Functional Gap Analysis of the Maritime Operations Centers
2009-12-01
Messaging Services TBMCS , DJC2 MI.1.3.5 Manage Suspense Control Capability Gap MI.1.3.6 Provide Component IM Cell Services Capability Gap MI.1.4 Provide...Admin Support MSRT MI.1.3.3 Manage Electronic File Plan Capability Gap MI.1.3.4 Manage Messaging Services TBMCS , DJC2 MI.1.3.5 Manage Suspense...1.5.9 Execute C4 Policies & Procedures for the Joint Operations Area GCCS-J, DCGS-N, TBMCS , CENTRIX-M EHQ.1.11 Sub Component Interagency
Wnt-related SynGAP1 is a neuroprotective factor of glutamatergic synapses against Aβ oligomers
Codocedo, Juan F.; Montecinos-Oliva, Carla; Inestrosa, Nibaldo C.
2015-01-01
Wnt-5a is a synaptogenic factor that modulates glutamatergic synapses and generates neuroprotection against Aβ oligomers. It is known that Wnt-5a plays a key role in the adult nervous system and synaptic plasticity. Emerging evidence indicates that miRNAs are actively involved in the regulation of synaptic plasticity. Recently, we showed that Wnt-5a is able to control the expression of several miRNAs including miR-101b, which has been extensively studied in carcinogenesis. However, its role in brain is just beginning to be explored. That is why we aim to study the relationship between Wnt-5a and miRNAs in glutamatergic synapses. We performed in silico analysis which predicted that miR-101b may inhibit the expression of synaptic GTPase-Activating Protein (SynGAP1), a Ras GTPase-activating protein critical for the development of cognition and proper synaptic function. Through overexpression of miR-101b, we showed that miR-101b is able to regulate the expression of SynGAP1 in an hippocampal cell line. Moreover and consistent with a decrease of miR-101b, Wnt-5a enhances SynGAP expression in cultured hippocampal neurons. Additionally, Wnt-5a increases the activity of SynGAP in a time-dependent manner, with a similar kinetic to CaMKII phosphorylation. This also, correlates with a modulation in the SynGAP clusters density. On the other hand, Aβ oligomers permanently decrease the number of SynGAP clusters. Interestingly, when neurons are co-incubated with Wnt-5a and Aβ oligomers, we do not observe the detrimental effect of Aβ oligomers, indicating that, Wnt-5a protects neurons from the synaptic failure triggered by Aβ oligomers. Overall, our findings suggest that SynGAP1 is part of the signaling pathways induced by Wnt-5a. Therefore, possibility exists that SynGAP is involved in the synaptic protection against Aβ oligomers. PMID:26124704
Iacopo, Fabiani; Lorenzo, Conte; Calogero, Enrico; Matteo, Passiatore; Riccardo, Pugliese Nicola; Veronica, Santini; Valentina, Barletta; Riccardo, Liga; Cristian, Scatena; Maria, Mazzanti Chiara; Vitantonio, Di Bello
2016-01-01
MicroRNAs (miRNAs) are a huge class of noncoding RNAs that regulate protein-encoding genes (degradation/inhibition of translation). miRNAs are nowadays recognized as regulators of biological processes underneath cardiovascular disorders including hypertrophy, ischemia, arrhythmias, and valvular disease. In particular, circulating miRNAs are promising biomarkers of pathology. This review gives an overview of studies in aortic valve stenosis (AS), exclusively considering myocardial remodeling processes. We searched through literature (till September 2016), all studies and reviews involving miRNAs and AS (myocardial compartment). Although at the beginning of a new era, clear evidences exist on the potential diagnostic and prognostic implementation of miRNAs in the clinical setting. In particular, for AS, miRNAs are modulators of myocardial remodeling and hypertrophy. In our experience, here presented in summary, the principal findings of our research were a confirm of the pathophysiological role in AS of miRNA-21, in particular, the interdependence between textural miRNA-21 and fibrogenic stimulus induced by an abnormal left ventricular pressure overload. Moreover, circulating miRNA-21 (biomarker) levels are able to reflect the presence of significant myocardial fibrosis (MF). Thus, the combined evaluation of miRNA-21, a marker of MF, and hypertrophy, together with advanced echocardiographic imaging (two-dimensional speckle tracking), could fulfill many existing gaps, renewing older guidelines paradigms, also allowing a better risk prognostic and diagnostic strategies.
Toward an Emerging Role for Motivational Interviewing in Primary Care.
Keeley, Robert; Engel, Matthew; Reed, Alex; Brody, David; Burke, Brian L
2018-05-18
Implementing Motivational Interviewing (MI) in primary care settings has been problematic due in part to persistent gaps in knowledge. Examples include poor understanding of how to effectively train persons to conduct MI, or of which aspects of MI-related communication are associated with better outcomes for patients. This review describes how recent research findings addressing the knowledge gaps support a growing role for MI in primary care. Two trials of MI training combined classroom time with ongoing coaching and feedback, resulting in enhanced MI ability relative to a control arm where PCPs received minimal or no MI training. A third MI training trial excluded coaching and feedback, failing to increase use of MI. Adding to a growing list of behavioral health-related problems for which MI training has shown some effectiveness, a trial of training PCPs to use MI with depressed patients was associated with significantly improved depressive symptoms. Moreover, aspects of the PCPs' MI-related language and patients' arguments for positive behavior changes, "change talk," appeared to explain the positive effects of MI training on depression outcome. MI-training approaches have improved such that PCPs and possibly other clinic staff may want to consider MI training as a way to more effectively support their patients as they address behavioral health-related problems (e.g., tobacco use). MI training should focus on eliciting "change talk" from patients. Researchers and funding agencies might collaborate to continue closing knowledge gaps in the MI literature.
Functional analysis of the upstream regulatory region of chicken miR-17-92 cluster.
Cheng, Min; Zhang, Wen-jian; Xing, Tian-yu; Yan, Xiao-hong; Li, Yu-mao; Li, Hui; Wang, Ning
2016-08-01
miR-17-92 cluster plays important roles in cell proliferation, differentiation, apoptosis, animal development and tumorigenesis. The transcriptional regulation of miR-17-92 cluster has been extensively studied in mammals, but not in birds. To date, avian miR-17-92 cluster genomic structure has not been fully determined. The promoter location and sequence of miR-17-92 cluster have not been determined, due to the existence of a genomic gap sequence upstream of miR-17-92 cluster in all the birds whose genomes have been sequenced. In this study, genome walking was used to close the genomic gap upstream of chicken miR-17-92 cluster. In addition, bioinformatics analysis, reporter gene assay and truncation mutagenesis were used to investigate functional role of the genomic gap sequence. Genome walking analysis showed that the gap region was 1704 bp long, and its GC content was 80.11%. Bioinformatics analysis showed that in the gap region, there was a 200 bp conserved sequence among the tested 10 species (Gallus gallus, Homo sapiens, Pan troglodytes, Bos taurus, Sus scrofa, Rattus norvegicus, Mus musculus, Possum, Danio rerio, Rana nigromaculata), which is core promoter region of mammalian miR-17-92 host gene (MIR17HG). Promoter luciferase reporter gene vector of the gap region was constructed and reporter assay was performed. The result showed that the promoter activity of pGL3-cMIR17HG (-4228/-2506) was 417 times than that of negative control (empty pGL3 basic vector), suggesting that chicken miR-17-92 cluster promoter exists in the gap region. To further gain insight into the promoter structure, two different truncations for the cloned gap sequence were generated by PCR. One had a truncation of 448 bp at the 5'-end and the other had a truncation of 894 bp at the 3'-end. Further reporter analysis showed that compared with the promoter activity of pGL3-cMIR17HG (-4228/-2506), the reporter activities of the 5'-end truncation and the 3'-end truncation were reduced by 19.82% and 60.14%, respectively. These data demonstrated that the important promoter region of chicken miR-17-92 cluster is located in the -3400/-2506 bp region. Our results lay the foundation for revealing the transcriptional regulatory mechanisms of chicken miR-17-92 cluster.
Electrochemical detection of microRNAs via gap hybridization assay.
Pöhlmann, Christopher; Sprinzl, Mathias
2010-06-01
MicroRNAs have recently been associated with cancer development by acting as tumor suppressors or oncogenes and could therefore be applied as molecular markers for early diagnosis of cancer. In this work, we established a rapid, selective, and sensitive gap hybridization assay for detection of mature microRNAs based on four components DNA/RNA hybridization and electrochemical detection using esterase 2-oligodeoxynucleotide conjugates. Complementary binding of microRNA to a gap built of capture and detector oligodeoxynucleotide, the reporter enzyme is brought to the vicinity of the electrode and produces enzymatically an electrochemical signal. In the absence of microRNA, the gap between capture and detector oligodeoxynucleotide is not filled, and missing base stacking energy destabilizes the hybridization complex. The gap hybridization assay demonstrates selective detection of miR-16 within a mixture of other miRNAs, including the feasibility of single mismatch discrimination. Applying the biosensor assay, a detection limit of 2 pM or 2 amol of miR-16 was obtained. Using isolated total RNA from human breast adenocarcinoma MCF-7 cells, the assay detected specifically miR-21 and miR-16 in parallel, and higher expression of oncogene miR-21 compared to miR-16 was demonstrated. Including RNA isolation, the gap hybridization assay was developed with a total assay time of 60 min and without the need for reverse transcription PCR amplification of the sample. The characteristics of the assay developed in this work could satisfy the need for rapid and easy methods for early cancer marker detection in clinical diagnostics.
Serum microRNAs in clear cell carcinoma of the ovary.
Chao, Angel; Lai, Chyong-Huey; Chen, Hua-Chien; Lin, Chiao-Yun; Tsai, Chia-Lung; Tang, Yun-Hsin; Huang, Huei-Jean; Lin, Chen-Tao; Chen, Min-Yu; Huang, Kuang-Gen; Chou, Hung-Hsueh; Chang, Ting-Chang; Chen, Shu-Jen; Wang, Tzu-Hao
2014-12-01
To identify candidate microRNAs (miRNAs) in the serum of patients with clear cell carcinomas in monitoring disease progression. The sera of patients with diagnosed ovarian clear cell carcinoma were collected from 2009 to 2012. Real-time quantitative polymerase chain reaction (PCR) analysis for 270 miRNAs was performed. To offset the potential extraction bias, an equal amount of Caenorhabditis elegans cel-miR-238 was added to each serum specimen before miRNA isolation. miRNA expression was analyzed using the ΔCt method, with cel-miR-238 as controls. Twenty-one patients with clear cell carcinoma were included. In the discovery phase on four pairs of pre- and postoperative sera, 18 differentially expressed miRNAs were selected from 270 miRNAs. In the validation phase on an independent set of 11 pairs of pre- and postoperative sera, 4 miRNAs (hsa-miR-130a, hsa-miR-138, hsa-miR-187, and hsa-miR-202) were confirmed to be higher in the preoperative sera. In the application phase, hsa-miR-130a remained consistent with the different time points in seven of the 10 patients during clinical follow-up periods. More importantly, in three patients, hsa-miR-130a levels were elevated in early disease recurrences before CA125 was found to be elevated. Hsa-miR-130a may be a useful serum biomarker for detecting recurrence of ovarian clear cell cancer, and warrants further studies. Copyright © 2014. Published by Elsevier B.V.
Analysis of the Gap Junction-dependent Transfer of miRNA with 3D-FRAP Microscopy.
Lemcke, Heiko; Voronina, Natalia; Steinhoff, Gustav; David, Robert
2017-06-19
Small antisense RNAs, like miRNA and siRNA, play an important role in cellular physiology and pathology and, moreover, can be used as therapeutic agents in the treatment of several diseases. The development of new, innovative strategies for miRNA/siRNA therapy is based on an extensive knowledge of the underlying mechanisms. Recent data suggest that small RNAs are exchanged between cells in a gap junction-dependent manner, thereby inducing gene regulatory effects in the recipient cell. Molecular biological techniques and flow cytometric analysis are commonly used to study the intercellular exchange of miRNA. However, these methods do not provide high temporal resolution, which is necessary when studying the gap junctional flux of molecules. Therefore, to investigate the impact of miRNA/siRNA as intercellular signaling molecules, novel tools are needed that will allow for the analysis of these small RNAs at the cellular level. The present protocol describes the application of three-dimensional fluorescence recovery after photobleaching (3D-FRAP) microscopy to elucidating the gap junction-dependent exchange of miRNA molecules between cardiac cells. Importantly, this straightforward and non-invasive live-cell imaging approach allows for the visualization and quantification of the gap junctional shuttling of fluorescently labeled small RNAs in real time, with high spatio-temporal resolution. The data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation, where small RNAs act as signaling molecules within the intercellular network.
A miRNA-based classification of renal cell carcinoma subtypes by PCR and in situ hybridization
Di Meo, Ashley; Saleeb, Rola; Wala, Samantha J.; Khella, Heba W.; Ding, Qiang; Zhai, Haiyan; Krishan, Kalra; Krizova, Adriana; Gabril, Manal; Evans, Andrew; Brimo, Fadi; Pasic, Maria D.; Finelli, Antonio; Diamandis, Eleftherios P.; Yousef, George M.
2018-01-01
Renal cell carcinoma (RCC) constitutes an array of morphologically and genetically distinct tumors the most prevalent of which are clear cell, papillary, and chromophobe RCC. Accurate distinction between the typically benign-behaving renal oncocytoma and RCC subtypes is a frequent challenge for pathologists. This is critical for clinical decision making. Subtypes also have different survival outcomes and responses to therapy. We extracted RNA from ninety formalin-fixed paraffin-embedded (FFPE) tissues (27 clear cell, 29 papillary, 19 chromophobe, 4 unclassified RCC and 11 oncocytomas). We quantified the expression of six miRNAs (miR-221, miR-222, miR-126, miR-182, miR-200b and miR-200c) by qRT-PCR, and by in situ hybridization in an independent set of tumors. We developed a two-step classifier. In the first step, it uses expression of either miR-221 or miR-222 to distinguish the clear cell and papillary subtypes from chromophobe RCC and oncocytoma (miR-221 AUC: 0.96, 95% CI: 0.9132–1.014, p < 0.0001 and miR-222 AUC: 0.91, 95% CI: 0.8478–0.9772, p < 0.0001). In the second step, it uses miR-126 to discriminate clear cell from papillary RCC (AUC: 1, p < 0.0001) and miR-200b to discriminate chromophobe RCC from oncocytoma (AUC: 0.95, 95% CI: 0.8933–1.021, p < 0.0001). In situ hybridization showed a nuclear staining pattern. miR-126, miR-222 and miR-200b were significantly differentially expressed between the subtypes by in situ hybridization. miRNA expression could distinguish RCC subtypes and oncocytoma. miRNA expression assessed by either PCR or in situ hybridization can be a clinically useful diagnostic tool to complement morphologic renal tumor classification, improving diagnosis and patient management. PMID:29416756
Wang, Wei Eric; Li, Liangpeng; Xia, Xuewei; Fu, Wenbin; Liao, Qiao; Lan, Cong; Yang, Dezhong; Chen, Hongmei; Yue, Rongchuan; Zeng, Cindy; Zhou, Lin; Zhou, Bin; Duan, Dayue Darrel; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu
2017-08-29
Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. β-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca 2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca 2+ -dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca 2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca 2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia-resistant connexin 43 mutant enhanced the redifferentiation of ACM-derived new cardiomyocytes after MI and improved cardiac function. Mature ACMs can reenter the cell cycle and form new cardiomyocytes through a 3-step process: dedifferentiation, proliferation, and redifferentiation. Intercellular Ca 2+ signal from neighboring functioning cardiomyocytes through gap junctions induces the redifferentiation process. This novel mechanism contributes to new cardiomyocyte formation in post-MI hearts in mammals. © 2017 American Heart Association, Inc.
Cervera, Javier; Meseguer, Salvador; Mafe, Salvador
2017-08-17
We have studied theoretically the microRNA (miRNA) intercellular transfer through voltage-gated gap junctions in terms of a biophysically grounded system of coupled differential equations. Instead of modeling a specific system, we use a general approach describing the interplay between the genetic mechanisms and the single-cell electric potentials. The dynamics of the multicellular ensemble are simulated under different conditions including spatially inhomogeneous transcription rates and local intercellular transfer of miRNAs. These processes result in spatiotemporal changes of miRNA, mRNA, and ion channel protein concentrations that eventually modify the bioelectrical states of small multicellular domains because of the ensemble average nature of the electrical potential. The simulations allow a qualitative understanding of the context-dependent nature of the effects observed when specific signaling molecules are transferred through gap junctions. The results suggest that an efficient miRNA intercellular transfer could permit the spatiotemporal control of small cellular domains by the conversion of single-cell genetic and bioelectric states into multicellular states regulated by the gap junction interconnectivity.
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Miyata, A.; Nagai, H.; Mano, M.; Yamamoto, S.
2005-12-01
In last decade, numerous long-term eddy flux measurements have been conducted worldwide to assess annual/seasonal energy, water and carbon exchanges between terrestrial ecosystem and the atmosphere. And FLUXNET communities now seem to come into a next phase with the objectives: integration of flux data observed at various ecosystems and/or inter-sites comparative studies. For example, a big research project "S-1" is ongoing in Japan and other eastern Asian region to set up terrestrial carbon management of Asia in the 21st century. One of the highlights of S-1 project is to provide a carbon budget map of all over Asia based on integrated and inter-compared eddy flux data collected at 15 sites of S-1 membership. FLUXNET communities including S-1 project have recognized that integration and inter-comparison of eddy flux data are the key issues to understand aspects of energy, water and carbon budgets at regional scale. However, the issues have difficulties to be settled because each flux site applies own data processing methods and gap-filling methods with site-specified classification and threshold values. In order to conduct appropriate integrative and inter-comparative analysis for eddy flux data effectively, we made it clear that how the differences in the data processing method affect the obtained flux values and searched for suitable and common gap-filling methodology. The differences in the data processing methods affect the obtained flux data in the present study was discussed based on a comparative experiment in S-1 project. We prepared one-month common test data sets, which consisted of 10 Hz eddy covariance raw data and related half-hourly meteorological data obtained at a larch forest site and a paddy site, in the comparative experiment. The 15 sites of S-1 memberships processed the test data by using their own processing methods. The results indicated that combined influences of coordinate rotation, detrending and frequency response correction brought about up to 10% of flux discrepancy, and that the forest sites were more sensitive to differences in the data processing methods than the non-forest sites. Multiple imputation method (MI), one of the statistical operations for analyzing incomplete multivariate data set, is likely to be an easy-to-use and objective gap-filling method to account for missing eddy flux data. We also discussed validity of application of MI to fill missing flux data by comparing a gap-filled complete eddy flux data set obtained by MI with that by nonlinear regression method and look-up table method. It was revealed that, with suitable separation of the periods to be filled and proper selection of reference variables, MI has potential to be applied commonly to gap-filling missing flux data, and that MI can be a useful tool for FLUXNET communities to make inter-site comparison of long-term flux data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Jun; Lei, Ting; Xu, Congjie
2013-08-23
Highlights: •miR-187 is down-regulated in clear cell renal cell carcinoma (ccRCC). •Down-regulation of miR-187 is associated with poor outcomes in patients with ccRCC. •miR-187 inhibits cell growth and migration though targeting B7-H3 in ccRCC. -- Abstract: Aberrantly expressed microRNAs (miRNAs) are frequently associated with the aggressive malignant behavior of human cancers, including clear cell renal cell carcinoma (ccRCC). Based on the preliminary deep sequencing data, we hypothesized that miR-187 may play an important role in ccRCC development. In this study, we found that miR-187 was down-regulated in both tumor tissue and plasma of ccRCC patients. Lower miR-187 expression levels weremore » associated with higher tumor grade and stage. All patients with high miR-187 expression survived 5 years, while with low miR-187 expression, only 42% survived. Suppressed in vitro proliferation, inhibited in vivo tumor growth, and decreased motility were observed in cells treated with the miR-187 expression vector. Further studies showed that B7 homolog 3 (B7-H3) is a direct target of miR-187. Over-expression of miR-187 decreased B7-H3 mRNA level and repressed B7-H3-3′-UTR reporter activity. Knockdown of B7-H3 using siRNA resulted in similar phenotype changes as that observed for overexpression of miR-187. Our data suggest that miR-187 is emerging as a novel player in the disease state of ccRCC. miR-187 plays a tumor suppressor role in ccRCC.« less
MicroRNA profiling of human kidney cancer subtypes.
Petillo, David; Kort, Eric J; Anema, John; Furge, Kyle A; Yang, Ximing J; Teh, Bin Tean
2009-07-01
Although the functions of most of the identified microRNAs (miRNAs) have yet to be determined, their use as potential biomarkers has been considered in several human diseases and cancers. In order to understand their role in renal tumorigenesis, we screened the expression levels of miRNAs in four subtypes of human renal neoplasms: clear cell, papillary, and chromophobe renal cell carcinomas (RCC) as well as benign renal oncocytomas. We found a unique miRNA signature for each subtype of renal tumor. Furthermore, we identified unique patterns of miRNA expression distinguishing clear cell RCC cases with favorable vs. unfavorable outcome. Specifically, we documented the overexpression of miRs 424 and 203 in clear cell RCC relative to papillary RCC, as well as the inversion of expression of miR-203 in the benign oncocytomas (where it is underexpressed relative to normal kidney) as compared to the malignant chromophobe RCC (where it is overexpressed relative to normal kidney). Our results further suggest that overexpression of S-has-miR-32 is associated with poor outcome. While previous studies have identified unique miRNA expression pattern distinguishing tumors from different anatomical locations, here we extend this principle to demonstrate the utility of miRNA expression profiling to identify a signature unique to various tumor subtypes at a single anatomic locus.
Brennan, Victoria K; Colosia, Ann D; Copley-Merriman, Catherine; Mauskopf, Josephine; Hass, Bastian; Palencia, Roberto
2014-07-01
To identify cost estimates related to myocardial infarction (MI) or stroke in patients with type 2 diabetes mellitus (T2DM) for use in economic models. A systematic literature review was conducted. Electronic databases and conference abstracts were screened against inclusion criteria, which included studies performed in patients who had T2DM before experiencing an MI or stroke. Primary cost studies and economic models were included. Costs were converted to 2012 pounds sterling. Fifty-four studies were identified: 13 primary cost studies and 41 economic evaluations using secondary sources for complication costs. Primary studies provided costs from 10 countries. Estimates for a fatal event ranged from £2482-£5222 for MI and from £4900-£6694 for stroke. Costs for the year a non-fatal event occurred ranged from £5071-£29,249 for MI and from £5171-£38,732 for stroke. Annual follow-up costs ranged from £945-£1616 for an MI and from £4704-£12,926 for a stroke. Economic evaluations from 12 countries were identified, and costs of complications showed similar variability to the primary studies. The costs identified within primary studies varied between and within countries. Many studies used costs estimated in studies not specific to patients with T2DM. Data gaps included a detailed breakdown of resource use, which affected the ability to compare data across countries. In the development of economic models for patients with T2DM, the use of accurate estimates of costs associated with MI and stroke is important. When country-specific costs are not available, clear justification for the choice of estimates should be provided.
