelvin-Helmholtz equation just like equations of fluid vortex and magnetic field transport for R >> 1 for HD flows and R_M >> 1 for MHD flows. Accordingly, the EHD relation, H^* = H + v × .D ≈ 0 holds, analogous to the so-called MHD relation, E^* = E + v ×.B ≈ 0. In EHD flows, electric cusp or electrically neutral point can be formed as a bifurcation point of equipotential line or surface, analogous to a stagnation point in HD flows and magnetic cusp or separatrix in MHD flows. Accordingly, electric reconnection or space-charge related electric field line merging with particle acceleration or ionization due to critical velocity effects is possible in EHD flows, analogous to fluid

  2. MHD Integrated Topping Cycle Project

    SciTech Connect

    Not Available

    1992-01-01

    The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.

  3. Biological Effects of Shock Waves on Infection

    NASA Astrophysics Data System (ADS)

    Gnanadhas, Divya Prakash; Janardhanraj, S.; Chakravortty, Dipshikha; Gopalan, Jagadeesh

    Shock waves have been successfully used for disintegrating kidney stones[1], noninvasive angiogenic approach[2] and for the treatment of osteoporosis[3]. Recently shock waves have been used to treat different medical conditions including intestinal anastomosis[4], wound healing[5], Kienböck's disease[6] and articular cartilage defects[7].

  4. Nonlinear effects associated with oblique whistler waves in space plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, R. P.; Nandal, P.; Yadav, N.; Uma, R.

    2016-10-01

    In the present work, we have examined the nonlinear interaction of pump whistler wave and low frequency kinetic Alfvén wave (KAW) in three regions viz., solar wind, earth's radiation belt, and magnetopause. The modification in the background density leads to the introduction of nonlinearity. The nonlinear ponderomotive force is responsible for this change in density. Low frequency kinetic Alfvén wave is excited by the nonlinear ponderomotive force of pump whistler wave. A set of dimensionless equations characterizing the dynamics of whistler wave and low frequency KAW perturbed by whistler wave were developed. The coupled equations were then simulated numerically. The nonlinear effects related with the whistler wave were studied. The resulting localized structures and the magnetic turbulent spectra in various regions have been investigated.

  5. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1995-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observation at high altitudes.

  6. Magnetospheric filter effect for Pc 3 Alfven mode waves

    NASA Technical Reports Server (NTRS)

    Zhang, X.; Comfort, R. H.; Gallagher, D. L.; Green, J. L.; Musielak, Z. E.; Moore, T. E.

    1994-01-01

    We present a ray-tracing study of the propagation of Pc 3 Alfven mode waves originating at the dayside magnetopause. This study reveals interesting features of a magnetospheric filter effect for these waves. Pc 3 Alfven mode waves cannot penetrate to low Earth altitudes unless the wave frequency is below approximately 30 mHz. Configurations of the dispersion curves and the refractive index show that the gyroresonance and pseudo-cutoff introduced by the heavy ion O(+) block the waves. When the O(+) concentration is removed from the plasma composition, the barriers caused by the O(+) no longer exist, and waves with much higher frequencies than 30 mHz can penetrate to low altitudes. The result that the 30 mHz or lower frequency Alfven waves can be guided to low altitudes agrees with ground-based power spectrum observations at high latitudes.

  7. Wave energy converter effects on wave propagation: A sensitivity study in Monterey Bay, CA

    NASA Astrophysics Data System (ADS)

    Chang, G.; Jones, C. A.; Roberts, J.; Magalen, J.; Ruehl, K.; Chartrand, C.

    2014-12-01

    The development of renewable offshore energy in the United States is growing rapidly and wave energy is one of the largest resources currently being evaluated. The deployment of wave energy converter (WEC) arrays required to harness this resource could feasibly number in the hundreds of individual devices. The WEC arrays have the potential to alter nearshore wave propagation and circulation patterns and ecosystem processes. As the industry progresses from pilot- to commercial-scale it is important to understand and quantify the effects of WECs on the natural nearshore processes that support a local, healthy ecosystem. To help accelerate the realization of commercial-scale wave power, predictive modeling tools have been developed and utilized to evaluate the likelihood of environmental impact. At present, direct measurements of the effects of different types of WEC arrays on nearshore wave propagation are not available; therefore wave model simulations provide the groundwork for investigations of the sensitivity of model results to prescribed WEC characteristics over a range of anticipated wave conditions. The present study incorporates a modified version of an industry standard wave modeling tool, SWAN (Simulating WAves Nearshore), to simulate wave propagation through a hypothetical WEC array deployment site on the California coast. The modified SWAN, referred to as SNL-SWAN, incorporates device-specific WEC power take-off characteristics to more accurately evaluate a WEC device's effects on wave propagation. The primary objectives were to investigate the effects of a range of WEC devices and device and array characteristics (e.g., device spacing, number of WECs in an array) on nearshore wave propagation using SNL-SWAN model simulations. Results showed that significant wave height was most sensitive to variations in WEC device type and size and the number of WEC devices in an array. Locations in the lee centerline of the arrays in each modeled scenario showed the

  8. Perturbed Stability Analysis of External Ideal MHD Modes

    NASA Astrophysics Data System (ADS)

    Comer, K. J.; Callen, J. D.; Hegna, C. C.; Garstka, G. D.; Turnbull, A. D.; Garofalo, A. M.; Cowley, S. C.

    2002-11-01

    Traditionally, numerical parameter scans are performed to study the effects of equilibrium shaping and profiles on long wavelength ideal MHD instabilities. Previously, we introduced a new perturbative technique to more efficiently explore these dependencies: changes in delta-W due to small equilibrium variations are found using a perturbation of the energy principle rather than with an eigenvalue-solver instability code. With this approach, the stability properties of similar equilibria can be efficiently explored without generating complete numerical results for every set of parameters (which is time-intensive for accurate representations of several configurations). Here, we apply this approach to toroidal geometry using GATO (an ideal MHD stability code) and experimental equilibria. In particular, we explore ideal MHD stability of external kink modes in the spherical tokamak Pegasus and resistive wall modes in DIII-D.

  9. Transport theory and the WKB approximation for interplanetary MHD fluctuations

    NASA Astrophysics Data System (ADS)

    Matthaeus, William H.; Zhou, Ye; Zank, G. P.; Oughton, S.

    1994-12-01

    An alternative approach, based on a multiple scale analysis, is presented in order to reconcile the traditional Wentzel-Kramer-Brillouin (WKB) approach to the modeling of interplanetary fluctuations in a mildly inhomogeneous large-scale flow with a more recently developed transport theory. This enables us to compare directly, at a formal level, the inherent structure of the two models. In the case of noninteracting, incompressible (Alven) waves, the principle difference between the two models is the presence of leading-order couplings (called 'mixing effects') in the non-WKB turbulence model which are absent in a WKB development. Within the context of linearized MHD, two cases have been identified for which the leading order non-WJB 'mixing term' does not vanish at zero wavelength. For these cases the WKB expansion is divergent, whereas the multiple-scale theory is well behaved. We have thus established that the WKB results are contained within the multiple-scale theory, but leading order mixing effects, which are likely to have important observational consequences, can never be recovered in the WKB style expansion. Properties of the higher-order terms in each expansion are also discussed, leading to the conclusion that the non-WKB hierarchy may be applicable even when the scale separation parameter is not small.

  10. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  11. Experimental observation of negative effective gravity in water waves.

    PubMed

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C T; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection.

  12. Effect of Forcing Function on Nonlinear Acoustic Standing Waves

    NASA Technical Reports Server (NTRS)

    Finkheiner, Joshua R.; Li, Xiao-Fan; Raman, Ganesh; Daniels, Chris; Steinetz, Bruce

    2003-01-01

    Nonlinear acoustic standing waves of high amplitude have been demonstrated by utilizing the effects of resonator shape to prevent the pressure waves from entering saturation. Experimentally, nonlinear acoustic standing waves have been generated by shaking an entire resonating cavity. While this promotes more efficient energy transfer than a piston-driven resonator, it also introduces complicated structural dynamics into the system. Experiments have shown that these dynamics result in resonator forcing functions comprised of a sum of several Fourier modes. However, previous numerical studies of the acoustics generated within the resonator assumed simple sinusoidal waves as the driving force. Using a previously developed numerical code, this paper demonstrates the effects of using a forcing function constructed with a series of harmonic sinusoidal waves on resonating cavities. From these results, a method will be demonstrated which allows the direct numerical analysis of experimentally generated nonlinear acoustic waves in resonators driven by harmonic forcing functions.

