Sample records for mhz sampling rate

  1. Front end for GPS receivers

    NASA Technical Reports Server (NTRS)

    Thomas, Jr., Jess Brooks (Inventor)

    1999-01-01

    The front end in GPS receivers has the functions of amplifying, down-converting, filtering and sampling the received signals. In the preferred embodiment, only two operations, A/D conversion and a sum, bring the signal from RF to filtered quadrature baseband samples. After amplification and filtering at RF, the L1 and L2 signals are each sampled at RF at a high selected subharmonic rate. The subharmonic sample rates are approximately 900 MHz for L1 and 982 MHz for L2. With the selected subharmonic sampling, the A/D conversion effectively down-converts the signal from RF to quadrature components at baseband. The resulting sample streams for L1 and L2 are each reduced to a lower rate with a digital filter, which becomes a straight sum in the simplest embodiment. The frequency subsystem can be very simple, only requiring the generation of a single reference frequency (e.g. 20.46 MHz minus a small offset) and the simple multiplication of this reference up to the subharmonic sample rates for L1 and L2. The small offset in the reference frequency serves the dual purpose of providing an advantageous offset in the down-converted carrier frequency and in the final baseband sample rate.

  2. Analysis and Simulation of Narrowband GPS Jamming Using Digital Excision Temporal Filtering.

    DTIC Science & Technology

    1994-12-01

    the sequence of stored values from the P- code sampled at a 20 MHz rate. When correlated with a reference vector of the same length to simulate a GPS ...rate required for the GPS signals, (20 MHz sampling rate for the P- code signal), the personal computer (PC) used run the simulation could not perform...This subroutine is used to perform a fast FFT based 168 biased cross correlation . Written by Capt Gerry Falen, USAF, 16 AUG 94 % start of code

  3. Multi-MHz retinal OCT.

    PubMed

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz.

  4. Multi-MHz retinal OCT

    PubMed Central

    Klein, Thomas; Wieser, Wolfgang; Reznicek, Lukas; Neubauer, Aljoscha; Kampik, Anselm; Huber, Robert

    2013-01-01

    We analyze the benefits and problems of in vivo optical coherence tomography (OCT) imaging of the human retina at A-scan rates in excess of 1 MHz, using a 1050 nm Fourier-domain mode-locked (FDML) laser. Different scanning strategies enabled by MHz OCT line rates are investigated, and a simple multi-volume data processing approach is presented. In-vivo OCT of the human ocular fundus is performed at different axial scan rates of up to 6.7 MHz. High quality non-mydriatic retinal imaging over an ultra-wide field is achieved by a combination of several key improvements compared to previous setups. For the FDML laser, long coherence lengths and 72 nm wavelength tuning range are achieved using a chirped fiber Bragg grating in a laser cavity at 419.1 kHz fundamental tuning rate. Very large data sets can be acquired with sustained data transfer from the data acquisition card to host computer memory, enabling high-quality averaging of many frames and of multiple aligned data sets. Three imaging modes are investigated: Alignment and averaging of 24 data sets at 1.68 MHz axial line rate, ultra-dense transverse sampling at 3.35 MHz line rate, and dual-beam imaging with two laser spots on the retina at an effective line rate of 6.7 MHz. PMID:24156052

  5. Multi-MHz FDML OCT: snapshot retinal imaging at 6.7 million axial-scans per second

    NASA Astrophysics Data System (ADS)

    Klein, Thomas; Wieser, Wolfgang; André, Raphael; Pfeiffer, Tom; Eigenwillig, Christoph M.; Huber, Robert

    2012-01-01

    We demonstrate the acquisition of densely sampled wide-field 3D OCT datasets of the human retina in 0.3s. This performance is achieved with a multi-MHz Fourier domain mode-locked (FDML) laser source operating at 1050nm. A two-beam setup doubles the 3.35MHz laser sweep rate to 6.7MHz, which is 16x faster than results achieved with any non-FDML source used for retinal OCT. We discuss two main benefits of these high line rates: First, large datasets over an ultra-wide field of view can be acquired with a low probability of distortions. Second, even if eye movements occur, now the scan rate is high enough to directly correct even the fastest saccades without loss of information.

  6. Digital Front End for Wide-Band VLBI Science Receiver

    NASA Technical Reports Server (NTRS)

    Jongeling, Andre; Sigman, Elliott; Navarro, Robert; Goodhart, Charles; Rogstad, Steve; Chandra, Kumar; Finley, Sue; Trinh, Joseph; Soriano, Melissa; White, Les; hide

    2006-01-01

    An upgrade to the very-long-baseline-interferometry (VLBI) science receiver (VSR) a radio receiver used in NASA's Deep Space Network (DSN) is currently being implemented. The current VSR samples standard DSN intermediate- frequency (IF) signals at 256 MHz and after digital down-conversion records data from up to four 16-MHz baseband channels. Currently, IF signals are limited to the 265-to-375-MHz range, and recording rates are limited to less than 80 Mbps. The new digital front end, denoted the Wideband VSR, provides improvements to enable the receiver to process wider bandwidth signals and accommodate more data channels for recording. The Wideband VSR utilizes state-of-the-art commercial analog-to-digital converter and field-programmable gate array (FPGA) integrated circuits, and fiber-optic connections in a custom architecture. It accepts IF signals from 100 to 600 MHz, sampling the signal at 1.28 GHz. The sample data are sent to a digital processing module, using a fiber-optic link for isolation. The digital processing module includes boards designed around an Advanced Telecom Computing Architecture (ATCA) industry-standard backplane. Digital signal processing implemented in FPGAs down-convert the data signals in up to 16 baseband channels with programmable bandwidths from 1 kHz to 16 MHz. Baseband samples are transmitted to a computer via multiple Ethernet connections allowing recording to disk at rates of up to 1 Gbps.

  7. Exploring the Acoustic Nonlinearity for Monitoring Complex Aerospace Structures

    DTIC Science & Technology

    2008-02-27

    nonlinear elastic waves, embedded ultrasonics, nonlinear diagnostics, aerospace structures, structural joints. 16. SECURITY CLASSIFICATION OF: 17...sampling, 100 MHz bandwidth with noise and anti- aliasing filters, general-purpose alias-protected decimation for all sample rates and quad digital down...conversion ( DDC ) with up to 40 MHz IF bandwidth. Specified resolution of NI PXI 5142 is 14-bits with the noise floor approaching -85 dB. Such a

  8. A development of two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz

    NASA Astrophysics Data System (ADS)

    Onuma, Takashi; Otani, Yukitoshi

    2014-03-01

    A two-dimensional birefringence distribution measurement system with a sampling rate of 1.3 MHz is proposed. A polarization image sensor is developed as core device of the system. It is composed of a pixelated polarizer array made from photonic crystal and a parallel read out circuit with a multi-channel analog to digital converter specialized for two-dimensional polarization detection. By applying phase shifting algorism with circularly-polarized incident light, birefringence phase difference and azimuthal angle can be measured. The performance of the system is demonstrated experimentally by measuring actual birefringence distribution and polarization device such as Babinet-Soleil compensator.

  9. PIC microcontroller based external fast analog to digital converter to acquire wide-lined solid NMR spectra by BRUKER DRX and Avance-I spectrometers.

    PubMed

    Koczor, Bálint; Rohonczy, János

    2015-01-01

    Concerning many former liquid or hybrid liquid/solid NMR consoles, the built in Analog-to-Digital Converters (ADCs) are incapable of digitizing the fids at sampling rates in the MHz range. Regarding both strong anisotropic interactions in the solid state and wide chemical shift dispersion nuclei in solution phase such as (195)Pt, (119)Sn, (207)Pb etc., the spectrum range of interest might be in the MHz range. As determining the informative tensor components of anisotropic NMR interactions requires nonlinear fitting over the whole spectrum including the asymptotic baseline, it is prohibited by low sampling rates of the ADCs. Wide spectrum width is also useful in solution NMR, since windowing of wide chemical shift ranges is avoidable. We built an external analog to digital converter with 10 MHz maximal sampling rate, which can work simultaneously with the built in ADC of the spectrometer. The ADC was tested on both Bruker DRX and Avance-I NMR consoles. In addition to the analog channels it only requires three external digital lines of the NMR console. The ADC sends data to PC via USB. The whole process is controlled by software written in JAVA which is implemented under TopSpin. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Gigahertz repetition rate, sub-femtosecond timing jitter optical pulse train directly generated from a mode-locked Yb:KYW laser.

    PubMed

    Yang, Heewon; Kim, Hyoji; Shin, Junho; Kim, Chur; Choi, Sun Young; Kim, Guang-Hoon; Rotermund, Fabian; Kim, Jungwon

    2014-01-01

    We show that a 1.13 GHz repetition rate optical pulse train with 0.70 fs high-frequency timing jitter (integration bandwidth of 17.5 kHz-10 MHz, where the measurement instrument-limited noise floor contributes 0.41 fs in 10 MHz bandwidth) can be directly generated from a free-running, single-mode diode-pumped Yb:KYW laser mode-locked by single-wall carbon nanotube-coated mirrors. To our knowledge, this is the lowest-timing-jitter optical pulse train with gigahertz repetition rate ever measured. If this pulse train is used for direct sampling of 565 MHz signals (Nyquist frequency of the pulse train), the jitter level demonstrated would correspond to the projected effective-number-of-bit of 17.8, which is much higher than the thermal noise limit of 50 Ω load resistance (~14 bits).

  11. Breaking through the bandwidth barrier in distributed fiber vibration sensing by sub-Nyquist randomized sampling

    NASA Astrophysics Data System (ADS)

    Zhang, Jingdong; Zhu, Tao; Zheng, Hua; Kuang, Yang; Liu, Min; Huang, Wei

    2017-04-01

    The round trip time of the light pulse limits the maximum detectable frequency response range of vibration in phase-sensitive optical time domain reflectometry (φ-OTDR). We propose a method to break the frequency response range restriction of φ-OTDR system by modulating the light pulse interval randomly which enables a random sampling for every vibration point in a long sensing fiber. This sub-Nyquist randomized sampling method is suits for detecting sparse-wideband- frequency vibration signals. Up to MHz resonance vibration signal with over dozens of frequency components and 1.153MHz single frequency vibration signal are clearly identified for a sensing range of 9.6km with 10kHz maximum sampling rate.

  12. Optimizing ultrafast illumination for multiphoton-excited fluorescence imaging

    PubMed Central

    Stoltzfus, Caleb R.; Rebane, Aleksander

    2016-01-01

    We study the optimal conditions for high throughput two-photon excited fluorescence (2PEF) and three-photon excited fluorescence (3PEF) imaging using femtosecond lasers. We derive relations that allow maximization of the rate of imaging depending on the average power, pulse repetition rate, and noise characteristics of the laser, as well as on the size and structure of the sample. We perform our analysis using ~100 MHz, ~1 MHz and 1 kHz pulse rates and using both a tightly-focused illumination beam with diffraction-limited image resolution, as well loosely focused illumination with a relatively low image resolution, where the latter utilizes separate illumination and fluorescence detection beam paths. Our theoretical estimates agree with the experiments, which makes our approach especially useful for optimizing high throughput imaging of large samples with a field-of-view up to 10x10 cm2. PMID:27231620

  13. Development of Resistive Micromegas for Sampling Calorimetry

    NASA Astrophysics Data System (ADS)

    Geralis, T.; Fanourakis, G.; Kalamaris, A.; Nikas, D.; Psallidas, A.; Chefdeville, M.; Karyotakis, I.; Koletsou, I.; Titov, M.

    2018-02-01

    Resistive micromegas is proposed as an active element for sampling calorimetry. Future linear collider experiments or the HL-LHC experiments can profit from those developments for Particle Flow Calorimetry. Micromegas possesses remarkable properties concerning gain stability, reduced ion feedback, response linearity, adaptable sensitive element granularity, fast response and high rate capability. Recent developments on Micromegas with a protective resistive layer present excellent results, resolving the problem of discharges caused by local high charge deposition, thanks to its RC-slowed charge evacuation. Higher resistivity though, may cause loss of the response linearity at high rates. We have scanned a wide range of resistivities and performed laboratory tests with X-rays that demonstrate excellent response linearity up to rates of (a few) times 10MHz/cm2, with simultaneous mitigation of discharges. Beam test studies at SPS/CERN with hadrons have also shown a remarkable stability of the resistive Micromegas and low currents for rates up to 15MHz/cm2. We present results from the aforementioned studies confronted with MC simulation

  14. Dynamic absorption and scattering of water and hydrogel during high-repetition-rate (>100 MHz) burst-mode ultrafast-pulse laser ablation.

    PubMed

    Qian, Zuoming; Covarrubias, Andrés; Grindal, Alexander W; Akens, Margarete K; Lilge, Lothar; Marjoribanks, Robin S

    2016-06-01

    High-repetition-rate burst-mode ultrafast-laser ablation and disruption of biological tissues depends on interaction of each pulse with the sample, but under those particular conditions which persist from previous pulses. This work characterizes and compares the dynamics of absorption and scattering of a 133-MHz repetition-rate, burst-mode ultrafast-pulse laser, in agar hydrogel targets and distilled water. The differences in energy partition are quantified, pulse-by-pulse, using a time-resolving integrating-sphere-based device. These measurements reveal that high-repetition-rate burst-mode ultrafast-laser ablation is a highly dynamical process affected by the persistence of ionization, dissipation of plasma plume, neutral material flow, tissue tensile strength, and the hydrodynamic oscillation of cavitation bubbles.

  15. Doppler Compensation for Airborne Non-Side-Looking Phased-Array Radar

    DTIC Science & Technology

    2015-09-01

    Box 1500 Edinburgh South Australia 5111 Australia Telephone: 1300 333 362 Fax: (08) 7389 6567 © Commonwealth of Australia 2013 AR-016...Security and ISR Division Dr Yunhan Dong received his Bachelor and Master degrees in 1980s in China and PhD in 1995 at UNSW, Australia , all in...waveform length, 0λ 0.25 m Bandwidth of LFM 5 MHz Sampling rate 10 MHz Number of array elements, N 25 Number of pulses in a CPI, M 31 Antenna

  16. Investigation of dielectric constant variations for Malaysians soil species towards its natural background dose

    NASA Astrophysics Data System (ADS)

    Jafery, Khawarizmi Mohd; Embong, Zaidi; Khee, Yee See; Haimi Dahlan, Samsul; Tajudin, Saiful Azhar Ahmad; Ahmad, Salawati; Kudnie Sahari, Siti; Maxwell, Omeje

    2018-01-01

    The correlation of natural background gamma radiation and real part of the complex relative permittivity (dielectric constant) for various species Malaysian soils was investigated in this research. The sampling sites were chosen randomly according to soils groups that consist of sedentary, alluvial and miscellaneous soil which covered the area of Batu Pahat, Kluang and Johor Bahru, Johor state of Malaysia. There are 11 types of Malaysian soil species that have been studied; namely Peat, Linau-Sedu, Selangor-Kangkong, Kranji, Telemong-Akob-Local Alluvium, Holyrood-Lunas, Batu Anam-Melaka-Tavy, Harimau Tampoi, Kulai-Yong Peng, Rengam-Jerangau, and Steepland soils. In-situ exposure rates of each soil species were measured by using portable gamma survey meter and ex-situ analysis of real part of relative permittivity was performed by using DAK (Dielectric Assessment Kit assist by network analyser). Results revealed that the highest and the lowest background dose rate were 94 ± 26.28 μR hr-1 and 7 ± 0.67 μR hr-1 contributed by Rengam Jerangau and Peat soil species respectively. Meanwhile, dielectric constant measurement, it was performed in the range of frequency between 100 MHz to 3 GHz. The measurements of each soils species dielectric constant are in the range of 1 to 3. At the lower frequencies in the range of 100 MHz to 600 MHz, it was observed that the dielectric constant for each soil species fluctuated and inconsistent. But it remained consistent in plateau form of signal at higher frequency at range above 600 MHz. From the comparison of dielectric properties of each soil at above 600 MHz of frequency, it was found that Rengam-Jerangau soil species give the highest reading and followed by Selangor-Kangkong species. The average dielectric measurement for both Selangor-Kangkong and Rengam-Jerangau soil species are 2.34 and 2.35 respectively. Meanwhile, peat soil species exhibits the lowest dielectric measurement of 1.83. It can be clearly seen that the pattern of dielectric measurement for every soil at the frequency above 600 MHz demonstrated a specific distribution which can be classified into two main regions which are higher and lower between the ranges of 1.83 to 2.35. Pearson correlation analysis between the frequency of 100 MHz and 2.6 GHz with respect to exposure rate for every soil species was r = 0.38 and r = 0.51, respectively. This indicates that there was no strong correlation between both parameter, natural background dose and soils dielectric for each soils sample. This factor could be contributed by major and minor elements contained in each soils sample species, especially Ferum, Fe and Silica, Si.

  17. An Approach to Biometric Verification Based on Human Body Communication in Wearable Devices

    PubMed Central

    Li, Jingzhen; Liu, Yuhang; Nie, Zedong; Qin, Wenjian; Pang, Zengyao; Wang, Lei

    2017-01-01

    In this paper, an approach to biometric verification based on human body communication (HBC) is presented for wearable devices. For this purpose, the transmission gain S21 of volunteer’s forearm is measured by vector network analyzer (VNA). Specifically, in order to determine the chosen frequency for biometric verification, 1800 groups of data are acquired from 10 volunteers in the frequency range 0.3 MHz to 1500 MHz, and each group includes 1601 sample data. In addition, to achieve the rapid verification, 30 groups of data for each volunteer are acquired at the chosen frequency, and each group contains only 21 sample data. Furthermore, a threshold-adaptive template matching (TATM) algorithm based on weighted Euclidean distance is proposed for rapid verification in this work. The results indicate that the chosen frequency for biometric verification is from 650 MHz to 750 MHz. The false acceptance rate (FAR) and false rejection rate (FRR) based on TATM are approximately 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were 4.17% and 37.5%, 3.37% and 33.33%, and 3.80% and 34.17% using K-nearest neighbor (KNN) classification, support vector machines (SVM), and naive Bayesian method (NBM) classification, respectively. In addition, the running time of TATM is 0.019 s, whereas the running times of KNN, SVM and NBM are 0.310 s, 0.0385 s, and 0.168 s, respectively. Therefore, TATM is suggested to be appropriate for rapid verification use in wearable devices. PMID:28075375

  18. An Approach to Biometric Verification Based on Human Body Communication in Wearable Devices.

    PubMed

    Li, Jingzhen; Liu, Yuhang; Nie, Zedong; Qin, Wenjian; Pang, Zengyao; Wang, Lei

    2017-01-10

    In this paper, an approach to biometric verification based on human body communication (HBC) is presented for wearable devices. For this purpose, the transmission gain S21 of volunteer's forearm is measured by vector network analyzer (VNA). Specifically, in order to determine the chosen frequency for biometric verification, 1800 groups of data are acquired from 10 volunteers in the frequency range 0.3 MHz to 1500 MHz, and each group includes 1601 sample data. In addition, to achieve the rapid verification, 30 groups of data for each volunteer are acquired at the chosen frequency, and each group contains only 21 sample data. Furthermore, a threshold-adaptive template matching (TATM) algorithm based on weighted Euclidean distance is proposed for rapid verification in this work. The results indicate that the chosen frequency for biometric verification is from 650 MHz to 750 MHz. The false acceptance rate (FAR) and false rejection rate (FRR) based on TATM are approximately 5.79% and 6.74%, respectively. In contrast, the FAR and FRR were 4.17% and 37.5%, 3.37% and 33.33%, and 3.80% and 34.17% using K-nearest neighbor (KNN) classification, support vector machines (SVM), and naive Bayesian method (NBM) classification, respectively. In addition, the running time of TATM is 0.019 s, whereas the running times of KNN, SVM and NBM are 0.310 s, 0.0385 s, and 0.168 s, respectively. Therefore, TATM is suggested to be appropriate for rapid verification use in wearable devices.

  19. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics.

    PubMed

    Pikulski, M; Shiroka, T; Ott, H-R; Mesot, J

    2014-09-01

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHz passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.

  20. Performance analysis of an all-digital BPSK direct sequence spread-spectrum IF receiver architecture

    NASA Astrophysics Data System (ADS)

    Chung, Bong-Young; Chien, Charles; Samueli, Henry; Jain, Rajeev

    1993-09-01

    A VLSI architecture for an all-digital binary phase shift keyed (BPSK) direct-sequence (DS) spread spectrum (SS) IF receiver is presented, and an in-depth performance analysis is given. The all-digital architecture incorporates a Costar loop for carrier recovery and a delay-locked loop for clock recovery. For the PN acquisition block, a robust energy detection scheme is proposed to reduce false PN locks over a broad range of signal-to-noise ratios. The proposed architecture is intended for use in the 902-928 MHz unlicensed spread spectrum radio band. A 100 kbs information rate and a 12.7 Mchips/second PN code rate are assumed. The IF center frequency is 12.7 MHz and the IF sampling rate is 50.8 Msamples/ second, which is the Nyquist rate for the 25.4 MHz bandwidth signal. Finite wordlength effects have been simulated to optimize the architecture, thereby minimizing the chip area, and results of the finite wordlength simulations demonstrate that the chip architecture achieves a bit error rate performance within 1 dB of theory in an additive white Gaussian noise channel. The probability of PN acquisition within 5 ms is approximately 56% at -17 dB IF input SNR and 82% at -11 dB IF input SNR.

  1. 300-MHz-repetition-rate, all-fiber, femtosecond laser mode-locked by planar lightwave circuit-based saturable absorber.

    PubMed

    Kim, Chur; Kim, Dohyun; Cheong, YeonJoon; Kwon, Dohyeon; Choi, Sun Young; Jeong, Hwanseong; Cha, Sang Jun; Lee, Jeong-Woo; Yeom, Dong-Il; Rotermund, Fabian; Kim, Jungwon

    2015-10-05

    We show the implementation of fiber-pigtailed, evanescent-field-interacting, single-walled carbon nanotube (CNT)-based saturable absorbers (SAs) using standard planar lightwave circuit (PLC) fabrication processes. The implemented PLC-CNT-SA device is employed to realize self-starting, high-repetition-rate, all-fiber ring oscillators at telecommunication wavelength. We demonstrate all-fiber Er ring lasers operating at 303-MHz (soliton regime) and 274-MHz (stretched-pulse regime) repetition-rates. The 303-MHz (274-MHz) laser centered at 1555 nm (1550 nm) provides 7.5 nm (19 nm) spectral bandwidth. After extra-cavity amplilfication, the amplified pulse train of the 303-MHz (274-MHz) laser delivers 209 fs (178 fs) pulses. To our knowledge, this corresponds to the highest repetition-rates achieved for femtosecond lasers employing evanescent-field-interacting SAs. The demonstrated SA fabrication method, which is based on well-established PLC processes, also shows a potential way for mass-producible and lower-cost waveguide-type SA devices suitable for all-fiber and waveguide lasers.

  2. On-field measurement trial of 4×128 Gbps PDM-QPSK signals by linear optical sampling

    NASA Astrophysics Data System (ADS)

    Bin Liu; Wu, Zhichao; Fu, Songnian; Feng, Yonghua; Liu, Deming

    2017-02-01

    Linear optical sampling is a promising characterization technique for advanced modulation formats, together with digital signal processing (DSP) and software-synchronized algorithm. We theoretically investigate the acquisition of optical sampling, when the high-speed signal under test is either periodic or random. Especially, when the profile of optical sampling pulse is asymmetrical, the repetition frequency of sampling pulse needs careful adjustment in order to obtain correct waveform. Then, we demonstrate on-field measurement trial of commercial four-channel 128 Gbps polarization division multiplexing quadrature phase shift keying (PDM-QPSK) signals with truly random characteristics by self-developed equipment. A passively mode-locked fiber laser (PMFL) with a repetition frequency of 95.984 MHz is used as optical sampling source, meanwhile four balanced photo detectors (BPDs) with 400 MHz bandwidth and four-channel analog-to-digital convertor (ADC) with 1.25 GS/s sampling rate are used for data acquisition. The performance comparison with conventional optical modulation analyzer (OMA) verifies that the self-developed equipment has the advantages of low cost, easy implementation, and fast response.

  3. No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J mice

    PubMed Central

    Sommer, Angela M; Streckert, Joachim; Bitz, Andreas K; Hansen, Volkert W; Lerchl, Alexander

    2004-01-01

    Background Several reports indicated that non-thermal electromagnetic radiation such as from mobile phones and base stations may promote cancer. Therefore, it was investigated experimentally, whether 900 MHz electromagnetic field exposure influences lymphoma development in a mouse strain that is genetically predisposed to this disease. The AKR/J mice genome carries the AK-virus, which leads within one year to spontaneous development of thymic lymphoblastic lymphoma. Methods 320 unrestrained female mice were sham-exposed or exposed (each n = 160 animals) to GSM like 900 MHz electromagnetic fields for 24 hours per day, 7 days per week, at an average whole body specific absorption rate (SAR) value of 0.4 W/kg. Animals were visually checked daily and were weighed and palpated weekly. Starting with an age of 6 months, blood samples were taken monthly from the tail. Animals with signs of disease or with an age of about 46 weeks were sacrificed and a gross necropsy was performed. Results Electromagnetic field exposure had a significant effect on body weight gain, with higher values in exposed than in sham-exposed animals. However, survival rate and lymphoma incidence did not differ between exposed and sham-exposed mice. Conclusion These data do not support the hypothesis that exposure to 900 MHz electromagnetic fields is a significant risk factor for developing lymphoma in a genetically predisposed species, even at a relatively high exposure level. PMID:15538947

  4. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle.

    PubMed

    Kolb, Jan Philip; Klein, Thomas; Kufner, Corinna L; Wieser, Wolfgang; Neubauer, Aljoscha S; Huber, Robert

    2015-05-01

    We evaluate strategies to maximize the field of view (FOV) of in vivo retinal OCT imaging of human eyes. Three imaging modes are tested: Single volume imaging with 85° FOV as well as with 100° and stitching of five 60° images to a 100° mosaic (measured from the nodal point). We employ a MHz-OCT system based on a 1060nm Fourier domain mode locked (FDML) laser with a depth scan rate of 1.68MHz. The high speed is essential for dense isotropic sampling of the large areas. Challenges caused by the wide FOV are discussed and solutions to most issues are presented. Detailed information on the design and characterization of our sample arm optics is given. We investigate the origin of an angle dependent signal fall-off which we observe towards larger imaging angles. It is present in our 85° and 100° single volume images, but not in the mosaic. Our results suggest that 100° FOV OCT is possible with current swept source OCT technology.

  5. Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle

    PubMed Central

    Kolb, Jan Philip; Klein, Thomas; Kufner, Corinna L.; Wieser, Wolfgang; Neubauer, Aljoscha S.; Huber, Robert

    2015-01-01

    We evaluate strategies to maximize the field of view (FOV) of in vivo retinal OCT imaging of human eyes. Three imaging modes are tested: Single volume imaging with 85° FOV as well as with 100° and stitching of five 60° images to a 100° mosaic (measured from the nodal point). We employ a MHz-OCT system based on a 1060nm Fourier domain mode locked (FDML) laser with a depth scan rate of 1.68MHz. The high speed is essential for dense isotropic sampling of the large areas. Challenges caused by the wide FOV are discussed and solutions to most issues are presented. Detailed information on the design and characterization of our sample arm optics is given. We investigate the origin of an angle dependent signal fall-off which we observe towards larger imaging angles. It is present in our 85° and 100° single volume images, but not in the mosaic. Our results suggest that 100° FOV OCT is possible with current swept source OCT technology. PMID:26137363

  6. Compact FPGA-based beamformer using oversampled 1-bit A/D converters.

    PubMed

    Tomov, Borislav Gueorguiev; Jensen, Jørgen Arendt

    2005-05-01

    A compact medical ultrasound beamformer architecture that uses oversampled 1-bit analog-to-digital (A/D) converters is presented. Sparse sample processing is used, as the echo signal for the image lines is reconstructed in 512 equidistant focal points along the line through its in-phase and quadrature components. That information is sufficient for presenting a B-mode image and creating a color flow map. The high sampling rate provides the necessary delay resolution for the focusing. The low channel data width (1-bit) makes it possible to construct a compact beamformer logic. The signal reconstruction is done using finite impulse reponse (FIR) filters, applied on selected bit sequences of the delta-sigma modulator output stream. The approach allows for a multichannel beamformer to fit in a single field programmable gate array (FPGA) device. A 32-channel beamformer is estimated to occupy 50% of the available logic resources in a commercially available mid-range FPGA, and to be able to operate at 129 MHz. Simulation of the architecture at 140 MHz provides images with a dynamic range approaching 60 dB for an excitation frequency of 3 MHz.

  7. Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers.

    PubMed

    Hu, Chang-Hong; Xu, Xiao-Chen; Cannata, Jonathan M; Yen, Jesse T; Shung, K Kirk

    2006-02-01

    A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved.

  8. Body heating induced by sub-resonant (350 MHz) microwave irradiation: cardiovascular and respiratory responses in anesthetized rats.

    PubMed

    Jauchem, J R; Frei, M R

    1997-01-01

    These experiments were designed to investigate the effects of sub-resonant microwave (MW) exposure (350 MHz, E orientation, average power density 38 mW/cm2, average whole-body specific absorption rate 13.2 W/kg) on selected physiological parameters. The increase in peripheral body temperature during 350 MHz exposure was greater than that in earlier experiments performed at 700 MHz (resonance). Heart rate and mean arterial blood pressure were significantly elevated during a 1 degree C increase in colonic temperature due to 350 MHz exposure; respiratory rate showed no significant change. The results are consistent with other investigators' reports comparing sub-resonance exposures with those at resonance and above.

  9. Creaming enhancement in a liter scale ultrasonic reactor at selected transducer configurations and frequencies.

    PubMed

    Juliano, Pablo; Temmel, Sandra; Rout, Manoj; Swiergon, Piotr; Mawson, Raymond; Knoerzer, Kai

    2013-01-01

    Recent research has shown that high frequency ultrasound (0.4-3 MHz), can enhance milkfat separation in small scale systems able to treat only a few milliliters of sample. In this work, the effect of ultrasonic standing waves on milkfat creaming was studied in a 6L reactor and the influence of different frequencies and transducer configurations in direct contact with the fluid was investigated. A recombined coarse milk emulsion with fat globules stained with oil-red-O dye was selected for the separation trials. Runs were performed with one or two transducers placed in vertical (parallel or perpendicular) and horizontal positions (at the reactor base) at 0.4, 1 and/or 2 MHz (specific energy 8.5 ± 0.6 kJ/kg per transducer). Creaming behavior was assessed by measuring the thickness of the separated cream layer. Other methods supporting this assessment included the measurement of fat content, backscattering, particle size distribution, and microscopy of samples taken at the bottom and top of the reactor. Most efficient creaming was found after treatment at 0.4 MHz in single and double vertical transducer configurations. Among these configurations, a higher separation rate was obtained when sonicating at 0.4 MHz in a vertical perpendicular double transducer setup. The horizontal transducer configuration promoted creaming at 2 MHz only. Fat globule size increase was observed when creaming occurred. This research highlights the potential for enhanced separation of milkfat in larger scale systems from selected transducer configurations in contact with a dairy emulsion, or emulsion splitting in general. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. An autonomous receiver/digital signal processor applied to ground-based and rocket-borne wave experiments

    NASA Astrophysics Data System (ADS)

    Dombrowski, M. P.; LaBelle, J.; McGaw, D. G.; Broughton, M. C.

    2016-07-01

    The programmable combined receiver/digital signal processor platform presented in this article is designed for digital downsampling and processing of general waveform inputs with a 66 MHz initial sampling rate and multi-input synchronized sampling. Systems based on this platform are capable of fully autonomous low-power operation, can be programmed to preprocess and filter the data for preselection and reduction, and may output to a diverse array of transmission or telemetry media. We describe three versions of this system, one for deployment on sounding rockets and two for ground-based applications. The rocket system was flown on the Correlation of High-Frequency and Auroral Roar Measurements (CHARM)-II mission launched from Poker Flat Research Range, Alaska, in 2010. It measured auroral "roar" signals at 2.60 MHz. The ground-based systems have been deployed at Sondrestrom, Greenland, and South Pole Station, Antarctica. The Greenland system synchronously samples signals from three spaced antennas providing direction finding of 0-5 MHz waves. It has successfully measured auroral signals and man-made broadcast signals. The South Pole system synchronously samples signals from two crossed antennas, providing polarization information. It has successfully measured the polarization of auroral kilometric radiation-like signals as well as auroral hiss. Further systems are in development for future rocket missions and for installation in Antarctic Automatic Geophysical Observatories.

  11. A multi-MHz single-shot data acquisition scheme with high dynamic range: pump-probe X-ray experiments at synchrotrons.

    PubMed

    Britz, Alexander; Assefa, Tadesse A; Galler, Andreas; Gawelda, Wojciech; Diez, Michael; Zalden, Peter; Khakhulin, Dmitry; Fernandes, Bruno; Gessler, Patrick; Sotoudi Namin, Hamed; Beckmann, Andreas; Harder, Manuel; Yavaş, Hasan; Bressler, Christian

    2016-11-01

    The technical implementation of a multi-MHz data acquisition scheme for laser-X-ray pump-probe experiments with pulse limited temporal resolution (100 ps) is presented. Such techniques are very attractive to benefit from the high-repetition rates of X-ray pulses delivered from advanced synchrotron radiation sources. Exploiting a synchronized 3.9 MHz laser excitation source, experiments in 60-bunch mode (7.8 MHz) at beamline P01 of the PETRA III storage ring are performed. Hereby molecular systems in liquid solutions are excited by the pulsed laser source and the total X-ray fluorescence yield (TFY) from the sample is recorded using silicon avalanche photodiode detectors (APDs). The subsequent digitizer card samples the APD signal traces in 0.5 ns steps with 12-bit resolution. These traces are then processed to deliver an integrated value for each recorded single X-ray pulse intensity and sorted into bins according to whether the laser excited the sample or not. For each subgroup the recorded single-shot values are averaged over ∼10 7  pulses to deliver a mean TFY value with its standard error for each data point, e.g. at a given X-ray probe energy. The sensitivity reaches down to the shot-noise limit, and signal-to-noise ratios approaching 1000 are achievable in only a few seconds collection time per data point. The dynamic range covers 100 photons pulse -1 and is only technically limited by the utilized APD.

  12. Detecting Single-Nucleotides by Tunneling Current Measurements at Sub-MHz Temporal Resolution.

    PubMed

    Morikawa, Takanori; Yokota, Kazumichi; Tanimoto, Sachie; Tsutsui, Makusu; Taniguchi, Masateru

    2017-04-18

    Label-free detection of single-nucleotides was performed by fast tunneling current measurements in a polar solvent at 1 MHz sampling rate using SiO₂-protected Au nanoprobes. Short current spikes were observed, suggestive of trapping/detrapping of individual nucleotides between the nanoelectrodes. The fall and rise features of the electrical signatures indicated signal retardation by capacitance effects with a time constant of about 10 microseconds. The high temporal resolution revealed current fluctuations, reflecting the molecular conformation degrees of freedom in the electrode gap. The method presented in this work may enable direct characterizations of dynamic changes in single-molecule conformations in an electrode gap in liquid.

  13. Phase-stable, multi-µJ femtosecond pulses from a repetition-rate tunable Ti:Sa-oscillator-seeded Yb-fiber amplifier

    NASA Astrophysics Data System (ADS)

    Saule, T.; Holzberger, S.; De Vries, O.; Plötner, M.; Limpert, J.; Tünnermann, A.; Pupeza, I.

    2017-01-01

    We present a high-power, MHz-repetition-rate, phase-stable femtosecond laser system based on a phase-stabilized Ti:Sa oscillator and a multi-stage Yb-fiber chirped-pulse power amplifier. A 10-nm band around 1030 nm is split from the 7-fs oscillator output and serves as the seed for subsequent amplification by 54 dB to 80 W of average power. The µJ-level output is spectrally broadened in a solid-core fiber and compressed to 30 fs with chirped mirrors. A pulse picker prior to power amplification allows for decreasing the repetition rate from 74 MHz by a factor of up to 4 without affecting the pulse parameters. To compensate for phase jitter added by the amplifier to the feed-forward phase-stabilized seeding pulses, a self-referencing feed-back loop is implemented at the system output. An integrated out-of-loop phase noise of less than 100 mrad was measured in the band from 0.4 Hz to 400 kHz, which to the best of our knowledge corresponds to the highest phase stability ever demonstrated for high-power, multi-MHz-repetition-rate ultrafast lasers. This system will enable experiments in attosecond physics at unprecedented repetition rates, it offers ideal prerequisites for the generation and field-resolved electro-optical sampling of high-power, broadband infrared pulses, and it is suitable for phase-stable white light generation.

  14. A wireless data acquisition system for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Zimmerman, A. T.; Lynch, J. P.

    2013-01-01

    As structural health monitoring (SHM) systems have seen increased demand due to lower costs and greater capabilities, wireless technologies have emerged that enable the dense distribution of transducers and the distributed processing of sensor data. In parallel, ultrasonic techniques such as acoustic emission (AE) testing have become increasingly popular in the non-destructive evaluation of materials and structures. These techniques, which involve the analysis of frequency content between 1 kHz and 1 MHz, have proven effective in detecting the onset of cracking and other early-stage failure in active structures such as airplanes in flight. However, these techniques typically involve the use of expensive and bulky monitoring equipment capable of accurately sensing AE signals at sampling rates greater than 1 million samples per second. In this paper, a wireless data acquisition system is presented that is capable of collecting, storing, and processing AE data at rates of up to 20 MHz. Processed results can then be wirelessly transmitted in real-time, creating a system that enables the use of ultrasonic techniques in large-scale SHM systems.

  15. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging

    PubMed Central

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-01-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples. PMID:27699118

  16. Handheld nonlinear microscope system comprising a 2 MHz repetition rate, mode-locked Yb-fiber laser for in vivo biomedical imaging.

    PubMed

    Krolopp, Ádám; Csákányi, Attila; Haluszka, Dóra; Csáti, Dániel; Vass, Lajos; Kolonics, Attila; Wikonkál, Norbert; Szipőcs, Róbert

    2016-09-01

    A novel, Yb-fiber laser based, handheld 2PEF/SHG microscope imaging system is introduced. It is suitable for in vivo imaging of murine skin at an average power level as low as 5 mW at 200 kHz sampling rate. Amplified and compressed laser pulses having a spectral bandwidth of 8 to 12 nm at around 1030 nm excite the biological samples at a ~1.89 MHz repetition rate, which explains how the high quality two-photon excitation fluorescence (2PEF) and second harmonic generation (SHG) images are obtained at the average power level of a laser pointer. The scanning, imaging and detection head, which comprises a conventional microscope objective for beam focusing, has a physical length of ~180 mm owing to the custom designed imaging telescope system between the laser scanner mirrors and the entrance aperture of the microscope objective. Operation of the all-fiber, all-normal dispersion Yb-fiber ring laser oscillator is electronically controlled by a two-channel polarization controller for Q-switching free mode-locked operation. The whole nonlinear microscope imaging system has the main advantages of the low price of the fs laser applied, fiber optics flexibility, a relatively small, light-weight scanning and detection head, and a very low risk of thermal or photochemical damage of the skin samples.

  17. A temperature-jump NMR probe setup using rf heating optimized for the analysis of temperature-induced biomacromolecular kinetic processes

    NASA Astrophysics Data System (ADS)

    Rinnenthal, Jörg; Wagner, Dominic; Marquardsen, Thorsten; Krahn, Alexander; Engelke, Frank; Schwalbe, Harald

    2015-02-01

    A novel temperature jump (T-jump) probe operational at B0 fields of 600 MHz (14.1 Tesla) with an integrated cage radio-frequency (rf) coil for rapid (<1 s) heating in high-resolution (HR) liquid-state NMR-spectroscopy is presented and its performance investigated. The probe consists of an inner 2.5 mm "heating coil" designed for generating rf-electric fields of 190-220 MHz across a lossy dielectric sample and an outer two coil assembly for 1H-, 2H- and 15N-nuclei. High B0 field homogeneities (0.7 Hz at 600 MHz) are combined with high heating rates (20-25 K/s) and only small temperature gradients (<±1.5 K, 3 s after 20 K T-jump). The heating coil is under control of a high power rf-amplifier within the NMR console and can therefore easily be accessed by the pulse programmer. Furthermore, implementation of a real-time setup including synchronization of the NMR spectrometer's air flow heater with the rf-heater used to maintain the temperature of the sample is described. Finally, the applicability of the real-time T-jump setup for the investigation of biomolecular kinetic processes in the second-to-minute timescale is demonstrated for samples of a model 14mer DNA hairpin and a 15N-selectively labeled 40nt hsp17-RNA thermometer.

  18. Single pulse two photon fluorescence lifetime imaging (SP-FLIM) with MHz pixel rate.

    PubMed

    Eibl, Matthias; Karpf, Sebastian; Weng, Daniel; Hakert, Hubertus; Pfeiffer, Tom; Kolb, Jan Philip; Huber, Robert

    2017-07-01

    Two-photon-excited fluorescence lifetime imaging microscopy (FLIM) is a chemically specific 3-D sensing modality providing valuable information about the microstructure, composition and function of a sample. However, a more widespread application of this technique is hindered by the need for a sophisticated ultra-short pulse laser source and by speed limitations of current FLIM detection systems. To overcome these limitations, we combined a robust sub-nanosecond fiber laser as the excitation source with high analog bandwidth detection. Due to the long pulse length in our configuration, more fluorescence photons are generated per pulse, which allows us to derive the lifetime with a single excitation pulse only. In this paper, we show high quality FLIM images acquired at a pixel rate of 1 MHz. This approach is a promising candidate for an easy-to-use and benchtop FLIM system to make this technique available to a wider research community.

  19. Stand-alone front-end system for high- frequency, high-frame-rate coded excitation ultrasonic imaging.

    PubMed

    Park, Jinhyoung; Hu, Changhong; Shung, K Kirk

    2011-12-01

    A stand-alone front-end system for high-frequency coded excitation imaging was implemented to achieve a wider dynamic range. The system included an arbitrary waveform amplifier, an arbitrary waveform generator, an analog receiver, a motor position interpreter, a motor controller and power supplies. The digitized arbitrary waveforms at a sampling rate of 150 MHz could be programmed and converted to an analog signal. The pulse was subsequently amplified to excite an ultrasound transducer, and the maximum output voltage level achieved was 120 V(pp). The bandwidth of the arbitrary waveform amplifier was from 1 to 70 MHz. The noise figure of the preamplifier was less than 7.7 dB and the bandwidth was 95 MHz. Phantoms and biological tissues were imaged at a frame rate as high as 68 frames per second (fps) to evaluate the performance of the system. During the measurement, 40-MHz lithium niobate (LiNbO(3)) single-element lightweight (<;0.28 g) transducers were utilized. The wire target measure- ment showed that the -6-dB axial resolution of a chirp-coded excitation was 50 μm and lateral resolution was 120 μm. The echo signal-to-noise ratios were found to be 54 and 65 dB for the short burst and coded excitation, respectively. The contrast resolution in a sphere phantom study was estimated to be 24 dB for the chirp-coded excitation and 15 dB for the short burst modes. In an in vivo study, zebrafish and mouse hearts were imaged. Boundaries of the zebrafish heart in the image could be differentiated because of the low-noise operation of the implemented system. In mouse heart images, valves and chambers could be readily visualized with the coded excitation.

  20. Effects of temperature, moisture, and metal salt content on dielectric properties of rice bran associated with radio frequency heating.

    PubMed

    Ling, Bo; Liu, Xiaoli; Zhang, Lihui; Wang, Shaojin

    2018-03-13

    Dielectric heating including microwave (MW) and radio frequency (RF) energy has been regarded as alternative thermal treatments for food processing. To develop effective rice bran (RB) stabilization treatments based on RF and MW heating, dielectric properties (DPs) with dielectric constant (ε') and loss factor (ε″) of RB samples at frequencies (10-3000 MHz), temperatures (25-100 °C), moisture content (MC, 10.36-24.69% w.b.) and three metal salt levels (0.05-2.00%) were determined by an open-ended coaxial probe and impedance analyzer. Results indicated that both ε' and ε″ of RB samples increased with increasing temperature and MC. The increase rate was greater at higher temperature and moisture levels than at lower levels, especially at frequencies lower than 300 MHz. Cubic order models were developed to best fit the relationship between DPs of RB samples and temperature/MC at five frequencies with R 2 greater than 0.994. Both ε″ and RF heating rate of RB samples increased significantly with added NaCl (2%), KCl (1%) and Na 6 O 18 P 6 (2%). The obtained data are useful in developing computer models and simulating dielectric heating for RB stabilization and may also provide theoretical basis for synergistic stabilization of RB under combined dielectric heating with metal salts.

  1. Liquid sample delivery techniques for serial femtosecond crystallography

    PubMed Central

    Weierstall, Uwe

    2014-01-01

    X-ray free-electron lasers overcome the problem of radiation damage in protein crystallography and allow structure determination from micro- and nanocrystals at room temperature. To ensure that consecutive X-ray pulses do not probe previously exposed crystals, the sample needs to be replaced with the X-ray repetition rate, which ranges from 120 Hz at warm linac-based free-electron lasers to 1 MHz at superconducting linacs. Liquid injectors are therefore an essential part of a serial femtosecond crystallography experiment at an X-ray free-electron laser. Here, we compare different techniques of injecting microcrystals in solution into the pulsed X-ray beam in vacuum. Sample waste due to mismatch of the liquid flow rate to the X-ray repetition rate can be addressed through various techniques. PMID:24914163

  2. Experimental Magnetohydrodynamic Energy Extraction from a Pulsed Detonation

    DTIC Science & Technology

    2015-03-01

    experimental data taken in this thesis will follow voltage profiles similar to Fig. 2. Notice the initial section in Fig. 2 shows exponential decay consistent...equal that time constant. The exponential curves in Fig. 2 show how changing the time constant can change the charge and/or discharge rate of the...see Fig. 1), at a sampling rate of 1 MHz. Shielded wire and a common ground were used throughout the DAQ system to avoid capacitive issues in the

  3. High Resolution Gamma Ray Spectroscopy at MHz Counting Rates With LaBr3 Scintillators for Fusion Plasma Applications

    NASA Astrophysics Data System (ADS)

    Nocente, M.; Tardocchi, M.; Olariu, A.; Olariu, S.; Pereira, R. C.; Chugunov, I. N.; Fernandes, A.; Gin, D. B.; Grosso, G.; Kiptily, V. G.; Neto, A.; Shevelev, A. E.; Silva, M.; Sousa, J.; Gorini, G.

    2013-04-01

    High resolution γ-ray spectroscopy measurements at MHz counting rates were carried out at nuclear accelerators, combining a LaBr 3(Ce) detector with dedicated hardware and software solutions based on digitization and off-line analysis. Spectra were measured at counting rates up to 4 MHz, with little or no degradation of the energy resolution, adopting a pile up rejection algorithm. The reported results represent a step forward towards the final goal of high resolution γ-ray spectroscopy measurements on a burning plasma device.

  4. Arbitrary-detuning asynchronous optical sampling pump-probe spectroscopy of bacterial reaction centers.

    PubMed

    Antonucci, Laura; Bonvalet, Adeline; Solinas, Xavier; Jones, Michael R; Vos, Marten H; Joffre, Manuel

    2013-09-01

    A recently reported variant of asynchronous optical sampling compatible with arbitrary unstabilized laser repetition rates is applied to pump-probe spectroscopy. This makes possible the use of a 5.1 MHz chirped pulse oscillator as the pump laser, thus extending the available time window to almost 200 ns with a time resolution as good as about 320 fs. The method is illustrated with the measurement in a single experiment of the complete charge transfer dynamics of the reaction center from Rhodobacter sphaeroides.

  5. An Efficient, Highly Flexible Multi-Channel Digital Downconverter Architecture

    NASA Technical Reports Server (NTRS)

    Goodhart, Charles E.; Soriano, Melissa A.; Navarro, Robert; Trinh, Joseph T.; Sigman, Elliott H.

    2013-01-01

    In this innovation, a digital downconverter has been created that produces a large (16 or greater) number of output channels of smaller bandwidths. Additionally, this design has the flexibility to tune each channel independently to anywhere in the input bandwidth to cover a wide range of output bandwidths (from 32 MHz down to 1 kHz). Both the flexibility in channel frequency selection and the more than four orders of magnitude range in output bandwidths (decimation rates from 32 to 640,000) presented significant challenges to be solved. The solution involved breaking the digital downconversion process into a two-stage process. The first stage is a 2 oversampled filter bank that divides the whole input bandwidth as a real input signal into seven overlapping, contiguous channels represented with complex samples. Using the symmetry of the sine and cosine functions in a similar way to that of an FFT (fast Fourier transform), this downconversion is very efficient and gives seven channels fixed in frequency. An arbitrary number of smaller bandwidth channels can be formed from second-stage downconverters placed after the first stage of downconversion. Because of the overlapping of the first stage, there is no gap in coverage of the entire input bandwidth. The input to any of the second-stage downconverting channels has a multiplexer that chooses one of the seven wideband channels from the first stage. These second-stage downconverters take up fewer resources because they operate at lower bandwidths than doing the entire downconversion process from the input bandwidth for each independent channel. These second-stage downconverters are each independent with fine frequency control tuning, providing extreme flexibility in positioning the center frequency of a downconverted channel. Finally, these second-stage downconverters have flexible decimation factors over four orders of magnitude The algorithm was developed to run in an FPGA (field programmable gate array) at input data sampling rates of up to 1,280 MHz. The current implementation takes a 1,280-MHz real input, and first breaks it up into seven 160-MHz complex channels, each spaced 80 MHz apart. The eighth channel at baseband was not required for this implementation, and led to more optimization. Afterwards, 16 second stage narrow band channels with independently tunable center frequencies and bandwidth settings are implemented A future implementation in a larger Xilinx FPGA will hold up to 32 independent second-stage channels.

  6. Attenuation Coefficient Estimation of the Healthy Human Thyroid In Vivo

    NASA Astrophysics Data System (ADS)

    Rouyer, J.; Cueva, T.; Portal, A.; Yamamoto, T.; Lavarello, R.

    Previous studies have demonstrated that attenuation coefficients can be useful towards characterizing thyroid tissues. In this work, ultrasonic attenuation coefficients were estimated from healthy human thyroids in vivo using a clinical scanner. The selected subjects were five young, healthy volunteers (age: 26 ± 6 years old, gender: three females, two males) with no reported history of thyroid diseases, no palpable thyroid nodules, no smoking habits, and body mass index less than 30 kg/m2. Echographic examinations were conducted by a trained sonographer using a SonixTouch system (Ultrasonix Medical Corporation, Richmond, BC) equipped with an L14-5 linear transducer array (nominal center frequency of 10 MHz, transducer footprint of 3.8 cm). Radiofrequency data corresponding to the collected echographic images in both transverse and longitudinal views were digitized at a sampling rate of 40 MHz and processed with Matlab codes (MathWorks, Natick, MA) to estimate attenuation coefficients using the spectral log difference method. The estimation was performed using an analysis bandwidth spanning from 4.0 to 9.0 MHz. The average value of the estimated ultrasonic attenuation coefficients was equal to 1.34 ± 0.15 dB/(cm.MHz). The standard deviation of the estimated average attenuation coefficient across different volunteers suggests a non-negligible inter-subject variability in the ultrasonic attenuation coefficient of the human thyroid.

  7. A firmware-defined digital direct-sampling NMR spectrometer for condensed matter physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pikulski, M., E-mail: marekp@ethz.ch; Shiroka, T.; Ott, H.-R.

    2014-09-15

    We report on the design and implementation of a new digital, broad-band nuclear magnetic resonance (NMR) spectrometer suitable for probing condensed matter. The spectrometer uses direct sampling in both transmission and reception. It relies on a single, commercially-available signal processing device with a user-accessible field-programmable gate array (FPGA). Its functions are defined exclusively by the FPGA firmware and the application software. Besides allowing for fast replication, flexibility, and extensibility, our software-based solution preserves the option to reuse the components for other projects. The device operates up to 400 MHz without, and up to 800 MHz with undersampling, respectively. Digital down-conversion with ±10 MHzmore » passband is provided on the receiver side. The system supports high repetition rates and has virtually no intrinsic dead time. We describe briefly how the spectrometer integrates into the experimental setup and present test data which demonstrates that its performance is competitive with that of conventional designs.« less

  8. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering

    PubMed Central

    Mars, Kamel; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro

    2017-01-01

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system. PMID:29120358

  9. Label-Free Biomedical Imaging Using High-Speed Lock-In Pixel Sensor for Stimulated Raman Scattering.

    PubMed

    Mars, Kamel; Lioe, De Xing; Kawahito, Shoji; Yasutomi, Keita; Kagawa, Keiichiro; Yamada, Takahiro; Hashimoto, Mamoru

    2017-11-09

    Raman imaging eliminates the need for staining procedures, providing label-free imaging to study biological samples. Recent developments in stimulated Raman scattering (SRS) have achieved fast acquisition speed and hyperspectral imaging. However, there has been a problem of lack of detectors suitable for MHz modulation rate parallel detection, detecting multiple small SRS signals while eliminating extremely strong offset due to direct laser light. In this paper, we present a complementary metal-oxide semiconductor (CMOS) image sensor using high-speed lock-in pixels for stimulated Raman scattering that is capable of obtaining the difference of Stokes-on and Stokes-off signal at modulation frequency of 20 MHz in the pixel before reading out. The generated small SRS signal is extracted and amplified in a pixel using a high-speed and large area lateral electric field charge modulator (LEFM) employing two-step ion implantation and an in-pixel pair of low-pass filter, a sample and hold circuit and a switched capacitor integrator using a fully differential amplifier. A prototype chip is fabricated using 0.11 μm CMOS image sensor technology process. SRS spectra and images of stearic acid and 3T3-L1 samples are successfully obtained. The outcomes suggest that hyperspectral and multi-focus SRS imaging at video rate is viable after slight modifications to the pixel architecture and the acquisition system.

  10. On High and Low Starting Frequencies of Type II Radio Bursts

    NASA Astrophysics Data System (ADS)

    Sharma, J.; Mittal, N.

    2017-06-01

    We have studied the characteristics of type II radio burst during the period May 1996 to March 2015, for the solar cycle 23 and 24, observed by WIND/WAVES radio instrument. A total of 642 events were recorded by the instrument during the study period. We have divided the events with two starting frequency range (high > 1 MHz; low ≤ 1MHz) as type II1 (i.e., 1-16 MHz) radio burst and type II2 (i.e., 20 KHz - 1020 KHz) radio burst which constitute the DH and km type II radio burst observed by WIND spacecraft, and determined their time and frequency characteristics. The mean drift rate of type II1 and type II2 radio bursts is 29.76 × 10-4 MHz/s and 0.17 × 10-4 MHz/s respectively, which shows that type II1 with high start frequency hase larger drift rate than the type II2 with low starting frequencies. We have also reported that the start frequency and the drift rate of type II1 are in good correlation, with a linear correlation coefficient of 0.58.

  11. Evaluation of effect of high frequency electromagnetic field on growth and antibiotic sensitivity of bacteria.

    PubMed

    Salmen, Saleh H; Alharbi, Sulaiman A; Faden, Asmaa A; Wainwright, M

    2018-01-01

    This study was aimed to evaluate the impact of high frequency electromagnetic fields (HF-EMF at 900 and 1800 MHz) on DNA, growth rate and antibiotic susceptibility of S. aureus , S. epidermidis , and P. aeruginosa . In this study, bacteria were exposed to 900 and 1800 MHz for 2 h and then inoculated to new medium when their growth rate and antibiotic susceptibility were evaluated. Results for the study of bacterial DNA unsuccessful to appearance any difference exposed and non-exposed S. aureus and S. epidermidis . Exposure of S. epidermidis and S. aureus to electromagnetic fields mostly produced no statistically significant decrease in bacterial growth, except for S. aureus when exposure to 900 MHz at 12 h. Exposure of P. aeruginosa to electromagnetic fields at 900 MHz however, lead to a significant reduction in growth rate, while 1800 MHz had insignificant effect. With the exception of S. aureus , treated with amoxicillin (30 µg) and exposed to electromagnetic fields, radiation treatment had no significant effect on bacterial sensitivity to antibiotics.

  12. Electrical properties of Apollo 17 rock and soil samples and a summary of the electrical properties of lunar material at 450 MHz frequency

    NASA Technical Reports Server (NTRS)

    Gold, T.; Bilson, E.; Baron, R. L.

    1976-01-01

    The dielectric constant and the voltage absorption length was measured for four Apollo 17 soil samples (73241, 74220, 75061, 76501) and for two Apollo 17 rock samples (76315 and 79135) at 450 MHz frequency. The dielectric constant and absorption length measurements made on the lunar samples are reviewed and related to the transition element concentration in these samples. The significance of the laboratory measurements for radar observations is discussed.

  13. High Pressure Sensing and Dynamics Using High Speed Fiber Bragg Grating Interrogation Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodriguez, G.; Sandberg, R. L.; Lalone, B. M.

    2014-06-01

    Fiber Bragg gratings (FBGs) are developing into useful sensing tools for measuring high pressure dynamics in extreme environments under shock loading conditions. Approaches using traditional diode array coupled FBG interrogation systems are often limited to readout speeds in the sub-MHz range. For shock wave physics, required detection speeds approaching 100 MHz are desired. We explore the use of two types of FBG sensing systems that are aimed at applying this technology as embedded high pressure probes for transient shock events. Both approaches measure time resolved spectral shifts in the return light from short (few mm long) uniform FBGs at 1550more » nm. In the first approach, we use a fiber coupled spectrometer to demultiplex spectral channels into an array (up to 12) of single element InGaAs photoreceivers. By monitoring the detectors during a shock impact event with high speed recording, we are able to track the pressure induced spectral shifting in FBG down to a time resolution of 20 ns. In the second approach, developed at the Special Technologies Lab, a coherent mode-locked fiber laser is used to illuminate the FBG sensor. After the sensor, wavelength-to-time mapping is accomplished with a chromatic dispersive element, and entire spectra are sampled using a single detector at the modelocked laser repetition rate of 50 MHz. By sampling with a 12 GHz InGaAs detector, direct wavelength mapping in time is recorded, and the pressure induced FBG spectral shift is sampled at 50 MHz. Here, the sensing systems are used to monitor the spectral shifts of FBGs that are immersed into liquid water and shock compressed using explosives. In this configuration, the gratings survive to pressures approaching 50 kbar. We describe both approaches and present the measured spectral shifts from the shock experiments.« less

  14. Development of a wireless system for auditory neuroscience.

    PubMed

    Lukes, A J; Lear, A T; Snider, R K

    2001-01-01

    In order to study how the auditory cortex extracts communication sounds in a realistic acoustic environment, a wireless system is being developed that will transmit acoustic as well as neural signals. The miniature transmitter will be capable of transmitting two acoustic signals with 37.5 KHz bandwidths (75 KHz sample rate) and 56 neural signals with bandwidths of 9.375 KHz (18.75 KHz sample rate). These signals will be time-division multiplexed into one high bandwidth signal with a 1.2 MHz sample rate. This high bandwidth signal will then be frequency modulated onto a 2.4 GHz carrier, which resides in the industrial, scientic, and medical (ISM) band that is designed for low-power short-range wireless applications. On the receiver side, the signal will be demodulated from the 2.4 GHz carrier and then digitized by an analog-to-digital (A/D) converter. The acoustic and neural signals will be digitally demultiplexed from the multiplexed signal into their respective channels. Oversampling (20 MHz) will allow the reconstruction of the multiplexing clock by a digital signal processor (DSP) that will perform frame and bit synchronization. A frame is a subset of the signal that contains all the channels and several channels tied high and low will signal the start of a frame. This technological development will bring two benefits to auditory neuroscience. It will allow simultaneous recording of many neurons that will permit studies of population codes. It will also allow neural functions to be determined in higher auditory areas by correlating neural and acoustic signals without apriori knowledge of the necessary stimuli.

  15. Microwave coagulation therapy and drug injection to treat splenic injury.

    PubMed

    Zhang, Guoming; Sun, Yuanyuan; Yu, Jie; Dong, Lei; Mu, Nannan; Liu, Xiaohong; Liu, Lanfen; Zhang, Yan; Wang, Xiaofei; Liang, Ping

    2014-01-01

    The present study compares the efficacy of 915- and 2450-MHz contrast-enhanced ultrasound (CEUS)-guided percutaneous microwave coagulation with that of CEUS-guided thrombin injection for the treatment of trauma-induced spleen hemorrhage. In a canine splenic artery hemorrhage model with two levels of arterial diameter (A, <1 mm and B, between 1 and 2 mm), hemostatic therapy was performed using 915- and 2450-MHz microwaves and drug injection. Therapy efficacy was measured by comparing bleeding rate, hemostatic time, bleeding index, bleeding volume, and pathology. The most efficient technique was CEUS-guided 915-MHz percutaneous microwave coagulation therapy in terms of action time and total blood loss. The success rate of the 915-MHz microwave group was higher than that of the 2450-MHz microwave and the drug injection groups (except A level, P < 0.05). Hemostatic time, bleeding index, and bleeding volume were significantly less in the 915-MHz microwave group than those in the 2450-MHz microwave and drug injection groups (P < 0.05). Obvious degeneration and necrosis of parenchyma and large intravascular thrombosis were observed in the cavity of larger vessels in the 915-MHz microwave group, but pathologic changes of light injury could be seen in the other groups. The present study provides evidence that microwave coagulation therapy is more efficient than thrombin injection for the treatment of splenic hemorrhage. Furthermore, treatment with 915-MHz microwaves stops bleeding more rapidly and generates a wider cauterization zone than does treatment with 2450-MHz microwaves. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Material Outgassing, Identification and Deposition, MOLIDEP System

    NASA Technical Reports Server (NTRS)

    Scialdone, John J.; Montoya, Alex F.