Curcio, Antonio; Torella, Daniele; Iaconetti, Claudio; Pasceri, Eugenia; Sabatino, Jolanda; Sorrentino, Sabato; Giampà, Salvatore; Micieli, Mariella; Polimeni, Alberto; Henning, Beverley J.; Leone, Angelo; Catalucci, Daniele; Ellison, Georgina M.; Condorelli, Gianluigi; Indolfi, Ciro
2013-01-01
Downregulation of the muscle-specific microRNA-1 (miR-1) mediates the induction of pathologic cardiac hypertrophy. Dysfunction of the gap junction protein connexin 43 (Cx43), an established miR-1 target, during cardiac hypertrophy leads to ventricular tachyarrhythmias (VT). However, it is still unknown whether miR-1 and Cx43 are interconnected in the pro-arrhythmic context of hypertrophy. Thus, in this study we investigated whether a reduction in the extent of cardiac hypertrophy could limit the pathological electrical remodeling of Cx43 and the onset of VT by modulating miR-1 levels. Wistar male rats underwent mechanical constriction of the ascending aorta to induce pathologic left ventricular hypertrophy (LVH) and afterwards were randomly assigned to receive 10mg/kg valsartan, VAL (LVH+VAL) delivered in the drinking water or placebo (LVH) for 12 weeks. Sham surgery was performed for control groups. Programmed ventricular stimulation reproducibly induced VT in LVH compared to LVH+VAL group. When compared to sham controls, rats from LVH group showed a significant decrease of miR-1 and an increase of Cx43 expression and its ERK1/2-dependent phosphorylation, which displaces Cx43 from the gap junction. Interestingly, VAL administration to rats with aortic banding significantly reduced cardiac hypertrophy and prevented miR-1 down-regulation and Cx43 up-regulation and phosphorylation. Gain- and loss-of-function experiments in neonatal cardiomyocytes (NCMs) in vitro confirmed that Cx43 is a direct target of miR-1. Accordingly, in vitro angiotensin II stimulation reduced miR-1 levels and increased Cx43 expression and phosphorylation compared to un-stimulated NCMs. Finally, in vivo miR-1 cardiac overexpression by an adenoviral vector intra-myocardial injection reduced Cx43 expression and phosphorylation in mice with isoproterenol-induced LVH. In conclusion, miR-1 regulates Cx43 expression and activity in hypertrophic cardiomyocytes in vitro and in vivo. Treatment of pressure overload-induced myocyte hypertrophy reduces the risk of life-threatening VT by normalizing miR-1 expression levels with the consequent stabilization of Cx43 expression and activity within the gap junction. PMID:23922949
Rucker-Martin, Catherine; Milliez, Paul; Tan, Sisareuth; Decrouy, Xavier; Recouvreur, Michel; Vranckx, Roger; Delcayre, Claude; Renaud, Jean-François; Dunia, Irene; Segretain, Dominique; Hatem, Stéphane N
2006-10-01
The expression and distribution of connexins is abnormal in a number of cardiac diseases, including atrial fibrillation, and is believed to favor conduction slowing and arrhythmia. Here, we studied the role of atrial structural remodeling in the disorganization of gap junctions and whether redistributed connexins can form new functional junction channels. Expression of connexin-43 (Cx43) was characterized by immunoblotting and immunohistochemistry in human right atrial specimens and in rat atria after myocardial infarction (MI). Gap junctions were studied by electron and 3-D microscopy, and myocyte-myocyte coupling was determined by Lucifer yellow dye transfer. In both chronically hemodynamically overloaded human atria in sinus rhythm and in dilated atria from MI-rats, Cx43 were dephosphorylated and redistributed from the intercalated disc to the lateral cell membranes as observed during atrial fibrillation. In MI-rats, the gap junctions at the intercalated disc were smaller (20% decrease) and contained very little Cx43 (0 or 1 gold particle vs. 42 to 98 in sham-operated rats). In the lateral membranes of myocytes, numerous connexon aggregates comprising non-phosphorylated Cx43 were observed. These connexon aggregates were in no case assembled into gap junction plaque-like structures. However, N-cadherin was well organized in the intercalated disc. There was very little myocyte-myocyte coupling in MI-rat atria and no myocyte-fibroblast coupling. Regression of the atrial remodeling was associated with the normalization of Cx43 localization. Structural alteration of the atrial myocardium is an important factor in the disorganization of connexins and gap junction. Moreover, redistributed Cx43 do not form junction channels.
Gap junctions modulate glioma invasion by direct transfer of microRNA.
Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L; Naus, Christian C
2015-06-20
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity.
Gap junctions modulate glioma invasion by direct transfer of microRNA
Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.
2015-01-01
The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028
Lesiak, Adam; Zhu, Mingyan; Chen, Hao; Appleyard, Suzanne M.; Impey, Soren; Wayman, Gary A.
2014-01-01
Non–dioxin-like (NDL) polychlorinated biphenyls (PCBs) are widespread environmental contaminants linked to neuropsychological dysfunction in children. NDL PCBs increase spontaneous Ca2+ oscillations in neurons by stabilizing ryanodine receptor (RyR) calcium release channels in the open configuration, which results in CREB-dependent dendritic outgrowth. In this study, we address the question of whether activation of CREB by NDL PCBs also triggers dendritic spine formation. Nanomolar concentrations of PCB 95, a NDL congener with potent RyR activity, significantly increased spine density and the frequency of miniature EPSCs in primary dissociated rat hippocampal cultures coincident with upregulation of miR132. Inhibition of RyR, CREB, or miR132 as well as expression of a mutant p250GAP cDNA construct that is not suppressed by miR132 blocked PCB 95 effects on spines and miniature EPSCs. PCB 95 also induced spine formation via RyR- and miR132-dependent mechanisms in hippocampal slice cultures. These data demonstrate a novel mechanism of PCB developmental neurotoxicity whereby RyR sensitization modulates spine formation and synaptogenesis via CREB-mediated miR132 upregulation, which in turn suppresses the translation of p250GAP, a negative regulator of synaptogenesis. In light of recent evidence implicating miR132 dysregulation in Rett syndrome and schizophrenia, these findings identify NDL PCBs as potential environmental risk factors for neurodevelopmental disorders. PMID:24431430
Hypermethylation of miR-203 in endometrial carcinomas.
Huang, Yi-Wen; Kuo, Chieh-Ti; Chen, Jo-Hsin; Goodfellow, Paul J; Huang, Tim H-M; Rader, Janet S; Uyar, Denise S
2014-05-01
Aberrant expression of SOX4 in endometrial cancer has been identified and partially was contributed to hypermethylation of miR-129-2. Other miRNAs are suspected to influence SOX 4 as well. The current study seeks to identify other hypermethylated miRNAs that regulate SOX4 in endometrial carcinomas. Methylation levels of miRNA promoter regions were measured by combined bisulfite restriction analysis (COBRA) and pyrosequencing assays. Gene expression was determined by RT-qPCR. Methylation level of a miRNA locus was corrected with clinicopathologic factors for 252 gynecological specimens. In silico analysis identified 13 miRNA loci bound on the 3'-UTR of SOX4. Using COBRA assays, increased methylation of miR-203, miR-219-2, miR-596, and miR-618 was detected in endometrial cancer cells relative to those seen in a normal cell line and in normal endometrium. Transfection of a miR-203 mimic decreased SOX4 gene expression. Hypermethylation of miR-203 was detected in 52% of type I endometrioid endometrial carcinomas (n=131) but was not seen in any of 10 uninvolved normal endometria (P<0.001). Methylation status of miR-203 was significantly associated with microsatellite instability and MLH1 methylation in endometrial tumors (P<0.001). Furthermore, hypermethylation of miR-203 was found in endometrioid and clear endometrial subtype tumors, but not in cervical squamous cell and ovarian carcinomas. Hypermethylation of miR-203 is a frequent event in endometrial carcinomas and is strongly associated with microsatellite instability and MLH1 methylation status. Thus, miR-203 methylation level might represent a marker for patients with endometrioid and clear endometrial sub-cancers. Copyright © 2014 Elsevier Inc. All rights reserved.
Molecular Pathology Informatics.
Roy, Somak
2015-06-01
Molecular informatics (MI) is an evolving discipline that will support the dynamic landscape of molecular pathology and personalized medicine. MI provides a fertile ground for development of clinical solutions to bridge the gap between clinical informatics and bioinformatics. Rapid adoption of next generation sequencing (NGS) in the clinical arena has triggered major endeavors in MI that are expected to bring a paradigm shift in the practice of pathology. This brief review presents a broad overview of various aspects of MI, particularly in the context of NGS based testing. Copyright © 2015 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Guangye, E-mail: guangyehan@126.com; Fan, Maochuan, E-mail: maochunfan@outlook.com; Zhang, Xinjun, E-mail: xinjunzhang11@163.com
2015-01-16
Highlights: • miR-218 expression is downregulated in prostate cancer. • miR-218 inhibits prostate tumor cells proliferation partially through promoting apoptosis. • miR-218 targets TPD52 by binding to its 3′-UTR. • miR-218 suppresses prostate cancer cell growth through inhibiting TPD52 expression. - Abstract: The tumor protein D52 (TPD52) is an oncogene overexpressed in prostate cancer (PC) due to gene amplification. Although the oncogenic effect of TPD52 is well recognized, how its expression is regulated is still not clear. This study tried to explore the regulative role of miR-218, a tumor suppressing miRNA on TPD52 expression and prostate cancer cell proliferation. Wemore » found the expression of miR-218 was significantly lower in PC specimens. Based on gain and loss of function analysis, we found miR-218 significantly inhibit cancer cell proliferation by inducing apoptosis. These results strongly suggest that miR-218 plays a tumor suppressor role in PC cells. In addition, our data firstly demonstrated that miR-218 directly regulates oncogenic TPD52 in PC3 cells and the miR-218-TPD52 axis can regulate growth of this prostate cancer cell line. Knockdown of TPD52 resulted in significantly increased cancer cell apoptosis. Clearly understanding of oncogenic TPD52 pathways regulated by miR-218 might be helpful to reveal new therapeutic targets for PC.« less
miR-17-5p Regulates Endocytic Trafficking through Targeting TBC1D2/Armus
Serva, Andrius; Knapp, Bettina; Tsai, Yueh-Tso; Claas, Christoph; Lisauskas, Tautvydas; Matula, Petr; Harder, Nathalie; Kaderali, Lars; Rohr, Karl; Erfle, Holger; Eils, Roland; Braga, Vania; Starkuviene, Vytaute
2012-01-01
miRNA cluster miR-17-92 is known as oncomir-1 due to its potent oncogenic function. miR-17-92 is a polycistronic cluster that encodes 6 miRNAs, and can both facilitate and inhibit cell proliferation. Known targets of miRNAs encoded by this cluster are largely regulators of cell cycle progression and apoptosis. Here, we show that miRNAs encoded by this cluster and sharing the seed sequence of miR-17 exert their influence on one of the most essential cellular processes – endocytic trafficking. By mRNA expression analysis we identified that regulation of endocytic trafficking by miR-17 can potentially be achieved by targeting of a number of trafficking regulators. We have thoroughly validated TBC1D2/Armus, a GAP of Rab7 GTPase, as a novel target of miR-17. Our study reveals regulation of endocytic trafficking as a novel function of miR-17, which might act cooperatively with other functions of miR-17 and related miRNAs in health and disease. PMID:23285084
Xiong, Liang; Liu, Yu; Zhou, Mingmin; Wang, Guangji; Quan, Dajun; Shen, Caijie; Shuai, Wei; Kong, Bin; Huang, Congxin; Huang, He
2018-05-31
The purpose of this study was to evaluate the cardiac electrophysiologic effects of targeted ablation of cardiac sympathetic neurons (TACSN) in a canine model of chronic myocardial infarction (MI). Thirty-eight anaesthetized dogs were randomly assigned into the sham-operated, MI, and MI-TACSN groups, respectively. Myocardial infarction-targeted ablation of cardiac sympathetic neuron was induced by injecting cholera toxin B subunit-saporin compound in the left stellate ganglion (LSG). Five weeks after surgery, the cardiac function, heart rate variability (HRV), ventricular electrophysiological parameters, LSG function and neural activity, serum norepinephrine (NE), nerve growth factor (NGF), and brain natriuretic peptide (BNP) levels were measured. Cardiac sympathetic innervation was determined with immunofluorescence staining of growth associated protein-43 (GAP43) and tyrosine hydroxylase (TH). Compared with MI group, TACSN significantly improved HRV, attenuated LSG function and activity, prolonged corrected QT interval, decreased Tpeak-Tend interval, prolonged ventricular effective refractory period (ERP), and action potential duration (APD), decreased the slopes of APD restitution curves, suppressed the APD alternans, increased ventricular fibrillation threshold, and reduced serum NE, NGF, and BNP levels. Moreover, the densities of GAP43 and TH-positive nerve fibres in the infarcted border zone in the MI-TACSN group were lower than those in the MI group. Targeted ablation of cardiac sympathetic neuron attenuates sympathetic remodelling and improves ventricular electrical remodelling in the chronic phase of MI. These data suggest that TACSN may be a novel approach to treating ventricular arrhythmias.
Han, Jin; Kim, Bokyoung; Shin, Jung-Youn; Ryu, Seungmi; Noh, Myungkyung; Woo, Jongsu; Park, Jin-Sil; Lee, Youjin; Lee, Nohyun; Hyeon, Taeghwan; Choi, Donghoon; Kim, Byung-Soo
2015-03-24
Electrophysiological phenotype development and paracrine action of mesenchymal stem cells (MSCs) are the critical factors that determine the therapeutic efficacy of MSCs for myocardial infarction (MI). In such respect, coculture of MSCs with cardiac cells has windowed a platform for cardiac priming of MSCs. Particularly, active gap junctional crosstalk of MSCs with cardiac cells in coculture has been known to play a major role in the MSC modification through coculture. Here, we report that iron oxide nanoparticles (IONPs) significantly augment the expression of connexin 43 (Cx43), a gap junction protein, of cardiomyoblasts (H9C2), which would be critical for gap junctional communication with MSCs in coculture for the generation of therapeutic potential-improved MSCs. MSCs cocultured with IONP-harboring H9C2 (cocultured MSCs: cMSCs) showed active cellular crosstalk with H9C2 and displayed significantly higher levels of electrophysiological cardiac biomarkers and a cardiac repair-favorable paracrine profile, both of which are responsible for MI repair. Accordingly, significantly improved animal survival and heart function were observed upon cMSC injection into rat MI models compared with the injection of unmodified MSCs. The present study highlights an application of IONPs in developing gap junctional crosstalk among the cells and generating cMSCs that exceeds the reparative potentials of conventional MSCs. On the basis of our finding, the potential application of IONPs can be extended in cell biology and stem cell-based therapies.
Ma, Qiang; Peng, Zhiqiang; Wang, Lei; Li, Yanming; Wang, Kaizhen; Zheng, Junfang; Liang, Zhiyong; Liu, Tonghua
2016-12-01
MicroRNAs (miRNAs) were reported to be involved in the development of clear cell renal cell carcinoma (ccRCC). However, the study on miRNAs in ccRCC is far from complete. The present study identified miRNAs which could act as potential novel prognostic markers for ccRCC, and analyzed its possible mechanism. We found that miR-19a correlated with poor prognosis of ccRCC patients via promoting cell proliferation and suppressing PTEN/SMAD4 expression. Both the microarray screening result and TCGA KIRC dataset analysis showed that miR-19a was significantly upregulated in ccRCC tissues, and further analysis of TCGA data revealed that the upregulated level of miR-19a was strongly associated with advanced T stage and poor prognosis of ccRCC patients. Consistent with clinical observations, miR-19a overexpression significantly promoted ccRCC cell proliferation in vitro. To further explore the mechanism by which miR-19a correlated with cell proliferation and poor prognosis of ccRCC, we performed gene set enrichment analysis (GSEA) for target genes of miR-19a in ccRCC patients. Result indicated that the key target genes of miR-19a included SMAD4 and PTEN. In ccRCC tissues, expression levels of SMAD4 and PTEN were negatively correlated with expression level of miR-19a, revealing that miR-19a suppressed the expression of SMAD4 and PTEN in ccRCC patients. miR-19a overexpression significantly suppressed the expression of SMAD4 and PTEN in vitro, further verifying that SMAD4 and PTEN were the target genes of miR-19a in ccRCC cells. Our results elucidated the tumor promoting role of miR-19a and established miR-19a as a potential novel prognostic marker for ccRCC.
Differential expression of microRNA501-5p affects the aggressiveness of clear cell renal carcinoma
Mangolini, Alessandra; Bonon, Anna; Volinia, Stefano; Lanza, Giovanni; Gambari, Roberto; Pinton, Paolo; Russo, Gian Rosario; del Senno, Laura; Dell’Atti, Lucio; Aguiari, Gianluca
2014-01-01
Renal cell carcinoma is a common neoplasia of the adult kidney that accounts for about 3% of adult malignancies. Clear cell renal carcinoma is the most frequent subtype of kidney cancer and 20–40% of patients develop metastases. The absence of appropriate biomarkers complicates diagnosis and prognosis of this disease. In this regard, small noncoding RNAs (microRNAs), which are mutated in several neoplastic diseases including kidney carcinoma, may be optimal candidates as biomarkers for diagnosis and prognosis of this kind of cancer. Here we show that patients with clear cell kidney carcinoma that express low levels of miR501-5p exhibited a good prognosis compared with patients with unchanged or high levels of this microRNA. Consistently, in kidney carcinoma cells the downregulation of miR501-5p induced an increased caspase-3 activity, p53 expression as well as decreased mTOR activation, leading to stimulation of the apoptotic pathway. Conversely, miR501-5p upregulation enhanced the activity of mTOR and promoted both cell proliferation and survival. These biological processes occurred through p53 inactivation by proteasome degradation in a mechanism involving MDM2-mediated p53 ubiquitination. Our results support a role for miR501-5p in balancing apoptosis and cell survival in clear cell renal carcinoma. In particular, the downregulation of microRNA501-5p promotes a good prognosis, while its upregulation contributes to a poor prognosis, in particular, if associated with p53 and MDM2 overexpression and mTOR activation. Thus, the expression of miR501-5p is a possible biomarker for the prognosis of clear cell renal carcinoma. PMID:25426415
Implications of the admixture process in skin color molecular assessment.
Cerqueira, Caio Cesar Silva de; Hünemeier, Tábita; Gomez-Valdés, Jorge; Ramallo, Virgínia; Volasko-Krause, Carla Daiana; Barbosa, Ana Angélica Leal; Vargas-Pinilla, Pedro; Dornelles, Rodrigo Ciconet; Longo, Danaê; Rothhammer, Francisco; Bedoya, Gabriel; Canizales-Quinteros, Samuel; Acuña-Alonzo, Victor; Gallo, Carla; Poletti, Giovanni; González-José, Rolando; Salzano, Francisco Mauro; Callegari-Jacques, Sídia Maria; Schuler-Faccini, Lavínia; Ruiz-Linares, Andrés; Cátira Bortolini, Maria
2014-01-01
The understanding of the complex genotype-phenotype architecture of human pigmentation has clear implications for the evolutionary history of humans, as well as for medical and forensic practices. Although dozens of genes have previously been associated with human skin color, knowledge about this trait remains incomplete. In particular, studies focusing on populations outside the European-North American axis are rare, and, until now, admixed populations have seldom been considered. The present study was designed to help fill this gap. Our objective was to evaluate possible associations of 18 single nucleotide polymorphisms (SNPs), located within nine genes, and one pseudogene with the Melanin Index (MI) in two admixed Brazilian populations (Gaucho, N = 352; Baiano, N = 148) with different histories of geographic and ethnic colonization. Of the total sample, four markers were found to be significantly associated with skin color, but only two (SLC24A5 rs1426654, and SLC45A2 rs16891982) were consistently associated with MI in both samples (Gaucho and Baiano). Therefore, only these 2 SNPs should be preliminarily considered to have forensic significance because they consistently showed the association independently of the admixture level of the populations studied. We do not discard that the other two markers (HERC2 rs1129038 and TYR rs1126809) might be also relevant to admixed samples, but additional studies are necessary to confirm the real importance of these markers for skin pigmentation. Finally, our study shows associations of some SNPs with MI in a modern Brazilian admixed sample, with possible applications in forensic genetics. Some classical genetic markers in Euro-North American populations are not associated with MI in our sample. Our results point out the relevance of considering population differences in selecting an appropriate set of SNPs as phenotype predictors in forensic practice.
Implications of the Admixture Process in Skin Color Molecular Assessment
de Cerqueira, Caio Cesar Silva; Hünemeier, Tábita; Gomez-Valdés, Jorge; Ramallo, Virgínia; Volasko-Krause, Carla Daiana; Barbosa, Ana Angélica Leal; Vargas-Pinilla, Pedro; Dornelles, Rodrigo Ciconet; Longo, Danaê; Rothhammer, Francisco; Bedoya, Gabriel; Canizales-Quinteros, Samuel; Acuña-Alonzo, Victor; Gallo, Carla; Poletti, Giovanni; González-José, Rolando; Salzano, Francisco Mauro; Callegari-Jacques, Sídia Maria; Schuler-Faccini, Lavínia; Ruiz-Linares, Andrés; Cátira Bortolini, Maria
2014-01-01
The understanding of the complex genotype-phenotype architecture of human pigmentation has clear implications for the evolutionary history of humans, as well as for medical and forensic practices. Although dozens of genes have previously been associated with human skin color, knowledge about this trait remains incomplete. In particular, studies focusing on populations outside the European-North American axis are rare, and, until now, admixed populations have seldom been considered. The present study was designed to help fill this gap. Our objective was to evaluate possible associations of 18 single nucleotide polymorphisms (SNPs), located within nine genes, and one pseudogene with the Melanin Index (MI) in two admixed Brazilian populations (Gaucho, N = 352; Baiano, N = 148) with different histories of geographic and ethnic colonization. Of the total sample, four markers were found to be significantly associated with skin color, but only two (SLC24A5 rs1426654, and SLC45A2 rs16891982) were consistently associated with MI in both samples (Gaucho and Baiano). Therefore, only these 2 SNPs should be preliminarily considered to have forensic significance because they consistently showed the association independently of the admixture level of the populations studied. We do not discard that the other two markers (HERC2 rs1129038 and TYR rs1126809) might be also relevant to admixed samples, but additional studies are necessary to confirm the real importance of these markers for skin pigmentation. Finally, our study shows associations of some SNPs with MI in a modern Brazilian admixed sample, with possible applications in forensic genetics. Some classical genetic markers in Euro-North American populations are not associated with MI in our sample. Our results point out the relevance of considering population differences in selecting an appropriate set of SNPs as phenotype predictors in forensic practice. PMID:24809478
Pant, Kishor; Gupta, Parul; Damania, Preeti; Yadav, Ajay K; Gupta, Aanchal; Ashraf, Anam; Venugopal, Senthil K
2016-05-27
Mineral Pitch (MP) is a dark brown coloured humic matter originating from high altitude rocks. It is an Ayurvedic medicinal food, commonly used by the people of the Himalayan regions of Nepal and India for various body ailments. The Huh-7 cells were treated with different concentrations of MP for 24 h, and both apoptosis and proliferation was determined by the TUNEL and MTT assays respectively. The formation of ROS and nitric oxide was analysed by DCFH-DA and Griess reagent respectively. The expression of miRNA-21 and miRNA-22 were checked by the real time PCR. Effect of miRNA-22 on proliferation and c-myc was studied by over-expressing miRNA-22 premiRs in Huh-7 cells. We found that MP enhanced anti-cancer effects by inducing apoptosis and inhibiting proliferation. MP induced both ROS and NO, upon neutralizing them, there was a partial recovery of apoptosis and proliferation. MP also induced miRNA-22 expression, while miRNA-21 expression was inhibited. Over-expression of miRNA-22 resulted in a significant inhibition of proliferation. miRNA-22 directly targeted c-myc gene, thereby inhibited proliferation. These results clearly show that MP induces its anti-cancer activity by more than one pathway. The data clearly indicate that MP induced apoptosis via the production of ROS, and inhibited proliferation by inducing miRNA-22 and inhibiting miRNA-21 in Huh-7 cells.