  13. Experimental Observation of Negative Effective Gravity in Water Waves

    PubMed Central

    Hu, Xinhua; Yang, Jiong; Zi, Jian; Chan, C. T.; Ho, Kai-Ming

    2013-01-01

    The gravity of Earth is responsible for the formation of water waves and usually difficult to change. Although negative effective gravity was recently predicted theoretically in water waves, it has not yet been observed in experiments and remains a mathematical curiosity which is difficult to understand. Here we experimentally demonstrate that close to the resonant frequency of purposely-designed resonating units, negative effective gravity can occur for water waves passing through an array of resonators composing of bottom-mounted split tubes, resulting in the prohibition of water wave propagation. It is found that when negative gravity occurs, the averaged displacement of water surface in a unit cell of the array has a phase difference of π to that along the boundary of the unit cell, consistent with theoretical predictions. Our results provide a mechanism to block water waves and may find applications in wave energy conversion and coastal protection. PMID:23715132

  14. Periodicity effects on compound guided waves

    NASA Astrophysics Data System (ADS)

    Chiadini, Francesco; Fiumara, Vincenzo; Scaglione, Antonio; Lakhtakia, Akhlesh

    2016-09-01

    Surface waves of different types can be compounded when a homogeneous layer is sandwiched between two half spaces filled with dissimilar periodically non-homogeneous dielectric materials and the intermediate layer is sufficiently thin. We solved the boundary-value problem for compound waves guided by a layer of a homogeneous and isotropic (metal or dielectric) material sandwiched between a structurally chiral material (SCM) and a periodically multi-layered isotropic dielectric material. We found that the periodicity of the SCM is crucial to excite a multiplicity of compound guided waves with strong coupling between the two interfaces.

  15. Effect of cross grain on stress waves in lumber

    Treesearch

    C.C. Gerhards

    1980-01-01

    An evaluation is made of the effect of cross grain on the transit time of longitudinal compression stress waves in Douglas-fir 2 by 8 lumber. Cross grain causes the stress wave to advance with a front or contour skewed in the direction of the grain angle, rather than to advance with a front normal to the long axis of lumber. Thus, the timing of the stress wave in...

  16. Wave-current interaction: Effect on the wave field in a semi-enclosed basin

    NASA Astrophysics Data System (ADS)

    Benetazzo, A.; Carniel, S.; Sclavo, M.; Bergamasco, A.

    2013-10-01

    The effect on waves of the Wave-Current Interaction (WCI) process in the semi-enclosed Gulf of Venice (northern region of the Adriatic Sea) was investigated using the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system. COAWST relies on the ocean model ROMS (Regional Ocean Modeling System), the wave model SWAN (Simulating WAves Nearshore), and the CSTMS (Community Sediment Transport Modeling System) routines. The two-way data transfer between circulation and wave models was synchronous via MCT (Model Coupling Toolkit), with ROMS providing: current field, free surface elevation, and bathymetry to SWAN. For coupling, the 3-D current profiles were averaged using a formulation which integrated the near-surface velocity over a depth controlled by the spectral mean wavenumber. COAWST system was implemented on a parent grid (with horizontal resolution of 2.0 km) covering the whole Adriatic Sea with one-way nesting to a child grid resolving the northern area (Gulf of Venice) at a resolution of 0.5 km. The meteorological forcings provided by the operational meteorological model COSMO-I7 (a mesoscale model developed in the framework of the COSMO Consortium) were used to drive the modeling system in the period bracketing September 2010-August 2011. The adopted winds and the simulated waves were compared with observations at the CNR-ISMAR Acqua Alta oceanographic tower, located off the Venice littoral. Wave heights and sea surface winds were also compared with satellite-derived data. The analysis of WCI was performed on the child grid over the winter season (January-March 2011) with particular focus on the waves generated by prevailing and dominant winds blowing on the Adriatic Sea: Bora and Sirocco. Due to the variable wind direction with respect to the ocean current direction different effects on WCI were depicted, showing that within the northern Adriatic Sea the ocean-wave interactions are strongly dependent on the wind forcing direction. Further

  17. Effects of variable electrical conductivity and thermal conductivity on unsteady MHD free convection flow past an exponential accelerated inclined plate

    NASA Astrophysics Data System (ADS)

    Rana, B. M. Jewel; Ahmed, Rubel; Ahmmed, S. F.

    2017-06-01

    An analysis is carried out to investigate the effects of variable viscosity, thermal radiation, absorption of radiation and cross diffusion past an inclined exponential accelerated plate under the influence of variable heat and mass transfer. A set of suitable transformations has been used to obtain the non-dimensional coupled governing equations. Explicit finite difference technique has been used to solve the obtained numerical solutions of the present problem. Stability and convergence of the finite difference scheme have been carried out for this problem. Compaq Visual Fortran 6.6a has been used to calculate the numerical results. The effects of various physical parameters on the fluid velocity, temperature, concentration, coefficient of skin friction, rate of heat transfer, rate of mass transfer, streamlines and isotherms on the flow field have been presented graphically and discussed in details.

  18. Soret and Dufour effects on MHD peristaltic transport of Jeffrey fluid in a curved channel with convective boundary conditions

    PubMed Central

    Alsaedi, Ahmad

    2017-01-01

    The purpose of present article is to examine the peristaltic flow of Jeffrey fluid in a curved channel. An electrically conducting fluid in the presence of radial applied magnetic field is considered. Analysis of heat and mass transfer is carried out. More generalized realistic constraints namely the convective conditions are utilized. Soret and Dufour effects are retained. Problems formulation is given for long wavelength and low Reynolds number assumptions. The expressions of velocity, temperature, heat transfer coefficient, concentration and stream function are computed. Effects of emerging parameters arising in solutions are analyzed in detail. It is found that velocity is not symmetric about centreline for curvature parameter. Also maximum velocity decreases with an increase in the strength of magnetic field. Further it is noticed that Soret and Dufour numbers have opposite behavior for temperature and concentration. PMID:28222160

  19. Toward A Self Consistent MHD Model of Chromospheres and Winds From Late Type Evolved Stars

    NASA Astrophysics Data System (ADS)

    Airapetian, V. S.; Leake, J. E.; Carpenter, Kenneth G.

    2015-01-01

    We present the first magnetohydrodynamic model of the stellar chromospheric heating and acceleration of the outer atmospheres of cool evolved stars, using α Tau as a case study. We used a 1.5D MHD code with a generalized Ohm's law that accounts for the effects of partial ionization in the stellar atmosphere to study Alfvén wave dissipation and wave reflection. We have demonstrated that due to inclusion of the effects of ion-neutral collisions in magnetized weakly ionized chromospheric plasma on resistivity and the appropriate grid resolution, the numerical resistivity becomes 1-2 orders of magnitude smaller than the physical resistivity. The motions introduced by non-linear transverse Alfvé waves can explain non-thermally broadened and non-Gaussian profiles of optically thin UV lines forming in the stellar chromosphere of α Tau and other late-type giant and supergiant stars. The calculated heating rates in the stellar chromosphere due to resistive (Joule) dissipation of electric currents, induced by upward propagating non-linear Alfvé waves, are consistent with observational constraints on the net radiative losses in UV lines and the continuum from α Tau. At the top of the chromosphere, Alfvé waves experience significant reflection, producing downward propagating transverse waves that interact with upward propagating waves and produce velocity shear in the chromosphere. Our simulations also suggest that momentum deposition by non-linear Alfvé waves becomes significant in the outer chromosphere at 1 stellar radius from the photosphere. The calculated terminal velocity and the mass loss rate are consistent with the observationally derived wind properties in α Tau.

  20. Viscosity effects in wind wave generation

    NASA Astrophysics Data System (ADS)

    Paquier, A.; Moisy, F.; Rabaud, M.

    2016-12-01

    We investigate experimentally the influence of the liquid viscosity on the problem of the generation of waves by a turbulent wind at the surface of a liquid, extending the results of Paquier et al. [A. Paquier et al., Phys. Fluids 27, 122103 (2015), 10.1063/1.4936395] over nearly three decades of viscosity. The surface deformations are measured with micrometer accuracy using the free-surface synthetic schlieren method. We recover the two regimes of surface deformations previously identified: the wrinkle regime at small wind velocity, resulting from the viscous imprint on the liquid surface of the turbulent fluctuations in the boundary layer, and the regular wave regime at large wind velocity. Below the wave threshold, we find that the characteristic amplitude of the wrinkles scales as ν-1 /2u*3 /2 over nearly the whole range of viscosities, whereas their size is essentially unchanged. We propose a simple model for this scaling, which compares well with the data. We show that the critical friction velocity u* for the onset of regular waves slowly increases with viscosity as ν0.2. Whereas the transition between wrinkles and waves is smooth at low viscosity, including for water, it becomes rather abrupt at high viscosity. A third wave regime is found at ν >(100 -200 ) ×10-6m2s-1 , characterized by a slow, nearly periodic emission of large-amplitude isolated fluid bumps.

  1. Magnetic levitation and MHD propulsion

    NASA Astrophysics Data System (ADS)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  2. Cross diffusion and MHD effects on a high order chemically reactive micropolar fluid of naturally convective heat and mass transfer past through an infinite vertical porous medium with a constant heat sink

    NASA Astrophysics Data System (ADS)

    Arifuzzaman, S. M.; Rana, B. M. Jewel; Ahmed, R.; Ahmmed, S. F.

    2017-06-01

    High order chemically reactive micropolar fluid flow through an infinite vertical porous medium with thermal diffusion, mass diffusion, MHD, thermal radiation and heat sink has been studied. A flow model is established by employing the well-known boundary layer approximations. In order to obtain non-dimensional system of equations, a similarity transformation is applied on the flow model. The stability and convergence analysis have been analyzed. The obtained non-dimensional equations have been solved by explicit finite difference method. The effects of various parameters entering into the problem on velocity, angular velocity, temperature and concentration are shown graphically.