    2002-01-01

    The outgassing tests are performed employing a modified vacuum operated Cahn analytical microbalance, identified as the MOLIDEP system. The test measures under high vacuum, the time varying Molecular mass loss of a material sample held at a chosen temperature; it Identifies the outgassing molecular components using an inline SRS 300 amu Residual Gas Analyzer (RGA) and employs a temperature controlled 10 MHz Quartz Crystal Microbalance (QCM) to measure the condensable DEPosits. Both the QCM and the RGA intercept within the conductive passage the outgassing products being evacuated by a turbomolecular pump. The continuous measurements of the mass loss, the rate of loss, the sample temperature, the rate of temperature change, the QCM temperature and the QCM recorded condensable deposits or rate of deposits are saved to an Excel spreadsheet. A separate computer controls the RGA.

  17. Low-power grating detection system chip for high-speed low-cost length and angle precision measurement

    NASA Astrophysics Data System (ADS)

    Hou, Ligang; Luo, Rengui; Wu, Wuchen

    2006-11-01

    This paper forwards a low power grating detection chip (EYAS) on length and angle precision measurement. Traditional grating detection method, such as resister chain divide or phase locked divide circuit are difficult to design and tune. The need of an additional CPU for control and display makes these methods' implementation more complex and costly. Traditional methods also suffer low sampling speed for the complex divide circuit scheme and CPU software compensation. EYAS is an application specific integrated circuit (ASIC). It integrates micro controller unit (MCU), power management unit (PMU), LCD controller, Keyboard interface, grating detection unit and other peripherals. Working at 10MHz, EYAS can afford 5MHz internal sampling rate and can handle 1.25MHz orthogonal signal from grating sensor. With a simple control interface by keyboard, sensor parameter, data processing and system working mode can be configured. Two LCD controllers can adapt to dot array LCD or segment bit LCD, which comprised output interface. PMU alters system between working and standby mode by clock gating technique to save power. EYAS in test mode (system action are more frequently than real world use) consumes 0.9mw, while 0.2mw in real world use. EYAS achieved the whole grating detection system function, high-speed orthogonal signal handling in a single chip with very low power consumption.

  18. VizieR Online Data Catalog: MRCR-SUMSS Ultra-steep-spectrum (USS) sample (Broderick+, 2007)

    NASA Astrophysics Data System (ADS)

    Broderick, J. W.; Bryant, J. J.; Hunstead, R. W.; Sadler, E. M.; Murphy, T.

    2008-09-01

    This paper introduces a new program to find high-redshift radio galaxies in the Southern hemisphere through ultra-steep spectrum (USS) selection. We define a sample of 234 USS radio sources with spectral indices {alpha}843408<=-1.0 (S{nu}{prop.to}{nu}alpha) and flux densities S408>=200mJy in a region of 0.35sr, chosen by cross-correlating the revised 408MHz Molonglo Reference Catalogue, the 843MHz Sydney University Molonglo Sky Survey and the 1400MHz NRAO VLA Sky Survey in the overlap region -40{deg}

  19. Mobile telephones: a comparison of radiated power between 3G VoIP calls and 3G VoCS calls.

    PubMed

    Jovanovic, Dragan; Bragard, Guillaume; Picard, Dominique; Chauvin, Sébastien

    2015-01-01

    The purpose of this study is to assess the mean RF power radiated by mobile telephones during voice calls in 3G VoIP (Voice over Internet Protocol) using an application well known to mobile Internet users, and to compare it with the mean power radiated during voice calls in 3G VoCS (Voice over Circuit Switch) on a traditional network. Knowing that the specific absorption rate (SAR) is proportional to the mean radiated power, the user's exposure could be clearly identified at the same time. Three 3G (High Speed Packet Access) smartphones from three different manufacturers, all dual-band for GSM (900 MHz, 1800 MHz) and dual-band for UMTS (900 MHz, 1950 MHz), were used between 28 July and 04 August 2011 in Paris (France) to make 220 two-minute calls on a mobile telephone network with national coverage. The places where the calls were made were selected in such a way as to describe the whole range of usage situations of the mobile telephone. The measuring equipment, called "SYRPOM", recorded the radiation power levels and the frequency bands used during the calls with a sampling rate of 20,000 per second. In the framework of this study, the mean normalised power radiated by a telephone in 3G VoIP calls was evaluated at 0.75% maximum power of the smartphone, compared with 0.22% in 3G VoCS calls. The very low average power levels associated with use of 3G devices with VoIP or VoCS support the view that RF exposure resulting from their use is far from exceeding the basic restrictions of current exposure limits in terms of SAR.

  20. A Sub-Sampling Approach for Data Acquisition in Gamma Ray Emission Tomography

    NASA Astrophysics Data System (ADS)

    Fysikopoulos, Eleftherios; Kopsinis, Yannis; Georgiou, Maria; Loudos, George

    2016-06-01

    State of the art data acquisition systems for small animal imaging gamma ray detectors often rely on free running Analog to Digital Converters (ADCs) and high density Field Programmable Gate Arrays (FPGA) devices for digital signal processing. In this work, a sub-sampling acquisition approach, which exploits a priori information regarding the shape of the obtained detector pulses is proposed. Output pulses shape depends on the response of the scintillation crystal, photodetector's properties and amplifier/shaper operation. Using these known characteristics of the detector pulses prior to digitization, one can model the voltage pulse derived from the shaper (a low-pass filter, last in the front-end electronics chain), in order to reduce the desirable sampling rate of ADCs. Fitting with a small number of measurements, pulse shape estimation is then feasible. In particular, the proposed sub-sampling acquisition approach relies on a bi-exponential modeling of the pulse shape. We show that the properties of the pulse that are relevant for Single Photon Emission Computed Tomography (SPECT) event detection (i.e., position and energy) can be calculated by collecting just a small fraction of the number of samples usually collected in data acquisition systems used so far. Compared to the standard digitization process, the proposed sub-sampling approach allows the use of free running ADCs with sampling rate reduced by a factor of 5. Two small detectors consisting of Cerium doped Gadolinium Aluminum Gallium Garnet (Gd3Al2Ga3O12 : Ce or GAGG:Ce) pixelated arrays (array elements: 2 × 2 × 5 mm3 and 1 × 1 × 10 mm3 respectively) coupled to a Position Sensitive Photomultiplier Tube (PSPMT) were used for experimental evaluation. The two detectors were used to obtain raw images and energy histograms under 140 keV and 661.7 keV irradiation respectively. The sub-sampling acquisition technique (10 MHz sampling rate) was compared with a standard acquisition method (52 MHz sampling rate), in terms of energy resolution and image signal to noise ratio for both gamma ray energies. The Levenberg-Marquardt (LM) non-linear least-squares algorithm was used, in post processing, in order to fit the acquired data with the proposed model. The results showed that analog pulses prior to digitization are being estimated with high accuracy after fitting with the bi-exponential model.

  1. Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy

    PubMed Central

    Reznicek, Lukas; Kolb, Jan P.; Klein, Thomas; Mohler, Kathrin J.; Huber, Robert; Kernt, Marcus; Märtz, Josef; Neubauer, Aljoscha S.

    2015-01-01

    Purpose. To evaluate the feasibility of wide-field Megahertz (MHz) OCT imaging in patients with diabetic retinopathy. Methods. A consecutive series of 15 eyes of 15 patients with diagnosed diabetic retinopathy were included. All patients underwent Megahertz OCT imaging, a close clinical examination, slit lamp biomicroscopy, and funduscopic evaluation. To acquire densely sampled, wide-field volumetric datasets, an ophthalmic 1050 nm OCT prototype system based on a Fourier-domain mode-locked (FDML) laser source with 1.68 MHz A-scan rate was employed. Results. We were able to obtain OCT volume scans from all included 15 patients. Acquisition time was 1.8 seconds. Obtained volume datasets consisted of 2088 × 1044 A-scans of 60° of view. Thus, reconstructed en face images had a resolution of 34.8 pixels per degree in x-axis and 17.4 pixels per degree. Due to the densely sampled OCT volume dataset, postprocessed customized cross-sectional B-frames through pathologic changes such as an individual microaneurysm or a retinal neovascularization could be imaged. Conclusions. Wide-field Megahertz OCT is feasible to successfully image patients with diabetic retinopathy at high scanning rates and a wide angle of view, providing information in all three axes. The Megahertz OCT is a useful tool to screen diabetic patients for diabetic retinopathy. PMID:26273665

  2. Wide-Field Megahertz OCT Imaging of Patients with Diabetic Retinopathy.

    PubMed

    Reznicek, Lukas; Kolb, Jan P; Klein, Thomas; Mohler, Kathrin J; Wieser, Wolfgang; Huber, Robert; Kernt, Marcus; Märtz, Josef; Neubauer, Aljoscha S

    2015-01-01

    To evaluate the feasibility of wide-field Megahertz (MHz) OCT imaging in patients with diabetic retinopathy. A consecutive series of 15 eyes of 15 patients with diagnosed diabetic retinopathy were included. All patients underwent Megahertz OCT imaging, a close clinical examination, slit lamp biomicroscopy, and funduscopic evaluation. To acquire densely sampled, wide-field volumetric datasets, an ophthalmic 1050 nm OCT prototype system based on a Fourier-domain mode-locked (FDML) laser source with 1.68 MHz A-scan rate was employed. RESULTS. We were able to obtain OCT volume scans from all included 15 patients. Acquisition time was 1.8 seconds. Obtained volume datasets consisted of 2088 × 1044 A-scans of 60° of view. Thus, reconstructed en face images had a resolution of 34.8 pixels per degree in x-axis and 17.4 pixels per degree. Due to the densely sampled OCT volume dataset, postprocessed customized cross-sectional B-frames through pathologic changes such as an individual microaneurysm or a retinal neovascularization could be imaged. Wide-field Megahertz OCT is feasible to successfully image patients with diabetic retinopathy at high scanning rates and a wide angle of view, providing information in all three axes. The Megahertz OCT is a useful tool to screen diabetic patients for diabetic retinopathy.

  3. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy.

    PubMed

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P; Xu, Chris

    2018-05-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz.

  4. Passive ultrasonics using sub-Nyquist sampling of high-frequency thermal-mechanical noise.

    PubMed

    Sabra, Karim G; Romberg, Justin; Lani, Shane; Degertekin, F Levent

    2014-06-01

    Monolithic integration of capacitive micromachined ultrasonic transducer arrays with low noise complementary metal oxide semiconductor electronics minimizes interconnect parasitics thus allowing the measurement of thermal-mechanical (TM) noise. This enables passive ultrasonics based on cross-correlations of diffuse TM noise to extract coherent ultrasonic waves propagating between receivers. However, synchronous recording of high-frequency TM noise puts stringent requirements on the analog to digital converter's sampling rate. To alleviate this restriction, high-frequency TM noise cross-correlations (12-25 MHz) were estimated instead using compressed measurements of TM noise which could be digitized at a sampling frequency lower than the Nyquist frequency.

  5. Constraints on the FRB rate at 700-900 MHz

    NASA Astrophysics Data System (ADS)

    Connor, Liam; Lin, Hsiu-Hsien; Masui, Kiyoshi; Oppermann, Niels; Pen, Ue-Li; Peterson, Jeffrey B.; Roman, Alexander; Sievers, Jonathan

    2016-07-01

    Estimating the all-sky rate of fast radio bursts (FRBs) has been difficult due to small-number statistics and the fact that they are seen by disparate surveys in different regions of the sky. In this paper we provide limits for the FRB rate at 800 MHz based on the only burst detected at frequencies below 1.4 GHz, FRB 110523. We discuss the difficulties in rate estimation, particularly in providing an all-sky rate above a single fluence threshold. We find an implied rate between 700 and 900 MHz that is consistent with the rate at 1.4 GHz, scaling to 6.4^{+29.5}_{-5.0} × 10^3 sky-1 d-1 for an HTRU-like survey. This is promising for upcoming experiments below a GHz like CHIME and UTMOST, for which we forecast detection rates. Given 110523's discovery at 32σ with nothing weaker detected, down to the threshold of 8σ, we find consistency with a Euclidean flux distribution but disfavour steep distributions, ruling out γ > 2.2.

  6. Analyses of 476 MHz and 952 MHz Crab Cavities for JLAB Electron Ion Collider

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, HyeKyoung; Castilla, Alejandro; Delayen, Jean R.

    2016-05-01

    The Center for Accelerator Science at Old Dominion University has designed, fabricated and successfully tested a crab cavity for Electron Ion Collider at Jefferson Lab (JLEIC) [1]. This proof-of-principle cavity was based on the earlier MEIC design which used 748.5 MHz RF system. The updated JLEIC (called MEIC earlier) design [2] utilizes the components from PEP-II. It results in the change on the bunch repetition rate of stored beam to 476.3 MHz. The ion ring collider will eventually require 952.6 MHz crab cavities. This paper will present the analyses of crab cavities of both 476 MHz and 952 MHz options.more » It compares advantages and disadvantages of the options which provide the JLEIC design team important technical information for a system down selection.« less

  7. Precise SAR measurements in the near-field of RF antenna systems

    NASA Astrophysics Data System (ADS)

    Hakim, Bandar M.

    Wireless devices must meet specific safety radiation limits, and in order to assess the health affects of such devices, standard procedures are used in which standard phantoms, tissue-equivalent liquids, and miniature electric field probes are used. The accuracy of such measurements depend on the precision in measuring the dielectric properties of the tissue-equivalent liquids and the associated calibrations of the electric-field probes. This thesis describes work on the theoretical modeling and experimental measurement of the complex permittivity of tissue-equivalent liquids, and associated calibration of miniature electric-field probes. The measurement method is based on measurements of the field attenuation factor and power reflection coefficient of a tissue-equivalent sample. A novel method, to the best of the authors knowledge, for determining the dielectric properties and probe calibration factors is described and validated. The measurement system is validated using saline at different concentrations, and measurements of complex permittivity and calibration factors have been made on tissue-equivalent liquids at 900MHz and 1800MHz. Uncertainty analysis have been conducted to study the measurement system sensitivity. Using the same waveguide to measure tissue-equivalent permittivity and calibrate e-field probes eliminates a source of uncertainty associated with using two different measurement systems. The measurement system is used to test GSM cell-phones at 900MHz and 1800MHz for Specific Absorption Rate (SAR) compliance using a Specific Anthropomorphic Mannequin phantom (SAM).

  8. One GHz digitizer for space based laser altimeter

    NASA Technical Reports Server (NTRS)

    Staples, Edward J.

    1991-01-01

    This is the final report for the research and development of the one GHz digitizer for space based laser altimeter. A feasibility model was designed, built, and tested. Only partial testing of essential functions of the digitizer was completed. Hybrid technology was incorporated which allows analog storage (memory) of the digitally sampled data. The actual sampling rate is 62.5 MHz, but executed in 16 parallel channels, to provide an effective sampling rate of one GHz. The average power consumption of the one GHz digitizer is not more than 1.5 Watts. A one GHz oscillator is incorporated for timing purposes. This signal is also made available externally for system timing. A software package was also developed for internal use (controls, commands, etc.) and for data communication with the host computer. The digitizer is equipped with an onboard microprocessor for this purpose.

  9. User`s manual for the CDC-1 digitizer controller

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferron, J.R.

    1994-09-01

    A detailed description of how to use the CDC-1 digitizer controller is given. The CDC-1 is used with the CAMAC format digitizer models in the TRAQ series (manufactured by DSP Technology Inc.), the DAD-1 data acquisition daughter board, and the Intel i860-based SuperCard-2 (manufactured, by CSP Inc.) to form a high speed data acquisition and real time analysis system. Data can be transferred to the memory on the SuperCard-2 at a rate as high as 40 million 14-bit samples per second. Depending on the model of TRAQ digitizer in use, digitizing rates up to 3.33 MHz are supported (with eightmore » data channels), or, for instance, at a sample rate of 100 kHz, 384 data channels can be acquired.« less

  10. Using single buffers and data reorganization to implement a multi-megasample fast Fourier transform

    NASA Technical Reports Server (NTRS)

    Brown, R. D.

    1992-01-01

    Data ordering in large fast Fourier transforms (FFT's) is both conceptually and implementationally difficult. Discribed here is a method of visualizing data orderings as vectors of address bits, which enables the engineer to use more efficient data orderings and reduce double-buffer memory designs. Also detailed are the difficulties and algorithmic solutions involved in FFT lengths up to 4 megasamples (Msamples) and sample rates up to 80 MHz.

  11. Radar - ARL Wind Profilerwith RASS, Boardman - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  12. Radar - ANL Wind Profiler with RASS, Yakima - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  13. Radar - ESRL Wind Profiler with RASS, Condon - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  14. Radar - ANL Wind Profiler with RASS, Walla Walla - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  15. Radar - ESRL Wind Profiler with RASS, Prineville - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  16. Radar - ESRL Wind Profiler with RASS, Troutdale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  17. Radar - ANL Wind Profiler with RASS, Goldendale - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  18. Radar - ESRL Wind Profiler with RASS, Wasco Airport - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2017-10-23

    **Winds** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature** To measure atmospheric temperature, a radio acoustic sound system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60-m up to 3.5k m for the 449 MHz.

  19. Fiber-based tunable repetition rate source for deep tissue two-photon fluorescence microscopy

    PubMed Central

    Charan, Kriti; Li, Bo; Wang, Mengran; Lin, Charles P.; Xu, Chris

    2018-01-01

    Deep tissue multiphoton imaging requires high peak power to enhance signal and low average power to prevent thermal damage. Both goals can be advantageously achieved through laser repetition rate tuning instead of simply adjusting the average power. We show that the ideal repetition rate for deep two-photon imaging in the mouse brain is between 1 and 10 MHz, and we present a fiber-based source with an arbitrarily tunable repetition rate within this range. The performance of the new source is compared to a mode-locked Ti:Sapphire (Ti:S) laser for in vivo imaging of mouse brain vasculature. At 2.5 MHz, the fiber source requires 5.1 times less average power to obtain the same signal as a standard Ti:S laser operating at 80 MHz. PMID:29760989

  20. Joint aperture detection for speckle reduction and increased collection efficiency in ophthalmic MHz OCT

    PubMed Central

    Klein, Thomas; André, Raphael; Wieser, Wolfgang; Pfeiffer, Tom; Huber, Robert

    2013-01-01

    Joint-aperture optical coherence tomography (JA-OCT) is an angle-resolved OCT method, in which illumination from an active channel is simultaneously probed by several passive channels. JA-OCT increases the collection efficiency and effective sensitivity of the OCT system without increasing the power on the sample. Additionally, JA-OCT provides angular scattering information about the sample in a single acquisition, so the OCT imaging speed is not reduced. Thus, JA-OCT is especially suitable for ultra high speed in-vivo imaging. JA-OCT is compared to other angle-resolved techniques, and the relation between joint aperture imaging, adaptive optics, coherent and incoherent compounding is discussed. We present angle-resolved imaging of the human retina at an axial scan rate of 1.68 MHz, and demonstrate the benefits of JA-OCT: Speckle reduction, signal increase and suppression of specular and parasitic reflections. Moreover, in the future JA-OCT may allow for the reconstruction of the full Doppler vector and tissue discrimination by analysis of the angular scattering dependence. PMID:23577296

  1. Digital Receiver Phase Meter

    NASA Technical Reports Server (NTRS)

    Marcin, Martin; Abramovici, Alexander

    2008-01-01

    The software of a commercially available digital radio receiver has been modified to make the receiver function as a two-channel low-noise phase meter. This phase meter is a prototype in the continuing development of a phase meter for a system in which radiofrequency (RF) signals in the two channels would be outputs of a spaceborne heterodyne laser interferometer for detecting gravitational waves. The frequencies of the signals could include a common Doppler-shift component of as much as 15 MHz. The phase meter is required to measure the relative phases of the signals in the two channels at a sampling rate of 10 Hz at a root power spectral density <5 microcycle/(Hz)1/2 and to be capable of determining the power spectral density of the phase difference over the frequency range from 1 mHz to 1 Hz. Such a phase meter could also be used on Earth to perform similar measurements in laser metrology of moving bodies. To illustrate part of the principle of operation of the phase meter, the figure includes a simplified block diagram of a basic singlechannel digital receiver. The input RF signal is first fed to the input terminal of an analog-to-digital converter (ADC). To prevent aliasing errors in the ADC, the sampling rate must be at least twice the input signal frequency. The sampling rate of the ADC is governed by a sampling clock, which also drives a digital local oscillator (DLO), which is a direct digital frequency synthesizer. The DLO produces samples of sine and cosine signals at a programmed tuning frequency. The sine and cosine samples are mixed with (that is, multiplied by) the samples from the ADC, then low-pass filtered to obtain in-phase (I) and quadrature (Q) signal components. A digital signal processor (DSP) computes the ratio between the Q and I components, computes the phase of the RF signal (relative to that of the DLO signal) as the arctangent of this ratio, and then averages successive such phase values over a time interval specified by the user.

  2. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head

    PubMed Central

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Amirhajeloo, Leila Rasouli; Mirzaei, Maryam

    2016-01-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m and 2.23±0.39 v/m, respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23% and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart mobile phones at the frequencies of 900 and 1800 MHz was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone. PMID:27157169

  3. Survey on Different Samsung with Nokia Smart Mobile Phones in the Specific Absorption Rate Electrical Field of Head.

    PubMed

    Fakhri, Yadolah; Alinejad, Azim; Keramati, Hassan; Bay, Abotaleb; Avazpour, Moayed; Zandsalimi, Yahya; Moradi, Bigard; Rasouli Amirhajeloo, Leila; Mirzaei, Maryam

    2016-09-01

    The use of smart phones is increasing in the world. This excessive use, especially in the last two decades, has created too much concern on the effects of emitted electromagnetic fields and specific absorption rate on human health. In this descriptive-analytical study of the electric field resulting from smart phones of Samsung and Nokia by portable measuring device, electromagnetic field, Model HI-3603-VDT/VLF, were measured. Then, head absorption rate was calculated in these two mobiles by ICNIRP equation. Finally, the comparison of specific absorption rate, especially between Samsung and Nokia smart phones, was conducted by T-Test statistics analysis. The mean of electric field for Samsung and Nokia smart mobile phones was obtained 1.8 ±0.19 v/m  and 2.23±0.39 v/m , respectively, while the range of the electric field was obtained as 1.56-2.21 v/m and 1.69-2.89 v/m for them, respectively. The mean of specific absorption rate in Samsung and Nokia was obtained 0.002 ± 0.0005 W/Kg and 0.0041±0.0013 W/Kg at the frequency of 900 MHz and 0.004±0.001 W/Kg and 0.0062±0.0002 W/Kg at the frequency of 1800 MHz respectively. The ratio of mean electronic field to guidance in the Samsung mobile phone at the frequency of 900 MHz and 1800 MHz was 4.36% and 3.34%, while was 5.62% and 4.31% in the Nokia mobile phone, respectively. The ratio of mean head specific absorption rate in smart mobile phones of Samsung and Nokia in the guidance level at the frequency of 900 was 0.15% and 0.25%, respectively, while was 0.23 %and 0.38% at the frequency of 1800 MHz, respectively. The rate of specific absorption of Nokia smart  mobile phones at the frequencies of 900 and 1800 MHz  was significantly higher than Samsung (p value <0.05). Hence, we can say that in a fixed period, health risks of Nokia smart phones is higher than Samsung smart mobile phone.

  4. Laboratory Investigation of the Effect of Water-Saturation on Seismic Wave Dispersion in Carbonates

    NASA Astrophysics Data System (ADS)

    Li, W.; Pyrak-Nolte, L. J.

    2009-12-01

    In subsurface rock, fluid content changes with time through natural causes or because of human interactions, such as extraction or sequestration of fluids. The ability to monitor, seismically, fluid migration in the subsurface requires an understanding of the effects that the degree of saturation and spatial distribution of fluids have on wave propagation in rock. In this study, we find that the seismic dispersion of a dry carbonate rock can be masked by saturating the sample. We used a laboratory mini-seismic array to monitor fluid invasion and withdrawal in a carbonate rock with fabric-controlled layering. Experiments were performed on prismatic samples of Austin Chalk measuring 50mm x 50mm x 100mm. The epoxy-sealed samples contained an inlet and an outlet port to enable fluid invasion/withdrawal along the long axis of the sample. Water was infused and withdrawn from the sample at a rate of 1ml/hr. The mini-seismic array consisted of a set of 12 piezoelectric contact transducers, each with a central frequency 1.0 MHz. Three compressional wave source-receiver pairs and three shear wave source-receiver pairs were used to probe along the length of the sample prior to invasion and during invasion and withdrawal of water from the sample. A pressure transducer was used to record the fluid pressure simultaneously with the full transmitted wave forms every 15-30 minutes. A wavelet analysis determined the effect of fluid invasion on velocity dispersion. We observed that the compressional wave dispersion was more sensitive to changes in saturation than the shear wave dispersion. When the sample was unsaturated, the high frequency components of the compressional wave (1.2MHz to 2MHz) had lower velocities (~ 2750m/s) than the low frequency components, which decrease monotonically from 2890 m/s for 0.2MHz to 1.2 MHz. As water infused the sample, the dispersion weakened. When the sample as fully saturated, the compressional wave velocity was frequency independent. The functional form of the dependence of the shear wave velocity on frequency is relatively constant with fluid saturation, but the magnitude of the velocity decreased (~35 m/s) with increasing saturation. From theoretical calculations, the shear modulus increased during water invasion and was independent of frequency. However, the changes in the Young’s modulus with water invasion depended on the frequency of observation. When 46.5ml was infused into the sample, the Young’s modulus interpreted from the high-frequency components (wavelength from 1.43mm to 2.4mm) increased 70%, while the modulus from the low-frequency components (wavelengths vary from 1.4cm to 3.4mm) increased between 20% and 55%. Interpreting seismic data to determine fluid saturation in rock with fabric-controlled layering requires an understanding of the seismic dispersion properties of the rock in addition to the ability of fluids on alter or mask the dispersion. Acknowledgments: The authors wish to acknowledge support of this work by the Geosciences Research Program, Office of Basic Energy Sciences US Department of Energy (DEFG02-97ER14785 08), by Exxon Mobil Upstream Research Company and the GeoMathematical Imaging Group at Purdue University.

  5. Spectral domain optical coherence tomography of multi-MHz A-scan rates at 1310 nm range and real-time 4D-display up to 41 volumes/second

    PubMed Central

    Choi, Dong-hak; Hiro-Oka, Hideaki; Shimizu, Kimiya; Ohbayashi, Kohji

    2012-01-01

    An ultrafast frequency domain optical coherence tomography system was developed at A-scan rates between 2.5 and 10 MHz, a B-scan rate of 4 or 8 kHz, and volume-rates between 12 and 41 volumes/second. In the case of the worst duty ratio of 10%, the averaged A-scan rate was 1 MHz. Two optical demultiplexers at a center wavelength of 1310 nm were used for linear-k spectral dispersion and simultaneous differential signal detection at 320 wavelengths. The depth-range, sensitivity, sensitivity roll-off by 6 dB, and axial resolution were 4 mm, 97 dB, 6 mm, and 23 μm, respectively. Using FPGAs for FFT and a GPU for volume rendering, a real-time 4D display was demonstrated at a rate up to 41 volumes/second for an image size of 256 (axial) × 128 × 128 (lateral) voxels. PMID:23243560

  6. Fast Offset Laser Phase-Locking System

    NASA Technical Reports Server (NTRS)

    Shaddock, Daniel; Ware, Brent

    2008-01-01

    Figure 1 shows a simplified block diagram of an improved optoelectronic system for locking the phase of one laser to that of another laser with an adjustable offset frequency specified by the user. In comparison with prior systems, this system exhibits higher performance (including higher stability) and is much easier to use. The system is based on a field-programmable gate array (FPGA) and operates almost entirely digitally; hence, it is easily adaptable to many different systems. The system achieves phase stability of less than a microcycle. It was developed to satisfy the phase-stability requirement for a planned spaceborne gravitational-wave-detecting heterodyne laser interferometer (LISA). The system has potential terrestrial utility in communications, lidar, and other applications. The present system includes a fast phasemeter that is a companion to the microcycle-accurate one described in High-Accuracy, High-Dynamic-Range Phase-Measurement System (NPO-41927), NASA Tech Briefs, Vol. 31, No. 6 (June 2007), page 22. In the present system (as in the previously reported one), beams from the two lasers (here denoted the master and slave lasers) interfere on a photodiode. The heterodyne photodiode output is digitized and fed to the fast phasemeter, which produces suitably conditioned, low-latency analog control signals which lock the phase of the slave laser to that of the master laser. These control signals are used to drive a thermal and a piezoelectric transducer that adjust the frequency and phase of the slave-laser output. The output of the photodiode is a heterodyne signal at the difference between the frequencies of the two lasers. (The difference is currently required to be less than 20 MHz due to the Nyquist limit of the current sampling rate. We foresee few problems in doubling this limit using current equipment.) Within the phasemeter, the photodiode-output signal is digitized to 15 bits at a sampling frequency of 40 MHz by use of the same analog-to-digital converter (ADC) as that of the previously reported phasemeter. The ADC output is passed to the FPGA, wherein the signal is demodulated using a digitally generated oscillator signal at the offset locking frequency specified by the user. The demodulated signal is low-pass filtered, decimated to a sample rate of 1 MHz, then filtered again. The decimated and filtered signal is converted to an analog output by a 1 MHz, 16-bit digital-to-analog converters. After a simple low-pass filter, these analog signals drive the thermal and piezoelectric transducers of the laser.

  7. Initial Demonstration of 9-MHz Framing Camera Rates on the FAST UV Drive Laser Pulse Trains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumpkin, A. H.; Edstrom Jr., D.; Ruan, J.

    2016-10-09

    We report the configuration of a Hamamatsu C5680 streak camera as a framing camera to record transverse spatial information of green-component laser micropulses at 3- and 9-MHz rates for the first time. The latter is near the time scale of the ~7.5-MHz revolution frequency of the Integrable Optics Test Accelerator (IOTA) ring and its expected synchroton radiation source temporal structure. The 2-D images are recorded with a Gig-E readout CCD camera. We also report a first proof of principle with an OTR source using the linac streak camera in a semi-framing mode.

  8. Group velocity locked vector dissipative solitons in a high repetition rate fiber laser

    NASA Astrophysics Data System (ADS)

    Luo, Yiyang; Li, Lei; Liu, Deming; Sun, Qizhen; Wu, Zhichao; Xu, Zhilin; Tang, Dingyuan; Fu, Songnian; Zhao, Luming

    2016-08-01

    Vectorial nature of dissipative solitons (DSs) with high repetition rates is studied for the first time in a normal-dispersion fiber laser. Despite the fact that the formed DSs are strongly chirped and the repetition rate is greater than 100 MHz, polarization locked and polarization rotating group velocity locked vector DSs can be formed under 129.3 MHz fundamental mode-locking and 258.6 MHz harmonic mode-locking of the fiber laser, respectively. The two orthogonally polarized components of these vector DSs possess distinctly different central wavelengths and travel together at the same group velocity in the laser cavity, resulting in a gradual spectral edge and small steps on the optical spectra, which can be considered as an auxiliary indicator of the group velocity locked vector DSs.

  9. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel

    PubMed Central

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-01-01

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions. PMID:26419413

  10. 25 MHz clock continuous-variable quantum key distribution system over 50 km fiber channel.

    PubMed

    Wang, Chao; Huang, Duan; Huang, Peng; Lin, Dakai; Peng, Jinye; Zeng, Guihua

    2015-09-30

    In this paper, a practical continuous-variable quantum key distribution system is developed and it runs in the real-world conditions with 25 MHz clock rate. To reach high-rate, we have employed a homodyne detector with maximal bandwidth to 300 MHz and an optimal high-efficiency error reconciliation algorithm with processing speed up to 25 Mbps. To optimize the stability of the system, several key techniques are developed, which include a novel phase compensation algorithm, a polarization feedback algorithm, and related stability method on the modulators. Practically, our system is tested for more than 12 hours with a final secret key rate of 52 kbps over 50 km transmission distance, which is the highest rate so far in such distance. Our system may pave the road for practical broadband secure quantum communication with continuous variables in the commercial conditions.

  11. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    PubMed

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  12. Supporting the potential of quantitative ultrasonic techniques for the evaluation of platelet concentration

    NASA Astrophysics Data System (ADS)

    Villamarín, J. A.; Jiménez, Y. M.; Molano, L. Tatiana; Gutierrez, W. Edgar; Londoño, L. Fernando; Gutierrez, D. A.

    2017-11-01

    This article describes the results obtained by making use of a non-destructive, non-invasive ultrasonic system for the acoustic characterization of bovine plasma rich in platelets using digital signal processing techniques. This study includes computational methods based on acoustic spectrometry estimation and experimental measurements of the speed of sound in blood plasma from different samples analyzed, using an ultrasonic field with resonance frequency of 5 MHz. The results showed that the measurements on ultrasonic signals can contribute to the hematological predictions based on the linear regression model applied to the relationship between experimental ultrasonic parameters calculated and platelet concentration, indicating a growth rate of 1 m/s for each 0.90 x103 platelet per mm3. On the other hand, the attenuation coefficient presented changes of 20% in the platelet concentration using a resolution of 0.057 dB/cm MHz.

  13. Connect Global Positioning System RF Module

    NASA Technical Reports Server (NTRS)

    Franklin, Garth W.; Young, Lawrence E.; Ciminera, Michael A.; Tien, Jeffrey Y.; Gorelik, Jacob; Okihiro, Brian Bachman; Koelewyn, Cynthia L.

    2012-01-01

    The CoNNeCT Global Positioning System RF Module (GPSM) slice is part of the JPL CoNNeCT Software Defined Radio (SDR). CoNNeCT is the Communications, Navigation, and Net working reconfigurable Testbed project that is part of NASA's Space Communication and Nav igation (SCaN) Program. The CoNNeCT project is an experimental dem onstration that will lead to the advancement of SDRs and provide a path for new space communication and navigation systems for future NASA exploration missions. The JPL CoNNeCT SDR will be flying on the International Space Station (ISS) in 2012 in support of the SCaN CoNNeCT program. The GPSM is a radio-frequency sampler module (see Figure 1) that directly sub-harmonically samples the filtered GPS L-band signals at L1 (1575.42 MHz), L2 (1227.6 MHz), and L5 (1176.45 MHz). The JPL SDR receives GPS signals through a Dorne & Margolin antenna mounted onto a choke ring. The GPS signal is filtered against interference, amplified, split, and fed into three channels: L1, L2, and L5. In each of the L-band channels, there is a chain of bandpass filters and amplifiers, and the signal is fed through each of these channels to where the GPSM performs a one-bit analog-to-digital conversion (see Figure 2). The GPSM uses a sub-harmonic, single-bit L1, L2, and L5 sampler that samples at a clock rate of 38.656 MHz. The new capability is the down-conversion and sampling of the L5 signal when previous hardware did not provide this capability. The first GPS IIF Satellite was launched in 2010, providing the new L5 signal. With the JPL SDR flying on the ISS, it will be possible to demonstrate navigation solutions with 10-meter 3-D accuracy at 10-second intervals using a field-program mable gate array (FPGA)-based feedback loop running at 50 Hz. The GPS data bits will be decoded and used in the SDR. The GPSM will also allow other waveforms that are installed in the SDR to demonstrate various GNSS tracking techniques.

  14. Gain-switched laser diode seeded Yb-doped fiber amplifier delivering 11-ps pulses at repetition rates up to 40-MHz

    NASA Astrophysics Data System (ADS)

    Ryser, Manuel; Neff, Martin; Pilz, Soenke; Burn, Andreas; Romano, Valerio

    2012-02-01

    Here, we demonstrate all-fiber direct amplification of 11 picosecond pulses from a gain-switched laser diode at 1063 nm. The diode was driven at a repetition rate of 40 MHz and delivered 13 μW of fiber-coupled average output power. For the low output pulse energy of 0.33 pJ we have designed a multi-stage core pumped preamplifier based on single clad Yb-doped fibers in order to keep the contribution of undesired amplified spontaneous emission as low as possible and to minimize temporal and spectral broadening. After the preamplifier we reduced the 40 MHz repetition rate to 1 MHz using a fiber coupled pulse-picker. The final amplification was done with a cladding pumped Yb-doped large mode area fiber and a subsequent Yb-doped rod-type fiber. With our setup we achieved amplification of 72 dBs to an output pulse energy of 5.7 μJ, pulse duration of 11 ps and peak power of >0.6 MW.

  15. Temperature dependence of the helium induced broadening and shift of the Rb D1 and D2 lines

    NASA Astrophysics Data System (ADS)

    Miller, Wooddy S.; Rice, Christopher A.; Perram, Glen P.

    2018-02-01

    The rates for collisional broadening and shifting of the Rb D1 (52S1/2 - 52P1/2) and D2 (52S1/2 - 52P3/2) transition induced by 4He have been measured at elevated temperatures of 373-723 K. The shift coefficients exhibit an increase of 20% from 4.36 MHz/Torr to 5.35 MHz/Torr for the D1 line and an 80% increase from 0.42 MHz/Torr to 0.99 MHz/Torr for the D2 line over the observed temperature range. Broadening coefficients exhibit a 6% increase from 17.8 MHz/Torr to 18.9 MHz/Torr and 10% from 18.5 MHz/Torr to 20.5 MHz/Torr for the D1 and D2 lines, respectively. The experimental values agree well with prior reported values within the temperature overlap regions of T < 394 K. Comparison to prior predictions from the Anderson-Talman theory using spin orbit multi reference (SOCI) ab initio potentials are superior to quantum treatments involving Allard and Baranger coupling.

  16. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy

    PubMed Central

    Jakes, W.; Gerdova, A.; Defernez, M.; Watson, A.D.; McCallum, C.; Limer, E.; Colquhoun, I.J.; Williamson, D.C.; Kemsley, E.K.

    2015-01-01

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz 1H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional “authentic” beef region (p = 0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze–thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz 1H NMR represents a feasible high-throughput approach for screening raw meat. PMID:25577043

  17. Real time analysis with the upgraded LHCb trigger in Run III

    NASA Astrophysics Data System (ADS)

    Szumlak, Tomasz

    2017-10-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC bunch-crossing rate of 40 MHz to 1.1 MHz, a rate at which the entire detector is read out. A second level, implemented in a farm of around 20k parallel processing CPUs, the event rate is reduced to around 12.5 kHz. The LHCb experiment plans a major upgrade of the detector and DAQ system in the LHC long shutdown II (2018-2019). In this upgrade, a purely software based trigger system is being developed and it will have to process the full 30 MHz of bunch crossings with inelastic collisions. LHCb will also receive a factor of 5 increase in the instantaneous luminosity, which further contributes to the challenge of reconstructing and selecting events in real time with the CPU farm. We discuss the plans and progress towards achieving efficient reconstruction and selection with a 30 MHz throughput. Another challenge is to exploit the increased signal rate that results from removing the 1.1 MHz readout bottleneck, combined with the higher instantaneous luminosity. Many charm hadron signals can be recorded at up to 50 times higher rate. LHCb is implementing a new paradigm in the form of real time data analysis, in which abundant signals are recorded in a reduced event format that can be fed directly to the physics analyses. These data do not need any further offline event reconstruction, which allows a larger fraction of the grid computing resources to be devoted to Monte Carlo productions. We discuss how this real-time analysis model is absolutely critical to the LHCb upgrade, and how it will evolve during Run-II.

  18. Simple ps microchip Nd:YVO4 laser with 3.3-ps pulses at 0.2 to 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-06-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 and 2 MHz, and microjoule level pulse energies. Most systems are based on short pulse mode-locked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast, we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50-μm-long Nd:YVO4 gain material optically bonded to a 4.6-mm-thick undoped YVO4 crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 to 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nanojoule. These 40-ps pulses are spectrally broadened in a standard single-mode fiber and then compressed in a 24-mm-long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from ˜0.2 to 1.4 MHz by changing the pump power, while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fiber is observed throughout the pulse repetition rate, supporting sub-10-ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4 amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result, the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  19. Simple ps microchip Nd:YVO4 laser with 3.3 ps pulses at 0.2 - 1.4 MHz and single-stage amplification to the microjoule level

    NASA Astrophysics Data System (ADS)

    Türkyilmaz, Erdal; Lohbreier, Jan; Günther, Christian; Mehner, Eva; Kopf, Daniel; Giessen, Harald; Braun, Bernd

    2016-03-01

    Commercial picosecond sources have found widespread applications. Typical system parameters are pulse widths below 20 ps, repetition rates between 0.1 to 2 MHz, and micro Joule level pulse energies. Most systems are based on short pulse modelocked oscillators, regenerative amplifiers, and pockel cells as active beam switches. In contrast we present a completely passive system, consisting of a passively Q-switched microchip laser, a single-stage amplifier, and a pulse compressor. The Q-switched microchip laser has a 50 μm long Nd:YVO4-gain material optically bonded to a 4.6 mm thick undoped YVO4-crystal. It delivers pulse widths of 40 ps and repetition rates of 0.2 - 1.4 MHz at a wavelength of 1.064 μm. The pulse energy is a few nJ. These 40-ps pulses are spectrally broadened in a standard single mode fibre and then compressed in a 24 mm long chirped Bragg grating to as low as 3.3 ps. The repetition rate can be tuned from app. 0.2 to 1.4 MHz by changing the pump power while the pulse width and the pulse energy from the microchip laser are unchanged. The spectral broadening in the fibre is observed throughout the pulse repetition rate, supporting sub-10- ps pulses. Finally, the pulses are amplified in a single-stage Nd:YVO4-amplifier up to the microjoule level (up to 4 μJ pulse energy). As a result the system delivers sub-10-ps pulses at a microjoule level with about 1 MHz repetition rate, and thus fulfills the requirements for ps-micromachining. It does not contain any active switching elements and can be integrated in a very compact setup.

  20. The 136 MHZ/400 MHz earth station antenna-noise temperature prediction program for RAE-B

    NASA Technical Reports Server (NTRS)

    Taylor, R. E.; Fee, J. J.; Chin, M.

    1972-01-01

    A simulation study was undertaken to determine the 136 MHz and 400 MHz noise temperature of the ground network antennas which will track the RAE-B satellite during data transmission periods. Since the noise temperature of the antenna effectively sets the signal-to-noise ratio of the received signal, a knowledge of SNR will be helpful in locating the optimum time windows for data transmission during low noise periods. Antenna noise temperatures will be predicted for selected earth-based ground stations which will support RAE-B. Telemetry data acquisition will be at 400 MHz; tracking support at 136 MHz will be provided by the Goddard Range and Range Rate (RARR) stations. The antenna-noise temperature predictions will include the effects of galactic-brightness temperature, the sun, and the brightest radio stars. Predictions will cover the ten-month period from March 1, 1973 to December 31, 1973.

  1. Measurement of tortuosity in aluminum foams using airborne ultrasound.

    PubMed

    Le, Lawrence H; Zhang, Chan; Ta, Dean; Lou, Edmond

    2010-01-01

    The slow compressional wave in air-saturated aluminum foams was studied by means of ultrasonic transverse transmission method over a frequency range from 0.2 MHz to 0.8 MHz. The samples investigated have three different cell sizes or pores per inch (5, 10 and 20 ppi) and each size has three aluminum volume fractions (5%, 8% and 12% AVF). Phase velocities show minor dispersion at low frequencies but remain constant after 0.7 MHz. Pulse broadening and amplitude attenuation are obvious and increase with increasing ppi. Attenuation increases considerably with AVF for 20 ppi foams. Tortuosity ranges from 1.003 to 1.032 and increases with AVF and ppi. However, the increase of tortuosity with AVF is very small for 10 and 20 ppi samples.

  2. Femtosecond digital lensless holographic microscopy to image biological samples.

    PubMed

    Mendoza-Yero, Omel; Calabuig, Alejandro; Tajahuerce, Enrique; Lancis, Jesús; Andrés, Pedro; Garcia-Sucerquia, Jorge

    2013-09-01

    The use of femtosecond laser radiation in digital lensless holographic microscopy (DLHM) to image biological samples is presented. A mode-locked Ti:Sa laser that emits ultrashort pulses of 12 fs intensity FWHM, with 800 nm mean wavelength, at 75 MHz repetition rate is used as a light source. For comparison purposes, the light from a light-emitting diode is also used. A section of the head of a drosophila melanogaster fly is studied with both light sources. The experimental results show very different effects of the pinhole size on the spatial resolution with DLHM. Unaware phenomena on the field of the DLHM are analyzed.

  3. An Automatic System for Global Monitoring of ELF and VLF Radio Noise Phenomena.

    DTIC Science & Technology

    1985-06-01

    second low-jitter synchronization signal is also provided for precise triggering of analog-to- digital conversion samples. Both the clock and the...building in 1985 are two riometers (30 MHz and 51.4 MHz), a 3-axis fluxgate magnetometer , a 3-axis micropulsation magnetometer , an all-sky camera, and...of these filters 1s continuously sampled by a computerized recording system, and statistical averages are computed on-site and recorded on digital tape

  4. Use of microwaves to improve nutritional value of soybeans for future space inhabitants

    NASA Technical Reports Server (NTRS)

    Singh, G.

    1983-01-01

    Whole soybeans from four different varieties at different moisture contents were microwaved for varying times to determine the conditions for maximum destruction of trypsin inhibitor and lipoxygenase activities, and optimal growth of chicks. Microwaving 150 gm samples of soybeans (at 14 to 28% moisture) for 1.5 min was found optimal for reduction of trypsin inhibitor and lipoxygenase activities. Microwaving 1 kgm samples of soybeans for 9 minutes destroyed 82% of the trypsin inhibitor activity and gave optimal chick growth. It should be pointed out that the microwaving time would vary according to the weight of the sample and the power of the microwave oven. The microwave oven used in the above experiments was rated at 650 watts 2450 MHz.

  5. MHz rate and efficient synchronous heralding of single photons at telecom wavelengths.

    PubMed

    Pomarico, Enrico; Sanguinetti, Bruno; Guerreiro, Thiago; Thew, Rob; Zbinden, Hugo

    2012-10-08

    We report on the realization of a synchronous source of heralded single photons at telecom wavelengths with MHz heralding rates and high heralding efficiency. This source is based on the generation of photon pairs at 810 and 1550 nm via Spontaneous Parametric Down Conversion (SPDC) in a 1 cm periodically poled lithium niobate (PPLN) crystal pumped by a 532 nm pulsed laser. As high rates are fundamental for multi-photon experiments, we show that single telecom photons can be announced at 4.4 MHz rate with 45% heralding efficiency. When we focus only on the optimization of the coupling of the heralded photon, the heralding efficiency can be increased up to 80%. Furthermore, we experimentally observe that group velocity mismatch inside long crystals pumped in a pulsed mode affects the spectrum of the emitted photons and their fibre coupling efficiency. The length of the crystal in this source has been chosen as a trade off between high brightness and high coupling efficiency.

  6. Dual-high-frequency ultrasound excitation on microbubble destruction volume.

    PubMed

    Shen, Che-Chou; Su, Shin-Yuan; Cheng, Chih-Hao; Yeh, Chih-Kuang

    2010-06-01

    The goal of this work was to test experimentally that exposing air bubbles or ultrasound contrast agents in water to amplitude modulated wave allows control of inertial cavitation affected volume and hence could limit the undesirable bioeffects. Focused transducer operating at the center frequency of 10 MHz and having about 65% fractional bandwidth was excited by 3 micros 8.5 and 11.5 MHz tone-bursts to produce 3 MHz envelope signal. The 3 MHz frequency was selected because it corresponds to the resonance frequency of the microbubbles used in the experiment. Another 5 MHz transducer was used as a receiver to produce B-mode image. Peak negative acoustic pressure was adjusted in the range from 0.5 to 3.5 MPa. The spectrum amplitudes obtained from the imaging of SonoVue contrast agent when using the envelope and a separate 3 MHz transducer were compared to determine their cross-section at the -6 dB level. The conventional 3 MHz tone-burst excitation resulted in the region of interest (ROI) cross-section of 2.47 mm while amplitude modulated, dual-frequency excitation with difference frequency of 3 MHz produced cross-section equal to 1.2mm. These results corroborate our hypothesis that, in addition to the considerably higher penetration depth of dual-frequency excitation due to the lower attenuation at 3 MHz than that at 8.5 and 11.5 MHz, the sample volume of dual-frequency excitation is also smaller than that of linear 3-MHz method for more spatially confined destruction of microbubbles. 2010 Elsevier B.V. All rights reserved.

  7. Radar - 449MHz - Forks, WA (FKS) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  8. Radar - 449MHz - North Bend, OR (OTH) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  9. Radar - 449MHz - North Bend, OR (OTH) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  10. Radar - 449MHz - Forks, WA (FKS) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  11. Radar - 449MHz - Astoria, OR (AST) - Reviewed Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  12. Radar - 449MHz - Astoria, OR (AST) - Raw Data

    DOE Data Explorer

    Gottas, Daniel

    2018-06-25

    **Winds.** A radar wind profiler measures the Doppler shift of electromagnetic energy scattered back from atmospheric turbulence and hydrometeors along 3-5 vertical and off-vertical point beam directions. Back-scattered signal strength and radial-component velocities are remotely sensed along all beam directions and are combined to derive the horizontal wind field over the radar. These data typically are sampled and averaged hourly and usually have 6-m and/or 100-m vertical resolutions up to 4 km for the 915 MHz and 8 km for the 449 MHz systems. **Temperature.** To measure atmospheric temperature, a radio acoustic sounding system (RASS) is used in conjunction with the wind profile. These data typically are sampled and averaged for five minutes each hour and have a 60-m vertical resolution up to 1.5 km for the 915 MHz and 60 m up to 3.5 km for the 449 MHz. **Moments and Spectra.** The raw spectra and moments data are available for all dwells along each beam and are stored in daily files. For each day, there are files labeled "header" and "data." These files are generated by the radar data acquisition system (LAP-XM) and are encoded in a proprietary binary format. Values of spectral density at each Doppler velocity (FFT point), as well as the radial velocity, signal-to-noise ratio, and spectra width for the selected signal peak are included in these files. Attached zip files, *449mhz-spectra-data-extraction.zip* and *449mhz-moment-data-extraction.zip*, include executables to unpack the spectra, (GetSpectra32.exe) and moments (GetMomSp32.exe), respectively. Documentation on usage and output file formats also are included in the zip files.

  13. Simulation and analysis of chemical release in the ionosphere

    NASA Astrophysics Data System (ADS)

    Gao, Jing-Fan; Guo, Li-Xin; Xu, Zheng-Wen; Zhao, Hai-Sheng; Feng, Jie

    2018-05-01

    Ionospheric inhomogeneous plasma produced by single point chemical release has simple space-time structure, and cannot impact radio wave frequencies higher than Very High Frequency (VHF) band. In order to produce more complicated ionospheric plasma perturbation structure and trigger instabilities phenomena, multiple-point chemical release scheme is presented in this paper. The effects of chemical release on low latitude ionospheric plasma are estimated by linear instability growth rate theory that high growth rate represents high irregularities, ionospheric scintillation occurrence probability and high scintillation intension in scintillation duration. The amplitude scintillations and the phase scintillations of 150 MHz, 400 MHz, and 1000 MHz are calculated based on the theory of multiple phase screen (MPS), when they propagate through the disturbed area.

  14. VLBA SURVEYS OF OH MASERS IN STAR-FORMING REGIONS. I. SATELLITE LINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruiz-Velasco, A. E.; Felli, D.; Migenes, V.

    2016-05-10

    Using the Very Long Baseline Array we performed a high-resolution OH maser survey in Galactic star-forming regions (SFRs). We observed all the ground state spectral lines: the main lines at 1665 and 1667 MHz and the satellite lines at 1612 and 1720 MHz. Due to the exceptionality of finding satellite lines in SFRs, we will focus our discussion on those lines. In our sample of 41 OH maser sources, five (12%) showed the 1612 MHz line and ten (24%) showed the 1720 MHz line, with only one source showing both lines. We find that 1720 MHz emission is correlated withmore » the presence of H ii regions, suggesting that this emission could be used to diagnose or trace high-mass star formation. We include an analysis of the possible mechanisms that could be causing this correlation as well as assessing the possible relationships between lines in our sample. In particular, the presence of magnetic fields seems to play an important role as we found Zeeman splitting in four of our sources (W75 N, W3(OH), W51 and NGC 7538). Our results have implications for current understanding of the formation of high-mass stars as well as on the masing processes present in SFRs.« less

  15. The second Caltech-Jodrell Bank VLBI survey. 1: Observations of 91 of 193 sources

    NASA Technical Reports Server (NTRS)

    Taylor, G. B.; Vermeulen, R. C.; Pearson, T. J.; Readhead, A. C. S.; Henstock, D. R.; Browne, I. W. A.; Wilkinson, P. N.

    1994-01-01

    We define the sample for the second Caltech-Jodrell Bank very long base interferometry (VLBI) survey. This is a sample of 193 flat- or gigahertz-peaked-spectrum sources selected at 4850 MHz. This paper presents images of 91 sources with a resolution of approximately 1 mas, obtained using VLBI observations at 4992 MHz with a global array. The remaining images and the integrated radio spectra will be presented in a forthcoming paper by Henstock et al.

  16. Combined in-depth, 3D, en face imaging of the optic disc, optic disc pits and optic disc pit maculopathy using swept-source megahertz OCT at 1050 nm.

    PubMed

    Maertz, Josef; Kolb, Jan Philip; Klein, Thomas; Mohler, Kathrin J; Eibl, Matthias; Wieser, Wolfgang; Huber, Robert; Priglinger, Siegfried; Wolf, Armin

    2018-02-01

    To demonstrate papillary imaging of eyes with optic disc pits (ODP) or optic disc pit associated maculopathy (ODP-M) with ultrahigh-speed swept-source optical coherence tomography (SS-OCT) at 1.68 million A-scans/s. To generate 3D-renderings of the papillary area with 3D volume-reconstructions of the ODP and highly resolved en face images from a single densely-sampled megahertz-OCT (MHz-OCT) dataset for investigation of ODP-characteristics. A 1.68 MHz-prototype SS-MHz-OCT system at 1050 nm based on a Fourier-domain mode-locked laser was employed to acquire high-definition, 3D datasets with a dense sampling of 1600 × 1600 A-scans over a 45° field of view. Six eyes with ODPs, and two further eyes with glaucomatous alteration or without ocular pathology are presented. 3D-rendering of the deep papillary structures, virtual 3D-reconstructions of the ODPs and depth resolved isotropic en face images were generated using semiautomatic segmentation. 3D-rendering and en face imaging of the optic disc, ODPs and ODP associated pathologies showed a broad spectrum regarding ODP characteristics. Between individuals the shape of the ODP and the appending pathologies varied considerably. MHz-OCT en face imaging generates distinct top-view images of ODPs and ODP-M. MHz-OCT generates high resolution images of retinal pathologies associated with ODP-M and allows visualizing ODPs with depths of up to 2.7 mm. Different patterns of ODPs can be visualized in patients for the first time using 3D-reconstructions and co-registered high-definition en face images extracted from a single densely sampled 1050 nm megahertz-OCT (MHz-OCT) dataset. As the immediate vicinity to the SAS and the site of intrapapillary proliferation is located at the bottom of the ODP it is crucial to image the complete structure and the whole depth of ODPs. Especially in very deep pits, where non-swept-source OCT fails to reach the bottom, conventional swept-source devices and the MHz-OCT alike are feasible and beneficial methods to examine deep details of optic disc pathologies, while the MHz-OCT bears the advantage of an essentially swifter imaging process.

  17. Authentication of beef versus horse meat using 60 MHz 1H NMR spectroscopy.

    PubMed

    Jakes, W; Gerdova, A; Defernez, M; Watson, A D; McCallum, C; Limer, E; Colquhoun, I J; Williamson, D C; Kemsley, E K

    2015-05-15

    This work reports a candidate screening protocol to distinguish beef from horse meat based upon comparison of triglyceride signatures obtained by 60 MHz (1)H NMR spectroscopy. Using a simple chloroform-based extraction, we obtained classic low-field triglyceride spectra from typically a 10 min acquisition time. Peak integration was sufficient to differentiate samples of fresh beef (76 extractions) and horse (62 extractions) using Naïve Bayes classification. Principal component analysis gave a two-dimensional "authentic" beef region (p=0.001) against which further spectra could be compared. This model was challenged using a subset of 23 freeze-thawed training samples. The outcomes indicated that storing samples by freezing does not adversely affect the analysis. Of a further collection of extractions from previously unseen samples, 90/91 beef spectra were classified as authentic, and 16/16 horse spectra as non-authentic. We conclude that 60 MHz (1)H NMR represents a feasible high-throughput approach for screening raw meat. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  19. Temperature effects on the ultrasonic separation of fat from natural whole milk.

    PubMed

    Leong, Thomas; Juliano, Pablo; Johansson, Linda; Mawson, Raymond; McArthur, Sally L; Manasseh, Richard

    2014-11-01

    This study showed that temperature influences the rate of separation of fat from natural whole milk during application of ultrasonic standing waves. In this study, natural whole milk was sonicated at 600kHz (583W/L) or 1MHz (311W/L) with a starting bulk temperature of 5, 25, or 40°C. Comparisons on separation efficiency were performed with and without sonication. Sonication using 1MHz for 5min at 25°C was shown to be more effective for fat separation than the other conditions tested with and without ultrasound, resulting in a relative change from 3.5±0.06% (w/v) fat initially, of -52.3±2.3% (reduction to 1.6±0.07% (w/v) fat) in the skimmed milk layer and 184.8±33.2% (increase to 9.9±1.0% (w/v) fat) in the top layer, at an average skimming rate of ∼5g fat/min. A shift in the volume weighted mean diameter (D[4,3]) of the milk samples obtained from the top and bottom of between 8% and 10% relative to an initial sample D[4,3] value of 4.5±0.06μm was also achieved under these conditions. In general, faster fat separation was seen in natural milk when natural creaming occurred at room temperature and this separation trend was enhanced after the application of high frequency ultrasound. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. A 16X16 Discrete Cosine Transform Chip

    NASA Astrophysics Data System (ADS)

    Sun, M. T.; Chen, T. C.; Gottlieb, A.; Wu, L.; Liou, M. L.

    1987-10-01

    Among various transform coding techniques for image compression the Discrete Cosine Transform (DCT) is considered to be the most effective method and has been widely used in the laboratory as well as in the market, place. DCT is computationally intensive. For video application at 14.3 MHz sample rate, a direct implementation of a 16x16 DCT requires a throughput, rate of approximately half a billion multiplications per second. In order to reduce the cost of hardware implementation, a single chip DCT implementation is highly desirable. In this paper, the implementation of a 16x16 DCT chip using a concurrent architecture will be presented. The chip is designed for real-time processing of 14.3 MHz sampled video data. It uses row-column decomposition to implement the two-dimensional transform. Distributed arithmetic combined with hit-serial and hit-parallel structures is used to implement the required vector inner products concurrently. Several schemes are utilized to reduce the size of required memory. The resultant circuit only uses memory, shift registers, and adders. No multipliers are required. It achieves high speed performance with a very regular and efficient integrated circuit realization. The chip accepts 0-bit input and produces 14-bit DCT coefficients. 12 bits are maintained after the first one-dimensional transform. The circuit has been laid out using a 2-μm CMOS technology with a symbolic design tool MULGA. The core contains approximately 73,000 transistors in an area of 7.2 x 7.0

  1. Television animation store: Recording pictures on a parallel transfer magnetic disc

    NASA Astrophysics Data System (ADS)

    Durey, A. J.

    1984-12-01

    The recording and replaying of digital video signals using a computer-type magnetic disc-drive as part of an electronic rostrum camera animation system is described. The system was developed to enable picture sequences to be generated directly as television signals, instead of using cine film. The characteristics of the disc-drive are described together with data processing, error protection and signal synchronization systems, which enable digital television YUV component signals, sampled at 12 MHz, 4 MHz and 4 MHz respectively, to be recorded and replayed in real time.

  2. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End

    PubMed Central

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2015-01-01

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP). PMID:27069422

  3. An Inductively-Powered Wireless Neural Recording System with a Charge Sampling Analog Front-End.

    PubMed

    Lee, Seung Bae; Lee, Byunghun; Kiani, Mehdi; Mahmoudi, Babak; Gross, Robert; Ghovanloo, Maysam

    2016-01-15

    An inductively-powered wireless integrated neural recording system (WINeR-7) is presented for wireless and battery less neural recording from freely-behaving animal subjects inside a wirelessly-powered standard homecage. The WINeR-7 system employs a novel wide-swing dual slope charge sampling (DSCS) analog front-end (AFE) architecture, which performs amplification, filtering, sampling, and analog-to-time conversion (ATC) with minimal interference and small amount of power. The output of the DSCS-AFE produces a pseudo-digital pulse width modulated (PWM) signal. A circular shift register (CSR) time division multiplexes (TDM) the PWM pulses to create a TDM-PWM signal, which is fed into an on-chip 915 MHz transmitter (Tx). The AFE and Tx are supplied at 1.8 V and 4.2 V, respectively, by a power management block, which includes a high efficiency active rectifier and automatic resonance tuning (ART), operating at 13.56 MHz. The 8-ch system-on-a-chip (SoC) was fabricated in a 0.35-μm CMOS process, occupying 5.0 × 2.5 mm 2 and consumed 51.4 mW. For each channel, the sampling rate is 21.48 kHz and the power consumption is 19.3 μW. In vivo experiments were conducted on freely behaving rats in an energized homecage by continuously delivering 51.4 mW to the WINeR-7 system in a closed-loop fashion and recording local field potentials (LFP).