Lemcke, Heiko; Peukert, Janine; Voronina, Natalia; Skorska, Anna; Steinhoff, Gustav; David, Robert
2016-09-01
Small antisense RNAs like miRNA and siRNA are of crucial importance in cardiac physiology, pathology and, moreover, can be applied as therapeutic agents for the treatment of cardiovascular diseases. Identification of novel strategies for miRNA/siRNA therapy requires a comprehensive understanding of the underlying mechanisms. Emerging data suggest that small RNAs are transferred between cells via gap junctions and provoke gene regulatory effects in the recipient cell. To elucidate the role of miRNA/siRNA as signalling molecules, suitable tools are required that will allow the analysis of these small RNAs at the cellular level. In the present study, we applied 3 dimensional fluorescence recovery after photo bleaching microscopy (3D-FRAP) to visualise and quantify the gap junctional exchange of small RNAs between neonatal cardiomyocytes in real time. Cardiomyocytes were transfected with labelled miRNA and subjected to FRAP microscopy. Interestingly, we observed recovery rates of 21% already after 13min, indicating strong intercellular shuttling of miRNA, which was significantly reduced when connexin43 was knocked down. Flow cytometry analysis confirmed our FRAP results. Furthermore, using an EGFP/siRNA reporter construct we demonstrated that the intercellular transfer does not affect proper functioning of small RNAs, leading to marker gene silencing in the recipient cell. Our results show that 3D-FRAP microscopy is a straightforward, non-invasive live cell imaging technique to evaluate the GJ-dependent shuttling of small RNAs with high spatio-temporal resolution. Moreover, the data obtained by 3D-FRAP confirm a novel pathway of intercellular gene regulation where small RNAs act as signalling molecules within the intercellular network. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ge, Yu-Zheng; Xu, Lu-Wei; Zhou, Chang-Cheng; Lu, Tian-Ze; Yao, Wen-Tao; Wu, Ran; Zhao, You-Cai; Xu, Xiao; Hu, Zhi-Kai; Wang, Min; Yang, Xiao-Bing; Zhou, Liu-Hua; Zhong, Bing; Xu, Zheng; Li, Wen-Cheng; Zhu, Jia-Geng; Jia, Rui-Peng
2017-01-01
Background: Clear cell renal cell carcinoma (ccRCC) is the most prevalent histologic subtype of kidney cancers in adults, which could be divided into two distinct subgroups according to the BRCA1 associated protein-1 (BAP1) mutation status. In the current study, we comprehensively analyzed the genome-wide microRNA (miRNA) expression profiles in ccRCC, with the aim to identify the differentially expressed miRNAs between BAP1 mutant and wild-type tumors, and generate a BAP1 mutation-specific miRNA signature for ccRCC patients with wild-type BAP1. Methods: The BAP1 mutation status and miRNA profiles in BAP1 mutant and wild-type tumors were analyzed. Subsequently, the association of the differentially expressed miRNAs with patient survival was examined, and a BAP1 mutation-specific miRNA signature was generated and examined with Kaplan-Meier survival, univariate and multivariate Cox regression analyses. Finally, the bioinformatics methods were adopted for the target prediction of selected miRNAs and functional annotation analyses. Results: A total of 350 treatment-naïve primary ccRCC patients were selected from The Cancer Genome Atlas project, among which 35 (10.0%) subjects carried mutant BAP1 and had a shorter overall survival (OS) time. Furthermore, 33 miRNAs were found to be differentially expressed between BAP1 mutant and wild-type tumors, among which 11 (miR-149, miR-29b-2, miR-182, miR-183, miR-21, miR-365-2, miR-671, miR-365-1, miR-10b, miR-139, and miR-181a-2) were significantly associated with OS in ccRCC patients with wild-type BAP1. Finally, a BAP1 mutation-specific miRNA signature consisting of 11 miRNAs was generated and validated as an independent prognostic parameter. Conclusions: In summary, our study identified a total of 33 miRNAs differentially expressed between BAP1 mutant and wild-type tumors, and generated a BAP1 mutation-specific miRNA signature including eleven miRNAs, which could serve as a novel prognostic biomarker for ccRCC patients with wild-type BAP1. PMID:28900502
Sex specific expression and distribution of small RNAs in papaya.
Aryal, Rishi; Jagadeeswaran, Guru; Zheng, Yun; Yu, Qingyi; Sunkar, Ramanjulu; Ming, Ray
2014-01-13
Regulatory function of small non-coding RNAs (sRNA) in response to environmental and developmental cues has been established. Additionally, sRNA, also plays an important role in maintaining the heterochromatin and centromere structures of the chromosome. Papaya, a trioecious species with recently evolved sex chromosomes, has emerged as an excellent model system to study sex determination and sex chromosome evolution in plants. However, role of small RNA in papaya sex determination is yet to be explored. We analyzed the high throughput sRNAs reads in the Illumina libraries prepared from male, female, and hermaphrodite flowers of papaya. Using the sRNA reads, we identified 29 miRNAs that were not previously reported from papaya. Including this and two previous studies, a total of 90 miRNAs has been identified in papaya. We analyzed the expression of these miRNAs in each sex types. A total of 65 miRNAs, including 31 conserved and 34 novel mirNA, were detected in at least one library. Fourteen of the 65 miRNAs were differentially expressed among different sex types. Most of the miRNA expressed higher in male flowers were related to the auxin signaling pathways, whereas the miRNAs expressed higher in female flowers were the potential regulators of the apical meristem identity genes. Aligning the sRNA reads identified the sRNA hotspots adjacent to the gaps of the X and Y chromosomes. The X and Y chromosomes sRNA hotspots has a 7.8 and 4.4 folds higher expression of sRNA, respectively, relative to the chromosome wide average. Approximately 75% of the reads aligned to the X chromosome hotspot was identical to that of the Y chromosome hotspot. By analyzing the large-scale sRNA sequences from three sex types, we identified the sRNA hotspots flanking the gaps of papaya X, Y, and Yh chromosome. The sRNAs expression patterns in these regions were reminiscent of the pericentromeric region indicating that the only remaining gap in each of these chromosomes is likely the centromere. We also identified 14 differentially expressed miRNAs in male, female and hermaphrodite flowers of papaya. Our results provide valuable information toward understanding the papaya sex determination.
2015 Student Affordability Report. The NDUS Edge
ERIC Educational Resources Information Center
North Dakota University System, 2015
2015-01-01
In 2014-15, tuition and mandatory fee rates at the University of North Dakota (UND), North Dakota Sate University (NDSU), Minot State University (MiSU) and the four-year campuses were less than their regional counterparts. The gap differential decreased slightly at UND and NDSU and the four-year campuses, and increased slightly at MiSU. NDUS…
miRegulome: a knowledge-base of miRNA regulomics and analysis.
Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam
2015-08-05
miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. http://bnet.egr.vcu.edu/miRegulome.
1986-01-25
P-29506BW Range: 1.12 million kilometers (690,000 miles) This high-resolution image of the epsilon ring of Uranus is a clear-filter picture from Voyager's narrow-angle camera and has a resolution of about 10 km (6 mi). The epsilon ring, approx. 100 km (60 mi) wide at this location, clearly shows a structural variation. Visible here are a broad, bright outer component about 40 km (25 mi) wide; a darker, middle region of comparable width; and a narrow, bright inner strip about 15 km (9 mi) wide. The epsilon-ring structure seen by Voyager is similiar to that observed from the ground with stellar-occultation techniques. This frame represents the first Voyager image that resolves these features within the epsilon ring. The occasional fuzzy splotches on the outer and innerparts of the ring are artifacts left by the removal of reseau marks (used for making measurements on the image).
Mikhaylova, Olga; Stratton, Yiwen; Hall, Daniel; Kellner, Emily; Ehmer, Birgit; Drew, Angela F.; Gallo, Catherine A.; Plas, David R.; Biesiada, Jacek; Meller, Jarek; Czyzyk-Krzeska, Maria F.
2012-01-01
Summary The von Hippel-Lindau tumor-suppressor gene (VHL) is lost in most clear cell renal cell carcinomas (ccRCC). Here, using human ccRCC specimens, VHL-deficient cells, and xenograft models, we show that miR-204 is a VHL-regulated tumor suppressor acting by inhibiting macroautophagy, with MAP1LC3B (LC3B) as a direct and functional target. Importantly, higher tumor grade of human ccRCC was correlated with a concomitant decrease in miR-204 and increase in LC3B levels, indicating that LC3B-mediated macroautophagy is necessary for RCC progression. VHL, in addition to inducing endogenous miR-204, triggered the expression of LC3C, an HIF-regulated LC3B paralog, that suppressed tumor growth. These data reveal a function of VHL as a tumor suppressing regulator of autophagic programs. PMID:22516261
Hall, Daniel P.; Cost, Nicholas G.; Hegde, Shailaja; Kellner, Emily; Mikhaylova, Olga; Stratton, Yiwen; Ehmer, Birgit; Abplanalp, William A.; Pandey, Raghav; Biesiada, Jacek; Harteneck, Christian; Plas, David R.; Meller, Jarek; Czyzyk-Krzeska, Maria F.
2014-01-01
Summary Autophagy promotes tumor growth by generating nutrients from the degradation of intracellular structures. Here we establish, using shRNAs, a dominant negative mutant, and a pharmacologic inhibitor, mefenamic acid (MFA), that the Transient Receptor Potential Melastatin 3 (TRPM3) channel promotes growth of clear cell renal cell carcinoma (ccRCC) and stimulates MAP1LC3A (LC3A) and MAP1LC3B (LC3B) autophagy. Increased expression of TRPM3 in RCC leads to Ca2+ influx, activation of CAMKK2, AMPK, and ULK1, and phagophore formation. In addition, TRPM3 Ca2+ and Zn2+ fluxes inhibit miR-214 which directly targets LC3A and LC3B. The von Hippel-Lindau tumor suppressor (VHL) represses TRPM3 through miR-204 directly and indirectly through another miR-204 target, Caveolin 1 (CAV1). PMID:25517751
Development of Cogging at the Fermilab Booster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiya, K.; Chaurize, S.; Drennan, C.
2015-01-30
The development of magnetic cogging is part of the Fermilab Booster upgrade within the Proton Improvement Plan (PIP). The Booster is going to send 2.25E17 protons/hour which is almost double the present flux, 1.4E17 protons/hour to the Main Injector (MI) and Recycler (RR). The extraction kicker gap has to synchronize to the MI and RR injection bucket in order to avoid a beam loss at the rising edge of the extraction and injection kickers. Magnetic cogging is able to control the revolution frequency and the position of the gap using the magnetic field from dipole correctors while radial position feedbackmore » keeps the beam at the central orbit. The new cogging is expected to reduce beam loss due to the orbit changes and reduce beam energy loss when the gap is created. The progress of the magnetic cogging system development is going to be discussed in this paper.« less
ZHANG, XINCHEN; GUO, GORDON; WANG, GUANG; ZHAO, JINYAO; WANG, BO; YU, XIAOTANG; DING, YANFANG
2015-01-01
Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high-grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan-Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR-510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low-grade serous carcinoma (LGSC) and CCC specimens using RT-qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2-fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR-510 and miR-129-3p were significantly downregulated, and that miR-483-5p and miR-miR-449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan-Meier analysis revealed low expression levels of miR-510 and low expression levels of miR-129-3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR-510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR-510 may be involved differently in HGSC and CCC. Thus, miR-510 and miR-129-3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC. PMID:26497752
Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.
2017-10-25
The recent discovery of “polar metals” with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here in this work, we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La 0.75Sr 0.25MnO 3 and LaNiO 3, and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further,more » we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. Finally, as a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.« less
NASA Astrophysics Data System (ADS)
Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.
2017-10-01
The recent discovery of "polar metals" with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2 /2 superlattice made of two centrosymmetric metallic oxides, La0.75 Sr0.25 MnO3 and LaNiO3 , and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further, we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. As a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghosh, Saurabh; Borisevich, Albina Y.; Pantelides, Sokrates T.
The recent discovery of “polar metals” with ferroelectriclike displacements offers the promise of designing ferroelectrics with tunable energy gaps by inducing controlled metal-insulator transitions. Here in this work, we employ first-principles calculations to design a metallic polar superlattice from nonpolar metal components and show that controlled intermixing can lead to a true insulating ferroelectric with a tunable band gap. We consider a 2/2 superlattice made of two centrosymmetric metallic oxides, La 0.75Sr 0.25MnO 3 and LaNiO 3, and show that ferroelectriclike displacements are induced. The ferroelectriclike distortion is found to be strongly dependent on the carrier concentration (Sr content). Further,more » we show that a metal-to-insulator (MI) transition is feasible in this system via disproportionation of the Ni sites. Such a disproportionation and, hence, a MI transition can be driven by intermixing of transition metal ions between Mn and Ni layers. Finally, as a result, the energy gap of the resulting ferroelectric can be tuned by varying the degree of intermixing in the experimental fabrication method.« less
Sugio, Asuka; Iwasaki, Masahiro; Habata, Shutaro; Mariya, Tasuku; Suzuki, Miwa; Osogami, Hiroyuki; Tamate, Masato; Tanaka, Ryoichi; Saito, Tsuyoshi
2014-09-01
Ovarian cancer is the leading cause of death from gynecologic cancer, reflecting its often late diagnosis and its chemoresistance. We identified a set of microRNAs whose expression is altered upon BAG3 knockdown. Our primary objective was to examine the relationships between BAG3, miR-29b and Mcl-1, an antiapoptotic Bcl-2 family protein, in ovarian cancer cells. Ovarian cancer cells were cultured and their responsiveness to paclitaxel was tested. Microarray analysis was performed to identify microRNAs differentially expressed in ES2 BAG3 knockdown ovarian cancer cells and their control cells. Primary ovarian cancer tissues were obtained from 56 patients operated on for ovarian cancer. The patients' clinical and pathological data were obtained from their medical records. BAG3 knockdown increased the chemosensitivity to paclitaxel of ES2 ovarian clear cell carcinoma cells to a greater degree than AMOC2 serous adenocarcinoma cells. qRT-PCR analysis showed that miR-29b expression was significantly upregulated in primary cancer tissue expressing low levels of BAG3, as compared to tissue expressing high levels. Moreover, levels of miR-29b correlated significantly with progression-free survival. Upregulation of miR-29b also reduced levels of Mcl-1 and sensitized ES2 cells to low-dose paclitaxel. BAG3 knockdown appears to downregulate expression of Mcl-1 through upregulation of miR-29b, thereby increasing the chemosensitivity of ovarian clear cell carcinoma cells. This suggests that BAG3 is a key determinant of the responsiveness of ovarian cancer cells, especially clear cell carcinoma, to paclitaxel and that BAG3 may be a useful therapeutic target for the treatment of ovarian cancer. Copyright © 2014 Elsevier Inc. All rights reserved.
Zhang, Xinchen; Guo, Gordon; Wang, Guang; Zhao, Jinyao; Wang, Bo; Yu, Xiaotang; Ding, Yanfang
2015-12-01
Improved insight into the molecular and genetic profile of different types of epithelial ovarian cancer (EOC) is required for understanding the carcinogenesis of EOC and may potentially be exploited by future targeted therapies. The aim of the present study was to identify a unique microRNA (miRNA) patterns and key miRNAs, which may assist in predicting progression and prognosis in high‑grade serous carcinoma (HGSC) and clear cell carcinoma (CCC). To identify unique miRNA patterns associated with HGSC and CCC, a miRNA microarray was performed using Chinese tumor bank specimens of patients with HGSC or CCC in a retrospective analysis. The expression levels of four deregulated miRNAs were further validated using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR) in an external cohort of 42 cases of HGSC and 36 cases of CCC. Kaplan‑Meier analysis was performed to analyze the correlation between the expression levels of the four miRNAs and patient prognosis. Among these validated miRNAs, miR‑510 was further examined in another cohort of normal ovarian tissues, as well as the HGSC, low‑grade serous carcinoma (LGSC) and CCC specimens using RT‑qPCR and in situ hybridization. The results revealed that, of the 768 miRNAs analyzed in the microarray, 33 and 50 miRNAs were significantly upregulated and downregulated, respectively, with at least a 2‑fold difference in HGSC, compared with CCC. The quantitative analysis demonstrated that miR‑510 and miR‑129‑3p were significantly downregulated, and that miR‑483‑5p and miR‑miR‑449a were significantly upregulated in CCC, compared with HGSC (P<0.05), which was consistent with the microarray results. Kaplan‑Meier analysis revealed low expression levels of miR‑510 and low expression levels of miR‑129‑3p, advanced International Federation of Gynecology and Obstetrics (FIGO) stage, lymphatic metastasis and that HGSC was significantly associated with the poorer overall survival rates (P<0.05). The expression of miR‑510 was significantly higher in the LGSC and CCC tissues, compared with the HGSC and normal ovarian tissues. The results of the present study suggested that different subtypes of EOC have specific miRNA signatures, and that miR‑510 may be involved differently in HGSC and CCC. Thus, miR‑510 and miR‑129‑3p may be considered as potential novel candidate clinical biomarkers for predicting the outcome of EOC.
The therapeutic potential of miRNAs in cardiac fibrosis: where do we stand?
Wijnen, Wino J; Pinto, Yigal M; Creemers, Esther E
2013-12-01
Recent developments in basic and clinical science have turned the spotlight to miRNAs for their potential therapeutic efficacy. Since their discovery in 1993, it has become clear that miRNAs act as posttranscriptional regulators of protein expression. Their clinical potential was further highlighted by the results of miRNA-based interventions in small laboratory animals. More importantly, their therapeutic effectiveness has been shown recently in phase 2a clinical studies in patients with hepatitis C virus infection, where inhibition of miRNA-122 showed prolonged and dose-dependent viral suppression. A recent study surprisingly revealed the presence of plant-derived miRNAs in the blood of healthy humans. This finding opens up the possibility to explore miRNA-mediated therapeutics derived from (genetically modified) food. Having arrived at this point in our understanding of miRNAs, we provide an overview of current evidence and future potential of miRNA-based therapeutics, focusing on their application in cardiac fibrosis.
NASA Astrophysics Data System (ADS)
Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia
2015-01-01
miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.
1986-01-24
P-29508BW Range: 1.12 million kilometers (690,000 miles) This clear-filter view of the Uranian rings delta, gamma, eta, beta and alpha (from top) was taken with Voyager 2's narrow-angle camera and clearly illustrates the broad outer component and narrow inner component of the eta ring, which orbits Uranus at a radius of some 47,000 km (29,000 mi). The broad component is considerably more transparent than the dense, narrow inner eta component, as well as the other narrow rings shown. Resolution here is about 10 km (6 mi).
miR-133a enhances the protective capacity of cardiac progenitors cells after myocardial infarction.
Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H; Bernad, Antonio
2014-12-09
miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
miR-133a Enhances the Protective Capacity of Cardiac Progenitors Cells after Myocardial Infarction
Izarra, Alberto; Moscoso, Isabel; Levent, Elif; Cañón, Susana; Cerrada, Inmaculada; Díez-Juan, Antonio; Blanca, Vanessa; Núñez-Gil, Iván-J.; Valiente, Iñigo; Ruíz-Sauri, Amparo; Sepúlveda, Pilar; Tiburcy, Malte; Zimmermann, Wolfram-H.; Bernad, Antonio
2014-01-01
Summary miR-133a and miR-1 are known as muscle-specific microRNAs that are involved in cardiac development and pathophysiology. We have shown that both miR-1 and miR-133a are early and progressively upregulated during in vitro cardiac differentiation of adult cardiac progenitor cells (CPCs), but only miR-133a expression was enhanced under in vitro oxidative stress. miR-1 was demonstrated to favor differentiation of CPCs, whereas miR-133a overexpression protected CPCs against cell death, targeting, among others, the proapoptotic genes Bim and Bmf. miR-133a-CPCs clearly improved cardiac function in a rat myocardial infarction model by reducing fibrosis and hypertrophy and increasing vascularization and cardiomyocyte proliferation. The beneficial effects of miR-133a-CPCs seem to correlate with the upregulated expression of several relevant paracrine factors and the plausible cooperative secretion of miR-133a via exosomal transport. Finally, an in vitro heart muscle model confirmed the antiapoptotic effects of miR-133a-CPCs, favoring the structuration and contractile functionality of the artificial tissue. PMID:25465869
Upregulated miR-29b promotes neuronal cell death by inhibiting Bcl2L2 after ischemic brain injury.
Shi, Guodong; Liu, Yang; Liu, Tielong; Yan, Wangjun; Liu, Xiaowei; Wang, Yuan; Shi, Jiangang; Jia, Lianshun
2012-01-01
It is increasingly clear that microRNAs (miRNAs) play an important role in controlling cell survival. However, the functional significance of miRNAs in ischemic brain injury remains poorly understood. In the present study, we assayed the expression levels of miR-29b after ischemic brain injury, and defined the target genes and biological functions of miR-29b. We found that the miR-29b levels were significantly increased in rat brain after transient middle cerebral artery occlusion and neurons after oxygen-glucose deprivation. Moreover, ectopic expression of miR-29b promoted neuronal cell death, whereas its repression decreased cell death. Furthermore, we verified that miR-29b directly targeted and inhibited Bcl2L2 gene expression, and then increased neuronal cell death. Importantly, Bcl2L2 overexpression rescued neuronal cell death induced by miR-29b. These results suggest an important role of miR-29b in regulating neuronal cell death, thus offering a new target for the development of therapeutic agents against ischemic brain injury.
NASA Technical Reports Server (NTRS)
1986-01-01
The terminator region of Titania, one of Uranus' five large moons, was captured in this Voyager 2 image obtained in the early morning hours of Jan. 24, 1986. Voyager was about 500,000 kilometers (300,000 miles) from Titania and inbound toward closest approach. This clear-filter, narrow-angle view is along the terminator -- the line between the sunlit and darkened parts of the moon. The low-angle illumination shows the shape of the surface very clearly. Among the features visible are long linear valleys perhaps 50-100 km (30-60 mi) wide and several hundred km (or mi) long. At least two directions of faulting are visible, as are many circular impact craters attributed to cosmic debris. The resolution of this image is about 9 km (6 mi). The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Stress-responsive microRNAs are involved in re-programming of metabolic functions in hibernators.
Arfat, Yasir; Chang, Hui; Gao, Yunfang
2018-04-01
Mammalian hibernation includes re-programing of metabolic capacities, partially, encouraged by microRNAs (miRNAs). Albeit much is known about the functions of miRNAs, we need learning on low temperature miRNAs target determination. As hibernators can withstand low body temperatures (TB) for a long time without anguish tissue damage, understanding the means and mechanisms that empower them to do as such are of restorative intrigue. Nonetheless, these mechanisms by which miRNAs and the hibernators react to stressful conditions are not much clear. It is evident from recent data that the gene expression and the translation of mRNA to protein are controlled by miRNAs. The miRNAs also influence regulation of major cellular processes. As the significance of miRNAs in stress conditions adaptation are getting clearer, this audit article abridges the key alterations in miRNA expression and the mechanism that facilitates stress survival. © 2017 Wiley Periodicals, Inc.
miR-186 inhibits cell proliferation in multiple myeloma by repressing Jagged1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Zengyan; Department of Hematology, Hospital Affiliated to Binzhou Medical University, 661 Second Huanghe Street, Binzhou 256603; Zhang, Guoqiang
2016-01-15
MicroRNAs (miRNAs) are small, noncoding ribonucleic acids that regulate gene expression by targeting mRNAs for translational repression and degradation. Accumulating experimental evidence supports a causal role of miRNAs in hematology tumorigenesis. However, the specific functions of miRNAs in the pathogenesis of multiple myeloma (MM) remain to be established. In this study, we demonstrated that miR-186 is commonly downregulated in MM cell lines and patient MM cells. Ectopic expression of miR-186 significantly inhibited cell growth, both in vitro and in vivo, and induced cell cycle G{sub 0}/G{sub 1} arrest. Furthermore, miR-186 induced downregulation of Jagged1 protein expression by directly targeting its 3′-untranslated regionmore » (3′-UTR). Conversely, overexpression of Jagged1 rescued cells from miR-186-induced growth inhibition. Our collective results clearly indicate that miR-186 functions as a tumor suppressor in MM, supporting its potential as a therapeutic target for the disease. - Highlights: • miR-186 expression is decreased in MM. • miR-186 inhibits MM cell proliferation in vitro and in vivo. • Jagged1 is regulated by miR-186. • Overexpression of Jagged1 reverses the effects of miR-186.« less
miRNA Profiles as a Predictor of Chemoresponsiveness in Wilms’ Tumor Blastema
Watson, Jenny A.; Bryan, Kenneth; Williams, Richard; Popov, Sergey; Vujanic, Gordan; Coulomb, Aurore; Boccon-Gibod, Liliane; Graf, Norbert; Pritchard-Jones, Kathy; O’Sullivan, Maureen
2013-01-01
The current SIOP treatment protocol for Wilms’ tumor involves pre-operative chemotherapy followed by nephrectomy. Not all patients benefit equally from such chemotherapy. The aim of this study was to generate a miRNA profile of chemo resistant blastemal cells in high risk Wilms’ tumors which might serve as predictive markers of therapeutic response at the pre-treatment biopsy stage. We have shown here that unsupervised hierarchical clustering of genome-wide miRNA expression profiles can clearly separate intermediate risk tumors from high risk tumors. A total of 29 miRNAs were significantly differentially expressed between post-treatment intermediate risk and high risk groups, including miRNAs that have been previously linked to chemo resistance in other cancer types. Furthermore, 7 of these 29 miRNAs were already at the pre-treatment biopsy stage differentially expressed between cases ultimately deemed intermediate risk compared to high risk. These miRNA alterations include down-regulation in high risk cases of miR-193a.5p, miR-27a and the up-regulation of miR-483.5p, miR-628.5p, miR-590.5p, miR-302a and miR-367. The demonstration of such miRNA markers at the pre-treatment biopsy stage could permit stratification of patients to more tailored treatment regimens. PMID:23308219
Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.