  3. Investigation of Ultrasonic Wave Scattering Effects using Computational Methods

    NASA Astrophysics Data System (ADS)

    Campbell Leckey, Cara Ann

    2011-12-01

    Advances in computational power and expanded access to computing clusters has made mathematical modeling of complex wave effects possible. We have used multi-core and cluster computing to implement analytical and numerical models of ultrasonic wave scattering in fluid and solid media (acoustic and elastic waves). We begin by implementing complicated analytical equations that describe the force upon spheres immersed in inviscid and viscous fluids due to an incident plane wave. Two real-world applications of acoustic force upon spheres are investigated using the mathematical formulations: emboli removal from cardiopulmonary bypass circuits using traveling waves and the micromanipulation of algal cells with standing waves to aid in biomass processing for algae biofuels. We then move on to consider wave scattering situations where analytical models do not exist: scattering of acoustic waves from multiple scatterers in fluids and Lamb wave scattering in solids. We use a numerical method called finite integration technique (FIT) to simulate wave behavior in three dimensions. The 3D simulations provide insight into experimental results for situations where 2D simulations would not be sufficient. The diverse set of scattering situations explored in this work show the broad applicability of the underlying principles and the computational tools that we have developed. Overall, our work shows that the movement towards better availability of large computational resources is opening up new ways to investigate complicated physics phenomena.

  4. Blood characteristics effect on pulse wave velocity.

    PubMed

    Kim, Jong Youn; Yoon, Jihyun; Cho, Minhee; Lee, Byoung-Kwon; Karimi, Ali; Shin, Sehyun

    2013-01-01

    PWV, a surrogate marker for vascular stiffness, can be also expressed by the Bramwell-Hill equation. The effect of blood density to PWV has been ignored, because variation of blood density is assumed to be negligible. In some clinical situation, blood density could be changed, and blood density as a mechanical property of blood flow might affect to PWV. While the elastic property plays an important role in determining the wave propagation in an elastic tube, our assumption is that there might be some relation between blood flow and vascular wall, and that the characteristics of blood flow might influence PWV. This study was objected to investigate the role of mechanical and hemorheologic parameters on PWV in subjects with cardiovascular disease. We have measured and analyzed the PWV, hemorheologic parameters, and other clinical parameters in 814 patients with coronary arterial disease scheduled for coronary angiography. There is no commercial method for measuring whole blood density. So, we defined the density score, which is sum of hemoglobin and total protein. And the hemorheologic parameters were measured within 4 hours after sampling by automated microfluidic hemorheometer. And the effect of all the clinical and hemorheologic parameter on PWV was analyzed by multiple linear regression analysis. Many clinical parameters including age and blood pressure, high shear WBV and ESR as hemorheologic parameters, and density score were correlated well with ba-PWV. However, many clinical variables, high shear WBV and ESR lost the independent significance on multivariable regression analysis. Only age, SBP, and density score were independent variables (p < 0.001). In conclusion, density score as a mechanical property of blood might be suggested as an independent variable influencing PWV in addition to age and blood pressure, but hemorheologic parameters, such as RBC deformability, aggregation, and whole blood viscosity do not affect PWV independently.

  5. Biological effects of shock waves: lung hemorrhage by shock waves in dogs--pressure dependence.

    PubMed

    Delius, M; Enders, G; Heine, G; Stark, J; Remberger, K; Brendel, W

    1987-02-01

    The most serious side effect observed during the destruction of gallstones by shock waves in dogs was lung bleeding. To determine the conditions leading to lung damage, pressure probes were implanted into dogs between the lung and the diaphragm. The distance between the lung and the focal point of the pressure field was determined at which 1000 shock waves caused no more lung hemorrhage. On the long axis it is greater than 15 cm and perpendicular to the long axis it is 4 cm. Shock wave pressures over 2 MPa could be administered safely, whereas a pressure of 10 MPa caused bleedings in beagles, but probably not in boxers.

  6. Nonlinear magnetohydrodynamic waves in a steady zonal circulation for a shallow fluid shell on the surface of a rotating sphere

    NASA Technical Reports Server (NTRS)

    Lou, Y. Q.

    1987-01-01

    This paper considers two-dimensional nonlinear MHD waves of large horizontal spatial scales for a thin magnetofluid layer on the surface of a rotating sphere. The 'shallow fluid' hydrodynamic equations are generalized to include the effects of magnetic fields, and it is shown that the resulting MHD equations can be reduced to a single scalar equation for a stream function involving several free functions. For special choices of these free functions, two kinds of finite-amplitude MHD waves are obtained, propagating in the azimuthal direction relative to the uniformly rotating background atmosphere in the presence of a background zonal magnetic field and a steady differential zonal flow. These two kinds of MHD waves are fundamentally due to the joint effects of the uniform rotation of the background atmosphere and background magnetic field; the first is an inertial wave of the Rossby (1939) and Haurwitz (1940) type, modified by the presence of the background zonal magnetic field, while the second is a magnetic Alfven-like wave which is modified by the uniform rotation of the background atmosphere.

  7. MHD Forced Convective Laminar Boundary Layer Flow from a Convectively Heated Moving Vertical Plate with Radiation and Transpiration Effect

    PubMed Central

    Uddin, Md. Jashim; Khan, Waqar A.; Ismail, A. I. Md.

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to whilst the magnetic field and mass transfer velocity are taken to be proportional to where is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory. PMID:23741295

  8. Effects of partial slip boundary condition and radiation on the heat and mass transfer of MHD-nanofluid flow

    NASA Astrophysics Data System (ADS)

    Abd Elazem, Nader Y.; Ebaid, Abdelhalim

    2017-07-01

    In this paper, the effect of partial slip boundary condition on the heat and mass transfer of the Cu-water and Ag-water nanofluids over a stretching sheet in the presence of magnetic field and radiation. Such partial slip boundary condition has attracted much attention due to its wide applications in industry and chemical engineering. The flow is basically governing by a system of partial differential equations which are reduced to a system of ordinary differential equations. This system has been exactly solved, where exact analytical expression has been obtained for the fluid velocity in terms of exponential function, while the temperature distribution, and the nanoparticles concentration are expressed in terms of the generalized incomplete gamma function. In addition, explicit formulae are also derived from the rates of heat transfer and mass transfer. The effects of the permanent parameters on the skin friction, heat transfer coefficient, rate of mass transfer, velocity, the temperature profile, and concentration profile have been discussed through tables and graphs.

  9. Joule heating effect on a continuously moving thin needle in MHD Sakiadis flow with thermophoresis and Brownian moment

    NASA Astrophysics Data System (ADS)

    Sulochana, C.; Ashwinkumar, G. P.; Sandeep, N.

    2017-09-01

    In the current study, we investigated the impact of thermophoresis and Brownian moment on the boundary layer 2D forced convection flow of a magnetohydrodynamic nanofluid along a persistently moving horizontal needle with frictional heating effect. The various pertinent parameters are taken into account in the present analysis, namely, the thermophoresis and Brownian moment, uneven heat source/sink, Joule heating and frictional heating effects. To check the variation in the boundary layer behavior, we considered two distinct nanoparticles namely Al50Cu50 (alloy with 50% alumina and 50% copper) and Cu with water as base liquid. Numerical solutions are derived for the reduced system of governing PDEs by employing the shooting process. Computational results of the flow, energy and mass transport are interpreted with the support of tables and graphical illustrations. The obtained results indicate that the increase in the needle size significantly reduces the flow and thermal fields. In particular, the velocity field of the Cu-water nanofluid is highly affected when compared with the Al50Cu50 -water nanofluid. Also, we showed that the thermophoresis and Brownian moment parameters are capable of enhancing the thermal conductivity to a great extent.

  10. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    PubMed

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  11. Magnetorotational Instability of Dissipative MHD Flows

    SciTech Connect

    HERRON, ISOM H

    2010-07-10

    Executive summary Two important general problems of interest in plasma physics that may be addressed successfully by Magnetohydrodynamics (MHD) are: (1) Find magnetic field configurations capable of confining a plasma in equilibrium. (2) Study the stability properties of each such an equilibrium. It is often found that the length scale of many instabilities and waves that are able to grow or propagate in a system, are comparable with plasma size, such as in magnetically confined thermonuclear plasmas or in astrophysical accretion disks. Thus MHD is able to provide a good description of such large-scale disturbances. The Magnetorotational instability (MRI) is one particular instance of a potential instability. The project involved theoretical work on fundamental aspects of plasma physics. Researchers at the Princeton Plasma Physics Laboratory (PPPL) began to perform a series of liquid metal Couette flow experiments between rotating cylinders. Their purpose was to produce MRI, which they had predicted theoretically 2002, but was only observed in the laboratory since this project began. The personnel on the project consisted of three persons: (1) The PI, who was partially supported on the budget during each of four summers 2005-2008. (2) Two graduate research assistants, who worked consecutively on the project throughout the years 2005-2009. As a result, the first student, Fritzner Soliman, obtained an M.S. degree in 2006; the second student, Pablo Suarez obtained the Ph.D. degree in 2009. The work was in collaboration with scientists in Princeton, periodic trips were made by the PI as part of the project. There were 4 peer-reviewed publications and one book produced.