  4. Rejection of fluorescence background in resonance and spontaneous Raman microspectroscopy.

    PubMed

    Smith, Zachary J; Knorr, Florian; Pagba, Cynthia V; Wachsmann-Hogiu, Sebastian

    2011-05-18

    Raman spectroscopy is often plagued by a strong fluorescent background, particularly for biological samples. If a sample is excited with a train of ultrafast pulses, a system that can temporally separate spectrally overlapping signals on a picosecond timescale can isolate promptly arriving Raman scattered light from late-arriving fluorescence light. Here we discuss the construction and operation of a complex nonlinear optical system that uses all-optical switching in the form of a low-power optical Kerr gate to isolate Raman and fluorescence signals. A single 808 nm laser with 2.4 W of average power and 80 MHz repetition rate is split, with approximately 200 mW of 808 nm light being converted to < 5 mW of 404 nm light sent to the sample to excite Raman scattering. The remaining unconverted 808 nm light is then sent to a nonlinear medium where it acts as the pump for the all-optical shutter. The shutter opens and closes in 800 fs with a peak efficiency of approximately 5%. Using this system we are able to successfully separate Raman and fluorescence signals at an 80 MHz repetition rate using pulse energies and average powers that remain biologically safe. Because the system has no spare capacity in terms of optical power, we detail several design and alignment considerations that aid in maximizing the throughput of the system. We also discuss our protocol for obtaining the spatial and temporal overlap of the signal and pump beams within the Kerr medium, as well as a detailed protocol for spectral acquisition. Finally, we report a few representative results of Raman spectra obtained in the presence of strong fluorescence using our time-gating system.

  5. Radioastronomic signal processing cores for the SKA radio telescope

    NASA Astrophysics Data System (ADS)

    Comorett, G.; Chiarucc, S.; Belli, C.

    Modern radio telescopes require the processing of wideband signals, with sample rates from tens of MHz to tens of GHz, and are composed from hundreds up to a million of individual antennas. Digital signal processing of these signals include digital receivers (the digital equivalent of the heterodyne receiver), beamformers, channelizers, spectrometers. FPGAs present the advantage of providing a relatively low power consumption, relative to GPUs or dedicated computers, a wide signal data path, and high interconnectivity. Efficient algorithms have been developed for these applications. Here we will review some of the signal processing cores developed for the SKA telescope. The LFAA beamformer/channelizer architecture is based on an oversampling channelizer, where the channelizer output sampling rate and channel spacing can be set independently. This is useful where an overlap between adjacent channels is required to provide an uniform spectral coverage. The architecture allows for an efficient and distributed channelization scheme, with a final resolution corresponding to a million of spectral channels, minimum leakage and high out-of-band rejection. An optimized filter design procedure is used to provide an equiripple response with a very large number of spectral channels. A wideband digital receiver has been designed in order to select the processed bandwidth of the SKA Mid receiver. The receiver extracts a 2.5 MHz bandwidth form a 14 GHz input bandwidth. The design allows for non-integer ratios between the input and output sampling rates, with a resource usage comparable to that of a conventional decimating digital receiver. Finally, some considerations on quantization of radioastronomic signals are presented. Due to the stochastic nature of the signal, quantization using few data bits is possible. Good accuracies and dynamic range are possible even with 2-3 bits, but the nonlinearity in the correlation process must be corrected in post-processing. With at least 6 bits it is possible to have a very linear response of the instrument, with nonlinear terms below 80 dB, providing the signal amplitude is kept within bounds.

  6. Incidence of micronuclei in human peripheral blood lymphocytes exposed to modulated and unmodulated 2450 MHz radiofrequency fields.

    PubMed

    Vijayalaxmi; Reddy, Abhishek B; McKenzie, Raymond J; McIntosh, Robert L; Prihoda, Thomas J; Wood, Andrew W

    2013-10-01

    Peripheral blood samples from four healthy volunteers were collected and aliquots were exposed in vitro for 2 h to either (i) modulated (wideband code division multiple access, WCDMA) or unmodulated continuous wave (CW) 2450 MHz radiofrequency (RF) fields at an average specific absorption rate of 10.9 W/kg or (ii) sham-exposed. Aliquots of the same samples that were exposed in vitro to an acute dose of 1.5 Gy ionizing gamma-radiation (GR) were used as positive controls. Half of the aliquots were treated with melatonin (Mel) to investigate if such treatment offers protection to the cells from the genetic damage, if any, induced by RF and GR. The cells in all samples were cultured for 72 h and the lymphocytes were examined to determine the extent of genetic damage assessed from the incidence of micronuclei (MN). The results indicated the following: (i) the incidence of MN was similar in incubator controls, and those exposed to RF/sham and Mel alone; (ii) there were no significant differences between WCDMA and CW RF exposures; (iii) positive control cells exposed to GR alone exhibited significantly increased MN; and (iv) Mel treatment had no effect on cells exposed to RF and sham, while such treatment significantly reduced the frequency of MN in GR-exposed cells. Copyright © 2013 Wiley Periodicals, Inc.

  7. FORMALDEHYDE MASERS: EXCLUSIVE TRACERS OF HIGH-MASS STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Araya, E. D.; Brown, J. E.; Olmi, L.

    2015-11-15

    The detection of four formaldehyde (H{sub 2}CO) maser regions toward young high-mass stellar objects in the last decade, in addition to the three previously known regions, calls for an investigation of whether H{sub 2}CO masers are an exclusive tracer of young high-mass stellar objects. We report the first survey specifically focused on the search for 6 cm H{sub 2}CO masers toward non high-mass star-forming regions (non HMSFRs). The observations were conducted with the 305 m Arecibo Telescope toward 25 low-mass star-forming regions, 15 planetary nebulae and post-AGB stars, and 31 late-type stars. We detected no H{sub 2}CO emission in ourmore » sample of non HMSFRs. To check for the association between high-mass star formation and H{sub 2}CO masers, we also conducted a survey toward 22 high-mass star-forming regions from a Hi-GAL (Herschel infrared Galactic Plane Survey) sample known to harbor 6.7 GHz CH{sub 3}OH masers. We detected a new 6 cm H{sub 2}CO emission line in G32.74−0.07. This work provides further evidence that supports an exclusive association between H{sub 2}CO masers and young regions of high-mass star formation. Furthermore, we detected H{sub 2}CO absorption toward all Hi-GAL sources, and toward 24 low-mass star-forming regions. We also conducted a simultaneous survey for OH (4660, 4750, 4765 MHz), H110α (4874 MHz), HCOOH (4916 MHz), CH{sub 3}OH (5005 MHz), and CH{sub 2}NH (5289 MHz) toward 68 of the sources in our sample of non HMSFRs. With the exception of the detection of a 4765 MHz OH line toward a pre-planetary nebula (IRAS 04395+3601), we detected no other spectral line to an upper limit of 15 mJy for most sources.« less

  8. A genotoxic analysis of the hematopoietic system after mobile phone type radiation exposure in rats.

    PubMed

    Kumar, Gaurav; McIntosh, Robert L; Anderson, Vitas; McKenzie, Ray J; Wood, Andrew W

    2015-08-01

    In our earlier study we reported that 900 MHz continuous wave (CW) radiofrequency radiation (RFR) exposure (2 W/kg specific absorption rate [SAR]) had no significant effect on the hematopoietic system of rats. In this paper we extend the scope of the previous study by testing for possible effects at: (i) different SAR levels; (ii) both 900 and 1800 MHz, and; (iii) both CW and pulse modulated (PM) RFR. Excised long bones from rats were placed in medium and RFR exposed in (i) a Transverse Electromagnetic (TEM) cell or (ii) a waveguide. Finite-difference time-domain (FDTD) numerical analyses were used to estimate forward power needed to produce nominal SAR levels of 2/10 and 2.5/12.4 W/kg in the bone marrow. After exposure, the lymphoblasts were extracted and assayed for proliferation rate, and genotoxicity. Our data did not indicate any significant change in these end points for any combination of CW/PM exposure at 900/1800 MHz at SAR levels of nominally 2/10 W/kg or 2.5/12.4 W/kg. No significant changes were observed in the hematopoietic system of rats after the exposure of CW/PM wave 900 MHz/1800 MHz RF radiations at different SAR values.

  9. Radioprotective effects of honeybee venom (Apis mellifera) against 915-MHz microwave radiation-induced DNA damage in wistar rat lymphocytes: in vitro study.

    PubMed

    Gajski, Goran; Garaj-Vrhovac, Vera

    2009-01-01

    The aim of this study is to investigate the radioprotective effect of bee venom against DNA damage induced by 915-MHz microwave radiation (specific absorption rate of 0.6 W/kg) in Wistar rats. Whole blood lymphocytes of Wistar rats are treated with 1 microg/mL bee venom 4 hours prior to and immediately before irradiation. Standard and formamidopyrimidine-DNA glycosylase (Fpg)-modified comet assays are used to assess basal and oxidative DNA damage produced by reactive oxygen species. Bee venom shows a decrease in DNA damage compared with irradiated samples. Parameters of Fpg-modified comet assay are statistically different from controls, making this assay more sensitive and suggesting that oxidative stress is a possible mechanism of DNA damage induction. Bee venom is demonstrated to have a radioprotective effect against basal and oxidative DNA damage. Furthermore, bee venom is not genotoxic and does not produce oxidative damage in the low concentrations used in this study.

  10. Analysis of proteome response to the mobile phone radiation in two types of human primary endothelial cells.

    PubMed

    Nylund, Reetta; Kuster, Niels; Leszczynski, Dariusz

    2010-10-18

    Use of mobile phones has widely increased over the past decade. However, in spite of the extensive research, the question of potential health effects of the mobile phone radiation remains unanswered. We have earlier proposed, and applied, proteomics as a tool to study biological effects of the mobile phone radiation, using as a model human endothelial cell line EA.hy926. Exposure of EA.hy926 cells to 900 MHz GSM radiation has caused statistically significant changes in expression of numerous proteins. However, exposure of EA.hy926 cells to 1800 MHz GSM signal had only very small effect on cell proteome, as compared with 900 MHz GSM exposure. In the present study, using as model human primary endothelial cells, we have examined whether exposure to 1800 MHz GSM mobile phone radiation can affect cell proteome. Primary human umbilical vein endothelial cells and primary human brain microvascular endothelial cells were exposed for 1 hour to 1800 MHz GSM mobile phone radiation at an average specific absorption rate of 2.0 W/kg. The cells were harvested immediately after the exposure and the protein expression patterns of the sham-exposed and radiation-exposed cells were examined using two dimensional difference gel electrophoresis-based proteomics (2DE-DIGE). There were observed numerous differences between the proteomes of human umbilical vein endothelial cells and human brain microvascular endothelial cells (both sham-exposed). These differences are most likely representing physiological differences between endothelia in different vascular beds. However, the exposure of both types of primary endothelial cells to mobile phone radiation did not cause any statistically significant changes in protein expression. Exposure of primary human endothelial cells to the mobile phone radiation, 1800 MHz GSM signal for 1 hour at an average specific absorption rate of 2.0 W/kg, does not affect protein expression, when the proteomes were examined immediately after the end of the exposure and when the false discovery rate correction was applied to analysis. This observation agrees with our earlier study showing that the 1800 MHz GSM radiation exposure had only very limited effect on the proteome of human endothelial cell line EA.hy926, as compared with the effect of 900 MHz GSM radiation.

  11. Nondestructive monitoring damage in composites using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Wey, A. C.; Kessler, L. W.; Dos Reis, H. L. M.

    1992-01-01

    Several Nicalon fiber reinforced LAS (lithium alumino-silicate) glass matrix composites were tested to study the relation between the residual strength and the different amounts of damage. The samples were fatigued by four-point cyclic loading at a 5 Hz rate at 500 C for a different number of cycles. 10 MHz scanning laser acoustic microscope (SLAM) images were taken to monitor damage on the samples. Our SLAM results indicate that there were defects already existing throughout the sample before fatigue, and the resultant damage pattern from fatigue could be related to the initial defect distribution in the sample. Finally, the fatigued samples were fractured and the residual strength data could not be explained by the cyclic fatigue alone. Rather, the damage patterns evident in the SLAM images were needed to explain the scatter in the data. The results show that SLAM is useful in nondestructively monitoring damage and estimating residual strength of fatigued ceramic composites.

  12. Outgassing Measurements for Three Materials, Combined with Vacuum Ultraviolet Radiation Illumination of the Volatile Condensable Materials

    NASA Technical Reports Server (NTRS)

    Albyn, Keith

    2005-01-01

    The photolysis of three organic materials, by vacuum ultraviolet (VUV) radiation, has been quantified using 15-MHz temperature-controlled quartz microbalances (TQCM's). The rate at which molecular species, released from the individual samples, condensed on two TQCM s was measured for periods of up to 139.9-hours. The individual samples were heated in an effusion cell and the emitted molecular species collected on a pair of TQCM's which were maintained at -40 degrees Celsius. At several points during the deposition measurement, the deposition surface of one TQCM was illuminated by a 30 Watt deuterium lamp, and the loss of material from that surface was observed. V W illumination of the TQCM, concurrent with condensation, reduced the rate that material was lost from the deposition surface. These measurements present a contrasting picture of molecular deposition, in the presence of VUV, to that presented by other investigators who observed an enhanced rate of molecular deposition, when the deposition surface was illuminated by VUV.

  13. Note: Fully integrated active quenching circuit achieving 100 MHz count rate with custom technology single photon avalanche diodes.

    PubMed

    Acconcia, G; Labanca, I; Rech, I; Gulinatti, A; Ghioni, M

    2017-02-01

    The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

  14. Stimulated Raman scattering microscopy by Nyquist modulation of a two-branch ultrafast fiber source.

    PubMed

    Riek, Claudius; Kocher, Claudius; Zirak, Peyman; Kölbl, Christoph; Fimpel, Peter; Leitenstorfer, Alfred; Zumbusch, Andreas; Brida, Daniele

    2016-08-15

    A highly stable setup for stimulated Raman scattering (SRS) microscopy is presented. It is based on a two-branch femtosecond Er:fiber laser operating at a 40 MHz repetition rate. One of the outputs is directly modulated at the Nyquist frequency with an integrated electro-optic modulator (EOM). This compact source combines a jitter-free pulse synchronization with a broad tunability and allows for shot-noise limited SRS detection. The performance of the SRS microscope is illustrated with measurements on samples from material science and cell biology.

  15. High-frequency transducers for point-of-care ultrasound applications: what is the optimal frequency range?

    PubMed

    Adhikari, Srikar

    2014-06-01

    To compare images obtained using two linear transducers with a different range of frequencies, and to determine if there is a significant difference in the quality of images between the two transducers for medical decision-making. This was a single-blinded, cross-sectional study at an academic medical center. Twenty-five emergency medicine clinical scenarios with ultrasound images (using both 10-5 and 14-5 MHz transducers) covering a variety of point-of-care ultrasound applications were presented to four emergency physician sonographers. They were blinded to the study hypothesis and type of the transducer used to obtain the images. On a scale of 1-10, the mean image quality rating for 10-5 MHz transducer was 7.09 (95 % CI 6.73-7.45) and 6.49 (95 % CI 5.99-6.99) for 14-5 MHz transducer. In the majority of cases (84 %, 95 % CI 75.7-92.3 %), sonographers indicated that images obtained with a 10-5 MHz transducer were satisfactory for medical decision-making. They preferred images obtained with a 10-5 MHz transducer over 14-5 MHz transducer in 39 % (95 % CI 30-50 %) of cases. The images obtained with a 14-5 MHz transducer were preferred over 10-5 MHz transducer in only 16 % (95 % CI 7.7-24.3 %) of the cases. The 14-5 MHz transducer has a slight advantage over 10-5 MHz transducer for ocular, upper airway, and musculoskeletal (tendon) ultrasound applications. A 10-5 MHz linear transducer is adequate to obtain images that can be used for medical decision-making for a variety of point-of-care ultrasound applications.

  16. High definition in vivo retinal volumetric video rate OCT at 0.6 Giga-voxels per second

    NASA Astrophysics Data System (ADS)

    Kolb, Jan Philip; Klein, Thomas; Wieser, Wolfgang; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    We present full volumetric high speed OCT imaging of the retina with multiple settings varying in volume size and volume rate. The volume size ranges from 255x255 A-scans to 160x40 A-scans with 450 samples per depth scan with volume rates varying between 20.8 V/s for the largest volumes to 195.2 V/s for the smallest. The system is based on a 1060nm Fourier domain mode locked (FDML) laser with 1.6MHz line rate. Scanning along the fast axis is performed with a 2.7 kHz or 4.3 kHz resonant scanner operated in bidirectional scanning mode, while a standard galvo scanner is used for the slow axis. The performance is analyzed with respect to various potential applications, like intraoperative OCT.

  17. Fully automated 1.5 MHz FDML laser with more than 100mW output power at 1310 nm

    NASA Astrophysics Data System (ADS)

    Wieser, Wolfgang; Klein, Thomas; Draxinger, Wolfgang; Huber, Robert

    2015-07-01

    While FDML lasers with MHz sweep speeds have been presented five years ago, these devices have required manual control for startup and operation. Here, we present a fully self-starting and continuously regulated FDML laser with a sweep rate of 1.5 MHz. The laser operates over a sweep range of 115 nm centered at 1315 nm, and provides very high average output power of more than 100 mW. We characterize the laser performance, roll-off, coherence length and investigate the wavelength and phase stability of the laser output under changing environmental conditions. The high output power allows optical coherence tomography (OCT) imaging with an OCT sensitivity of 108 dB at 1.5 MHz.

  18. Development of a 64 channel ultrasonic high frequency linear array imaging system.

    PubMed

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M; Yen, Jesse; Shung, K Kirk

    2011-12-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20-120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3 ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 μm (lateral) and 54 μm (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Development of a 64 channel ultrasonic high frequency linear array imaging system

    PubMed Central

    Hu, ChangHong; Zhang, Lequan; Cannata, Jonathan M.; Yen, Jesse; Shung, K. Kirk

    2011-01-01

    In order to improve the lateral resolution and extend the field of view of a previously reported 48 element 30 MHz ultrasound linear array and 16-channel digital imaging system, the development of a 256 element 30 MHz linear array and an ultrasound imaging system with increased channel count has been undertaken. This paper reports the design and testing of a 64 channel digital imaging system which consists of an analog front-end pulser/receiver, 64 channels of Time-Gain Compensation (TGC), 64 channels of high-speed digitizer as well as a beamformer. A Personal Computer (PC) is used as the user interface to display real-time images. This system is designed as a platform for the purpose of testing the performance of high frequency linear arrays that have been developed in house. Therefore conventional approaches were taken it its implementation. Flexibility and ease of use are of primary concern whereas consideration of cost-effectiveness and novelty in design are only secondary. Even so, there are many issues at higher frequencies but do not exist at lower frequencies need to be solved. The system provides 64 channels of excitation pulsers while receiving simultaneously at a 20 MHz–120 MHz sampling rate to 12-bits. The digitized data from all channels are first fed through Field Programmable Gate Arrays (FPGAs), and then stored in memories. These raw data are accessed by the beamforming processor to re-build the image or to be downloaded to the PC for further processing. The beamformer that applies delays to the echoes of each channel is implemented with the strategy that combines coarse (8.3ns) and fine delays (2 ns). The coarse delays are integer multiples of the sampling clock rate and are achieved by controlling the write enable pin of the First-In-First-Out (FIFO) memory to obtain valid beamforming data. The fine delays are accomplished with interpolation filters. This system is capable of achieving a maximum frame rate of 50 frames per second. Wire phantom images acquired with this system show a spatial resolution of 146 μm (lateral) and 54 μm (axial). Images with excised rabbit and pig eyeball as well as mouse embryo were also acquired to demonstrate its imaging capability. PMID:21684568

  20. LOFAR/H-ATLAS: the low-frequency radio luminosity-star formation rate relation

    NASA Astrophysics Data System (ADS)

    Gürkan, G.; Hardcastle, M. J.; Smith, D. J. B.; Best, P. N.; Bourne, N.; Calistro-Rivera, G.; Heald, G.; Jarvis, M. J.; Prandoni, I.; Röttgering, H. J. A.; Sabater, J.; Shimwell, T.; Tasse, C.; Williams, W. L.

    2018-04-01

    Radio emission is a key indicator of star formation activity in galaxies, but the radio luminosity-star formation relation has to date been studied almost exclusively at frequencies of 1.4 GHz or above. At lower radio frequencies, the effects of thermal radio emission are greatly reduced, and so we would expect the radio emission observed to be completely dominated by synchrotron radiation from supernova-generated cosmic rays. As part of the LOFAR Surveys Key Science project, the Herschel-ATLAS NGP field has been surveyed with LOFAR at an effective frequency of 150 MHz. We select a sample from the MPA-JHU catalogue of Sloan Digital Sky Survey galaxies in this area: the combination of Herschel, optical and mid-infrared data enable us to derive star formation rates (SFRs) for our sources using spectral energy distribution fitting, allowing a detailed study of the low-frequency radio luminosity-star formation relation in the nearby Universe. For those objects selected as star-forming galaxies (SFGs) using optical emission line diagnostics, we find a tight relationship between the 150 MHz radio luminosity (L150) and SFR. Interestingly, we find that a single power-law relationship between L150 and SFR is not a good description of all SFGs: a broken power-law model provides a better fit. This may indicate an additional mechanism for the generation of radio-emitting cosmic rays. Also, at given SFR, the radio luminosity depends on the stellar mass of the galaxy. Objects that were not classified as SFGs have higher 150-MHz radio luminosity than would be expected given their SFR, implying an important role for low-level active galactic nucleus activity.

  1. The spectral energy distribution of powerful starburst galaxies - I. Modelling the radio continuum

    NASA Astrophysics Data System (ADS)

    Galvin, T. J.; Seymour, N.; Marvil, J.; Filipović, M. D.; Tothill, N. F. H.; McDermid, R. M.; Hurley-Walker, N.; Hancock, P. J.; Callingham, J. R.; Cook, R. H.; Norris, R. P.; Bell, M. E.; Dwarakanath, K. S.; For, B.; Gaensler, B. M.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A. D.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Staveley-Smith, L.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2018-02-01

    We have acquired radio-continuum data between 70 MHz and 48 GHz for a sample of 19 southern starburst galaxies at moderate redshifts (0.067 < z < 0.227) with the aim of separating synchrotron and free-free emission components. Using a Bayesian framework, we find the radio continuum is rarely characterized well by a single power law, instead often exhibiting low-frequency turnovers below 500 MHz, steepening at mid to high frequencies, and a flattening at high frequencies where free-free emission begins to dominate over the synchrotron emission. These higher order curvature components may be attributed to free-free absorption across multiple regions of star formation with varying optical depths. The decomposed synchrotron and free-free emission components in our sample of galaxies form strong correlations with the total-infrared bolometric luminosities. Finally, we find that without accounting for free-free absorption with turnovers between 90 and 500 MHz the radio continuum at low frequency (ν < 200 MHz) could be overestimated by upwards of a factor of 12 if a simple power-law extrapolation is used from higher frequencies. The mean synchrotron spectral index of our sample is constrained to be α = -1.06, which is steeper than the canonical value of -0.8 for normal galaxies. We suggest this may be caused by an intrinsically steeper cosmic ray distribution.

  2. Passively mode-locked diode-pumped Nd:YVO4 oscillator operating at an ultralow repetition rate.

    PubMed

    Papadopoulos, D N; Forget, S; Delaigue, M; Druon, F; Balembois, F; Georges, P

    2003-10-01

    We demonstrate the operation of an ultralow-repetition-rate, high-peak-power, picosecond diode-pumped Nd:YVO4 passively mode-locked laser oscillator. Repetition rates lower than 1 MHz were achieved with the use of a new design for a multiple-pass cavity and a semiconductor saturable absorber. Long-term stable operation at 1.2 MHz with a pulse duration of 16.3 ps and an average output power of 470 mW, corresponding to 24-kW peak-power pulses, is reported. These are to our knowledge the lowest-repetition-rate high-peak-power pulses ever generated directly from apicosecond laser resonator without cavity dumping.

  3. A comparison of full-spectrum and complex-symbol combining techniques for the Galileo S-band mission

    NASA Technical Reports Server (NTRS)

    Million, S.; Shah, B.; Hinedi, S.

    1994-01-01

    Full-spectrum combining (FSC) and complex-symbol combining (CSC) are two antenna-arraying techniques being considered for the Galileo spacecraft's upcoming encounter with Jupiter. This article describes the performance of these techniques in terms of symbol signal-to-noise ratio (SNR) degradation and symbol SNR loss. It is shown that both degradation and loss are approximately equal at low values of symbol SNR but diverge at high SNR values. For the Galileo S-band (2.2 to 2.3 GHz) mission, degradation provides a good estimate of performance as the symbol SNR is typically below -5 dB. For the following arrays - two 70-m antennas, one 70-m and one 34-m antenna, one 70-m and two 34-m antennas, and one 70-m and three 34-m antennas - it is shown that FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 3.0, 10.0, 8.5, and 8.2 mHz at the symbol rate of 200 sym/sec, and above 1.2, 4.5, 4.0, and 3.5 mHz at a symbol rate of 400 sym/sec, respectively. Moreover, for an array of four 34-m antennas, FSC has less degradation than CSC when the subcarrier and symbol window-loop bandwidth products are above 0.32 mHz at the symbol rate of 50 sym/sec and above 0.8 mHz at the symbol rate of 25 sym/sec.

  4. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime

    NASA Astrophysics Data System (ADS)

    Moores, Bradley A.; Sletten, Lucas R.; Viennot, Jeremie J.; Lehnert, K. W.

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300 μ m long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  5. Local exposure of 849 MHz and 1763 MHz radiofrequency radiation to mouse heads does not induce cell death or cell proliferation in brain

    PubMed Central

    Kim, Tae-Hyoung; Huang, Tai-Qin; Jang, Ja-June; Kim, Man Ho; Kim, Hyun-Jeong; Lee, Jae-Seon; Pack, Jeong Ki; Seo, Jeong-Sun

    2008-01-01

    Even though there is no direct evidence to prove the cellular and molecular changes induced by radiofrequency (RF) radiation itself, we cannot completely exclude the possibility of any biological effect of mobile phone frequency radiation. We established a carousel-type exposure chamber for 849 MHz or 1763 MHz of mobile phone RF radiation to expose RF to the heads of C57BL mice. In this chamber, animals were irradiated intermittently at 7.8 W/kg for a maximum of 12 months. During this period, the body weights of 3 groups-sham, 849 MHz RF, and 1763 MHz RF-did not show any differences between groups. The brain tissues were obtained from 3 groups at 6 months and 12 months to examine the differences in histology and cell proliferation between control and RF exposure groups, but we could not find any change upon RF radiation. Likewise, we could not find changes in the expression and distribution of NeuN and GFAP in hippocampus and cerebellum, or in cell death by TUNEL assay in RF exposure groups. From these data, we conclude that the chronic exposure to 849 MHz and 1763 MHz RF radiation at a 7.8 W/kg specific absorption rate (SAR) could not induce cellular alterations such as proliferation, death, and reactive gliosis. PMID:18587267

  6. Impact on storage quality of red blood cells and platelets by ultrahigh-frequency radiofrequency identification tags.

    PubMed

    Wang, Quan-Li; Wang, Xiao-Wei; Zhuo, Hai-Long; Shao, Chun-Yan; Wang, Jie; Wang, Hai-Ping

    2013-04-01

    Compared to ISBT128 code labels, radiofrequency identification (RFID) tags have incomparable advantages and gradually applied in blood management system. However, there is no global standard for the uses of RFID frequency. Even though ISBT recommended high-frequency RFID with 13.56MHz, 820- to 960-MHz ultrahigh frequency (UHF) RFID technology in many ways has even more advantages. For this reason, we studied the effect of UHF RFID tags with 820- to 960-MHz exposure on storage quality of red blood cells (RBCs) and platelets (PLTs). Thirty units of collected and prepared suspended RBCs (sRBCs) and PLTs were divided into two bags, one each for the test and control groups. The sRBCs were stored in 4±2°C refrigerator and the PLTs in a 22±2°C rocking box. The test groups were exposed to RF reader continuously during storage. Sampling at different time points and biologic changes were tested. As the extension of storage and the pH and chlorine levels in the supernatant of sRBCs were reduced, free hemoglobin, potassium, and sodium increased, but were not significant between test and control groups (p>0.05). During the storage period, the pH levels, PLT count, and PLT aggregation rate were decreased in both test and control groups, but were not significant (p>0.05). When exposed to 820- to 960-MHz RF, the biologic and biochemical indexes are not found to be exacerbated during 35 days of storage for sRBCs and 5 days for PLTs, respectively. © 2012 American Association of Blood Banks.

  7. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1989-01-01

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole.

  8. Performance of a large size triple GEM detector at high particle rate for the CBM Experiment at FAIR

    NASA Astrophysics Data System (ADS)

    Adak, Rama Prasad; Kumar, Ajit; Dubey, Anand Kumar; Chattopadhyay, Subhasis; Das, Supriya; Raha, Sibaji; Samanta, Subhasis; Saini, Jogender

    2017-02-01

    In CBM Experiment at FAIR, dimuons will be detected by a Muon Chamber (MUCH) consisting of segmented absorbers of varying widths and tracking chambers sandwiched between the absorber-pairs. In this fixed target heavy-ion collision experiment, operating at highest interaction rate of 10 MHz for Au+Au collision, the inner region of the 1st detector will face a particle rate of 1 MHz/cm2. To operate at such a high particle density, GEM technology based detectors have been selected for the first two stations of MUCH. We have reported earlier the performance of several small-size GEM detector prototypes built at VECC for use in MUCH. In this work, we report on a large GEM prototype tested with proton beam of momentum 2.36 GeV/c at COSY-Jülich Germany. The detector was read out using nXYTER operated in self-triggering mode. An efficiency higher than 96% at ΔVGEM = 375.2 V was achieved. The variation of efficiency with the rate of incoming protons has been found to vary within 2% when tested up to a maximum rate of 2.8 MHz/cm2. The gain was found to be stable at high particle rate with a maximum variation of ∼9%.

  9. International Intercomparison of Specific Absorption Rates in a Flat Absorbing Phantom in the Near-Field of Dipole Antennas

    PubMed Central

    Davis, Christopher C.; Beard, Brian B.; Tillman, Ahlia; Rzasa, John; Merideth, Eric; Balzano, Quirino

    2018-01-01

    This paper reports the results of an international intercomparison of the specific absorption rates (SARs) measured in a flat-bottomed container (flat phantom), filled with human head tissue simulant fluid, placed in the near-field of custom-built dipole antennas operating at 900 and 1800 MHz, respectively. These tests of the reliability of experimental SAR measurements have been conducted as part of a verification of the ways in which wireless phones are tested and certified for compliance with safety standards. The measurements are made using small electric-field probes scanned in the simulant fluid in the phantom to record the spatial SAR distribution. The intercomparison involved a standard flat phantom, antennas, power meters, and RF components being circulated among 15 different governmental and industrial laboratories. At the conclusion of each laboratory’s measurements, the following results were communicated to the coordinators: Spatial SAR scans at 900 and 1800 MHz and 1 and 10 g maximum spatial SAR averages for cubic volumes at 900 and 1800 MHz. The overall results, given as meanstandard deviation, are the following: at 900 MHz, 1 g average 7.850.76; 10 g average 5.160.45; at 1800 MHz, 1 g average 18.44 ± 1.65; 10 g average 10.14 ± 0.85, all measured in units of watt per kilogram, per watt of radiated power. PMID:29520117

  10. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  11. Picosecond supercontinuum laser with consistent emission parameters over variable repetition rates from 1 to 40 MHz

    NASA Astrophysics Data System (ADS)

    Schönau, Thomas; Siebert, Torsten; Härtel, Romano; Klemme, Dietmar; Lauritsen, Kristian; Erdmann, Rainer

    2013-02-01

    An freely triggerable picosecond visible supercontinuum laser source is presented that allows for a uniform spectral profile and equivalent pulse characteristics over variable repetition rates from 1 to 40MHz. The system features PM Yb3+-doped fiber amplification of a picosecond gain-switched seed diode at 1062 nm. The pump power in the multi-stage amplifier is actively adjusted by a microcontroller for a consistent peak power of the amplified signal in the full range of repetition rates. The length of the PCF is scaled to deliver a homogeneous spectrum and minimized distortion of the temporal pulse shape.

  12. High repetition pump-and-probe photoemission spectroscopy based on a compact fiber laser system.

    PubMed

    Ishida, Y; Otsu, T; Ozawa, A; Yaji, K; Tani, S; Shin, S; Kobayashi, Y

    2016-12-01

    The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ∼310 fs, respectively, the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm 2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm 2 .

  13. Thomson Scattering Diagnostic Data Acquisition Systems for Modern Fusion Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenko, S.V.; Khilchenko, A.D.; Ovchar, V.K.

    2015-07-01

    Uniquely designed complex data acquisition system for Thomson scattering diagnostic was developed. It allows recording short duration (3-5 ns) scattered pulses with 2 GHz sampling rate and 10-bit total resolution in oscilloscope mode. The system consists up to 48 photo detector modules with 0- 200 MHz bandwidth, 1-48 simultaneously sampling ADC modules and synchronization subsystem. The photo detector modules are based on avalanche photodiodes (APD) and ultra-low noise trans-impedance amplifiers. ADC modules include fast analog to digital converters and digital units based on the FPGA (Field- Programmable Gate Array) for data processing and storage. The synchronization subsystem is used tomore » form triggering pulses and to organize the simultaneously mode of ADC modules operation. (authors)« less

  14. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-01

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  15. Dielectric properties of almond kernels associated with radio frequency and microwave pasteurization.

    PubMed

    Li, Rui; Zhang, Shuang; Kou, Xiaoxi; Ling, Bo; Wang, Shaojin

    2017-02-10

    To develop advanced pasteurization treatments based on radio frequency (RF) or microwave (MW) energy, dielectric properties of almond kernels were measured by using an open-ended coaxial-line probe and impedance analyzer at frequencies between 10 and 3000 MHz, moisture contents between 4.2% to 19.6% w.b. and temperatures between 20 and 90 °C. The results showed that both dielectric constant and loss factor of the almond kernels decreased sharply with increasing frequency over the RF range (10-300 MHz), but gradually over the measured MW range (300-3000 MHz). Both dielectric constant and loss factor of almond kernels increased with increasing temperature and moisture content, and largely enhanced at higher temperature and moisture levels. Quadratic polynomial equations were developed to best fit the relationship between dielectric constant or loss factor at 27, 40, 915 or 2450 MHz and sample temperature/moisture content with R 2 greater than 0.967. Penetration depth of electromagnetic wave into samples decreased with increasing frequency (27-2450 MHz), moisture content (4.2-19.6% w.b.) and temperature (20-90 °C). The temperature profiles of RF heated almond kernels under three moisture levels were made using experiment and computer simulation based on measured dielectric properties. Based on the result of this study, RF treatment has potential to be practically used for pasteurization of almond kernels with acceptable heating uniformity.

  16. Fiber optics frequency comb enabled linear optical sampling with operation wavelength range extension.

    PubMed

    Liao, Ruolin; Wu, Zhichao; Fu, Songnian; Zhu, Shengnan; Yu, Zhe; Tang, Ming; Liu, Deming

    2018-02-01

    Although the linear optical sampling (LOS) technique is powerful enough to characterize various advanced modulation formats with high symbol rates, the central wavelength of a pulsed local oscillator (LO) needs to be carefully set according to that of the signal under test, due to the coherent mixing operation. Here, we experimentally demonstrate wideband LOS enabled by a fiber optics frequency comb (FOFC). Meanwhile, when the broadband FOFC acts as the pulsed LO, we propose a scheme to mitigate the enhanced sampling error arising in the non-ideal response of a balanced photodetector. Finally, precise characterizations of arbitrary 128 Gbps PDM-QPSK wavelength channels from 1550 to 1570 nm are successfully achieved, when a 101.3 MHz frequency spaced comb with a 3 dB spectral power ripple of 20 nm is used.

  17. Downhole pulse radar

    DOEpatents

    Chang, Hsi-Tien

    1987-09-28

    A borehole logging tool generates a fast rise-time, short duration, high peak-power radar pulse having broad energy distribution between 30 MHz and 300 MHz through a directional transmitting and receiving antennas having barium titanate in the electromagnetically active region to reduce the wavelength to within an order of magnitude of the diameter of the antenna. Radar returns from geological discontinuities are sampled for transmission uphole. 7 figs.

  18. Cavity Quantum Acoustic Device in the Multimode Strong Coupling Regime.

    PubMed

    Moores, Bradley A; Sletten, Lucas R; Viennot, Jeremie J; Lehnert, K W

    2018-06-01

    We demonstrate an acoustical analog of a circuit quantum electrodynamics system that leverages acoustic properties to enable strong multimode coupling in the dispersive regime while suppressing spontaneous emission to unconfined modes. Specifically, we fabricate and characterize a device that comprises a flux tunable transmon coupled to a 300  μm long surface acoustic wave resonator. For some modes, the qubit-cavity coupling reaches 6.5 MHz, exceeding the cavity loss rate (200 kHz), qubit linewidth (1.1 MHz), and the cavity free spectral range (4.8 MHz), placing the device in both the strong coupling and strong multimode regimes. With the qubit detuned from the confined modes of the cavity, we observe that the qubit linewidth strongly depends on its frequency, as expected for spontaneous emission of phonons, and we identify operating frequencies where this emission rate is suppressed.

  19. Gamma-ray spectroscopy at MHz counting rates with a compact LaBr3 detector and silicon photomultipliers for fusion plasma applications.

    PubMed

    Nocente, M; Rigamonti, D; Perseo, V; Tardocchi, M; Boltruczyk, G; Broslawski, A; Cremona, A; Croci, G; Gosk, M; Kiptily, V; Korolczuk, S; Mazzocco, M; Muraro, A; Strano, E; Zychor, I; Gorini, G

    2016-11-01

    Gamma-ray spectroscopy measurements at MHz counting rates have been carried out, for the first time, with a compact spectrometer based on a LaBr 3 scintillator and silicon photomultipliers. The instrument, which is also insensitive to magnetic fields, has been developed in view of the upgrade of the gamma-ray camera diagnostic for α particle measurements in deuterium-tritium plasmas of the Joint European Torus. Spectra were measured up to 2.9 MHz with a projected energy resolution of 3%-4% in the 3-5 MeV range, of interest for fast ion physics studies in fusion plasmas. The results reported here pave the way to first time measurements of the confined α particle profile in high power plasmas of the next deuterium-tritium campaign at the Joint European Torus.

  20. High-pulse-energy mode-locked picosecond oscillator

    NASA Astrophysics Data System (ADS)

    Chao, Yang; Chen, Meng; Li, Gang

    2014-02-01

    We report on a high-pulse-energy solid-state picosecond Nd:YVO4 oscillator with cavity-dumping. The laser is end-pumped by an 808 nm laser diode and passively mode-locked with a semiconductor saturable absorption mirror (SESAM). In pure cw-mode-locking, this laser produced 2.5 W of average power at a pulse repetition rate of 40 MHz and pulse duration around 12 ps. A cavity dumping technique using an intra-cavity BBO electro-optic crystal to which bidirectional voltage was applied was adopted, effectively improving the cavity-dumping rate. Tunable high repetition rate from 100 kHz to 1 MHz was achieved. With electro-optic cavity dumper working at 1 MHz repetition rate, we achieved average power 594 mW. The laser includes a 5 mm long, a-cut, 0.5% doped Nd:YVO4 crystal with a 5-degree angle at one end face. Laser radiation is coupled out from the crystal end face with a 5-degree angle, without requiring insertion of a thin-film polarizer (TFP), thus simplifying the laser structure. This picosecond laser system has the advantages of compact structure and high stability, providing a good oscillator for regenerative amplifiers.

  1. GROWTH AND DEVELOPMENT OF MICE OFFSPRING AFTER IRRADIATION IN UTERO WITH 2,450-MHZ MICROWAVES

    EPA Science Inventory

    Mice offspring irradiated in utero with 2,450-MHz radio-frequency (RF) radiation at 0 or 28 mW/cm. sq. (whole-body averaged specific absorption rate = 0 or 16.5 W/kg) for 100 minutes daily on days 6 through 17 of gestation were evaluated for maturation and development on days 1, ...

  2. Multi-GHz Synchronous Waveform Acquisition With Real-Time Pattern-Matching Trigger Generation

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart A.; Chiang, Shiuh-hua Wood; Huang, Wei

    2013-10-01

    A transient waveform capture and digitization circuit with continuous synchronous 2-GHz sampling capability and real-time programmable windowed trigger generation has been fabricated and tested. Designed in 0.25 μm CMOS, the digitizer contains a circular array of 128 sample and hold circuits for continuous sample acquisition, and attains 2-GHz sample speeds with over 800-MHz analog bandwidth. Sample clock generation is synchronous, combining a phase-locked loop for high-speed clock generation and a high-speed fully-differential shift register for distributing clocks to all 128 sample circuits. Using two comparators per sample, the sampled voltage levels are compared against two reference levels, a high threshold and a low threshold, that are set via per-comparator digital to analog converters (DACs). The 256 per-comparator 5-bit DACs compensate for comparator offsets and allow for fine reference level adjustment. The comparator results are matched in 8-sample-wide windows against up to 72 programmable patterns in real time using an on-chip programmable logic array. Each 8-sample trigger window is equivalent to 4 ns of acquisition, overlapped sample by sample in a circular fashion through the entire 128-sample array. The 72 pattern-matching trigger criteria can be programmed to be any combination of High-above the high threshold, Low-below the low threshold, Middle-between the two thresholds, or “Don't Care”-any state is accepted. A trigger pattern of “HLHLHLHL,” for example, watches for a waveform that is oscillating at about 1 GHz given the 2-GHz sample rate. A trigger is flagged in under 20 ns if there is a match, after which sampling is stopped, and on-chip digitization can proceed via 128 parallel 10-bit converters, or off-chip conversion can proceed via an analog readout. The chip exceeds 11 bits of dynamic range, nets over 800-MHz -3-dB bandwidth in a realistic system, and jitter in the PLL-based sampling clock has been measured to be about 1 part per million, RMS.

  3. Thermal and physiologic responses to 1200-MHz radiofrequency radiation: Differences between exposure in E and H orientation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jauchem, J.R.; Frei, M.R.; Padilla, J.M.

    1990-09-01

    Ketamine-anesthetized Sprague-Dawley rats were exposed to far-field 1200-MHz continuous wave radiofrequency radiation in both E and H orientations (long axis of animal parallel to electric or magnetic field, respectively). Power densities were used that resulted in equivalent whole-body specific absorption rates of approximately 8 W/kg in both orientations (20 mW/cm{sup 2} for E and 45 mW/cm{sup 2} for H). Exposure was conducted to repeatedly increase colonic temperature from 38.5 to 39.5{degrees}C in both orientations in the same animal. Irradiation in E orientation resulted in greater colonic, tympanic, left subcutaneous (side toward antenna), and tail heating. The results indicated a moremore » uniform distribution of heat than that which occurred in previous experiments of 2450-MHz irradiation in E and H orientation. A lack of significant differences in blood pressure and heart rate responses between exposures in the two orientations in this study suggest that greater peripheral heating, as was seen in the earlier study of 2450 MHz, is necessary for these differences to occur.« less

  4. A 100-200 MHz ultrasound biomicroscope.

    PubMed

    Knspik, D A; Starkoski, B; Pavlin, C J; Foster, F S

    2000-01-01

    The development of higher frequency ultrasound imaging systems affords a unique opportunity to visualize living tissue at the microscopic level. This work was undertaken to assess the potential of ultrasound imaging in vivo using the 100-200 MHz range. Spherically focused lithium niobate transducers were fabricated. The properties of a 200 MHz center frequency device are described in detail. This transducer showed good sensitivity with an insertion loss of 18 dB at 200 MHz. Resolution of 14 /spl mu/m in the lateral direction and 12 /spl mu/m in the axial direction was achieved with f/1.14 focusing. A linear mechanical scan system and a scan converter were used to generate B-scan images at a frame rate up to 12 frames per second. System performance in B-mode imaging is limited by frequency dependent attenuation in tissues. An alternative technique, zone-focus image collection, was investigated to extend depth of field. Images of coronary arteries, the eye, and skin are presented along with some preliminary correlations with histology. These results demonstrate the feasibility of ultrasound biomicroscopy In the 100-200 MHz range. Further development of ultrasound backscatter imaging at frequencies up to and above 200 MHz will contribute valuable information about tissue microstructure.

  5. Asteroseismology with FRESIP: A meter class space telescope

    NASA Technical Reports Server (NTRS)

    Milford, Peter

    1994-01-01

    The requirements for asteroseismology and searching for occulting inner planets are similar. The FRESIP mission will be suited to making asteroseismology measurements. Recommendation: Use 30-60 second integrations from one or more CCD's in the FRESIP mosaic, sampled continuously for the entire mission to measure stellar non-radial oscillations with amplitudes of parts per million and frequencies of 0.1 to 10 MHz. These measurements lead to determination of stellar interior helium abundances, rotation rates, depth of convection zones and measuring stellar cycle frequency changes for a variety of stellar types, enabling major advances in stellar structure and evolutionary theories.

  6. Compact diode laser source for multiphoton biological imaging

    PubMed Central

    Niederriter, Robert D.; Ozbay, Baris N.; Futia, Gregory L.; Gibson, Emily A.; Gopinath, Juliet T.

    2016-01-01

    We demonstrate a compact, pulsed diode laser source suitable for multiphoton microscopy of biological samples. The center wavelength is 976 nm, near the peak of the two-photon cross section of common fluorescent markers such as genetically encoded green and yellow fluorescent proteins. The laser repetition rate is electrically tunable between 66.67 kHz and 10 MHz, with 2.3 ps pulse duration and peak powers >1 kW. The laser components are fiber-coupled and scalable to a compact package. We demonstrate >600 μm depth penetration in brain tissue, limited by laser power. PMID:28101420

  7. Femtosecond laser pulse shaping at megahertz rate via a digital micromirror device.

    PubMed

    Gu, Chenglin; Chang, Yina; Zhang, Dapeng; Cheng, Jiyi; Chen, Shih-Chi

    2015-09-01

    In this Letter, we present a scanner and digital micromirror device (DMD)-based ultrafast pulse shaper, i.e., S-DUPS, for programmable ultrafast pulse modulation, achieving a shaping rate of 2 MHz. To our knowledge, the S-DUPS is the fastest programmable pulse shaper reported to date. In the S-DUPS, the frequency spectrum of the input pulsed laser is first spread horizontally, and then mapped to a thin stripe on the DMD programmed with phase modulation patterns. A galvanometric scanner, synchronized with the DMD, subsequently scans the spectrum vertically on the DMD to achieve a shaping rate up to 10 s MHz. A grating pair and a cylindrical lens in front of the DMD compensate for the temporal and spatial dispersion of the system. To verify the concept, experiments were conducted with the DMD and the galvanometric scanner operated at 2 kHz and 1 kHz, respectively, achieving a 2 MHz speed for continuous group velocity dispersion tuning, as well as 2% efficiency. Up to 5% efficiency of S-DUPS can be expected with high efficiency gratings and optical components of proper coatings.

  8. The selection of Lorenz laser parameters for transmission in the SMF 3rd transmission window

    NASA Astrophysics Data System (ADS)

    Gajda, Jerzy K.; Niesterowicz, Andrzej; Zeglinski, Grzegorz

    2003-10-01

    The work presents simulation of transmission line results with the fiber standard ITU-T G.652. The parameters of Lorenz laser decide about electrical signal parameters like eye pattern, jitter, BER, S/N, Q-factor, scattering diagram. For a short line lasers with linewidth larger than 100MHz can be used. In the paper cases for 10 Gbit/s and 40 Gbit/s transmission and the fiber length 30km, 50km, and 70km are calculated. The average open eye patterns were 1*10-5-120*10-5. The Q factor was 10-23dB. In calcuations the bit error rate (BER) was 10-40-10-4. If the bandwidth of Lorenz laser increases from 10 MHz to 500MHz a distance of transmission decrease from 70km to 30km. Very important for transmission distance is a rate bit of transmitter. If a bit rate increase from 10Gbit/s to 40 Gbit/s, the transmission distance for the signal mode fiber G.652 will decrease from 70km to 5km.

  9. Excited OH 4.7 GHz masers associated with IRAS far-infrared sources

    NASA Astrophysics Data System (ADS)

    Masheder, M. R. W.; Cohen, R. J.; Caswell, J. L.; Walker, R. N. F.; Shepherd, M.

    We describe the results of an all-sky search for maser emission from excited OH in the 2Pi(1/2), J = 1/2 state at 4765, 4750, and 4660 MHz, carried out at Jodrell Bank and at Parkes in 1989 and 1991. A total of 129 sources were observed in all including all objects from the Cohen et al. (1988) (CBJ) sample of far infrared IRAS sources with 60 micron flux, F(60) over 4000 Jy for which OH 18-cm emission was already known. A total of 18 objects were detected, including seven new discoveries and a new maser region in W49. Three of these were also detected at 4750 MHz, including the first strong 4750 MHz maser (S252). Three objects were detected at 4660 MHz, including a new discovery seen in this line only. We found strong variations in seven sources.

  10. BLAZAR SPECTRAL PROPERTIES AT 74 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massaro, F.; Funk, S.; Giroletti, M.

    2013-10-01

    Blazars are the most extreme class of active galactic nuclei. Despite a previous investigation at 102 MHz for a small sample of BL Lac objects and our recent analysis of blazars detected in the Westerbork Northern Sky Survey, a systematic study of the blazar spectral properties at frequencies below 100 MHz has been never carried out. In this paper, we present the first analysis of the radio spectral behavior of blazars based on the recent Very Large Array Low-frequency Sky Survey (VLSS) at 74 MHz. We search for blazar counterparts in the VLSS catalog, confirming that they are detected atmore » 74 MHz. We then show that blazars present radio-flat spectra (i.e., radio spectral indices of ∼0.5) when evaluated, which also about an order of magnitude in frequency lower than previous analyses. Finally, we discuss the implications of our findings in the context of the blazars-radio galaxies connection since the low-frequency radio data provide a new diagnostic tool to verify the expectations of the unification scenario for radio-loud active galaxies.« less

  11. Niobium hyperfine structure in crystal calcium tungstate

    NASA Technical Reports Server (NTRS)

    Tseng, D. L.; Kikuchi, C.

    1972-01-01

    A study of the niobium hyperfine structure in single crystal calcium tungstate was made by the combination of the technique of electron paramagnetic resonance and electron nuclear double resonance (EPR/ENDOR). The microwave frequency was about 9.4 GHz and the radio frequency from 20MHz to 70 MHz. The rare earth ions Nd(3+), U(3+), or Tm(3+) were added as the charge compensator for Nb(5+). To create niobium paramagnetic centers, the sample was irradiated at 77 deg K with a 10 thousand curie Co-60 gamma source for 1 to 2 hours at a dose rate of 200 K rads per hour and then transferred quickly into the cavity. In a general direction of magnetic field, the spectra showed 4 sets of 10 main lines corresponding to 4 nonequivalent sites of niobium with I = 9/2. These 4 sets of lines coalesced into 2 sets of 10 in the ab-plane and into a single set of 10 along the c-axis. This symmetry suggested that the tungsten ions are substituted by the niobium ions in the crystal.

  12. Ship-borne Radio and GLD360 Measurements of Intense Oceanic Lightning

    NASA Astrophysics Data System (ADS)

    Zoghzoghy, F. G.; Cohen, M.; Said, R.; Lehtinen, N. G.; Inan, U.

    2013-12-01

    Recent studies with the GLD360 lightning geo-location network have shown that the peak current intensity of cloud-to-ground (CG) lightning is more powerful over the ocean than over land. This remains a poorly understood phenomenon. The Stanford VLF group has recently deployed a Very Low Frequency (1 MHz sampling rate) radio receiver system aboard the NOAA Ronald W. Brown research vessel. The goal of this transatlantic experiment is to improve our understanding of oceanic lightning and to investigate the physical difference between oceanic and land lightning. When positioned reasonably close to deep oceanic thunderstorms, the LF-VLF receiver aboard the Ronald W. Brown detects the impulsive radio emissions from the return stroke, up to 1 MHz, which enables us to estimate the return-stroke waveform shapes generated by the lightning channel. In this presentation, we present our experimental setup and a summary of the data collected during the transatlantic voyages of the NOAA ship. We process lightning-generated waveforms, compare them to LF-VLF data from land lightning over Oklahoma, extract statistical patterns, and compare the data to numerical and analytical models.

  13. A Novel Intracranial Pressure Readout Circuit for Passive Wireless LC Sensor.

    PubMed

    Wang, Fa; Zhang, Xuan; Shokoueinejad, Mehdi; Iskandar, Bermans J; Medow, Joshua E; Webster, John G

    2017-10-01

    We present a wide frequency range, low cost, wireless intracranial pressure monitoring system, which includes an implantable passive sensor and an external reader. The passive sensor consists of two spiral coils and transduces the pressure change to a resonant frequency shift. The external portable reader reads out the sensor's resonant frequency over a wide frequency range (35 MHz-2.7 GHz). We propose a novel circuit topology, which tracks the system's impedance and phase change at a high frequency with low-cost components. This circuit is very simple and reliable. A prototype has been developed, and measurement results demonstrate that the device achieves a suitable measurement distance (>2 cm), sufficient sample frequency (>6 Hz), fine resolution, and good measurement accuracy for medical practice. Responsivity of this prototype is 0.92 MHz/mmHg and resolution is 0.028 mmHg. COMSOL specific absorption rate simulation proves that this system is safe. Considerations to improve the device performance have been discussed, which include the size of antenna, the power radiation, the Analog-to-digital converter (ADC) choice, and the signal processing algorithm.

  14. Modular design and implementation of field-programmable-gate-array-based Gaussian noise generator

    NASA Astrophysics Data System (ADS)

    Li, Yuan-Ping; Lee, Ta-Sung; Hwang, Jeng-Kuang

    2016-05-01

    The modular design of a Gaussian noise generator (GNG) based on field-programmable gate array (FPGA) technology was studied. A new range reduction architecture was included in a series of elementary function evaluation modules and was integrated into the GNG system. The approximation and quantisation errors for the square root module with a first polynomial approximation were high; therefore, we used the central limit theorem (CLT) to improve the noise quality. This resulted in an output rate of one sample per clock cycle. We subsequently applied Newton's method for the square root module, thus eliminating the need for the use of the CLT because applying the CLT resulted in an output rate of two samples per clock cycle (>200 million samples per second). Two statistical tests confirmed that our GNG is of high quality. Furthermore, the range reduction, which is used to solve a limited interval of the function approximation algorithms of the System Generator platform using Xilinx FPGAs, appeared to have a higher numerical accuracy, was operated at >350 MHz, and can be suitably applied for any function evaluation.

  15. Electrical conductivity measurement of excised human metastatic liver tumours before and after thermal ablation.

    PubMed

    Haemmerich, Dieter; Schutt, David J; Wright, Andrew W; Webster, John G; Mahvi, David M

    2009-05-01

    We measured the ex vivo electrical conductivity of eight human metastatic liver tumours and six normal liver tissue samples from six patients using the four electrode method over the frequency range 10 Hz to 1 MHz. In addition, in a single patient we measured the electrical conductivity before and after the thermal ablation of normal and tumour tissue. The average conductivity of tumour tissue was significantly higher than normal tissue over the entire frequency range (from 4.11 versus 0.75 mS cm(-1) at 10 Hz, to 5.33 versus 2.88 mS cm(-1) at 1 MHz). We found no significant correlation between tumour size and measured electrical conductivity. While before ablation tumour tissue had considerably higher conductivity than normal tissue, the two had similar conductivity throughout the frequency range after ablation. Tumour tissue conductivity changed by +25% and -7% at 10 Hz and 1 MHz after ablation (0.23-0.29 at 10 Hz, and 0.43-0.40 at 1 MHz), while normal tissue conductivity increased by +270% and +10% at 10 Hz and 1 MHz (0.09-0.32 at 10 Hz and 0.37-0.41 at 1 MHz). These data can potentially be used to differentiate tumour from normal tissue diagnostically.

  16. Ultrafast web inspection with hybrid dispersion laser scanner.

    PubMed

    Chen, Hongwei; Wang, Chao; Yazaki, Akio; Kim, Chanju; Goda, Keisuke; Jalali, Bahram

    2013-06-10

    We report an ultrafast web inspector that operates at a 1000 times higher scan rate than conventional methods. This system is based on a hybrid dispersion laser scanner that performs line scans at nearly 100 MHz. Specifically, we demonstrate web inspection with detectable resolution of 48.6 μm/pixel (scan direction) × 23 μm (web flow direction) within a width of view of 6 mm at a record high scan rate of 90.9 MHz. We demonstrate the identification and evaluation of particles on silicon wafers. This method holds great promise for speeding up quality control and hence reducing manufacturing costs.

  17. Investigation of dielectric properties of polymer composites reinforced with carbon nanotubes in the frequency band of 0.01 Hz - 10 MHz

    NASA Astrophysics Data System (ADS)

    Goshev, A. A.; Eseev, M. K.; Kapustin, S. N.; Vinnik, L. N.; Volkov, A. S.

    2016-08-01

    The goal of this work is experimental study of dielectric properties of polymer nanocomposites reinforced with multiwalled carbon nanotubes (MWCNTs) in alternating electric field in low frequency band of 0.01 Hz - 10 MHz. We investigated the influence, functionalization degree, aspect ratio, concentration of carbon nanotubes (CNTs) on dielectric properties of polymer sample. We also studied the dependence of dielectric properties on the polymerization temperature. The dependence of CNTs agglomeration on sample polymerization temperature and temperature's influence on conductivity has been shown. We conducted model calculation of percolation threshold and figured out its dependence on CNTs aspect ratio.

  18. Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    NASA Astrophysics Data System (ADS)

    Braunstein, D.; Page, J. H.; Strybulevych, A.; Peressini, D.; Scanlon, M. G.

    2012-12-01

    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an online quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300 kHz - 6 MHz. Ultrasonic phase velocity increased with increasing frequency to about 2 MHz, becoming constant and then decreasing from 3 MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties.

  19. The dielectric properties of human pineal gland tissue and RF absorption due to wireless communication devices in the frequency range 400-1850 MHz.

    PubMed

    Schmid, Gernot; Uberbacher, Richard; Samaras, Theodoros; Tschabitscher, Manfred; Mazal, Peter R

    2007-09-07

    In order to enable a detailed analysis of radio frequency (RF) absorption in the human pineal gland, the dielectric properties of a sample of 20 freshly removed pineal glands were measured less than 20 h after death. Furthermore, a corresponding high resolution numerical model of the brain region surrounding the pineal gland was developed, based on a real human tissue sample. After inserting this model into a commercially available numerical head model, FDTD-based computations for exposure scenarios with generic models of handheld devices operated close to the head in the frequency range 400-1850 MHz were carried out. For typical output power values of real handheld mobile communication devices, the obtained results showed only very small amounts of absorbed RF power in the pineal gland when compared to SAR limits according to international safety standards. The highest absorption was found for the 400 MHz irradiation. In this case the RF power absorbed inside the pineal gland (organ mass 96 mg) was as low as 11 microW, when considering a device of 500 mW output power operated close to the ear. For typical mobile phone frequencies (900 MHz and 1850 MHz) and output power values (250 mW and 125 mW) the corresponding values of absorbed RF power in the pineal gland were found to be lower by a factor of 4.2 and 36, respectively. These results indicate that temperature-related biologically relevant effects on the pineal gland induced by the RF emissions of typical handheld mobile communication devices are unlikely.

  20. A 5 MHz Cylindrical Dual-Layer Transducer Array for 3-D Transrectal Ultrasound Imaging

    PubMed Central

    Chen, Yuling; Nguyen, Man; Yen, Jesse T.

    2012-01-01

    2-D transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user-dependent and unreliable. A real-time 3-D TRUS system could improve reliability and volume rates of imaging during these procedures. In this paper, we present a 5 MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared to fully-sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System (VDAS). Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor (GCF) was applied to improve the contrast of images. The measured −6 dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm. PMID:22972914

  1. A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2012-07-01

    Two-dimensional transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user dependent, and unreliable. A real-time three-dimensional (3-D) TRUS system could improve reliability and volume rates of imaging during these procedures. In this article, the authors present a 5-MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared with fully sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System. Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor was applied to improve the contrast of images. The measured -6-dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions, respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm.