2018-01-01
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226
Kapodistrias, Nikolaos; Mavridis, Konstantinos; Batistatou, Anna; Gogou, Penelope; Karavasilis, Vasilios; Sainis, Ioannis; Briasoulis, Evangelos; Scorilas, Andreas
2017-01-01
Liposarcoma (LPS) is a malignancy with extreme heterogeneity and thus optimization towards personalizing patient prognosis and treatment is essential. Here, we evaluated miR-155, miR-21, miR-143, miR-145 and miR-451 that are implicated in LPS, as novel FFPE tissue biomarkers. A total of 83 FFPE tissue specimens from primary LPS and lipomas (LPM) were analyzed. A proteinase K incubation-Trizol treatment coupled protocol was used for RNA isolation. After polyadenylation of total RNA and reverse transcription, expression analysis of 9 candidate reference and 5 target miRNAs was performed by qPCR. Genorm and NormFinder were used for finding the most suitable molecules for normalization. Survival analyses were performed in order to evaluate the prognostic potential of miRNAs. MiR-103 and miR-191 are most suitable for normalization of miRNA expression in LPS. MiR-155 and miR-21 are clearly overexpressed (P<0.001) in LPS compared with LPM specimens, whereas miR-145 (P<0.001), miR-143 (P =0.008) and miR-451 (P=0.037) are underexpressed. MiR-155 (P=0.007) and miR-21 (P=0.029) are differentially expressed between well-differentiated, dedifferentiated, myxoid/round cell and pleomorphic LPs tumor subtypes. MiR-155 represents a novel independent indicator of unfavorable prognosis in LPS (HR = 2.97, 95% CI = 1.23–7.17, P = 0.016). PMID:28036291
Bizuayehu, Teshome Tilahun; Babiak, Igor
2014-01-01
MicroRNAs (miRNAs) are transcriptional and posttranscriptional regulators involved in nearly all known biological processes in distant eukaryotic clades. Their discovery and functional characterization have broadened our understanding of biological regulatory mechanisms in animals and plants. They show both evolutionary conserved and unique features across Metazoa. Here, we present the current status of the knowledge about the role of miRNA in development, growth, and physiology of teleost fishes, in comparison to other vertebrates. Infraclass Teleostei is the most abundant group among vertebrate lineage. Fish are an important component of aquatic ecosystems and human life, being the prolific source of animal proteins worldwide and a vertebrate model for biomedical research. We review miRNA biogenesis, regulation, modifications, and mechanisms of action. Specific sections are devoted to the role of miRNA in teleost development, organogenesis, tissue differentiation, growth, regeneration, reproduction, endocrine system, and responses to environmental stimuli. Each section discusses gaps in the current knowledge and pinpoints the future directions of research on miRNA in teleosts. PMID:25053657
The miR-24-Bim pathway promotes tumor growth and angiogenesis in pancreatic carcinoma.
Liu, Rui; Zhang, Haiyang; Wang, Xia; Zhou, Likun; Li, Hongli; Deng, Ting; Qu, Yanjun; Duan, Jingjing; Bai, Ming; Ge, Shaohua; Ning, Tao; Zhang, Le; Huang, Dingzhi; Ba, Yi
2015-12-22
miRNAs are a group of small RNAs that have been reported to play a key role at each stage of tumorigenesis and are believed to have future practical value. We now demonstrate that Bim, which stimulates cell apoptosis, is obviously down-regulated in pancreatic cancer (PaC) tissues and cell lines. And Bim-related miR-24 is significantly up-regulated in PaC. The repressed expression of Bim is proved to be a result of miR-24, thus promoting cell growth of both cancer and vascular cells, and accelerating vascular ring formation. By using mouse tumor model, we clearly showed that miR-24 promotes tumor growth and angiogenesis by suppressing Bim expression in vivo. Therefore, a new pathway comprising miR-24 and Bim can be used in the exploration of drug-target therapy of PaC.
Chaturvedi, Anurag; Raeymaekers, Joost A M; Volckaert, Filip A M
2014-07-01
An intriguing question in biology is how the evolution of gene regulation is shaped by natural selection in natural populations. Among the many known regulatory mechanisms, regulation of gene expression by microRNAs (miRNAs) is of critical importance. However, our understanding of their evolution in natural populations is limited. Studying the role of miRNAs in three-spined stickleback, an important natural model for speciation research, may provide new insights into adaptive polymorphisms. However, lack of annotation of miRNA genes in its genome is a bottleneck. To fill this research gap, we used the genome of three-spined stickleback to predict miRNAs and their targets. We predicted 1486 mature miRNAs using the homology-based miRNA prediction approach. We then performed functional annotation and enrichment analysis of these targets, which identified over-represented motifs. Further, a database resource (GAmiRdb) has been developed for dynamically searching miRNAs and their targets exclusively in three-spined stickleback. Finally, the database was used in two case studies focusing on freshwater adaptation in natural populations. In the first study, we found 44 genomic regions overlapping with predicted miRNA targets. In the second study, we identified two SNPs altering the MRE seed site of sperm-specific glyceraldehyde-3-phosphate gene. These findings highlight the importance of the GAmiRdb knowledge base in understanding adaptive evolution. © 2014 John Wiley & Sons Ltd.
microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3.
Qin, Ji-Zheng; Wang, Shao-Jie; Xia, Chun
2018-06-13
Endothelial nitric oxide synthase (eNOS) encoded by nitric oxide synthase 3 (NOS3), can generate nitric oxide (NO) which serves as an important deterrent to the pathogenesis of thrombosis by modulating the activation, adhesion and aggregate formation of platelets. Three serum miRNAs (miR-195, miR-532 and miR-582) have been suggested as biomarkers for the diagnosis of deep vein thrombosis (DVT), however their potential roles in DVT is not clear. The effect of miRNAs inhibiting the expression of NOS3 was evaluated in vitro. miR-195, miR-532 and miR-582 mimic, inhibitor, and control miRNAs were transfected into endothelial cells. The roles of miR-195, miR-532 and miR-582 regulating the expression of eNOS were evaluated by real-time quantitative PCR, Western Blotting and luciferase reporter assays. NO release was measured by Griess method. We confirmed NOS3 as a direct target of miR-195 and miR-582, which binds to the 3'-UTR of NOS3 mRNA in endothelial cells. A significantly inverse correlation between these two miRNAs and eNOS expression was detected. NO release from endothelial cells was decreased when the expression level of miR-195 and miR-582 was up-regulated. These findings indicated that miR-195 and miR-582 regulated NO release by targeting 3'-UTR of NOS3 post-transcriptionally in endothelial cells. Therefore, miR-195 and miR-582 might play an important role in maintaining endothelial NO bioavailability and could be a novel target for treatment of thrombotic diseases.
Novel microRNA-like viral small regulatory RNAs arising during human hepatitis A virus infection.
Shi, Jiandong; Sun, Jing; Wang, Bin; Wu, Meini; Zhang, Jing; Duan, Zhiqing; Wang, Haixuan; Hu, Ningzhu; Hu, Yunzhang
2014-10-01
MicroRNAs (miRNAs), including host miRNAs and viral miRNAs, play vital roles in regulating host-virus interactions. DNA viruses encode miRNAs that regulate the viral life cycle. However, it is generally believed that cytoplasmic RNA viruses do not encode miRNAs, owing to inaccessible cellular miRNA processing machinery. Here, we provide a comprehensive genome-wide analysis and identification of miRNAs that were derived from hepatitis A virus (HAV; Hu/China/H2/1982), which is a typical cytoplasmic RNA virus. Using deep-sequencing and in silico approaches, we identified 2 novel virally encoded miRNAs, named hav-miR-1-5p and hav-miR-2-5p. Both of the novel virally encoded miRNAs were clearly detected in infected cells. Analysis of Dicer enzyme silencing demonstrated that HAV-derived miRNA biogenesis is Dicer dependent. Furthermore, we confirmed that HAV mature miRNAs were generated from viral miRNA precursors (pre-miRNAs) in host cells. Notably, naturally derived HAV miRNAs were biologically and functionally active and induced post-transcriptional gene silencing (PTGS). Genomic location analysis revealed novel miRNAs located in the coding region of the viral genome. Overall, our results show that HAV naturally generates functional miRNA-like small regulatory RNAs during infection. This is the first report of miRNAs derived from the coding region of genomic RNA of a cytoplasmic RNA virus. These observations demonstrate that a cytoplasmic RNA virus can naturally generate functional miRNAs, as DNA viruses do. These findings also contribute to improved understanding of host-RNA virus interactions mediated by RNA virus-derived miRNAs. © FASEB.
Liu, Shikai; Song, Lili; Zhang, Liang; Zeng, Saitian; Gao, Fangyuan
2015-04-17
Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3'-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.
Potential microRNA-mediated oncogenic intercellular communication revealed by pan-cancer analysis
NASA Astrophysics Data System (ADS)
Li, Yue; Zhang, Zhaolei
2014-11-01
Carcinogenesis consists of oncogenesis and metastasis, and intriguingly microRNAs (miRNAs) are involved in both processes. Although aberrant miRNA activities are prevalent in diverse tumor types, the exact mechanisms for how they regulate cancerous processes are not always clear. To this end, we performed a large-scale pan-cancer analysis via a novel probabilistic approach to infer recurrent miRNA-target interactions implicated in 12 cancer types using data from The Cancer Genome Atlas. We discovered ~20,000 recurrent miRNA regulations, which are enriched for cancer-related miRNAs/genes. Notably, miRNA 200 family (miR-200/141/429) is among the most prominent miRNA regulators, which is known to be involved in metastasis. Importantly, the recurrent miRNA regulatory network is not only enriched for cancer pathways but also for extracellular matrix (ECM) organization and ECM-receptor interactions. The results suggest an intriguing cancer mechanism involving miRNA-mediated cell-to-cell communication, which possibly involves delivery of tumorigenic miRNA messengers to adjacent cells via exosomes. Finally, survival analysis revealed 414 recurrent-prognostic associations, where both gene and miRNA involved in each interaction conferred significant prognostic power in one or more cancer types. Together, our comprehensive pan-cancer analysis provided not only biological insights into metastasis but also brought to bear the clinical relevance of the proposed recurrent miRNA-gene associations.
Zhao, Fanggui; Wang, Chen; Han, Jian; Zhu, Xudong; Li, Xiaopeng; Wang, Xicheng; Fang, Jinggui
2017-05-01
MicroRNAs (miRNAs) are critical regulators of various biological and metabolic processes of plants. Numerous miRNAs and their functions have been identified and analyzed in many plants. However, till now, the involvement of miRNAs in the response of grapevine berries to ethylene has not been reported yet. Here, Solexa technology was employed to deeply sequence small RNA libraries constructed from grapevine berries treated with and without ethylene. A total of 124 known and 78 novel miRNAs were identified. Among these miRNAs, 162 miRNAs were clearly responsive to ethylene, with 55 downregulated, 59 upregulated, and 14 unchanged miRNAs detected only in the control. The other 35 miRNAs responsive to ethylene were induced by ethylene and detected only in the ethylene-treated grapevine materials. Expression analysis of 27 conserved and 26 novel miRNAs revealed that 13 conserved and 18 novel ones were regulated by ethylene during the whole development of grapevine berries. High-throughput sequencing and qRT-PCR assays revealed consistent results on the expression results of ethylene-responsive miRNAs. Moreover, 90 target genes for 34 novel miRNAs were predicted, most of which were involved in responses to various stresses, especially like exogenous ethylene treatment. The identified miRNAs may be mainly involved in grapevine berry development and response to various environmental conditions.
Entanglement spectra of superconductivity ground states on the honeycomb lattice
NASA Astrophysics Data System (ADS)
Predin, Sonja; Schliemann, John
2017-12-01
We analytically evaluate the entanglement spectra of the superconductivity states in graphene, primarily focusing on the s-wave and chiral dx2-y2 + idxy
Lajer, C B; Garnæs, E; Friis-Hansen, L; Norrild, B; Therkildsen, M H; Glud, M; Rossing, M; Lajer, H; Svane, D; Skotte, L; Specht, L; Buchwald, C; Nielsen, F C
2012-01-01
Background: Although the role of human papilloma virus (HPV) in cervical squamous cell carcinoma (CSCC) is well established, the role in head and neck SCC (HNSCC) is less clear. MicroRNAs (miRNAs) have a role in the cancer development, and HPV status may affect the miRNA expression pattern in HNSCC. To explore the influence of HPV in HNSCC, we made a comparative miRNA profile of HPV-positive (HPV+) and HPV-negative (HPV−) HNSCC against CSCC. Methods: Fresh frozen and laser microdissected-paraffin-embedded samples obtained from patients with HPV+/HPV− HNSCC, CSCC and controls were used for microarray analysis. Differentially expressed miRNAs in the HPV+ and HPV− HNSCC samples were compared with the differentially expressed miRNAs in the CSCC samples. Results: Human papilloma virus positive (+) HNSCC had a distinct miRNA profile compared with HPV− HNSCC. Significantly more similarity was seen between HPV+ HNSCC and CSCC than HPV− and CSCC. A set of HPV core miRNAs were identified. Of these especially the miR-15a/miR-16/miR195/miR-497 family, miR-143/miR-145 and the miR-106-363 cluster appear to be important within the known HPV pathogenesis. Conclusion: This study adds new knowledge to the known pathogenic pathways of HPV and substantiates the oncogenic role of HPV in subsets of HNSCCs. PMID:22472886
Overview of the recent DiMES and MiMES experiments in DIII-D
NASA Astrophysics Data System (ADS)
Rudakov, D. L.; Wong, C. P. C.; Litnovsky, A.; Wampler, W. R.; Boedo, J. A.; Brooks, N. H.; Fenstermacher, M. E.; Groth, M.; Hollmann, E. M.; Jacob, W.; Krasheninnikov, S. I.; Krieger, K.; Lasnier, C. J.; Leonard, A. W.; McLean, A. G.; Marot, M.; Moyer, R. A.; Petrie, T. W.; Philipps, V.; Smirnov, R. D.; Stangeby, P. C.; Watkins, J. G.; West, W. P.; Yu, J. H.
2009-12-01
Divertor and midplane material evaluation systems (DiMES and MiMES) in the DIII-D tokamak are used to address a variety of plasma-material interaction (PMI) issues relevant to ITER. Among the topics studied are carbon erosion and re-deposition, hydrogenic retention in the gaps between plasma-facing components (PFCs), deterioration of diagnostic mirrors from carbon deposition and techniques to mitigate that deposition, and dynamics and transport of dust. An overview of the recent experimental results is presented.
Material Activation Benchmark Experiments at the NuMI Hadron Absorber Hall in Fermilab
NASA Astrophysics Data System (ADS)
Matsumura, H.; Matsuda, N.; Kasugai, Y.; Toyoda, A.; Yashima, H.; Sekimoto, S.; Iwase, H.; Oishi, K.; Sakamoto, Y.; Nakashima, H.; Leveling, A.; Boehnlein, D.; Lauten, G.; Mokhov, N.; Vaziri, K.
2014-06-01
In our previous study, double and mirror symmetric activation peaks found for Al and Au arranged spatially on the back of the Hadron absorber of the NuMI beamline in Fermilab were considerably higher than those expected purely from muon-induced reactions. From material activation bench-mark experiments, we conclude that this activation is due to hadrons with energy greater than 3 GeV that had passed downstream through small gaps in the hadron absorber.
Kemeny, Nancy; Kingham, T. Peter; Allen, Peter J.; D’Angelica, Michael I.; DeMatteo, Ronald P.; Betel, Doron; Klimstra, David; Jarnagin, William R.; Ventura, Andrea
2016-01-01
Background MicroRNAs (miRNAs) are potential biomarkers in various malignancies. We aim to characterize miRNA expression in intrahepatic cholangiocarcinoma (ICC) and identify circulating plasma miRNAs with potential diagnostic and prognostic utility. Methods Using deep-sequencing techniques, miRNA expression between tumor samples and non-neoplastic liver parenchyma were compared. Overexpressed miRNAs were measured in plasma from an independent cohort of patients with cholangiocarcinoma using RT-qPCR and compared with that healthy volunteers. The discriminatory ability of the evaluated plasma miRNAs between patients and controls was evaluated with receiving operating characteristic (ROC) curves. Results Small RNAs from 12 ICC and 11 tumor-free liver samples were evaluated. Unsupervised hierarchical clustering using the miRNA expression data showed clear grouping of ICC vs. non-neoplastic liver parenchyma. We identified 134 down-regulated and 128 upregulated miRNAs. Based on overexpression and high fold-change, miR21, miR200b, miR221, and miR34c were measured in plasma from an independent cohort of patients with ICC (n = 25) and healthy controls (n = 7). Significant overexpression of miR-21 and miR-221 was found in plasma from ICC patients. Furthermore, circulating miR-21 demonstrated a high discriminatory ability between patients with ICC and healthy controls (AUC: 0.94). Conclusion Among the differentially expressed miRNAs in ICC, miR-21 and miR-221 are overexpressed and detectable in the circulation. Plasma expression levels of these miRNAs, particularly miR-21, accurately differentiates patients with ICC from healthy controls and could potentially serve as adjuncts in diagnosis. Prospective validation and comparison with other hepatobiliary malignancies is required to establish their potential role as diagnostic and prognostic biomarkers. PMID:27685844
miR-874 regulates myocardial necrosis by targeting caspase-8
Wang, K; Liu, F; Zhou, L-Y; Ding, S-L; Long, B; Liu, C-Y; Sun, T; Fan, Y-Y; Sun, L; Li, P-F
2013-01-01
Cardiomyocyte death is an important reason for the cardiac syndromes, such as heart failure (HF) and myocardial infarction (MI). In the heart diseases, necrosis is one of the main forms of cell death. MicroRNAs (miRNAs) are a class of small non-coding RNAs that mediate post-transcriptional gene silencing. Hitherto, it is not yet clear whether miRNA can regulate necrosis in cardiomyocyte. In this work, we performed a microarray to detect miRNAs in response to H2O2 treatment, and the results showed that miR-874 was substantially increased. We further studied the function of miR-874, and observed that knockdown of miR-874 attenuated necrosis in the cellular model and also MI in the animal model. We searched for the downstream mediator of miR-874 and identified that caspase-8 was a target of miR-874. Caspase-8 was able to antagonize necrosis. When suppressed by miR-874, caspase-8 lost the ability to repress necrotic program. In exploring the molecular mechanism by which miR-874 expression is regulated, we identified that Foxo3a could transcriptionally repress miR-874 expression. Foxo3a transgenic or knockout mice exhibited a low or high expression level of miR-874, and a reduced or enhanced necrosis and MI. Our present study reveals a novel myocardial necrotic regulating model, which is composed of Foxo3a, miR-874 and caspase-8. Modulation of their levels may provide a new approach for tackling myocardial necrosis. PMID:23828572
Agostini, Massimiliano; Knight, Richard A.
2014-01-01
The mir-34 family was originally cloned and characterized in 2007 as a p53 target gene. Almost immediately it became clear that its major role is as a master regulator of tumor suppression. Indeed, when overexpressed, it directly and indirectly represses several oncogenes, resulting in an increase of cancer cell death (including cancer stem cells), and in an inhibition of metastasis. Moreover, its expression is deregulated in several human cancers. In 2013, a miR-34 mimic has become the first microRNA to reach phase 1 clinical trials. Here we review the miR-34 family and their role in tumor biology, and discuss the potential therapeutic applications of miR-34a mimic. PMID:24657911
MicroRNAs in Testicular Cancer Diagnosis and Prognosis.
Ling, Hui; Krassnig, Lisa; Bullock, Marc D; Pichler, Martin
2016-02-01
Testicular cancer processes a unique and clear miRNA expression signature. This differentiates testicular cancer from most other cancer types, which are usually more ambiguous when assigning miRNA patterns. As such, testicular cancer may represent a unique cancer type in which miRNAs find their use as biomarkers for cancer diagnosis and prognosis, with a potential to surpass the current available markers usually with low sensitivity. In this review, we present literature findings on miRNAs associated with testicular cancer, and discuss their potential diagnostic and prognostic values, as well as their potential as indicators of drug response in patients with testicular cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Lindhardsen, Jesper; Ahlehoff, Ole; Gislason, Gunnar Hilmar; Madsen, Ole Rintek; Olesen, Jonas Bjerring; Torp-Pedersen, Christian; Hansen, Peter Riis
2012-09-01
To examine whether rheumatoid arthritis (RA) is associated with less optimal secondary prevention pharmacotherapy after first-time myocardial infarction (MI). The authors identified all patients with first-time MI in the Danish National Patient Register from 2002 to 2009 and gathered individual level information including pharmacy records from nationwide registers. Initiation of standard care post-MI secondary prevention drugs, that is, aspirin, β-blockers, clopidogrel, renin angiotensin system (RAS) blockers and statins, was determined after discharge. In addition, adherence to each drug was evaluated as the proportion of patients on treatment during follow-up and time to first treatment gap. A total of 66 107 MI patients (37% women) were discharged alive; 877 were identified as RA patients (59% women). Thirty days after discharge, RA was associated with significantly lower initiation of aspirin (OR 0.80 (0.67-0.96)), β-blockers (0.77 (0.65-0.92)) and statins (0.69 (0.58-0.82)), while initiation of RAS blockers (0.80 (0.57-1.11)) and clopidogrel (0.88 (0.75-1.02)) was non-significantly reduced. These estimates were virtually unchanged at day 180 and the results were corroborated by Cox regression analyses. Adherence to statins was lower in RA patients relative to non-RA patients (HR for treatment gap of 90 days: 1.26 (1.07-1.48)), while no significant differences were found in adherence to the other drugs. In this nationwide study of unselected patients with first-time MI, a reduced initiation of secondary prevention pharmacotherapy was observed in RA patients. This undertreatment may contribute to the increased cardiovascular disease burden in RA and the underlying mechanisms warrant further study.
miR-106a suppresses tumor cells death in colorectal cancer through targeting ATG7.
Hao, Haibin; Xia, Guangfeng; Wang, Chao; Zhong, Fuping; Liu, Laipeng; Zhang, Dong
2017-06-01
Autophagy-related gene 7 (ATG7) and miR-106a play an important role in cancer cell autophagy and apoptosis, but the outcome of ATG7 and miR-106a in colorectal cancer (CRC) still remains not clear. In this study, we found that ATG7 and miR-106a expression were mutually related with cell death and prognosis in CRC patients. In addition, we also showed that ATG7 and miR-106a expression were changeable in colorectal cancer cell lines when compared with normal cell lines, but ATG7 and miR-106a mRNA level was negatively correlated. Furthermore, ATG7 protein and mRNA levels decreased after over-expression of miR-106a, whereas the suppression of ATG7 had the opposite effect. We confirmed that miR-106a down-regulated ATG7 mRNA level by binding the specific sequence of ATG7 mRNA 3'UTR region. Moreover, the over-expression of ATG7 induced CRC cells death both in vitro and in vivo. Taken together, our study data demonstrated that ATG7 aggravated the cell death of CRC, which was inhibited by miR-106a.