  12. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

    NASA Astrophysics Data System (ADS)

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2015-12-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  13. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Mishra, S. R.; Pattnaik, P. K.; Bhatti, M. M.; Abbas, T.

    2017-05-01

    This article addresses the mass and heat transfer analysis over an electrically conducting viscoelastic (Walters B') fluid over a stretching surface in presence of transverse magnetic field. The impact of chemical reaction, as well as non-uniform heat source, are also taken into account. Similarity transformations are employed to model the equations. The governing equations comprises of momentum, energy, and concentration which are modified to a set of non-linear differential equations and then solved by applying confluent hypergeometric function known as "Kummer's function". The exact solution for heat equation is obtained for two cases i.e. (1) Prescribed surface temperature, (2) Prescribed wall heat flux. Physical behavior of all the sundry parameters are against concentration, temperature, and velocity profile are presented through graphs. The inclusion of magnetic field is counterproductive in diminishing the velocity distribution whereas reverse effect is encountered for concentration and temperature profiles.

  14. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip

    PubMed Central

    Mat Yasin, Mohd Hafizi; Ishak, Anuar; Pop, Ioan

    2015-01-01

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable. PMID:26647651

  15. MHD Stagnation-Point Flow and Heat Transfer with Effects of Viscous Dissipation, Joule Heating and Partial Velocity Slip.

    PubMed

    Yasin, Mohd Hafizi Mat; Ishak, Anuar; Pop, Ioan

    2015-12-09

    The steady two-dimensional stagnation-point flow and heat transfer past a permeable stretching/shrinking sheet with effects of viscous dissipation, Joule heating and partial velocity slip in the presence of a magnetic field is investigated. The partial differential equations are reduced to nonlinear ordinary differential equations by using a similarity transformation, before being solved numerically by shooting technique. Results indicate that the skin friction coefficient and the local Nusselt number increase as magnetic parameter increases. It is found that for the stretching sheet the solution is unique while for the shrinking sheet there exist nonunique solutions (dual solutions) in certain range of parameters. The stability analysis shows that the upper branch solution is stable while the lower branch solution is unstable.

  16. Effect logs of double diffusion on MHD Prandtl nano fluid adjacent to stretching surface by way of numerical approach

    NASA Astrophysics Data System (ADS)

    Bilal, S.; Rehman, Khalil Ur; Malik, M. Y.; Hussain, Arif; Awais, M.

    The current communication is carried to contemplate the unique and novel characteristics of nanofluids by constructing formulation of Prandtl fluid model. The fascinating aspects of thermo diffusion effects are also accounted in this communication. Mathematical modelling is performed by employing boundary layer approach. Afterwards, similarity variables are selected to convert dimensional non-linear system into dimensionless expressions. The solution of governing dimensionless problem is executed by shooting method (SM). Graphical evaluation is displayed to depict the intrinsic behavior of embedded parameters on dimensionless velocity, temperature, solutal concentration and nanoparticle concentration profiles. Furthermore, the numerical variation for skin friction coefficient, local Nusselt number, Sherwood number and nano Sherwood number is scrutinized through tables. The assurance of current analysis is affirmed by developing comparison with previous findings available in literature, which sets a benchmark for implementation of computational approach. It is inferred from the computation that concentration profile increases whereas Sherwood number decreases for progressive values of Dufour solutal number.

  17. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet

    NASA Astrophysics Data System (ADS)

    Mishra, S. R.; Pattnaik, P. K.; Bhatti, M. M.; Abbas, T.

    2017-10-01

    This article addresses the mass and heat transfer analysis over an electrically conducting viscoelastic (Walters B') fluid over a stretching surface in presence of transverse magnetic field. The impact of chemical reaction, as well as non-uniform heat source, are also taken into account. Similarity transformations are employed to model the equations. The governing equations comprises of momentum, energy, and concentration which are modified to a set of non-linear differential equations and then solved by applying confluent hypergeometric function known as " Kummer's function". The exact solution for heat equation is obtained for two cases i.e. (1) Prescribed surface temperature, (2) Prescribed wall heat flux. Physical behavior of all the sundry parameters are against concentration, temperature, and velocity profile are presented through graphs. The inclusion of magnetic field is counterproductive in diminishing the velocity distribution whereas reverse effect is encountered for concentration and temperature profiles.

  18. Extended MHD Turbulence and Its Applications to the Solar Wind

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Hamdi M.; Lingam, Manasvi; Mahajan, Swadesh M.

    2016-10-01

    Extended MHD is a one-fluid model that incorporates two-fluid effects such as electron inertia and the Hall drift. This model is used to construct fully nonlinear Alfvénic wave solutions, and thereby derive the kinetic and magnetic spectra by resorting to a Kolmogorov-like hypothesis based on the constant cascading rates of the energy and generalized helicities of this model. The magnetic and kinetic spectra are derived in the ideal (k\\lt 1/{λ }i), Hall (1/{λ }i\\lt k\\lt 1/{λ }e), and electron inertia (k\\gt 1/{λ }e) regimes; k is the wavenumber and {λ }s=c/{ω }{ps} is the skin depth of species “s.” In the Hall regime, it is shown that the emergent results are fully consistent with previous numerical and analytical studies, especially in the context of the solar wind. The focus is primarily on the electron inertia regime, where magnetic energy spectra with power-law indexes of -11/3 and -13/3 are always recovered. The latter, in particular, is quite close to recent observational evidence from the solar wind with a potential slope of approximately -4 in this regime. It is thus plausible that these spectra may constitute a part of the (extended) inertial range, as opposed to the standard “dissipation” range paradigm.

  19. Observation of spin-wave cooling effect in magnets

    NASA Astrophysics Data System (ADS)

    An, Toshu; Uchida, Ken-Ichi; Harii, Kazuya; Kajiwara, Yosuke; Yamagichi, Kazuya; Jungfleisch, M. B.; Chumak, A. V.; Vasyuchka, V. I.; Hillebrands, Burkard; Saitoh, Eiji

    2012-02-01

    We focused on utilizing a surface spin wave (Damon-Eshbach mode); traveling on top and bottom surfaces in a non reciprocal manner, as a good carrier of heat. As a sample, Yttrium iron garnet (YIG) was chosen because the spin waves excited in the YIG is known to have a long coherence length propagating distances even a few millimeters. By exciting the surface spin wave of only one side, heat transportation was successfully observed by measuring sample temperature with an infrared thermocamera. More interestingly, the temperature where the spin wave is initially excited shows cooling effect to drop its temperature just after the excitation of the surface spin wave. Here we call this effect as microwave cooling effect which is introducing a new cooling principle.

  20. Effects of surface wave breaking on the oceanic boundary layer

    NASA Astrophysics Data System (ADS)

    He, Hailun; Chen, Dake

    2011-04-01

    Existing laboratory studies suggest that surface wave breaking may exert a significant impact on the formation and evolution of oceanic surface boundary layer, which plays an important role in the ocean-atmosphere coupled system. However, present climate models either neglect the effects of wave breaking or treat them implicitly through some crude parameterization. Here we use a one-dimensional ocean model (General Ocean Turbulence Model, GOTM) to investigate the effects of wave breaking on the oceanic boundary layer on diurnal to seasonal time scales. First a set of idealized experiments are carried out to demonstrate the basic physics and the necessity to include wave breaking. Then the model is applied to simulating observations at the northern North Sea and the Ocean Weather Station Papa, which shows that properly accounting for wave breaking effects can improve model performance and help it to successfully capture the observed upper ocean variability.

  1. The RFP dynamo: MHD to kinetic regimes

    NASA Astrophysics Data System (ADS)

    Sarff, J. S.; Almagri, A. F.; den Hartog, D. J.; McCollam, K. J.; Nornberg, M. D.; Sauppe, J. P.; Sovinec, C. R.; Terry, P. W.; Triana, J. C.; Brower, D. L.; Ding, W. X.; Parke, E.

    2015-11-01

    The hallmark of magnetic relaxation in an RFP plasma is profile flattening of J0 .B0 /B2 effected by a dynamo-like emf in Ohm's law. This is well-studied in single-fluid MHD, but recent MST results and extended MHD modeling show that both and the Hall emf, - /ene , are important, revealing decoupled electron and ion motion. Since dynamo is current-related, the electron fluid emf, , captures both effects. In MST, the electron flow is dominantly Ve , 1 ~E1 ×B0 /B2 , implying ~ / B . This and the Hall emf are measured in MST for comparison in Ohm's law. A finite-pressure response is also possible, e.g., ``diamagnetic dynamo'', ∇ . /ene , associated with diamagnetic drift, and ``kinetic dynamo'' associated with collisionless streaming of electrons in a stochastic magnetic field. Correlation measurements and using FIR interferometry and Thomson scattering reveal these as small but finite in MST. A kinetic emf might be expected for any high-beta plasma with inhomogeneous pressure. Support by DOE/NSF.