  2. Improved power steering with double and triple ring waveguide systems: the impact of the operating frequency.

    PubMed

    Kok, H P; de Greef, M; Borsboom, P P; Bel, A; Crezee, J

    2011-01-01

    Regional hyperthermia systems with 3D power steering have been introduced to improve tumour temperatures. The 3D 70-MHz AMC-8 system has two rings of four waveguides. The aim of this study is to evaluate whether T(90) will improve by using a higher operating frequency and whether further improvement is possible by adding a third ring. Optimised specific absorption rate (SAR) distributions were evaluated for a centrally located target in tissue-equivalent phantoms, and temperature optimisation was performed for five cervical carcinoma patients with constraints to normal tissue temperatures. The resulting T(90) and the thermal iso-effect dose (i.e. the number of equivalent min at 43°C) were evaluated and compared to the 2D 70-MHz AMC-4 system with a single ring of four waveguides. FDTD simulations were performed at 2.5 × 2.5 × 5 mm(3) resolution. The applied frequencies were 70, 100, 120, 130, 140 and 150 MHz. Optimised SAR distributions in phantoms showed an optimal SAR distribution at 140 MHz. For the patient simulations, an optimal increase in T(90) was observed at 130 MHz. For a two-ring system at 70 MHz the gain in T(90) was about 0.5°C compared to the AMC-4 system, averaged over the five patients. At 130 MHz the average gain in T(90) was ~1.5°C and ~2°C for a two and three-ring system, respectively. This implies an improvement of the thermal iso-effect dose with a factor ~12 and ~30, respectively. Simulations showed that a 130-MHz two-ring waveguide system yields significantly higher tumour temperatures compared to 70-MHz single-ring and double-ring waveguide systems. Temperatures were further improved with a 130-MHz triple-ring system.

  3. Inductive power transmission to millimeter-sized biomedical implants using printed spiral coils.

    PubMed

    Ibrahim, Ahmed; Kiani, Mehdi

    2016-08-01

    The operation frequency (f) has been a key parameter in optimizing wireless power transmission links for biomedical implants with millimeter (mm) dimensions. This paper studies the feasibility of using printed spiral coils (PSCs) for powering mm-sized implants with high power transmission efficiency (PTE) at different fps. Compared to wire-wound coils (WWCs), using a PSC in the implant side allows batch fabrication on rigid or flexible substrates, which can also be used as a platform for integrating implant components. For powering an implant with 1 mm diameter, located 10 mm inside the tissue, the geometries of transmitter (Tx) and receiver (Rx) PSCs were optimized at different fPs of 50 MHz, 200 MHz, and 500 MHz using a commercial field solver (HFSS). In simulations, PSC- and WWC-based links achieved maximum PTE of 0.13% and 3.3%, and delivered power of 65.7 μW and 720 μW under specific absorption rate (SAR) constraints at the optimal fp of 50 MHz and 100 MHz, respectively, suggesting that the performance of the PSC-based link is significantly inferior to that of the WWC-based link.

  4. Electron density modulation in a pulsed dual-frequency (2/13.56 MHz) dual-antenna inductively coupled plasma discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirse, Nishant, E-mail: nishant.sirse@dcu.ie; Mishra, Anurag; Yeom, Geun Y.

    The electron density, n{sub e}, modulation is measured experimentally using a resonance hairpin probe in a pulsed, dual-frequency (2/13.56 MHz), dual-antenna, inductively coupled plasma discharge produced in argon-C{sub 4}F{sub 8} (90–10) gas mixtures. The 2 MHz power is pulsed at a frequency of 1 kHz, whereas 13.56 MHz power is applied in continuous wave mode. The discharge is operated at a range of conditions covering 3–50 mTorr, 100–600 W 13.56 MHz power level, 300–600 W 2 MHz peak power level, and duty ratio of 10%–90%. The experimental results reveal that the quasisteady state n{sub e} is greatly affected by the 2 MHz power levels and slightly affected by 13.56 MHzmore » power levels. It is observed that the electron density increases by a factor of 2–2.5 on increasing 2 MHz power level from 300 to 600 W, whereas n{sub e} increases by only ∼20% for 13.56 MHz power levels of 100–600 W. The rise time and decay time constant of n{sub e} monotonically decrease with an increase in either 2 or 13.56 MHz power level. This effect is stronger at low values of 2 MHz power level. For all the operating conditions, it is observed that the n{sub e} overshoots at the beginning of the on-phase before relaxing to a quasisteady state value. The relative overshoot density (in percent) depends on 2 and 13.56 MHz power levels. On increasing gas pressure, the n{sub e} at first increases, reaching to a maximum value, and then decreases with a further increase in gas pressure. The decay time constant of n{sub e} increases monotonically with pressure, increasing rapidly up to 10 mTorr gas pressure and at a slower rate of rise to 50 mTorr. At a fixed 2/13.56 MHz power level and 10 mTorr gas pressure, the quasisteady state n{sub e} shows maximum for 30%–40% duty ratio and decreases with a further increase in duty ratio.« less

  5. Impact of 13.56-MHz radiofrequency identification systems on the quality of stored red blood cells.

    PubMed

    Kozma, Noemi; Speletz, Harald; Reiter, Ursula; Lanzer, Gerhard; Wagner, Thomas

    2011-11-01

    Radiofrequency identification (RFID) technology is emerging as one of the most pervasive computing technologies due to its broad applicability. Storage of red blood cells (RBCs) is a routine procedure worldwide. Depending on the additive solution, RBCs can be stored at 4 ± 2°C up to 49 days. To support the decision of discarding or further using a blood product, temperature measurement of each unit could be provided by RFID application. The safety evaluation of RFID devices was demonstrated in a regulatory agency required study. It has been concluded in limit tests that high frequency-based RFID technology performed safely for blood products; therefore, a longer exposure of radiofrequency (RF) energy on blood units was performed in this study to detect any biologic effects in RBC samples. Buffy coat-depleted, in line-filtered RBCs were used as standard products in all tests. Various variables like pH, potassium, glucose, lactate, hemoglobin (Hb), hematocrit, free Hb, and hemolysis rate were measured in a test group with RFID tags placed on their surface and continuously radiated with 13.56-MHz RFID reader radiation for 42 days while stored at 4 ± 2°C and compared to a control group by two-sample t test. In both groups glucose and pH levels decreased while lactate, free Hb, and potassium increased within the expected levels. The hemolysis rate showed increase after the 25th day but remained below the maximum acceptable threshold of 0.8%. It is feasible to implement RFID-enabled processes, without detecting any known biologic effects of longer exposure of RF energy on the quality of RBCs. © 2011 American Association of Blood Banks.

  6. Integration of digital signal processing technologies with pulsed electron paramagnetic resonance imaging

    PubMed Central

    Pursley, Randall H.; Salem, Ghadi; Devasahayam, Nallathamby; Subramanian, Sankaran; Koscielniak, Janusz; Krishna, Murali C.; Pohida, Thomas J.

    2006-01-01

    The integration of modern data acquisition and digital signal processing (DSP) technologies with Fourier transform electron paramagnetic resonance (FT-EPR) imaging at radiofrequencies (RF) is described. The FT-EPR system operates at a Larmor frequency (Lf) of 300 MHz to facilitate in vivo studies. This relatively low frequency Lf, in conjunction with our ~10 MHz signal bandwidth, enables the use of direct free induction decay time-locked subsampling (TLSS). This particular technique provides advantages by eliminating the traditional analog intermediate frequency downconversion stage along with the corresponding noise sources. TLSS also results in manageable sample rates that facilitate the design of DSP-based data acquisition and image processing platforms. More specifically, we utilize a high-speed field programmable gate array (FPGA) and a DSP processor to perform advanced real-time signal and image processing. The migration to a DSP-based configuration offers the benefits of improved EPR system performance, as well as increased adaptability to various EPR system configurations (i.e., software configurable systems instead of hardware reconfigurations). The required modifications to the FT-EPR system design are described, with focus on the addition of DSP technologies including the application-specific hardware, software, and firmware developed for the FPGA and DSP processor. The first results of using real-time DSP technologies in conjunction with direct detection bandpass sampling to implement EPR imaging at RF frequencies are presented. PMID:16243552

  7. Fiber laser-microscope system for femtosecond photodisruption of biological samples

    PubMed Central

    Yavaş, Seydi; Erdogan, Mutlu; Gürel, Kutan; Ilday, F. Ömer; Eldeniz, Y. Burak; Tazebay, Uygar H.

    2012-01-01

    We report on the development of a ultrafast fiber laser-microscope system for femtosecond photodisruption of biological targets. A mode-locked Yb-fiber laser oscillator generates few-nJ pulses at 32.7 MHz repetition rate, amplified up to ∼125 nJ at 1030 nm. Following dechirping in a grating compressor, ∼240 fs-long pulses are delivered to the sample through a diffraction-limited microscope, which allows real-time imaging and control. The laser can generate arbitrary pulse patterns, formed by two acousto-optic modulators (AOM) controlled by a custom-developed field-programmable gate array (FPGA) controller. This capability opens the route to fine optimization of the ablation processes and management of thermal effects. Sample position, exposure time and imaging are all computerized. The capability of the system to perform femtosecond photodisruption is demonstrated through experiments on tissue and individual cells. PMID:22435105

  8. IOTA: the array controller for a gigapixel OTCCD camera for Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Onaka, Peter; Tonry, John; Luppino, Gerard; Lockhart, Charles; Lee, Aaron; Ching, Gregory; Isani, Sidik; Uyeshiro, Robin

    2004-09-01

    The PanSTARRS project has undertaken an ambitious effort to develop a completely new array controller architecture that is fundamentally driven by the large 1gigapixel, low noise, high speed OTCCD mosaic requirements as well as the size, power and weight restrictions of the PanSTARRS telescope. The result is a very small form factor next generation controller scalar building block with 1 Gigabit Ethernet interfaces that will be assembled into a system that will readout 512 outputs at ~1 Megapixel sample rates on each output. The paper will also discuss critical technology and fabrication techniques such as greater than 1MHz analog to digital converters (ADCs), multiple fast sampling and digital calculation of multiple correlated samples (DMCS), ball grid array (BGA) packaged circuits, LINUX running on embedded field programmable gate arrays (FPGAs) with hard core microprocessors for the prototype currently being developed.

  9. VHDL implementation of feature-extraction algorithm for the PANDA electromagnetic calorimeter

    NASA Astrophysics Data System (ADS)

    Guliyev, E.; Kavatsyuk, M.; Lemmens, P. J. J.; Tambave, G.; Löhner, H.; Panda Collaboration

    2012-02-01

    A simple, efficient, and robust feature-extraction algorithm, developed for the digital front-end electronics of the electromagnetic calorimeter of the PANDA spectrometer at FAIR, Darmstadt, is implemented in VHDL for a commercial 16 bit 100 MHz sampling ADC. The source-code is available as an open-source project and is adaptable for other projects and sampling ADCs. Best performance with different types of signal sources can be achieved through flexible parameter selection. The on-line data-processing in FPGA enables to construct an almost dead-time free data acquisition system which is successfully evaluated as a first step towards building a complete trigger-less readout chain. Prototype setups are studied to determine the dead-time of the implemented algorithm, the rate of false triggering, timing performance, and event correlations.

  10. Strongly driven electron spins using a Ku band stripline electron paramagnetic resonance resonator

    NASA Astrophysics Data System (ADS)

    Yap, Yung Szen; Yamamoto, Hiroshi; Tabuchi, Yutaka; Negoro, Makoto; Kagawa, Akinori; Kitagawa, Masahiro

    2013-07-01

    This article details our work to obtain strong excitation for electron paramagnetic resonance (EPR) experiments by improving the resonator's efficiency. The advantages and application of strong excitation are discussed. Two 17 GHz transmission-type, stripline resonators were designed, simulated and fabricated. Scattering parameter measurements were carried out and quality factor were measured to be around 160 and 85. Simulation results of the microwave's magnetic field distribution are also presented. To determine the excitation field at the sample, nutation experiments were carried out and power dependence were measured using two organic samples at room temperature. The highest recorded Rabi frequency was rated at 210 MHz with an input power of about 1 W, which corresponds to a π/2 pulse of about 1.2 ns.

  11. Improvement of two-photon microscopic imaging in deep regions of living mouse brains by utilizing a light source based on an electrically controllable gain-switched laser diode

    NASA Astrophysics Data System (ADS)

    Sawada, Kazuaki; Kawakami, Ryosuke; Fang, Yi-Cheng; Hung, Jui-Hung; Kozawa, Yuichi; Otomo, Kohei; Sato, Shunichi; Yokoyama, Hiroyuki; Nemoto, Tomomi

    2018-02-01

    In vivo two-photon microscopy is an advantageous technique for observing living mouse brains at high spatial resolutions. We previously used a 1064 nm high-power light source based on an electrically controllable gain-switched laser diode (maximum power: 4 W, repetition rate: 10 MHz, pulse width: 7.5 picoseconds) and successfully visualized EYFP expressing neurons at deeper regions in H-line mouse brains under living conditions. However, severe damages were frequently observed when the laser power after the objective lens was over 600 mW, suggesting that a higher average power might not be suitable for visualizing neural structures and functions at deep regions. To increase fluorescent signals as a strategy to avoid such invasions, here, we evaluated the effects of the excitation laser parameters such as the repetition rate (5 - 10 MHz), or the peak power, at the moderate average powers (10 - 500 mW), by taking the advantage that this electrically controllable light source could be used to change the repetition rate independently from the average power or the pulse width. The fluorescent signals of EYFP at layer V of the cerebral cortex were increased by approximately twofold when the repetition rate was decreased from 10 MHz to 5 MHz at the same average power. We also confirmed similar effects in the EYFP solution (335 μM) and fixed brain slices. These results suggest that in vivo two-photon microscopic imaging might be improved by increasing the peak power at the same average power while avoiding the severe damages in living brains.

  12. NICER Discovers mHz Oscillations and Marginally Stable Burning in GS 1826-24

    NASA Astrophysics Data System (ADS)

    Strohmayer, Tod E.; Gendreau, Keith C.; Keek, Laurens; Bult, Peter; Mahmoodifar, Simin; Chakrabarty, Deepto; Arzoumanian, Zaven; NICER Science Team

    2018-01-01

    To date, marginally stable thermonuclear burning, evidenced as mHz X-ray flux oscillations, has been observed in only five accreting neutron star binaries, 4U 1636-536, 4U 1608-52, Aql X-1, 4U 1323-619 and Terzan 5 X-2. Here we report the discovery with NASA's Neutron Star Interior Composition Explorer (NICER) of such oscillations from the well-known X-ray burster GS 1826-24. NICER observed GS 1826-24 on 9 September, 2017 for a total exposure of about 4 ksec. Timing analysis revealed highly significant oscillations at a frequency of 8.2 mHz in two successive pointings. The oscillations have a fractional modulation amplitude of approximately 3% for photon energies less than 6 keV. The observed frequency is consistent with the range observed in the other mHz QPO systems, and indeed is slightly higher than the frequency measured in 4U 1636-536 below which mHz oscillations ceased and unstable burning (X-ray bursts) resumed. We discuss the mass accretion rate dependence of the oscillations as well as the X-ray spectrum as a function of pulsation phase. We place the observations in the context of the current theory of marginally stable burning and briefly discuss the potential for constraining neutron star properties using mHz oscillations.

  13. An Autonomous Wireless Sensor Node With Asynchronous ECG Monitoring in 0.18 μ m CMOS.

    PubMed

    Mansano, Andre L; Li, Yongjia; Bagga, Sumit; Serdijn, Wouter A

    2016-06-01

    The design of a 13.56 MHz/402 MHz autonomous wireless sensor node with asynchronous ECG monitoring for near field communication is presented. The sensor node consists of an RF energy harvester (RFEH), a power management unit, an ECG readout, a data encoder and an RF backscattering transmitter. The energy harvester supplies the system with 1.25 V and offers a power conversion efficiency of 19% from a -13 dBm RF source at 13.56 MHz. The power management unit regulates the output voltage of the RFEH to supply the ECG readout with VECG = 0.95 V and the data encoder with VDE = 0.65 V . The ECG readout comprises an analog front-end (low noise amplifier and programmable voltage to current converter) and an asynchronous level crossing ADC with 8 bits resolution. The ADC output is encoded by a pulse generator that drives a backscattering transmitter at 402 MHz. The total power consumption of the sensor node circuitry is 9.7 μ W for a data rate of 90 kb/s and a heart rate of 70 bpm. The chip has been designed in a 0.18 μm CMOS process and shows superior RF input power sensitivity and lower power consumption when compared to previous works.

  14. Energy-efficient human body communication receiver chipset using wideband signaling scheme.

    PubMed

    Song, Seong-Jun; Cho, Namjun; Kim, Sunyoung; Yoo, Hoi-Jun

    2007-01-01

    This paper presents an energy-efficient wideband signaling receiver for communication channels using the human body as a data transmission medium. The wideband signaling scheme with the direct-coupled interface provides the energy-efficient transmission of multimedia data around the human body. The wideband signaling receiver incorporates with a receiver AFE exploiting wideband symmetric triggering technique and an all-digital CDR circuit with quadratic sampling technique. The AFE operates at 10-Mb/s data rate with input sensitivity of -27dBm and the operational bandwidth of 200-MHz. The CDR recovers clock and data of 2-Mb/s at a bit error rate of 10(-7). The receiver chipset consumes only 5-mW from a 1-V supply, thereby achieving the bit energy of 2.5-nJ/bit.

  15. Periodic disruptions induced by high repetition rate femtosecond pulses on magnesium-oxide-doped lithium niobate surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Shuanggen; Kan, Hongli; Zhai, Kaili; Ma, Xiurong; Luo, Yiming; Hu, Minglie; Wang, Qingyue

    2017-02-01

    In this paper, we demonstrate the periodic disruption formation on magnesium-oxide-doped lithium niobate surfaces by a femtosecond fiber laser system with wavelength and repetition rate of 1040 nm and 52 MHz, respectively. Three main experimental conditions, laser average power, scanning speed, and orientation of sample were systematically studied. In particular, the ablation morphologies of periodic disruptions under different crystal orientations were specifically researched. The result shows that such disruptions consisting of a bamboo-like inner structure appears periodically for focusing on the surface of X-, Y- and Z-cut wafers, which are formed by a rapid quenching of the material. Meanwhile, due to the anisotropic property, the bamboo-like inner structures consist of a cavity only arise from X- and Z-cut orientation.

  16. On the Nature of the mHz X-ray Quasi-Periodic Oscillations from Ultraluminous X-ray source M82 X-1: Search for Timing-Spectral Correlations

    NASA Technical Reports Server (NTRS)

    Pasham, Dheeraj R.; Strohmayer, Tod E.

    2013-01-01

    Using all the archival XMM-Newton X-ray (3-10 keV) observations of the ultraluminous X-ray source (ULX) M82 X-1, we searched for a correlation between its variable mHz quasi-periodic oscillation (QPO) frequency and its hardness ratio (5-10 keV/3-5 keV), an indicator of the energy spectral power-law index. When stellar-mass black holes (StMBHs) exhibit type-C low-frequency QPOs (0.2-15 Hz), the centroid frequency of the QPO is known to correlate with the energy spectral index. The detection of such a correlation would strengthen the identification of M82 X-1's mHz QPOs as type-C and enable a more reliable mass estimate by scaling its QPO frequencies to those of type-C QPOs in StMBHs of known mass.We resolved the count rates and the hardness ratios of M82 X-1 and a nearby bright ULX (source 5/X42.3+59) through surface brightness modeling.We detected QPOs in the frequency range of 36-210 mHz during which M82 X-1's hardness ratio varied from 0.42 to 0.47. Our primary results are (1) that we do not detect any correlation between the mHz QPO frequency and the hardness ratio (a substitute for the energy spectral power-law index) and (2) similar to some accreting X-ray binaries, we find that M82 X-1's mHz QPO frequency increases with its X-ray count rate (Pearson's correlation coefficient = +0.97). The apparent lack of a correlation between the QPO centroid frequency and the hardness ratio poses a challenge to the earlier claims that the mHz QPOs of M82 X-1 are the analogs of the type-C low-frequency QPOs of StMBHs. On the other hand, it is possible that the observed relation between the hardness ratio and the QPO frequency represents the saturated portion of the correlation seen in type-C QPOs of StMBHs-in which case M82 X-1's mHz QPOs can still be analogous to type-C QPOs.

  17. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz.

    PubMed

    Sandoval, Ruben M; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-12-31

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a "default" communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band.

  18. Evaluating the More Suitable ISM Frequency Band for IoT-Based Smart Grids: A Quantitative Study of 915 MHz vs. 2400 MHz

    PubMed Central

    Sandoval, Ruben M.; Garcia-Sanchez, Antonio-Javier; Garcia-Sanchez, Felipe; Garcia-Haro, Joan

    2016-01-01

    IoT has begun to be employed pervasively in industrial environments and critical infrastructures thanks to its positive impact on performance and efficiency. Among these environments, the Smart Grid (SG) excels as the perfect host for this technology, mainly due to its potential to become the motor of the rest of electrically-dependent infrastructures. To make this SG-oriented IoT cost-effective, most deployments employ unlicensed ISM bands, specifically the 2400 MHz one, due to its extended communication bandwidth in comparison with lower bands. This band has been extensively used for years by Wireless Sensor Networks (WSN) and Mobile Ad-hoc Networks (MANET), from which the IoT technologically inherits. However, this work questions and evaluates the suitability of such a “default” communication band in SG environments, compared with the 915 MHz ISM band. A comprehensive quantitative comparison of these bands has been accomplished in terms of: power consumption, average network delay, and packet reception rate. To allow such a study, a dual-band propagation model specifically designed for the SG has been derived, tested, and incorporated into the well-known TOSSIM simulator. Simulation results reveal that only in the absence of other 2400 MHz interfering devices (such as WiFi or Bluetooth) or in small networks, is the 2400 MHz band the best option. In any other case, SG-oriented IoT quantitatively perform better if operating in the 915 MHz band. PMID:28042863

  19. Solar Power Satellite (SPS) fiber optic link assessment

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A feasibility demonstration of a 980 MHz fiber optic link for the Solar Power Satellite (SPS) phase reference distribution system was accomplished. A dual fiber-optic link suitable for a phase distribution frequency of 980 MHz was built and tested. The major link components include single mode injection laser diodes, avalanche photodiodes, and multimode high bandwidth fibers. Signal throughput was demonstrated to be stable and of high quality in all cases. For a typical SPS link length of 200 meters, the transmitted phase at 980 MHz varies approximately 2.5 degrees for every deg C of fiber temperature change. This rate is acceptable because of the link length compensation feature of the phase control design.

  20. Jitter and phase noise of ADPLL due to PSN with deterministic frequency

    NASA Astrophysics Data System (ADS)

    Deng, Xiaoying; Yang, Jun; Wu, Jianhui

    2011-09-01

    In this article, jitter and phase noise of all-digital phase-locked loop due to power supply noise (PSN) with deterministic frequency are analysed. It leads to the conclusion that jitter and phase noise heavily depend on the noise frequency. Compared with jitter, phase noise is much less affected by the deterministic PSN. Our method is utilised to study a CMOS ADPLL designed and simulated in SMIC 0.13 µm standard CMOS process. A comparison between the results obtained by our method and those obtained by simulation and measurement proves the accuracy of the predicted model. When the digital controlled oscillator was corrupted by PSN with 100 mVpk-pk, the measured jitters were 33.9 ps at the rate of fG = 192 MHz and 148.5 ps at the rate of fG = 40 MHz. However, the measured phase noise was exactly the same except for two impulses appearing at 192 and 40 MHz, respectively.

  1. Architecture and design of a 500-MHz gallium-arsenide processing element for a parallel supercomputer

    NASA Technical Reports Server (NTRS)

    Fouts, Douglas J.; Butner, Steven E.

    1991-01-01

    The design of the processing element of GASP, a GaAs supercomputer with a 500-MHz instruction issue rate and 1-GHz subsystem clocks, is presented. The novel, functionally modular, block data flow architecture of GASP is described. The architecture and design of a GASP processing element is then presented. The processing element (PE) is implemented in a hybrid semiconductor module with 152 custom GaAs ICs of eight different types. The effects of the implementation technology on both the system-level architecture and the PE design are discussed. SPICE simulations indicate that parts of the PE are capable of being clocked at 1 GHz, while the rest of the PE uses a 500-MHz clock. The architecture utilizes data flow techniques at a program block level, which allows efficient execution of parallel programs while maintaining reasonably good performance on sequential programs. A simulation study of the architecture indicates that an instruction execution rate of over 30,000 MIPS can be attained with 65 PEs.

  2. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Zamorano, M.; Torres-Silva, H.

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  3. Design of 1 MHz Solid State High Frequency Power Supply

    NASA Astrophysics Data System (ADS)

    Parmar, Darshan; Singh, N. P.; Gajjar, Sandip; Thakar, Aruna; Patel, Amit; Raval, Bhavin; Dhola, Hitesh; Dave, Rasesh; Upadhay, Dishang; Gupta, Vikrant; Goswami, Niranjan; Mehta, Kush; Baruah, Ujjwal

    2017-04-01

    High Frequency Power supply (HFPS) is used for various applications like AM Transmitters, metallurgical applications, Wireless Power Transfer, RF Ion Sources etc. The Ion Source for a Neutral beam Injector at ITER-India uses inductively coupled power source at High Frequency (∼1 MHz). Switching converter based topology used to generate 1 MHz sinusoidal output is expected to have advantages on efficiency and reliability as compared to traditional RF Tetrode tubes based oscillators. In terms of Power Electronics, thermal and power coupling issues are major challenges at such a high frequency. A conceptual design for a 200 kW, 1 MHz power supply and a prototype design for a 600 W source been done. The prototype design is attempted with Class-E amplifier topology where a MOSFET is switched resonantly. The prototype uses two low power modules and a ferrite combiner to add the voltage and power at the output. Subsequently solution with Class-D H-Bridge configuration have been evaluated through simulation where module design is stable as switching device do not participate in resonance, further switching device voltage rating is substantially reduced. The rating of the modules is essentially driven by the maximum power handling capacity of the MOSFETs and ferrites in the combiner circuit. The output passive network including resonance tuned network and impedance matching network caters for soft switching and matches the load impedance to 50ohm respectively. This paper describes the conceptual design of a 200 kW high frequency power supply and experimental results of the prototype 600 W, 1 MHz source.

  4. Identifying possible non-thermal effects of radio frequency energy on inactivating food microorganisms.

    PubMed

    Kou, Xiaoxi; Li, Rui; Hou, Lixia; Zhang, Lihui; Wang, Shaojin

    2018-03-23

    Radio frequency (RF) heating has been successfully used for inactivating microorganisms in agricultural and food products. Athermal (non-thermal) effects of RF energy on microorganisms have been frequently proposed in the literature, resulting in difficulties for developing effective thermal treatment protocols. The purpose of this study was to identify if the athermal inactivation of microorganisms existed during RF treatments. Escherichia coli and Staphylococcus aureus in apple juice and mashed potato were exposed to both RF and conventional thermal energies to compare their inactivation populations. A thermal death time (TDT) heating block system was used as conventional thermal energy source to simulate the same heating treatment conditions, involving heating temperature, heating rate and uniformity, of a RF treatment at a frequency of 27.12 MHz. Results showed that a similar and uniform temperature distribution in tested samples was achieved in both heating systems, so that the central sample temperature could be used as representative one for evaluating thermal inactivation of microorganisms. The survival patterns of two target microorganisms in two food samples were similar both for RF and heating block treatments since their absolute difference of survival populations was <1 log CFU/ml. The statistical analysis indicated no significant difference (P > 0.05) in inactivating bacteria between the RF and the heating block treatments at each set of temperatures. The solid temperature and microbial inactivation data demonstrated that only thermal effect of RF energy at 27.12 MHz was observed on inactivating microorganisms in foods. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Radiofrequency Electric Field Heating of Conductive Media: Understanding Aqueous and Nanoparticle Heating Mechanisms and a Method for Heating Optimization

    NASA Astrophysics Data System (ADS)

    Lara, Nadia Chantal

    Use of radiofrequency (RF) electric fields coupled with nanoparticles to enhance non-invasive hyperthermia in cancer cells and tumors sparked debate over the RF heating mechanisms of nanoparticles and the role of salts in heating. Under RF field exposure at 13.56 MHz, aqueous systems including electrolyte solutions, buffers, and blood, were shown to heat according to bulk material properties, regardless of composition. This universal aqueous heating behavior extended to suspensions of nanoparticles such as gold nanoparticles, full-length and ultra-short single-walled carbon nanotubes, and water-soluble fullerene derivatives. These suspensions displayed the same RF heating properties as saline solutions of the same conductivity, indicating that these nanoparticles themselves do not contribute to RF heating by any unique mechanism; rather, they modulate bulk conductivity, which in turn affects bulk RF heating. At 13.56 MHz, peak heating for an aqueous system occurs at a conductivity of 0.06 S/m, beyond which increases in conductivity result in reduced heating rates. Biologically relevant materials, such as blood, intra- and extracellular fluids, and most human tissues, exceed this peak heating conductivity, precluding the use of conductive materials for RF heating rate enhancement. Instead, kosmotropic or water-structuring materials, including sugars, glycols, zwitterionic molecules, and a water-soluble fullerene derivative, when added to blood or phosphate buffered saline reduced the bulk conductivity of these materials and enhanced their heating rates accordingly. A dielectric heating rate model taking into account the geometry of the sample under RF exposure was used to explain the experimental RF heating behavior of aqueous solutions and semi-aqueous materials, which generated distinct RF heating curves due to differences in bulk dielectric and physical properties.

  6. The artificial retina processor for track reconstruction at the LHC crossing rate

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-16

    We present results of an R&D study for a specialized processor capable of precisely reconstructing, in pixel detectors, hundreds of charged-particle tracks from high-energy collisions at 40 MHz rate. We apply a highly parallel pattern-recognition algorithm, inspired by studies of the processing of visual images by the brain as it happens in nature, and describe in detail an efficient hardware implementation in high-speed, high-bandwidth FPGA devices. This is the first detailed demonstration of reconstruction of offline-quality tracks at 40 MHz and makes the device suitable for processing Large Hadron Collider events at the full crossing frequency.

  7. Bandwidth tunable microwave photonic filter based on digital and analog modulation

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Zhang, Jie; Li, Qiang; Wang, Yubing; Sun, Xian; Dong, Wei; Zhang, Xindong

    2018-05-01

    A bandwidth tunable microwave photonic filter based on digital and analog modulation is proposed and experimentally demonstrated. The digital modulation is used to broaden the effective gain spectrum and the analog modulation is to get optical lines. By changing the symbol rate of data pattern, the bandwidth is tunable from 50 MHz to 700 MHz. The interval of optical lines is set according to the bandwidth of gain spectrum which is related to the symbol rate. Several times of bandwidth increase are achieved compared to a single analog modulation and the selectivity of the response is increased by 3.7 dB compared to a single digital modulation.

  8. A study of high density bit transition requirements versus the effects on BCH error correcting coding

    NASA Technical Reports Server (NTRS)

    Ingels, F.; Schoggen, W. O.

    1981-01-01

    Several methods for increasing bit transition densities in a data stream are summarized, discussed in detail, and compared against constraints imposed by the 2 MHz data link of the space shuttle high rate multiplexer unit. These methods include use of alternate pulse code modulation waveforms, data stream modification by insertion, alternate bit inversion, differential encoding, error encoding, and use of bit scramblers. The psuedo-random cover sequence generator was chosen for application to the 2 MHz data link of the space shuttle high rate multiplexer unit. This method is fully analyzed and a design implementation proposed.

  9. A spaceborne receiver for measuring electromagnetic field intensity

    NASA Technical Reports Server (NTRS)

    Reich, B. W.; Van Dusen, M. R.; Habib, E. J.

    1973-01-01

    Description of a very accurately controlled receiver for monitoring the electromagnetic radiations in both existing and projected space communication bands. Based on analysis of the existing and projected space communication bands, 108 to 174 MHz, 240 to 478 MHz, and 1535 to 1665 MHz were covered. The receiver achieves accurate control via a digitally tuned synthesizer and a wide range of digital control including frequency band coverage and gain control selection. Digital memory was provided to store 16 separate digital command instructions which can be programmed via a command data link. The receiver provides for transmission to the ground of both a predetection signal and signals in digital format, which in turn, were provided by sampling and analog-to-digital conversions.

  10. Liver antioxidant stores protect the brain from electromagnetic radiation (900 and 1800 MHz)-induced oxidative stress in rats during pregnancy and the development of offspring.

    PubMed

    Çetin, Hasan; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Pastacı, Nural; Özkaya, Mehmet Okan

    2014-12-01

    The present study determined the effects of mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) exposure on oxidative stress in the brain and liver as well as the element levels in growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their offspring were equally divided into three different groups: the control, 900 MHz, and 1800 MHz groups. The 900 MHz and 1800 MHz groups were exposed to EMR for 60 min/d during pregnancy and neonatal development. At the 4th, 5th, and 6th weeks of the experiment, brain samples were obtained. Brain and liver glutathione peroxidase activities, as well as liver vitamin A and β-carotene concentrations decreased in the EMR groups, although brain iron, vitamin A, and β-carotene concentrations increased in the EMR groups. In the 6th week, selenium concentrations in the brain decreased in the EMR groups. There were no statistically significant differences in glutathione, vitamin E, chromium, copper, magnesium, manganese, and zinc concentrations between the three groups. EMR-induced oxidative stress in the brain and liver was reduced during the development of offspring. Mobile phone-induced EMR could be considered as a cause of oxidative brain and liver injury in growing rats.

  11. Airborne RF Measurement System and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies were needed to evaluate the airspace around several airports. An RF signal measurement system was designed using a spectrum analyzer connected to an aircraft VHF/UHF navigation antenna installed on a small aircraft. This paper presents an overview of the RF measurement system and provides analysis of a sample of RF signal measurement data over a frequency range of 30 MHz to 1000 MHz.

  12. Simulation and performance of an artificial retina for 40 MHz track reconstruction

    DOE PAGES

    Abba, A.; Bedeschi, F.; Citterio, M.; ...

    2015-03-05

    We present the results of a detailed simulation of the artificial retina pattern-recognition algorithm, designed to reconstruct events with hundreds of charged-particle tracks in pixel and silicon detectors at LHCb with LHC crossing frequency of 40 MHz. Performances of the artificial retina algorithm are assessed using the official Monte Carlo samples of the LHCb experiment. We found performances for the retina pattern-recognition algorithm comparable with the full LHCb reconstruction algorithm.

  13. Profiler Support for Operations at Space Launch Ranges

    NASA Technical Reports Server (NTRS)

    Merceret, Francis; Wilfong, Timothy; Lambert, Winifred; Short, David; Decker, Ryan; Ward, Jennifer

    2006-01-01

    Accurate vertical wind profiles are essential to successful launch or landing. Wind changes can make it impossible to fly a desired trajectory or avoid dangerous vehicle loads, possibly resulting in loss of mission. Balloons take an hour to generate a profile up to 20 km, but major wind changes can occur in 20 minutes. Wind profilers have the temporal response to detect such last minute hazards. They also measure the winds directly overhead while balloons blow downwind. At the Eastern Range (ER), altitudes from 2 to 20 km are sampled by a 50-MHz profiler every 4 minutes. The surface to 3 km is sampled by five 915-MHz profilers every 15 minutes. The Range Safety office assesses the risk of potential toxic chemical dispersion. They use observational data and model output to estimate the spatial extent and concentration of substances dispersed within the boundary layer. The ER uses 915-MHz profilers as both a real time observation system and as input to dispersion models. The WR has similar plans. Wind profilers support engineering analyses for the Space Shuttle. The 50-IVl11z profiler was used recently to analyze changes in the low frequency wind and low vertical wavenumber content of wind profiles in the 3 to 15 km region of the atmosphere. The 915-MHz profiler network was used to study temporal wind change within the boundary layer.

  14. Precise measurement of dielectric anisotropy in ice Ih at 39 GHz

    NASA Astrophysics Data System (ADS)

    Matsuoka, Takeshi; Fujita, Shuji; Morishima, Shigenori; Mae, Shinji

    1997-03-01

    The dielectric permittivities parallel and perpendicular to the c axis (optic axis) of ice Ih were measured using an open resonator at 39 GHz in the temperature range 194-262 K. The dielectric anisotropy in ice at microwave frequencies is important for understanding remote sensing data in polar regions, obtained by ice radar and satellite-born microwave radar and radiometer. The measured samples were natural single-crystal ice collected from Mendenhall Glacier, Alaska. A very precise measurement was achieved by detecting two resonant peaks, one from the ordinary component and the other from the extraordinary component, simultaneously, from one sample. The real part of dielectric anisotropy, Δɛ'=ɛ∥c'-ɛ⊥c', at 39 GHz was 0.0339±0.0007 (1.07%±0.02%) at 252 K and slightly depended on temperature. Reference measurements at 1 MHz using parallel plate electrodes were also carried out. The measured dielectric anisotropy at microwave frequencies agrees very well with the value at 1 MHz. The absolute values of ɛ∥c' and ɛ⊥c' at 39 GHz were, respectively, smaller than those at 1 MHz and the difference was about 0.044 at 252 K. The results suggest that a small dispersion exists between GHz and MHz frequencies, but there is no frequency dependence in the value of anisotropy.

  15. Development of a Climatology of Vertically Complete Wind Profiles from Doppler Radar Wind Profiler Systems

    NASA Technical Reports Server (NTRS)

    Barbre, Robert E., Jr.

    2015-01-01

    This paper describes in detail the QC and splicing methodology for KSC's 50- and 915-MHz DRWP measurements that generates an extensive archive of vertically complete profiles from 0.20-18.45 km. The concurrent POR from each archive extends from April 2000 to December 2009. MSFC NE applies separate but similar QC processes to each of the 50- and 915-MHz DRWP archives. DRWP literature and data examination provide the basis for developing and applying the automated and manual QC processes on both archives. Depending on the month, the QC'ed 50- and 915-MHz DRWP archives retain 52-65% and 16-30% of the possible data, respectively. The 50- and 915-MHz DRWP QC archives retain 84-91% and 85-95%, respectively, of all the available data provided that data exist in the non- QC'ed archives. Next, MSFC NE applies an algorithm to splice concurrent measurements from both DRWP sources. Last, MSFC NE generates a composite profile from the (up to) five available spliced profiles to effectively characterize boundary layer winds and to utilize all possible 915-MHz DRWP measurements at each timestamp. During a given month, roughly 23,000-32,000 complete profiles exist from 0.25-18.45 km from the composite profiles' archive, and approximately 5,000- 27,000 complete profiles exist from an archive utilizing an individual 915-MHz DRWP. One can extract a variety of profile combinations (pairs, triplets, etc.) from this sample for a given application. The sample of vertically complete DRWP wind measurements not only gives launch vehicle customers greater confidence in loads and trajectory assessments versus using balloon output, but also provides flexibility to simulate different DOL situations across applicable altitudes. In addition to increasing sample size and providing more flexibility for DOL simulations in the vehicle design phase, the spliced DRWP database provides any upcoming launch vehicle program with the capability to utilize DRWP profiles on DOL to compute vehicle steering commands, provided the program applies the procedures that this report describes to new DRWP data on DOL. Decker et al. (2015) details how SLS is proposing to use DRWP data and splicing techniques on DOL. Although automation could enhance the current DOL 50-MHz DRWP QC process and could streamline any future DOL 915-MHz DRWP QC and splicing process, the DOL community would still require manual intervention to ensure that the vehicle only uses valid profiles. If a program desires to use high spatial resolution profiles, then the algorithm could randomly add high-frequency components to the DRWP profiles. The spliced DRWP database provides lots of flexibility in how one performs DOL simulations, and the algorithms that this report provides will assist the aerospace and atmospheric communities that are interested in utilizing the DRWP.

  16. Dielectric spectroscopy of SiO2, ZnO - nanoparticle loaded epoxy resin in the frequency range of 20 Hz to 2 MHz

    NASA Astrophysics Data System (ADS)

    Thakor, Sanketsinh; Rana, V. A.; Vankar, H. P.

    2017-05-01

    In present work, Bisphenol A-(epichlorhydrin); epoxy resin with hardener N(3-dimethylaminopropyl)-1,3-propylenediamine were used to determine the dielectric properties. Sample of the neat epoxy resin and nanoparticle loaded epoxy resin in the form of disc were prepared of different weight fraction. SiO2 and ZnO nanoparticles were taken as filler in the epoxy resin. Complex permittivity of the prepared samples was measured in the frequency range of 20 Hz to 2 MHz using precision LCR meter at room temperature. The charismatic change in dielectric behavior based on type and concentration of nanoparticle are discussed in detail.

  17. FPGA implementation of digital down converter using CORDIC algorithm

    NASA Astrophysics Data System (ADS)

    Agarwal, Ashok; Lakshmi, Boppana

    2013-01-01

    In radio receivers, Digital Down Converters (DDC) are used to translate the signal from Intermediate Frequency level to baseband. It also decimates the oversampled signal to a lower sample rate, eliminating the need of a high end digital signal processors. In this paper we have implemented architecture for DDC employing CORDIC algorithm, which down converts an IF signal of 70MHz (3G) to 200 KHz baseband GSM signal, with an SFDR greater than 100dB. The implemented architecture reduces the hardware resource requirements by 15 percent when compared with other architecture available in the literature due to elimination of explicit multipliers and a quadrature phase shifter for mixing.

  18. Femtosecond Laser Eyewear Protection: Measurements and Precautions

    PubMed Central

    Stromberg, Christopher J.; Hadler, Joshua A.; Alberding, Brian G.; Heilweil, Edwin J.

    2018-01-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti+3:Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications. PMID:29353984

  19. Femtosecond Laser Eyewear Protection: Measurements and Precautions.

    PubMed

    Stromberg, Christopher J; Hadler, Joshua A; Alberding, Brian G; Heilweil, Edwin J

    2017-11-01

    Ultrafast laser systems are becoming more widespread throughout the research and industrial communities yet eye protection for these high power, bright pulsed sources still require scrupulous characterization and testing before use. Femtosecond lasers, with pulses naturally possessing broad-bandwidth and high average power with variable repetition rate, can exhibit spectral side-bands and subtly changing center wavelengths, which may unknowingly affect eyewear safety protection. Pulse spectral characterization and power diagnostics are presented for a 80 MHz, Ti +3 :Sapphire, ≈ 800 nm, ≈40 femtosecond oscillator system. Power and spectral transmission for 22 test samples are measured to determine whether they fall within manufacturer specifications.

  20. Hardware/Software Issues for Video Guidance Systems: The Coreco Frame Grabber

    NASA Technical Reports Server (NTRS)

    Bales, John W.

    1996-01-01

    The F64 frame grabber is a high performance video image acquisition and processing board utilizing the TMS320C40 and TMS34020 processors. The hardware is designed for the ISA 16 bit bus and supports multiple digital or analog cameras. It has an acquisition rate of 40 million pixels per second, with a variable sampling frequency of 510 kHz to MO MHz. The board has a 4MB frame buffer memory expandable to 32 MB, and has a simultaneous acquisition and processing capability. It supports both VGA and RGB displays, and accepts all analog and digital video input standards.

  1. The Development of Phasemeter for Taiji Space Gravitational Wave Detection

    NASA Astrophysics Data System (ADS)

    Liu, Heshan; Luo, Ziren; Jin, Gang

    2018-05-01

    Taiji space gravitational wave detection utilizes the laser interferometer to convert the tiny distance change into the phase fluctuation of the beat note. As to realize the sensitivity of 1 pm/√ Hz, the phasemeter needs to calculate the phase with the precision of 2π μ rad/√ Hz in the frequency range of 0.1 mHz and 1 Hz. In this paper, we report recent progress of the phasemeter for Taiji. Noises which possibly affect the measurement sensitivity are tested and discussed, especially the sampling noise and the frequency jitter. Finally, the accuracy of the phasemeter is calibrated. The result shows that the sensitivity has reached the requirement of Taiji in the frequencies between 0.01 Hz and 1 Hz, 0.1 mHz-1 mHz. Noises in the range of 1 mHz and 0.01 Hz, which have not yet depressed well, are dominated by the clocking jitter and the thermal fluctuation.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrak, R.; Wildman, D.

    The key elements have been constructed for a fast chopper system capable of removing single 2.5 MeV proton bunches spaced at 325 MHz. The average chopping rate is ~ 1 MHz. The components include a pulse delaying microstrip structure for deflecting the beam, high voltage (1.2 kV) fast (ns rise time) pulsers, and an associated wideband combiner. Various designs for the deflecting structures have been studied. Measurements of the microstrip structures' coverage factors and pulse shapes are presented.

  3. Preliminary submillimeter spectroscopic measurements using a submillimeter heterodyne radiometer

    NASA Technical Reports Server (NTRS)

    Safren, H. G.; Stabnow, W. R.; Bufton, J. L.; Peruso, C. J.; Rossey, C. E.; Walker, H. E.

    1982-01-01

    A submillimeter heterodyne radiometer uses a submillimeter laser, pumped by a CO2 laser, as a local oscillator and a room temperature Schottky barrier diode as the first IF mixer. The radiometer can resolve spectral lines in the submillimeter region of the spectrum (arising from pure rotational molecular transitions) to within 0.3 MHz, using acousto-optic spectrum analyzer which measures the power spectrum by simultaneously sampling 0.3 MHz wide channels over a 100 MHz bandwidth spanning the line. Preliminary observations of eight spectral lines of H2O2, CO, NH3 and H2O, all lying in the 434-524 micrometer wavelength range are described. All eight lines were observed using two local oscillator frequencies obtained by operating the submillimeter laser with either methyl fluoride (CH3F) or formic acid (HCOOH) as the lasing gas. Sample calculations of line parameters from the observed data show good agreement with established values. One development goal is the size and weight reduction of the package to make it suitable for balloon or shuttle experiments to detect trace gases in the upper atmosphere.

  4. Effect of marination in gravy on the radio frequency and microwave processing properties of beef.

    PubMed

    Basaran-Akgul, Nese; Rasco, Barbara A

    2015-02-01

    Dielectric properties (the dielectric constant (ε') and the dielectric loss factor (ε″)) and the penetration depth of raw eye of round beef Semitendinosus muscle, raw beef marinated in gravy, raw beef cooked in gravy, and gravy alone were determined as a function of the temperature (20-130 °C) and frequency (27-1,800 MHz). Both ε' and ε″ values increased as the temperature increased at low frequencies (27 and 40 MHz). At high frequencies (915 and 1,800 MHz), ε' showed a 50 % decrease while ε″ increased nearly three fold with increasing temperature in the range from 20 to 130 °C. ε' increased gradually while ε″ increased five fold when the temperature increased from 20 to 130 °C. Both ε' and ε″ of all samples decreased with increase in frequency. Marinating the beef in gravy dramatically increased the ε″ values, particularly at the lower frequencies. Power penetration depth of all samples decreased with increase temperature and frequency. These results are expected to provide useful data for modeling dielectric heating processes of marinated muscle food.

  5. A search for radio emission from exoplanets around evolved stars

    NASA Astrophysics Data System (ADS)

    O'Gorman, E.; Coughlan, C. P.; Vlemmings, W.; Varenius, E.; Sirothia, S.; Ray, T. P.; Olofsson, H.

    2018-04-01

    The majority of searches for radio emission from exoplanets have to date focused on short period planets, i.e., the so-called hot Jupiter type planets. However, these planets are likely to be tidally locked to their host stars and may not generate sufficiently strong magnetic fields to emit electron cyclotron maser emission at the low frequencies used in observations (typically ≥150 MHz). In comparison, the large mass-loss rates of evolved stars could enable exoplanets at larger orbital distances to emit detectable radio emission. Here, we first show that the large ionized mass-loss rates of certain evolved stars relative to the solar value could make them detectable with the LOw Frequency ARray (LOFAR) at 150 MHz (λ = 2 m), provided they have surface magnetic field strengths >50 G. We then report radio observations of three long period (>1 au) planets that orbit the evolved stars β Gem, ι Dra, and β UMi using LOFAR at 150 MHz. We do not detect radio emission from any system but place tight 3σ upper limits of 0.98, 0.87, and 0.57 mJy on the flux density at 150 MHz for β Gem, ι Dra, and β UMi, respectively. Despite our non-detections these stringent upper limits highlight the potential of LOFAR as a tool to search for exoplanetary radio emission at meter wavelengths.

  6. New method in muon-hadron absorption on Thx DUO2 nano material structure at 561 MHz quantum gyro-magnetic

    NASA Astrophysics Data System (ADS)

    Hardiyanto, M.; Ermawaty, I. R.

    2018-01-01

    We present an experimental of muan-hadron tunneling chain investigation with new methods of Thx DUO2 nano structure based on Josephson’s tunneling and Abrikosov-Balseiro-Russel (ABR) formulation with quantum quadrupole interacting with a strongly localized high gyro-magnetic optical field as encountered in high-resolution near-field optical microscopy for 1.2 nano meter lambda-function. The strong gradients of these localized gyro-magnetic fields suggest that higher-order multipolar interactions will affect the standard magnetic quadrupole transition rates in 1.8 x 103 currie/mm fuel energy in nuclear moderator pool and selection rules with quatum dot. For muan-hadron absorption in Josephson’s tunnelling quantum quadrupole in the strong confinement limit we calculated the inter band of gyro-magnetic quadrupole absorption rate and the associated selection rules. Founded that the magnetic quadrupole absorption rate is comparable with the absorption rate calculated in the gyro-magneticdipole approximation of ThxDUO2 nano material structure. This implies that near-field optical techniques can extend the range of spectroscopic measurements for 545 MHz at quantum gyro-magnetic field until 561 MHz deployment quantum field at B around 455-485 tesla beyond the standard dipole approximation. However, we also show that spatial resolution could be improved by the selective excitation of ABR formulation in quantum quadrupole transitions.

  7. Mobile phone radiation alters proliferation of hepatocarcinoma cells.

    PubMed

    Ozgur, Elcin; Guler, Goknur; Kismali, Gorkem; Seyhan, Nesrin

    2014-11-01

    This study investigated the effects of intermittent exposure (15 min on, 15 min off for 1, 2, 3, or 4 h, at a specific absorption rate of 2 W/kg) to enhanced data rates for global system for mobile communication evolution-modulated radiofrequency radiation (RFR) at 900- and 1,800-MHz frequencies on the viability of the Hepatocarcinoma cells (Hep G2). Hep G2 cell proliferation was measured by a colorimetric assay based on the cleavage of the tetrazolium salt WST-1 by mitochondrial dehydrogenases in viable cells. Cell injury was evaluated by analyzing the levels of lactate dehydrogenase (LDH) and glucose released from lysed cells into the culture medium. Morphological observation of the nuclei was carried out by 4',6-diamidino-2-phenylindole (DAPI) staining using fluorescence microscopy. In addition, TUNEL assay was performed to confirm apoptotic cell death. It was observed that cell viability, correlated with the LDH and glucose levels, changed according to the frequency and duration of RFR exposure. Four-hour exposure produced more pronounced effects than the other exposure durations. 1,800-MHz RFR had a larger impact on cell viability and Hep G2 injury than the RFR at 900 MHz. Morphological observations also supported the biochemical results indicating that most of the cells showed irregular nuclei pattern determined by using the DAPI staining, as well as TUNEL assay which shows DNA damage especially in the cells after 4 h of exposure to 1,800-MHz RFR. Our results indicate that the applications of 900- and 1,800-MHz (2 W/kg) RFR cause to decrease in the proliferation of the Hep G2 cells after 4 h of exposure. Further studies will be conducted on other frequency bands of RFR and longer duration of exposure.

  8. Measurements of the Properties of Garnet Material for Tuning a 2nd Harmonic Cavity for the Fermilab Booster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madrak, R. L.; Pellico, W. A.; Romanov, G.

    2016-01-01

    A perpendicularly biased 2nd harmonic cavity is being designed and built for the Fermilab Booster, to help with injection and extraction. Tunable accelerating cavities were previously designed and prototyped at LANL, TRIUMF, and SSCL for use at 45-60 MHz (LANL at 50-84 MHz). The required frequency range for FNAL is 76 - 106 MHz. The garnet material chosen for the tuner is AL-800. To reliably model the cavity, its static permeability and loss tangent must be well known. As this information is not supplied by the vendor or in publications of previous studies, a first order evaluation of these propertiesmore » was made using material samples. This paper summarizes the results of the corresponding measurements« less

  9. Spectrally efficient digitized radio-over-fiber system with k-means clustering-based multidimensional quantization.

    PubMed

    Zhang, Lu; Pang, Xiaodan; Ozolins, Oskars; Udalcovs, Aleksejs; Popov, Sergei; Xiao, Shilin; Hu, Weisheng; Chen, Jiajia

    2018-04-01

    We propose a spectrally efficient digitized radio-over-fiber (D-RoF) system by grouping highly correlated neighboring samples of the analog signals into multidimensional vectors, where the k-means clustering algorithm is adopted for adaptive quantization. A 30  Gbit/s D-RoF system is experimentally demonstrated to validate the proposed scheme, reporting a carrier aggregation of up to 40 100 MHz orthogonal frequency division multiplexing (OFDM) channels with quadrate amplitude modulation (QAM) order of 4 and an aggregation of 10 100 MHz OFDM channels with a QAM order of 16384. The equivalent common public radio interface rates from 37 to 150  Gbit/s are supported. Besides, the error vector magnitude (EVM) of 8% is achieved with the number of quantization bits of 4, and the EVM can be further reduced to 1% by increasing the number of quantization bits to 7. Compared with conventional pulse coding modulation-based D-RoF systems, the proposed D-RoF system improves the signal-to-noise-ratio up to ∼9  dB and greatly reduces the EVM, given the same number of quantization bits.

  10. Using Pulse Width Modulation for Wireless Transmission of Neural Signals in Multichannel Neural Recording Systems

    PubMed Central

    Yin, Ming; Ghovanloo, Maysam

    2013-01-01

    We have used a well-known technique in wireless communication, pulse width modulation (PWM) of time division multiplexed (TDM) signals, within the architecture of a novel wireless integrated neural recording (WINeR) system. We have evaluated the performance of the PWM-based architecture and indicated its accuracy and potential sources of error through detailed theoretical analysis, simulations, and measurements on a setup consisting of a 15-channel WINeR prototype as the transmitter and two types of receivers; an Agilent 89600 vector signal analyzer and a custom wideband receiver, with 36 and 75 MHz of maximum bandwidth, respectively. Furthermore, we present simulation results from a realistic MATLAB-Simulink model of the entire WINeR system to observe the system behavior in response to changes in various parameters. We have concluded that the 15-ch WINeR prototype, which is fabricated in a 0.5-μm standard CMOS process and consumes 4.5 mW from ±1.5 V supplies, can acquire and wirelessly transmit up to 320 k-samples/s to a 75-MHz receiver with 8.4 bits of resolution, which is equivalent to a wireless data rate of ~ 2.26 Mb/s. PMID:19497823

  11. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bandsmore » pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.« less

  12. Mechanisms of high-regularity periodic structuring of silicon surface by sub-MHz repetition rate ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Gnilitskyi, Iaroslav; Gruzdev, Vitaly; Bulgakova, Nadezhda M.; Mocek, Tomáš; Orazi, Leonardo

    2016-10-01

    Silicon is one of the most abundant materials which is used in many areas of modern research and technology. A variety of those applications require surface nanopatterning with minimum structure defects. However, the high-quality nanostructuring of large areas of silicon surface at industrially acceptable speed is still a challenge. Here, we report a rapid formation of highly regular laser-induced periodic surface structures (HR-LIPSS) in the regime of strong ablation by infrared femtosecond laser pulses at sub-MHz repetition rate. Parameters of the laser-surface interactions and obtained experimental results suggest an important role of electrostatically assisted bond softening in initiating the HR-LIPSS formation.

  13. 47 CFR 27.17 - Discontinuance of service in the 1695-1710 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2155-2180 MHz, and 2180-2200 MHz bands. 27... service in the 1695-1710 MHz, 1755-1780 MHz, 1915-1920 MHz, 1995-2000 MHz, 2000-2020 MHz, 2155-2180 MHz... MHz, 2000-2020 MHz, 2155-2180 MHz, and 2180-2200 MHz bands will automatically terminate, without...

  14. All-semiconductor high-speed akinetic swept-source for OCT

    NASA Astrophysics Data System (ADS)

    Minneman, Michael P.; Ensher, Jason; Crawford, Michael; Derickson, Dennis

    2011-12-01

    A novel swept-wavelength laser for optical coherence tomography (OCT) using a monolithic semiconductor device with no moving parts is presented. The laser is a Vernier-Tuned Distributed Bragg Reflector (VT-DBR) structure exhibiting a single longitudinal mode. All-electronic wavelength tuning is achieved at a 200 kHz sweep repetition rate, 20 mW output power, over 100 nm sweep width and coherence length longer than 40 mm. OCT point-spread functions with 45- 55 dB dynamic range are demonstrated; lasers at 1550 nm, and now 1310 nm, have been developed. Because the laser's long-term tuning stability allows for electronic sample trigger generation at equal k-space intervals (electronic k-clock), the laser does not need an external optical k-clock for measurement interferometer sampling. The non-resonant, allelectronic tuning allows for continuously adjustable sweep repetition rates from mHz to 100s of kHz. Repetition rate duty cycles are continuously adjustable from single-trigger sweeps to over 99% duty cycle. The source includes a monolithically integrated power leveling feature allowing flat or Gaussian power vs. wavelength profiles. Laser fabrication is based on reliable semiconductor wafer-scale processes, leading to low and rapidly decreasing cost of manufacture.

  15. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.

    PubMed

    He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei

    2015-01-01

    A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Subarcsecond international LOFAR radio images of Arp 220 at 150 MHz. A kpc-scale star forming disk surrounding nuclei with shocked outflows

    NASA Astrophysics Data System (ADS)

    Varenius, E.; Conway, J. E.; Martí-Vidal, I.; Aalto, S.; Barcos-Muñoz, L.; König, S.; Pérez-Torres, M. A.; Deller, A. T.; Moldón, J.; Gallagher, J. S.; Yoast-Hull, T. M.; Horellou, C.; Morabito, L. K.; Alberdi, A.; Jackson, N.; Beswick, R.; Carozzi, T. D.; Wucknitz, O.; Ramírez-Olivencia, N.

    2016-09-01

    Context. Arp 220 is the prototypical ultra luminous infrared galaxy (ULIRG). Despite extensive studies, the structure at MHz-frequencies has remained unknown because of limits in spatial resolution. Aims: This work aims to constrain the flux and shape of radio emission from Arp 220 at MHz frequencies. Methods: We analyse new observations with the International Low Frequency Array (LOFAR) telescope, and archival data from the Multi-Element Radio Linked Interferometer Network (MERLIN) and the Karl G. Jansky Very Large Array (VLA). We model the spatially resolved radio spectrum of Arp 220 from 150 MHz to 33 GHz. Results: We present an image of Arp 220 at 150 MHz with resolution 0.̋65 × 0.̋35, sensitivity 0.15 mJy beam-1, and integrated flux density 394 ± 59 mJy. More than 80% of the detected flux comes from extended (6''≈ 2.2 kpc) steep spectrum (α = -0.7) emission, likely from star formation in the molecular disk surrounding the two nuclei. We find elongated features extending 0.3'' (110 pc) and 0.9'' (330 pc) from the eastern and western nucleus respectively, which we interpret as evidence for outflows. The extent of radio emission requires acceleration of cosmic rays far outside the nuclei. We find that a simple three component model can explain most of the observed radio spectrum of the galaxy. When accounting for absorption at 1.4 GHz, Arp 220 follows the FIR/radio correlation with q = 2.36, and we estimate a star formation rate of 220 M⊙ yr-1. We derive thermal fractions at 1 GHz of less than 1% for the nuclei, which indicates that a major part of the UV-photons are absorbed by dust. Conclusions: International LOFAR observations shows great promise to detect steep spectrum outflows and probe regions of thermal absorption. However, in LIRGs the emission detected at 150 MHz does not necessarily come from the main regions of star formation. This implies that high spatial resolution is crucial for accurate estimates of star formation rates for such galaxies at 150 MHz. The reduced images at 150 MHz and 1.4 GHz presented in this paper are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/593/A86

  17. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate.

    PubMed

    DeWalt, Emma L; Sullivan, Shane Z; Schmitt, Paul D; Muir, Ryan D; Simpson, Garth J

    2014-08-19

    Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches.

  18. High speed superconducting nanowire single-photon detector with nine interleaved nanowires

    NASA Astrophysics Data System (ADS)

    Huang, Jia; Zhang, Weijun; You, Lixing; Zhang, Chengjun; Lv, Chaolin; Wang, Yong; Liu, Xiaoyu; Li, Hao; Wang, Zhen

    2018-07-01

    Count rate (CR) is one of the key parameters of superconducting nanowire single-photon detectors (SNSPDs). The practical SNSPDs usually have a CR of a few MHz to a few tens of MHz owing to the large kinetic inductance originating from the long nanowire, which is necessary for effectively coupling the photons. A feasible approach to decrease the kinetic inductance and consequently increase the detection speed is to replace a long single nanowire with multiple individual nanowires in an array. In this study, we report an SNSPD of nine interleaved nanowires with 70% system detection efficiency (SDE) and 200 Hz dark count rate at the low-photon-flux limit of 1550 nm. Owing to the small dead time (<6 ns) of each nanowire, the SNSPD achieved a maximum CR of 0.93 GHz at a photon flux of 1.26 × 1010 photons s‑1 with an SDE of ∼7.4%, and a CR of 200 MHz with an SDE of over 50%. Furthermore, a photon number resolvability of up to nine photons was also demonstrated.

  19. Influence of the pore fluid on the phase velocity in bovine trabecular bone In Vitro: Prediction of the biot model

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il

    2013-01-01

    The present study aims to investigate the influence of the pore fluid on the phase velocity in bovine trabecular bone in vitro. The frequency-dependent phase velocity was measured in 20 marrow-filled and water-filled bovine femoral trabecular bone samples. The mean phase velocities at frequencies between 0.6 and 1.2 MHz exhibited significant negative dispersions for both the marrow-filled and the water-filled samples. The magnitudes of the dispersions showed no significant differences between the marrow-filled and the water-filled samples. In contrast, replacement of marrow by water led to a mean increase in the phase velocity of 27 m/s at frequencies from 0.6 to 1.2 MHz. The theoretical phase velocities of the fast wave predicted by using the Biot model for elastic wave propagation in fluid-saturated porous media showed good agreements with the measurements.