Liu, Weijun; Chen, Hanxiang; Wong, Nathan; Haynes, Wesley; Baker, Callie M; Wang, Xiaowei
2017-05-28
Pseudohypoxia plays a central role in the progression and therapeutic resistance of clear cell renal cell carcinoma (ccRCC); however, the underlying mechanisms are poorly understood. MicroRNA miR-126 has decreased expression in metastatic or relapsed ccRCC as compared to primary tumors, but the mechanisms by which miR-126 is implicated in RCC remain unknown. Through RNA-seq profiling to evaluate the impact of overexpression or CRISPR knockout of miR-126, we have identified SERPINE1 as a miR-126-5p target regulating cell motility, and SLC7A5 as a miR-126-3p target regulating the mTOR/HIF pathway. Specifically, miR-126 inhibits HIFα protein expression independent of von Hippel-Lindau tumor suppressor (VHL). On the other hand, deactivation of miR-126 induces a pseudohypoxia state due to increased HIFα expression, which further enhances therapeutic resistance and cell motility mediated by SLC7A5 and SERPINE1, respectively. Finally, the clinical relevance of miR-126 modulated gene regulation in ccRCC has been confirmed with profiling data from The Cancer Genome Atlas. Copyright © 2017 Elsevier B.V. All rights reserved.
Characterization and Expression Patterns of microRNAs Involved in Rice Grain Filling
Du, Yanxiu; Zhang, Jing; Li, Junzhou; Liu, Yanxia; Zhao, Yafan; Zhao, Quanzhi
2013-01-01
MicroRNAs (miRNAs) are upstream gene regulators of plant development and hormone homeostasis through their directed cleavage or translational repression of the target mRNAs, which may play crucial roles in rice grain filling and determining the final grain weight and yield. In this study, high-throughput sequencing was performed to survey the dynamic expressions of miRNAs and their corresponding target genes at five distinct developmental stages of grain filling. In total, 445 known miRNAs and 45 novel miRNAs were detected with most of them expressed in a developmental stage dependent manner, and the majority of known miRNAs, which increased gradually with rice grain filling, showed negatively related to the grain filling rate. Detailed expressional comparisons revealed a clear negative correlation between most miRNAs and their target genes. It was found that specific miRNA cohorts are expressed in a developmental stage dependent manner during grain filling and the known functions of these miRNAs are involved in plant hormone homeostasis and starch accumulation, indicating that the expression dynamics of these miRNAs might play key roles in regulating rice grain filling. PMID:23365650
Influenza A Virus Infection of Human Respiratory Cells Induces Primary MicroRNA Expression*
Buggele, William A.; Johnson, Karen E.; Horvath, Curt M.
2012-01-01
The cellular response to virus infection is initiated by recognition of the invading pathogen and subsequent changes in gene expression mediated by both transcriptional and translational mechanisms. In addition to well established means of regulating antiviral gene expression, it has been demonstrated that RNA interference (RNAi) can play an important role in antiviral responses. Virus-derived small interfering RNA (siRNA) is a primary antiviral response exploited by plants and invertebrate animals, and host-encoded microRNA (miRNA) species have been clearly implicated in the regulation of innate and adaptive immune responses in mammals and other vertebrates. Examination of miRNA abundance in human lung cell lines revealed endogenous miRNAs, including miR-7, miR-132, miR-146a, miR-187, miR-200c, and miR-1275, to specifically accumulate in response to infection with two influenza A virus strains, A/Udorn/72 and A/WSN/33. Known antiviral response pathways, including Toll-like receptor, RIG-I-like receptor, and direct interferon or cytokine stimulation did not alter the abundance of the tested miRNAs to the extent of influenza A virus infection, which initiates primary miRNA transcription via a secondary response pathway. Gene expression profiling identified 26 cellular mRNAs targeted by these miRNAs, including IRAK1, MAPK3, and other components of innate immune signaling systems. PMID:22822053
Toward equity through participation in Modeling Instruction in introductory university physics
NASA Astrophysics Data System (ADS)
Brewe, Eric; Sawtelle, Vashti; Kramer, Laird H.; O'Brien, George E.; Rodriguez, Idaykis; Pamelá, Priscilla
2010-06-01
We report the results of a five year evaluation of the reform of introductory calculus-based physics by implementation of Modeling Instruction (MI) at Florida International University (FIU), a Hispanic-serving institution. MI is described in the context of FIU’s overall effort to enhance student participation in physics and science broadly. Our analysis of MI from a “participationist” perspective on learning identifies aspects of MI including conceptually based instruction, culturally sensitive instruction, and cooperative group learning, which are consistent with research on supporting equitable learning and participation by students historically under-represented in physics (i.e., Black, Hispanic, women). This study uses markers of conceptual understanding as measured by the Force Concept Inventory (FCI) and odds of success as measured by the ratio of students completing introductory physics and earning a passing grade (i.e., C- or better) by students historically under-represented in physics to reflect equity and participation in introductory physics. FCI pre and post scores for students in MI are compared with lecture-format taught students. Modeling Instruction students outperform students taught in lecture-format classes on post instruction FCI (61.9% vs 47.9%, p<0.001 ), where these benefits are seen across both ethnic and gender comparisons. In addition, we report that the odds of success in MI are 6.73 times greater than in lecture instruction. Both odds of success and FCI scores within Modeling Instruction are further disaggregated by ethnicity and by gender to address the question of equity within the treatment. The results of this disaggregation indicate that although ethnically under-represented students enter with lower overall conceptual understanding scores, the gap is not widened during introductory physics but instead is maintained, and the odds of success for under-represented students is not different from majority students. Women, similarly enter with scores indicating lower conceptual understanding, and over the course of MI this understanding gap increases, yet we do not find differences in the odds of success between men and women. Contrasting these results with the participationist view on learning indicates a movement toward greater equity in introductory physics but also indicates that the instructional environment can be improved.
Compromised Motor Planning and Motor Imagery in Right Hemiparetic Cerebral Palsy
ERIC Educational Resources Information Center
Craje, Celine; van Elk, Michiel; Beeren, Manuela; van Schie, Hein T.; Bekkering, Harold; Steenbergen, Bert
2010-01-01
We investigated whether motor planning problems in people with Hemiparetic Cerebral Palsy (HCP) are paralleled by impaired ability to use Motor Imagery (MI). While some studies have shown that individuals with HCP can solve a mental rotation task, it was not clear if they used MI or Visual Imagery (VI). In the present study, motor planning and MI…
USDA-ARS?s Scientific Manuscript database
In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has also gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well rec...
Hosteing, Stéphanie; Meyer, Nicolas; Waton, Julie; Barbaud, Annick; Bourrain, Jean-Luc; Raison-Peyron, Nadia; Felix, Brigitte; Milpied-Homsi, Brigitte; Ferrier Le Bouedec, Marie-Christine; Castelain, Michel; Vital-Durand, Dominique; Debons, Michèle; Collet, Evelyne; Avenel-Audran, Martine; Mathelier-Fusade, Pascale; Vermeulen, Christophe; Assier, Haudrey; Gener, Gwendoline; Lartigau-Sezary, Isabelle; Catelain-Lamy, Amandine; Giordano-Labadie, Françoise
2014-05-01
The preservative methylisothiazolinone (MI) is used in combination with methylchloroisothiazolinone (MCI), but the MCI/MI mixture has been identified as highly allergenic. MI is considered to be less allergenic, and since the mid-2000s has been widely used alone, but is now clearly identified as a contact allergen. The French Vigilance Network for Dermatology and Allergy of the Study and Research Group on Contact Dermatitis (REVIDAL-GERDA) added MI to its baseline patch testing series in 2010. To evaluate the change in the proportion of MI-positive tests in France between 2010 and 2012. We conducted a nationwide, multicentre, retrospective study of all MI-tested patients between 2010 and 2012. Sixteen centres participated in the study (7874 patients were tested). Patch tests were performed mainly at a concentration of MI 200 ppm aq. We observed a significant increase in the proportion of MI-positive tests in 2012 and 2011 as compared with 2010 (5.6%, 3.3%, and 1.5%, respectively; p < 0.001). We report a significant increase in the number of MI-positive tests. MI is confirmed to be a rapidly emerging allergen, as also observed in other European countries. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
An adaptation of the MMPI-2 Meyers Index for the MMPI-2-RF.
Meyers, John E; Miller, Ronald M; Haws, Nathan A; Murphy-Tafiti, Jason L; Curtis, Thomas D; Rupp, Zachary W; Smart, Taylor A; Thompson, Lisa M
2014-01-01
Using an overall sample of 278 individuals who had taken the Minnesota Multiphasic Personality Inventory-Second Edition (MMPI-2) and who had clear diagnostic information available in their medical records, the Meyers Index (MI) for the MMPI-2 (Meyers, Millis, & Volkert, 2002 ) was calculated for each individual, and a new version of the MI created for the MMPI-2 Restructured Form (MMPI-2-RF) was calculated. The MI is a method of combining multiple MMPI-2 validity scales into a single weighted index to assess exaggerated self-report on the MMPI-2. The new index is intended to provide the same type of global assessment of validity but for the MMPI-2-RF (MI-r). The MI and the MI-r were compared at both individual and group levels and were found to correlate well (r = .87). Diagnostic groups of litigants and nonlitigants of traumatic brain injury, chronic pain, and posttraumatic stress disorder were also examined; and the performance of the MI and the MI-r were similar. Similarly, the pass and fail agreement rate for the two scales was 93%. The results indicate that the MI and MI-r perform very similarly and are good methods of assessing overall validity of MMPI-2 and MMPI-2-RF test performance.
Isolation and Identification of miRNAs in Jatropha curcas
Wang, Chun Ming; Liu, Peng; Sun, Fei; Li, Lei; Liu, Peng; Ye, Jian; Yue, Gen Hua
2012-01-01
MicroRNAs (miRNAs) are small noncoding RNAs that play crucial regulatory roles by targeting mRNAs for silencing. To identify miRNAs in Jatropha curcas L, a bioenergy crop, cDNA clones from two small RNA libraries of leaves and seeds were sequenced and analyzed using bioinformatic tools. Fifty-two putative miRNAs were found from the two libraries, among them six were identical to known miRNAs and 46 were novel. Differential expression patterns of 15 miRNAs in root, stem, leave, fruit and seed were detected using quantitative real-time PCR. Ten miRNAs were highly expressed in fruit or seed, implying that they may be involved in seed development or fatty acids synthesis in seed. Moreover, 28 targets of the isolated miRNAs were predicted from a jatropha cDNA library database. The miRNA target genes were predicted to encode a broad range of proteins. Sixteen targets had clear BLASTX hits to the Uniprot database and were associated with genes belonging to the three major gene ontology categories of biological process, cellular component, and molecular function. Four targets were identified for JcumiR004. By silencing JcumiR004 primary miRNA, expressions of the four target genes were up-regulated and oil composition were modulated significantly, indicating diverse functions of JcumiR004. PMID:22419887
Ji, Zhibin; Liu, Zhaohua; Chao, Tianle; Hou, Lei; Fan, Rui; He, Rongyan; Wang, Guizhi; Wang, Jianmin
2017-09-20
In recent years, studies related to the expression profiles of miRNAs in the dairy goat mammary gland were performed, but regulatory mechanisms in the physiological environment and the dynamic homeostasis of mammary gland development and lactation are not clear. In the present study, sequencing data analysis of early and late lactation uncovered a total of 1,487 unique miRNAs, including 45 novel miRNA candidates and 1,442 known and conserved miRNAs, of which 758 miRNAs were co-expressed and 378 differentially expressed with P < 0.05. Moreover, 76 non-redundant target genes were annotated in 347 GO consortiums, with 3,143 candidate target genes grouped into 33 pathways. Additionally, 18 predicted target genes of 214 miRNAs were directly annotated in mammary gland development and used to construct regulatory networks based on GO annotation and the KEGG pathway. The expression levels of seven known miRNAs and three novel miRNAs were examined using quantitative real-time PCR. The results showed that miRNAs might play important roles in early and late lactation during dairy goat mammary gland development, which will be helpful to obtain a better understanding of the genetic control of mammary gland lactation and development.
Oleamide derivatives suppress the spontaneous metastasis by inhibiting connexin 26.
Ohba, Yusuke; Kanao, Yukiko; Morita, Nobuyoshi; Fujii, Eri; Hohrai, Mai; Takatsuji, Mayuko; Hirose, Hideki; Miura, Daisaku; Watari, Akihiro; Yutsudo, Masuo; Zhao, Hanjun; Yabuta, Norikazu; Ito, Akihiko; Kita, Yasuyuki; Nojima, Hiroshi
2007-07-01
We previously reported that overexpressing connexin 26 (Cx26) enhances the spontaneous metastasis of mouse BL6 melanoma cells. In contrast, daily intraperitoneal injections of an oleamide derivative named MI-18 potently inhibits the spontaneous metastasis of BL6 cells. In the present study, we chemically synthesized a novel oleamide derivative named MI-22 and found that it also efficiently suppressed the spontaneous metastasis of BL6 cells. Both MI-18 and MI-22 inhibited the gap junction-mediated intercellular communications (GJIC) that are formed between HeLa cells by the ectopic expression of the hCx26 and hCx32 human connexin subtypes; however, they had no effect on GJIC mediated by hCx40, hCx43 or hCx45. Fluorescently labeled MI-18 primarily localized not only at plasma membrane but also at Golgi/endosome. This suggests that this oleamide derivative may also act on the Cx26 molecules that accumulate in the Golgi/endosome because of their overexpression. Notably, neither derivative had a cytotoxic effect on HeLa cells when they were added into the tissue culture medium. Taken together, we propose that the MI-18 and MI-22 oleamide derivatives may serve as prototypes for novel and clinically important anticancer drugs.
Gu, Yifeng; Zhang, Lei; Chen, Xiaowu
2014-08-01
MicroRNAs (miRNAs) play an important role in gonadal development and differentiation in fish. However, understanding of the mechanism of this process is hindered by our poor knowledge of miRNA expression patterns in fish gonads. In this study, miRNA libraries derived from adult gonads of Paralichthys olivaceus were generated by using next-generation sequencing (NGS) technology. Bioinformatics analysis was performed to distinguish mature miRNA sequences from two classes of small RNAs represented in the sequencing data. A total of 141 mature miRNAs were identified, in which 21 miRNAs were found in P. olivaceus for the first time. Variance and preference of miRNAs expression were concluded from the deep sequencing reads. Some miRNAs, such as pol-miR-143, pol-miR-26a and pol-let-7a were found with quite high expression levels in both gonads, while some exhibited a clear sex-biased expression in different gonad. Approximate 20.0% and 13.1% of the isolated miRNAs were preferentially expressed in the testis (FC<0.5) or ovary (FC>2), respectively. The identification and the preliminary analysis of the sex-biased expression of miRNAs in P. olivaceus gonads in our work by using NGS will provide us a basic catalog of miRNAs to facilitate future improvement and exploitation of sexual regulatory mechanisms in P. olivaceus. Copyright © 2014. Published by Elsevier Inc.
Analysis of miRNAs and their target genes associated with lipid metabolism in duck liver
He, Jun; Wang, Weiqun; Lu, Lizhi; Tian, Yong; Niu, Dong; Ren, Jindong; Dong, Liyan; Sun, Siwei; Zhao, Yan; Chen, Li; Shen, Jianliang; Li, Xiuhong
2016-01-01
Fat character is an important index in duck culture that linked to local flavor, feed cost and fat intake for costumers. Since the regulation networks in duck lipid metabolism had not been reported very clearly, we aimed to explore the potential miRNA-mRNA pairs and their regulatory roles in duck lipid metabolism. Here, Cherry-Valley ducks were selected and treated with/without 5% oil added in feed for 2 weeks, and then fat content determination was performed on. The data showed that the fat contents and the fatty acid ratios of C17:1 and C18:2 were up-regulated in livers of oil-added ducks, while the C12:0 ratio was down-regulated. Then 21 differential miRNAs, including 10 novel miRNAs, were obtain from the livers by sequencing, and 73 target genes involved in lipid metabolic processes of these miRNAs were found, which constituted 316 miRNA-mRNA pairs. Two miRNA-mRNA pairs including one novel miRNA and one known miRNA, N-miR-16020-FASN and gga-miR-144-ELOVL6, were selected to validate the miRNA-mRNA negative relation. And the results showed that N-mir-16020 and gga-miR-144 could respectively bind the 3′-UTRs of FASN and ELOVL6 to control their expressions. This study provides new sights and useful information for future research on regulation network in duck lipid metabolism. PMID:27272010
MiR-217 is down-regulated in psoriasis and promotes keratinocyte differentiation via targeting GRHL2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Haigang; Hou, Liyue; Liu, Jingjing
MiR-217 is a well-known tumor suppressor, and its down-regulation has been shown in a wide range of solid and leukaemic cancers. However, the biological role of miR-217 in psoriasis pathogenesis, especially in keratinocyte hyperproliferation and differentiation, is not clearly understood. In this study, we found the expression of miR-217 was markedly down-regulated in psoriasis keratinocytes of psoriatic patients. In addition, overexpression of miR-217 inhibited the proliferation and promoted the differentiation of primary human keratinocytes. On the contrary, inhibition of endogenous miR-217 increased cell proliferation and delayed differentiation. Furthermore, Grainyhead-like 2 (GRHL2) was identified as a direct target of miR-217 bymore » luciferase reporter assay. The expression of miR-217 and GRHL2 was inversely correlated in both transfected keratinocytes and in psoriasis lesional skin. Moreover, knocking down GRHL2 expression by siRNA enhanced keratinocyte differentiation. Taken together, our results demonstrate a role for miR-217 in the regulation of keratinocyte differentiation, partially through the regulation of GRHL2. - Highlights: • miR-217 is down-regulated in psoriasis skin lesions. • miR-217 inhibits the proliferation and promotes differentiation of keratinocytes. • GRHL2 is a novel target of miR-217 in keratinocytes. • GRHL2 is up-regulated and inversely correlated with miR-217 in psoriasis skin lesions.« less
MiR-126 and miR-126* regulate shear-resistant firm leukocyte adhesion to human brain endothelium
Cerutti, Camilla; Edwards, Laura J.; de Vries, Helga E.; Sharrack, Basil; Male, David K.; Romero, Ignacio A.
2017-01-01
Leukocyte adhesion to brain endothelial cells, the blood-brain barrier main component, is a critical step in the pathogenesis of neuroinflammatory diseases such as multiple sclerosis (MS). Leukocyte adhesion is mediated mainly by selectins, cell adhesion molecules and chemokines induced by pro-inflammatory cytokines such as TNFα and IFNγ, but the regulation of this process is not fully clear. This study investigated the regulation of firm leukocyte adhesion to human brain endothelium by two different brain endothelial microRNAs (miRs), miR-126 and miR-126*, that are downregulated by TNFα and IFNγ in a human brain endothelial cell line, hCMEC/D3. Using a leukocyte adhesion in vitro assay under shear forces mimicking blood flow, we observed that reduction of endothelial miR-126 and miR-126* enhanced firm monocyte and T cell adhesion to hCMEC/D3 cells, whereas their increased expression partially prevented THP1, Jurkat and primary MS patient-derived PBMC firm adhesion. Furthermore, we observed that miR-126* and miR-126 downregulation increased E-selectin and VCAM1, respectively, while miR-126 overexpression reduced VCAM1 and CCL2 expression by hCMEC/D3 cells, suggesting that these miRs regulate leukocyte adhesion by modulating the expression of adhesion-associated endothelial mRNA targets. Hence, human brain endothelial miR-126 and miR-126* could be used as a therapeutic tool to reduce leukocyte adhesion and thus reduce neuroinflammation. PMID:28358058
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shikai; Song, Lili, E-mail: commasll@163.com; Zhang, Liang
Although multiple miRNAs are found involved in radioresistance development in HR-HPV positive (+) cervical cancer, only limited studies explored the regulative mechanism of the miRNAs. miR-21 is one of the miRNAs significantly upregulated in HR-HPV (+) cervical cancer is also significantly associated with radioresistance. However, the detailed regulative network of miR-21 in radioresistance is still not clear. In this study, we confirmed that miR-21 overexpression was associated with higher level of radioresistance in HR-HPV (+) cervical cancer patients and thus decided to further explore its role. Findings of this study found miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervicalmore » cancer cells and decrease radiation induced G2/M block and increase S phase accumulation. By using dual luciferase assay, we verified a binding site between miR-21 and 3′-UTR of large tumor suppressor kinase 1 (LATS1). Through direct binding, miR-21 can regulate LATS1 expression in cervical cancer cells. LATS1 overexpression can reverse miR-21 induced higher colony formation rate and also reduced miR-21 induced S phase accumulation and G2/M phase block reduction under radiation treatment. These results suggested that miR-21-LATS1 axis plays an important role in regulating radiosensitivity. - Highlights: • miR-21 is highly expressed in HR-HPV (+) radioresistant cervical cancer patients. • miR-21 can negatively affect radiosensitivity of HR-HPV (+) cervical cancer cells. • miR-21 can decrease radiation induced G2/M block and increase S phase accumulation. • miR-21 modulates radiosensitivity cervical cancer cell by directly targeting LATS1.« less
Revisiting Criteria for Plant MicroRNA Annotation in the Era of Big Data[OPEN
2018-01-01
MicroRNAs (miRNAs) are ∼21-nucleotide-long regulatory RNAs that arise from endonucleolytic processing of hairpin precursors. Many function as essential posttranscriptional regulators of target mRNAs and long noncoding RNAs. Alongside miRNAs, plants also produce large numbers of short interfering RNAs (siRNAs), which are distinguished from miRNAs primarily by their biogenesis (typically processed from long double-stranded RNA instead of single-stranded hairpins) and functions (typically via roles in transcriptional regulation instead of posttranscriptional regulation). Next-generation DNA sequencing methods have yielded extensive data sets of plant small RNAs, resulting in many miRNA annotations. However, it has become clear that many miRNA annotations are questionable. The sheer number of endogenous siRNAs compared with miRNAs has been a major factor in the erroneous annotation of siRNAs as miRNAs. Here, we provide updated criteria for the confident annotation of plant miRNAs, suitable for the era of “big data” from DNA sequencing. The updated criteria emphasize replication and the minimization of false positives, and they require next-generation sequencing of small RNAs. We argue that improved annotation systems are needed for miRNAs and all other classes of plant small RNAs. Finally, to illustrate the complexities of miRNA and siRNA annotation, we review the evolution and functions of miRNAs and siRNAs in plants. PMID:29343505
MicroRNAs in Leukemias: Emerging Diagnostic Tools and Therapeutic Targets
Mian, Yousaf A.; Zeleznik-Le, Nancy J.
2010-01-01
MicroRNAs (miRNA) are small non-coding RNAs of ~22 nucleotides that regulate the translation and stability of mRNA to control different functions of the cell. Misexpression of miRNA has been linked to disruption of normal cellular functions, which results in various disorders including cancers such as leukemias. MicroRNA involvement in disease has been the subject of much attention and is increasing our current understanding of disease biology. Such linkages have been determined by high-throughput studies, which provide a framework for characterizing differential miRNA expression levels correlating to different cytogenetic abnormalities and their corresponding malignancies. In addition, functional studies of particular miRNAs have begun to define the effects of miRNA on predicted mRNA targets. It is clear that miRNAs can serve as molecular markers of leukemias and the hope is that they can also serve as new therapeutic targets. Studies are beginning to elucidate how to deliver therapeutic antagonists to attenuate overexpressed miRNAs and to replace underexpressed miRNAs. In this review, we: i) discuss the current understanding of miRNA function and expression in normal hematopoiesis, ii) provide examples of miRNAs that are misregulated in leukemias, and iii) evaluate the current status and potential future directions for the burgeoning field of antisense oligonucleotides and other therapeutic attempts to intervene in miRNA disregulation in leukemias. PMID:20370647
Pinto, Yishay; Buchumenski, Ilana
2018-01-01
Abstract A-to-I RNA editing is an important post-transcriptional modification, known to be altered in tumors. It targets dozens of sites within miRNAs, some of which impact miRNA biogenesis and function, as well as many miRNA recognition sites. However, the full extent of the effect of editing on regulation by miRNAs and its behavior in human cancers is still unknown. Here we systematically characterized miRNA editing in 10 593 human samples across 32 cancer types and normal controls. We find that the majority of previously reported sites show little to no evidence for editing in this dataset, compile a list of 58 reliable miRNA editing sites, and study them across normal and cancer samples. Edited miRNA versions tend to suppress expression of known oncogenes, and, consistently, we observe a clear global tendency for hypo-editing in tumors, in strike contrast to the behavior for mRNA editing, allowing an accurate classification of normal/tumor samples based on their miRNA editing profile. In many cancers this profile correlates with patients' survival. Finally, thousands of miRNA binding sites are differentially edited in cancer. Our study thus establishes the important effect of RNA editing on miRNA-regulation in the tumor cell, with prospects for diagnostic and prognostic applications. PMID:29165639
MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects.