  2. Geometric Effects on the Amplification of First Mode Instability Waves

    NASA Technical Reports Server (NTRS)

    Kirk, Lindsay C.; Candler, Graham V.

    2013-01-01

    The effects of geometric changes on the amplification of first mode instability waves in an external supersonic boundary layer were investigated using numerical techniques. Boundary layer stability was analyzed at Mach 6 conditions similar to freestream conditions obtained in quiet ground test facilities so that results obtained in this study may be applied to future test article design to measure first mode instability waves. The DAKOTA optimization software package was used to optimize an axisymmetric geometry to maximize the amplification of the waves at first mode frequencies as computed by the 2D STABL hypersonic boundary layer stability analysis tool. First, geometric parameters such as nose radius, cone half angle, vehicle length, and surface curvature were examined separately to determine the individual effects on the first mode amplification. Finally, all geometric parameters were allowed to vary to produce a shape optimized to maximize the amplification of first mode instability waves while minimizing the amplification of second mode instability waves. Since first mode waves are known to be most unstable in the form of oblique wave, the geometries were optimized using a broad range of wave frequencies as well as a wide range of oblique wave angles to determine the geometry that most amplifies the first mode waves. Since first mode waves are seen most often in flows with low Mach numbers at the edge of the boundary layer, the edge Mach number for each geometry was recorded to determine any relationship between edge Mach number and the stability of first mode waves. Results indicate that an axisymmetric cone with a sharp nose and a slight flare at the aft end under the Mach 6 freestream conditions used here will lower the Mach number at the edge of the boundary layer to less than 4, and the corresponding stability analysis showed maximum first mode N factors of 3.

  3. Effect of thermal radiation on MHD flow of blood and heat transfer in a permeable capillary in stretching motion

    NASA Astrophysics Data System (ADS)

    Misra, J. C.; Sinha, A.

    2013-05-01

    In this paper, a theoretical analysis is presented for magnetohydrodynamic flow of blood in a capillary, its lumen being porous and wall permeable. The unsteadiness in the flow and temperature fields is caused by the time-dependence of the stretching velocity and the surface temperature. Thermal radiation, velocity slip and thermal slip conditions are taken into account. In order to study the flow field as well as the temperature field, the problem is formulated as a boundary value problem consisting of a system of nonlinear coupled partial differential equations. The problem is analysed by using similarity transformation and boundary layer approximation. Solution of the problem is achieved by developing a suitable numerical method and using high speed computers. Computational results for the variation in velocity, temperature, skin-friction co-efficient and Nusselt number are presented in graphical/tabular form. Effects of different parameters are adequately discussed. Since the study takes care of thermal radiation in blood flow, the results reported here are likely to have an important bearing on the therapeutic procedure of hyperthermia, particularly in understanding/regulating blood flow and heat transfer in capillaries.

  4. Integral Constraints and MHD Stability

    NASA Astrophysics Data System (ADS)

    Jensen, T. H.

    2003-10-01

    Determining stability of a plasma in MHD equilibrium, energetically isolated by a conducting wall, requires an assumption on what governs the dynamics of the plasma. One example is the assumption that the plasma obeys ideal MHD, leading to the well known ``δ W" criteria [I. Bernstein, et al., Proc. Roy. Soc. London A244, 17 (1958)]. A radically different approach was used by Taylor [J.B. Taylor, Rev. Mod. Phys. 58, 741 (1986)] in assuming that the dynamics of the plasma is restricted only by the requirement that helicity, an integral constant associated with the plasma, is conserved. The relevancy of Taylor's assumption is supported by the agreement between resulting theoretical results and experimental observations. Another integral constraint involves the canonical angular momentum of the plasma particles. One consequence of using this constraint is that tokamak plasmas have no poloidal current in agreement with some current hole tokamak observations [T.H. Jensen, Phys. Lett. A 305, 183 (2002)].

  5. IMF By effects on ground magnetometer response to increased solar wind dynamic pressure derived from global MHD simulations

    NASA Astrophysics Data System (ADS)

    Ozturk, Dogacan Su; Zou, Shasha; Slavin, James A.

    2017-05-01

    During sudden solar wind dynamic pressure enhancements, the magnetosphere undergoes rapid compression resulting in a reconfiguration of the global current systems, most notably the field-aligned currents (FACs). Ground-based magnetometers are traditionally used to study such compression events. However, factors affecting the polarity and magnitude of the ground-based magnetic perturbations are still not well understood. In particular, interplanetary magnetic field (IMF) By is known to create significant asymmetries in the FAC patterns. We use the University of Michigan Block Adaptive Tree Roe Upwind Scheme (BATS'R'US) magnetohydrodynamic code to investigate the effects of IMF By on the global variations of ground magnetic perturbations during solar wind dynamic pressure enhancements. Using virtual magnetometers in three idealized simulations with varying IMF By, we find asymmetries in the peak amplitude and magnetic local time of the ground magnetic perturbations during the preliminary impulse (PI) and the main impulse (MI) phases. These asymmetries are especially evident at high-latitude ground magnetometer responses where the peak amplitudes differ by 50 nT at different locations. We show that the FACs related with the PI are due to magnetopause deformation, and the FACs related with the MI are generated by vortical flows within the magnetosphere, consistent with other simulation results. The perturbation FACs due to pressure enhancements and their magnetospheric sources do not differ much under different IMF By polarities. However, the conductance profile affected by the superposition of the preexisting FACs and the perturbation FACs including their closure currents is responsible for the magnitude and location asymmetries in the ground magnetic perturbations.

  6. MHD simulation of RF current drive in MST

    NASA Astrophysics Data System (ADS)

    Hendries, E. R.; Anderson, J. K.; Diem, S.; Forest, C. B.; Harvey, R. W.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.

    2014-02-01

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ˜ 104) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ˜ 3×106) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  7. MHD simulation of RF current drive in MST

    SciTech Connect

    Hendries, E. R.; Anderson, J. K.; Forest, C. B.; Reusch, J. A.; Seltzman, A. H.; Sovinec, C. R.; Diem, S.; Harvey, R. W.

    2014-02-12

    Auxiliary heating and current drive using RF waves such as the electron Bernstein wave (EBW) promises to advance the performance of the reversed field pinch (RFP). In previous computational work [1], a hypothetical edge-localized current drive is shown to suppress the tearing activity which governs the macroscopic transport properties of the RFP. The ideal conditions for tearing stabilization include a reduced toroidal induction, and precise width and radial position of the Gaussian-shaped external current drive. In support of the EBW experiment on the Madison Symmetric Torus, an integrated modeling scheme now incorporates ray tracing and Fokker-Plank predictions of auxiliary current into single fluid MHD. Simulations at low Lundquist number (S ∼ 10{sup 4}) generally agree with the previous work; significantly more burdensome simulations at MST-like Lundquist number (S ∼ 3×10{sup 6}) show unexpected results. The effect on nonlinearly saturated current profile by a particular RF-driven external force decreases in magnitude and widens considerably as the Lundquist number increases toward experimental values. Simulations reproduce the periodic current profile relaxation events observed in experiment (sawteeth) in the absence of current profile control. Reduction of the tearing mode amplitudes is still observable; however, reduction is limited to periods between the large bursts of magnetic activity at each sawtooth. The sawtoothing pattern persists with up to 10 MW of externally applied RF power. Periods with prolonged low tearing amplitude are predicted with a combination of external current drive and a reduced toroidal loop voltage, consistent with previous conclusions. Finally, the resistivity profile is observed to have a strong effect on the optimal externally driven current profile for mode stabilization.

  8. Modified NASA-Lewis chemical equilibrium code for MHD applications

    NASA Technical Reports Server (NTRS)

    Sacks, R. A.; Geyer, H. K.; Grammel, S. J.; Doss, E. D.

    1979-01-01

    A substantially modified version of the NASA-Lewis Chemical Equilibrium Code was recently developed. The modifications were designed to extend the power and convenience of the Code as a tool for performing combustor analysis for MHD systems studies. The effect of the programming details is described from a user point of view.

  9. Electrical characteristics of a seawater MHD thruster. Final report

    SciTech Connect

    Tempelmeyer, K.E.

    1990-06-01

    There is renewed interest in the application of the magnetohydrodynamic (MHD) propulsion concept to marine propulsion. However, there is almost no experimental information concerning the major physical processes which will occur in a seawater MHD propulsion unit, such as (1) the seawater electrolysis process at operational conditions needed for ship propulsion, (2) the effects of bubble formation on the performance of a seawater thruster and (3) the effectiveness of the MHD interaction in seawater. Small scale tests of an MHD type channel but without an applied magnetic field have been carried out to provide information about the first two of these areas (1) seawater electrolysis and (2) the effect of the H2 bubbles generated during the electrolysis of seawater. Current/voltage characteristics were obtained with different electrode materials for current densities up to 0.3 amp/sq cm. The effect of bubble formation on the channel current has been assessed over a range of operating conditions. Long-duration tests to 100 hrs have been made to provide information on electrode durability and long-term operational problems.