  20. Influence of Sample Size of Polymer Materials on Aging Characteristics in the Salt Fog Test

    NASA Astrophysics Data System (ADS)

    Otsubo, Masahisa; Anami, Naoya; Yamashita, Seiji; Honda, Chikahisa; Takenouchi, Osamu; Hashimoto, Yousuke

    Polymer insulators have been used in worldwide because of some superior properties; light weight, high mechanical strength, good hydrophobicity etc., as compared with porcelain insulators. In this paper, effect of sample size on the aging characteristics in the salt fog test is examined. Leakage current was measured by using 100 MHz AD board or 100 MHz digital oscilloscope and separated three components as conductive current, corona discharge current and dry band arc discharge current by using FFT and the current differential method newly proposed. Each component cumulative charge was estimated automatically by a personal computer. As the results, when the sample size increased under the same average applied electric field, the peak values of leakage current and each component current increased. Especially, the cumulative charges and the arc discharge length of dry band arc discharge increased remarkably with the increase of gap length.

  1. Experimental analysis of a TEM plane transmission line for DNA studies at 900 MHz EM fields

    NASA Astrophysics Data System (ADS)

    Belloni, F.; Doria, D.; Lorusso, A.; Nassisi, V.; Velardi, L.; Alifano, P.; Monaco, C.; Talà, A.; Tredici, M.; Rainò, A.

    2006-07-01

    A suitable plane transmission line was developed and its behaviour analysed at 900 MHz radiofrequency fields to study DNA mutability and the repair of micro-organisms. In this work, utilizing such a device, we investigated the behaviour of DNA mutability and repair of Escherichia coli strains. The transmission line was very simple and versatile in changing its characteristic resistance and field intensity by varying its sizes. In the absence of cell samples inside the transmission line, the relative modulation of the electric and/or magnetic field was ±31% with respect to the mean values, allowing the processing of more samples at different exposure fields in a single run. A slight decrease in spontaneous mutability to rifampicin-resistance of the E. coli JC411 strain was demonstrated in mismatch-repair proficient samples exposed to the radio-frequency fields during their growth on solid medium.

  2. Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced risks on oxidative stress and elements in kidney and testis of rats during pregnancy and the development of offspring.

    PubMed

    Özorak, Alper; Nazıroğlu, Mustafa; Çelik, Ömer; Yüksel, Murat; Özçelik, Derviş; Özkaya, Mehmet Okan; Çetin, Hasan; Kahya, Mehmet Cemal; Kose, Seyit Ali

    2013-12-01

    The present study was designed to determine the effects of both Wi-Fi (2.45 GHz)- and mobile phone (900 and 1800 MHz)-induced electromagnetic radiation (EMR) on oxidative stress and trace element levels in the kidney and testis of growing rats from pregnancy to 6 weeks of age. Thirty-two rats and their 96 newborn offspring were equally divided into four different groups, namely, control, 2.45 GHz, 900 MHz, and 1800 MHz groups. The 2.45 GHz, 900 MHz, and 1,800 MHz groups were exposed to EMR for 60 min/day during pregnancy and growth. During the fourth, fifth, and sixth weeks of the experiment, kidney and testis samples were taken from decapitated rats. Results from the fourth week showed that the level of lipid peroxidation in the kidney and testis and the copper, zinc, reduced glutathione (GSH), glutathione peroxidase (GSH-Px), and total antioxidant status (TAS) values in the kidney decreased in the EMR groups, while iron concentrations in the kidney as well as vitamin A and vitamin E concentrations in the testis increased in the EMR groups. Results for fifth-week samples showed that iron, vitamin A, and β-carotene concentrations in the kidney increased in the EMR groups, while the GSH and TAS levels decreased. The sixth week results showed that iron concentrations in the kidney and the extent of lipid peroxidation in the kidney and testis increased in the EMR groups, while copper, TAS, and GSH concentrations decreased. There were no statistically significant differences in kidney chromium, magnesium, and manganese concentrations among the four groups. In conclusion, Wi-Fi- and mobile phone-induced EMR caused oxidative damage by increasing the extent of lipid peroxidation and the iron level, while decreasing total antioxidant status, copper, and GSH values. Wi-Fi- and mobile phone-induced EMR may cause precocious puberty and oxidative kidney and testis injury in growing rats.

  3. Bandwidth Efficient Modulation and Coding Techniques for NASA's Existing Ku/Ka-Band 225 MHz Wide Service

    NASA Technical Reports Server (NTRS)

    Gioannini, Bryan; Wong, Yen; Wesdock, John

    2005-01-01

    The National Aeronautics and Space Administration (NASA) has recently established the Tracking and Data Relay Satellite System (TDRSS) K-band Upgrade Project (TKUP), a project intended to enhance the TDRSS Ku-band and Ka-band Single Access Return 225 MHz (Ku/KaSAR-225) data service by adding the capability to process bandwidth efficient signal design and to replace the White Sand Complex (WSC) KSAR high data rate ground equipment and high rate switches which are nearing obsolescence. As a precursor to this project, a modulation and coding study was performed to identify signal structures which maximized the data rate through the Ku/KaSAR-225 channel, minimized the required customer EIRP and ensured acceptable hardware complexity on the customer platform. This paper presents the results and conclusions of the TKUP modulation and coding study.

  4. Behavioral study and design of a digital interpolator filter for wireless reconfigurable transmitters

    NASA Astrophysics Data System (ADS)

    Ferragina, V.; Frassone, A.; Ghittori, N.; Malcovati, P.; Vigna, A.

    2005-06-01

    The behavioral analysis and the design in a 0.13 μm CMOS technology of a digital interpolator filter for wireless applications are presented. The proposed block is designed to be embedded in the baseband part of a reconfigurable transmitter (WLAN 802.11a, UMTS) to operate as a sampling frequency boost between the digital signal processor (DSP) and the digital-to-analog converter (DAC). In recent trends the DAC of such transmitters usually operates at high conversion frequencies (to allow a relaxed implementation of the following analog reconstruction filter), while the DSP output flows at low frequencies (typically Nyquist rate). Thus a block able to increase the digital data rate, like the one proposed, is needed before the DAC. For example, in the WLAN case, an interpolation factor of 4 has been used, allowing the digital data frequency to raise from 20 MHz to 80 MHz. Using a time-domain model of the TX chain, a behavioral analysis has been performed to determine the impact of the filter performance on the quality of the signal at the antenna. This study has led to the evaluation of the z-domain filter transfer function, together with the specifications concerning a finite precision implementation. A VHDL description has allowed an automatic synthesis of the circuit in a 0.13 μm CMOS technology (with a supply voltage of 1.2 V). Post-synthesis simulations have confirmed the effectiveness of the proposed study.

  5. Techniques for Microwave Near-Field Quantum Control of Trapped Ions

    DTIC Science & Technology

    2013-01-31

    counts. Each DDS (Analog Devices AD9858) can generate signals at frequencies to 400 MHz with a frequency resolution of 0.233 Hz and phase resolution...fast, two- channel DAC is used to generate arbitrary waveforms with a 50-MHz update rate, a voltage range from −10 V to 10 V, and a resolution of 0.305...mV. This DAC is programed via USB and triggered by the data acquisition FPGA . We use three DDS modules as sources for three frequency octupling

  6. Observations of the Hydroxyl Radical in C/2013 US10 (Catalina) at 18 cm Wavelength

    NASA Astrophysics Data System (ADS)

    Wang, Zhen; Chen, Xi; Gao, Feng; Zhang, Shaobo; Zheng, Xing-Wu; Ip, Wing-Huen; Wang, Na; Liu, Xiang; Zuo, Xiu-Ting; Gou, Wei; Chang, Sheng-Qi

    2017-12-01

    The hydroxyl (OH) radical produced by photodissociation of water molecule is one of the most important indicators for cometary outgassing activity. The absorption lines of the OH radical at 1665 and 1667 MHz in the coma of comet C/2013 US10 Catalina were detected between 2015 December 3 and 5 by the Tian Ma Radio Telescope of Shanghai Astronomical Observatory. The source flux intensity was derived to be about -209 mJy km s-1 and -86 mJy km s-1 at 1665 MHz and 1667 MHz, respectively. The corresponding gas production rate was estimated to be (8.78 ± 1.47) × 1028 H2O s-1 and (5.94 ± 1.27) × 1028 H2O s-1, accordingly.

  7. Effect of Low Level Subchronic Microwave Radiation on Rat Brain.

    PubMed

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Nasare, Namita; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar; Mediratta, Pramod Kumari

    2016-12-01

    The present study was designed to investigate the effects of subchronic low level microwave radiation (MWR) on cognitive function, heat shock protein 70 (HSP70) level and DNA damage in brain of Fischer rats. Experiments were performed on male Fischer rats exposed to microwave radiation for 90 days at three different frequencies: 900, 1800, and 2450 MHz. Animals were divided into 4 groups: Group I: Sham exposed, Group II: animals exposed to microwave radiation at 900 MHz and specific absorption rate (SAR) 5.953 × 10-4 W/kg, Group III: animals exposed to 1800 MHz at SAR 5.835 × 10-4 W/kg and Group IV: animals exposed to 2450 MHz at SAR 6.672 × 10-4 W/kg. All the animals were tested for cognitive function using elevated plus maze and Morris water maze at the end of the exposure period and subsequently sacrificed to collect brain tissues. HSP70 levels were estimated by ELISA and DNA damage was assessed using alkaline comet assay. Microwave exposure at 900-2450 MHz with SAR values as mentioned above lead to decline in cognitive function, increase in HSP70 level and DNA damage in brain. The results of the present study suggest that low level microwave exposure at frequencies 900, 1800, and 2450 MHz may lead to hazardous effects on brain. Copyright © 2016 The Editorial Board of Biomedical and Environmental Sciences. Published by China CDC. All rights reserved.

  8. ATS-6 - Radio Beacon Experiment: The first years. [ionospheric and satellite-to-ground electron content

    NASA Technical Reports Server (NTRS)

    Davies, K.; Fritz, R. B.; Grubb, R. N.; Jones, J. E.

    1975-01-01

    The Radio Beacon Experiment aboard Applications Technology Satellite-6 (ATS-6) is designed to measure the total electron content and the ionospheric electron content between the satellite and ground. The spaceborne beacon transmits signals on frequencies of 40, 140, and 360 MHz with amplitude modulations of 1 MHz and/or 0.1 MHz for the measurement of modulation phase, Faraday rotation, and amplitude. The modulation phase delays are calibrated in the satellite and in the ground equipment, and the polarization of the emitted signals are predetermined by standard antenna range techniques. The design of the ATS-6 receiver in Boulder, Colorado, is discussed. The antennae are of the short backfire type described by Ehrenspeck (1967), with nominal gains of 13, 19, and 22 dB at 40, 140, and 360 MHz, respectively. Data recording and overall supervision of the receiver is carried out by a 16-bit minicomputer with 8 k of memory. Overall performance of the system is satisfactory. Sample data on the monthly median hourly values of the total electron content, plasmospheric content, and shape factor show distinct seasonal and diurnal variations.

  9. Deep in vivo two-photon microscopy with a low cost custom built mode-locked 1060 nm fiber laser

    PubMed Central

    Perillo, Evan P.; McCracken, Justin E.; Fernée, Daniel C.; Goldak, John R.; Medina, Flor A.; Miller, David R.; Yeh, Hsin-Chih; Dunn, Andrew K.

    2016-01-01

    Here we demonstrate that a mode-locked ytterbium fiber laser for two-photon fluorescence microscopy can be built for $13,000. The laser emits at a wavelength of 1060 nm with a usable average power of 1 W at a repetition rate of 40 MHz and a compressed pulse width of 81 fs at the sample. The laser is used to obtain deep in vivo two-color images of layer-V pyramidal neurons expressing YFP and vasculature labelled with Texas Red at depths up to 900 µm. The sub-1 µm features of dendritic spines can be resolved at a 200 µm depth. PMID:26977343

  10. Velocimetry of fast microscopic liquid jets by nanosecond dual-pulse laser illumination for megahertz X-ray free-electron lasers.

    PubMed

    Grünbein, Marie Luise; Shoeman, Robert L; Doak, R Bruce

    2018-03-19

    To conduct X-ray Free-Electron Laser (XFEL) measurements at megahertz (MHz) repetition rates, sample solution must be delivered in a micron-sized liquid free-jet moving at up to 100 m/s. This exceeds by over a factor of two the jet speeds measurable with current high-speed camera techniques. Accordingly we have developed and describe herein an alternative jet velocimetry based on dual-pulse nanosecond laser illumination. Three separate implementations are described, including a small laser-diode system that is inexpensive and highly portable. We have also developed and describe analysis techniques to automatically and rapidly extract jet speed from dual-pulse images.

  11. 1800 MHz in vitro exposure device for experimental studies on the effects of mobile communication systems.

    PubMed

    Ardoino, L; Lopresto, V; Mancini, S; Pinto, R; Lovisolo, G A

    2004-01-01

    A wire patch cell (WPC) operating at the uplink frequency band of GSM 1800 MHz has been designed for in vitro experiments with the aim of investigating the possible biological effects of electromagnetic radiation associated with cellular phones. The 1800 MHz WPC design is a direct descendant of the original 900 MHz WPC introduced by Laval et al. This system provides a homogeneous specific absorption rate distribution, using four 3.5 cm petri dishes simultaneously. Numerical dosimetry has been performed using a commercial code (CST Microwave Studio), in order to evaluate accurately the efficiency of the structure (in terms of W kg(-1) per 1 W input power) and the distribution in the chosen biological target. The numerical results have been confirmed by experimental measurements performed by measuring thermal increase due to a high power impulse. The efficiency of the structure is 1.25 +/- 25% W kg(-1) per 1 W input power higher than the efficiency of the 900 MHz WPC. A few adjustments have been made in order to use the WPC in a standard incubator and to avoid thermal increases related to the radio frequency exposure. This exposure system has been adopted for the experiments scheduled in the RAMP and GUARD projects (VFPE).

  12. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, J.R.

    1997-02-11

    A method and apparatus are disclosed for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register. 15 figs.

  13. Method and apparatus for high speed data acquisition and processing

    DOEpatents

    Ferron, John R.

    1997-01-01

    A method and apparatus for high speed digital data acquisition. The apparatus includes one or more multiplexers for receiving multiple channels of digital data at a low data rate and asserting a multiplexed data stream at a high data rate, and one or more FIFO memories for receiving data from the multiplexers and asserting the data to a real time processor. Preferably, the invention includes two multiplexers, two FIFO memories, and a 64-bit bus connecting the FIFO memories with the processor. Each multiplexer receives four channels of 14-bit digital data at a rate of up to 5 MHz per channel, and outputs a data stream to one of the FIFO memories at a rate of 20 MHz. The FIFO memories assert output data in parallel to the 64-bit bus, thus transferring 14-bit data values to the processor at a combined rate of 40 MHz. The real time processor is preferably a floating-point processor which processes 32-bit floating-point words. A set of mask bits is prestored in each 32-bit storage location of the processor memory into which a 14-bit data value is to be written. After data transfer from the FIFO memories, mask bits are concatenated with each stored 14-bit data value to define a valid 32-bit floating-point word. Preferably, a user can select any of several modes for starting and stopping direct memory transfers of data from the FIFO memories to memory within the real time processor, by setting the content of a control and status register.

  14. Optimizing the Galileo space communication link

    NASA Technical Reports Server (NTRS)

    Statman, J. I.

    1994-01-01

    The Galileo mission was originally designed to investigate Jupiter and its moons utilizing a high-rate, X-band (8415 MHz) communication downlink with a maximum rate of 134.4 kb/sec. However, following the failure of the high-gain antenna (HGA) to fully deploy, a completely new communication link design was established that is based on Galileo's S-band (2295 MHz), low-gain antenna (LGA). The new link relies on data compression, local and intercontinental arraying of antennas, a (14,1/4) convolutional code, a (255,M) variable-redundancy Reed-Solomon code, decoding feedback, and techniques to reprocess recorded data to greatly reduce data losses during signal acquisition. The combination of these techniques will enable return of significant science data from the mission.

  15. Adaptive 84.44-190 Mbit/s phosphor-LED wireless communication utilizing no blue filter at practical transmission distance.

    PubMed

    Yeh, C H; Chow, C W; Chen, H Y; Chen, J; Liu, Y L

    2014-04-21

    We propose and experimentally demonstrate a white-light phosphor-LED visible light communication (VLC) system with an adaptive 84.44 to 190 Mbit/s 16 quadrature-amplitude-modulation (QAM) orthogonal-frequency-division-multiplexing (OFDM) signal utilizing bit-loading method. Here, the optimal analogy pre-equalization design is performed at LED transmitter (Tx) side and no blue filter is used at the Rx side. Hence, the ~1 MHz modulation bandwidth of phosphor-LED could be extended to 30 MHz. In addition, the measured bit error rates (BERs) of < 3.8 × 10(-3) [forward error correction (FEC) threshold] at different measured data rates can be achieved at practical transmission distances of 0.75 to 2 m.

  16. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    NASA Astrophysics Data System (ADS)

    Angerer, Andreas; Astner, Thomas; Wirtitsch, Daniel; Sumiya, Hitoshi; Onoda, Shinobu; Isoya, Junichi; Putz, Stefan; Majer, Johannes

    2016-07-01

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 1017 nitrogen vacancy electron spins, we achieve a collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.

  17. A digital acquisition and elaboration system for nuclear fast pulse detection

    NASA Astrophysics Data System (ADS)

    Esposito, B.; Riva, M.; Marocco, D.; Kaschuck, Y.

    2007-03-01

    A new digital acquisition and elaboration system has been developed and assembled in ENEA-Frascati for the direct sampling of fast pulses from nuclear detectors such as scintillators and diamond detectors. The system is capable of performing the digital sampling of the pulses (200 MSamples/s, 14-bit) and the simultaneous (compressed) data transfer for further storage and software elaboration. The design (FPGA-based) is oriented to real-time applications and has been developed in order to allow acquisition with no loss of pulses and data storage for long-time intervals (tens of s at MHz pulse count rates) without the need of large on-board memory. A dedicated pulse analysis software, written in LabVIEWTM, performs the treatment of the acquired pulses, including pulse recognition, pile-up rejection, baseline removal, pulse shape particle separation and pulse height spectra analysis. The acquisition and pre-elaboration programs have been fully integrated with the analysis software.

  18. The design and realization of a three-dimensional video system by means of a CCD array

    NASA Astrophysics Data System (ADS)

    Boizard, J. L.

    1985-12-01

    Design features and principles and initial tests of a prototype three-dimensional robot vision system based on a laser source and a CCD detector array is described. The use of a laser as a coherent illumination source permits the determination of the relief using one emitter since the location of the source is a known quantity with low distortion. The CCD signal detector array furnishes an acceptable signal/noise ratio and, when wired to an appropriate signal processing system, furnishes real-time data on the return signals, i.e., the characteristic points of an object being scanned. Signal processing involves integration of 29 kB of data per 100 samples, with sampling occurring at a rate of 5 MHz (the CCDs) and yielding an image every 12 msec. Algorithms for filtering errors from the data stream are discussed.

  19. Evaluation of MRI issues for a new neurological implant, the Sensor Reservoir.

    PubMed

    Shellock, Frank G; Knebel, Jörg; Prat, Angelina D

    2013-09-01

    A new neurological implant, the Sensor-Reservoir, was developed to provide a relative measurement of ICP, which permits a noninvasive technique to detect and localize occlusions in ventricular drainage systems and, thus, to identify mechanical damage to shunt valves. The "reservoir" of this device can be used to administer medication or a contrast agent, to extract cerebral spinal fluid (CSF), and with the possibility of directly measuring ICP. The Sensor-Reservoir was evaluated to identify possible MRI-related issues at 1.5-T/64-MHz and 3-T/128-MHz. Standard testing techniques were utilized to evaluate magnetic field interactions (i.e., translational attraction and torque), MRI-related heating, and artifacts at 3-T for the Sensor-Reservoir. In addition, 12 samples of the Sensor-Reservoir underwent testing to determine if the function of these devices was affected by exposures to various MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. Magnetic field interactions for the Sensor-Reservoir were not substantial. The heating results indicated a highest temperature rise of 1.8 °C, which poses no patient risks. Artifacts were relatively small in relation to the size and shape of the Sensor-Reservoir, but may interfere diagnostically if the area of interest is near the device. All devices were unaffected by exposures to MRI conditions at 1.5-T/64-MHz and 3-T/128-MHz. When specific guidelines are followed, the Sensor-Reservoir is "MR conditional" for patients undergoing MRI examinations at 3-T or less. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Conformational study of 13C-enriched fibroin in the solid state, using the cross polarization nuclear magnetic resonance method.

    PubMed

    Fujiwara, T; Kobayashi, Y; Kyogoku, Y; Kataoka, K

    1986-01-05

    Silk fibroin with the alanyl carboxyl carbon enriched with 13C was obtained by giving a diet containing 13C-enriched alanine to the larvae of Bombyx mori and Antheraea pernyi at the fifth instar. Sericin-free fibroin fibers were prepared from cocoons, and gut was made from the liquid silk in the gland. The final 13C content was about 13%. Cross polarization/magic angle sample spinning spectra at 25 MHz and 75 MHz were measured for each sample at different orientations. Spectra were simulated using the principal values and orientations of the shielding tensor in the alanine crystal. The results indicate that the beta-structure of the fibroin may be a little more flattened than the typical pleated sheet beta-structure.

  1. LLRF System for the Fermilab Muon g-2 and Mu2e Projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varghese, P.; Chase, B.

    The Mu2e experiment measures the conversion rate of muons into electrons and the Muon g-2 experiment measures the muon magnetic moment. Both experiments require 53 MHz batches of 8 GeV protons to be re-bunched into 150 ns, 2.5 MHz pulses for extraction to the g-2 target for Muon g-2 and to a delivery ring with a single RF cavity running at 2.36 MHz for Mu2e. The LLRF system for both experiments is implemented in a SOC FPGA board integrated into the existing 53 MHz LLRF system in a VXI crate. The tight timing requirements, the large frequency difference and themore » non-harmonic relationship between the two RF systems provide unique challenges to the LLRF system design to achieve the required phase alignment specifications for beam formation, transfers and beam extinction between pulses. The new LLRF system design for both projects is described and the results of the initial beam commissioning tests for the Muon g-2 experiment are presented.« less

  2. High frame rate imaging system for limited diffraction array beam imaging with square-wave aperture weightings.

    PubMed

    Lu, Jian-Yu; Cheng, Jiqi; Wang, Jing

    2006-10-01

    A general-purpose high frame rate (HFR) medical imaging system has been developed. This system has 128 independent linear transmitters, each of which is capable of producing an arbitrary broadband (about 0.05-10 MHz) waveform of up to +/- 144 V peak voltage on a 75-ohm resistive load using a 12-bit/40-MHz digital-to-analog converter. The system also has 128 independent, broadband (about 0.25-10 MHz), and time-variable-gain receiver channels, each of which has a 12-bit/40-MHz analog-to-digital converter and up to 512 MB of memory. The system is controlled by a personal computer (PC), and radio frequency echo data of each channel are transferred to the same PC via a standard USB 2.0 port for image reconstructions. Using the HFR imaging system, we have developed a new limited-diffraction array beam imaging method with square-wave aperture voltage weightings. With this method, in principle, only one or two transmitters are required to excite a fully populated two-dimensional (2-D) array transducer to achieve an equivalent dynamic focusing in both transmission and reception to reconstruct a high-quality three-dimensional image without the need of the time delays of traditional beam focusing and steering, potentially simplifying the transmitter subsystem of an imager. To validate the method, for simplicity, 2-D imaging experiments were performed using the system. In the in vitro experiment, a custom-made, 128-element, 0.32-mm pitch, 3.5-MHz center frequency linear array transducer with about 50% fractional bandwidth was used to reconstruct images of an ATS 539 tissue-mimicking phantom at an axial distance of 130 mm with a field of view of more than 90 degrees. In the in vivo experiment of a human heart, images with a field of view of more than 90 degrees at 120-mm axial distance were obtained with a 128-element, 2.5-MHz center frequency, 0.15-mm pitch Acuson V2 phased array. To ensure that the system was operated under the limits set by the U.S. Food and Drug Administration, the mechanical index, thermal index, and acoustic output were measured. Results show that higher-quality images can be reconstructed with the square-wave aperture weighting method due to an increased penetration depth as compared to the exact weighting method developed previously, and a frame rate of 486 per second was achieved at a pulse repetition frequency of about 5348 Hz for the human heart.

  3. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3  MHz frequency at atmospheric pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com; Department of Physics, University of Mumbai, Kalina, Santacruz; Sahasrabudhe, S. N.

    2014-01-15

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variationmore » in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.« less

  4. Ultrasound triggered drug delivery with liposomal nested microbubbles.

    PubMed

    Wallace, N; Wrenn, S P

    2015-12-01

    When ultrasound contrast agent microbubbles are nested within a liposome, damage to the liposome membrane caused by both stable and inertial cavitation of the microbubble allows for release of the aqueous core of the liposome. Triggered release was not accomplished unless microbubbles were present within the liposome. Leakage was tested using fluorescence assays developed specifically for this drug delivery vehicle and qualitative measurements using an optical microscope. These studies were done using a 1 MHz focused ultrasound transducer while varying parameters including peak negative ultrasound pressure, average liposome diameter, and microbubble concentration. Two regimes exist for membrane disruption caused by cavitating microbubbles. A faster release rate, as well as permanent membrane damage are seen for samples exposed to high pressure (2.1-3.7 MPa). A slower release rate and dilation/temporary poration are characteristic of stable cavitation for low pressure studies (0.54-1.7 MPa). Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Repetition rate dependency of low-density plasma effects during femtosecond-laser-based surgery of biological tissue

    NASA Astrophysics Data System (ADS)

    Kuetemeyer, K.; Baumgart, J.; Lubatschowski, H.; Heisterkamp, A.

    2009-11-01

    Femtosecond laser based nanosurgery of biological tissue is usually done in two different regimes. Depending on the application, low kHz repetition rates above the optical breakdown threshold or high MHz repetition rates in the low-density plasma regime are used. In contrast to the well understood optical breakdown, mechanisms leading to dissection below this threshold are not well known due to the complexity of chemical effects with high numbers of interacting molecules. Furthermore, the laser repetition rate may influence their efficiency. In this paper, we present our study on low-density plasma effects in biological tissue depending on repetition rate by static exposure of porcine corneal stroma to femtosecond pulses. We observed a continuous increase of the laser-induced damage with decreasing repetition rate over two orders of magnitude at constant numbers of applied laser pulses or constant laser pulse energies. Therefore, low repetition rates in the kHz regime are advantageous to minimize the total delivered energy to biological tissue during femtosecond laser irradiation. However, due to frequent excessive damage in this regime directly above the threshold, MHz repetition rates are preferable to create nanometer-sized cuts in the low-density plasma regime.

  6. Extracting third order optical nonlinearities of Mn(III)-Phthalocyanine chloride using high repetition rate femtosecond pulses

    NASA Astrophysics Data System (ADS)

    Makhal, Krishnandu; Mathur, Paresh; Maurya, Sidharth; Goswami, Debabrata

    2017-02-01

    Third order nonlinearities of Mn(III)-Phthalocyanine chloride in dimethyl-sulphoxide under 50 fs pulses, operating at 94 MHz, by eliminating cumulative thermal effects have been investigated and reported by us. Modifications were done in data acquisition during Z-scan experiment, which included recording of time evolution waveform traces in an oscilloscope and not collection of Z versus transmission and utilization of a chopper of a suitable duty cycle. Time evolution traces were further processed analytically through MatLab® programming, which yielded Z-scan traces similar to what was obtained with single shot 50 fs pulse. We observed reverse saturable absorption at 800 nm owing to excited state absorption. We show that the nonlinear refractive index (γ) and nonlinear absorption coefficient (β) are over estimated almost 100 times, when MHz pulses are used compared to a situation, where thermo-optical nonlinearities are accounted. Illumination and dark periods are carefully set in a way, so that the sample is able to completely recover its initial temperature before arrival of the next pulse. Magnitudes of γ and β were found to be -(6.5-4.9) × 10-16 m2/W and (5.4-6.2) × 10-10 m/W under the MHz condition, whereas they were -(0.18-2.2) × 10-18 m2/W and (9.5-15) × 10-12 m/W under the thermally managed condition, respectively. To reveal the associated fast nonlinearity, femtosecond transient absorption experiment was performed, which inferred excited state absorption and ground state bleaching across the 450-780 nm region. Dynamics associated with these processes are reported along with fluorescence lifetime obtained through the TCSPC technique. Structure optimization using TDDFT calculations and HOMO-LUMO gaps with orbital pictures are also shown.

  7. Nonlinear excitation fluorescence microscopy: source considerations for biological applications

    NASA Astrophysics Data System (ADS)

    Wokosin, David L.

    2008-02-01

    Ultra-short-pulse solid-state laser sources have improved contrast within fluorescence imaging and also opened new windows of investigation in biological imaging applications. Additionally, the pulsed illumination enables harmonic scattering microscopy which yields intrinsic structure, symmetry and contrast from viable embryos, cells and tissues. Numerous human diseases are being investigated by the combination of (more) intact dynamic tissue imaging of cellular function with gene-targeted specificity and electrophysiology context. The major limitation to more widespread use of multi-photon microscopy has been the complete system cost and added complexity above and beyond commercial camera and confocal systems. The current status of all-solid-state ultrafast lasers as excitation sources will be reviewed since these lasers offer tremendous potential for affordable, reliable, "turnkey" multiphoton imaging systems. This effort highlights the single box laser systems currently commercially available, with defined suggestions for the ranges for individual laser parameters as derived from a biological and fluorophore limited perspective. The standard two-photon dose is defined by 800nm, 10mW, 200fs, and 80Mhz - at the sample plane for tissue culture cells, i.e. after the full scanning microscope system. Selected application-derived excitation wavelengths are well represented by 700nm, 780nm, ~830nm, ~960nm, 1050nm, and 1250nm. Many of the one-box lasers have fixed or very limited excitation wavelengths available, so the lasers will be lumped near 780nm, 800nm, 900nm, 1050nm, and 1250nm. The following laser parameter ranges are discussed: average power from 200mW to 2W, pulse duration from 70fs to 700fs, pulse repetition rate from 20MHz to 200MHz, with the laser output linearly polarized with an extinction ratio at least 100:1.

  8. Sub-20-ps pulses from a passively Q-switched microchip laser at 1  MHz repetition rate.

    PubMed

    Mehner, Eva; Bernard, Benjamin; Giessen, Harald; Kopf, Daniel; Braun, Bernd

    2014-05-15

    We present a 50 μm Nd3+:YVO4 microchip laser that is passively Q-switched by a semiconductor saturable absorber mirror. To reduce handling problems caused by the small crystal dimensions, the 50 μm Nd3+:YVO4 crystal is optically bonded to an undoped YVO4 crystal of a length of about 500 μm. By using a saturable absorber mirror with an effective modulation depth of >10% the system is able to deliver 16 ps pulses at a repetition rate of up to 1.0 MHz. The average laser power is 16 mW at 1064 nm. To our knowledge these are the shortest Q-switched pulses ever reported from a solid-state laser. The limits in terms of pulse width, repetition rate, output power, and system stability are discussed. Additionally, continuous-wave behavior is analyzed. Experimental data is compared with the simulation results of the coupled rate equations.

  9. High-Frequency (>50 MHz) Medical Ultrasound Linear Arrays Fabricated From Micromachined Bulk PZT Materials

    PubMed Central

    Liu, Changgeng; Zhou, Qifa; Djuth, Frank T.; Shung, K. Kirk

    2012-01-01

    This paper describes the development and characterization of a high-frequency (65-MHz) ultrasound transducer linear array. The array was built from bulk PZT which was etched using an optimized chlorine-based plasma dry-etching process. The median etch rate of 8 μm/h yielded a good profile (wall) angle (>83°) and a reasonable processing time for etch depths up to 40 μm (which corresponds to a 50-MHz transducer). A backing layer with an acoustic impedance of 6 MRayl and a front-end polymer matching layer yielded a transducer bandwidth of 40%. The major parameters of the transducer have been characterized. The two-way insertion loss and crosstalk between adjacent channels at the center frequency are 26.5 and −25 dB, respectively. PMID:24626041

  10. Optical rotation of levitated spheres in high vacuum

    NASA Astrophysics Data System (ADS)

    Monteiro, Fernando; Ghosh, Sumita; van Assendelft, Elizabeth C.; Moore, David C.

    2018-05-01

    A circularly polarized laser beam is used to levitate and control the rotation of microspheres in high vacuum. At low pressure, rotation frequencies as high as 6 MHz are observed for birefringent vaterite spheres, limited by centrifugal stresses. Due to the extremely low damping in high vacuum, the controlled optical rotation of amorphous SiO2 spheres is also observed at rates above several MHz. At 10-7 mbar, a damping time of 6 ×104 s is measured for a 10 -μ m -diam SiO2 sphere. No additional damping mechanisms are observed above gas damping, indicating that even longer damping times may be possible with operation at lower pressure. The controlled optical rotation of microspheres at MHz frequencies with low damping, including for materials that are not intrinsically birefringent, provides a tool for performing precision measurements using optically levitated systems.

  11. Time stretch dispersive Fourier transform based single-shot pulse-by-pulse spectrum measurement using a pulse-repetition-frequency-variable gain-switched laser

    NASA Astrophysics Data System (ADS)

    Furukawa, Hideaki; Makino, Takeshi; Wang, Xiaomin; Kobayashi, Tetsuya; Asghari, Mohammad H.; Trinh, Paul; Jalali, Bahram; Man, Wai Sing; Tsang, Kwong Shing; Wada, Naoya

    2018-02-01

    The time stretch dispersive Fourier Transform (TS-DFT) technique based on a fiber chromatic dispersion is a powerful tool for pulse-by-pulse single-shot spectrum measurement for highrepetition rate optical pulses. The distributed feedback laser diode (DFB-LD) with the gain switch operation can flexibly change the pulse repetition frequency (PRF). In this paper, we newly introduce a semiconductor gain-switched DFB-LD operating from 1 MHz up to 1 GHz PRF into the TS-DFT based spectrum measurement system to improve the flexibility and the operability. The pulse width can be below 2 ps with a pulse compression technique. We successfully measure the spectrum of each optical pulse at 1 GHz, 100 MHz, and 10 MHz PRF, and demonstrate the flexibility of the measurement system.

  12. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna

    PubMed Central

    Di Serio, Adolfo; Barton, John; Rodencal, Matthew; Dunlop, Gary; O’Flynn, Brendan

    2017-01-01

    Internet of Things (IoT) technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2) monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of −2.37 dBi in free-space and −6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices. PMID:29271941

  13. Potential of Sub-GHz Wireless for Future IoT Wearables and Design of Compact 915 MHz Antenna.

    PubMed

    Di Serio, Adolfo; Buckley, John; Barton, John; Newberry, Robert; Rodencal, Matthew; Dunlop, Gary; O'Flynn, Brendan

    2017-12-22

    Internet of Things (IoT) technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2) monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of - 2.37 dBi in free-space and - 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

  14. An "artificial retina" processor for track reconstruction at the full LHC crossing rate

    NASA Astrophysics Data System (ADS)

    Abba, A.; Bedeschi, F.; Caponio, F.; Cenci, R.; Citterio, M.; Cusimano, A.; Fu, J.; Geraci, A.; Grizzuti, M.; Lusardi, N.; Marino, P.; Morello, M. J.; Neri, N.; Ninci, D.; Petruzzo, M.; Piucci, A.; Punzi, G.; Ristori, L.; Spinella, F.; Stracka, S.; Tonelli, D.; Walsh, J.

    2016-07-01

    We present the latest results of an R&D study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.

  15. An "artificial retina" processor for track reconstruction at the full LHC crossing rate

    DOE PAGES

    Abba, A.; F. Bedeschi; Caponio, F.; ...

    2015-10-23

    Here, we present the latest results of an R&D; study for a specialized processor capable of reconstructing, in a silicon pixel detector, high-quality tracks from high-energy collision events at 40 MHz. The processor applies a highly parallel pattern-recognition algorithm inspired to quick detection of edges in mammals visual cortex. After a detailed study of a real-detector application, demonstrating that online reconstruction of offline-quality tracks is feasible at 40 MHz with sub-microsecond latency, we are implementing a prototype using common high-bandwidth FPGA devices.

  16. GPU Acceleration of DSP for Communication Receivers.

    PubMed

    Gunther, Jake; Gunther, Hyrum; Moon, Todd

    2017-09-01

    Graphics processing unit (GPU) implementations of signal processing algorithms can outperform CPU-based implementations. This paper describes the GPU implementation of several algorithms encountered in a wide range of high-data rate communication receivers including filters, multirate filters, numerically controlled oscillators, and multi-stage digital down converters. These structures are tested by processing the 20 MHz wide FM radio band (88-108 MHz). Two receiver structures are explored: a single channel receiver and a filter bank channelizer. Both run in real time on NVIDIA GeForce GTX 1080 graphics card.

  17. Acoustic cavitation of individual ultrasound contrast agent microbubbles confined in capillaries

    NASA Astrophysics Data System (ADS)

    Almaqwashi, Ali; McIntyre, David; Ammi, Azzdine

    2011-10-01

    Ultrasound targeted therapies mainly rely on the inertial cavitation of ultrasound contrast agent (UCA) microbubbles. Our objective is to determine the cavitation acoustic pressure threshold for the destruction of UCA microbubbles inside cellulose capillaries. Acoustic emission from individual Optison microbubbles confined inside a 200-μm diameter capillary was detected using a passive cavitation detection system. Excitation signals from a 2.25 MHz transmitter were applied to the microbubbles while their acoustic emission was detected by a broadband 15 MHz receiver. Time traces were recorded (100 MHz sampling, 12- bit), and frequency-domain analysis of the received signals was performed to characterize microbubble cavitation. The cavitation acoustic pressure threshold was found to be 1 MPa inside the capillary in comparison with ˜0.7 MPa previously reported for unconfined UCA microbubbles. This work provides a clearer understanding of the role of ultrasound contrast agent dynamics inside a capillary.

  18. Continuous-wave Submillimeter-wave Gyrotrons

    PubMed Central

    Han, Seong-Tae; Griffin, Robert G.; Hu, Kan-Nian; Joo, Chan-Gyu; Joye, Colin D.; Mastovsky, Ivan; Shapiro, Michael A.; Sirigiri, Jagadishwar R.; Temkin, Richard J.; Torrezan, Antonio C.; Woskov, Paul P.

    2007-01-01

    Recently, dynamic nuclear polarization enhanced nuclear magnetic resonance (DNP/NMR) has emerged as a powerful technique to obtain significant enhancements in spin spectra from biological samples. For DNP in modern NMR systems, a high power continuous-wave source in the submillimeter wavelength range is necessary. Gyrotrons can deliver tens of watts of CW power at submillimeter wavelengths and are well suited for use in DNP/NMR spectrometers. To date, 140 GHz and 250 GHz gyrotrons are being employed in DNP spectrometer experiments at 200 MHz and 380 MHz at MIT. A 460 GHz gyrotron, which has operated with 8 W of CW output power, will soon be installed in a 700 MHz NMR spectrometer. High power radiation with good spectral and spatial resolution from these gyrotrons should provide NMR spectrometers with high signal enhancement through DNP. Also, these tubes operating at submillimeter wavelengths should have important applications in research in physics, chemistry, biology, materials science and medicine. PMID:17404605

  19. Online and Offline Pattern Recognition in PANDA

    NASA Astrophysics Data System (ADS)

    Boca, Gianluigi

    2016-11-01

    PANDA is one of the four experiments that will run at the new facility FAIR that is being built in Darmstadt, Germany. It is a fixed target experiment: a beam of antiprotons collides on a jet proton target (the maximum center of mass energy is 5.46 GeV). The interaction rate at the startup will be 2MHz with the goal of reaching 20MHz at full luminosity. The beam of antiprotons will be essentially continuous. PANDA will have NO hardware trigger but only a software trigger, to allow for maximum flexibility in the physics program. All those characteristics are severe challenges for the reconstruction code that 1) must be fast, since it has to be validated up to 20MHz interaction rate; 2) must be able to reject fake tracks caused by the remnant hits, belonging to previous or later events in some slow detectors, for example the straw tubes in the central region. The Pattern Recognition (PR) of PANDA will have to run both online to achieve a first fast selection, and offline, at lower rate, for a more refined selection. In PANDA the PR code is continuously evolving; this contribution shows the present status. I will give an overview of three examples of PR following different strategies and/or implemented on different hardware (FPGA, GPUs, CPUs) and, when available, I will report the performances.

  20. A flexible master oscillator for a pulse-burst laser system

    NASA Astrophysics Data System (ADS)

    Den Hartog, D. J.; Young, W. C.

    2015-12-01

    A new master oscillator is being installed in the pulse-burst laser system used for high-rep-rate Thomson scattering on the MST experiment. This new master oscillator will enable pulse repetition rates up to 1 MHz, with the ability to program a burst of pulses with arbitrary and varying time separation between each pulse. In addition, the energy of each master oscillator pulse can be adjusted to compensate for gain variations in the power amplifier section of the laser system. This flexibility is accomplished by chopping a CW laser source with a high-bandwidth acousto-optic modulator (AOM). The laser source is a Laser Quantum ventus 1064 diode-pumped solid-state laser with continuous output power variable from 100 to 500 mW. The 1064 nm, 2.7 mm diameter polarized beam is focused into the gallium phosphide crystal of a Brimrose AOM, which deflects the beam by approximately 60 mR when driven by the 400 MHz fixed frequency driver. Beam deflection is controlled by a simple digital input pulse, and is capable of producing deflected pulses of less than 20 ns width at repetition rates much greater than 1 MHz. These deflected pulses from the output of the AOM are collimated and propagated into the laser amplifier system, where they will be amplified to ~ 2 J/pulse and injected into the MST plasma.

  1. Challenges and advantages in wide-field optical coherence tomography angiography imaging of the human retinal and choroidal vasculature at 1.7-MHz A-scan rate

    NASA Astrophysics Data System (ADS)

    Poddar, Raju; Migacz, Justin V.; Schwartz, Daniel M.; Werner, John S.; Gorczynska, Iwona

    2017-10-01

    We present noninvasive, three-dimensional, depth-resolved imaging of human retinal and choroidal blood circulation with a swept-source optical coherence tomography (OCT) system at 1065-nm center wavelength. Motion contrast OCT imaging was performed with the phase-variance OCT angiography method. A Fourier-domain mode-locked light source was used to enable an imaging rate of 1.7 MHz. We experimentally demonstrate the challenges and advantages of wide-field OCT angiography (OCTA). In the discussion, we consider acquisition time, scanning area, scanning density, and their influence on visualization of selected features of the retinal and choroidal vascular networks. The OCTA imaging was performed with a field of view of 16 deg (5 mm×5 mm) and 30 deg (9 mm×9 mm). Data were presented in en face projections generated from single volumes and in en face projection mosaics generated from up to 4 datasets. OCTA imaging at 1.7 MHz A-scan rate was compared with results obtained from a commercial OCTA instrument and with conventional ophthalmic diagnostic methods: fundus photography, fluorescein, and indocyanine green angiography. Comparison of images obtained from all methods is demonstrated using the same eye of a healthy volunteer. For example, imaging of retinal pathology is presented in three cases of advanced age-related macular degeneration.

  2. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology.

    PubMed

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J S; Kraus, Martin F; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E; Fujimoto, James G

    2013-07-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated.

  3. Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology

    PubMed Central

    Tsai, Tsung-Han; Potsaid, Benjamin; Tao, Yuankai K.; Jayaraman, Vijaysekhar; Jiang, James; Heim, Peter J. S.; Kraus, Martin F.; Zhou, Chao; Hornegger, Joachim; Mashimo, Hiroshi; Cable, Alex E.; Fujimoto, James G.

    2013-01-01

    We developed a micromotor based miniature catheter with an outer diameter of 3.2 mm for ultrahigh speed endoscopic swept source optical coherence tomography (OCT) using a vertical cavity surface-emitting laser (VCSEL) at a 1 MHz axial scan rate. The micromotor can rotate a micro-prism at several hundred frames per second with less than 5 V drive voltage to provide fast and stable scanning, which is not sensitive to the bending of the catheter. The side-viewing probe can be pulled back to acquire a three-dimensional (3D) data set covering a large area on the specimen. The VCSEL provides a high axial scan rate to support dense sampling under high frame rate operation. Using a high speed data acquisition system, in vivo 3D-OCT imaging in the rabbit GI tract and ex vivo imaging of a human colon specimen with 8 μm axial resolution, 8 μm lateral resolution and 1.2 mm depth range in tissue at a frame rate of 400 fps was demonstrated. PMID:23847737

  4. Population transfer and rapid passage effects in a low pressure gas using a continuous wave quantum cascade laser.

    PubMed

    McCormack, E A; Lowth, H S; Bell, M T; Weidmann, D; Ritchie, G A D

    2012-07-21

    A continuous wave quantum cascade laser (cw-QCL) operating at 10 μm has been used to record absorption spectra of low pressure samples of OCS in an astigmatic Herriott cell. As a result of the frequency chirp of the laser, the spectra show clearly the effects of rapid passage on the absorption line shape. At the low chirp rates that can be obtained with the cw-QCL, population transfer between rovibrational quantum states is predicted to be much more efficient than in typical pulsed QCL experiments. This optical pumping is investigated by solving the Maxwell Bloch equations to simulate the propagation of the laser radiation through an inhomogeneously broadened two-level system. The calculated absorption profiles show good quantitative agreement with those measured experimentally over a range of chirp rates and optical thicknesses. It is predicted that at a low chirp rate of 0.13 MHz ns(-1), the population transfer between rovibrational quantum states is 12%, considerably more than that obtained at the higher chirp rates utilised in pulsed QCL experiments.

  5. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    PubMed

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2017-06-01

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  6. On the selection of high-z quasars using LOFAR observations

    NASA Astrophysics Data System (ADS)

    Retana-Montenegro, Edwin; Röttgering, Huub

    2018-03-01

    We present a method to identify candidate quasars which combines optical/infrared color selection with radio detections from the Low Frequency ARray (LOFAR) at 150MHz. We apply this {method} in a region of 9 square degrees located in the Boötes field, with a wealth of multi-wavelength data. Our LOFAR imaging in the central region reaches a rms noise of ˜50μJy with a resolution of 5''. This is so deep that we also routinely, `radio-quiet' quasars. We use quasar spectroscopy from the literature to calculate the completeness and efficiency of our selection method. We conduct our analysis in two redshift intervals, 1-1.0 sources can be detected in the WSRT-Boötes map, we find that the spectral index distribution of the 21 quasars in the resulting sample is steeper than the general LOFAR-WSRT spectral index distribution with a median of α=-0.80±0.06. As the upcoming LOFAR wide area surveys are much deeper than the traditional 1.4GHz surveys like NVSS and FIRST, this indicates that LOFAR in combination with optical and infrared will be an excellent fishing ground to obtain large samples of quasars.

  7. 47 CFR 27.1 - Basis and purpose.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and 805-806 MHz. (3) 698-746 MHz. (4) 1390-1392 MHz. (5) 1392-1395 MHz and 1432-1435 MHz. (6) 1670-1675 MHz. (7) [Reserved] (8) 1710-1755 MHz and 2110-2155 MHz. (9) 2495-2690 MHz. (c) Scope. The rules...

  8. Effects of Simulated Mobile Phone Electromagnetic Radiation on Fertilization and Embryo Development.

    PubMed

    Chen, Hong; Qu, Zaiqing; Liu, Wenhui

    2017-04-01

    This study investigated the effects of 935-MHz electromagnetic radiation (ER) on fertilization and subsequent embryonic development in mice. Ovulating mice were irradiated at three ER intensities for 4 h/day (d) or 2 h/d for three consecutive days; the ova were then harvested for in vitro fertilization to observe the 6-h fertilization rate (6-FR), 72-h morula rate (72-MR), and 110-h blastula rate (110-BR). Compared with the control group, the 6-FR, 72-MR, and 110-BR were decreased in the low ER intensity group, but the differences were not significant; in the mid- and high-intensity ER groups, 72-MR and 110-BR in the 4 h/d and 2 h/d subgroups were decreased, showing significant differences compared with the control group. Moreover, the comparison between 4 h/d and 2 h/d subgroups showed significant differences. Mid- and high-intensity ER at 935 MHz can reduce the fertilization rate in mice, and reduce the blastulation rate, thus reducing the possibility of embryo implantation.

  9. A compact 7-cell Si-drift detector module for high-count rate X-ray spectroscopy.

    PubMed

    Hansen, K; Reckleben, C; Diehl, I; Klär, H

    2008-05-01

    A new Si-drift detector module for fast X-ray spectroscopy experiments was developed and realized. The Peltier-cooled module comprises a sensor with 7 × 7-mm 2 active area, an integrated circuit for amplification, shaping and detection, storage, and derandomized readout of signal pulses in parallel, and amplifiers for line driving. The compactness and hexagonal shape of the module with a wrench size of 16mm allow very short distances to the specimen and multi-module arrangements. The power dissipation is 186mW. At a shaper peaking time of 190 ns and an integration time of 450 ns an electronic rms noise of ~11 electrons was achieved. When operated at 7 °C, FWHM line widths around 260 and 460 eV (Cu-K α ) were obtained at low rates and at sum-count rates of 1.7 MHz, respectively. The peak shift is below 1% for a broad range of count rates. At 1.7-MHz sum-count rate the throughput loss amounts to 30%.

  10. A CMOS 0.18 μm 600 MHz clock multiplier PLL and a pseudo-LVDS driver for the high speed data transmission for the ALICE Inner Tracking System front-end chip

    NASA Astrophysics Data System (ADS)

    Lattuca, A.; Mazza, G.; Aglieri Rinella, G.; Cavicchioli, C.; Chanlek, N.; Collu, A.; Degerli, Y.; Dorokhov, A.; Flouzat, C.; Gajanana, D.; Gao, C.; Guilloux, F.; Hillemanns, H.; Hristozkov, S.; Junique, A.; Keil, M.; Kim, D.; Kofarago, M.; Kugathasan, T.; Kwon, Y.; Mager, M.; Sielewicz, K. Marek; Marin Tobon, C. Augusto; Marras, D.; Martinengo, P.; Mugnier, H.; Musa, L.; Pham, T. Hung; Puggioni, C.; Reidt, F.; Riedler, P.; Rousset, J.; Siddhanta, S.; Snoeys, W.; Song, M.; Usai, G.; Van Hoorne, J. Willem; Yang, P.

    2016-01-01

    This work presents the 600 MHz clock multiplier PLL and the pseudo-LVDS driver which are two essential components of the Data Transmission Unit (DTU), a fast serial link for the 1.2 Gb/s data transmission of the ALICE inner detector front-end chip (ALPIDE). The PLL multiplies the 40 MHz input clock in order to obtain the 600 MHz and the 200 MHz clock for a fast serializer which works in Double Data Rate mode. The outputs of the serializer feed the pseudo-LVDS driver inputs which transmits the data from the pixel chip to the patch panel with a limited number of signal lines. The driver drives a 5.3 m-6.5 m long differential transmission line by steering a maximum of 5 mA of current at the target speed. To overcome bandwidth limitations coming from the long cables the pre-emphasis can be applied to the output. Currents for the main and pre-emphasis driver can individually be adjusted using on-chip digital-to-analog converters. The circuits will be integrated in the pixel chip and are designed in the same 0.18 μm CMOS technology and will operate from the same 1.8 V supply. Design and test results of both circuits are presented.

  11. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells.

    PubMed

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-05-29

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development.

  12. Progress on Pre-Stage Magnetic Coil to Enhance Helicon Mode Excitation and Data Acquisition Software on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    Sherman, Justin; Azzari, Phillip; Crilly, P. B.; Duke-Tinson, Omar; James, Royce W.; Karama, Jackson; Page, E. J.; Schlank, Carter; Zuniga, Jonathan

    2014-10-01

    CGAPL is conducting small investigations in plasma physics and magneto-hydrodynamics buoy positioning. For data management, we are developing capability to analyze/digitize data with a National Instruments Data Acquisition board, 2 MS/s sampling rate (long time scale), and an Express Octopus card, 125 MS/s sampling rate (short scale). Sampling at 12 bits precision, we use LabVIEW as a programing language; GUIs will control variables in 1 or more concurrent runs and monitor of diagnostics. HPX utilizes high density (1013 cm3 up), low pressure (.01 T) Ar gas (fill pressure: on 104 mTorr order). Helicon/W Mode plasmas become a diagnostics test-bed for other investigations and a tool for future spacecraft propulsion devices. Plasmas created by directing energy into gas-filled Pyrex tube; power supply and matching box, up to 250 W power in 20-100 MHz frequencies, provide energy to ignite. Uniform magnetic field needed to reach the W-Mode. We employ an electromagnet to B-field while an acceleration coil positions plasma in vacuum chamber, facilitating analysis. Initial field requirements and accuracy calibration have been completed. Progress on development and implementation of probes and DAQ/GUI system will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  13. Transformation of meta-stable calcium silicate hydrates to tobermorite: reaction kinetics and molecular structure from XRD and NMR spectroscopy

    PubMed Central

    2009-01-01

    Understanding the integrity of well-bore systems that are lined with Portland-based cements is critical to the successful storage of sequestered CO2 in gas and oil reservoirs. As a first step, we investigate reaction rates and mechanistic pathways for cement mineral growth in the absence of CO2 by coupling water chemistry with XRD and NMR spectroscopic data. We find that semi-crystalline calcium (alumino-)silicate hydrate (Al-CSH) forms as a precursor solid to the cement mineral tobermorite. Rate constants for tobermorite growth were found to be k = 0.6 (± 0.1) × 10-5 s-1 for a solution:solid of 10:1 and 1.6 (± 0.8) × 10-4 s-1 for a solution:solid of 5:1 (batch mode; T = 150°C). This data indicates that reaction rates for tobermorite growth are faster when the solution volume is reduced by half, suggesting that rates are dependent on solution saturation and that the Gibbs free energy is the reaction driver. However, calculated solution saturation indexes for Al-CSH and tobermorite differ by less than one log unit, which is within the measured uncertainty. Based on this data, we consider both heterogeneous nucleation as the thermodynamic driver and internal restructuring as possible mechanistic pathways for growth. We also use NMR spectroscopy to characterize the site symmetry and bonding environment of Al and Si in a reacted tobermorite sample. We find two [4]Al coordination structures at δiso = 59.9 ppm and 66.3 ppm with quadrupolar product parameters (PQ) of 0.21 MHz and 0.10 MHz (± 0.08) from 27Al 3Q-MAS NMR and speculate on the Al occupancy of framework sites by probing the protonation environment of Al metal centers using 27Al{1H}CP-MAS NMR. PMID:19144195

  14. Mode-locked Ti:sapphire laser oscillators pumped by wavelength-multiplexed laser diodes

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naoto; Tanaka, Hiroki; Kannari, Fumihiko

    2018-05-01

    We directly pumped a Ti:sapphire laser by combining 478 and 520 nm laser diodes to prevent the effect of absorption loss induced by the pump laser of shorter wavelengths (∼450 nm). We obtain a continuous-wave output power of 660 mW at a total incident pump power of 3.15 W. We demonstrate mode locking using a semiconductor saturable absorber mirror, and 126 fs pulses were obtained at a repetition rate of 192 MHz. At the maximum pump power, the average output power is 315 mW. Shorter mode-locked pulses of 42 and 48 fs were respectively achieved by Kerr-lens mode locking with average output powers of 280 and 360 mW at a repetition rate of 117 MHz.

  15. 30W, 10μJ, 10-ps SPM-induced spectrally compressed pulse generation in a low non-linearity ytterbium-doped rod-type fibre amplifier

    NASA Astrophysics Data System (ADS)

    Zaouter, Y.; Cormier, E.; Rigail, P.; Hönninger, C.; Mottay, E.

    2007-02-01

    The concept of spectral compression induced by self phase modulation is used to generate transform-limited 10ps pulses in a rare-earth-doped low nonlinearity fibre amplifier. The seed source of the amplifier stage is a high power, Yb 3+:KGW bulk oscillator which delivers 500 fs transform-limited pulses at 10MHz repetition rate. After a reduction of the repetition rate down to 3MHz, the femtosecond pulses are negatively chirped by transmission gratings in a compressor arrangement. The resulting 10ps pulses are further seeded into the power amplifier and up to 32W output power is obtained while the spectral bandwidth is reduced to less than 0.5 nm by means of self phase modulation.

  16. Evaluation of communication in wireless underground sensor networks

    NASA Astrophysics Data System (ADS)

    Yu, X. Q.; Zhang, Z. L.; Han, W. T.

    2017-06-01

    Wireless underground sensor networks (WUSN) are an emerging area of research that promises to provide communication capabilities to buried sensors. In this paper, experimental measurements have been conducted with commodity sensor motes at the frequency of 2.4GHz and 433 MHz, respectively. Experiments are run to examine the received signal strength of correctly received packets and the packet error rate for a communication link. The tests show the potential feasibility of the WUSN with the use of powerful RF transceivers at 433MHz frequency. Moreover, we also illustrate a classification for wireless underground sensor network communication. Finally, we conclude that the effects of burial depth, inter-node distance and volumetric water content of the soil on the signal strength and packet error rate in communication of WUSN.

  17. Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor

    PubMed Central

    Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki

    2016-01-01

    The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB. PMID:28036040

  18. Modeling and characterization of different channels based on human body communication.

    PubMed

    Jingzhen Li; Zedong Nie; Yuhang Liu; Lei Wang

    2017-07-01

    Human body communication (HBC), which uses the human body as a transmission medium for electrical signals, provides a prospective communication solution for body sensor networks (BSNs). In this paper, an inhomogeneous model which includes the tissue layers of skin, fat, and muscle is proposed to study the propagation characteristics of different HBC channels. Specifically, the HBC channels, namely, the on-body to on-body (OB-OB)channel, on-body to in-body (OB-IB) channel, in-body to on-body (IB-OB) channel, and in-body to in-body (IB-IB)channel, are studied over different frequencies (from 1MHz to 100MHz) through numerical simulations with finite-difference time-domain (FDTD) method. The results show that the gain of OB-IB channel and IB-OB channel is almost the same. The gain of IB-IB channel is greater than other channels in the frequency range 1MHz to 70MHz. In addition, the gain of all channels is associated with the channel length and communication frequency. The simulations are verified by experimental measurements in a porcine tissue sample. The results show that the simulations are in agreement with the measurements.

  19. Relative Estimation of Water Content for Flat-Type Inductive-Based Oil Palm Fruit Maturity Sensor.

    PubMed

    Misron, Norhisam; Aliteh, Nor Aziana; Harun, Noor Hasmiza; Tashiro, Kunihisa; Sato, Toshiro; Wakiwaka, Hiroyuki

    2016-12-28

    The paper aims to study the sensor that identifies the maturity of oil palm fruit bunches by using a flat-type inductive concept based on a resonant frequency technique. Conventionally, a human grader is used to inspect the ripeness of the oil palm fresh fruit bunch (FFB) which can be inconsistent and inaccurate. There are various new methods that are proposed with the intention to grade the ripeness of the oil palm FFB, but none has taken the inductive concept. In this study, the resonance frequency of the air coil is investigated. Samples of oil palm FFB are tested with frequencies ranging from 20 Hz to 10 MHz and the results obtained show a linear relationship between the graph of the resonance frequency (MHz) against time (Weeks). It is observed that the resonance frequencies obtained for Week 10 (pre-mature) and Week 18 (mature) are around 8.5 MHz and 9.8 MHz, respectively. These results are compared with the percentage of the moisture content. Hence, the inductive method of the oil palm fruit maturity sensor can be used to detect the change in water content for ripeness detection of the oil palm FFB.

  20. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz

    NASA Astrophysics Data System (ADS)

    Findlay, R. P.; Dimbylow, P. J.

    2006-05-01

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at ~130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at ~120 MHz and ~160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at ~180 and ~600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  1. FDTD calculations of specific energy absorption rate in a seated voxel model of the human body from 10 MHz to 3 GHz.

    PubMed

    Findlay, R P; Dimbylow, P J

    2006-05-07

    Finite-difference time-domain (FDTD) calculations have been performed to investigate the frequency dependence of the specific energy absorption rate (SAR) in a seated voxel model of the human body. The seated model was derived from NORMAN (NORmalized MAN), an anatomically realistic voxel phantom in the standing posture with arms to the side. Exposure conditions included both vertically and horizontally polarized plane wave electric fields between 10 MHz and 3 GHz. The resolution of the voxel model was 4 mm for frequencies up to 360 MHz and 2 mm for calculations in the higher frequency range. The reduction in voxel size permitted the calculation of SAR at these higher frequencies using the FDTD method. SAR values have been calculated for the seated adult phantom and scaled versions representing 10-, 5- and 1-year-old children under isolated and grounded conditions. These scaled models do not exactly reproduce the dimensions and anatomy of children, but represent good geometric information for a seated child. Results show that, when the field is vertically polarized, the sitting position causes a second, smaller resonance condition not seen in resonance curves for the phantom in the standing posture. This occurs at approximately 130 MHz for the adult model when grounded. Partial-body SAR calculations indicate that the upper and lower regions of the body have their own resonant frequency at approximately 120 MHz and approximately 160 MHz, respectively, when the grounded adult model is orientated in the sitting position. These combine to produce this second resonance peak in the whole-body averaged SAR values calculated. Two resonance peaks also occur for the sitting posture when the incident electric field is horizontally polarized. For the adult model, the peaks in the whole-body averaged SAR occur at approximately 180 and approximately 600 MHz. These peaks are due to resonance in the arms and feet, respectively. Layer absorption plots and colour images of SAR in individual voxels show the specific regions in which the seated human body absorbs the incident field. External electric field values required to produce the ICNIRP basic restrictions were derived from SAR calculations and compared with ICNIRP reference levels. This comparison shows that the reference levels provide a conservative estimate of the ICNIRP whole-body averaged SAR restriction, with the exception of the region above 1.4 GHz for the scaled 1-year-old model.