Miao, Jinglei; Wu, Song; Peng, Zhi; Tania, Mousumi; Zhang, Chaoyue
2013-08-01
MicroRNAs (miRNAs) are small RNA molecules, which can interfere with the expression of several genes and act as gene regulator. miRNAs have been proved as a successful diagnostic and therapeutic tool in several cancers. In this review, the differential expression of miRNAs in osteosarcoma and their possibility to be used as diagnostic and therapeutic tools have been discussed. Osteosarcoma is the most common primary bone tumor that mainly affects children and adolescents. The current treatment of osteosarcoma remains difficult, and osteosarcoma causes many deaths because of its complex pathogenesis and resistance to conventional treatments. Several studies demonstrated that the differential expression patterns of miRNAs are a promising tool for the diagnosis and treatment of osteosarcoma. Although some aspect of the mechanism of action of miRNAs in controlling osteosarcoma has been identified (e.g., targeting the Notch signaling pathway), it is far beyond to the clear understanding of miRNA targets in osteosarcoma. Identification of the specific target of miRNAs may aid molecular targets for drug development and future relief of osteosarcoma.
Wu, Di; Murashov, Alexander K.
2013-01-01
MicroRNAs (miRNAs) are small, non-coding RNAs that function as key post-transcriptional regulators in neural development, brain function, and neurological diseases. Growing evidence indicates that miRNAs are also important mediators of nerve regeneration, however, the affected signaling mechanisms are not clearly understood. In the present study, we show that nerve injury-induced miR-431 stimulates regenerative axon growth by silencing Kremen1, an antagonist of Wnt/beta-catenin signaling. Both the gain-of-function of miR-431 and knockdown of Kremen1 significantly enhance axon outgrowth in murine dorsal root ganglion neuronal cultures. Using cross-linking with AGO-2 immunoprecipitation, and 3′-untranslated region (UTR) luciferase reporter assay we demonstrate miR-431 direct interaction on the 3′-UTR of Kremen1 mRNA. Together, our results identify miR-431 as an important regulator of axonal regeneration and a promising therapeutic target. PMID:24167472
Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren
2017-05-02
RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5' products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC.
A Panel of MicroRNAs as Diagnostic Biomarkers for the Identification of Prostate Cancer.
Daniel, Rhonda; Wu, Qianni; Williams, Vernell; Clark, Gene; Guruli, Georgi; Zehner, Zendra
2017-06-16
Prostate cancer is the most common non-cutaneous cancer among men; yet, current diagnostic methods are insufficient, and more reliable diagnostic markers need to be developed. One answer that can bridge this gap may lie in microRNAs. These small RNA molecules impact protein expression at the translational level, regulating important cellular pathways, the dysregulation of which can exert tumorigenic effects contributing to cancer. In this study, high throughput sequencing of small RNAs extracted from blood from 28 prostate cancer patients at initial stages of diagnosis and prior to treatment was used to identify microRNAs that could be utilized as diagnostic biomarkers for prostate cancer compared to 12 healthy controls. In addition, a group of four microRNAs (miR-1468-3p, miR-146a-5p, miR-1538 and miR-197-3p) was identified as normalization standards for subsequent qRT-PCR confirmation. qRT-PCR analysis corroborated microRNA sequencing results for the seven top dysregulated microRNAs. The abundance of four microRNAs (miR-127-3p, miR-204-5p, miR-329-3p and miR-487b-3p) was upregulated in blood, whereas the levels of three microRNAs (miR-32-5p, miR-20a-5p and miR-454-3p) were downregulated. Data analysis of the receiver operating curves for these selected microRNAs exhibited a better correlation with prostate cancer than PSA (prostate-specific antigen), the current gold standard for prostate cancer detection. In summary, a panel of seven microRNAs is proposed, many of which have prostate-specific targets, which may represent a significant improvement over current testing methods.
Guillot, Aymeric; Di Rienzo, Franck; MacIntyre, Tadhg; Moran, Aidan; Collet, Christian
2012-01-01
There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson’s disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted. PMID:22973214
Inhibition of KLF7-Targeting MicroRNA 146b Promotes Sciatic Nerve Regeneration.
Li, Wen-Yuan; Zhang, Wei-Ting; Cheng, Yong-Xia; Liu, Yan-Cui; Zhai, Feng-Guo; Sun, Ping; Li, Hui-Ting; Deng, Ling-Xiao; Zhu, Xiao-Feng; Wang, Ying
2018-06-01
A previous study has indicated that Krüppel-like factor 7 (KLF7), a transcription factor that stimulates Schwann cell (SC) proliferation and axonal regeneration after peripheral nerve injury, is a promising therapeutic transcription factor in nerve injury. We aimed to identify whether inhibition of microRNA-146b (miR-146b) affected SC proliferation, migration, and myelinated axon regeneration following sciatic nerve injury by regulating its direct target KLF7. SCs were transfected with miRNA lentivirus, miRNA inhibitor lentivirus, or KLF7 siRNA lentivirus in vitro. The expression of miR146b and KLF7, as well as SC proliferation and migration, were subsequently evaluated. In vivo, an acellular nerve allograft (ANA) followed by injection of GFP control vector or a lentiviral vector encoding an miR-146b inhibitor was used to assess the repair potential in a model of sciatic nerve gap. miR-146b directly targeted KLF7 by binding to the 3'-UTR, suppressing KLF7. Up-regulation of miR-146b and KLF7 knockdown significantly reduced the proliferation and migration of SCs, whereas silencing miR-146b resulted in increased proliferation and migration. KLF7 protein was localized in SCs in which miR-146b was expressed in vivo. Similarly, 4 weeks after the ANA, anti-miR-146b increased KLF7 and its target gene nerve growth factor cascade, promoting axonal outgrowth. Closer analysis revealed improved nerve conduction and sciatic function index score, and enhanced expression of neurofilaments, P0 (anti-peripheral myelin), and myelinated axon regeneration. Our findings provide new insight into the regulation of KLF7 by miR-146b during peripheral nerve regeneration and suggest a potential therapeutic strategy for peripheral nerve injury.
Guillot, Aymeric; Di Rienzo, Franck; Macintyre, Tadhg; Moran, Aidan; Collet, Christian
2012-01-01
There is now compelling evidence that motor imagery (MI) and actual movement share common neural substrate. However, the question of how MI inhibits the transmission of motor commands into the efferent pathways in order to prevent any movement is largely unresolved. Similarly, little is known about the nature of the electromyographic activity that is apparent during MI. In addressing these gaps in the literature, the present paper argues that MI includes motor execution commands for muscle contractions which are blocked at some level of the motor system by inhibitory mechanisms. We first assemble data from neuroimaging studies that demonstrate that the neural networks mediating MI and motor performance are not totally overlapping, thereby highlighting potential differences between MI and actual motor execution. We then review MI data indicating the presence of subliminal muscular activity reflecting the intrinsic characteristics of the motor command as well as increased corticomotor excitability. The third section not only considers the inhibitory mechanisms involved during MI but also examines how the brain resolves the problem of issuing the motor command for action while supervising motor inhibition when people engage in voluntary movement during MI. The last part of the paper draws on imagery research in clinical contexts to suggest that some patients move while imagining an action, although they are not aware of such movements. In particular, experimental data from amputees as well as from patients with Parkinson's disease are discussed. We also review recent studies based on comparing brain activity in tetraplegic patients with that from healthy matched controls that provide insights into inhibitory processes during MI. We conclude by arguing that based on available evidence, a multifactorial explanation of motor inhibition during MI is warranted.
Wagenaar, Timothy R; Zabludoff, Sonya; Ahn, Sung-Min; Allerson, Charles; Arlt, Heike; Baffa, Raffaele; Cao, Hui; Davis, Scott; Garcia-Echeverria, Carlos; Gaur, Rajula; Huang, Shih-Min A; Jiang, Lan; Kim, Deokhoon; Metz-Weidmann, Christiane; Pavlicek, Adam; Pollard, Jack; Reeves, Jason; Rocnik, Jennifer L; Scheidler, Sabine; Shi, Chaomei; Sun, Fangxian; Tolstykh, Tatiana; Weber, William; Winter, Christopher; Yu, Eunsil; Yu, Qunyan; Zheng, Gang; Wiederschain, Dmitri
2015-06-01
Hepatocellular carcinoma (HCC) remains a significant clinical challenge with few therapeutic options available to cancer patients. MicroRNA 21-5p (miR-21) has been shown to be upregulated in HCC, but the contribution of this oncomiR to the maintenance of tumorigenic phenotype in liver cancer remains poorly understood. We have developed potent and specific single-stranded oligonucleotide inhibitors of miR-21 (anti-miRNAs) and used them to interrogate dependency on miR-21 in a panel of liver cancer cell lines. Treatment with anti-miR-21, but not with a mismatch control anti-miRNA, resulted in significant derepression of direct targets of miR-21 and led to loss of viability in the majority of HCC cell lines tested. Robust induction of caspase activity, apoptosis, and necrosis was noted in anti-miR-21-treated HCC cells. Furthermore, ablation of miR-21 activity resulted in inhibition of HCC cell migration and suppression of clonogenic growth. To better understand the consequences of miR-21 suppression, global gene expression profiling was performed on anti-miR-21-treated liver cancer cells, which revealed striking enrichment in miR-21 target genes and deregulation of multiple growth-promoting pathways. Finally, in vivo dependency on miR-21 was observed in two separate HCC tumor xenograft models. In summary, these data establish a clear role for miR-21 in the maintenance of tumorigenic phenotype in HCC in vitro and in vivo. miR-21 is important for the maintenance of the tumorigenic phenotype of HCC and represents a target for pharmacologic intervention. ©2015 American Association for Cancer Research.
Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H
2013-01-01
MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis. PMID:24287695
Feng, Y; Niu, L-L; Wei, W; Zhang, W-Y; Li, X-Y; Cao, J-H; Zhao, S-H
2013-11-28
MiR-133 was found to be specifically expressed in cardiac and skeletal muscle in previous studies. There are two members in the miR-133 family: miR-133a and miR-133b. Although previous studies indicated that miR-133a was related to myogenesis, the signaling pathways regulated by miR-133 were still not very clear. In this study, we showed that both miR-133a and miR-133b were upregulated during myogenesis through Solexa sequencing. We confirmed that miR-133 could promote myoblast differentiation and inhibit cell proliferation through the regulation of the extracellular signal-regulated kinase (ERK) signaling pathway in C2C12 cells. FGFR1 and PP2AC, which both participate in signal transduction of the ERK1/2 pathway, were found to be negatively regulated by miR-133a and miR-133b at the post-transcriptional level. Also, downregulation of ERK1/2 phosphorylation by miR-133 was detected. FGFR1 and PP2AC were also found to repress C2C12 differentiation by specific siRNAs. In addition, we found that inhibition of ERK1/2 pathway activity can inhibit C2C12 cell proliferation and promote the initiation of differentiation but form short and small myotubes. Furthermore, we found that the expression of miR-133 was negatively regulated by ERK1/2 signaling pathway. In summary, we demonstrated the role of miR-133 in myoblast and further revealed a new feedback loop between miR-133 and the ERK1/2 signaling pathway involving an exquisite mechanism for regulating myogenesis.
Åkerman, Linda; Casas, Rosaura; Ludvigsson, Johnny; Tavira, Beatriz; Skoglund, Camilla
2018-01-01
Micro RNAs (miRNAs) are promising disease biomarkers due to their high stability. Their expression in serum is altered in type 1 diabetes, but whether deviations exist in individuals with high risk for type 1 diabetes remains unexplored. We therefore assessed serum miRNAs in high-risk individuals (n = 21) positive for multiple islet autoantibodies, age-matched healthy children (n = 17) and recent-onset type 1 diabetes patients (n = 8), using Serum/Plasma Focus microRNA PCR Panels from Exiqon. The miRNA levels in the high-risk group were similar to healthy controls, and no specific miRNA profile was identified for the high-risk group. However, serum miRNAs appeared to reflect glycemic status and ongoing islet autoimmunity in high-risk individuals, since several miRNAs were associated to glucose homeostasis and autoantibody titers. High-risk individuals progressing to clinical disease after the sampling could not be clearly distinguished from non-progressors, while miRNA expression in the type 1 diabetes group deviated significantly from high-risk individuals and healthy controls, perhaps explained by major metabolic disturbances around the time of diagnosis.
Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan
2015-01-01
Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth. PMID:26193261
Ouyang, Hongjia; He, Xiaomei; Li, Guihuan; Xu, Haiping; Jia, Xinzheng; Nie, Qinghua; Zhang, Xiquan
2015-07-17
Growth performance is an important economic trait in chicken. MicroRNAs (miRNAs) have been shown to play important roles in various biological processes, but their functions in chicken growth are not yet clear. To investigate the function of miRNAs in chicken growth, breast muscle tissues of the two-tail samples (highest and lowest body weight) from Recessive White Rock (WRR) and Xinghua Chickens (XH) were performed on high throughput small RNA deep sequencing. In this study, a total of 921 miRNAs were identified, including 733 known mature miRNAs and 188 novel miRNAs. There were 200, 279, 257 and 297 differentially expressed miRNAs in the comparisons of WRRh vs. WRRl, WRRh vs. XHh, WRRl vs. XHl, and XHh vs. XHl group, respectively. A total of 22 highly differentially expressed miRNAs (fold change > 2 or < 0.5; p-value < 0.05; q-value < 0.01), which also have abundant expression (read counts > 1000) were found in our comparisons. As far as two analyses (WRRh vs. WRRl, and XHh vs. XHl) are concerned, we found 80 common differentially expressed miRNAs, while 110 miRNAs were found in WRRh vs. XHh and WRRl vs. XHl. Furthermore, 26 common miRNAs were identified among all four comparisons. Four differentially expressed miRNAs (miR-223, miR-16, miR-205a and miR-222b-5p) were validated by quantitative real-time RT-PCR (qRT-PCR). Regulatory networks of interactions among miRNAs and their targets were constructed using integrative miRNA target-prediction and network-analysis. Growth hormone receptor (GHR) was confirmed as a target of miR-146b-3p by dual-luciferase assay and qPCR, indicating that miR-34c, miR-223, miR-146b-3p, miR-21 and miR-205a are key growth-related target genes in the network. These miRNAs are proposed as candidate miRNAs for future studies concerning miRNA-target function on regulation of chicken growth.
Duan, Wen-biao; Du, Shan; Chen, Li-xin; Wang, Li-xia; Wei, Quan-shuai; Zhao, Jian-hui
2013-08-01
Three representative forest gaps with pit-mound microsites formed by uprooted trees were selected within the 2.55 hm2 plot in a Pinus koraiensis-dominated broad-leaved mixed forest in Xiao Xing'an Mountains of Northeast China. The cleared land and closed stand were set up as the controls, and the PAR, air temperature and relative humidity in the centers of different size gaps and in mound top as well as the total radiation and precipitation in the gap centers were measured between July and September, 2011 by using multichannel automatic meteorological stations. The differences of the microclimate between the gap centers and mound top in different months were compared, and the monthly and diurnal variations of the microclimatic factors in the gap centers and in the mound top under typical weather conditions were analyzed. The results showed that the mean monthly PAR and air temperature in the three gaps of different sizes were in the order of large gap > medium gap > small gap, and the mean monthly relative humidity was in the order of small gap > medium gap > large gap. For the same size gap, the mean monthly PAR and air temperature were higher in the mound top than in the gap center, whereas the mean monthly relative humidity was higher in the gap center than in the mound top. Both the mean monthly total radiation and the mean monthly air temperature in the forest gaps and in the controls were in the order of July > August > September and of cleared land > large gap > medium gap > small gap > closed stand, while the mean monthly relative humidity was in the order of closed stand > small gap > medium gap > large gap > cleared land. The differences in the mean monthly relative humidity between closed stand and various gaps and between closed stand and cleared land reached significant level. The monthly precipitation from July to September decreased in the order of cleared land > large gap > medium gap > small gap > closed stand. Whether in sunny days or in overcast days, the mean daily PAR and air temperature were higher in mound top than in gap center, and the mean daily relative humidity was in opposite. Whether in mound top or in gap center, the mean daily PAR and air temperature were higher in sunny days than in overcast days, while the mean daily relative humidity was higher in overcast days than in sunny days.
Osaki, Mitsuhiko; Takeshita, Fumitaka; Sugimoto, Yui; Kosaka, Nobuyoshi; Yamamoto, Yusuke; Yoshioka, Yusuke; Kobayashi, Eisuke; Yamada, Tesshi; Kawai, Akira; Inoue, Toshiaki; Ito, Hisao; Oshimura, Mitsuo; Ochiya, Takahiro
2011-01-01
Pulmonary metastases are the main cause of death in patients with osteosarcoma, however, the molecular mechanisms of metastasis are not well understood. To detect lung metastasis-related microRNA (miRNA) in human osteosarcoma, we compared parental (HOS) and its subclone (143B) human osteosarcoma cell lines showing lung metastasis in a mouse model. miR-143 was the most downregulated miRNA (P < 0.01), and transfection of miR-143 into 143B significantly decreased its invasiveness, but not cell proliferation. Noninvasive optical imaging technologies revealed that intravenous injection of miR-143, but not negative control miRNA, significantly suppressed lung metastasis of 143B (P < 0.01). To search for miR-143 target mRNA in 143B, microarray analyses were performed using an independent RNA pool extracted by two different comprehensive miR-143-target mRNA collecting systems. Western blot analyses revealed that MMP-13 was mostly protein downregulated by miR-143. Immunohistochemistry using clinical samples clearly revealed MMP-13-positive cells in lung metastasis-positive cases, but not in at least three cases showing higher miR-143 expression in the no metastasis group. Taken together, these data indicated that the downregulation of miR-143 correlates with the lung metastasis of human osteosarcoma cells by promoting cellular invasion, probably via MMP-13 upregulation, suggesting that miRNA could be used to develop new molecular targets for osteosarcoma metastasis. PMID:21427707
The microRNA ame-miR-279a regulates sucrose responsiveness of forager honey bees (Apis mellifera).
Liu, Fang; Shi, Tengfei; Yin, Wei; Su, Xin; Qi, Lei; Huang, Zachary Y; Zhang, Shaowu; Yu, Linsheng
2017-11-01
Increasing evidence demonstrates that microRNAs (miRNA) play an important role in the regulation of animal behaviours. Honey bees (Apis mellifera) are eusocial insects, with honey bee workers displaying age-dependent behavioural maturation. Many different miRNAs have been implicated in the change of behaviours in honey bees and ame-miR-279a was previously shown to be more highly expressed in nurse bee heads than in those of foragers. However, it was not clear whether this difference in expression was associated with age or task performance. Here we show that ame-miR-279a shows significantly higher expression in the brains of nurse bees relative to forager bees regardless of their ages, and that ame-miR-279a is primarily localized in the Kenyon cells of the mushroom body in both foragers and nurses. Overexpression of ame-miR-279a attenuates the sucrose responsiveness of foragers, while its absence enhances their sucrose responsiveness. Lastly, we determined that ame-miR-279a directly target the mRNA of Mblk-1. These findings suggest that ame-miR-279a plays important roles in regulating honey bee division of labour. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shinn, Helen Ki; Yan, Chunri; Kim, Tae-Hwan; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Jayoung; Cha, Eun-Jong
2016-01-01
Purpose: Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. Methods: A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Results: Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). Conclusions: These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections. PMID:27377944
Yun, Seok Joong; Jeong, Pildu; Kang, Ho Won; Shinn, Helen Ki; Kim, Ye-Hwan; Yan, Chunri; Choi, Young-Ki; Kim, Dongho; Ryu, Dong Hee; Ha, Yun-Sok; Kim, Tae-Hwan; Kwon, Tae Gyun; Kim, Jung Min; Suh, Sang Heon; Kim, Seon-Kyu; Kim, Seon-Young; Kim, Sang Tae; Kim, Won Tae; Lee, Ok-Jun; Moon, Sung-Kwon; Kim, Nam-Hyung; Kim, Isaac Yi; Kim, Jayoung; Cha, Hee-Jae; Choi, Yung-Hyun; Cha, Eun-Jong; Kim, Wun-Jae
2016-06-01
Previously, we reported the presence of virus-encoded microRNAs (miRNAs) in the urine of prostate cancer (CaP) patients. In this study, we investigated the expression of two herpes virus-encoded miRNAs in prostate tissue. A total of 175 tissue samples from noncancerous benign prostatic hyperplasia (BPH), 248 tissue samples from patients with CaP and BPH, and 50 samples from noncancerous surrounding tissues from these same patients were analyzed for the expression of two herpes virus-encoded miRNAs by real-time polymerase chain reaction (PCR) and immunocytochemistry using nanoparticles as molecular beacons. Real-time reverse transcription-PCR results revealed significantly higher expression of hsv1-miR-H18 and hsv2-miRH9- 5p in surrounding noncancerous and CaP tissues than that in BPH tissue (each comparison, P<0.001). Of note, these miRNA were expressed equivalently in the CaP tissues and surrounding noncancerous tissues. Moreover, immunocytochemistry clearly demonstrated a significant enrichment of both hsv1-miR-H18 and hsv2-miR-H9 beacon-labeled cells in CaP and surrounding noncancerous tissue compared to that in BPH tissue (each comparison, P<0.05 for hsv1-miR-H18 and hsv2- miR-H9). These results suggest that increased expression of hsv1-miR-H18 and hsv2-miR-H95p might be associated with tumorigenesis in the prostate. Further studies will be required to elucidate the role of these miRNAs with respect to CaP and herpes viral infections.