  10. Performance enhancement of explosive-driven MHD generators

    SciTech Connect

    Smith, I.R.; Senior, P.; Stewardson, H.R.; Vadher, V.V. . Dept. of Electronic and Electrical Engineering); Novac, B.M. )

    1994-11-01

    The change in the circuit inductance of a pulsed MHD generator as the plasma sheet travels along the electrodes acts to increase the voltage produced in the generator. The paper explains how unconventional electrode arrangements enable this effect to be significantly magnified, thereby bringing about a considerable increase in the output that can be obtained.

  11. The Biermann catastrophe of numerical MHD

    NASA Astrophysics Data System (ADS)

    Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.

    2016-05-01

    The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.

  12. Metal/gas MHD conversion

    NASA Astrophysics Data System (ADS)

    Thibault, J. P.; Joussellin, F.; Alemany, A.; Dupas, A.

    1982-09-01

    Operation features, theory, performance, and possible spatial applications of metal/gas MHD electrical generators are described. The working principle comprises an MHD channel, surrounded by a magnet, filled with a molten, highly conductive metal into which gas is pumped. The heat of the metal expands the gas, forcing a flow through the magnetic field crossing the channel, thus creating an electrical current conducted by the metal. The gas and metal are separated by a centrifugal device and both are redirected into the channel, forming thereby a double closed circuit when the heat of the molten metal is returned to the flow. Necessary characteristics for the gas such as a fairly low vaporization temperature and nonmiscibility with the metal, are outlined, and a space system using Li-Cs or Z-K as the heat carrier kept molten by a parabolic dish system is sketched. Equations governing the fluid mechanics, thermodynamics, and the electrical generation are defined. The construction of a prototype MHD generator using a tin-water flow operating at 250 C, a temperature suitable for coupling to solar heat sources, is outlined, noting expected efficiencies of 20-30 percent.

  13. Anomalous Josephson effect in p-wave dirty junctions.

    PubMed

    Asano, Yasuhiro; Tanaka, Yukio; Kashiwaya, Satoshi

    2006-03-10

    The Josephson effect in p-wave superconductor/diffusive normal metal/p-wave superconductor junctions is studied theoretically. Amplitudes of Josephson currents are several orders of magnitude larger than those in s-wave junctions. Current-phase (J-phi) relations in low temperatures are close to those in ballistic junctions such as J proportional to sin(phi/2) and J proportional to phi even in the presence of random impurity potentials. A cooperative effect between the midgap Andreev resonant states and the proximity effect causes such anomalous properties and is a character of the spin-triplet superconductor junctions.

  14. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  15. Effects of D region ionization on radio wave propagation

    NASA Technical Reports Server (NTRS)

    Larsen, T. R.

    1979-01-01

    The effects of anomalous D region ionization upon radio wave propagation are described for the main types of disturbances: sudden ionospheric disturbances, relativistic electron events, magnetic storms, auroral disturbances, polar cap events, and stratospheric warmings. Examples of radio wave characteristics for such conditions are given for the frequencies between the extremely low (3-3000 Hz) and high (3-30 MHz) frequency domains. Statistics on the disturbance effects and radio wave data are given in order to contribute towards the evaluation of possibilities for predicting the radio effects.

  16. Parametric instabilities of parallel propagating incoherent Alfven waves in a finite ion beta plasma

    SciTech Connect

    Nariyuki, Y.; Hada, T.; Tsubouchi, K.

    2007-12-15

    Large amplitude, low-frequency Alfven waves constitute one of the most essential elements of magnetohydrodynamic (MHD) turbulence in the fast solar wind. Due to small collisionless dissipation rates, the waves can propagate long distances and efficiently convey such macroscopic quantities as momentum, energy, and helicity. Since loading of such quantities is completed when the waves damp away, it is important to examine how the waves can dissipate in the solar wind. Among various possible dissipation processes of the Alfven waves, parametric instabilities have been believed to be important. In this paper, we numerically discuss the parametric instabilities of coherent/incoherent Alfven waves in a finite ion beta plasma using a one-dimensional hybrid (superparticle ions plus an electron massless fluid) simulation, in order to explain local production of sunward propagating Alfven waves, as suggested by Helios/Ulysses observation results. Parameter studies clarify the dependence of parametric instabilities of coherent/incoherent Alfven waves on the ion and electron beta ratio. Parametric instabilities of coherent Alfven waves in a finite ion beta plasma are vastly different from those in the cold ions (i.e., MHD and/or Hall-MHD systems), even if the collisionless damping of the Alfven waves are neglected. Further, ''nonlinearly driven'' modulational instability is important for the dissipation of incoherent Alfven waves in a finite ion beta plasma regardless of their polarization, since the ion kinetic effects let both the right-hand and left-hand polarized waves become unstable to the modulational instability. The present results suggest that, although the antisunward propagating dispersive Alfven waves are efficiently dissipated through the parametric instabilities in a finite ion beta plasma, these instabilities hardly produce the sunward propagating waves.

  17. Aharanov-Casher Effect for Spin Waves in a Ferromagnet

    NASA Astrophysics Data System (ADS)

    Liu, Tianyu; Vignale, Giovanni

    2010-03-01

    Spin waves play a potentially important role in spintronics as means for modulating the magnetoresistance of devices. In this work we study how the propagation of spin waves can be controlled by electric fields, which couple to electrons via spin-orbit interaction. Starting from basic models of localized spins interacting via itinerant electrons (e.g. double exchange model, RKKY interaction) we study how spin-orbit coupling between the itinerant electrons and an electric field modifies the dynamics of spin waves. In particular, we provide a first-principle derivation of the Aharanov-Casher effect on the phase of spin waves in ferromagnetic rings. In a parallel study, we consider the propagation of spin waves on a textured magnetic background (e.g. a domain wall or a spiral magnetic structure). An analogy between the effect of a non-uniform magnetization background and that of spin-orbit coupling is developed.

  18. Newtonian CAFE: a new ideal MHD code to study the solar atmosphere

    NASA Astrophysics Data System (ADS)

    González, J. J.; Guzmán, F.

    2015-12-01

    In this work we present a new independent code designed to solve the equations of classical ideal magnetohydrodynamics (MHD) in three dimensions, submitted to a constant gravitational field. The purpose of the code centers on the analysis of solar phenomena within the photosphere-corona region. In special the code is capable to simulate the propagation of impulsively generated linear and non-linear MHD waves in the non-isothermal solar atmosphere. We present 1D and 2D standard tests to demonstrate the quality of the numerical results obtained with our code. As 3D tests we present the propagation of MHD-gravity waves and vortices in the solar atmosphere. The code is based on high-resolution shock-capturing methods, uses the HLLE flux formula combined with Minmod, MC and WENO5 reconstructors. The divergence free magnetic field constraint is controlled using the Flux Constrained Transport method.

  19. Fractional resonances between waves and energetic particles in tokamak plasmas.

    PubMed

    Kramer, G J; Chen, L; Fisher, R K; Heidbrink, W W; Nazikian, R; Pace, D C; Van Zeeland, M A

    2012-07-20

    From numerical simulation and analytical modeling it is shown that fast ions can resonate with plasma waves at fractional values of the particle drift-orbit transit frequency when the plasma wave amplitude is sufficiently large. The fractional resonances, which are caused by a nonlinear interaction between the particle orbit and the wave, give rise to an increased density of resonances in phase space which reduces the threshold for stochastic transport. The effects of the fractional resonances on spatial and energy transport are illustrated for an energetic particle geodesic acoustic mode but they apply equally well to other types of MHD activity.

  20. TAE modes and MHD activity in TFTR DT plasmas

    SciTech Connect

    Fredrickson, E.; Batha, S.; Bell, M.

    1995-03-01

    The high power deuterium and tritium experiments on TFTR have produced fusion a parameters similar to those expected on ITER. The achieved {beta}{sub {alpha}}/{beta} and the R{triangledown}{beta}{sub {alpha}} in TFRR D-T shots are 1/2 to 1/3 those predicted in the ITER EDA. Studies of the initial TFTR D-T plasmas find no evidence that the presence of the fast fusion {alpha} population has affected the stability of MHD, with the possible exception of Toroidal Alfven Eigenmodes (TAE`s). The initial TFTR DT plasmas had MHD activity similar to that commonly seen in deuterium plasmas. Operation of TFTR at plasma currents of 2.0--2.5 MA has greatly reduced the deleterious effects of MHD commonly observed at lower currents. Even at these higher currents, the performance of TFTR is limited by {beta}-limit disruptions. The effects of MHD on D-T fusion {alpha}`s was similar to effects observed on other fusion products in D only plasmas.

  1. Sialon Electrodes and Insulators for MHD Device

    NASA Technical Reports Server (NTRS)

    Phillips, W. M.

    1984-01-01

    Rectangular magnetohydrodynamic (MHD) channel structure for electrical power generation designed using pure sialon ceramic for insulating portion of structure and metal-bearing sialon cermet for conducting portion.

  2. Rapporteur report: MHD electric power plants

    NASA Technical Reports Server (NTRS)

    Seikel, G. R.