  2. 14 CFR Appendix L to Part 25 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 400 MHz, use radiated susceptibility tests at a minimum of 20 volts per meter (V/m) peak with CW and 1... table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700 MHz-1...

  3. Heat treatment effects on dielectric properties of SRFe{sub 12}O{sub 19} hexaferrite prepared by an SHS route

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Panchal, Nital R.; Jotania, Rajshree B., E-mail: natal_panchal@yahoo.co.in, E-mail: rbjotania@gmail.com

    2011-07-01

    The M-type Strontium Hexaferrite SRFe{sub 12}O{sub 19} particles were prepared by a Self propagating High temperature Synthesis (SHS) route. Precursors were heated under two different conditions: microwave heating for 30 minutes and sintered at 950 deg C for 4 hrs. The dielectric properties: dielectric constant ({epsilon}{sup '}), dielectric loss (tan {delta} ) and ac conductivity ({sigma}{sub ac}) were measured at room temperature in the frequency range from 100 Hz to 2 MHz. The samples present a non-linear behavior for the dielectric constant at 1 kHz, 100 kHz and 2 MHz. The dielectric properties of prepared Strontium Hexaferrite samples were discussedmore » in view of applications as a material for microwave devices, permanent magnets and high density magnetic recording media. (author)« less

  4. A merged pipe organ binary-analog correlator

    NASA Astrophysics Data System (ADS)

    Miller, R. S.; Berry, M. B.

    1982-02-01

    The design of a 96-stage, programmable binary-analog correlator is described. An array of charge coupled device (CCD) delay lines of differing lengths perform the delay and sum functions. Merging of several CCD channels is employed to reduce the active area. This device architecture allows simplified output detection while maintaining good device performance at higher speeds (5-10 MHz). Experimental results indicate a 50 dB broadband dynamic range and excellent agreement with the theoretical processing gain (19.8 dB) when operated at a 6 MHz sampling frequency as a p-n sequence matched filter.

  5. FPGA based demodulation of laser induced fluorescence in plasmas

    NASA Astrophysics Data System (ADS)

    Mattingly, Sean W.; Skiff, Fred

    2018-04-01

    We present a field programmable gate array (FPGA)-based system that counts photons from laser-induced fluorescence (LIF) on a laboratory plasma. This is accomplished with FPGA-based up/down counters that demodulate the data, giving a background-subtracted LIF signal stream that is updated with a new point as each laser amplitude modulation cycle completes. We demonstrate using the FPGA to modulate a laser at 1 MHz and demodulate the resulting LIF data stream. This data stream is used to calculate an LIF-based measurement sampled at 1 MHz of a plasma ion fluctuation spectrum.

  6. Advanced photoinjector experiment photogun commissioning results

    NASA Astrophysics Data System (ADS)

    Sannibale, F.; Filippetto, D.; Papadopoulos, C. F.; Staples, J.; Wells, R.; Bailey, B.; Baptiste, K.; Corlett, J.; Cork, C.; De Santis, S.; Dimaggio, S.; Doolittle, L.; Doyle, J.; Feng, J.; Garcia Quintas, D.; Huang, G.; Huang, H.; Kramasz, T.; Kwiatkowski, S.; Lellinger, R.; Moroz, V.; Norum, W. E.; Padmore, H.; Pappas, C.; Portmann, G.; Vecchione, T.; Vinco, M.; Zolotorev, M.; Zucca, F.

    2012-10-01

    The Advanced Photoinjector Experiment (APEX) at the Lawrence Berkeley National Laboratory is dedicated to the development of a high-brightness high-repetition rate (MHz-class) electron injector for x-ray free-electron laser (FEL) and other applications where high repetition rates and high brightness are simultaneously required. The injector is based on a new concept rf gun utilizing a normal-conducting (NC) cavity resonating in the VHF band at 186 MHz, and operating in continuous wave (cw) mode in conjunction with high quantum efficiency photocathodes capable of delivering the required charge at MHz repetition rates with available laser technology. The APEX activities are staged in three phases. In phase 0, the NC cw gun is built and tested to demonstrate the major milestones to validate the gun design and performance. Also, starting in phase 0 and continuing in phase I, different photocathodes are tested at the gun energy and at full repetition rate for validating candidate materials to operate in a high-repetition rate FEL. In phase II, a room-temperature pulsed linac is added for accelerating the beam at several tens of MeV to reduce space charge effects and allow the measurement of the brightness of the beam from the gun when integrated in an injector scheme. The installation of the phase 0 beam line and the commissioning of the VHF gun are completed, phase I components are under fabrication, and initial design and specification of components and layout for phase II are under way. This paper presents the phase 0 commissioning results with emphasis on the experimental milestones that have successfully demonstrated the APEX gun capability of operating at the required performance.

  7. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-2020 MHz and 2180-2200 MHz bands; or the 1695-1710 MHz, 1755-1780 MHz and 2155-2180 MHz bands, the... licensees holding AWS authorizations in the 1915-1920 MHz and 1995-2000 MHz bands, or the 2000-2020 MHz and... enumerated in § 27.14(q) for 2000-2020 MHz and 2180-2200 MHz licenses, those enumerated in § 27.14(r) for...

  8. A FADC-Based Data Acquisition System for the KASCADE-Grande Experiment

    NASA Astrophysics Data System (ADS)

    Walkowiak, W.; Antoni, T.; Apel, W. D.; Badea, F.; Bekk, K.; Bercuci, A.; Bertaina, M.; Blumer, H.; Bozdog, H.; Brancus, I. M.; Bruggemann, M.; Buchholz, P.; Buttner, C.; Chiavassa, A.; Daumiller, K.; Dipierro, F.; Doll, P.; Engel, R.; Engler, J.; Febler, F.; Ghia, P. L.; Gils, H. J.; Glasstetter, R.; Haungs, A.; Heck, D.; Horandel, J. R.; Kampert, K.-H.; Klages, H. O.; Kolotaev, Y.; Maier, G.; Mathes, H. J.; Mayer, H. J.; Milke, J.; Mitrica, B.; Morello, C.; Muller, M.; Navarra, G.; Obenland, R.; Oehlschlager, J.; Ostapchenko, S.; Over, S.; Petcu, M.; Plewnia, S.; Rebel, H.; Risse, A.; Roth, M.; Schieler, H.; Scholz, J.; Stumpert, M.; Thouw, T.; Toma, G.; Trinchero, G. C.; Ulrich, H.; Valchierotti, S.; Vanburen, J.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zagromski, S.; Zimmermann, D.

    2006-02-01

    We present the design and first test results of a new FADC-based data acquisition (DAQ) system for the Grande array of the KASCADE-Grande experiment. The original KASCADE experiment at the Forschungszentrum Karlsruhe, Germany, has been extended by 37 detector stations of the former EAS-TOP experiment (Grande array)to provide sensitivity to energies of primary particles from the cosmos of up to $10^{18}$ eV. The new FADC-based DAQ system will improve the quality of the data taken by the Grande array by digitizing the scintillator signals with a 250 MHz sampling rate. events per second. Two Grande stations have been equipped with the FADC-based data acquisition system and first data are shown.

  9. Distributed fiber sensing system with wide frequency response and accurate location

    NASA Astrophysics Data System (ADS)

    Shi, Yi; Feng, Hao; Zeng, Zhoumo

    2016-02-01

    A distributed fiber sensing system merging Mach-Zehnder interferometer and phase-sensitive optical time domain reflectometer (Φ-OTDR) is demonstrated for vibration measurement, which requires wide frequency response and accurate location. Two narrow line-width lasers with delicately different wavelengths are used to constitute the interferometer and reflectometer respectively. A narrow band Fiber Bragg Grating is responsible for separating the two wavelengths. In addition, heterodyne detection is applied to maintain the signal to noise rate of the locating signal. Experiment results show that the novel system has a wide frequency from 1 Hz to 50 MHz, limited by the sample frequency of data acquisition card, and a spatial resolution of 20 m, according to 200 ns pulse width, along 2.5 km fiber link.

  10. A Search for Fast Radio Bursts with the GBNCC Pulsar Survey

    NASA Astrophysics Data System (ADS)

    Chawla, P.; Kaspi, V. M.; Josephy, A.; Rajwade, K. M.; Lorimer, D. R.; Archibald, A. M.; DeCesar, M. E.; Hessels, J. W. T.; Kaplan, D. L.; Karako-Argaman, C.; Kondratiev, V. I.; Levin, L.; Lynch, R. S.; McLaughlin, M. A.; Ransom, S. M.; Roberts, M. S. E.; Stairs, I. H.; Stovall, K.; Swiggum, J. K.; van Leeuwen, J.

    2017-08-01

    We report on a search for fast radio bursts (FRBs) with the Green Bank Northern Celestial Cap (GBNCC) Pulsar Survey at 350 MHz. Pointings amounting to a total on-sky time of 61 days were searched to a dispersion measure (DM) of 3000 pc cm-3, while the rest (23 days; 29% of the total time) were searched to a DM of 500 pc cm-3. No FRBs were detected in the pointings observed through 2016 May. We estimate a 95% confidence upper limit on the FRB rate of 3.6× {10}3 FRBs sky-1 day-1 above a peak flux density of 0.63 Jy at 350 MHz for an intrinsic pulse width of 5 ms. We place constraints on the spectral index α by running simulations for different astrophysical scenarios and cumulative flux density distributions. The nondetection with GBNCC is consistent with the 1.4 GHz rate reported for the Parkes surveys for α > +0.35 in the absence of scattering and free-free absorption and α > -0.3 in the presence of scattering, for a Euclidean flux distribution. The constraints imply that FRBs exhibit either a flat spectrum or a spectral turnover at frequencies above 400 MHz. These constraints also allow estimation of the number of bursts that can be detected with current and upcoming surveys. We predict that CHIME may detect anywhere from several to ˜50 FRBs per day (depending on model assumptions), making it well suited for interesting constraints on spectral index, the log N-log S slope, and pulse profile evolution across its bandwidth (400-800 MHz).

  11. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy.

    PubMed

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ∼10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ∼1.8 MHz and ∼1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ∼750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  12. Commercial counterboard for 10 ns software correlator for photon and fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Molteni, Matteo; Ferri, Fabio

    2016-11-01

    A 10 ns time resolution, multi-tau software correlator, capable of computing simultaneous autocorrelation (A-A, B-B) and cross (A-B) correlation functions at count rates up to ˜10 MHz, with no data loss, has been developed in LabVIEW and C++ by using the National Instrument timer/counterboard (NI PCIe-6612) and a fast Personal Computer (PC) (Intel Core i7-4790 Processor 3.60 GHz ). The correlator works by using two algorithms: for large lag times (τ ≳ 1 μs), a classical time-mode scheme, based on the measure of the number of pulses per time interval, is used; differently, for τ ≲ 1 μs a photon-mode (PM) scheme is adopted and the correlation function is retrieved from the sequence of the photon arrival times. Single auto- and cross-correlation functions can be processed online in full real time up to count rates of ˜1.8 MHz and ˜1.2 MHz, respectively. Two autocorrelation (A-A, B-B) and a cross correlation (A-B) functions can be simultaneously processed in full real time only up to count rates of ˜750 kHz. At higher count rates, the online processing takes place in a delayed modality, but with no data loss. When tested with simulated correlation data and latex spheres solutions, the overall performances of the correlator appear to be comparable with those of commercial hardware correlators, but with several nontrivial advantages related to its flexibility, low cost, and easy adaptability to future developments of PC and data acquisition technology.

  13. KTAG: The Kaon Identification Detector for CERN experiment NA62

    NASA Astrophysics Data System (ADS)

    Fry, J. R.; CERN NA62 Collaboration

    2016-07-01

    In the study of ultra-rare kaon decays, CERN experiment NA62 exploits an unseparated monochromatic (75 GeV/c) beam of charged particles of flux 800 MHz, of which 50 MHz are K+. Kaons are identified with more than 95% efficiency, a time resolution of better than 100 ps, and misidentification of less than 10-4 using KTAG, a differential, ring-focussed, Cherenkov detector. KTAG utilises 8 sets of 48 Hamamatsu PMTs, of which 32 are of type 9880 and 16 of type 7400, with signals fed directly to the differential inputs of NINO front-end boards and then to TDC cards within the TEL62 system. Leading and trailing edges of the PMT signal are digitised, enabling slewing corrections to be made, and a mean hit rate of 5 MHz per PMT is supported. The electronics is housed within a cooled and insulated Faraday cage with environmental monitoring capabilities.

  14. Wireless communication link for capsule endoscope at 600 MHz.

    PubMed

    Khaleghi, A; Balasingham, I

    2015-01-01

    Simulation of a wireless communication link for a capsule endoscopy is presented for monitoring of small intestine in humans. The realized communication link includes the transmitting capsule antenna, the outside body receiving antenna and the model of the human body. The capsule antenna is designed for operating at the frequency band of 600 MHz with an impedance bandwidth of 10 MHz and omnidirectional radiation pattern. The quality of the communication link is improved by using directive antenna outside body inside matching layer for electromagnetic wave tuning to the body. The outside body antenna has circular polarization that guaranteeing the communication link for different orientations of the capsule inside intestine. It is shown that the path loss for the capsule in 60 mm from the abdomen surface varies between 37-47 dB in relation to the antenna orientation. This link can establish high data rate wireless communications for capsule endoscopy.

  15. 14 CFR Appendix J to Part 23 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... MHz. (4) From 100 MHz to 400 MHz, use radiated susceptibility tests at a minimum of 20 volts per meter... is specified in the following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400...

  16. Radiofrequency penetration and absorption in the human body: limitations to high-field whole-body nuclear magnetic resonance imaging.

    PubMed

    Röschmann, P

    1987-01-01

    This study presents experimental results about the effective depth of penetration and about the radiofrequency (rf) power absorption in humans as a function of frequency. The frequency range investigated covers 10 up to 220 MHz. For the main part, the results were derived from bench measurements of the quality factor Q, and of the resonance frequency shift due to the loading of the coil. Different types of head-, body-, and surface coils were investigated loaded with volunteers or metallic phantoms. For spin-echo imaging at 2 T (85 MHz), the local specific absorption rate (SAR) was found to be approximately equal to 0.05 W/kg using a pi pulse of 1-ms duration and pulse repetition time TR = 1 s. Measurements of the quality factor Q as a function of frequency show that the SAR depends upon the frequency f according to approximately f2.15. The effective depth of rf penetration as derived drops from 17 cm at 85 MHz to 7 cm at 220 MHz. Head imaging with B1 penetrating from practically all sides into the object should be possible up to 220 MHz (5 T) with SAR values staying within the local limit of 2 W/kg as set by the FDA. Whole-body imaging of large subjects as well as surface coil imaging is depth limited above 100-MHz frequency. Perturbation methods are applied in order to separate the total rf power deposition in the patient into dielectric and magnetic contributions. The observed effects due to interactions of rf magnetic fields with biological tissue contradict predictions based on homogeneous tissue models. A refined tissue model with regions of high electrical conductivity, subdivided by quasi-insulating adipose layers, provides a rationale for a better understanding of the underlying processes. At frequencies below 100 MHz, the rf power deposition in patients is apparently more evenly distributed over the exposed body volume than currently assumed.

  17. 47 CFR 27.1103 - 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false 2000-2020 MHz and 2180-2200 MHz bands subject... MHz, 2000-2020 MHz, and 2180-2200 MHz bands Licensing and Competitive Bidding Provisions § 27.1103 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding. Mutually exclusive initial...

  18. Architecture for a 1-GHz Digital RADAR

    NASA Technical Reports Server (NTRS)

    Mallik, Udayan

    2011-01-01

    An architecture for a Direct RF-digitization Type Digital Mode RADAR was developed at GSFC in 2008. Two variations of a basic architecture were developed for use on RADAR imaging missions using aircraft and spacecraft. Both systems can operate with a pulse repetition rate up to 10 MHz with 8 received RF samples per pulse repetition interval, or at up to 19 kHz with 4K received RF samples per pulse repetition interval. The first design describes a computer architecture for a Continuous Mode RADAR transceiver with a real-time signal processing and display architecture. The architecture can operate at a high pulse repetition rate without interruption for an infinite amount of time. The second design describes a smaller and less costly burst mode RADAR that can transceive high pulse repetition rate RF signals without interruption for up to 37 seconds. The burst-mode RADAR was designed to operate on an off-line signal processing paradigm. The temporal distribution of RF samples acquired and reported to the RADAR processor remains uniform and free of distortion in both proposed architectures. The majority of the RADAR's electronics is implemented in digital CMOS (complementary metal oxide semiconductor), and analog circuits are restricted to signal amplification operations and analog to digital conversion. An implementation of the proposed systems will create a 1-GHz, Direct RF-digitization Type, L-Band Digital RADAR--the highest band achievable for Nyquist Rate, Direct RF-digitization Systems that do not implement an electronic IF downsample stage (after the receiver signal amplification stage), using commercially available off-the-shelf integrated circuits.

  19. 40 MHz high-frequency ultrafast ultrasound imaging.

    PubMed

    Huang, Chih-Chung; Chen, Pei-Yu; Peng, Po-Hsun; Lee, Po-Yang

    2017-06-01

    Ultrafast high-frame-rate ultrasound imaging based on coherent-plane-wave compounding has been developed for many biomedical applications. Most coherent-plane-wave compounding systems typically operate at 3-15 MHz, and the image resolution for this frequency range is not sufficient for visualizing microstructure tissues. Therefore, the purpose of this study was to implement a high-frequency ultrafast ultrasound imaging operating at 40 MHz. The plane-wave compounding imaging and conventional multifocus B-mode imaging were performed using the Field II toolbox of MATLAB in simulation study. In experiments, plane-wave compounding images were obtained from a 256 channel ultrasound research platform with a 40 MHz array transducer. All images were produced by point-spread functions and cyst phantoms. The in vivo experiment was performed from zebrafish. Since high-frequency ultrasound exhibits a lower penetration, chirp excitation was applied to increase the imaging depth in simulation. The simulation results showed that a lateral resolution of up to 66.93 μm and a contrast of up to 56.41 dB were achieved when using 75-angles plane waves in compounding imaging. The experimental results showed that a lateral resolution of up to 74.83 μm and a contrast of up to 44.62 dB were achieved when using 75-angles plane waves in compounding imaging. The dead zone and compounding noise are about 1.2 mm and 2.0 mm in depth for experimental compounding imaging, respectively. The structure of zebrafish heart was observed clearly using plane-wave compounding imaging. The use of fewer than 23 angles for compounding allowed a frame rate higher than 1000 frames per second. However, the compounding imaging exhibits a similar lateral resolution of about 72 μm as the angle of plane wave is higher than 10 angles. This study shows the highest operational frequency for ultrafast high-frame-rate ultrasound imaging. © 2017 American Association of Physicists in Medicine.

  20. Fluid simulation of the bias effect in inductive/capacitive discharges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yu-Ru; Research Group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, Wilrijk, BE-2610 Antwerp; Gao, Fei

    Computer simulations are performed for an argon inductively coupled plasma (ICP) with a capacitive radio-frequency bias power, to investigate the bias effect on the discharge mode transition and on the plasma characteristics at various ICP currents, bias voltages, and bias frequencies. When the bias frequency is fixed at 13.56 MHz and the ICP current is low, e.g., 6 A, the spatiotemporal averaged plasma density increases monotonically with bias voltage, and the bias effect is already prominent at a bias voltage of 90 V. The maximum of the ionization rate moves toward the bottom electrode, which indicates clearly the discharge mode transition in inductive/capacitivemore » discharges. At higher ICP currents, i.e., 11 and 13 A, the plasma density decreases first and then increases with bias voltage, due to the competing mechanisms between the ion acceleration power dissipation and the capacitive power deposition. At 11 A, the bias effect is still important, but it is noticeable only at higher bias voltages. At 13 A, the ionization rate is characterized by a maximum at the reactor center near the dielectric window at all selected bias voltages, which indicates that the ICP power, instead of the bias power, plays a dominant role under this condition, and no mode transition is observed. Indeed, the ratio of the bias power to the total power is lower than 0.4 over a wide range of bias voltages, i.e., 0–300 V. Besides the effect of ICP current, also the effect of various bias frequencies is investigated. It is found that the modulation of the bias power to the spatiotemporal distributions of the ionization rate at 2 MHz is strikingly different from the behavior observed at higher bias frequencies. Furthermore, the minimum of the plasma density appears at different bias voltages, i.e., 120 V at 2 MHz and 90 V at 27.12 MHz.« less

  1. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed Central

    Eslami, J.; Ghafaripour, F.; Mortazavi, S.A.R.; Mortazavi, S.M.J.; Shojaei-fard, M.B.

    2015-01-01

    Background People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Methods Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched–on mobile phone with no signal strength. Results The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Conclusion Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors. PMID:26688798

  2. Can the Accuracy of Home Blood Glucose Monitors be affected by the Received Signal Strength of 900 MHz GSM Mobile Phones?

    PubMed

    Eslami, J; Ghafaripour, F; Mortazavi, S A R; Mortazavi, S M J; Shojaei-Fard, M B

    2015-12-01

    People who use home blood glucose monitors may use their mobile phones in the close vicinity of medical devices. This study is aimed at investigating the effect of the signal strength of 900 MHz GSM mobile phones on the accuracy of home blood glucose monitors. Sixty non-diabetic volunteer individuals aged 21 - 28 years participated in this study. Blood samples were analyzed for glucose level by using a common blood glucose monitoring system. Each blood sample was analyzed twice, within ten minutes in presence and absence of electromagnetic fields generated by a common GSM mobile phone during ringing. Blood samples were divided into 3 groups of 20 samples each. Group 1: exposure to mobile phone radiation with weak signal strength. Group2: exposure to mobile phone radiation with strong signal strength. Group3: exposure to a switched-on mobile phone with no signal strength. The magnitude of the changes in the first, second and third group between glucose levels of two measurements (׀ΔC׀) were 7.4±3.9 mg/dl, 10.2±4.5 mg/dl, 8.7±8.4 mg/dl respectively. The difference in the magnitude of the changes between the 1st and the 3rd groups was not statistically significant. Furthermore, the difference in the magnitude of the changes between the 2nd and the 3rd groups was not statistically significant. Findings of this study showed that the signal strength of 900 MHz GSM mobile phones cannot play a significant role in changing the accuracy of home blood glucose monitors.

  3. Effects of whole-body exposure to 915 MHz RFID on secretory functions of the thyroid system in rats.

    PubMed

    Kim, Hye Sun; Paik, Man-Jeong; Kim, Yeon Ju; Lee, Gwang; Lee, Yun-Sil; Choi, Hyung-Do; Kim, Byung Chan; Pack, Jeong-Ki; Kim, Nam; Ahn, Young Hwan

    2013-10-01

    As a part of an investigation on the potential risks of radiofrequency identification (RFID) on human health, we studied whether exposure to 915 MHz RFID in rats significantly affected the secretory function of the thyroid system. A reverberation chamber was used as a whole-body exposure system. Male Sprague-Dawley rats were exposed for 8 h per day, 5 days per week, for a duration of 2, 4, 8, or 16 weeks. The estimated whole-body average specific absorption rate (SAR) varied from 3.2 to 4.6 W/kg depending on the age/mass of the animals for the field of the 915 MHz RFID reader. Plasma levels of triiodothyronine (T3), thyroxine (T4), and thyroid-stimulating hormone (TSH) were evaluated via enzyme-linked immunosorbent assay. Morphological changes in the thyroid gland were then analyzed. No changes in T3, T4, or TSH were observed over time between the sham- and RFID-exposed groups. We suggest that subchronic exposure to 915 MHz RFID at a SAR of 4 W/kg does not cause significant effects on thyroid secretory function. © 2013 Wiley Periodicals, Inc.

  4. In vitro exposure to 0.57-MHz electric currents exerts cytostatic effects in HepG2 human hepatocarcinoma cells.

    PubMed

    Hernández-Bule, María Luisa; Trillo, María Angeles; Cid, María Antonia; Leal, Jocelyne; Ubeda, Alejandro

    2007-03-01

    Capacitive-resistive electric transfer (CRET) therapy is a non-invasive technique currently applied to the treatment of skin, muscle and tendon injuries that uses 0.45-0.6 MHz electric currents to transdermically and focally increase the internal temperature of targeted tissues. Because CRET electrothermal treatment has been reported to be more effective than other thermal therapies, it has been proposed that the electric stimulus could induce responses in exposed tissues that are cooperative or synergic with the thermal effects of the treatment. Previous studies by our group, investigating the nature of the alleged electric response, have shown that short, repeated stimuli with 0.57-MHz currents at subthermal levels could provoke partial, cytotoxic effects on human neuroblastoma cells in vitro. The aim of the present study was to investigate the response from another human cell type, the human hepatocarcinoma HepG2 line, during and after the exposure to 0.57-MHz CRET currents at subthermal densities. The electric stimuli provoked a decrease in the proliferation rate of the cultures, possibly due to an electrically-induced blocking of the cell cycle in a fraction of the cellular population.

  5. 47 CFR 27.5 - Frequencies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-2560 MHz EBS Channel C2: 2560-2566 MHz EBS Channel D2: 2566-2572 MHz EBS Channel C3: 2572-2578 MHz EBS... MHz EBS Channel D1: 2551.5-2557 MHz EBS Channel D2: 2557-2562.5 MHz EBS Channel D3: 2562.5-2568 MHz...

  6. 14 CFR Appendix E to Part 29 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...

  7. 14 CFR Appendix D to Part 27 - HIRF Environments and Equipment HIRF Test Levels

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... following table: Table I.—HIRF Environment I Frequency Field strength(volts/meter) Peak Average 10 kHz-2 MHz 50 50 2 MHz-30 MHz 100 100 30 MHz-100 MHz 50 50 100 MHz-400 MHz 100 100 400 MHz-700 MHz 700 50 700... Environment II Frequency Field strength(volts/meter) Peak Average 10 kHz-500 kHz 20 20 500 kHz-2 MHz 30 30 2...

  8. On the population of remnant Fanaroff-Riley type II radio galaxies and implications for radio source dynamics

    NASA Astrophysics Data System (ADS)

    Godfrey, L. E. H.; Morganti, R.; Brienza, M.

    2017-10-01

    The purpose of this work is two-fold: (1) to quantify the occurrence of ultrasteep spectrum remnant Fanaroff-Riley type II (FRII) radio galaxies in a 74 MHz flux-limited sample, and (2) perform Monte Carlo simulations of the population of active and remnant FRII radio galaxies to confront models of remnant lobe evolution, and to provide guidance for further investigation of remnant radio galaxies. We find that fewer than 2 per cent of FRII radio galaxies with S74 MHz > 1.5 Jy are candidate ultrasteep spectrum remnants, where we define ultrasteep spectrum as α _74 MHz^1400 MHz > 1.2. Our Monte Carlo simulations demonstrate that models involving Sedov-like expansion in the remnant phase, resulting in rapid adiabatic energy losses, are consistent with this upper limit, and predict the existence of nearly twice as many remnants with normal (not ultrasteep) spectra in the observed frequency range as there are ultrasteep spectrum remnants. This model also predicts an ultrasteep remnant fraction approaching 10 per cent at redshifts z < 0.5. Importantly, this model implies the lobes remain overpressured with respect to the ambient medium well after their active lifetime, in contrast with existing observational evidence that many FRII radio galaxy lobes reach pressure equilibrium with the external medium whilst still in the active phase. The predicted age distribution of remnants is a steeply decreasing function of age. In other words, young remnants are expected to be much more common than old remnants in flux-limited samples. For this reason, incorporating higher frequency data ≳5 GHz will be of great benefit to future studies of the remnant population.

  9. 47 CFR 27.1136 - Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 2000-2020 MHz and 2180-2200 MHz bands. 27.1136 Section 27.1136 Telecommunication FEDERAL COMMUNICATIONS..., 2110-2155 MHz, 2000-2020 MHz, and 2180-2200 MHz bands Protection of Incumbent Operations § 27.1136 Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands. An AWS licensee of the...

  10. The Danish Greenland Magnetometer Chain - Status and Outlook

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2016-12-01

    DTU Space operates the Greenland magnetometer array, including 19 variometer stations whereof 3 are geomagnetic observatories. This array consists of a West Coast Chain with 13 stations including three observatories between 77.47 and 61.16 geographic North. On the East Coast 5 variometer stations are located between 81.6 and 65.6 geographic North. The Greenland Array covers polar cap, cusp and auroral regions. These data allow the monitoring of electromagnetic processes in the polar ionosphere and magnetosphere, and are a significant contribution to global data sets. The vast majority of the sensors now employed are the Danish FGE 3-axis linear-core fluxgate magnetometers designed and built under the supervision of Ole Rasmussen and later Lars William Pedersen. They are optimized for long-term stability (observatory-quality instruments) rather than high sensitivity. The stations use 16 bit A/D converters with 20s or 1s sampling rate, optimized for 1 minute mean data. Hence, the rms-noise is approximately 0.1 nT in the 1 mHz - 1 Hz band, the time accuracy is 1s and the final resolution is 0.25 nT for most data at 20s sampling rate and 0.125 nT for most data at 1s sampling rate. During setup, the sensor axes are oriented along local magnetic north (H), local magnetic east (E) and vertical down (Z). Sensors at some stations are equipped with a suspension which guarantees vertical alignment. The instruments run fully automatically and require (normally) no manual intervention. All stations use the FGE vector magnetometer. Greenland magnetometer data has been aquired in digital form since 1981. From 1981 through 1990 all stations recorded with 1-min sampling rate. In 1986 the acquisition systems was gradually modified in order to record with 20-s sampling rate. Modification was completed by 1991, and since then all stations run at 20-s sampling rate. In 1999 acquisition system was made capable to record at 1-s sampling in addition to the continued 20-s sampoling rate. In 2001 most stations were upgraded, and in the summer of 2002 the upgrade was completed. Now all stations have laptops as dataloggers recording at 1Hz. In this presentation, we provide a status overview of the chain and its role within the G-ESC.

  11. Study of compact radio sources using interplanetary scintillations at 111 MHz. The Pearson-Readhead sample

    NASA Astrophysics Data System (ADS)

    Tyul'Bashev, S. A.

    2009-01-01

    A complete sample of radio sources has been studied using the interplanetary scintillation method. In total, 32 sources were observed, with scintillations detected in 12 of them. The remaining sources have upper limits for the flux densities of their compact components. Integrated flux densities are estimated for 18 sources.

  12. Advanced Nondestructive Evaluation (NDE) for Retirement for Cause/Engine Structural Integrity Program (RFC/RNSIP)

    DTIC Science & Technology

    2000-08-01

    7.5mVpp @ 20KHz 6Vpp @ 6MHz Input N/A N/A 206mVpp @ 6MHz 157mVpp @ 6MHz 66mVpp @ 6MHz 99mVpp @ 6MHz 91mVpp @ 6MHz No Input 35mVpp @ 113KHz 3mVpp...170MHz 8.5mVpp @ 200MHz 13mVpp @ 200MHz 22mVpp @ 113KHz 5mVpp @ 113KHz 4.5mVpp @ 113KHz 6Vpp @ 6MHz Input N/A N/A 300mVpp @ 6MHz 285mVpp

  13. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  14. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  15. Effect of the doped fibre length on soliton pulses of a bidirectional mode-locked fibre laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahmad, H; Alwi Kutty, N A; Zulkifli, M Z

    A passively bidirectional mode-locked fibre laser is demonstrated using a highly concentrated erbium-doped fibre (EDF) as a gain medium. To accomplish mode-locked operation in a short cavity, use is made of carbon nanotubes (CNTs) as a saturable absorber. Soliton pulses are obtained at a wavelength of 1560 nm with a repetition rate ranging from 43.92 MHz to 46.97 MHz and pulse width stretching from 0.56 ps to 0.41 ps as the EDF length is reduced from 60 cm to 30 cm. (lasers)

  16. Characterization of Freshwater EM Sub Bottom Sediment Properties and Target Responses for Detection of UXO with Ground-Penetrating RADAR (GPR)

    DTIC Science & Technology

    2008-09-01

    such that n*= √ε*. We computed phase velocity vph = c/Real(n*). We computed the one-way attenuation rate β (dB m−1) from the imaginary part of the...velocities of propagation at 100 MHz and 1 GHz. At 1 GHz we might expect vph to be controlled by the free, or nearly free value of εshi. The complex...distorted waveform resulted from changes in vph , β, or both across the pulse bandwidth. The small differences in vphmeas between 100 MHz and 1 GHz at

  17. Reduced impedance and superconductivity of SnAgCu solder alloy at high frequency

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Basaran, Cemal

    2012-10-01

    Skin effect of lead-free solder joints is investigated over a wide frequency band. Contrary to common believe that `effective impedance of solder alloys increases with frequency', resistance tends to saturate when frequency reaches a critical value, 10 MHz for SAC solder alloys. Negative surface impedance growth rate is observed when employs square waveform AC current loading at high current density. Further increased frequency causes a dramatic reduction of effective resistance. At 11 MHz with current density of 106 A/cm2, effective resistance of solder alloy drops to near zero value.

  18. Optimization of passively mode-locked Nd:GdVO4 laser with the selectable pulse duration 15-70 ps

    NASA Astrophysics Data System (ADS)

    Frank, Milan; Jelínek, Michal; Vyhlídal, David; Kubeček, Václav

    2016-12-01

    In this paper the optimization of a continuously diode-pumped Nd:GdVO4 laser oscillator in bounce geometry passively mode-locked using semiconductor saturable absorber mirror is presented. In the previous results the Nd:GdVO4 laser system generating 30 ps pulses with the average output power of 6.9 W at the repetition rate of 200 MHz at the wavelength of 1063 nm was reported. Now we are demonstrating up to three times increase of peak power due to the optimization of mode-matching in the laser resonator. Depending on the oscillator configuration we obtained the stable continuously mode-locked operation with pulses having selectable duration from 15 ps to 70 ps with the average output power of 7 W and the repetition rate of 150 MHz.

  19. The LHCb trigger and its upgrade

    NASA Astrophysics Data System (ADS)

    Dziurda, A.; LHCb Trigger Group

    2016-07-01

    The current LHCb trigger system consists of a hardware level, which reduces the LHC inelastic collision rate of 30 MHz, at which the entire detector is read out. In a second level, implemented in a farm of 20 k parallel-processing CPUs, the event rate is reduced to about 5 kHz. We review the performance of the LHCb trigger system during Run I of the LHC. Special attention is given to the use of multivariate analyses in the High Level Trigger. The major bottleneck for hadronic decays is the hardware trigger. LHCb plans a major upgrade of the detector and DAQ system in the LHC shutdown of 2018, enabling a purely software based trigger to process the full 30 MHz of inelastic collisions delivered by the LHC. We demonstrate that the planned architecture will be able to meet this challenge.

  20. 500-MHz x-ray counting with a Si-APD and a fast-pulse processing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kishimoto, Shunji; Taniguchi, Takashi; Tanaka, Manobu

    2010-06-23

    We introduce a counting system of up to 500 MHz for synchrotron x-ray high-rate measurements. A silicon avalanche photodiode detector was used in the counting system. The fast-pulse circuit of the amplifier was designed with hybrid ICs to prepare an ASIC system for a large-scale pixel array detector in near future. The fast amplifier consists of two cascading emitter-followers using 10-GHz band transistors. A count-rate of 3.25x10{sup 8} s{sup -1} was then achieved using the system for 8-keV x-rays. However, a baseline shift by adopting AC-coupling in the amplifier disturbed us to observe the maximum count of 4.49x10{sup 8} s{supmore » -1}, determined by electron-bunch filling into a ring accelerator. We also report that an amplifier with a baseline restorer was tested in order to keep the baseline level to be 0 V even at high input rates.« less

  1. Diagnostic for a high-repetition rate electron photo-gun and first measurements

    NASA Astrophysics Data System (ADS)

    Filippetto, D.; Doolittle, L.; Huang, G.; Norum, E.; Portmann, G.; Qian, H.; Sannibale, F.

    2015-05-01

    The APEX electron source at LBNL combines the high-repetition-rate with the high beam brightness typical of photoguns, delivering low emittance electron pulses at MHz frequency. Proving the high beam quality of the beam is an essential step for the success of the experiment, opening the doors of the high average power to brightness-hungry applications as X-Ray FELs, MHz ultrafast electron diffraction etc.. As first step, a complete characterization of the beam parameters is foreseen at the Gun beam energy of 750 keV. Diagnostics for low and high current measurements have been installed and tested, and measurements of cathode lifetime and thermal emittance in a RF environment with mA current performed. The recent installation of a double slit system, a deflecting cavity and a high precision spectrometer, allow the exploration of the full 6D phase space. Here we discuss the present layout of the machine and future upgrades, showing the latest results at low and high repetition rate, together with the tools and techniques used.

  2. High-speed phosphor-LED wireless communication system utilizing no blue filter

    NASA Astrophysics Data System (ADS)

    Yeh, C. H.; Chow, C. W.; Chen, H. Y.; Chen, J.; Liu, Y. L.; Wu, Y. F.

    2014-09-01

    In this paper, we propose and investigate an adaptively 84.44 to 190 Mb/s phosphor-LED visible light communication (VLC) system at a practical transmission distance. Here, we utilize the orthogonal-frequency-division-multiplexing quadrature-amplitude-modulation (OFDM-QAM) modulation with power/bit-loading algorithm in proposed VLC system. In the experiment, the optimal analogy pre-equalization design is also performed at LED-Tx side and no blue filter is used at the Rx side for extending the modulation bandwidth from 1 MHz to 30 MHz. In addition, the corresponding free space transmission lengths are between 75 cm and 2 m under various data rates of proposed VLC. And the measured bit error rates (BERs) of < 3.8×10-3 [forward error correction (FEC) limit] at different transmission lengths and measured data rates can be also obtained. Finally, we believe that our proposed scheme could be another alternative VLC implementation in practical distance, supporting < 100 Mb/s, using commercially available LED and PD (without optical blue filtering) and compact size.

  3. Exposure to 1800 MHz radiofrequency radiation impairs neurite outgrowth of embryonic neural stem cells

    PubMed Central

    Chen, Chunhai; Ma, Qinlong; Liu, Chuan; Deng, Ping; Zhu, Gang; Zhang, Lei; He, Mindi; Lu, Yonghui; Duan, Weixia; Pei, Liping; Li, Min; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    A radiofrequency electromagnetic field (RF-EMF) of 1800 MHz is widely used in mobile communications. However, the effects of RF-EMFs on cell biology are unclear. Embryonic neural stem cells (eNSCs) play a critical role in brain development. Thus, detecting the effects of RF-EMF on eNSCs is important for exploring the effects of RF-EMF on brain development. Here, we exposed eNSCs to 1800 MHz RF-EMF at specific absorption rate (SAR) values of 1, 2, and 4 W/kg for 1, 2, and 3 days. We found that 1800 MHz RF-EMF exposure did not influence eNSC apoptosis, proliferation, cell cycle or the mRNA expressions of related genes. RF-EMF exposure also did not alter the ratio of eNSC differentiated neurons and astrocytes. However, neurite outgrowth of eNSC differentiated neurons was inhibited after 4 W/kg RF-EMF exposure for 3 days. Additionally, the mRNA and protein expression of the proneural genes Ngn1 and NeuroD, which are crucial for neurite outgrowth, were decreased after RF-EMF exposure. The expression of their inhibitor Hes1 was upregulated by RF-EMF exposure. These results together suggested that 1800 MHz RF-EMF exposure impairs neurite outgrowth of eNSCs. More attention should be given to the potential adverse effects of RF-EMF exposure on brain development. PMID:24869783

  4. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  5. 47 CFR 15.237 - Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz. 15.237 Section 15.237 Telecommunication FEDERAL COMMUNICATIONS COMMISSION....237 Operation in the bands 72.0-73.0 MHz, 74.6-74.8 MHz and 75.2-76.0 MHz. (a) The intentional...

  6. 47 CFR 27.1104 - Designated Entities in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Designated Entities in the 2000-2020 MHz and... MHz, 2000-2020 MHz, and 2180-2200 MHz bands Licensing and Competitive Bidding Provisions § 27.1104 Designated Entities in the 2000-2020 MHz and 2180-2200 MHz bands. Eligibility for small business provisions...

  7. 47 CFR 27.1103 - 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false 2000-2020 MHz and 2180-2200 MHz bands subject... Bidding Provisions § 27.1103 2000-2020 MHz and 2180-2200 MHz bands subject to competitive bidding. Mutually exclusive initial applications for 2000-2020 MHz and 2180-2200 MHz band licenses are subject to...

  8. VizieR Online Data Catalog: Interferometric CO obs. of 126 CALIFA galaxies (Bolatto+, 2017)

    NASA Astrophysics Data System (ADS)

    Bolatto, A. D.; Wong, T.; Utomo, D.; Blitz, L.; Vogel, S. N.; Sanchez, S. F.; Barrera-Ballesteros, J.; Cao, Y.; Colombo, D.; Dannerbauer, H.; Garcia-Benito, R.; Herrera-Camus, R.; Husemann, B.; Kalinova, V.; Leroy, A. K.; Leung, G.; Levy, R. C.; Mast, D.; Ostriker, E.; Rosolowsky, E.; Sandstrom, K. M.; Teuben, P.; van de Ven, G.; Walter, F.

    2018-05-01

    Observations of the original 177 CALIFA galaxies sample were conducted by CARMA's E-array in late 2014, integrating 40 minutes per galaxy. 125 galaxies were subsequently (from 2014 December to 2015 March) observed in the more extended D configuration, with an additional ~3.5hr of integration per target. The CARMA correlator was configured with five 250MHz windows covering the 12CO line with 3.4km/s resolution and a 3000km/s velocity range, and three 500MHz windows covering the 13CO line with 14.3km/s resolution and a 3800km/s velocity range. (3 data files).

  9. Airborne RF Measurement System (ARMS) and Analysis of Representative Flight RF Environment

    NASA Technical Reports Server (NTRS)

    Koppen, Sandra V.; Ely, Jay J.; Smith, Laura J.; Jones, Richard A.; Fleck, Vincent J.; Salud, Maria Theresa; Mielnik, John J.

    2007-01-01

    Environmental radio frequency (RF) data over a broad band of frequencies (30 MHz to 1000 MHz) were obtained to evaluate the electromagnetic environment in airspace around several airports. An RF signal measurement system was designed utilizing a spectrum analyzer connected to the NASA Lancair Columbia 300 aircraft's VHF/UHF navigation antenna. This paper presents an overview of the RF measurement system and provides analysis of sample RF signal measurement data. This aircraft installation package and measurement system can be quickly returned to service if needed by future projects requiring measurement of an RF signal environment or exploration of suspected interference situations.

  10. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., 2110-2150 MHz, and 2160-2200 MHz bands. 101.77 Section 101.77 Telecommunication FEDERAL COMMUNICATIONS...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify... a Police licensee, a Fire Licensee, or an Emergency Medical Licensee as defined in § 90.7 of this...

  11. 47 CFR 27.1136 - Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 2000-2020 MHz and 2180-2200 MHz bands. 27.1136 Section 27.1136 Telecommunication FEDERAL COMMUNICATIONS... Operations § 27.1136 Protection of mobile satellite services in the 2000-2020 MHz and 2180-2200 MHz bands. An AWS licensee of the 2000-2020 MHz and 2180-2200 MHz bands must accept any interference received from...

  12. Effects of sintering temperature on properties of toroid cores using NiZnCu ferrites for power applications at >1 MHz

    NASA Astrophysics Data System (ADS)

    Liu, Junchang; Mei, Yunhui; Liu, Wen; Li, Xin; Hou, Feng; Lu, Guo-Quan

    2018-05-01

    The microstructures, magnetic and electronic performance of NiZnCu ferrites have been investigated at temperature from 850 °C to 1000 °C. X-ray diffraction (XRD) patterns showed that only single phase with spinel structure existed. Scanning electron microscopy (SEM) results showed that grain size increased with enhancement of sintering temperature and the most homogeneous, compact microstructure was obtained at 950 °C. Magnetic properties measurements revealed that both complex permeability and saturation magnetization increased with increasing of sintering temperature. The initial permeability was approximately linear within the scope of 850-1000 °C as well as the resonance frequency decreased from 70 MHz to 30 MHz. Power loss density tests demonstrated that the core sintered at 950 °C instead of the one sintered at 1000 °C had the lower power loss density at both 5 mT and 10 mT and the higher inductance under a certain exciting direct current at 1 MHz. Also the inductance of the sample sintered at the higher temperature dropped faster than that at the lower temperature. The results showed that the core sintered at 950 °C had better electrical performance and was suitable for wide usage.

  13. THZ SPECTROSCOPY OF 1d-ETHANE: Assignment of ν18

    NASA Astrophysics Data System (ADS)

    Daly, Adam M.; Drouin, Brian; Brown, Linda; Groner, Peter

    2014-06-01

    We have measureda over 130 pure rotational transitions of the lowest torsional state, ν18, of C2H5D using a double pass 3 meter cell held at 0.2 Torr of sample pressure in the frequency ranges of 540-600, 680-800 and 940-1080 GHz. The program ERHAMb, Effective Rotational Hamiltonian Method, was used to construct the Hamiltonian that included ρ, ɛ1, β, 9 rotational and centrifugal distortion constants and 8 torsional constants. Fitted values of ɛ1 = 1127.82(35) MHz, ρ = 0.4342 MHz and β = 1.317(22) MHz enable predictions to experimental accuracy of both a and b-dipole allowed pure rotational transitions which have A - E splittings of 70 MHz and 1.3 GHz respectively. The data, combined with ground state data, will be useful to derive information regarding the potential barrier to internal rotation. This analysis supports our ongoing work to assign the infrared spectrum in the 700-900 cm-1 region to enable the first detection in outer planet atmospheres. aResearch described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contracts and cooperative agreements with the National Aeronautics and Space Administration. bP. Groner J. Mol. Spec. 278 (2012) 52-67.

  14. Using High Frequency Focused Water-Coupled Ultrasound for 3-D Surface Depression Profiling

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. A prior study was performed demonstrating that focused air-coupled ultrasound at 1 MHz was capable of profiling surfaces with 25 micron depth resolution and 400 micron lateral resolution over a 1.4 mm depth range. In this article, the question of whether higher-frequency focused water-coupled ultrasound can improve on these specifications is addressed. 10 and 25 MHz focused ultrasonic transducers were employed in the water-coupled mode. Time-of-flight images of the sample surface were acquired and converted to depth / surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in water (V). Results are compared for the two frequencies used and with those from the 1 MHz air-coupled configuration.

  15. VizieR Online Data Catalog: LMC and Cen A 1.3-10GHz polarization behavior (Anderson+, 2016)

    NASA Astrophysics Data System (ADS)

    Anderson, C. S.; Gaensler, B. M.; Feain, I. J.

    2016-08-01

    The targets for our study were selected from among two archival polarization data sets, which were observed and processed by several independent groups. i.e. LMC observations spanning from 1994 Oct to 1996 Jan in 1.328-1.432GHz band; Cen A observations spanning from 2006 Dec to 2008 Feb in 1.296-1.480GHz band. We observed the 40 sample sources using the Australia Telescope Compact Array (ATCA) over 1.1-3.1GHz (16cm), 4.5-6.5GHz (6cm), and 8.0-10.0GHz (3cm) in full polarization with a nominal 1MHz channel resolution between 2012 Feb 10-12 and 2012 Aug 17-19. We imaged each source in Stokes I, Q, and U at 20MHz intervals through the 16 and 6cm bands, and at a substantially coarser resolution of 200MHz in the 3cm band. See sections 2 and 3 for further explanations. (2 data files).

  16. Very high frequency (beyond 100 MHz) PZT kerfless linear arrays.

    PubMed

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K Kirk

    2009-10-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-microm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-microm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss).

  17. Very High Frequency (Beyond 100 MHz) PZT Kerfless Linear Arrays

    PubMed Central

    Wu, Da-Wei; Zhou, Qifa; Geng, Xuecang; Liu, Chang-Geng; Djuth, Frank; Shung, K. Kirk

    2010-01-01

    This paper presents the design, fabrication, and measurements of very high frequency kerfless linear arrays prepared from PZT film and PZT bulk material. A 12-µm PZT thick film fabricated from PZT-5H powder/solution composite and a piece of 15-µm PZT-5H sheet were used to fabricate 32-element kerfless high-frequency linear arrays with photolithography. The PZT thick film was prepared by spin-coating of PZT sol-gel composite solution. The thin PZT-5H sheet sample was prepared by lapping a PZT-5H ceramic with a precision lapping machine. The measured results of the 2 arrays were compared. The PZT film array had a center frequency of 120 MHz, a bandwidth of 60% with a parylene matching layer, and an insertion loss of 41 dB. The PZT ceramic sheet array was found to have a center frequency of 128 MHz with a poorer bandwidth (40% with a parylene matching layer) but a better sensitivity (28 dB insertion loss). PMID:19942516

  18. Imaging Buried Culverts Using Ground Penetrating Radar: Comparing 100 MHZ Through 1 GHZ Antennae

    NASA Astrophysics Data System (ADS)

    Abdul Aziz, A.; Stewart, R. R.; Green, S. L.

    2013-12-01

    *Aziz, A A aabdulaziz@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA Stewart, R R rrstewart@uh.edu Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA *Green, S L slgreen@yahoo.com Allied Geophysical Lab, Department of Earth and Atmospheric Sciences, University of Houston, TX, USA A 3D ground penetrating radar (GPR) survey, using three different frequency antennae, was undertaken to image buried steel culverts at the University of Houston's La Marque Geophysical Observatory 30 miles south of Houston, Texas. The four culverts, under study, support a road crossing one of the area's bayous. A 32 m by 4.5 m survey grid was designed on the road above the culverts and data were collected with 100 MHz, 250 MHz, and 1 GHz antennae. We used an orthogonal acquisition geometry for the three surveys. Inline sampling was from 1.0 cm to 10 cm (from 1 GHz to 100 MHz antenna) with inline and crossline spacings ranging from 0.2 m to 0.5 m. We used an initial velocity of 0.1 m/ns (from previous CMP work at the site) for the display purposes. The main objective of the study was to analyze the effect of different frequency antennae on the resultant GPR images. We are also interested in the accuracy and resolution of the various images, in addition to developing an optimal processing flow.The data were initially processed with standard steps that included gain enhancement, dewow and temporal-filtering, background suppression, and 2D migration. Various radar velocities were used in the 2D migration and ultimately 0.12 m/ns was used. The data are complicated by multipathing from the surface and between culverts (from modeling). Some of this is ameliorated via deconvolution. The top of each of the four culverts was evident in the GPR images acquired with the 250 MHz and 100 MHz antennas. For 1 GHz, the top of the culvert was not clear due to the signal's attenuation. The 250 MHz shielded antenna provides a vertical resolution of about 0.1 m and is the choice to image the culverts. The 100 MHz antenna provided an increment in depth of penetration, but at the expense of a substantially diminished resolution (0.25 m).

  19. A Broadband VHF-L Band Cavity-Backed Slot Spiral Antenna

    DTIC Science & Technology

    2005-05-01

    each new frequency. When the frequency list is completed, the Flight Test Engineer will contact the Test Technician and request any necessary...immediately required elsewhere. Frequency List ; 50.05 MHz, 144.05 MHz, 432.05 MHz, 902.05 MHz, 1.29605 GHz...Repeat Completed? (Y/N) Test Completed? (Y/N) Frequency List ; 50.05 MHz, 144.05 MHz, 432.05 MHz, 902.05 MHz, 1.29605 GHz

  20. A Dynamic Nuclear Polarization spectrometer at 95 GHz/144 MHz with EPR and NMR excitation and detection capabilities.

    PubMed

    Feintuch, Akiva; Shimon, Daphna; Hovav, Yonatan; Banerjee, Debamalya; Kaminker, Ilia; Lipkin, Yaacov; Zibzener, Koby; Epel, Boris; Vega, Shimon; Goldfarb, Daniella

    2011-04-01

    A spectrometer specifically designed for systematic studies of the spin dynamics underlying Dynamic Nuclear Polarization (DNP) in solids at low temperatures is described. The spectrometer functions as a fully operational NMR spectrometer (144 MHz) and pulse EPR spectrometer (95 GHz) with a microwave (MW) power of up to 300 mW at the sample position, generating a MW B(1) field as high as 800 KHz. The combined NMR/EPR probe comprises of an open-structure horn-reflector configuration that functions as a low Q EPR cavity and an RF coil that can accommodate a 30-50 μl sample tube. The performance of the spectrometer is demonstrated through some basic pulsed EPR experiments, such as echo-detected EPR, saturation recovery and nutation measurements, that enable quantification of the actual intensity of MW irradiation at the position of the sample. In addition, DNP enhanced NMR signals of samples containing TEMPO and trityl are followed as a function of the MW frequency. Buildup curves of the nuclear polarization are recorded as a function of the microwave irradiation time period at different temperatures and for different MW powers. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Noise reduction and control in mode-locked semiconductor diode lasers for use in next-generation all-optical analog-to-digital converters

    NASA Astrophysics Data System (ADS)

    DePriest, Christopher M.; Abeles, Joseph H.; Braun, Alan; Delfyett, Peter J., Jr.

    2000-07-01

    External-cavity, actively-modelocked semiconductor diode lasers (SDLs) have proven to be attractive candidates for forming the backbone of next-generation analog-to-digital converters (ADCs), which are currently being developed to sample signals at repetition rates exceeding several GHz with up to 12 bits of digital resolution. Modelocked SDLs are capable of producing waveform-sampling pulse trains with very low temporal jitter (phase noise) and very small fluctuations in pulse height (amplitude noise)--two basic conditions that must be met in order for high-speed ADCs to achieve projected design goals. Single-wavelength modelocked operation (at nominal repetition frequencies of 400 MHz) has produced pulse trains with very low amplitude noise (approximately 0.08%), and the implementation of a phase- locked-loop has been effective in reducing the system's low- frequency phase noise (RMS timing jitter for offset frequencies between 10 Hz and 10 kHz has been reduced from 240 fs to 27 fs).

  2. Dual-Band Deramp Radar Design for Ocean Current Measurements

    NASA Technical Reports Server (NTRS)

    Haynes, Mark S.

    2005-01-01

    A mission has been proposed to remotely measure ocean surface currents and surface wind velocities. It will provide the highest resolution and repeat time of these measurements to date for ocean current models with scientific and societal applications. A ground-based experimental radar unit is needed for proof of concept. The proposed experiment set up is to mount the radar on an oil rig to imitate satellite data acquisition. This summer, I completed the radar design. The design employs chirp/deramp topology with simultaneous transmit/receive channels. These two properties allow large system bandwidth, extended sample time, close range imaging, and low sampling rate. The radar operates in the Ku and Ka microwave bands, at 13.5 and 35.5 GHz, respectively, with a system bandwidth of 300 MHz. I completed the radar frequency analysis and research on potential components and antenna configurations. Subsequent work is needed to procure components, as well as to build, test, and deploy the radar.

  3. Collective strong coupling with homogeneous Rabi frequencies using a 3D lumped element microwave resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Angerer, Andreas, E-mail: andreas.angerer@tuwien.ac.at; Astner, Thomas; Wirtitsch, Daniel

    We design and implement 3D-lumped element microwave cavities that spatially focus magnetic fields to a small mode volume. They allow coherent and uniform coupling to electron spins hosted by nitrogen vacancy centers in diamond. We achieve large homogeneous single spin coupling rates, with an enhancement of more than one order of magnitude compared to standard 3D cavities with a fundamental resonance at 3 GHz. Finite element simulations confirm that the magnetic field distribution is homogeneous throughout the entire sample volume, with a root mean square deviation of 1.54%. With a sample containing 10{sup 17} nitrogen vacancy electron spins, we achieve amore » collective coupling strength of Ω = 12 MHz, a cooperativity factor C = 27, and clearly enter the strong coupling regime. This allows to interface a macroscopic spin ensemble with microwave circuits, and the homogeneous Rabi frequency paves the way to manipulate the full ensemble population in a coherent way.« less

  4. High-throughput sample adaptive offset hardware architecture for high-efficiency video coding

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Yan, Chang; Zhang, Jingzhi; Zhou, Xin

    2018-03-01

    A high-throughput hardware architecture for a sample adaptive offset (SAO) filter in the high-efficiency video coding video coding standard is presented. First, an implementation-friendly and simplified bitrate estimation method of rate-distortion cost calculation is proposed to reduce the computational complexity in the mode decision of SAO. Then, a high-throughput VLSI architecture for SAO is presented based on the proposed bitrate estimation method. Furthermore, multiparallel VLSI architecture for in-loop filters, which integrates both deblocking filter and SAO filter, is proposed. Six parallel strategies are applied in the proposed in-loop filters architecture to improve the system throughput and filtering speed. Experimental results show that the proposed in-loop filters architecture can achieve up to 48% higher throughput in comparison with prior work. The proposed architecture can reach a high-operating clock frequency of 297 MHz with TSMC 65-nm library and meet the real-time requirement of the in-loop filters for 8 K × 4 K video format at 132 fps.

  5. Measurement of the ultrasonic properties of human coronary arteries in vitro with a 50-MHz acoustic microscope.

    PubMed

    Machado, J C; Foster, F S; Gotlieb, A I

    2002-08-01

    Ultrasonic attenuation coefficient, wave propagation speed and integrated backscatter coefficient (IBC) of human coronary arteries were measured in vitro over the -6 dB frequency bandwidth (36 to 67 MHz) of a focused ultrasound transducer (50 MHz, focal distance 5.7 mm, f/number 1.7). Corrections were made for diffraction effects. Normal and diseased coronary artery sub-samples (N = 38) were obtained from 10 individuals at autopsy. The measured mean +/- SD of the wave speed (average over the entire vessel wall thickness) was 1581.04 +/- 53.88 m/s. At 50 MHz, the average attenuation coefficient was 4.99 +/- 1.33 dB/mm with a frequency dependence term of 1.55 +/- 0.18 determined over the 36- to 67-MHz frequency range. The IBC values were: 17.42 +/- 13.02 (sr.m)-1 for thickened intima, 11.35 +/- 6.54 (sr.m)-1 for fibrotic intima, 39.93 +/- 50.95 (sr.m)-1 for plaque, 4.26 +/- 2.34 (sr.m)-1 for foam cells, 5.12 +/- 5.85 (sr.m)-1 for media and 21.26 +/- 31.77 (sr.m)-1 for adventitia layers. The IBC results indicate the possibility for ultrasound characterization of human coronary artery wall tissue layer, including the situations of diseased arteries with the presence of thickened intima, fibrotic intima and plaque. The mean IBC normalized with respect to the mean IBC of the media layer seems promising for use as a parameter to differentiate a plaque or a thickened intima from a fibrotic intima.

  6. High-power supercontinuum generation using high-repetition-rate ultrashort-pulse fiber laser for ultrahigh-resolution optical coherence tomography in 1600 nm spectral band

    NASA Astrophysics Data System (ADS)

    Yamanaka, Masahito; Kawagoe, Hiroyuki; Nishizawa, Norihiko

    2016-02-01

    We describe the generation of a high-power, spectrally smooth supercontinuum (SC) in the 1600 nm spectral band for ultrahigh-resolution optical coherence tomography (UHR-OCT). A clean SC was achieved by using a highly nonlinear fiber with normal dispersion properties and a high-quality pedestal-free pulse obtained from a passively mode-locked erbium-doped fiber laser operating at 182 MHz. The center wavelength and spectral width were 1578 and 172 nm, respectively. The output power of the SC was 51 mW. Using the developed SC source, we demonstrated UHR-OCT imaging of biological samples with a sensitivity of 109 dB and an axial resolution of 4.9 µm in tissue.

  7. Experimental Ten-Photon Entanglement.

    PubMed

    Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei

    2016-11-18

    We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12  MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.

  8. A LOW-E MAGIC ANGLE SPINNING PROBE FOR BIOLOGICAL SOLID STATE NMR AT 750 MHz

    PubMed Central

    McNeill, Seth A.; Gor’kov, Peter L.; Shetty, Kiran; Brey, William W.; Long, Joanna R.