Todaka, Hiroshi; Higuchi, Takuma; Yagyu, Ken-ichi; Sugiyama, Yasunori; Yamaguchi, Fumika; Morisawa, Keiko; Ono, Masafumi; Fukushima, Atsuki; Tsuda, Masayuki; Taniguchi, Taketoshi
2015-01-01
MicroRNAs (miRNAs) are involved in the progression and suppression of various diseases through translational inhibition of target mRNAs. Therefore, the alteration of miRNA biogenesis induces several diseases. The nuclear factor 90 (NF90)-NF45 complex is known as a negative regulator in miRNA biogenesis. Here, we showed that NF90-NF45 double-transgenic (dbTg) mice develop skeletal muscle atrophy and centronuclear muscle fibers in adulthood. Subsequently, we found that the levels of myogenic miRNAs, including miRNA 133a (miR-133a), which promote muscle maturation, were significantly decreased in the skeletal muscle of NF90-NF45 dbTg mice compared with those in wild-type mice. However, levels of primary transcripts of the miRNAs (pri-miRNAs) were clearly elevated in NF90-NF45 dbTg mice. This result indicated that the NF90-NF45 complex suppressed miRNA production through inhibition of pri-miRNA processing. This finding was supported by the fact that processing of pri-miRNA 133a-1 (pri-miR-133a-1) was inhibited via binding of NF90-NF45 to the pri-miRNA. Finally, the level of dynamin 2, a causative gene of centronuclear myopathy and concomitantly a target of miR-133a, was elevated in the skeletal muscle of NF90-NF45 dbTg mice. Taken together, we conclude that the NF90-NF45 complex induces centronuclear myopathy through increased dynamin 2 expression by an NF90-NF45-induced reduction of miR-133a expression in vivo. PMID:25918244
Piatopoulou, Despina; Avgeris, Margaritis; Marmarinos, Antonios; Xagorari, Marieta; Baka, Margarita; Doganis, Dimitrios; Kossiva, Lydia; Scorilas, Andreas; Gourgiotis, Dimitrios
2017-09-05
Despite the favourable survival rates of childhood acute lymphoblastic leukaemia (ALL), a significant number of patients present resistance to antileukaemic agents and dismal prognosis. In this study, we analysed miR-125b expression in childhood ALL and evaluated its clinical utility for patients treated with Berlin-Frankfurt-Münster (BFM) protocol. The study included 272 bone marrow specimens obtained on diagnosis and on BFM day 33 from 125 patients and 64 healthy children. Following extraction, RNA was polyadenylated and reverse transcribed. miR-125b levels were quantified by quantitative PCR. Cytogenetics, immunohistotype and MRD were analysed according to international guidelines. Downregulated miR-125b levels were detected in childhood ALL patients and correlated with adverse prognosis. Following BFM induction, miR-125b levels were significantly increased, however, elevated day 33/diagnosis miR-125b ratio was associated with unfavourable disease features. Loss of miR-125b during diagnosis and higher day 33/diagnosis ratio were correlated with stronger risk for disease short-term relapse and patients' worse survival. Moreover, multivariate regression models highlighted the independent prognostic value of miR-125b for childhood ALL. Finally, the combination of miR-125b with clinically used disease markers clearly enhanced the prediction of patients' resistance to BFM chemotherapy. miR-125b significantly improves the prognosis of childhood ALL patients' outcome under BFM treatment.
Brogaard, Louise; Heegaard, Peter M. H.; Larsen, Lars E.; Mortensen, Shila; Schlegel, Michael; Dürrwald, Ralf; Skovgaard, Kerstin
2016-01-01
MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host’s ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection. PMID:26893019
Shi, Lei; Zhou, Bo; Li, Pinghua; Schinckel, Allan P; Liang, Tingting; Wang, Han; Li, Huizhi; Fu, Lingling; Chu, Qingpo; Huang, Ruihua
2015-09-01
MicroRNAs (miRNAs or miRs) play a critical role in skeletal muscle development. In a previous study we observed that miR-128 was highly expressed in skeletal muscle. However, its function in regulating skeletal muscle development is not clear. Our hypothesis was that miR-128 is involved in the regulation of the proliferation and differentiation of skeletal myoblasts. In this study, through bioinformatics analyses, we demonstrate that miR-128 specifically targeted mRNA of myostatin (MSTN), a critical inhibitor of skeletal myogenesis, at coding domain sequence (CDS) region, resulting in down-regulating of myostatin post-transcription. Overexpression of miR-128 inhibited proliferation of mouse C2C12 myoblast cells but promoted myotube formation; whereas knockdown of miR-128 had completely opposite effects. In addition, ectopic miR-128 regulated the expression of myogenic factor 5 (Myf5), myogenin (MyoG), paired box (Pax) 3 and 7. Furthermore, an inverse relationship was found between the expression of miR-128 and MSTN protein expression in vivo and in vitro. Taken together, these results reveal that there is a novel pathway in skeletal muscle development in which miR-128 regulates myostatin at CDS region to inhibit proliferation but promote differentiation of myoblast cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Brogaard, Louise; Heegaard, Peter M H; Larsen, Lars E; Mortensen, Shila; Schlegel, Michael; Dürrwald, Ralf; Skovgaard, Kerstin
2016-02-19
MicroRNAs (miRNAs) are a class of short regulatory RNA molecules which are implicated in modulating gene expression. Levels of circulating, cell-associated miRNAs in response to influenza A virus (IAV) infection has received limited attention so far. To further understand the temporal dynamics and biological implications of miRNA regulation in circulating leukocytes, we collected blood samples before and after (1, 3, and 14 days) IAV challenge of pigs. Differential expression of miRNAs and innate immune factor mRNA transcripts was analysed using RT-qPCR. A total of 20 miRNAs were regulated after IAV challenge, with the highest number of regulated miRNAs seen on day 14 after infection at which time the infection was cleared. Targets of the regulated miRNAs included genes involved in apoptosis and cell cycle regulation. Significant regulation of both miRNAs and mRNA transcripts at 14 days after challenge points to a protracted effect of IAV infection, potentially affecting the host's ability to respond to secondary infections. In conclusion, experimental IAV infection of pigs demonstrated the dynamic nature of miRNA and mRNA regulation in circulating leukocytes during and after infection, and revealed the need for further investigation of the potential immunosuppressing effect of miRNA and innate immune signaling after IAV infection.
MicroRNA-320a inhibits breast cancer metastasis by targeting metadherin
Zhang, Lei; Yang, Hai-Ping; Wang, Lei; Ding, Di; Chen, Qi; Yang, Wen-Lin; Ren, Ke-Han; Zhou, Dan-Mei; Zou, Qiang; Jin, Yi-Ting; Liu, Xiu-Ping
2016-01-01
Dysregulated microRNAs play important pathological roles in carcinogenesis that are yet to be fully elucidated. This study was performed to investigate the biological functions of microRNA-320a (miR-320a) in breast cancer and the underlying mechanisms. Function analyses for cell proliferation, cell cycle, and cell invasion/migration, were conducted after miR-320a silencing and overexpression. The specific target genes of miR-320a were predicted by TargetScan algorithm and then determined by dual luciferase reporter assay and rescue experiment. The relationship between miR-320a and its target genes was explored in human breast cancer tissues. We found that miR-320a overexpression could inhibit breast cancer invasion and migration abilities in vitro, while miR-320a silencing could enhance that. In addition, miR-320a could suppress activity of 3′-untranslated region luciferase of metadherin (MTDH), a potent oncogene. The rescue experiment revealed that MTDH was a functional target of miR-320a. Moreover, we found that MTDH was negatively correlated with miR-320a expression, and it was related to clinical outcomes of breast cancer. Further xenograft experiment also showed that miR-320a could inhibit breast cancer metastasis in vivo. Our findings clearly demonstrate that miR-320a suppresses breast cancer metastasis by directly inhibiting MTDH expression. The present study provides a new insight into anti-oncogenic roles of miR-320a and suggests that miR-320a/MTDH pathway is a putative therapeutic target in breast cancer. PMID:27229534
Combination of miRNA499 and miRNA133 Exerts a Synergic Effect on Cardiac Differentiation
Pisano, Federica; Altomare, Claudia; Cervio, Elisabetta; Barile, Lucio; Rocchetti, Marcella; Ciuffreda, Maria Chiara; Malpasso, Giuseppe; Copes, Francesco; Mura, Manuela; Danieli, Patrizia; Viarengo, Gianluca; Zaza, Antonio; Gnecchi, Massimiliano
2015-01-01
Several studies have demonstrated that miRNA are involved in cardiac development, stem cell maintenance, and differentiation. In particular, it has been shown that miRNA133, miRNA1, and miRNA499 are involved in progenitor cell differentiation into cardiomyocytes. However, it is unknown whether different miRNA may act synergistically to improve cardiac differentiation. We used mouse P19 cells as a cardiogenic differentiation model. miRNA499, miRNA1, or miRNA133 were transiently over-expressed in P19 cells individually or in different combinations. The over-expression of miRNA499 alone increased the number of beating cells and the association of miRNA499 with miRNA133 exerted a synergistic effect, further increasing the number of beating cells. Real-time polymerase chain reaction showed that the combination of miRNA499 + 133 enhanced the expression of cardiac genes compared with controls. Western blot and immunocytochemistry for connexin43 and cardiac troponin T confirmed these findings. Importantly, caffeine responsiveness, a clear functional parameter of cardiac differentiation, was increased by miRNA499 in association with miRNA133 and was directly correlated with the activation of the cardiac troponin I isoform promoter. Cyclic contractions were reversibly abolished by extracellular calcium depletion, nifedipine, ryanodine, and IP3R blockade. Finally, we demonstrated that the use of miRNA499 + 133 induced cardiac differentiation even in the absence of dimethyl sulfoxide. Our results show that the areas spontaneously contracting possess electrophysiological and pharmacological characteristics compatible with true cardiac excitation-contraction coupling. The translational relevance of our findings was reinforced by the demonstration that the over-expression of miRNA499 and miRNA133 was also able to induce the differentiation of human mesenchymal stromal cells toward the cardiac lineage. Stem Cells 2015;33:1187–1199 PMID:25534971
Epigenetic remodeling and modification to preserve skeletogenesis in vivo.
Godfrey, Tanner C; Wildman, Benjamin J; Javed, Amjad; Lengner, Christopher J; Hassan, Mohammad Quamarul
2018-12-01
Current studies offer little insight on how epigenetic remodeling of bone-specific chromatin maintains bone mass in vivo. Understanding this gap and precise mechanism is pivotal for future therapeutic innovation to prevent bone loss. Recently, we found that low bone mass is associated with decreased H3K27 acetylation (activating histone modification) of bone specific gene promoters. Here, we aim to elucidate the epigenetic mechanisms by which a miRNA cluster controls bone synthesis and homeostasis by regulating chromatin accessibility and H3K27 acetylation. In order to decipher the epigenetic axis that regulates osteogenesis, we studied a drug inducible anti-miR-23a cluster (miR-23a Cl ZIP ) knockdown mouse model. MiR-23a cluster knockdown (heterozygous) mice developed high bone mass. These mice displayed increased expression of Runx2 and Baf45a, essential factors for skeletogenesis; and decreased expression of Ezh2, a chromatin repressor indispensable for skeletogenesis. ChIP assays using miR-23a Cl knockdown calvarial cells revealed a BAF45A-EZH2 epigenetic antagonistic mechanism that maintains bone formation. Together, our findings support that the miR-23a Cl connection with tissue-specific RUNX2-BAF45A-EZH2 function is a novel molecular epigenetic axis through which a miRNA cluster orchestrates chromatin modification to elicit major effects on osteogenesis in vivo.
Chang, Cherry Yin-Yi; Lai, Ming-Tsung; Chen, Yi; Yang, Ching-Wen; Chang, Hui-Wen; Lu, Cheng-Chan; Chen, Chih-Mei; Chan, Carmen; Chung, Ching; Tseng, Chun-Cheng; Hwang, Tritium; Sheu, Jim Jinn-Chyuan; Tsai, Fuu-Jen
2016-11-22
Aberrant miRNA expression has been reported in endometriosis and miRNA gene polymorphisms have been linked to cancer. Because certain ovarian cancers arise from endometriosis, we genotyped seven cancer-related miRNA single nucleotide polymorphisms (MiRSNPs) to investigate their possible roles in endometriosis. Genetic variants in MIR196A2 (rs11614913) and MIR100 (rs1834306) were found to be associated with endometriosis development and related clinical phenotypes, such as infertility and pain. Downstream analysis of the MIR196A2 risk allele revealed upregulation of rRNA editing and protein synthesis genes, suggesting hyper-activation of ribosome biogenesis as a driving force for endometriosis progression. Clinical studies confirmed higher levels of small nucleolar RNAs and ribosomal proteins in atypical endometriosis lesions, and this was more pronounced in the associated ovarian clear cell carcinomas. Treating ovarian clear cells with CX5461, an RNA polymerase I inhibitor, suppressed cell growth and mobility followed by cell cycle arrest at G2/M stage and apoptosis. Our study thus uncovered a novel tumorigenesis pathway triggered by the cancer-related MIR196A2 risk allele during endometriosis development and progression. We suggest that anti-RNA polymerase I therapy may be efficacious for treating endometriosis and associated malignancies.
Otsuka, Kurataka; Yamamoto, Yusuke; Matsuoka, Ryosuke; Ochiya, Takahiro
2018-01-01
During the last decade, it has been uncovered that microRNAs (miRNAs), a class of small non-coding RNAs, are related to many diseases including cancers. With an increase in reports describing the dysregulation of miRNAs in various tumor types, it has become abundantly clear that miRNAs play significant roles in the formation and progression of cancers. Intriguingly, miRNAs are present in body fluids because they are packed in exosomes/extracellular vesicles and released from all types of cells. The miRNAs in the fluids are measured in a relatively simple way and the profile of miRNAs is likely to be an indicator of health condition. In recent years, various studies have demonstrated that some naturally occurring compounds can control tumor-suppressive and oncogenic miRNAs in a positive manner, suggesting that food-derived compounds could maintain the expression levels of miRNAs and help maintain good health. Therefore, our daily food and compounds in food are of great interest. In addition, exogenous diet-derived miRNAs have been indicated to function in the regulation of target mammalian transcripts in the body. These findings highlight the possibility of diet for good health through the regulation of miRNAs, and we also discuss the perspective of food application and health promotion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sun, Mengyao; Wang, Xiaopeng; Tu, Chen; Wang, Shuang; Qu, Jianqiang; Xiao, Shengxiang
2017-12-01
MicroRNAs (miRNAs) play an increasingly important role in cancer growth by coordinately suppressing genes that control cell migration, proliferation, and invasion. The above results can be achieved through the regulation of gene expression by miRNAs by suppressing translation or the direct sequence-specific degradation of the targeted mRNA. In the present study, we indicate that the expression of miR-216b could be effectively repressed both in human melanoma tissues through a comparison with primary melanoma and in human melanoma cell lines through a comparison with a normal human keratinocyte line. Moreover, miR-216b induced a clear decrease in melanoma cell proliferation and migration in vitro. Forkhead box M1 (FOXM1) was confirmed as a target gene of miR-216b, and the overexpression of miR-216b markedly repressed the luciferase activity of reporter plasmids containing the FOXM1 3'-UTR (untranslated region). Furthermore, miR-216b suppressed melanoma cell growth in nude mice in vivo, with the effects of miR-216b overexpression on melanoma cell growth and proliferation reversed by FOXM1 overexpression. The results demonstrated that miR-216b is a tumor suppressor in melanoma, identified the FOXM1 signaling pathway as a target of miR-216b action, and suggested a potential therapeutic role for miR-216b in melanoma. © 2017 International Federation for Cell Biology.
Whisnant, Adam W; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin; Cullen, Bryan R
2014-05-01
While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼ 122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼ 70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼ 122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo.
Whisnant, Adam W.; Kehl, Timo; Bao, Qiuying; Materniak, Magdalena; Kuzmak, Jacek; Löchelt, Martin
2014-01-01
ABSTRACT While numerous viral microRNAs (miRNAs) expressed by DNA viruses, especially herpesvirus family members, have been reported, there have been very few reports of miRNAs derived from RNA viruses. Here we describe three miRNAs expressed by bovine foamy virus (BFV), a member of the spumavirus subfamily of retroviruses, in both BFV-infected cultured cells and BFV-infected cattle. All three viral miRNAs are initially expressed in the form of an ∼122-nucleotide (nt) pri-miRNA, encoded within the BFV long terminal repeat U3 region, that is subsequently cleaved to generate two pre-miRNAs that are then processed to yield three distinct, biologically active miRNAs. The BFV pri-miRNA is transcribed by RNA polymerase III, and the three resultant mature miRNAs were found to contribute a remarkable ∼70% of all miRNAs expressed in BFV-infected cells. These data document the second example of a retrovirus that is able to express viral miRNAs by using embedded proviral RNA polymerase III promoters. IMPORTANCE Foamy viruses are a ubiquitous family of nonpathogenic retroviruses that have potential as gene therapy vectors in humans. Here we demonstrate that bovine foamy virus (BFV) expresses high levels of three viral microRNAs (miRNAs) in BFV-infected cells in culture and also in infected cattle. The BFV miRNAs are unusual in that they are initially transcribed by RNA polymerase III as a single, ∼122-nt pri-miRNA that is subsequently processed to release three fully functional miRNAs. The observation that BFV, a foamy virus, is able to express viral miRNAs in infected cells adds to emerging evidence that miRNA expression is a common, albeit clearly not universal, property of retroviruses and suggests that these miRNAs may exert a significant effect on viral replication in vivo. PMID:24522910
Development of the beam extraction synchronization system at the Fermilab Booster
NASA Astrophysics Data System (ADS)
Seiya, K.; Chaurize, S.; Drennan, C. C.; Pellico, W.; Sullivan, T.; Triplett, A. K.; Waller, A. M.
2015-11-01
The new beam extraction synchronization control system called "Magnetic Cogging" was developed at the Fermilab Booster and it replaces a system called "RF Cogging" as part of the Proton Improvement Plan (PIP).[1] The flux throughput goal for the PIP is 2.2×1017 protons per hour, which is double the present flux. The flux increase will be accomplished by doubling the number of beam cycles which, in turn, will double the beam loss in the Booster accelerator if nothing else is done. The Booster accelerates beam from 400 MeV to 8 GeV and extracts it to the Main Injector (MI) or Recycler Ring (RR). Cogging controls the beam extraction gap position which is created early in the Booster cycle and synchronizes the gap to the rising edge of the Booster extraction kicker and the MI/RR injection kicker. The RF Cogging system controls the gap position by changing only the radial position of the beam thus limiting the beam aperture and creating beam loss due to beam scraping. The Magnetic Cogging system controls the gap position with the magnetic field of the dipole correctors while the radial position feedback keeps the beam on a central orbit. Also with Magnetic Cogging the gap creation can occur earlier in the Booster cycle when the removed particles are at a lower energy. Thus Magnetic Cogging reduces the deposited energy of the lost particles (beam energy loss) and results in less beam loss activation. Energy loss was reduced by 40% by moving the gap creation energy from 700 MeV to 400 MeV when the Booster Cogging system was switched from RF Cogging to Magnetic Cogging in March 2015.
Yan, Hai-Biao; Huang, Jia-Cheng; Chen, You-Rong; Yao, Jian-Ni; Cen, Wei-Ning; Li, Jia-Yi; Jiang, Yi-Fan; Chen, Gang; Li, Sheng-Hua
2018-02-01
To investigate the clinical value and potential molecular mechanisms of miR-1 in clear cell renal cell carcinoma (ccRCC). We searched the Gene Expression Omnibus (GEO), ArrayExpress, several online publication databases and the Cancer Genome Atlas (TCGA). Continuous variable meta-analysis and diagnostic meta-analysis were conducted, both in Stata 14, to show the expression of miR-1 in ccRCC. Furthermore, we acquired the potential targets of miR-1 from datasets that transfected miR-1 into ccRCC cells, online prediction databases, differentially expressed genes from TCGA and literature. Subsequently bioinformatics analysis based on aforementioned selected target genes was conducted. The combined effect was -0.92 with the 95% confidence interval (CI) of -1.08 to -0.77 based on fixed effect model (I 2 = 81.3%, P < 0.001). No publication bias was found in our investigation. Sensitivity analysis showed that GSE47582 and 2 TCGA studies might cause heterogeneity. After eliminating them, the combined effect was -0.47 (95%CI: -0.78, -0.16) with I 2 = 18.3%. As for the diagnostic meta-analysis, the combined sensitivity and specificity were 0.90 (95%CI: 0.61, 0.98) and 0.63 (95%CI: 0.39, 0.82). The area under the curve (AUC) in the summarized receiver operating characteristic (SROC) curve was 0.83 (95%CI: 0.80, 0.86). No publication bias was found (P = 0.15). We finally got 67 genes which were defined the promising target genes of miR-1 in ccRCC. The most three significant KEGG pathways based on the aforementioned genes were Complement and coagulation cascades, ECM-receptor interaction and Focal adhesion. The downregulation of miR-1 might play an important role in ccRCC by targeting its target genes. Copyright © 2017 Elsevier GmbH. All rights reserved.
Signs of embryo-maternal communication: miRNAs in the maternal serum of pregnant pigs.
Reliszko, Z P; Gajewski, Z; Kaczmarek, M M
2017-09-01
Circulating miRNAs were proposed to be indicators of normal or complicated pregnancies. Based on this knowledge and our recent transcriptomic approach showing expression of miRNAs in the porcine endometrium, conceptuses and uterine extracellular vesicles during pregnancy, we have hypothesized that signs of ongoing local embryo-maternal crosstalk involving miRNAs can be detected in the circulation of pregnant gilts as early as a few days after maternal recognition of pregnancy. By applying several molecular biology techniques that differ in dynamic range and precision in maternal serum of Day 16 pregnant pigs, we were able to show for the first time increased levels of several miRNAs, previously reported to be expressed in either conceptuses and extracellular vesicles (miR-26a and miR-125b) or pregnant endometrium (miR-23b). Our results clearly showed that real-time RT-PCR and digital PCR are the most reliable methods, being able to detect small-fold changes of low-abundant circulating miRNAs. Further validation in a separate group of gilts confirmed an increase in miR-23b and miR-125b levels. In silico analyses identified pregnancy-related biological processes and pathways affected by these miRNAs. Target prediction analysis revealed hundreds of porcine transcripts with conserved sites for these miRNAs, which were classified into signaling pathways relevant to pregnancy. We conclude that a unique set of miRNAs can already be observed in the circulation of pigs during the first weeks of pregnancy, as a result of the initiation of embryo-maternal communication. © 2017 Society for Reproduction and Fertility.
MicroRNA-320a suppresses human colon cancer cell proliferation by directly targeting {beta}-catenin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jian-Yong; State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 710032 Xi'an; Huang, Yi
2012-04-20
Highlights: Black-Right-Pointing-Pointer miR-320a is downregulated in human colorectal carcinoma. Black-Right-Pointing-Pointer Overexpression of miR-320a inhibits colon cancer cell proliferation. Black-Right-Pointing-Pointer {beta}-Catenin is a direct target of miR-320a in colon cancer cells. Black-Right-Pointing-Pointer miR-320a expression inversely correlates with mRNA expression of {beta}-catenin's target genes in human colon carcinoma. -- Abstract: Recent profile studies of microRNA (miRNA) expression have documented a deregulation of miRNA (miR-320a) in human colorectal carcinoma. However, its expression pattern and underlying mechanisms in the development and progression of colorectal carcinoma has not been elucidated clearly. Here, we performed real-time PCR to examine the expression levels of miR-320a in colonmore » cancer cell lines and tumor tissues. And then, we investigated its biological functions in colon cancer cells by a gain of functional strategy. Further more, by the combinational approaches of bioinformatics and experimental validation, we confirmed target associations of miR-320a in colorectal carcinoma. Our results showed that miR-320a was frequently downregulated in cancer cell lines and colon cancer tissues. And we demonstrated that miR-320a restoration inhibited colon cancer cell proliferation and {beta}-catenin, a functionally oncogenic molecule was a direct target gene of miR-320a. Finally, the data of real-time PCR showed the reciprocal relationship between miR-320a and {beta}-catenin's downstream genes in colon cancer tissues. These findings indicate that miR-320a suppresses the growth of colon cancer cells by directly targeting {beta}-catenin, suggesting its application in prognosis prediction and cancer treatment.« less
Andaur, Rodrigo; Tapia, Julio C; Moreno, José; Soto, Leopoldo; Armisen, Ricardo; Marcelain, Katherine
2018-05-29
Enhanced radiosensitivity at low doses of ionizing radiation (IR) (0.2 to 0.6 Gy) has been reported in several cell lines. This phenomenon, known as low doses hyper-radiosensitivity (LDHRS), appears as an opportunity to decrease toxicity of radiotherapy and to enhance the effects of chemotherapy. However, the effect of low single doses IR on cell death is subtle and the mechanism underlying LDHRS has not been clearly explained, limiting the utility of LDHRS for clinical applications. To understand the mechanisms responsible for cell death induced by low-dose IR, LDHRS was evaluated in DLD-1 human colorectal cancer cells and the expression of 80 microRNAs (miRNAs) was assessed by qPCR array. Our results show that DLD-1 cells display an early DNA damage response and apoptotic cell death when exposed to 0.6 Gy. miRNA expression profiling identified 3 over-expressed (miR-205-3p, miR-1 and miR-133b) and 2 down-regulated miRNAs (miR-122-5p, and miR-134-5p) upon exposure to 0.6 Gy. This miRNA profile differed from the one in cells exposed to high-dose IR (12 Gy), supporting a distinct low-dose radiation-induced cell death mechanism. Expression of a mimetic miR-205-3p, the most overexpressed miRNA in cells exposed to 0.6 Gy, induced apoptotic cell death and, more importantly, increased LDHRS in DLD-1 cells. Thus, we propose miR-205-3p as a potential radiosensitizer to low-dose IR.