    1980-01-01

    Five US papers from the Proceedings of the Seventh International Conference on MHD Electrical Power Generation at the Massachusetts Institute of Technology are summarized. Results of the initial parametric phase of the US effort on the study of potential early commercial MHD plants are reported and aspects of the smaller commercial prototype plant termed the Engineering Test Facility are discussed. The alternative of using a disk geometry generator rather than a linear generator in baseload MHD plants is examined. Closed-cycle as well as open-cycle MHD plants are considered.

  3. Modification of magnetohydrodynamic waves by the relativistic Hall effect

    NASA Astrophysics Data System (ADS)

    Kawazura, Yohei

    2017-07-01

    This study shows that a relativistic Hall effect significantly changes the properties of wave propagation by deriving a linear dispersion relation for relativistic Hall magnetohydrodynamics (HMHD). Whereas, in nonrelativistic HMHD, the phase and group velocities of fast magnetosonic wave become anisotropic with an increasing Hall effect, the relativistic Hall effect brings upper bounds to the anisotropies. The Alfvén wave group velocity with strong Hall effect also becomes less anisotropic than the nonrelativistic case. Moreover, the group velocity surfaces of Alfvén and fast waves coalesce into a single surface in the direction other than near perpendicular to the ambient magnetic field. It is also remarkable that a characteristic scale length of the relativistic HMHD depends on ion temperature, magnetic field strength, and density while the nonrelativistic HMHD scale length, i.e., ion skin depth, depends only on density. The modified characteristic scale length increases as the ion temperature increases and decreases as the magnetic field strength increases.

  4. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  5. Scintillation effects on radio wave propagation through solar corona

    NASA Technical Reports Server (NTRS)

    Ho, C. M.; Sue, M. K.; Bedrossian, A.; Sniffin, R. W.

    2002-01-01

    When RF waves pass through the solar corona and solar wind regions close to the Sun, strong scintillation effects appear at their amplitude, frequency and phase, especially in the regions very close to the Sun (less than 4 solar radius).

  6. Added effect of heat wave on mortality in Seoul, Korea.

    PubMed

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  7. Added effect of heat wave on mortality in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Lee, Won Kyung; Lee, Hye Ah; Lim, Youn Hee; Park, Hyesook

    2016-05-01

    A heat wave could increase mortality owing to high temperature. However, little is known about the added (duration) effect of heat wave from the prolonged period of high temperature on mortality and different effect sizes depending on the definition of heat waves and models. A distributed lag non-linear model with a quasi-Poisson distribution was used to evaluate the added effect of heat wave on mortality after adjusting for long-term and intra-seasonal trends and apparent temperature. We evaluated the cumulative relative risk of the added wave effect on mortality on lag days 0-30. The models were constructed using nine definitions of heat wave and two relationships (cubic spline and linear threshold model) between temperature and mortality to leave out the high temperature effect. Further, we performed sensitivity analysis to evaluate the changes in the effect of heat wave on mortality according to the different degrees of freedom for time trend and cubic spline of temperature. We found that heat wave had the added effect from the prolonged period of high temperature on mortality and it was considerable in the aspect of cumulative risk because of the lagged influence. When heat wave was defined with a threshold of 98th percentile temperature and ≥2, 3, and 4 consecutive days, mortality increased by 14.8 % (7.5-22.6, 95 % confidence interval (CI)), 18.1 % (10.8-26.0, 95 % CI), 18.1 % (10.7-25.9, 95 % CI), respectively, in cubic spline model. When it came to the definitions of 90th and 95th percentile, the risk increase in mortality declined to 3.7-5.8 % and 8.6-11.3 %, respectively. This effect was robust to the flexibility of the model for temperature and time trend, while the definitions of a heat wave were critical in estimating its relationship with mortality. This finding could help deepen our understanding and quantifying of the relationship between heat wave and mortality and select an appropriate definition of heat wave and temperature model in the future

  8. Simulations of a Detonation Wave in Transverse Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cole, Lord; Karagozian, Ann; Cambier, Jean-Luc

    2010-11-01

    Numerical simulations of magneto-hydrodynamic (MHD) effects on detonation wave structures are performed, with applications to flow control and MHD power extraction in Pulse Detonation Engines (PDE) and their design variations. In contrast to prior studies of MHD interactions in PDEs,ootnotetextCambier, et al., AIAA-2008-4688 the effects of the finite relaxation length scale for ionization on the stability of the detonation wave are examined. Depending on the coupling parameters, the magnetic field can quench the detonation and effectively act as a barrier to its propagation. Conversely, an applied transient magnetic field can exert a force on a pre-ionized gas and accelerate it. The dynamics are subject to non-linear effects; a propagating transverse magnetic field will initially exert a small force if the gas has a low conductivity and the magnetic Reynolds number (Rem) is low. Nevertheless, the gas accelerated by the "piston" action of the field can pre-heat the ambient gas and increase its conductivity. As the wave progresses, Rem increases and the magnetic field becomes increasingly effective. The dynamics of this process are examined in detail with a high-order shock-capturing method and full kinetics of combustion and ionization. The complex chemical kinetics calculations are ported onto a GPU using the CUDA language, and computational performance is compared with standard CPU-based computations.

  9. Biological effects of laser-induced stress waves

    SciTech Connect

    Doukas, A.; Lee, S.; McAuliffe, D.

    1995-12-31

    Laser-induced stress waves can be generated by one of the following mechanisms: Optical breakdown, ablation or rapid heating of an absorbing medium. These three modes of laser interaction with matter allow the investigation of cellular and tissue responses to stress waves with different characteristics and under different conditions. The most widely studied phenomena are those of the collateral damage seen in photodisruption in the eye and in 193 run ablation of cornea and skin. On the other hand, the therapeutic application of laser-induced stress waves has been limited to the disruption of noncellular material such as renal stones, atheromatous plaque and vitreous strands. The effects of stress waves to cells and tissues can be quite disparate. Stress waves can fracture tissue, damage cells, and increase the permeability of the plasma membrane. The viability of cell cultures exposed to stress waves increases with the peak stress and the number of pulses applied. The rise time of the stress wave also influences the degree of cell injury. In fact, cell viability, as measured by thymidine incorporation, correlates better with the stress gradient than peak stress. Recent studies have also established that stress waves induce a transient increase of the permeability of the plasma membrane in vitro. In addition, if the stress gradient is below the damage threshhold, the cells remain viable. Thus, stress waves can be useful as a means of drug delivery, increasing the intracellular drug concentration and allowing the use of drugs which are impermeable to the cell membrane. The present studies show that it is important to create controllable stress waves. The wavelength tunability and the micropulse structure of the free electron laser is ideal for generating stress waves with independently adjustable parameters, such as rise time, duration and peak stress.

  10. Bathymetric Effects on a Tropical Cyclone Wave Field at Landfall

    NASA Technical Reports Server (NTRS)

    Wright, C. W.; Walsh, E. J.; Vandemark, D.; Krabill, W. B.; Garcia, A. W.; Houston, S. H.; Powell, M. D.; Black, P. G.; Marks, F. D.; Gerlach, John C. (Technical Monitor)

    2001-01-01

    On 26 August 1998, the NASA Scanning Radar Altimeter (SRA) flew aboard one of the WP-3D hurricane research aircraft to document the sea surface directional wave spectrum in the region between Charleston, SC and Cape Hatteras, NC, as Bonnie, a large Category 3 hurricane, was making landfall near Wilmington, NC. Two days earlier, the SRA had documented the wave field spatial variation in open water when Hurricane Bonnie was 400 km east of Abaco Island, Bahamas. Bonnie was similar in size during the two flights, but the maximum speed in the NOAA Hurricane Research Division surface wind analysis was 15% lower prior to landfall (39 m/s) than it had been in the open ocean (46 m/s). This was compensated for by its faster movement prior to landfall (9.5 m/s) than when it was encountered in the open ocean (5 m/s). The slower movement matched the group velocity of waves of 65 m length, so waves at the peak of the spectrum outdistanced the storm as soon as they were generated. The higher translation speed prior to landfall matched the group velocity of waves of 230 m length, significantly increasing the effective fetch and duration of waves near the peak of the spectrum which propagated in the direction of the storm track. The open ocean wave height variation indicated that Hurricane Bonnie would have produced waves of 11 m significant wave height on the shore northeast of Wilmington had it not been for the continental shelf. The bathymetry distributed the steepening and breaking process across the shelf so that the wavelength and wave height were reduced gradually as the shore was approached. The wave height 5 km from shore was about 4 m.

  11. Effect of parallel refraction on magnetospheric upper hybrid waves

    NASA Technical Reports Server (NTRS)

    Engel, J.; Kennel, C. F.

    1984-01-01

    Large amplitude (not less than 10 mV/m) electrostatic plasma waves near the upper hybrid (UH) frequency have been observed from 0 to 50 deg magnetic latitude (MLAT) during satellite plasma-pause crossings. A three-dimensional numerical ray-tracing calculation, based on an electron distribution measured during a GEOS 1 dayside intense upper-hybrid wave event, suggests how UH waves might achieve such large amplitudes away from the geomagnetic equator. Refractive effects largely control the wave amplification and, in particular, the unavoidable refraction due to parallel geomagnetic field gradients restricts growth to levels below those observed. However, a cold electron density gradient parallel to the field can lead to upper hybrid wave growth that can account for the observed emission levels.