    2009-01-01

    Crossed-coil NMR probes are a useful tool for reducing sample heating for biological solid state NMR. In a crossed-coil probe, the higher frequency 1H field, which is the primary source of sample heating in conventional probes, is produced by a separate low-inductance resonator. Because a smaller driving voltage is required, the electric field across the sample and the resultant heating is reduced. In this work we describe the development of a magic angle spinning (MAS) solid state NMR probe utilizing a dual resonator. This dual resonator approach, referred to as “Low-E,” was originally developed to reduce heating in samples of mechanically aligned membranes. The study of inherently dilute systems, such as proteins in lipid bilayers, via MAS techniques requires large sample volumes at high field to obtain spectra with adequate signal-to-noise ratio under physiologically relevant conditions. With the Low-E approach, we are able to obtain homogeneous and sufficiently strong radiofrequency fields for both 1H and 13C frequencies in a 4 mm probe with a 1H frequency of 750 MHz. The performance of the probe using windowless dipolar recoupling sequences is demonstrated on model compounds as well as membrane embedded peptides. PMID:19138870

  9. On the Evolution of the Cores of Radio Sources and Their Extended Radio Emission

    NASA Astrophysics Data System (ADS)

    Yuan, Zunli; Wang, Jiancheng

    2012-01-01

    The work in this paper aims at determining the evolution and possible co-evolution of radio-loud active galactic nuclei (AGNs) and their cores via their radio luminosity functions (i.e., total and core RLFs, respectively). Using a large combined sample of 1063 radio-loud AGNs selected at low radio frequency, we investigate the RLF at 408 MHz of steep-spectrum radio sources. Our results support a luminosity-dependent evolution. Using core flux density data of the complete sample 3CRR, we investigate the core RLF at 5.0 GHz. Based on the combined sample with incomplete core flux data, we also estimate the core RLF using a modified factor of completeness. Both results are consistent and show that the comoving number density of radio cores displays a persistent decline with redshift, implying a negative density evolution. We find that the core RLF is obviously different from the total RLF at the 408 MHz band which is mainly contributed by extended lobes, implying that the cores and extended lobes could not be co-evolving at radio emission.

  10. Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Daisaku; Yamamoto, Shohei; Ueki, Hironobu; Ishdia, Masahiro

    A L2F (Laser 2-Focus velocimeter) was applied for the measurements of the velocity and size of droplets in diesel fuel sprays. The micro-scale probe of the L2F has an advantage in avoiding the multiple scattering from droplets in a dense region of fuel sprays. A data sampling rate of 15MHz has been achieved in the L2F system for detecting almost all of the droplets which passed through the measurement probe. Diesel fuel was injected into the atmosphere by using a common rail injector. Measurement positions were located along the spray axis at 10, 15, 20, 25, and 30 mm from the nozzle exit. Measurement result showed that the velocity and size of droplets decreased and the number density of droplets increased along the spray axis. It was clearly shown that the mass flow rate in the spray was highest near the spray tip and was lower inside the spray.

  11. High-Resolution Dual-Comb Spectroscopy with Ultra-Low Noise Frequency Combs

    NASA Astrophysics Data System (ADS)

    Hänsel, Wolfgang; Giunta, Michele; Beha, Katja; Perry, Adam J.; Holzwarth, R.

    2017-06-01

    Dual-comb spectroscopy is a powerful tool for fast broad-band spectroscopy due to the parallel interrogation of thousands of spectral lines. Here we report on the spectroscopic analysis of acetylene vapor in a pressurized gas cell using two ultra-low noise frequency combs with a repetition rate around 250 MHz. Optical referencing to a high-finesse cavity yields a sub-Hertz stability of all individual comb lines (including the virtual comb lines between 0 Hz and the carrier) and permits one to pick a small difference of repetition rate for the two frequency combs on the order of 300 Hz, thus representing an optical spectrum of 100 THz (˜3300 \\wn) within half the free spectral range (125 MHz). The transmission signal is derived straight from a photodetector and recorded with a high-resolution spectrum analyzer or digitized with a computer-controlled AD converter. The figure to the right shows a schematic of the experimental setup which is all fiber-coupled with polarization-maintaining fiber except for the spectroscopic cell. The graph on the lower right reveals a portion of the recorded radio-frequency spectrum which has been scaled to the optical domain. The location of the measured absorption coincides well with data taken from the HITRAN data base. Due to the intrinsic linewidth of all contributing comb lines, each sampling point in the transmission graph corresponds to the probing at an optical frequency with sub-Hertz resolution. This resolution is maintained in coherent wavelength conversion processes such as difference-frequency generation (DFG), sum-frequency generation (SFG) or non-linear broadening (self-phase modulation), and is therefore easily transferred to a wide spectral range from the mid infrared up to the visible spectrum.

  12. Intracardiac ultrasound scanner using a micromachine (MEMS) actuator.

    PubMed

    Zara, J M; Bobbio, S M; Goodwin-Johansson, S; Smith, S W

    2000-01-01

    Catheter-based intracardiac ultrasound offers the potential for improved guidance of interventional cardiac procedures. The objective of this research is the development of catheter-based mechanical sector scanners incorporating high frequency ultrasound transducers operating at frequencies up to 20 MHz. The authors' current transducer assembly consists of a single 1.75 mm by 1.75 mm, 20 MHz, PZT element mounted on a 2 mm by 2 mm square, 75 mum thick polyimide table that pivots on 3-mum thick gold plated polyimide hinges. The hinges also serve as the electrical connections to the transducer. This table-mounted transducer is tilted using a miniature linear actuator to produce a sector scan. This linear actuator is an integrated force array (IFA), which is an example of a micromachine, i.e., a microelectromechanical system (MEMS). The IFA is a thin (2.2 mum) polyimide membrane, which consists of a network of hundreds of thousands of micron scale deformable capacitors made from pairs of metallized polyimide plates. IFAs contract with an applied voltage of 30-120 V and have been shown to produce strains as large as 20% and forces of up to 8 dynes. The prototype transducer and actuator assembly was fabricated and interfaced with a GagePCI analog to digital conversion board digitizing 12 bit samples at a rate of 100 MSamples/second housed in a personal computer to create a single channel ultrasound scanner. The deflection of the table transducer in a low viscosity insulating fluid (HFE 7100, 3M) is up to +/-10 degrees at scan rates of 10-60 Hz. Software has been developed to produce real-time sector scans on the PC monitor.

  13. Extended dynamic range of Doppler OCT by application of a new method to high density B-scans using a MHz FDML swept laser source (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Elahi, Sahar; Thrane, Lars; Rollins, Andrew M.; Jenkins, Michael W.

    2017-02-01

    The limited dynamic range of optical coherence tomography (OCT) Doppler velocity measurements makes it difficult to conduct experiments on samples requiring a large dynamic range without phase wrapping at high velocities or loss of sensitivity at slow velocities. Hemodynamics and wall motion undergo significant increases in velocity as the embryonic heart develops. Experimental studies indicate that altered hemodynamics in early-stage embryonic hearts can lead to congenital heart diseases (CHDs), motivating close monitoring of blood flow over several stages of development. We have built a high-speed OCT system using an FDML laser (Optores GmbH, Germany) at a sweep rate of 1.68 MHz (axial resolution - 12 μm, sensitivity - 105 dB, phase stability - 17 mrad). The speed of this OCT system allows us to acquire high-density B-scans to obtain an extended velocity dynamic range without sacrificing the frame rate (100 Hz). The extended dynamic range within a frame is achieved by varying the A-scan interval at which the phase difference is found, enabling detection of velocities ranging from tens of microns per second to hundreds of millimeters per second. The extra lines in a frame can also be utilized to improve the structural and Doppler images via complex averaging. In structural images where the presence of blood causes additional scattering, complex averaging helps retrieve features located deeper in the tissue. Moreover, high-density frames can be registered to 4D volumes to determine the orthogonal direction of flow for calculating shear stress as well as estimating the cardiac output. In conclusion, high density B-scans acquired by our high-speed OCT system enable image enhancement and direct measurement of biological parameters in cohort studies.

  14. Detecting cm-scale hot spot over 24-km-long single-mode fiber by using differential pulse pair BOTDA based on double-peak spectrum.

    PubMed

    Diakaridia, Sanogo; Pan, Yue; Xu, Pengbai; Zhou, Dengwang; Wang, Benzhang; Teng, Lei; Lu, Zhiwei; Ba, Dexin; Dong, Yongkang

    2017-07-24

    In distributed Brillouin optical fiber sensor when the length of the perturbation to be detected is much smaller than the spatial resolution that is defined by the pulse width, the measured Brillouin gain spectrum (BGS) experiences two or multiple peaks. In this work, we propose and demonstrate a technique using differential pulse pair Brillouin optical time-domain analysis (DPP-BOTDA) based on double-peak BGS to enhance small-scale events detection capability, where two types of single mode fiber (main fiber and secondary fiber) with 116 MHz Brillouin frequency shift (BFS) difference have been used. We have realized detection of a 5-cm hot spot at the far end of 24-km single mode fiber by employing a 50-cm spatial resolution DPP-BOTDA with only 1GS/s sampling rate (corresponding to 10 cm/point). The BFS at the far end of 24-km sensing fiber has been measured with 0.54 MHz standard deviation which corresponds to a 0.5°C temperature accuracy. This technique is simple and cost effective because it is implemented using the similar experimental setup of the standard BOTDA, however, it should be noted that the consecutive small-scale events have to be separated by a minimum length corresponding to the spatial resolution defined by the pulse width difference.

  15. Design and Performance of the ARIANNA HRA-3 Neutrino Detector Systems

    NASA Astrophysics Data System (ADS)

    Barwick, S. W.; Berg, E. C.; Besson, D. Z.; Duffin, T.; Hanson, J. C.; Klein, S. R.; Kleinfelder, S. A.; Ratzlaff, K.; Reed, C.; Roumi, M.; Stezelberger, T.; Tatar, J.; Walker, J.; Young, R.; Zou, L.

    2015-10-01

    We report on the development, installation, and operation of the first three of seven stations deployed at the ARIANNA site's pilot Hexagonal Radio Array (HRA) in Antarctica. The primary goal of the ARIANNA project is to observe ultrahigh energy ( > 100 PeV) cosmogenic neutrino signatures using a large array of autonomous stations, each 1 km apart on the surface of the Ross Ice Shelf. Sensing radio emissions of 100 MHz to 1 GHz, each station in the array contains RF antennas, amplifiers, 1.92 G-sample/s, 850 MHz bandwidth signal acquisition circuitry, pattern-matching trigger capabilities, an embedded CPU, 32 GB of solid-state data storage, and long-distance wireless and satellite communications. Power is provided by the sun and buffered in LiFePO 4 storage batteries, and each station consumes an average of 7 W of power. Operation on solar power has resulted in ≥58% per calendar-year live-time. The station's pattern-trigger capabilities reduce the trigger rates to a few milli-Hertz with 4-sigma voltage thresholds while retaining good stability and high efficiency for neutrino signals. The timing resolution of the station has been found to be 0.049 ns, RMS, and the angular precision of event reconstructions of signals bounced off of the sea-ice interface of the Ross Ice Shelf ranged from 0.14 to 0.17 °.

  16. A low-power high-speed ultra-wideband pulse radio transmission system.

    PubMed

    Wei Tang; Culurciello, E

    2009-10-01

    We present a low-power high-speed ultra-wideband (UWB) transmitter with a wireless transmission test platform. The system is specifically designed for low-power high-speed wireless implantable biosensors. The integrated transmitter consists of a compact pulse generator and a modulator. The circuit is fabricated in the 0.5-mum silicon-on-sapphire process and occupies 420 mum times 420 mum silicon area. The transmitter is capable of generating pulses with 1-ns width and the pulse rate can be controlled between 90 MHz and 270 MHz. We built a demonstration/testing system for the transmitter. The transmitter achieves a 14-Mb/s data rate. With 50% duty cycle data, the power consumption of the chip is between 10 mW and 21 mW when the transmission distance is from 3.2 to 4 m. The core circuit size is 70 mum times 130 mum.

  17. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source

    NASA Astrophysics Data System (ADS)

    Wells, R. P.; Ghiorso, W.; Staples, J.; Huang, T. M.; Sannibale, F.; Kramasz, T. D.

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  18. Mechanical design and fabrication of the VHF-gun, the Berkeley normal-conducting continuous-wave high-brightness electron source.

    PubMed

    Wells, R P; Ghiorso, W; Staples, J; Huang, T M; Sannibale, F; Kramasz, T D

    2016-02-01

    A high repetition rate, MHz-class, high-brightness electron source is a key element in future high-repetition-rate x-ray free electron laser-based light sources. The VHF-gun, a novel low frequency radio-frequency gun, is the Lawrence Berkeley National Laboratory (LBNL) response to that need. The gun design is based on a normal conducting, single cell cavity resonating at 186 MHz in the VHF band and capable of continuous wave operation while still delivering the high accelerating fields at the cathode required for the high brightness performance. The VHF-gun was fabricated and successfully commissioned in the framework of the Advanced Photo-injector EXperiment, an injector built at LBNL to demonstrate the capability of the gun to deliver the required beam quality. The basis for the selection of the VHF-gun technology, novel design features, and fabrication techniques are described.

  19. An all-sky survey of circular polarisation at 200 MHz

    NASA Astrophysics Data System (ADS)

    Lenc, Emil; Murphy, Tara; Lynch, C. R.; Kaplan, D. L.; Zhang, S. N.

    2018-05-01

    We present results from the first all-sky radio survey in circular polarisation. The survey uses the Murchison Widefield Array (MWA) to cover 30 900 sq. deg., over declinations south of +30° and north of -86° centred at 200 MHz (over a 169 - 231 MHz band). We achieve a spatial resolution of ˜3' and a typical sensitivity of 3.0 mJy PSF-1 over most of the survey region. We demonstrate a new leakage mitigation technique that reduces the leakage from total intensity into circular polarisation by an order of magnitude. In a blind survey of the imaged region, we detect 14 pulsars in circular polarisation above a 6σ threshold. We also detect six transient sources associated with artificial satellites. A targeted survey of 2 376 pulsars within the surveyed region yielded 33 detections above 4σ. Looking specifically at pulsars previously detected at 200 MHz in total intensity, this represents a 35% detection rate. We also conducted a targeted survey of 2 400 known flare stars, this resulted in two tentative detections above 4σ. A similar targeted search for 1 506 known exoplanets in the field yielded no detections above 4σ. The success of the survey suggests that similar surveys at longer wavelength bands and of deeper fields are warranted.

  20. Development of High Power Vacuum Tubes for Accelerators and Plasma Heating

    NASA Astrophysics Data System (ADS)

    Srivastava, Vishnu

    2012-11-01

    High pulsed power magnetrons and klystrons for medical and industrial accelerators, and high CW power klystrons and gyrotrons for plasma heating in tokamak, are being developed at CEERI. S-band 2.0MW pulsed tunable magnetrons of centre frequency 2856MHz and 2998 MHz were developed, and S-band 2.6MW pulsed tunable magnetron is being developed for medical LINAC, and 3MW pulsed tunable magnetron is being developed for industrial accelerator. S-band (2856MHz), 5MW pulsed klystron was developed for particle accelerator, and S-band 6MW pulsed klystron is under development for 10MeV industrial accelerator. 350MHz, 100kW (CW) klystron is being developed for proton accelerator, and C-band 250kW (CW) klystron is being developed for plasma heating. 42GHz, 200kW (CW/Long pulse) gyrotron is under development for plasma heating. Plasma filled tubes are also being developed for switching. 25kV/1kA and 40kV/3kA thyratrons were developed for high voltage high current switching in pulse modulators for magnetrons and klystrons. 25kV/3kA Pseudospark switch of current rise time of 1kA/|a-sec and pulse repetition rate of 500Hz is being developed. Plasma assisted high power microwave device is also being investigated.

  1. A field programmable gate array-based time-resolved scaler for collinear laser spectroscopy with bunched radioactive potassium beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rossi, D. M., E-mail: rossi@nscl.msu.edu; Davis, M.; Ringle, R.

    A new data acquisition system including a Field Programmable Gate Array (FPGA) based time-resolved scaler was developed for laser-induced fluorescence and beam bunch coincidence measurements. The FPGA scaler was tested in a collinear laser-spectroscopy experiment on radioactive {sup 37}K at the BEam COoler and LAser spectroscopy (BECOLA) facility at the National Superconducting Cyclotron Laboratory at Michigan State University. A 1.29 μs bunch width from the buncher and a bunch repetition rate of 2.5 Hz led to a background suppression factor of 3.1 × 10{sup 5} in resonant photon detection measurements. The hyperfine structure of {sup 37}K and its isotope shiftmore » relative to the stable {sup 39}K were determined using 5 × 10{sup 4} s{sup −1} {sup 37}K ions injected into the BECOLA beam line. The obtained hyperfine coupling constants A({sup 2}S{sub 1/2}) = 120.3(1.4) MHz, A({sup 2}P{sub 1/2}) = 15.2(1.1) MHz, and A({sup 2}P{sub 3/2}) = 1.4(8) MHz, and the isotope shift δν{sup 39,} {sup 37} = −264(3) MHz are consistent with the previously determined values, where available.« less

  2. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz

    NASA Astrophysics Data System (ADS)

    Wainwright, P. R.

    2007-07-01

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 °C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.

  3. Computational modelling of temperature rises in the eye in the near field of radiofrequency sources at 380, 900 and 1800 MHz.

    PubMed

    Wainwright, P R

    2007-06-21

    This paper reports calculations of the temperature rises induced in the eye and lens by near-field exposure to radiation from communication handsets, using the finite difference time domain method and classical bioheat equation. Various models are compared, including the analytic solution for a sphere, a finite element model of an isolated eye and a modern model of the whole head. The role of the blood supply to the choroid in moderating temperature is discussed. Three different frequencies are considered, namely 380 MHz (used by TETRA), and 900 and 1800 MHz (used by GSM mobile phones). At 380 MHz, monopole and helical antennas are compared. An 'equivalent blood flow' is derived for the choroid in order to facilitate comparison of the whole head and isolated eye models. In the whole head model, the heating of the lens receives a significant contribution from energy absorbed outside the eye. The temperature rise in the lens is compared to the ICNIRP-recommended average specific energy absorption rate (SAR) and the SAR averaged over the eye alone. The temperature rise may reach 1.4 degrees C at the ICNIRP occupational exposure limit if an antenna is placed less than 24 mm from the eye and the exposure is sufficiently prolonged.

  4. Evidence for changes in the nucleotide conformation in the active site of H(+)-ATPase as determined by pulsed EPR spectroscopy.

    PubMed

    Schneider, B; Sigalat, C; Amano, T; Zimmermann, J L

    2000-12-19

    The conformation of di- and triphosphate nucleosides in the active site of ATPsynthase (H(+)-ATPase) from thermophilic Bacillus PS3 (TF1) and their interaction with Mg(2+)/Mn(2+) cations have been investigated using EPR, ESEEM, and HYSCORE spectroscopies. For a ternary complex formed by a stoichiometric mixture of TF1, Mn(2+), and ADP, the ESEEM and HYSCORE data reveal a (31)P hyperfine interaction with Mn(2+) (|A((31)P)| approximately 5.20 MHz), significantly larger than that measured for the complex formed by Mn(2+) and ADP in solution (|A((31)P)| approximately 4.50 MHz). The Q-band EPR spectrum of the Mn.TF1.ADP complex indicates that the Mn(2+) binds in a slightly distorted environment with |D| approximately 180 x 10(-4) cm(-1) and |E| approximately 50 x 10(-4) cm(-1). The increased hyperfine coupling with (31)P in the presence of TF1 reflects the specific interaction between the central Mn(2+) and the ADP beta-phosphate, illustrating the role of the enzyme active site in positioning the phosphate chain of the substrate for efficient catalysis. Results with the ternary Mn.TF1.ATP and Mn.TF1.AMP-PNP complexes are interpreted in a similar way with two hyperfine couplings being resolved for each complex (|A((31)P(beta))| approximately 4.60 MHz and |A((31)P(gamma))| approximately 5.90 MHz with ATP, and |A((31)P(beta))| approximately 4.20 MHz and |A((31)P(gamma))| approximately 5.40 MHz with AMP-PNP). In these complexes, the increased hyperfine coupling with (31)P(gamma) compared with (31)P(beta) reflects the smaller Mn.P distance with the gamma-phosphate compared with the beta-phosphate as found in the crystal structure of the analogous enzyme from mitochondria [3.53 vs 3.70 A (Abrahams, J. P., Leslie, A. G. W., Lutter, R., and Walker, J. E. (1994) Nature 370, 621-628)] and the different binding modes of the two phosphate groups. The ESEEM and HYSCORE data of a complex formed with Mn(2+), ATP, and the isolated beta subunit show that the (31)P hyperfine coupling is close to that measured in the absence of the protein, indicating a poorly structured nucleotide site in the isolated beta subunit in the presence of ATP. The inhibition data obtained for TF1 incubated in the presence of Mg(2+), ADP, Al(NO(3))(3), and NaF indicate the formation of the inhibited complex with the transition state analogue namely Mg.TF1.ADP.AlF(x) with the equilibrium dissociation constant K(D) = 350 microM and rate constant k = 0.02 min(-1). The ESEEM and HYSCORE data obtained for an inhibited TF1 sample, Mn.TF1.ADP.AlF(x), confirm the formation of the transition state analogue with distinct spectroscopic footprints that can be assigned to Mn.(19)F and Mn.(27)Al hyperfine interactions. The (31)P(beta) hyperfine coupling that is measured in the inhibited complex with the transition state analogue (|A((31)P(beta))| approximately 5.10 MHz) is intermediate between those measured in the presence of ADP and ATP and suggests an increase in the bond between Mn and the P(beta) from ADP upon formation of the transition state.

  5. Monitoring health and reproductive status of olms (Proteus anguinus) by ultrasound

    PubMed Central

    Lukač, Maja; Cizelj, Ivan; Mutschmann, Frank; Szentiks, Claudia Anita; Jelić, Dušan; Hermes, Robert; Göritz, Frank; Braude, Stanton; Hildebrandt, Thomas Bernd

    2017-01-01

    The olm (Proteus anguinus) is a troglomorphic, neotenous amphibian with extraordinary life expectancy and unique adaptations that deserve further investigation. A low reproductive rate and habitat decline render it threatened by extinction. Establishing captive populations for maintenance and artificial breeding may one day become crucial to the species. Longitudinal, in-vivo assessment of inner organs is invaluable to our understanding of reproductive physiology, health, and behavior. Using ultrasound, we measured heart rate and assessed health and reproductive status of 13 captive olms at Zagreb Zoo. Heart rate averaged 42.9 ± 4.6 bpm (32–55 bpm), as determined via pulsed-wave Doppler at 4–12 MHz. By using frequencies of up to 70 MHz (ultrasound biomicroscopy), inner organs were visualized in detail. Assessment of the gastrointestinal tract provided insights into feeding status and digestive processes. Several subclinical pathologies were detected, including biliary sludge, subcutaneous edema, ascites, and skin lesions. Detection of skin lesions by ultrasound was more sensitive than visual adspection. Olms with ultrasonographically detected skin lesions tested positive for Saprolegnia and were treated. Three of the four affected individuals survived and subsequently tested negative for Saprolegnia. Sex was reliably determined; only one individual proved male. The reason for this extreme female-biased sex-ratio remains unknown. However, as most of the individuals were flushed from the caves by strong currents in spring, the sample may not be representative of natural populations. In female olms, different stages of ovarian follicular development were observed with diameters ranging between 0.1 and 1.1 mm. Results were confirmed by comparing ultrasound, necropsy, and histological findings of one dead specimen. In summary, ultrasound proved a valuable tool to support conservation and captive breeding programs by allowing non-invasive assessment of physiological parameters, clinical condition, and reproductive status in olms. PMID:28809953

  6. 47 CFR 27.17 - Discontinuance of service in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 2 2013-10-01 2013-10-01 false Discontinuance of service in the 2000-2020 MHz... § 27.17 Discontinuance of service in the 2000-2020 MHz and 2180-2200 MHz bands. (a) Termination of authorization. A licensee's AWS authorization in the 2000-2020 MHz and 2180-2200 MHz bands will automatically...

  7. 47 CFR 27.15 - Geographic partitioning and spectrum disaggregation.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... for licensees holding AWS authorizations in the 1915-1920 MHz and 1995-2000 MHz bands or the 2000-2020... bands, or the 2000-2020 MHz and 2180-2200 MHz bands, the following rules apply for purposes of...) for 2000-2020 MHz and 2180-2200 MHz licenses and those enumerated in § 27.14(r) for 1915-1920 MHz and...

  8. New approaches to some methodological problems of meteor science

    NASA Technical Reports Server (NTRS)

    Meisel, David D.

    1987-01-01

    Several low cost approaches to continuous radioscatter monitoring of the incoming meteor flux are described. Preliminary experiments were attempted using standard time frequency stations WWVH and CHU (on frequencies near 15 MHz) during nighttime hours. Around-the-clock monitoring using the international standard aeronautical beacon frequency of 75 MHz was also attempted. The techniques are simple and can be managed routinely by amateur astronomers with relatively little technical expertise. Time series analysis can now be performed using relatively inexpensive microcomputers. Several algorithmic approaches to the analysis of meteor rates are discussed. Methods of obtaining optimal filter predictions of future meteor flux are also discussed.

  9. Sub-femtosecond timing jitter, all-fiber, CNT-mode-locked Er-laser at telecom wavelength.

    PubMed

    Kim, Chur; Bae, Sangho; Kieu, Khanh; Kim, Jungwon

    2013-11-04

    We demonstrate a 490-attosecond timing jitter (integration bandwidth: 10 kHz - 39.4 MHz) optical pulse train from a 78.7-MHz repetition rate, all-fiber soliton Er laser mode-locked by a fiber tapered carbon nanotube saturable absorber (ft-CNT-SA). To achieve this jitter performance, we searched for a net cavity dispersion condition where the Gordon-Haus jitter is minimized while maintaining stable soliton mode-locking. Our result shows that optical pulse trains with well below a femtosecond timing jitter can be generated from a self-starting and robust all-fiber laser operating at telecom wavelength.

  10. Latest Results of the SETHI Survey at Arecibo

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Demorest, P.; Heien, E.; Heiles, C.; Werthimer, D.

    2004-10-01

    SETH i is a survey of the distribution of galactic neutral hydrogen being performed comensally at the NAIC Arecibo Observatory. At the same time that observers use receivers in the Gregorian dome, SETHi is recording a 2.5MHz band centered at 1420 MHz from a flat feed on Carriage House 1. During normal astronomical observations, the SETH i feed scans across the sky at twice the sidereal rate. During 4 years of observations, we have accumulated over 15,000 hours of data covering most of the sky accessible to Arecibo. This survey has higher angular resolution than existing single dish surveys and higher sensitivity than existing or planned interferometric surveys.

  11. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates

    PubMed Central

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2017-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others. PMID:29359091

  12. High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates.

    PubMed

    Kolb, Jan Philip; Pfeiffer, Tom; Eibl, Matthias; Hakert, Hubertus; Huber, Robert

    2018-01-01

    We present a new 1060 nm Fourier domain mode locked laser (FDML laser) with a record 143 nm sweep bandwidth at 2∙ 417 kHz  =  834 kHz and 120 nm at 1.67 MHz, respectively. We show that not only the bandwidth alone, but also the shape of the spectrum is critical for the resulting axial resolution, because of the specific wavelength-dependent absorption of the vitreous. The theoretical limit of our setup lies at 5.9 µm axial resolution. In vivo MHz-OCT imaging of human retina is performed and the image quality is compared to the previous results acquired with 70 nm sweep range, as well as to existing spectral domain OCT data with 2.1 µm axial resolution from literature. We identify benefits of the higher resolution, for example the improved visualization of small blood vessels in the retina besides several others.

  13. Temporal frequency of radio emissions for the April 25, 1984 flare

    NASA Technical Reports Server (NTRS)

    Wells, G. D.; Hausman, B. A.; Kroehl, H. W.

    1986-01-01

    The National Geophysical Data Center archives data of the solar-terrestrial environment. The USAF Radio Solar Telescope Network (RSTN) data allow performance of time series analysis to determine temporal oscillations as low as three seconds. The X13/3B flare which erupted in region 4474 (S12E43) on the 24 to 25 of April 1984, was selected. The soft X-rays, 1 to 8 A, remained above X-levels for 50 minutes and the radio emissions measured at Learmonth Solar Observatory reached a maximum of 3.15 x 10 to the 5th power SFUs at 410 MHz at 0000UT. A power spectral analysis of the fixed frequency RSTN data from Learmonth shows possible quasi-periodic fluctuations in the range two to ten seconds. Repetition rates or quasi-periodicities, in the case of the power spectral analysis, generally showed the same trends as the average solar radio flux at 245 and 8800 MHz. The quasi-periodicities at 1415 MHz showed no such trends.

  14. High-Power Radar Sounders for the Investigation of Jupiter Icy Moons

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Ostro, S.; Rodriquez, E.; Blankenship, D.; Kurth, W.; Kirchner, D.

    2005-01-01

    The high power and high data rate capability made available by a Prometheus class spacecraft could significantly enhance our ability to probe the subsurface of the planets/moons and asteroid/comets. The main technology development driver for our radar is the proposed Jupiter Icy Moon Orbiter (or JIMO) mission due to its harsh radiation environment. We plan to develop a dual-band radar at 5 and 50 MHz in response to the two major science requirements identified by the JIMO Science Definition Team: studying the near subsurface (less than 2 km) at high resolution and detection of the ice/ocean interface for Europa (depth up to 30 km). The 50-MHz band is necessary to provide high spatial resolution (footprint and depth) as required by the JIMO mission science requirements as currently defined. Our preliminary assessment indicates that the 50-MHz system is not required to be as high-power as the 5-MHz system since it will be more limited by the surface clutter than the Jupiter or galactic background noise. The low frequency band (e.g. 5 MHz), which is the focus of this effort, would be necessary to mitigate the performance risks posed by the unknown subsurface structure both in terms of unknown attenuation due to volumetric scattering and also the detection of the interface through the attenuative transition region at the ice/ocean interface. Additionally, the 5-MHz band is less affected by the surface roughness that can cause loss of coherence and clutter noise. However, since the Signal-to-Noise-Ratio (SNR) of the 5-MHz radar band is reduced due to Jupiter noise when operating in the Jupiter side of the moon, it is necessary to increase the radiated power. Our challenge is to design a high-power HF radar that can hnction in Jupiter's high radiation environment, yet be able to fit into spacecraft resource constraints such as mass and thermal limits. Our effort to develop the JIMO radar sounder will rely on our team's experience with planetary radar sounder design gained during our participation in the MARSIS radar sounder implementation.

  15. 47 CFR 101.147 - Frequency assignments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... video entertainment material to the licensee's customers. (30) The frequency band 18,580-19,300 GHz is... 18,820-18,870 MHz and 19,160-19,210 MHz. (31) This frequency band can be used for Multichannel Video... MHz (17) 941.0-941.5 MHz (27) 941.5-944 MHz (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2...

  16. 47 CFR 101.147 - Frequency assignments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... video entertainment material to the licensee's customers. (30) The frequency band 18,580-19,300 GHz is... 18,820-18,870 MHz and 19,160-19,210 MHz. (31) This frequency band can be used for Multichannel Video... MHz (17) 941.0-941.5 MHz (27) 941.5-944 MHz (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2...

  17. A study on multifrequency scintillations near the EIA crest of the Indian zone

    NASA Astrophysics Data System (ADS)

    Chakraborty, S. K.; Chatterjee, S.; Jana, Debasis

    2017-10-01

    Occurrence features of ionospheric scintillations at S band (2492.028 MHz) are reported for the first time. The same have been explored in the context of scintillations at VHF (250.650 MHz) and L5 (1176.45 MHz) bands. Observations were carried out during the period April-December, 2015 at Raja Peary Mohan College Centre (RPMC: 22.66° N, 88.4° E), located near the equatorial ionization anomaly (EIA) crest of the Indian longitude zone. Mostly weak (<10 dB), short duration, slow fading rate with shallower slope power spectra characterize the S band scintillations compared to VHF and L5 band. In the severe scintillation conditions of VHF frequent loss of lock in L5 channel is reflected. Fade depth of 4.2 ± 1.3 dB and fade rate ∼9 fades/minute at S band mostly precede the loss of lock at L5 channel. A good correspondence between fade rates at multi frequency band is reflected irrespective of phases of scintillation. Spectral analysis reveals weak scattering is the dominating mechanism for scintillation at S band while VHF and L5 band scintillations are mostly attributed to multiple scattering. The estimated threshold coherence length of <23 m at VHF may be suggested to be a good indicator for occurrence of L5 and S band scintillations. Occurrence of simultaneous multi-satellite multi-frequency scintillations leads to speculation over the failsafe navigation using available IRNSS constellation. The results are discussed in terms of existing theory of evolution, structure and dynamics of electron density irregularities in the low latitude region.

  18. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph; Downey, James; Reinhart, Richard C.; Evans, Michael Alan; Mortensen, Dale John

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 248-phase shift keying (PSK) and 1632- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 bsHz) modulation combined with various LDPC encoding rates to maximize throughput. With a symbol rate of 200 Mbaud, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  19. Bandwidth-Efficient Communication through 225 MHz Ka-band Relay Satellite Channel

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Downey, James M.; Reinhart, Richard C.; Evans, Michael A.; Mortensen, Dale J.

    2016-01-01

    The communications and navigation space infrastructure of the National Aeronautics and Space Administration (NASA) consists of a constellation of relay satellites (called Tracking and Data Relay Satellites (TDRS)) and a global set of ground stations to receive and deliver data to researchers around the world from mission spacecraft throughout the solar system. Planning is underway to enhance and transform the infrastructure over the coming decade. Key to the upgrade will be the simultaneous and efficient use of relay transponders to minimize cost and operations while supporting science and exploration spacecraft. Efficient use of transponders necessitates bandwidth efficient communications to best use and maximize data throughput within the allocated spectrum. Experiments conducted with NASA's Space Communication and Navigation (SCaN) Testbed on the International Space Station provides a unique opportunity to evaluate advanced communication techniques, such as bandwidth-efficient modulations, in an operational flight system. Demonstrations of these new techniques in realistic flight conditions provides critical experience and reduces the risk of using these techniques in future missions. Efficient use of spectrum is enabled by using high-order modulations coupled with efficient forward error correction codes. This paper presents a high-rate, bandwidth-efficient waveform operating over the 225 MHz Ka-band service of the TDRS System (TDRSS). The testing explores the application of Gaussian Minimum Shift Keying (GMSK), 2/4/8-phase shift keying (PSK) and 16/32- amplitude PSK (APSK) providing over three bits-per-second-per-Hertz (3 b/s/Hz) modulation combined with various LDPC encoding rates to maximize through- put. With a symbol rate of 200 M-band, coded data rates of 1000 Mbps were tested in the laboratory and up to 800 Mbps over the TDRS 225 MHz channel. This paper will present on the high-rate waveform design, channel characteristics, performance results, compensation techniques for filtering and equalization, and architecture considerations going forward for efficient use of NASA's infrastructure.

  20. 47 CFR 15.231 - Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Periodic operation in the band 40.66-40.70 MHz... Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in...

  1. 47 CFR 15.231 - Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Periodic operation in the band 40.66-40.70 MHz... Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in...

  2. 47 CFR 15.231 - Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Periodic operation in the band 40.66-40.70 MHz... Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in...

  3. 47 CFR 15.231 - Periodic operation in the band 40.66-40.70 MHz and above 70 MHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Periodic operation in the band 40.66-40.70 MHz... Periodic operation in the band 40.66-40.70 MHz and above 70 MHz. (a) The provisions of this section are restricted to periodic operation within the band 40.66-40.70 MHz and above 70 MHz. Except as shown in...

  4. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU).

    PubMed

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E

    2015-11-03

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging.

  5. Real-time Monitoring of High Intensity Focused Ultrasound (HIFU) Ablation of In Vitro Canine Livers Using Harmonic Motion Imaging for Focused Ultrasound (HMIFU)

    PubMed Central

    Grondin, Julien; Payen, Thomas; Wang, Shutao; Konofagou, Elisa E.

    2015-01-01

    Harmonic Motion Imaging for Focused Ultrasound (HMIFU) is a technique that can perform and monitor high-intensity focused ultrasound (HIFU) ablation. An oscillatory motion is generated at the focus of a 93-element and 4.5 MHz center frequency HIFU transducer by applying a 25 Hz amplitude-modulated signal using a function generator. A 64-element and 2.5 MHz imaging transducer with 68kPa peak pressure is confocally placed at the center of the HIFU transducer to acquire the radio-frequency (RF) channel data. In this protocol, real-time monitoring of thermal ablation using HIFU with an acoustic power of 7 W on canine livers in vitro is described. HIFU treatment is applied on the tissue during 2 min and the ablated region is imaged in real-time using diverging or plane wave imaging up to 1,000 frames/second. The matrix of RF channel data is multiplied by a sparse matrix for image reconstruction. The reconstructed field of view is of 90° for diverging wave and 20 mm for plane wave imaging and the data are sampled at 80 MHz. The reconstruction is performed on a Graphical Processing Unit (GPU) in order to image in real-time at a 4.5 display frame rate. 1-D normalized cross-correlation of the reconstructed RF data is used to estimate axial displacements in the focal region. The magnitude of the peak-to-peak displacement at the focal depth decreases during the thermal ablation which denotes stiffening of the tissue due to the formation of a lesion. The displacement signal-to-noise ratio (SNRd) at the focal area for plane wave was 1.4 times higher than for diverging wave showing that plane wave imaging appears to produce better displacement maps quality for HMIFU than diverging wave imaging. PMID:26556647

  6. The LOFAR window on star-forming galaxies and AGNs - curved radio SEDs and IR-radio correlation at 0

    NASA Astrophysics Data System (ADS)

    Calistro Rivera, G.; Williams, W. L.; Hardcastle, M. J.; Duncan, K.; Röttgering, H. J. A.; Best, P. N.; Brüggen, M.; Chyży, K. T.; Conselice, C. J.; de Gasperin, F.; Engels, D.; Gürkan, G.; Intema, H. T.; Jarvis, M. J.; Mahony, E. K.; Miley, G. K.; Morabito, L. K.; Prandoni, I.; Sabater, J.; Smith, D. J. B.; Tasse, C.; van der Werf, P. P.; White, G. J.

    2017-08-01

    We present a study of the low-frequency radio properties of star-forming (SF) galaxies and active galactic nuclei (AGNs) up to redshift z = 2.5. The new spectral window probed by the Low Frequency Array (LOFAR) allows us to reconstruct the radio continuum emission from 150 MHz to 1.4 GHz to an unprecedented depth for a radio-selected sample of 1542 galaxies in ˜ 7 deg2 of the LOFAR Boötes field. Using the extensive multiwavelength data set available in Boötes and detailed modelling of the far-infrared to ultraviolet spectral energy distribution (SED), we are able to separate the star formation (N = 758) and the AGN (N = 784) dominated populations. We study the shape of the radio SEDs and their evolution across cosmic time and find significant differences in the spectral curvature between the SF galaxy and AGN populations. While the radio spectra of SF galaxies exhibit a weak but statistically significant flattening, AGN SEDs show a clear trend to become steeper towards lower frequencies. No evolution of the spectral curvature as a function of redshift is found for SF galaxies or AGNs. We investigate the redshift evolution of the infrared-radio correlation for SF galaxies and find that the ratio of total infrared to 1.4-GHz radio luminosities decreases with increasing redshift: q1.4 GHz = (2.45 ± 0.04) (1 + z)-0.15 ± 0.03. Similarly, q150 MHz shows a redshift evolution following q150 GHz = (1.72 ± 0.04) (1 + z)-0.22 ± 0.05. Calibration of the 150 MHz radio luminosity as a star formation rate tracer suggests that a single power-law extrapolation from q1.4 GHz is not an accurate approximation at all redshifts.

  7. Cytogenetic studies in human blood lymphocytes exposed in vitro to radiofrequency radiation at a cellular telephone frequency (835.62 MHz, FDMA).

    PubMed

    Vijayalaxmi; Leal, B Z; Meltz, M L; Pickard, W F; Bisht, K S; Roti Roti JL; Straube, W L; Moros, E G

    2001-01-01

    Freshly collected peripheral blood samples from four healthy human volunteers were diluted with RPMI 1640 tissue culture medium and exposed in sterile T-75 tissue culture flasks in vitro for 24 h to 835.62 MHz radiofrequency (RF) radiation, a frequency employed for customer-to-base station transmission of cellular telephone communications. An analog signal was used, and the access technology was frequency division multiple access (FDMA, continuous wave). A nominal net forward power of 68 W was used, and the nominal power density at the center of the exposure flask was 860 W/m(2). The mean specific absorption rate in the exposure flask was 4.4 or 5.0 W/kg. Aliquots of diluted blood that were sham-exposed or exposed in vitro to an acute dose of 1.50 Gy of gamma radiation were used as negative or positive controls. Immediately after the exposures, the lymphocytes were stimulated with a mitogen, phytohemagglutinin, and cultured for 48 or 72 h to determine the extent of genetic damage, as assessed from the frequencies of chromosomal aberrations and micronuclei. The extent of alteration in the kinetics of cell proliferation was determined from the mitotic indices in 48-h cultures and from the incidence of binucleate cells in 72-h cultures. The data indicated no significant differences between RF-radiation- and sham-exposed lymphocytes with respect to mitotic indices, incidence of exchange aberrations, excess fragments, binucleate cells, and micronuclei. In contrast, the response of the lymphocytes exposed to gamma radiation was significantly different from both RF-radiation- and sham-exposed cells for all of these indices. Thus, under the experimental conditions tested, there is no evidence for the induction of chromosomal aberrations and micronuclei in human blood lymphocytes exposed in vitro for 24 h to 835.62 MHz RF radiation at SARs of 4.4 or 5.0 W/kg.

  8. 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes.

    PubMed

    Stronati, L; Testa, A; Moquet, J; Edwards, A; Cordelli, E; Villani, P; Marino, C; Fresegna, A M; Appolloni, M; Lloyd, D

    2006-05-01

    The possibility of genotoxicity of radiofrequency radiation (RFR) applied alone or in combination with x-rays was investigated in vitro using several assays on human lymphocytes. The chosen specific absorption rate (SAR) values are near the upper limit of actual energy absorption in localized tissue when persons use some cellular telephones. The purpose of the combined exposures was to examine whether RFR might act epigenetically by reducing the fidelity of repair of DNA damage caused by a well-characterized and established mutagen. Blood specimens from 14 donors were exposed continuously for 24 h to a Global System for Mobile Communications (GSM) basic 935 MHz signal. The signal was applied at two SAR; 1 and 2 W/Kg, alone or combined with a 1-min exposure to 1.0 Gy of 250 kVp x-rays given immediately before or after the RFR. The assays employed were the alkaline comet technique to detect DNA strand breakage, metaphase analyses to detect unstable chromosomal aberrations and sister chromatid exchanges, micronuclei in cytokinesis-blocked binucleate lymphocytes and the nuclear division index to detect alterations in the speed of in vitro cell cycling. By comparison with appropriate sham-exposed and control samples, no effect of RFR alone could be found for any of the assay endpoints. In addition RFR did not modify any measured effects of the x-radiation. This study has used several standard in vitro tests for chromosomal and DNA damage in Go human lymphocytes exposed in vitro to a combination of x-rays and RFR. It has comprehensively examined whether a 24-h continuous exposure to a 935 MHz GSM basic signal delivering SAR of 1 or 2 W/Kg is genotoxic per se or whether, it can influence the genotoxicity of the well-established clastogenic agent; x-radiation. Within the experimental parameters of the study in all instances no effect from the RFR signal was observed.

  9. Frequency spectrum analysis of laser generated ultrasonic waves in ablative regime

    NASA Astrophysics Data System (ADS)

    Mi, Bao; Ume, I. Charles

    2002-05-01

    In this paper, laser ultrasonic signals generated in ablative regime are measured in a number of metal samples (2024 Al, 6061 Al, 7075 Al, mild steel, and copper) with a broadband laser interferometer. The frequency spectra are analyzed and compared for different thicknesses (50.8 mm, 25.4 mm, 12.7 mm, and 6.4 mm), and for different power densities. Hanning windowing is applied before frequency analysis is performed. The experimental data match the theoretical predictions very well. The results show that the frequency spectrum extends from 0 to 15 MHz, while the center frequency occurs near 2 MHz. The detailed distribution of the spectrum is dependent on the material, thickness, and laser power density.

  10. The application of water coupled nonlinear ultrasonics to quantify the dislocation density in aluminum 1100

    NASA Astrophysics Data System (ADS)

    Mostavi, Amir; Tehrani, N.; Kamali, N.; Ozevin, D.; Chi, S. W.; Indacochea, J. E.

    2017-02-01

    This article investigates water coupled nonlinear ultrasonic method to measure the dislocation density in aluminum 1100 specimens. The different levels of dislocation densities are introduced to the samples by applying different levels of plastic strains by tensile loading. The ultrasonic testing includes 2.25 MHz transducer as transmitter and 5.0 MHz transducer as receiver in an immersion tank. The results of immersion experiments are compared with oil-coupled experiments. While water has significant nonlinearity within itself, the immersion ultrasound results agree with the literature of oil coupled ultrasound results of the specimens that the nonlinearity coefficient increases with the increase of dislocation density in aluminum.

  11. 47 CFR 27.1102 - Designated Entities in the 1710-1755 MHz and 2110-2155 MHz bands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2110-2155 MHz bands. 27.1102 Section 27.1102 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES 1710-1755 MHz, 2110-2155... the 1710-1755 MHz and 2110-2155 MHz bands. (a) Eligibility for small business provisions. (1) A small...

  12. Investigation of dental samples using a 35MHz focussed ultrasound piezocomposite transducer.

    PubMed

    Hughes, D A; Girkin, J M; Poland, S; Longbottom, C; Button, T W; Elgoyhen, J; Hughes, H; Meggs, C; Cochran, S

    2009-02-01

    Dental erosion and decay are increasingly prevalent but as yet there is no quantitative monitoring tool. Such a tool would allow earlier diagnosis and treatment and ultimately the prevention of more serious disease and pain. Despite ultrasound having been demonstrated as a method of probing the internal structures of teeth more than 40 years ago, development of a clinical tool has been slow. The aim of the study reported here was to investigate the use of a novel high frequency ultrasound transducer and validate it using a known dental technique. A tooth extracted for clinical reasons was sectioned to provide a sample that contained an enamel and dentine layer such that the enamel-dentine junction (EDJ) was of a varying depth. The sample was then submerged in water and a B-scan recorded using a custom-designed piezocomposite ultrasound transducer with a centre frequency of 35 MHz and a -6 dB bandwidth of 24 MHz. The transducer has an axial resolution of 180 microm and a spatial resolution of 110 microm, a significant advance on previous work using lower frequencies. The depth of the EDJ was measured from the resulting data set and compared to measurements from the sequential grinding and imaging (SGI) method. The B-scan showed that the EDJ was of varying depth. Subsequently, the EDJ measurements were found to have a correlation of 0.89 (p<0.01) against the SGI measurements. The results indicate that high frequency ultrasound is capable of measuring enamel thickness to an accuracy of within 10% of the total enamel thickness, whereas currently there is no clinical tool available to measure enamel thickness.

  13. Measurement of Flux Density of Cas A at Low Frequencies

    NASA Astrophysics Data System (ADS)

    Patil, Ajinkya; Fisher, R.

    2012-01-01

    Cas A is used as a flux calibrator throughout the radio spectrum. Therefore it is important to know the spectral and secular variations in its flux density. Earlier observations by Scott et. al. (1969) and Baars et. al. (1972) suggested a secular decrease in flux density of Cas A at a rate of about 1% per year at all frequencies. However later observations by Erickson & Perley (1975) and Read (1977) indicated anomalously high flux from Cas A at 38 MHz. Also, these observations suggested that the original idea of faster decay of the flux density rate at low frequencies may be in error or that something more complex than simple decay is affecting the flux density at low frequencies. The source changes at 38 MHz still remains a mystery. We intend to present the results of follow up observations made from 1995 to 1998 with a three element interferometer in Green Bank operating in frequency range 30 to 120 MHz. We will discuss the problems at such low frequencies due to large beamwidth and unstable ionosphere. We will also discuss the strategies we have used so far to to find the flux density of Cas A by calculating the ratio of flux density of Cas A to that of Cyg A, assuming flux density of Cyg A to be constant. Above mentioned work was performed in summer student program sponsored by National Radio Astronomy Observatory.

  14. Multifunctional Catheters Combining Intracardiac Ultrasound Imaging and Electrophysiology Sensing

    PubMed Central

    Stephens, Douglas N.; Cannata, Jonathan; Liu, Ruibin; Zhao, Jian Zhong; Shung, K. Kirk; Nguyen, Hien; Chia, Raymond; Dentinger, Aaron; Wildes, Douglas; Thomenius, Kai E.; Mahajan, Aman; Shivkumar, Kalyanam; Kim, Kang; O’Donnell, Matthew; Nikoozadeh, Amin; Oralkan, Omer; Khuri-Yakub, Pierre T.; Sahn, David J.

    2015-01-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters’ ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools. PMID:18986948

  15. Multifunctional catheters combining intracardiac ultrasound imaging and electrophysiology sensing.

    PubMed

    Stephens, D N; Cannata, J; Liu, Ruibin; Zhao, Jian Zhong; Shung, K K; Nguyen, Hien; Chia, R; Dentinger, A; Wildes, D; Thomenius, K E; Mahajan, A; Shivkumar, K; Kim, Kang; O'Donnell, M; Nikoozadeh, A; Oralkan, O; Khuri-Yakub, P T; Sahn, D J

    2008-07-01

    A family of 3 multifunctional intracardiac imaging and electrophysiology (EP) mapping catheters has been in development to help guide diagnostic and therapeutic intracardiac EP procedures. The catheter tip on the first device includes a 7.5 MHz, 64-element, side-looking phased array for high resolution sector scanning. The second device is a forward-looking catheter with a 24-element 14 MHz phased array. Both of these catheters operate on a commercial imaging system with standard software. Multiple EP mapping sensors were mounted as ring electrodes near the arrays for electrocardiographic synchronization of ultrasound images and used for unique integration with EP mapping technologies. To help establish the catheters' ability for integration with EP interventional procedures, tests were performed in vivo in a porcine animal model to demonstrate both useful intracardiac echocardiographic (ICE) visualization and simultaneous 3-D positional information using integrated electroanatomical mapping techniques. The catheters also performed well in high frame rate imaging, color flow imaging, and strain rate imaging of atrial and ventricular structures. The companion paper of this work discusses the catheter design of the side-looking catheter with special attention to acoustic lens design. The third device in development is a 10 MHz forward-looking ring array that is to be mounted at the distal tip of a 9F catheter to permit use of the available catheter lumen for adjunctive therapy tools.

  16. Configuration Considerations for Low Frequency Arrays

    NASA Astrophysics Data System (ADS)

    Lonsdale, C. J.

    2005-12-01

    The advance of digital signal processing capabilities has spurred a new effort to exploit the lowest radio frequencies observable from the ground, from ˜10 MHz to a few hundred MHz. Multiple scientifically and technically complementary instruments are planned, including the Mileura Widefield Array (MWA) in the 80-300 MHz range, and the Long Wavelength Array (LWA) in the 20-80 MHz range. The latter instrument will target relatively high angular resolution, and baselines up to a few hundred km. An important practical question for the design of such an array is how to distribute the collecting area on the ground. The answer to this question profoundly affects both cost and performance. In this contribution, the factors which determine the anticipated performance of any such array are examined, paying particular attention to the viability and accuracy of array calibration. It is argued that due to the severity of ionospheric effects in particular, it will be difficult or impossible to achieve routine, high dynamic range imaging with a geographically large low frequency array, unless a large number of physically separate array stations is built. This conclusion is general, is based on the need for adequate sampling of ionospheric irregularities, and is independent of the calibration algorithms and techniques that might be employed. It is further argued that array configuration figures of merit that are traditionally used for higher frequency arrays are inappropriate, and a different set of criteria are proposed.

  17. GOALS, STRATEGIES AND FIRST DISCOVERIES OF AO327, THE ARECIBO ALL-SKY 327 MHz DRIFT PULSAR SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deneva, J. S.; Stovall, K.; Martinez, J. G.

    2013-09-20

    We report initial results from AO327, a drift survey for pulsars with the Arecibo telescope at 327 MHz. The first phase of AO327 will cover the sky at declinations of –1° to 28°, excluding the region within 5° of the Galactic plane, where high scattering and dispersion make low-frequency surveys sub-optimal. We record data from a 57 MHz bandwidth with 1024 channels and 125 μs sampling time. The 60 s transit time through the AO327 beam means that the survey is sensitive to very tight relativistic binaries even with no acceleration searches. To date we have detected 44 known pulsarsmore » with periods ranging from 3 ms to 2.21 s and discovered 24 new pulsars. The new discoveries include 3 ms pulsars, three objects with periods of a few tens of milliseconds typical of young as well as mildly recycled pulsars, a nuller, and a rotating radio transient. Five of the new discoveries are in binary systems. The second phase of AO327 will cover the sky at declinations of 28°-38°. We compare the sensitivity and search volume of AO327 to the Green Bank North Celestial Cap survey and the GBT350 drift survey, both of which operate at 350 MHz.« less

  18. Vector similariton erbium-doped all-fiber laser generating sub-100-fs nJ pulses at 100 MHz.

    PubMed

    Olivier, Michel; Piché, Michel

    2016-02-08

    Erbium-doped mode-locked fiber lasers with repetition rates comparable to those of solid-state lasers and generating nJ pulses are required for many applications. Our goal was to design a fiber laser that would meet such requirements, that could be built at relatively low cost and that would be reliable and robust. We thus developed a high-fundamental-repetition-rate erbium-doped all-fiber laser operating in the amplifier similariton regime. Experimental characterization shows that this laser, which is mode-locked by nonlinear polarization evolution, emits 76-fs pulses with an energy of 1.17 nJ at a repetition rate of 100 MHz. Numerical simulations support the interpretation of self-similar evolution of the pulse in the gain fiber. More specifically we introduce the concept of vector similariton in fiber lasers. The coupled x- and y- polarization components of such a pulse have a pulse profile with a linear chirp and their combined power profile evolves self-similarly when the nonlinear asymptotic regime is reached in the gain fiber.

  19. The Precision Array for Probing the Epoch of Re-ionization: Eight Station Results

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.

    2010-04-01

    We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at ell = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.

  20. Gint2D-T2 correlation NMR of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Blümich, Bernhard

    2015-03-01

    The internal magnetic field gradient induced in porous media by magnetic susceptibility differences at material interfaces impacts diffusion measurements in particular at high magnetic field and can be used to probe the pore structure. Insight about the relationship between pore space and internal gradient Gint can be obtained from 2D Laplace NMR experiments. When measuring distributions of transverse relaxation times T2 in fluid filled porous media, relaxation and diffusion in internal gradients arise simultaneously and data are often interpreted with the assumption that one or the other parameter be constant throughout the sample. To examine this assumption we measure correlations of the distributions of Gint2D and T2 by 2D Laplace NMR for three different kinds of samples, glass beads with different bead diameters saturated with water, glass beads filled with oil and water, and a wet mortar sample. For the first two samples the cases where either the internal gradient or diffusion dominates were examined separately in order to better understand the relationship between Gint and D. These results are useful for assessing the impact of internal gradients and diffusion in unknown samples, such as the mortar sample. The experiments were performed at different magnetic field strengths corresponding to 300 MHz and 700 MHz 1H Larmor frequency to identify the impact of the magnetic field on the internal gradient. Subsequently, spatially resolved Gint2D-T2 maps were obtained to study the sample heterogeneity.

  1. 47 CFR 80.379 - Maritime frequencies assignable to aircraft stations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....300 MHz (5) 156.375 MHz (5) 156.400 MHz (5) 156.425 MHz (5) 156.450 MHz (5) 156.625 MHz (5) 156.800... aircraft stations does not exceed 300 meters (1,000 feet), except for reconnaissance aircraft participating in icebreaking operations where an altitude of 450 meters (1,500 feet) is allowed; (ii) The mean...

  2. 47 CFR 101.69 - Transition of the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands from the fixed microwave...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... emerging technologies. 101.69 Section 101.69 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED... technologies. Fixed Microwave Services (FMS) in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands have been allocated for use by emerging technology (ET) services, including Personal Communications Services...

  3. 47 CFR 27.1104 - Designated Entities in the 2000-2020 MHz and 2180-2200 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 2 2014-10-01 2014-10-01 false Designated Entities in the 2000-2020 MHz and 2180-2200 MHz bands. 27.1104 Section 27.1104 Telecommunication FEDERAL COMMUNICATIONS COMMISSION... Bidding Provisions § 27.1104 Designated Entities in the 2000-2020 MHz and 2180-2200 MHz bands. Eligibility...

  4. 47 CFR 90.672 - Unacceptable interference to non-cellular 800 MHz licensees from 800 MHz cellular systems or part...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... MHz licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the... COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES PRIVATE LAND MOBILE RADIO SERVICES... licensees from 800 MHz cellular systems or part 22 Cellular Radiotelephone systems, and within the 900 MHz...

  5. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE PAGES

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    2017-07-20

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  6. Improved observations of turbulence dissipation rates from wind profiling radars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCaffrey, Katherine; Bianco, Laura; Wilczak, James M.

    Observations of turbulence dissipation rates in the planetary boundary layer are crucial for validation of parameterizations in numerical weather prediction models. However, because dissipation rates are difficult to obtain, they are infrequently measured through the depth of the boundary layer. For this reason, demonstrating the ability of commonly used wind profiling radars (WPRs) to estimate this quantity would be greatly beneficial. During the XPIA field campaign at the Boulder Atmospheric Observatory, two WPRs operated in an optimized configuration, using high spectral resolution for increased accuracy of Doppler spectral width, specifically chosen to estimate turbulence from a vertically pointing beam. Multiplemore » post-processing techniques, including different numbers of spectral averages and peak processing algorithms for calculating spectral moments, were evaluated to determine the most accurate procedures for estimating turbulence dissipation rates using the information contained in the Doppler spectral width, using sonic anemometers mounted on a 300 m tower for validation. Furthermore, the optimal settings were determined, producing a low bias, which was later corrected. Resulting estimations of turbulence dissipation rates correlated well ( R 2 = 0.54 and 0.41) with the sonic anemometers, and profiles up to 2 km from the 449 MHz WPR and 1 km from the 915 MHz WPR were observed.« less

  7. Long-Term Bioeffects of 435-MHz Radiofrequency Radiation on Selected Blood-Borne Endpoints in Cannulated Rats. Volume 4. Plasma Catecholamines.

    DTIC Science & Technology

    1987-08-01

    out. To use each animal as its own control , arterial blood was sampled by means of chronically implanted aortic cannulas 112,13,14]. This simple...APPENDIX B STATISTICAL METHODOLOGY 37 APPENDIX B STATISTICAL METHODOLOGY The balanced design of this experiment (requiring that 25 animals from each...protoccl in that, in numerous cases, samples were collected at odd intervals (invalidating the orthogonality of the design ) and the number of samples’taken

  8. U.S. EPA High-Field NMR Facility with Remote Accessibility

    EPA Science Inventory

    EPA’s High-Field Nuclear Magnetic Resonance Research Facility housed in Athens, GA has two Varian 600 MHz NMR spectrometers used for conducting sophisticated experiments in environmental science. Off-site users can ship their samples and perform their NMR experiments remotely fr...

  9. Effect of vanadium doping on the properties of high Curie point ferroelectric strontium niobate ceramic

    NASA Astrophysics Data System (ADS)

    Ning, Huanpo

    2017-10-01

    Different levels of isovalent dopant vanadium were doped on the B site of Sr2Nb2O7 to explore the doping effect on its dielectric and ferroelectric properties. A second phase could be detected with above 1 mol% V2O5 doping. The grains after doping remained anisotropic and plate-like. The samples are not dense, as there are pores present at the grain boundaries. The corrected dielectric constant for 0.1 mol%, 0.2 mol%, and 0.3 mol% V doped SNO at 1 MHz is around 46, 48 and 49, respectively, which indicates the effect of V doping on the increase of dielectric constant of SNO (ɛr is about 40 at 1 MHz). The Curie point Tc increased with the increase in the V doping level. The relatively high d33 (2.3 pC/N) measured from the non-dense and untextured samples indicates the potential effect of V2O5 doping on the improvement of piezoelectricity of SNO.

  10. Backscatter and attenuation properties of mammalian brain tissues

    NASA Astrophysics Data System (ADS)

    Wijekularatne, Pushpani Vihara

    Traumatic Brain Injury (TBI) is a common category of brain injuries, which contributes to a substantial number of deaths and permanent disability all over the world. Ultrasound technology plays a major role in tissue characterization due to its low cost and portability that could be used to bridge a wide gap in the TBI diagnostic process. This research addresses the ultrasonic properties of mammalian brain tissues focusing on backscatter and attenuation. Orientation dependence and spatial averaging of data were analyzed using the same method resulting from insertion of tissue sample between a transducer and a reference reflector. Apparent backscatter transfer function (ABTF) at 1 to 10 MHz, attenuation coefficient and backscatter coefficient (BSC) at 1 to 5 MHz frequency ranges were measured on ovine brain tissue samples. The resulting ABTF was a monotonically decreasing function of frequency and the attenuation coefficient and BSC generally were increasing functions of frequency, results consistent with other soft tissues such as liver, blood and heart.