  12. Effect of parallel refraction on magnetospheric upper hybrid waves

    NASA Technical Reports Server (NTRS)

    Engel, J.; Kennel, C. F.

    1984-01-01

    Large amplitude (not less than 10 mV/m) electrostatic plasma waves near the upper hybrid (UH) frequency have been observed from 0 to 50 deg magnetic latitude (MLAT) during satellite plasma-pause crossings. A three-dimensional numerical ray-tracing calculation, based on an electron distribution measured during a GEOS 1 dayside intense upper-hybrid wave event, suggests how UH waves might achieve such large amplitudes away from the geomagnetic equator. Refractive effects largely control the wave amplification and, in particular, the unavoidable refraction due to parallel geomagnetic field gradients restricts growth to levels below those observed. However, a cold electron density gradient parallel to the field can lead to upper hybrid wave growth that can account for the observed emission levels.

  13. Ionospheric effects of magneto-acoustic-gravity waves: Dispersion relation

    NASA Astrophysics Data System (ADS)

    Jones, R. Michael; Ostrovsky, Lev A.; Bedard, Alfred J.

    2017-06-01

    There is extensive evidence for ionospheric effects associated with earthquake-related atmospheric disturbances. Although the existence of earthquake precursors is controversial, one suggested method of detecting possible earthquake precursors and tsunamis is by observing possible ionospheric effects of atmospheric waves generated by such events. To study magneto-acoustic-gravity waves in the atmosphere, we have derived a general dispersion relation including the effects of the Earth's magnetic field. This dispersion relation can be used in a general atmospheric ray tracing program to calculate the propagation of magneto-acoustic-gravity waves from the ground to the ionosphere. The presence of the Earth's magnetic field in the ionosphere can radically change the dispersion properties of the wave. The general dispersion relation obtained here reduces to the known dispersion relations for magnetoacoustic waves and acoustic-gravity waves in the corresponding particular cases. The work described here is the first step in achieving a generalized ray tracing program permitting propagation studies of magneto-acoustic-gravity waves.

  14. The cumulative effect of convergent seismic waves

    NASA Astrophysics Data System (ADS)

    Guglielmi, A. V.

    2015-11-01

    This methodical note is devoted to the nonlinear impact of convergent seismic waves on a medium. Special attention is paid to the similarity and distinctions of the phenomena occurring in the Earth, on one hand, and on the Moon and Mercury, on the other hand. The importance of the experimental and theoretical study of the round-the-world seismic echo which induces repeated shocks in the epicentral zones of the earthquakes is noted.

  15. Biological effects of tandem shock waves demonstrated on magnetic resonance.

    PubMed

    Benes, J; Zeman, J; Pouckova, P; Zadinova, M; Sunka, P; Lukes, P

    2012-01-01

    The shock wave is used for the treatment of kidney stones, eventually of gall stones, for more than 20 years. It is a pressure wave, which breaks through soft tissues easily and it is possible to focus it into a small volume. The excellent results of the treatment of concrements led to considerations about another usage of the shock wave. The research is now concentrated on the possibility of the damage to tumour tissues. In contrast to concrements tumour tissues are not different from healthy tissues as for their acoustic attributes. That is why a new source of shock waves was used in this work. The source allows generating two successive shock waves focused into a common focus, so-called tandem shock waves. The biological effects of the tandem shock waves generated by the new source on rats hepatic tissue and rabbit femoral muscle in vivo were studied in this work. The damage is demonstrated by magnetic resonance imaging. MR images showed tissue damage in focus. There was damage of the liver tissue, muscle and also stomach wall. We found that the tandem shock waves are able to damage the acoustically homogeneous soft tissue in the focus, i.e. in the depth. In tissues in front of the focus, there is, however, no damage (Fig. 10, Ref. 15).

  16. Test particle simulation study of whistler wave packets observed near Comet Giacobini-Zinner

    NASA Technical Reports Server (NTRS)

    Kaya, N.; Matsumoto, H.; Tsurutani, B. T.

    1989-01-01

    Nonlinear interactions of water group ions with large-amplitude whistler wave packets detected at the leading edge of steepened magnetosonic waves observed near Comet Giacobini-Zinner (GZ) are studied using test particle simulations of water-ion interactions with a model wave based on GZ data. Some of the water ions are found to be decelerated in the steepened portion of the magnetosonic wave to the resonance velocity with the whistler wave packets. Through resonance and related nonlinear interaction with the large-amplitude whistler waves, the water ions become trapped by the packet. An energy balance calculation demonstrates that the trapped ions lose their kinetic energy during the trapped motion in the packet. Thus, the nonlinear trapping motion in the wave structure leads to effective energy transfer from the water group ions to the whistler wave packets in the leading edge of the steepened MHD waves.

  17. Stimulation of MHD Modes in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Golfinopoulos, T.; Granetz, R.; Labombard, B.; Lin, Y.; Parker, R. R.; Sears, J.; Wukitch, S. J.

    2010-11-01

    Active MHD (AMHD) spectroscopy involves stimulating MHD modes by external means to study the modes or diagnose the plasma. In many AMHD experiments, drive frequency is swept across a 100-200 kHz range in which modes are expected; this allows for robust techniques to detect resonant poles in the presence of direct pickup from the driver. However, there is flexibility in the drive mechanism. At Alcator, we have employed a parametric excitation method, amplitude-modulating the ICRF wave (80 MHz) with envelope signals in the AE frequency range (100's kHz). This builds off the ICRF beat technique used in JET in 1996 and ASDEX Upgrade in 2006, but is unique in its use of a single antenna, improving coherence. An advantage of this approach is its ability to couple to the plasma core. It also has high input power, though efficiency is limited by the Manley-Rowe relations. In initial experiments, we excited weak, stable modes in the toroidal Alfvén eigenmode band gap. We plan to explore this and other methods for coupling to various MHD-like modes, especially C-Mod's Quasi Coherent mode.

  18. The effect of ultrasonic waves in conducting polymer solution.

    PubMed

    de Azevedo, W M; de Oliveira Luna, A J H; Silva, E F V B N; Silva, R O

    2006-07-01

    The effects of ultrasonic wave on the conducting polymer polyaniline dissolved in DMSO were observed. The UV-visible, infrared and NMR analysis show that the polymer undergo a redox and doping transition when the ultrasound wave interacts with the polymer dissolved into the solvent. The proposed mechanism to explain these effects is based on the solvent's hygroscopicity properties. The interaction with the ultrasonic wave, homolitically dissociates the water molecule producing radical species, and these species interact with the dissolved conducting polymer changing its oxidation and doped state. The resulting effects of that interaction are the modification of oxidation state of the conducting polymer and the decrease of the amount of water molecule in the solvent. From those results, we have proposed one straightforward method to eliminate water contamination in the solvent DMSO using ultrasonic waves.

  19. The effect of nonlinear traveling waves on rotating machinery

    NASA Astrophysics Data System (ADS)

    Jauregui-Correa, Juan Carlos

    2013-08-01

    The effect of the housing stiffness on nonlinear traveling waves is presented in this work. It was found that the housing controls the synchronization of nonlinear elements and it allows nonlinear waves to travel through the structure. This phenomenon was observed in a gearbox with a soft housing, and the phenomenon was reproduced with a lump-mass dynamic model. The model included a pair of gears, the rolling bearings and the housing. The model considered all the nonlinear effects. Numerical and experimental results were analyzed with a time-frequency method using the Morlet wavelet function. A compound effect was observed when the nonlinear waves travel between the gears and the bearings: the waves increased the dynamic load amplitude and add another periodic load.

  20. Performance and flow characteristics of MHD seawater thruster

    SciTech Connect

    Doss, E.D.

    1990-01-01

    The main goal of the research is to investigate the effects of strong magnetic fields on the electrical and flow fields inside MHD thrusters. The results of this study is important in the assessment of the feasibility of MHD seawater propulsion for the Navy. To accomplish this goal a three-dimensional fluid flow computer model has been developed and applied to study the concept of MHD seawater propulsion. The effects of strong magnetic fields on the current and electric fields inside the MHD thruster and their interaction with the flow fields, particularly those in the boundary layers, have been investigated. The results of the three-dimensional computations indicate that the velocity profiles are flatter over the sidewalls of the thruster walls in comparison to the velocity profiles over the electrode walls. These nonuniformities in the flow fields give rise to nonuniform distribution of the skin friction along the walls of the thrusters, where higher values are predicted over the sidewalls relative to those over the electrode walls. Also, a parametric study has been performed using the three-dimensional MHD flow model to analyze the performance of continuous electrode seawater thrusters under different operating parameters. The effects of these parameters on the fluid flow characteristics, and on the thruster efficiency have been investigated. Those parameters include the magnetic field (10--20 T), thruster diameter, surface roughness, flow velocity, and the electric load factor. The results show also that the thruster performance improves with the strength of the magnetic field and thruster diameter, and the efficiency decreases with the flow velocity and surface roughness.