  11. Effects of Ultrasound Frequency and Tissue Stiffness on the Histotripsy Intrinsic Threshold for Cavitation

    PubMed Central

    Vlaisavljevich, Eli; Lin, Kuang-Wei; Maxwell, Adam; Warnez, Matthew; Mancia, Lauren; Singh, Rahul; Putnam, Andrew J.; Fowlkes, Brian; Johnsen, Eric; Cain, Charles; Xu, Zhen

    2015-01-01

    Histotripsy is an ultrasound ablation method that depends on the initiation of a cavitation bubble cloud to fractionate soft tissue. Previous work has demonstrated a cavitation cloud can be formed by a single pulse with one high amplitude negative cycle, when the negative pressure amplitude directly exceeds a pressure threshold intrinsic to the medium. We hypothesize that the intrinsic threshold in water-based tissues is determined by the properties of the water inside the tissue and changes in tissue stiffness or ultrasound frequency will have a minimal impact on the histotripsy intrinsic threshold. To test this hypothesis, the histotripsy intrinsic threshold was investigated both experimentally and theoretically. The probability of cavitation was measured by subjecting tissue phantoms with adjustable mechanical properties and ex vivo tissues to a histotripsy pulse of 1–2 cycles produced by 345 kHz, 500 kHz, 1.5 MHz, and 3 MHz histotripsy transducers. Cavitation was detected and characterized by passive cavitation detection and high-speed photography, from which the probability of cavitation was measured vs. pressure amplitude. The results demonstrated that the intrinsic threshold (the negative pressure at which probability=0.5) is independent of stiffness for Young’s moduli (E) < 1 MPa with only a small increase (~2–3 MPa) in the intrinsic threshold for tendon (E=380 MPa). Additionally, results for all samples showed only a small increase of ~2–3 MPa when the frequency was increased from 345 kHz to 3 MHz. The intrinsic threshold was measured to be between 24.7–30.6 MPa for all samples and frequencies tested in this study. Overall, the results of this study indicate that the intrinsic threshold to initiate a histotripsy bubble cloud is not significantly impacted by tissue stiffness or ultrasound frequency in hundreds of kHz to MHz range. PMID:25766571

  12. Inscription of type I and depressed cladding waveguides in lithium niobate using a femtosecond laser.

    PubMed

    Bhardwaj, S; Mittholiya, K; Bhatnagar, A; Bernard, R; Dharmadhikari, J A; Mathur, D; Dharmadhikari, A K

    2017-07-10

    We describe two types of waveguides (type I and depressed cladding) inscribed in lithium niobate using a variable repetition rate (200 kHz-25 MHz), 270 fs duration fiber laser. The type I modification-based waveguides have propagation losses in the range from 1.2 to 10 dB/cm at 1550 nm, depending on experimental parameters. These waveguides are not permanent; they deteriorate over time. Such deterioration of waveguides can be slowed down from 30 days to 100 days by pre-annealing the samples and by writing at a 720 kHz laser repetition rate. The propagation losses measured at 1550 nm show significant improvement for pre-annealed samples. The depressed cladding-inscribed waveguides are permanent, but the propagation loss depends on the number of damage tracks. A track separation of ∼1  μm between adjacent damage tracks yields the lowest propagation loss of 0.5 dB/cm at 1550 nm for a 40 μm diameter waveguide. We observe multimode guidance for sizes in the range of 20-80 μm in these waveguide structures at 1550 nm. Their crystalline nature is found to remain intact, as inferred from second-harmonic generation within the waveguide region.

  13. 47 CFR 27.1303 - Upper 700 MHz D Block license conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 2 2010-10-01 2010-10-01 false Upper 700 MHz D Block license conditions. 27... 700 MHz D Block license conditions. (a) The winning bidder at auction of the license for Block D in the 758-763 MHz and 788-793 MHz bands will be granted the Upper 700 MHz D Block license only after...

  14. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify for a three year mandatory negotiation period as defined in § 101.69(d)(2), the department head... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses...

  15. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify for a three year mandatory negotiation period as defined in § 101.69(d)(2), the department head... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses...

  16. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify for a three year mandatory negotiation period as defined in § 101.69(d)(2), the department head... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses...

  17. 47 CFR 101.77 - Public safety licensees in the 1850-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-1990 MHz, 2110-2150 MHz, and 2160-2200 MHz bands. (a) In order for public safety licensees to qualify for a three year mandatory negotiation period as defined in § 101.69(d)(2), the department head... COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES FIXED MICROWAVE SERVICES Applications and Licenses...

  18. 47 CFR 74.802 - Frequency assignment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...-488.000 MHz 488.000-494.000 MHz (except Hawaii) 494.000-608.000 MHz 614.000-698.000 MHz 944.000-952... Zone I 97 km (60 miles) Zones II and III 129 km (80 miles) (3) 470.000-608.000 MHz and 614.000-698.000 MHz. All zones 113 km (70 miles) (c) Specific frequency operation is required when operating within...

  19. Detection of Anomalous Machining Damages in Inconel 718 and TI 6-4 by Eddy Current Techniques

    NASA Astrophysics Data System (ADS)

    Lo, C. C. H.; Shimon, M.; Nakagawa, N.

    2010-02-01

    This paper reports on an eddy current (EC) study aimed at detecting anomalous machining damages in Inconel 718 and Ti 6-4 samples, including (i) surface discontinuities such as re-depositing of chips onto the machined surface, and (ii) microstructural damages manifested as a white surface layer and a subsurface layer of distorted grains, typically tens of microns thick. A series of pristine and machine-damaged coupons were studied by EC scans using a differential probe operated at 2 MHz to detect discontinuous surface anomalies, and by swept high frequency EC (SHFEC) measurements from 0.5 MHz to 65.5 MHz using proprietary detection coils to detect surface microstructural damages. In general, the EC c-scan data from machine-damaged surfaces show spatial variations with larger standard deviations than those from the undamaged surfaces. In some cases, the c-scan images exhibit characteristic bipolar indications in good spatial correlation with surface anomalies revealed by optical microscopy and laser profilometry. Results of the SHFEC measurements indicate a reduced near-surface conductivity of the damaged surfaces compared to the undamaged surfaces.

  20. Ultrawideband radar clutter measurements and analysis

    NASA Astrophysics Data System (ADS)

    Tuley, Michael T.; Sheen, David M.; Collins, H. D.; Sager, Earl V.; Schultheis, A. C.

    1993-05-01

    This paper reports the results of ultrawideband radar clutter measurements made by Battelle- Pacific Northwest Laboratories and the System Planning Corporation near Sequim, WA. The measurement area is a mountainous coniferous forest with occasional roads and clear-cut areas. Local grazing angles range from near zero to approximately 40 degree(s). Very limited data are also presented from measurements made in a desert-type terrain near Richland, WA. Two ultrawideband radar systems were employed in the data collection. An impulse system providing an approximate one nanosecond monocycle pulse (bandwidth of 300 MHz - 1000 MHz) acquired data over a 0.7 km2 area (121,000 resolution cells). A step chirp radar with the same total bandwidth as the impulse system collected data over a 6.2 km2 area (780,000 resolution cells), including the area sampled by the impulse system. Wideband TEM horn antennas (log-periodic antennas for the step chirp system) deployed on a 19 m horizontally scanned aperture were used for transmission and reception, providing a 1.5 degree(s) azimuth resolution at 300 MHz for both systems.

  1. The detection of brain oedema with frequency-dependent phase shift electromagnetic induction.

    PubMed

    González, César A; Rubinsky, Boris

    2006-06-01

    The spectroscopic distribution of inductive phase shift in the brain as a function of the relative volume of oedema was evaluated with theoretical and experimental methods in the frequency range 1 to 8 MHz. The theoretical study employed a simple mathematical model of electromagnetic induction in tissue and brain tissue data available from the literature to calculate the phase shift as a function of oedema in the bulk of the brain. Experimental data were generated from bulk measurements of ex vivo homogenized pig brain tissue mixed with various volumes of physiological saline in a volume sample typical of the human brain. There is good agreement between the analytical and the experimental results. Detectable changes in phase shift begin from a frequency of about 3 MHz to 4 MHz in the tested compositions and volume. The phase shift increases with frequency and fluid content. The results suggest that measuring phase shift in the bulk of the brain has the potential for becoming a robust means for non-contact detection of oedema in the brain.

  2. Fort A.P. Hill Soil Permittivity and Conductivity Measurements for the Wide Area Airborne Minefield Detection Program

    DTIC Science & Technology

    2003-09-01

    4 3. Purpose 4 4. Description of Test Equipment 4 4.1 Damaskos Model 3000T Liquid/Powder Cell Permittivity...Permeability System ..........4 4.2 HP8510 Network Analyzer/ Damaskos System Overview..............................................5 5. Soil Sample Site...Permittivity and conductivity values were measured from 100 to 3000 MHz. The soil samples were packed as tight as possible into the Damaskos

  3. Single-frequency operation of diode-pumped 2 microm Q-switched Tm:YAG laser injection seeded by monolithic nonplanar ring laser.

    PubMed

    Gao, Chunqing; Lin, Zhifeng; Gao, Mingwei; Zhang, Yunshan; Zhu, Lingni; Wang, Ran; Zheng, Yan

    2010-05-20

    We present a diode-pumped, 2mum single-frequency Q-switched Tm:YAG laser. The Q-switched laser is injection seeded by a monolithic Tm:YAG nonplanar ring oscillator with the ramp-hold-fire technique. The output energy of the 2mum single-frequency Q-switched pulse is 2.23mJ, with a pulse width of 290ns and a repetition rate of 200Hz. From the heterodyne beating measurement, the frequency difference between the seed laser and the Q-switched laser is determined to be 37.66MHz, with a half-width of the symmetric spectrum of about 2 MHz.

  4. Octave-spanning spectrum generation in tapered silica photonic crystal fiber by Yb:fiber ring laser above 500 MHz.

    PubMed

    Jiang, Tongxiao; Wang, Guizhong; Zhang, Wei; Li, Chen; Wang, Aimin; Zhang, Zhigang

    2013-02-15

    We report octave-spanning spectrum generated in a tapered silica photonic crystal fiber by a mode-locked Yb:fiber ring laser at a repetition rate as high as 528 MHz. The output pulses from this laser were compressed to 62 fs. By controlling the hole expansion and core diameter, a silica PCF was tapered to 20 cm with an optimal d/Λ ratio of 0.6. Pulses with the energy of 280 pJ and the peak power of 4.5 kW were injected into the tapered fiber and the pulse spectrum was expanded from 500 to 1600 nm at the level of -30 dB.

  5. High-power Yb-fiber comb with feed-forward control of nonlinear-polarization-rotation mode-locking and large-mode-area fiber amplification.

    PubMed

    Yan, Ming; Li, Wenxue; Yang, Kangwen; Zhou, Hui; Shen, Xuling; Zhou, Qian; Ru, Qitian; Bai, Dongbi; Zeng, Heping

    2012-05-01

    We report on a simple scheme to precisely control carrier-envelope phase of a nonlinear-polarization-rotation mode-locked self-started Yb-fiber laser system with an average output power of ∼7  W and a pulse width of 130 fs. The offset frequency was locked to the repetition rate of ∼64.5  MHz with a relative linewidth of ∼1.4  MHz by using a self-referenced feed-forward scheme based on an acousto-optic frequency shifter. The phase noise and timing jitter were calculated to be 370 mrad and 120 as, respectively.

  6. Development of an Integrated Chip for Automatic Tracking and Positioning Manipulation for Single Cell Lysis

    PubMed Central

    Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung

    2012-01-01

    This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957

  7. Development of an integrated chip for automatic tracking and positioning manipulation for single cell lysis.

    PubMed

    Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung

    2012-01-01

    This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.

  8. 47 CFR 74.690 - Transition of the 1990-2025 MHz band from the Broadcast Auxiliary Service to emerging technologies.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees authorized after... authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may negotiate... band. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to the specific relocation...

  9. 47 CFR 78.40 - Transition of the 1990-2025 MHz band from the Cable Television Relay Service to emerging...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... technologies to implement Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees... licensees authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may... Existing Licensee's operations. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to...

  10. 47 CFR 74.690 - Transition of the 1990-2025 MHz band from the Broadcast Auxiliary Service to emerging technologies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees authorized after... authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may negotiate... band. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to the specific relocation...

  11. 47 CFR 78.40 - Transition of the 1990-2025 MHz band from the Cable Television Relay Service to emerging...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... technologies to implement Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees... licensees authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may... Existing Licensee's operations. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to...

  12. 47 CFR 78.40 - Transition of the 1990-2025 MHz band from the Cable Television Relay Service to emerging...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... technologies to implement Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees... licensees authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may... Existing Licensee's operations. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to...

  13. 47 CFR 74.690 - Transition of the 1990-2025 MHz band from the Broadcast Auxiliary Service to emerging technologies.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Mobile Satellite Services in the 2000-2020 MHz band (MSS licensees), those licensees authorized after... authorized after September 9, 2004 in the 1995-2000 MHz and 2020-2025 MHz bands. New entrants may negotiate... band. New licensees in the 1995-2000 MHz and 2020-2025 MHz bands are subject to the specific relocation...

  14. Design and Development of the SMAP Microwave Radiometer Electronics

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Medeiros, James J.; Horgan, Kevin A.; Brambora, Clifford K.; Estep, Robert H.

    2014-01-01

    The SMAP microwave radiometer will measure land surface brightness temperature at L-band (1413 MHz) in the presence of radio frequency interference (RFI) for soil moisture remote sensing. The radiometer design was driven by the requirements to incorporate internal calibration, to operate synchronously with the SMAP radar, and to mitigate the deleterious effects of RFI. The system design includes a highly linear super-heterodyne microwave receiver with internal reference loads and noise sources for calibration and an innovative digital signal processor and detection system. The front-end comprises a coaxial cable-based feed network, with a pair of diplexers and a coupled noise source, and radiometer front-end (RFE) box. Internal calibration is provided by reference switches and a common noise source inside the RFE. The RF back-end (RBE) downconverts the 1413 MHz channel to an intermediate frequency (IF) of 120 MHz. The IF signals are then sampled and quantized by high-speed analog-to-digital converters in the radiometer digital electronics (RDE) box. The RBE local oscillator and RDE sampling clocks are phase-locked to a common reference to ensure coherency between the signals. The RDE performs additional filtering, sub-band channelization, cross-correlation for measuring third and fourth Stokes parameters, and detection and integration of the first four raw moments of the signals. These data are packetized and sent to the ground for calibration and further processing. Here we discuss the novel features of the radiometer hardware particularly those influenced by the need to mitigate RFI.

  15. Detection of Low Level Microwave Radiation Induced Deoxyribonucleic Acid Damage Vis-à-vis Genotoxicity in Brain of Fischer Rats

    PubMed Central

    Deshmukh, Pravin Suryakantrao; Megha, Kanu; Banerjee, Basu Dev; Ahmed, Rafat Sultana; Chandna, Sudhir; Abegaonkar, Mahesh Pandurang; Tripathi, Ashok Kumar

    2013-01-01

    Background: Non-ionizing radiofrequency radiation has been increasingly used in industry, commerce, medicine and especially in mobile phone technology and has become a matter of serious concern in present time. Objective: The present study was designed to investigate the possible deoxyribonucleic acid (DNA) damaging effects of low-level microwave radiation in brain of Fischer rats. Materials and Methods: Experiments were performed on male Fischer rats exposed to microwave radiation for 30 days at three different frequencies: 900, 1800 and 2450 MHz. Animals were divided into 4 groups: Group I (Sham exposed): Animals not exposed to microwave radiation but kept under same conditions as that of other groups, Group II: Animals exposed to microwave radiation at frequency 900 MHz at specific absorption rate (SAR) 5.953 × 10−4 W/kg, Group III: Animals exposed to 1800 MHz at SAR 5.835 × 10−4 W/kg and Group IV: Animals exposed to 2450 MHz at SAR 6.672 × 10−4 W/kg. At the end of the exposure period animals were sacrificed immediately and DNA damage in brain tissue was assessed using alkaline comet assay. Results: In the present study, we demonstrated DNA damaging effects of low level microwave radiation in brain. Conclusion: We concluded that low SAR microwave radiation exposure at these frequencies may induce DNA strand breaks in brain tissue. PMID:23833433

  16. A Reliable Wireless Control System for Tomato Hydroponics

    PubMed Central

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-01-01

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants’ growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation. PMID:27164105

  17. A Reliable Wireless Control System for Tomato Hydroponics.

    PubMed

    Ibayashi, Hirofumi; Kaneda, Yukimasa; Imahara, Jungo; Oishi, Naoki; Kuroda, Masahiro; Mineno, Hiroshi

    2016-05-05

    Agricultural systems using advanced information and communication (ICT) technology can produce high-quality crops in a stable environment while decreasing the need for manual labor. The system collects a wide variety of environmental data and provides the precise cultivation control needed to produce high value-added crops; however, there are the problems of packet transmission errors in wireless sensor networks or system failure due to having the equipment in a hot and humid environment. In this paper, we propose a reliable wireless control system for hydroponic tomato cultivation using the 400 MHz wireless band and the IEEE 802.15.6 standard. The 400 MHz band, which is lower than the 2.4 GHz band, has good obstacle diffraction, and zero-data-loss communication is realized using the guaranteed time-slot method supported by the IEEE 802.15.6 standard. In addition, this system has fault tolerance and a self-healing function to recover from faults such as packet transmission failures due to deterioration of the wireless communication quality. In our basic experiments, the 400 MHz band wireless communication was not affected by the plants' growth, and the packet error rate was less than that of the 2.4 GHz band. In summary, we achieved a real-time hydroponic liquid supply control with no data loss by applying a 400 MHz band WSN to hydroponic tomato cultivation.

  18. BEAM DYNAMICS STUDIES OF A HIGH-REPETITION RATE LINAC-DRIVER FOR A 4TH GENERATION LIGHT SOURCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ventturini, M.; Corlett, J.; Emma, P.

    2012-05-18

    We present recent progress toward the design of a super-conducting linac driver for a high-repetition rate FEL-based soft x-ray light source. The machine is designed to accept beams generated by the APEX photo-cathode gun operating with MHz-range repetition rate and deliver them to an array of SASE and seeded FEL beamlines. We review the current baseline design and report results of beam dynamics studies.

  19. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    NASA Astrophysics Data System (ADS)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  20. Seismic and Geophysical Characterization of Northern Asia

    DTIC Science & Technology

    2011-09-01

    coast of the Arctic Ocean. Very little independent data exist on the crustal structure or composition in this area. The 10 mHz data, sampling at...greater depth, quite accurately maps the tectonically active and younger regions as lower velocity zones, while regions associated with old cratons show

  1. 14 CFR 171.259 - Performance requirements: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...

  2. 14 CFR 171.259 - Performance requirements: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...

  3. 14 CFR 171.259 - Performance requirements: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...

  4. 14 CFR 171.259 - Performance requirements: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... components: (1) C-Band (5000 MHz-5030 MHz) localizer equipment, associated monitor system, and remote indicator equipment; (2) C-Band (5220 MHz-5250 MHz) glide path equipment, associated monitor system, and remote indicator equipment; (3) VHF marker beacons (75 MHz), associated monitor systems, and remote...

  5. Characterization of the ultrasonic attenuation coefficient and its frequency dependence in a polymer gel dosimeter.

    PubMed

    Crescenti, Remo A; Bamber, Jeffrey C; Partridge, Mike; Bush, Nigel L; Webb, Steve

    2007-11-21

    Research on polymer-gel dosimetry has been driven by the need for three-dimensional dosimetry, and because alternative dosimeters are unsatisfactory or too slow for that task. Magnetic resonance tomography is currently the most well-developed technique for determining radiation-induced changes in polymer structure, but quick low-cost alternatives remain of significant interest. In previous work, ultrasound attenuation and speed of sound were found to change as a function of absorbed radiation dose in polymer-gel dosimeters, although the investigations were restricted to one ultrasound frequency. Here, the ultrasound attenuation coefficient mu in one polymer gel (MAGIC) was investigated as a function of radiation dose D and as a function of ultrasonic frequency f in a frequency range relevant for imaging dose distributions. The nonlinearity of the frequency dependence was characterized, fitting a power-law model mu = af(b); the fitting parameters were examined for potential use as additional dose readout parameters. In the observed relationship between the attenuation coefficient and dose, the slopes in a quasi-linear dose range from 0 to 30 Gy were found to vary with the gel batch but lie between 0.0222 and 0.0348 dB cm(-1) Gy(-1) at 2.3 MHz, between 0.0447 and 0.0608 dB cm(-1) Gy(-1) at 4.1 MHz and between 0.0663 and 0.0880 dB cm(-1) Gy(-1) at 6.0 MHz. The mean standard deviation of the slope for all samples and frequencies was 15.8%. The slope was greater at higher frequencies, but so were the intra-batch fluctuations and intra-sample standard deviations. Further investigations are required to overcome the observed variability, which was largely associated with the sample preparation technique, before it can be determined whether any frequency is superior to others in terms of accuracy and precision in dose determination. Nevertheless, lower frequencies will allow measurements through larger samples. The fit parameter a of the frequency dependence, describing the attenuation coefficient at 1 MHz, was found to be dose dependent, which is consistent with our expectations, as polymerization is known to be associated with increased absorption of ultrasound. No significant dose dependence was found for the fit parameter b, which describes the nonlinearity with frequency. This is consistent with the increased absorption being due to the introduction of new relaxation processes with characteristic frequencies similar to those of existing processes. The data presented here will help with optimizing the design of future 3D dose-imaging systems using ultrasound methods.

  6. 47 CFR 101.147 - Frequency assignments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....) Applicants for one-way spectrum from 17.7-18.58 GHz for multichannel video programming distribution are... (17) (18) 952.0-960.0 MHz (28) 1,850-1,990 MHz (20) (22) 2,110-2,130 MHz) (1) (3) (7) (20) (23) 2,130... (24) 17,700-18,820 MHz (5) (10) (15) 17,700-18,300 MHz (10) (15) 18,820-18,920 MHz (22) 18,300-18,580...

  7. Feasibility of Millimeter-Accuracy Geodetic Positioning and Vehicle Tracking with Repeater Satellites

    DTIC Science & Technology

    1989-01-27

    SUPPLEMENTARY NOTATION Student thesis submitted to the Dept. of Aeronautical and Astronautical Engineering in partial fulfillment of Master of Science...listed below’: 1) 117 - 118 MHz: Aeronautical Radionavigation 2) 118 - 136 MHz: Aeronautical Mobile 3) 136 - 137 MHz: Aeronautical 4) 137 - 138 MHz...Space Operation, Space Research Service, Meteorological - Satellite Service (all Space to Earth) 5) 138 - 143 MHz: Aeronautical Mobile 6) 143 - 144 MHz

  8. 47 CFR 27.20 - Digital television transition education reports.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... WCS license authorizations in Block A in the 698-704 MHz and 728-734 MHz bands, Block B in the 704-710 MHz and 734-740 MHz bands, Block E in the 722-728 MHz band, Block C, C1, or C2 in the 746-757 MHz and... requirements of this section—and on a quarterly basis thereafter as specified in paragraph (c) of this section...

  9. A comparison of 10 MHz and 20 MHz ultrasound probes in imaging the eye and orbit.

    PubMed

    Hewick, S A; Fairhead, A C; Culy, J C; Atta, H R

    2004-04-01

    /aims: B-scan ultrasonography is an invaluable, versatile, non-invasive tool in ophthalmology. Recently, a "high frequency" contact 20 MHz probe has been introduced. B-scanning ultrasonography of orbital and ocular structures was performed with both a 10 MHz and the new 20 MHz probe, to evaluate what information was best obtained from each probe, and provide recommendations for the use of each. Patients were selected from routine ultrasound clinics at Aberdeen Royal Infirmary between 1 January 2002 and 1 August 2002. The vitreous, retina, choroid, sclera and, in the orbit, the extraocular muscles, optic nerve, and orbital fat were assessed with both the 10 MHz and 20 MHz probes. In the laboratory, using a "point target," the characteristics of the ultrasound beam at different distances from the probe were also assessed. The point target showed that focus was deeper and that the lateral, and to a lesser degree the axial, resolution are sharper with the 20 MHz probe, compared with the 10 MHz probe. In patients' eyes, highly reflective structures are seen at higher resolution with the 20 MHz probe. Imaging of lower intensity reflectors such as the vitreous and particles within it are seen better with the 10 MHz probe. Increased tissue attenuation was evident with the 20 MHz probe. The 20 MHz probe has a superior resolution and can be used to better detect details at the posterior pole and in the orbit. The 10 MHz probe can be used to examine low intensity scatterers, such as the vitreous humour, that cannot be seen using a higher frequency probe.

  10. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains.

    PubMed

    Zheng, Ajuan; Zhang, Lihui; Wang, Shaojin

    2017-05-16

    Radio frequency (RF) heating has been proposed and tested to achieve a required anti-fungal efficacy on various food samples due to its advantage of deeper penetration depth and better heating uniformity. The purpose of this study was to validate applications of RF treatments for controlling Aspergillus parasiticus in corn while maintaining product quality. A pilot-scale, 27.12MHz, 6kW RF heating system together with hot air heating was used to rapidly pasteurize 3.0kg corn samples. Results showed that the pasteurizing effect of RF heating on Aspergillus parasiticus increased with increasing heating temperature and holding time, and RF heating at 70°C holding in hot air for at least 12min resulted in 5-6 log reduction of Aspergillus parasiticus in corn samples with the moisture content of 15.0% w.b. Furthermore, thermal resistance of Aspergillus parasiticus decreased with increasing moisture content (MC) of corn samples. Quality (MC, water activity - a w , protein, starch, ash, fat, fatty acid, color, electrical conductivity and germination rate) of RF treated corn met the required quality standard used in cereal industry. Therefore, RF treatments can provide an effective and rapid heating method to control Aspergillus parasiticus and maintain acceptable corn quality. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Niobium thin film coating on a 500-MHz copper cavity by plasma deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haipeng Wang; Genfa Wu; H. Phillips

    2005-05-16

    A system using an Electron Cyclotron Resonance (ECR) plasma source for the deposition of a thin niobium film inside a copper cavity for superconducting accelerator applications has been designed and is being constructed. The system uses a 500-MHz copper cavity as both substrate and vacuum chamber. The ECR plasma will be created to produce direct niobium ion deposition. The central cylindrical grid is DC biased to control the deposition energy. This paper describes the design of several subcomponents including the vacuum chamber, RF supply, biasing grid and magnet coils. Operational parameters are compared between an operating sample deposition system andmore » this system. Engineering work progress toward the first plasma creation will be reported here.« less

  12. Dielectric relaxation spectroscopy of aqueous solutions of diclofenac potassium over the frequency range of 20 Hz to 2 MHz at 303.15 K temperature

    NASA Astrophysics Data System (ADS)

    Karakthala, J. B.; Vankar, H. P.; Rana, V. A.

    2018-05-01

    The complex relative dielectric function ɛ*(ω) = ɛ' - jɛ″ of aqueous solutions of diclofenac potassium (DK) in the frequency range 20 Hz to 2 MHz at 303.15 K was measured using a precision LCR meter. The electrical/dielectric properties of the solutions samples were represented in terms of complex relative dielectric function ɛ*(ω) real part σ'(ω) of complex ac conductivity and dc conductivity. These types of studies can be used to explore various mechanism contributed in the absorption, transportation of drug through tissues and membranes of body as well as interactions of drug with body fluid and blood plasma.

  13. Dielectric properties of binary mixtures of methyl iso butyl ketone and amino silicone oil

    NASA Astrophysics Data System (ADS)

    Shah, K. N.; Rana, V. A.; Trivedi, C. M.; Vankar, H. P.

    2017-05-01

    Dielectric permittivity ɛ*(ω) = ɛ' - jɛ″ of the binary mixtures of the methyl iso butyl ketone and amino silicone oil in the frequency range 100 Hz to 2 MHz were measured using precision LCR meter at 305.15 K. Relative complex permittivity spectra in the frequency range 100 Hz to 2 MHz, of the mixture solutions of varying concentrations is reported. Determined values of the permittivity at optical frequency of all the samples are also reported. The dielectric parameters are used to gain information about the effect of concentration variation of components of the mixtures on the dielectric properties. It also provides the information about electrode polarization phenomena taking place under the low frequency A.C. electric field.

  14. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  15. A Link-Level Simulator of the cdma2000 Reverse-Link Physical Layer

    PubMed Central

    Gharavi, H.; Chin, F.; Ban, K.; Wyatt-Millington, R.

    2003-01-01

    The cdma2000 system is an evolutionary enhancement of the IS-95 standards which support 3G services defined by the International Telecommunications Union (ITU). cdma2000 comes in two phases: 1XRTT and 3XRTT (1X and 3X indicates the number of 1.25 MHz wide radio carrier channels used and RTT stands for Radio Transmission Technology). The cdma2000 1XRTT, which operates within a 1.25 MHz bandwidth, can be utilized in existing IS-95 CDMA channels as it uses the same bandwidth, while 3XRTT requires the commitment of 5 MHz bandwidth to support higher data rates. This paper describes a software model implementation of the cdma2000 reverse link and its application for evaluating the effect of rake receiver design parameters on the system performance under various multipath fading conditions. The cdma2000 models were developed at the National Institute of Standards and Technology (NIST), using SPW (Signal Processing Worksystem) commercial software tools. The model has been developed in a generic manner that includes all the reverse link six radio configurations and their corresponding data rates, according to cdma2000 specifications. After briefly reviewing the traffic channel characteristics of the cdma2000 reverse link (subscriber to base station), the paper discusses the rake receiver implementation including an ideal rake receiver. It then evaluates the performance of each receiver for a Spreading Rate 3 (3XRTT) operation, which is considered as a true “3G” cdma2000 technology. These evaluations are based on the vehicular IMT-2000 (International Mobile Telecommunication 2000) channel model using the link budget defined in cdma2000 specifications for the reverse link. PMID:27413613

  16. Survey of Ionospheric Pc3-5 ULF Wave Signatures in SuperDARN High Time Resolution Data

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B. H.; Lin, D.; Bland, E. C.; Hartinger, M. D.; Scales, W. A.

    2018-05-01

    Ionospheric signatures of ultralow frequency (ULF) wave in the Pc3-5 band (1.7-40.0 mHz) were surveyed using ˜6-s resolution data from Super Dual Auroral Radar Network (SuperDARN) radars in the Northern Hemisphere from 2010 to 2016. Numerical experiments were conducted to derive wave period-dependent thresholds for automated detection of ULF waves using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition, and geomagnetic activity level dependence have been studied. Pc5 wave events were found to dominate at high and polar latitudes with a most probable frequency of 2.08 ± 0.07 mHz, while Pc3-4 waves were relatively more common at midlatitudes on the nightside with a most probable frequency of 11.39 ± 0.14 mHz. At high latitudes, the occurrence rate of Pc4-5 waves maximizes in the dusk sector and during winter. These events tend to occur during low geomagnetic activity and northward interplanetary magnetic field. For the category of radially bounded but longitudinally extended Pc4 events in the duskside ionosphere, an internal driving source is suggested. At midlatitudes, the poloidal Pc3-4 occurrence rate maximizes premidnight and during equinox. This tendency becomes more prominent with increasing auroral electrojet (AE) index and during southward interplanetary magnetic field, which suggests that many of these events are Pi2 and Pc3-4 pulsations associated with magnetotail dynamics during active geomagnetic intervals. The overall occurrence rate of Pc3-5 wave events is lowest in summer, which suggests that the ionospheric conductivity plays a role in controlling ULF wave occurrence.

  17. Effects of RF-EMF Exposure from GSM Mobile Phones on Proliferation Rate of Human Adipose-derived Stem Cells: An In-vitro Study

    PubMed Central

    Shahbazi-Gahrouei, D.; Hashemi-Beni, B.; Ahmadi, Z.

    2016-01-01

    Background: As the use of mobile phones is increasing, public concern about the harmful effects of radiation emitted by these devices is also growing. In addition, protection questions and biological effects are among growing concerns which have remained largely unanswered. Stem cells are useful models to assess the effects of radiofrequency electromagnetic fields (RF-EMF) on other cell lines. Stem cells are undifferentiated biological cells that can differentiate into specialized cells. Adipose tissue represents an abundant and accessible source of adult stem cells. The aim of this study is to investigate the effects of GSM 900 MHz on growth and proliferation of mesenchymal stem cells derived from adipose tissue within the specific distance and intensity. Materials and Methods: ADSCs were exposed to GSM mobile phones 900 MHz with intensity of 354.6 µW/cm2 square waves (217 Hz pulse frequency, 50% duty cycle), during different exposure times ranging from 6 to 21 min/day for 5 days at 20 cm distance from the antenna. MTT assay was used to determine the growth and metabolism of cells and trypan blue test was also done for cell viability. Statistical analyses were carried out using analysis of one way ANOVA. P<0.05 was considered to be statistically significant. Results: The proliferation rates of human ADSCs in all exposure groups were significantly lower than control groups (P<0.05) except in the group of 6 minutes/day which did not show any significant difference with control groups. Conclusion: The results show that 900 MHz RF signal radiation from antenna can reduce cell viability and proliferation rates of human ADSCs regarding the duration of exposure. PMID:28144594

  18. 47 CFR 90.259 - Assignment and use of frequencies in the bands 216-220 MHz and 1427-1432 MHz.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... performed in the 1427-1429 MHz and 1431.5-1432 MHz bands. The maximum ERP limitations are as follows...) For all other locations, primary operations are performed in the 1429.5-1432 MHz band. The maximum ERP...

  19. Concepts. The Journal of Defense Systems Acquisition Management. Summer 1981. Volume 4, Number 3.

    DTIC Science & Technology

    1981-01-01

    Performance FREQUENCY POWER OUTPUT GIZMO MODEL 25 0-50 MHZ SATISFACTORY 50-125 MHZ UNSATISFACTORY ASTROMATICS MODEL C 0-50 MHZ SATISFACTORY 50-125 MHZ...MHZ) GIZMO ----- ASTROMATICS- NOTES: 1. Diagrams excellent for portraying precise technical relationships. 2. Diagrams are economical means of

  20. Corrosion, optical and magnetic properties of flexible iron nitride nano thin films deposited on polymer substrate

    NASA Astrophysics Data System (ADS)

    Khan, W. Q.; Wang, Qun; Jin, Xin; Yasin, G.

    2017-11-01

    Iron nitride thin films of different compositions and thicknesses were deposited on flexible polymer substrate in Ar/N2 atmosphere by reactive magnetron sputtering under varying nitrogen flow rates. The nano structured films were characterized by X-ray diffraction, UV-visible spectrophotometer, electrochemical impedance (EIS), atomic force (AFM) and transmission electron microscopies. The dependence of their functional properties on coating and growth conditions was studied in detail. It was found that the thin films show a uniform permeability in the frequency range of 200 MHz to 1 Ghz and can be used in this range without appreciable changes. Decrease of nitrogen flow rate resulted in the smoother surfaces which in turn increase transmittance quality and corrosion resistance. Functional properties are dependent of nature, relative concentration of the iron nitride phases and film thickness. Surface integrity is excellent for180 nm thick sample because the films appear to be very dense and free from open pores. By keeping sputtering power stable at 110 W, nitrogen flow rate of 10 sccm was ideal to develop the ferromagnetic γʹFe4N phase at room temperature.

  1. First Performance Results of the PIP2IT MEBT 200 Ohm Kicker Prototype

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saewert, G.; Awida, M. H.; Chase, B. E.

    The PIP-II project is a program to upgrade the Fermilab accelerator complex. The PIP-II linac includes a 2.1 MeV Medium Energy Beam Transport (MEBT) section that incorporates a unique chopping system to perform arbitrary, bunch-by-bunch removal of 162.5 MHz structured beam. The MEBT chopping system will consist of two identical kickers working together and a beam absorber. One design of two having been proposed has been a 200 Ohm characteristic impedance traveling wave dual-helix kicker driven with custom designed high-speed switches. This paper reports on the first performance results of one prototype kicker built, installed and tested with beam at the PIP-II Injector Test (PIP2IT) facility. The helix deflector design details are discussed. The electrical performance of the high-speed switch driver operating at 500 V bias is presented. Tests performed were chopping beam at 81.25 MHz for microseconds as well as with a truly arbitrary pattern for 550more » $$\\mu$$s bursts having a 45 MHz average switching rate and repeating at 20 Hz.« less

  2. Subcritical crack growth of selected aerospace pressure vessel materials

    NASA Technical Reports Server (NTRS)

    Hall, L. R.; Bixler, W. D.

    1972-01-01

    This experimental program was undertaken to determine the effects of combined cyclic/sustained loads, stress level, and crack shape on the fatigue crack growth rate behavior of cracks subjected to plane strain conditions. Material/environment combinations tested included: 2219-T87 aluminum plate in gaseous helium, room air, and 3.5% NaCl solution at room temperature, liquid nitrogen, and liquid hydrogen; 5Al-2.5 Sn (ELI) titanium plate in liquid nitrogen and liquid hydrogen and 6AL-4V (ELI) STA titanium plate in gaseous helium and methanol at room temperature. Most testing was accomplished using surface flawed specimens instrumented with a clip gage to continuously monitor crack opening displacements at the specimen surface. Tapered double cantilever beam specimens were also tested. Static fracture and ten hour sustained load tests were conducted to determine fracture toughness and apparent threshold stress intensity values. Cyclic tests were performed using sinusoidal loading profiles at 333 MHz (20 cpm) and trapezoidal loading profiles at both 8.3 MHz (0.5 cpm) and 3.3 MHz (0.2 cpm). Data were evaluated using modified linear elastic fracture mechanics parameters.

  3. Survey of Pc3-5 ULF velocity oscillations in SuperDARN THEMIS-mode data: Occurrence statistics and driving mechanisms

    NASA Astrophysics Data System (ADS)

    Shi, X.; Ruohoniemi, J. M.; Baker, J. B.; Lin, D.; Bland, E. C.; Hartinger, M.; Scales, W.

    2017-12-01

    Ultra-low frequency (ULF: 1 mHz-10 Hz) waves are believed to play an important role in the energization and transport of plasma within the magnetosphere-ionosphere system, as well as the transfer of energy from the solar wind. Most previous statistical studies of ionospheric ULF waves using Super Dual Auroral Radar Network (SuperDARN) data have been constrained to the Pc5 band ( 1-7 mHz) and/or one or two radars covering a limited range of latitudes. This is partially due to lack of a database cataloging high time resolution data and an efficient way to identify wave events. In this study, we conducted a comprehensive survey of ULF wave signatures in the Pc3-5 band using 6 s resolution data from all SuperDARN radars in the northern hemisphere operating in THEMIS-mode from 2010 to 2016. Numerical experiments were conducted to derive dynamic thresholds for automated detection of ULF waves at different frequencies using the Lomb-Scargle periodogram technique. The spatial occurrence distribution, frequency characteristics, seasonal effects, solar wind condition and geomagnetic activity level dependence have been studied. We found Pc5 events dominate at high latitudes with a most probable frequency of 2 mHz while Pc3-4 are relatively more common at mid-latitudes on the nightside with a most probable frequency of 11 mHz. At high latitudes the occurrence rate of poloidal Pc3-5 peaks in the dusk sector and in winter while at mid-latitudes the poloidal Pc3-4 occurrence rate peaks at pre-midnight. This pre-midnight occurrence peak becomes more prominent with increasing AE index value, in equinox and during southward IMF, which suggests many of these events are most likely Pi2 pulsations associated with magnetotail dynamics during active geomagnetic intervals.

  4. Central FPGA-based destination and load control in the LHCb MHz event readout

    NASA Astrophysics Data System (ADS)

    Jacobsson, R.

    2012-10-01

    The readout strategy of the LHCb experiment is based on complete event readout at 1 MHz. A set of 320 sub-detector readout boards transmit event fragments at total rate of 24.6 MHz at a bandwidth usage of up to 70 GB/s over a commercial switching network based on Gigabit Ethernet to a distributed event building and high-level trigger processing farm with 1470 individual multi-core computer nodes. In the original specifications, the readout was based on a pure push protocol. This paper describes the proposal, implementation, and experience of a non-conventional mixture of a push and a pull protocol, akin to credit-based flow control. An FPGA-based central master module, partly operating at the LHC bunch clock frequency of 40.08 MHz and partly at a double clock speed, is in charge of the entire trigger and readout control from the front-end electronics up to the high-level trigger farm. One FPGA is dedicated to controlling the event fragment packing in the readout boards, the assignment of the farm node destination for each event, and controls the farm load based on an asynchronous pull mechanism from each farm node. This dynamic readout scheme relies on generic event requests and the concept of node credit allowing load control and trigger rate regulation as a function of the global farm load. It also allows the vital task of fast central monitoring and automatic recovery in-flight of failing nodes while maintaining dead-time and event loss at a minimum. This paper demonstrates the strength and suitability of implementing this real-time task for a very large distributed system in an FPGA where no random delays are introduced, and where extreme reliability and accurate event accounting are fundamental requirements. It was in use during the entire commissioning phase of LHCb and has been in faultless operation during the first two years of physics luminosity data taking.

  5. Quasi-Periodic Variability in NGC 5408 X-1

    NASA Technical Reports Server (NTRS)

    Strohmayer, Tod E.; Mushotzky, Richard F.; Winter, Lisa; Soria, Roberto; Uttley, Phil; Cropper, Mark

    2007-01-01

    We report the discovery with XMM-Newton of quasiperiodic variability in the 0.2 - 10 keV X-ray flux from the ultraluminous X-ray source NGC 5408 X-1. The average power spectrum of all EPIC-pn data reveals a strong 20 mHz QPO with an average amplitude (rms) of 9%, and a coherence, Q identical with nu(sub 0)/sigma approximately equal to 6. In a 33 ksec time interval when the 20 mHz QPO is strongest we also find evidence for a 2nd QPO peak at 15 mHz, the first indication for a close pair of QPOs in a ULX source. Interestingly, the frequency ratio of this QPO pair is inconsistent with 3:2 at the 3 sigma level, but is consistent with a 4:3 ratio. A powerlaw noise component with slope near 1.5 is also present below 0.1 Hz with evidence for a break to a flatter slope at about 3 mHz. The source shows substantial broadband variability, with a total amplitude (rms) of about 30% in the 0.1 - 100 mHz frequency band, and there is strong energy dependence to the variability. The power spectrum of hard X-ray photons (greater than 2 keV) shows a "classic" flat-topped continuum breaking to a power law with index 1.5 - 2. Both the break and 20 mHz QPO are detected in the hard band, and the 20 mHz QPO is essentially at the break. The QPO is both strong and narrow in this band, having an amplitude (rms) of 15%, and Q approx. equal to 25. The energy spectrum is well fit by three components, a "cool" disk with kT = 0.15 keV, a steep power law with index 2.56, and a thermal plasma at kT = 0.87 keV. The disk, power law, and thermal plasma components contribute 35, 60, and 5% of the 0.3 - 10 keV flux, respectively. Both the timing and spectral properties of NGC 5408 X-1 are strikingly reminiscent of Galactic black hole systems at high inferred accretion rates, but with its characteristic frequencies (QPO and break frequencies) scaled down by a factor of 10 - 100. We discuss the implications of these findings in the context of models for ULXs, and their implications for the object's mass.

  6. Multiwavelength Study of Active Galaxies

    NASA Astrophysics Data System (ADS)

    Singh, Veeresh

    2010-08-01

    Seyfert galaxies are a subclass of active galaxies and are categorized as nearby, low luminosity, radio-quiet Active Galactic Nuclei (AGN) hosted in spiral or lenticular galaxies. Demographically, Seyfert galaxies may account for ~ 10% of the entire population of active galaxies in the nearby universe. Seyfert galaxies are classified mainly into two subclasses named as `type 1' and `type 2' Seyferts, based on the presence and absence of broad permitted emission lines in their optical spectra, respectively. Detection of broad permitted emission lines in some Seyfert type 2s observed in the polarized light laid the foundation of the Seyfert unification scheme, which hypothesizes that Seyfert type 1s and type 2s belong to the same parent population and appear different solely due to the differing orientations of the obscuring material having a torus-like geometry around the AGN (Antonucci and Miller 1985; Antonucci 1993). The primary objective of this thesis work is to examine the validity and limitations of the orientation and obscuration based Seyfert unification scheme using multiwavelength (mainly X-ray and radio) observations. The key issue in testing the Seyfert unification scheme has been acquiring a well defined rigorously selected Seyfert sample. I have argued that the Seyfert samples based on flux limited surveys at optical, IR, UV and X-ray are likely to be biased against obscured and faint sources. In order to test the predictions of Seyfert unification scheme I use a sample based on properties (i.e., cosmological redshift, [OIII] emission line luminosity, absolute bulge magnitude, absolute stellar magnitude of the host galaxy and the Hubble stage of the host galaxy) that are independent to the orientation of the obscuring torus, host galaxy and the AGN axis. Furthermore, two Seyfert subtypes of our sample have matched distributions in the orientation-independent properties and this ensures the intrinsic similarity between two Seyfert subtypes within the framework of the unification scheme. In other words, it is ensured that the two subtypes being compared are not selected from entirely different parts of the evolution function (redshift, luminosity, bulge magnitude, stellar luminosity of the host galaxy and Hubble type of the host galaxy). To study the X-ray spectral properties of two Seyfert subtypes I use the XMM-Newton pn data. The 0.5 - 10 keV X-ray spectra of Seyfert galaxies are generally best fitted with a model consists of: an absorbed power law with exponential cut-off which contains cold absorption from the Galactic hydrogen column density together with absorption from neutral gas at the redshift of the source; a narrow Gaussian line fitted to the Fe K_alpha line at 6.4 keV; a soft excess component characterized by either a steep power law and/or a thermal plasma model with temperature kT and in some cases, reflection component characterized by the reflection from an isotropically illuminated cold slab, (model `pexrav' in XSPEC) is required. Partial covering of the primary AGN power law component is also required for the best fit in some sources. There are several type 2 sources in our sample in which the hard (2.0 - 10.0 keV) part of the X-ray spectrum is best fitted with a reflection component alone (`pexrav' model). The statistical comparisons of the X-ray spectral properties show that in compared to Seyfert type 1s, the type 2s exhibit lower X-ray luminosities in soft (0.5 - 2.0 keV) and hard (2.0 - 10.0) X-ray bands, higher X-ray absorbing column densities, higher equivalent widths of Fe K line, and lower flux ratios of hard X-ray (2.0 - 10.0 keV) to [OIII]. In both the Seyfert subtypes, the X-ray luminosity is moderately correlated with the pc-scale, kpc-scale radio luminosities and [OIII] line luminosity, in a similar fashion. A large fraction ~ 60 - 70% of type 2 Seyferts of our sample are likely to be Compton-thick and as a case study of a Compton-thick AGN, we studied the broad-band 0.5 - 50 keV X-ray spectral properties of NGC 5135 using Suzaku (XIS and HID) data to unveil the nature and geometry of obscuring torus. To test the predictions of the Seyfert unification scheme in the radio regime, I studied the radio properties of Seyfert galaxies using Giant Meterwave Radio Telescope (GMRT) observations carried out at 240 MHz/610 MHz, and NRAO VLA Sky Survey observations at 1.4 GHz and VLA 5 GHz observations from the literature. The four point (240 MHz, 610 MHz, 1.4 GHz, 5.0 GHz) integrated radio spectra of the two Seyfert subtypes are similar and fairly steep (i.e., spectral index ~ -0.7). Radio luminosity distributions at 240 MHz, 610 MHz, 1.4 GHz and 5.0 GHz are also similar for the Seyfert type 1s and type 2s. The study on radio - IR luminosity correlations shows that for both the Seyfert subtypes, the total 610 MHz and 240 MHz radio luminosities are moderately correlated with near-IR, mid-IR luminosities while the correlation becomes poorer with far-IR luminosities. Furthermore, the 12 micron, 25 micron, 60 micron and 100 micron IR luminosity distributions are also statistically simil! ar for the Seyfert type 1s and type 2s. I conclude that the statistical comparisons of the X-ray, radio and IR properties of the two Seyfert subtypes of our sample are consistent with the obscuration and orientation based unification scheme.

  7. Nonlinear processes associated with the amplification of MHz-linewidth laser pulses in single-mode Tm:fiber

    NASA Astrophysics Data System (ADS)

    Sincore, Alex; Bodnar, Nathan; Bradford, Joshua; Abdulfattah, Ali; Shah, Lawrence; Richardson, Martin C.

    2017-03-01

    This work studies the accumulated nonlinearities when amplifying a narrow linewidth 2053 nm seed in a single mode Tm:fiber amplifier. A <2 MHz linewidth CW diode seed is externally modulated using a fiberized acousto-optic modulator. This enables independent control of repetition rate and pulse duration (>30 ns). The pulses are subsequently amplified and the repetition rate is further reduced using a second acousto-optic modulator. It is well known that spectral degradation occurs in such fibers for peak powers over 100's of watts due to self-phase modulation, four-wave mixing, and stimulated Raman scattering. In addition to enabling a thorough test bed to study such spectral broadening, this system will also enable the investigation of stimulated Brillouin scattering thresholds in the same system. This detailed study of the nonlinearities encountered in 2 μm fiber amplifiers is important in a range of applications from telecommunications to the amplification of ultrashort laser pulses.

  8. MHz-rate nitric oxide planar laser-induced fluorescence imaging in a Mach 10 hypersonic wind tunnel.

    PubMed

    Jiang, Naibo; Webster, Matthew; Lempert, Walter R; Miller, Joseph D; Meyer, Terrence R; Ivey, Christopher B; Danehy, Paul M

    2011-02-01

    Nitric oxide planar laser-induced fluorescence (NO PLIF) imaging at repetition rates as high as 1 MHz is demonstrated in the NASA Langley 31 in. Mach 10 hypersonic wind tunnel. Approximately 200 time-correlated image sequences of between 10 and 20 individual frames were obtained over eight days of wind tunnel testing spanning two entries in March and September of 2009. The image sequences presented were obtained from the boundary layer of a 20° flat plate model, in which transition was induced using a variety of different shaped protuberances, including a cylinder and a triangle. The high-speed image sequences captured a variety of laminar and transitional flow phenomena, ranging from mostly laminar flow, typically at a lower Reynolds number and/or in the near wall region of the model, to highly transitional flow in which the temporal evolution and progression of characteristic streak instabilities and/or corkscrew-shaped vortices could be clearly identified.

  9. Imaging of the human choroid with a 1.7 MHz A-scan rate FDML swept source OCT system

    NASA Astrophysics Data System (ADS)

    Gorczynska, I.; Migacz, J. V.; Jonnal, R.; Zawadzki, R. J.; Poddar, R.; Werner, J. S.

    2017-02-01

    We demonstrate OCT angiography (OCTA) and Doppler OCT imaging of the choroid in the eyes of two healthy volunteers and in a geographic atrophy case. We show that visualization of specific choroidal layers requires selection of appropriate OCTA methods. We investigate how imaging speed, B-scan averaging and scanning density influence visualization of various choroidal vessels. We introduce spatial power spectrum analysis of OCT en face angiographic projections as a method of quantitative analysis of choroicapillaris morphology. We explore the possibility of Doppler OCT imaging to provide information about directionality of blood flow in choroidal vessels. To achieve these goals, we have developed OCT systems utilizing an FDML laser operating at 1.7 MHz sweep rate, at 1060 nm center wavelength, and with 7.5 μm axial imaging resolution. A correlation mapping OCA method was implemented for visualization of the vessels. Joint Spectral and Time domain OCT (STdOCT) technique was used for Doppler OCT imaging.

  10. The Advanced Gamma-ray Imaging System (AGIS): Real Time Stereoscopic Array Trigger

    NASA Astrophysics Data System (ADS)

    Byrum, K.; Anderson, J.; Buckley, J.; Cundiff, T.; Dawson, J.; Drake, G.; Duke, C.; Haberichter, B.; Krawzcynski, H.; Krennrich, F.; Madhavan, A.; Schroedter, M.; Smith, A.

    2009-05-01

    Future large arrays of Imaging Atmospheric Cherenkov telescopes (IACTs) such as AGIS and CTA are conceived to comprise of 50 - 100 individual telescopes each having a camera with 10**3 to 10**4 pixels. To maximize the capabilities of such IACT arrays with a low energy threshold, a wide field of view and a low background rate, a sophisticated array trigger is required. We describe the design of a stereoscopic array trigger that calculates image parameters and then correlates them across a subset of telescopes. Fast Field Programmable Gate Array technology allows to use lookup tables at the array trigger level to form a real-time pattern recognition trigger tht capitalizes on the multiple view points of the shower at different shower core distances. A proof of principle system is currently under construction. It is based on 400 MHz FPGAs and the goal is for camera trigger rates of up to 10 MHz and a tunable cosmic-ray background suppression at the array level.

  11. Frequent bursts from the 11 Hz transient pulsar IGR J17480-2446

    NASA Astrophysics Data System (ADS)

    Chakraborty, Manoneeta; Mukherjee, Arunava; Bhattacharyya, S.

    Accreted matter falling on the surface of the neutron star in a Low Mass X-ray Binary (LMXB) system gives rise to intense X-ray bursts originating from unstable thermonuclear conflagration and these bursts can be used as a tool to constrain the equation of state. A series of such X-ray bursts along with millihertz (mHz) quasi-periodic oscillations (QPOs) at the highest source luminosities were observed during the 2010 outburst of the transient LMXB pulsar IGR J17480--2446. The quite diverse burst properties compared to typical type-I bursts suggested them to be the type-II bursts originating from accretion disc instability. We show that the bursts are indeed of thermonuclear origin and thus confirm the quasi-stable burning model for mHz QPOs. Various properties of the bursts such as, peak flux, fluence, periodicity and duration, were highly dependent on the source spectral states and their variation over a large accretion rate range revealed the evolution of the burning process at different accretion rate regimes.

  12. Generation of switchable domain wall and Cubic-Quintic nonlinear Schrödinger equation dark pulse

    NASA Astrophysics Data System (ADS)

    Tiu, Z. C.; Suthaskumar, M.; Zarei, A.; Tan, S. J.; Ahmad, H.; Harun, S. W.

    2015-10-01

    A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrödinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW.

  13. Precise dielectric property measurements and E-field probe calibration for specific absorption rate measurements using a rectangular waveguide

    PubMed Central

    Hakim, B M; Beard, B B; Davis, C C

    2018-01-01

    Specific absorption rate (SAR) measurements require accurate calculations of the dielectric properties of tissue-equivalent liquids and associated calibration of E-field probes. We developed a precise tissue-equivalent dielectric measurement and E-field probe calibration system. The system consists of a rectangular waveguide, electric field probe, and data control and acquisition system. Dielectric properties are calculated using the field attenuation factor inside the tissue-equivalent liquid and power reflectance inside the waveguide at the air/dielectric-slab interface. Calibration factors were calculated using isotropicity measurements of the E-field probe. The frequencies used are 900 MHz and 1800 MHz. The uncertainties of the measured values are within ±3%, at the 95% confidence level. Using the same waveguide for dielectric measurements as well as calibrating E-field probes used in SAR assessments eliminates a source of uncertainty. Moreover, we clearly identified the system parameters that affect the overall uncertainty of the measurement system. PMID:29520129

  14. Faraday instability-based micro droplet ejection for inhalation drug delivery

    PubMed Central

    Tsai, C.S.; Mao, R.W.; Lin, S.K.; Zhu, Y.; Tsai, S.C.

    2014-01-01

    We report here the technology and the underlying science of a new device for inhalation (pulmonary) drug delivery which is capable of fulfilling needs unmet by current commercial devices. The core of the new device is a centimeter-size clog-free silicon-based ultrasonic nozzle with multiple Fourier horns in resonance at megahertz (MHz) frequency. The dramatic resonance effect among the multiple horns and high growth rate of the MHz Faraday waves excited on a medicinal liquid layer together facilitate ejection of monodisperse droplets of desirable size range (2–5 µm) at low electrical drive power (<1.0 W). The small nozzle requiring low drive power has enabled realization of a pocket-size (8.6 × 5.6 × 1.5 cm3) ultrasonic nebulizer. A variety of common pulmonary drugs have been nebulized using the pocket-size unit with desirable aerosol sizes and output rate. These results clearly provide proof-of-principle for the new device and confirm its potential for commercialization. PMID:25045720

  15. Analysis of type II and type III solar radio bursts

    NASA Astrophysics Data System (ADS)

    Wijesekera, J. V.; Jayaratne, K. P. S. C.; Adassuriya, J.

    2018-04-01

    Solar radio burst is an arrangement of a frequency space that variation with time. Most of radio burst can be identified in low frequency range such as below 200 MHz and depending on frequencies. Solar radio bursts were the first phenomenon identified in the field of radio astronomy field. Solar radio frequency range is from 70 MHz to 2.2 GHz. Most of the radio burst can be identified in a low frequency range such as below 200 MHz. Properties of low-frequency radio were analyzed this research. There are two types of solar radio bursts were analyzed, named as type II and type III radio bursts. Exponential decay type could be seen in type II, and a linear could be indicated in type III solar radio bursts. The results of the drift rate graphs show the values of each chosen solar radio burst. High drift rate values can be seen in type III solar flares whereas low to medium drift rate values can be seen in type II solar flares. In the second part of the research the Newkirk model electron density model was used to estimate the drift velocities of the solar radio bursts. Although the special origin of the solar radio burst is not known clearly we assumed. The chosen solar radio bursts were originated within the solar radius of 0.9 - 1.3 range from the photosphere. We used power low in the form of (x) = A × 10‑bx were that the electron density related to the height of the solar atmosphere. The calculation of the plasma velocity of each solar radio burst was done using the electron density model and drift rates. Therefore velocity of chosen type II solar radio bursts indicates low velocities. The values are 233.2499 Km s‑1, 815.9522 Km s‑1 and 369.5425 Km s‑1. Velocity of chosen type III solar radio bursts were 1443.058 Km s‑1and 1205.05Km s ‑1.

  16. Locating Materials with Nuclear Quadrupole Moments within Surface Coil Array Area

    DTIC Science & Technology

    2015-08-11

    location and dimension of the material can determined based on the nuclear quadrupole resonance ( NQR ) signal strength from the surface coil in the array...28.1MHz NQR frequency from potassium chlorate (PC) sample at room temperature. The PC sample will be in different locations parallel to the surface...using the experimental results from the dual surface coil array. 15. SUBJECT TERMS NQR , potassium chlorate, surface coil, surface probe, decoupling

  17. Software-based high-level synthesis design of FPGA beamformers for synthetic aperture imaging.

    PubMed

    Amaro, Joao; Yiu, Billy Y S; Falcao, Gabriel; Gomes, Marco A C; Yu, Alfred C H

    2015-05-01

    Field-programmable gate arrays (FPGAs) can potentially be configured as beamforming platforms for ultrasound imaging, but a long design time and skilled expertise in hardware programming are typically required. In this article, we present a novel approach to the efficient design of FPGA beamformers for synthetic aperture (SA) imaging via the use of software-based high-level synthesis techniques. Software kernels (coded in OpenCL) were first developed to stage-wise handle SA beamforming operations, and their corresponding FPGA logic circuitry was emulated through a high-level synthesis framework. After design space analysis, the fine-tuned OpenCL kernels were compiled into register transfer level descriptions to configure an FPGA as a beamformer module. The processing performance of this beamformer was assessed through a series of offline emulation experiments that sought to derive beamformed images from SA channel-domain raw data (40-MHz sampling rate, 12 bit resolution). With 128 channels, our FPGA-based SA beamformer can achieve 41 frames per second (fps) processing throughput (3.44 × 10(8) pixels per second for frame size of 256 × 256 pixels) at 31.5 W power consumption (1.30 fps/W power efficiency). It utilized 86.9% of the FPGA fabric and operated at a 196.5 MHz clock frequency (after optimization). Based on these findings, we anticipate that FPGA and high-level synthesis can together foster rapid prototyping of real-time ultrasound processor modules at low power consumption budgets.

  18. Direct-detected rapid-scan EPR at 250 MHz

    NASA Astrophysics Data System (ADS)

    Stoner, James W.; Szymanski, Dennis; Eaton, Sandra S.; Quine, Richard W.; Rinard, George A.; Eaton, Gareth R.

    2004-09-01

    EPR spectra at 250 MHz for a single crystal of lithium phthalocyanine (LiPc) in the absence of oxygen and for a deoxygenated aqueous solution of a Nycomed triarylmethyl (trityl-CD 3) radical were obtained at scan rates between 1.3 × 10 3 and 3.4 × 10 5 G/s. These scan rates are rapid relative to the reciprocals of the electron spin relaxation times (LiPc: T1=3.5 μs and T2=2.5 μs; trityl: T1=12 μs and T2=11.5 μs) and cause characteristic oscillations in the direct-detected absorption spectra. For a given scan rate, shorter values of T2 and increased inhomogeneous broadening cause less deep oscillations that damp out more quickly than for longer T2. There is excellent agreement between experimental and calculated lineshapes and signal amplitudes as a function of radiofrequency magnetic field ( B1) and scan rate. When B1 is adjusted for maximum signal amplitude as a function of scan rate, signal intensity for constant number of scans is enhanced by up to a factor of three relative to slow scans. The number of scans that can be averaged in a defined period of time is proportional to the scan rate, which further enhances signal amplitude per unit time. Longer relaxation times cause the maximum signal intensity to occur at slower scan rates. These experiments provide the first systematic characterization of direct-detected rapid-scan EPR signals.

  19. 78 FR 42701 - Improving Public Safety Communications in the 800 MHz Band

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-17

    ...] Improving Public Safety Communications in the 800 MHz Band AGENCY: Federal Communications Commission. ACTION...-901 MHz/935- 940 MHz band (900 MHz B/ILT Band) to allow a qualified entity to file an application for..., manufacturing, energy) to non-commercial (e.g., clerical, educational, philanthropic, medical). In 2004, the...

  20. 47 CFR 80.1077 - Frequencies.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... System: Alerting: 406.0-406.1 EPIRBs 406.0-406.1 MHz (Earth-to-space).1544-1545 MHz (space-to-Earth). INMARSAT Ship Earth Stations capable of voice and/or direct printing 1626.5-1645.5 MHz (Earth-to-space... safety communications and calling: Satellite 1530-1544 MHz (space-to-Earth) and 1626.5-1645.5 MHz (Earth...

Top