Genetic instability of 3p12-p21-specific microsatellite sequences in renal cell carcinoma.
Willers, C P; Siebert, R; Bardenheuer, W; Lux, A; Michaelis, S; Seeber, S; Luboldt, H J; Opalka, B; Schütte, J
1996-04-01
To determine the role of structural alterations of human chromosome region 3p12-p21 in the possible inactivation of one or more tumour-suppressor genes in the pathogenesis of renal cell carcinoma (RCC), lung cancer and other neoplasms. As microsatellite instability (MI), in particular MI with loss of heterozygosity (LOH), may indicate putative tumour-suppressor gene loci, 20 kidney tumours, including 14 clear cell carcinomas and six non-clear cell neoplasms, were investigated with 10 polymorphic simple sequence-repeat markers spanning 3p12-p21. Six of these markers map to the region of deletion flanked by markers D3S1285 and D3S1295 bracketing the t(3;8) translocation break-point in 3p14.2 of hereditary RCC. Twelve of 14 clear cell RCCs displayed MI for at least one locus, as opposed to none of the non-clear cell tumours (P = 0.001). Locus D3S1274 in 3p13 located in the region deleted in lung cancer line U2020 and loci D3S1313 and D3S1300 in 3p14.3 characterized common regions of instability and LOH. Two patients with RCC who also had lung cancer and colon cancer, respectively, showed LOH at D3S1313 or D3S1300 as the only alterations of their kidney tumours. These results suggest that human chromosome region 3p14.3 distal to the hereditary t(3;8) translocation breakpoint and the region deleted in the U2020 lung cancer cell line might be involved in the tumorigenesis or progression of clear cell RCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pogribny, Igor P., E-mail: igor.pogribny@fda.hhs.g
Human exposure to certain natural and man-made chemical carcinogens is one of the major risk factors for cancer development. The effect of chemical carcinogens on genetic and epigenetic alterations and their significance in the development of cancer has been well-established. In contrast, the role of microRNAs (miRNAs) in the etiology of chemical-associated cancers remains relatively unexplored despite extensive reports on changes in miRNA expression upon carcinogen exposure. This review summarizes the current knowledge for the role of miRNAs as drivers of chemical-induced carcinogenesis by bridging the gap between carcinogen exposure and cancer development through functional studies. It also emphasizes themore » potential for miRNA changes as early indicators of the carcinogenic process, markers for carcinogen exposure, and identification of chemical carcinogenic hazards. - Highlights: • Exposure to chemical carcinogens alters microRNA expression. • MicroRNA alterations may have significance in the development of cancer. • MicroRNAs may be early indicators of the carcinogenic process and carcinogen exposure.« less
Yu, Huilin; Cong, Ling; Zhu, Zhenxing; Wang, Chunyu; Zou, Jianqiu; Tao, Chengguang; Shi, Zhensheng; Lu, Xiaochun
2015-10-25
MicroRNAs (miRNAs) have been shown to play important roles in plant development, growth and stress response. Sweet sorghum [Sorghum bicolor (L.) Moench] is an important source of bioenergy due to the high sugar content in its stems. However, it is not clear how the miRNA is involved in sugar accumulation in sorghum stems. In order to identify the miRNAs in the stems and the leaves of sweet sorghum, we extracted RNAs of the stems and leaves of sweet sorghum (Rio) and grain sorghum (BTx623) at the heading and dough stages for high-throughput sequencing. A total of 179279048 reads were obtained from Illumina-based sequencing. Further analysis identified nine known miRNAs and twelve novel miRNAs that showed significantly and specifically differentially expressed in the stems of sweet sorghum. The target genes of the differentially expressed novel miRNAs include the transcription factor, glucosyltransferase, protein kinase, cytochrome P450, transporters etc. GO enrichment analysis showed that the predicted targets of these differentially expressed miRNAs participated in diverse physiological and metabolic processes. We performed RT-qRCR analysis on these miRNAs across eight different libraries to validate the miRNAs. Finally, we screened stem-specifically expressed novel miRNA and a leaf-specifically expressed novel miRNA in sweet sorghum comparing with grain sorghum. Our results provide a basis for further investigation of the potential role of these individual miRNAs in sugar accumulation. Copyright © 2015 Elsevier B.V. All rights reserved.
Todorich, Bozho; Shieh, Christine; DeSouza, Philip J; Carrasco-Zevallos, Oscar M; Cunefare, David L; Stinnett, Sandra S; Izatt, Joseph A; Farsiu, Sina; Mruthyunjaya, Privthi; Kuo, Anthony N; Toth, Cynthia A
2016-07-01
The integration of swept-source optical coherence tomography (SS-OCT) into the operating microscope enables real-time, tissue-level three-dimensional (3D) imaging to aid in ophthalmic microsurgery. In this prospective randomized controlled study, we evaluated the impact of SS microscope-integrated OCT (MI-OCT) on ophthalmology residents' performance of ophthalmic microsurgical maneuvers. Fourteen ophthalmology residents from a single institution were stratified by year of training and randomized to perform four anterior segment surgical maneuvers on porcine eyes with (MI-OCT+) or without (MI-OCT-) direct intraoperative OCT guidance. Subsequently, both groups repeated the same maneuvers without MI-OCT feedback to test whether initial MI-OCT experience affected subsequent surgical performance. Finally, the MI-OCT- group was crossed over and allowed to repeat the same maneuvers with direct MI-OCT guidance. Each resident completed a survey at the completion of the study. With direct MI-OCT feedback, residents demonstrated enhanced performance in depth-based anterior segment maneuvers (corneal suture passes at 50% and 90% depth and corneal laceration repair) compared with the residents operating without MI-OCT. Microscope-integrated OCT+ residents continued to outperform the controls when both groups subsequently operated without MI-OCT. For clear corneal wound geometry, there was no statistically significant effect of MI-OCT as applied in this study. Overall, the resident surgeons rated their subjective experience of using MI-OCT very favorably. Microscope-integrated OCT feedback enhances performance of ophthalmology residents in select anterior segment surgical maneuvers. Microscope-integrated OCT represents a valuable tool in the surgical education of ophthalmology residents.
Zcchc11 Uridylates Mature miRNAs to Enhance Neonatal IGF-1 Expression, Growth, and Survival
Kozlowski, Elyse; Matsuura, Kori Y.; Ferrari, Joseph D.; Morris, Samantha A.; Powers, John T.; Daley, George Q.; Quinton, Lee J.; Mizgerd, Joseph P.
2012-01-01
The Zcchc11 enzyme is implicated in microRNA (miRNA) regulation. It can uridylate let-7 precursors to decrease quantities of the mature miRNA in embryonic stem cell lines, suggested to mediate stem cell maintenance. It can uridylate mature miR-26 to relieve silencing activity without impacting miRNA content in cancer cell lines, suggested to mediate cytokine and growth factor expression. Broader roles of Zcchc11 in shaping or remodeling the miRNome or in directing biological or physiological processes remain entirely speculative. We generated Zcchc11-deficient mice to address these knowledge gaps. Zcchc11 deficiency had no impact on embryogenesis or fetal development, but it significantly decreased survival and growth immediately following birth, indicating a role for this enzyme in early postnatal fitness. Deep sequencing of small RNAs from neonatal livers revealed roles of this enzyme in miRNA sequence diversity. Zcchc11 deficiency diminished the lengths and terminal uridine frequencies for diverse mature miRNAs, but it had no influence on the quantities of any miRNAs. The expression of IGF-1, a liver-derived protein essential to early growth and survival, was enhanced by Zcchc11 expression in vitro, and miRNA silencing of IGF-1 was alleviated by uridylation events observed to be Zcchc11-dependent in the neonatal liver. In neonatal mice, Zcchc11 deficiency significantly decreased IGF-1 mRNA in the liver and IGF-1 protein in the blood. We conclude that the Zcchc11-mediated terminal uridylation of mature miRNAs is pervasive and physiologically significant, especially important in the neonatal period for fostering IGF-1 expression and enhancing postnatal growth and survival. We propose that the miRNA 3′ terminus is a regulatory node upon which multiple enzymes converge to direct silencing activity and tune gene expression. PMID:23209448
1986-01-22
Range : 2.52 million miles (1.56 million miles) Resolution : 47km. ( 29 mi.) Closest Approach: 127,000 km. (79,000 mi.) P-29479B/W This Voyager 2 image of the brightest Uranian satellite of the five largest, Ariel, was shot through a clear filter with the narrow angle camera. Ariel is about 1,300 km. ( 800 mi. )in diameter. This image shows several distinct bright areas that reflect nearly 45 % of the incident sunlight. On average, the satellite displays reflectivity of about 25-30 %. The bright areas are probably fresh water ice, perhaps excavated by impacts. the south pole of Ariel is slightly off center of the disk in this view.
MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias
Calin, George Adrian; Liu, Chang-Gong; Sevignani, Cinzia; Ferracin, Manuela; Felli, Nadia; Dumitru, Calin Dan; Shimizu, Masayoshi; Cimmino, Amelia; Zupo, Simona; Dono, Mariella; Dell'Aquila, Marie L.; Alder, Hansjuerg; Rassenti, Laura; Kipps, Thomas J.; Bullrich, Florencia; Negrini, Massimo; Croce, Carlo M.
2004-01-01
Little is known about the expression levels or function of micro-RNAs (miRNAs) in normal and neoplastic cells, although it is becoming clear that miRNAs play important roles in the regulation of gene expression during development [Ambros, V. (2003) Cell 113, 673–676; McManus, M. T. (2003) Semin. Cancer Biol. 13, 253–258]. We now report the genomewide expression profiling of miRNAs in human B cell chronic lymphocytic leukemia (CLL) by using a microarray containing hundreds of human precursor and mature miRNA oligonucleotide probes. This approach allowed us to identify significant differences in miRNome expression between CLL samples and normal CD5+ B cells; data were confirmed by Northern blot analyses and real-time RT-PCR. At least two distinct clusters of CLL samples can be identified that were associated with the presence or absence of Zap-70 expression, a predictor of early disease progression. Two miRNA signatures were associated with the presence or absence of mutations in the expressed Ig variableregion genes or with deletions at 13q14, respectively. These data suggest that miRNA expression patterns have relevance to the biological and clinical behavior of this leukemia. PMID:15284443
Fowler, Lauren; Conceicao, Viviane; Perera, Suneth S.; Gupta, Priyanka; Chew, Choo Beng; Dyer, Wayne B.; Saksena, Nitin K.
2016-01-01
The potential involvement of host microRNAs (miRNAs) in HIV infection is well documented, and evidence suggests that HIV modulates and also dysregulates host miRNAs involved in maintaining the host innate immune system. Moreover, the dysregulation of host miRNAs by HIV also effectively interferes directly with the host gene expression. In this study, we have simultaneously evaluated the expression of host miRNAs in both CD4+ and CD8+ T-cells derived from HIV-positive (HIV+) individuals (viremic and aviremic individuals while receiving highly active antiretroviral therapy (HAART), therapy-naïve long-term non-progressors (LTNP), and HIV-negative (HIV–) healthy controls. miRNAs were run on Affymetrix V2 chips, and the differential expression between HIV+ and HIV− samples, along with intergroup comparisons, was derived using PARTEK software, using an FDR of 5% and an adjusted p-value < 0.05. The miR-199a-5p was found to be HIV-specific and expressed in all HIV+ groups as opposed to HIV– controls. Moreover, these are the first studies to reveal clearly the highly discriminatory miRNAs at the level of the disease state, cell type, and HIV-specific miRNAs. PMID:29083374
Li, Yonggang; Zhang, Jingru; Zhang, Lei; Si, Meng; Yin, Han; Li, Jianmin
2013-07-01
Notch signaling pathway plays critical roles in human cancers, including osteosarcoma, suggesting that the discovery of specific agents targeting Notch would be extremely valuable for osteosarcoma. Our previous studies have shown that diallyl trisulfide (DATS) inhibits proliferation of osteosarcoma cells by triggering cell cycle arrest and apoptosis in vitro. However, the underlying mechanism is still unclear. In this study, we found that DATS suppressed cell survival, wound-healing capacity, invasion and angiogenesis in osteosarcoma cells. These effects were associated with decreased expression of Notch-1 and its downstream genes, such as vascular endothelial growth factor and matrix metalloproteinases, as well as increased expression of a panel of tumor-suppressive microRNAs (miRNAs), including miR-34a, miR-143, miR-145 and miR-200b/c that are typically lost in osteosarcoma. We also found that reexpression of miR-34a and miR-200b by transfection led to reduced expression of Notch-1, resulting in the inhibition of osteosarcoma cell proliferation, invasion and angiogenesis. These results clearly suggest that DATS inhibited osteosarcoma growth and aggressiveness via a novel mechanism targeting a Notch-miRNA regulatory circuit. Our data provide the first evidence that the downregulation of Notch-1 and reexpression of miRNAs by DATS may be an effective approach for the treatment of osteosarcoma.
Moussa, Issam D; Klein, Lloyd W; Shah, Binita; Mehran, Roxana; Mack, Michael J; Brilakis, Emmanouil S; Reilly, John P; Zoghbi, Gilbert; Holper, Elizabeth; Stone, Gregg W
2014-01-01
Numerous definitions have been proposed for the diagnosis of myocardial infarction (MI) after coronary revascularization. The universal definition for MI designates post procedural biomarker thresholds for defining percutaneous coronary intervention (PCI)-related MI (type 4a) and coronary artery bypass grafting (CABG)-related MI (type 5) which are of uncertain prognostic importance. In addition, for both MI types cTn is recommended as the biomarker of choice, the prognostic significance of which is less well validated than CK-MB. Widespread adoption of a MI definition not clearly linked to subsequent adverse events such as mortality or heart failure may have serious consequences for the appropriate assessment of devices and therapies, may affect clinical care pathways, and may result in misinterpretation of physician competence. Rather than employing an MI definition sensitive for small degrees of myonecrosis (the occurrence of which, based on contemporary large-scale studies, are unlikely to have important clinical consequences), it is instead recommended that a threshold level of biomarker elevation which has been strongly linked to subsequent adverse events in clinical studies be used to define a "clinically relevant MI." The present document introduces a new definition for "clinically relevant MI" after coronary revascularization (PCI or CABG) which is applicable for use in clinical trials, patient care, and quality outcomes assessment. Copyright © 2013 Wiley Periodicals, Inc.
Identification of human microRNA targets from isolated argonaute protein complexes.
Beitzinger, Michaela; Peters, Lasse; Zhu, Jia Yun; Kremmer, Elisabeth; Meister, Gunter
2007-06-01
MicroRNAs (miRNAs) constitute a class of small non-coding RNAs that regulate gene expression on the level of translation and/or mRNA stability. Mammalian miRNAs associate with members of the Argonaute (Ago) protein family and bind to partially complementary sequences in the 3' untranslated region (UTR) of specific target mRNAs. Computer algorithms based on factors such as free binding energy or sequence conservation have been used to predict miRNA target mRNAs. Based on such predictions, up to one third of all mammalian mRNAs seem to be under miRNA regulation. However, due to the low degree of complementarity between the miRNA and its target, such computer programs are often imprecise and therefore not very reliable. Here we report the first biochemical identification approach of miRNA targets from human cells. Using highly specific monoclonal antibodies against members of the Ago protein family, we co-immunoprecipitate Ago-bound mRNAs and identify them by cloning. Interestingly, most of the identified targets are also predicted by different computer programs. Moreover, we randomly analyzed six different target candidates and were able to experimentally validate five as miRNA targets. Our data clearly indicate that miRNA targets can be experimentally identified from Ago complexes and therefore provide a new tool to directly analyze miRNA function.
You, Qi; Yan, Hengyu; Liu, Yue; Yi, Xin; Zhang, Kang; Xu, Wenying; Su, Zhen
2017-05-01
The 22-nucleotide non-coding microRNAs (miRNAs) are mostly transcribed by RNA polymerase II and are similar to protein-coding genes. Unlike the clear process from stem-loop precursors to mature miRNAs, the primary transcriptional regulation of miRNA, especially in plants, still needs to be further clarified, including the original transcription start site, functional cis-elements and primary transcript structures. Due to several well-characterized transcription signals in the promoter region, we proposed a systemic approach integrating multidimensional "omics" (including genomics, transcriptomics, and epigenomics) data to improve the genome-wide identification of primary miRNA transcripts. Here, we used the model plant Arabidopsis thaliana to improve the ability to identify candidate promoter locations in intergenic miRNAs and to determine rules for identifying primary transcription start sites of miRNAs by integrating high-throughput omics data, such as the DNase I hypersensitive sites, chromatin immunoprecipitation-sequencing of polymerase II and H3K4me3, as well as high throughput transcriptomic data. As a result, 93% of refined primary transcripts could be confirmed by the primer pairs from a previous study. Cis-element and secondary structure analyses also supported the feasibility of our results. This work will contribute to the primary transcriptional regulatory analysis of miRNAs, and the conserved regulatory pattern may be a suitable miRNA characteristic in other plant species.
Zhang, Zhonghui; Hu, Fuqu; Sung, Min Woo; Shu, Chang; Castillo-González, Claudia; Koiwa, Hisashi; Tang, Guiliang; Dickman, Martin; Li, Pingwei; Zhang, Xiuren
2017-01-01
RNA-induced silencing complex (RISC) is composed of miRNAs and AGO proteins. AGOs use miRNAs as guides to slice target mRNAs to produce truncated 5' and 3' RNA fragments. The 5' cleaved RNA fragments are marked with uridylation for degradation. Here, we identified novel cofactors of Arabidopsis AGOs, named RICE1 and RICE2. RICE proteins specifically degraded single-strand (ss) RNAs in vitro; but neither miRNAs nor miRNA*s in vivo. RICE1 exhibited a DnaQ-like exonuclease fold and formed a homohexamer with the active sites located at the interfaces between RICE1 subunits. Notably, ectopic expression of catalytically-inactive RICE1 not only significantly reduced miRNA levels; but also increased 5' cleavage RISC fragments with extended uridine tails. We conclude that RICEs act to degrade uridylated 5’ products of AGO cleavage to maintain functional RISC. Our study also suggests a possible link between decay of cleaved target mRNAs and miRNA stability in RISC. DOI: http://dx.doi.org/10.7554/eLife.24466.001 PMID:28463111
microRNA-183 is Essential for Hair Cell Regeneration after Neomycin Injury in Zebrafish.
Kim, Chang Woo; Han, Ji Hyuk; Wu, Ling; Choi, Jae Young
2018-01-01
microRNAs (miRNAs) are non-coding RNAs composed of 20 to 22 nucleotides that regulate development and differentiation in various organs by silencing specific RNAs and regulating gene expression. In the present study, we show that the microRNA (miR)-183 cluster is upregulated during hair cell regeneration and that its inhibition reduces hair cell regeneration following neomycin-induced ototoxicity in zebrafish. miRNA expression patterns after neomycin exposure were analyzed using microarray chips. Quantitative polymerase chain reaction was performed to validate miR-183 cluster expression patterns following neomycin exposure (500 μM for 2 h). After injection of an antisense morpholino (MO) to miR-183 (MO-183) immediately after fertilization, hair cell regeneration after neomycin exposure in neuromast cells was evaluated by fluorescent staining (YO-PRO1). The MO-183 effect also was assessed in transgenic zebrafish larvae expressing green fluorescent protein (GFP) in inner ear hair cells. Microarray analysis clearly showed that the miR-183 cluster (miR-96, miR-182, and miR-183) was upregulated after neomycin treatment. We also confirmed upregulated expression of the miR-183 cluster during hair cell regeneration after neomycin-induced ototoxicity. miR-183 inhibition using MO-183 reduced hair cell regeneration in both wild-type and GFP transgenic zebrafish larvae. Our work demonstrates that the miR-183 cluster is essential for the regeneration of hair cells following ototoxic injury in zebrafish larvae. Therefore, regulation of the miR-183 cluster can be a novel target for stimulation of hair cell regeneration. © Copyright: Yonsei University College of Medicine 2018
RCDB: Renal Cancer Gene Database.
Ramana, Jayashree
2012-05-18
Renal cell carcinoma or RCC is one of the common and most lethal urological cancers, with 40% of the patients succumbing to death because of metastatic progression of the disease. Treatment of metastatic RCC remains highly challenging because of its resistance to chemotherapy as well as radiotherapy, besides surgical resection. Whereas RCC comprises tumors with differing histological types, clear cell RCC remains the most common. A major problem in the clinical management of patients presenting with localized ccRCC is the inability to determine tumor aggressiveness and accurately predict the risk of metastasis following surgery. As a measure to improve the diagnosis and prognosis of RCC, researchers have identified several molecular markers through a number of techniques. However the wealth of information available is scattered in literature and not easily amenable to data-mining. To reduce this gap, this work describes a comprehensive repository called Renal Cancer Gene Database, as an integrated gateway to study renal cancer related data. Renal Cancer Gene Database is a manually curated compendium of 240 protein-coding and 269 miRNA genes contributing to the etiology and pathogenesis of various forms of renal cell carcinomas. The protein coding genes have been classified according to the kind of gene alteration observed in RCC. RCDB also includes the miRNAsdysregulated in RCC, along with the corresponding information regarding the type of RCC and/or metastatic or prognostic significance. While some of the miRNA genes showed an association with other types of cancers few were unique to RCC. Users can query the database using keywords, category and chromosomal location of the genes. The knowledgebase can be freely accessed via a user-friendly web interface at http://www.juit.ac.in/attachments/jsr/rcdb/homenew.html. It is hoped that this database would serve as a useful complement to the existing public resources and as a good starting point for researchers and physicians interested in RCC genetics.
NASA Astrophysics Data System (ADS)
Yi, Weibo; Qiu, Shuang; Wang, Kun; Qi, Hongzhi; Zhao, Xin; He, Feng; Zhou, Peng; Yang, Jiajia; Ming, Dong
2017-04-01
Objective. We proposed a novel simultaneous hybrid brain-computer interface (BCI) by incorporating electrical stimulation into a motor imagery (MI) based BCI system. The goal of this study was to enhance the overall performance of an MI-based BCI. In addition, the brain oscillatory pattern in the hybrid task was also investigated. Approach. 64-channel electroencephalographic (EEG) data were recorded during MI, selective attention (SA) and hybrid tasks in fourteen healthy subjects. In the hybrid task, subjects performed MI with electrical stimulation which was applied to bilateral median nerve on wrists simultaneously. Main results. The hybrid task clearly presented additional steady-state somatosensory evoked potential (SSSEP) induced by electrical stimulation with MI-induced event-related desynchronization (ERD). By combining ERD and SSSEP features, the performance in the hybrid task was significantly better than in both MI and SA tasks, achieving a ~14% improvement in total relative to the MI task alone and reaching ~89% in mean classification accuracy. On the contrary, there was no significant enhancement obtained in performance while separate ERD feature was utilized in the hybrid task. In terms of the hybrid task, the performance using combined feature was significantly better than using separate ERD or SSSEP feature. Significance. The results in this work validate the feasibility of our proposed approach to form a novel MI-SSSEP hybrid BCI outperforming a conventional MI-based BCI through combing MI with electrical stimulation.
Boguslawska, Joanna; Wojcicka, Anna; Piekielko-Witkowska, Agnieszka; Master, Adam; Nauman, Alicja
2011-01-01
Type 1 iodothyronine deiodinase (DIO1) catalyses the conversion of prohormone thyroxine to the active thyroid hormone 3,3′,5-triiodothyronine (T3), important regulator of cell proliferation and differentiation. DIO1 expression is reduced in the most common type of kidney neoplasia, clear cell Renal Cell Carcinoma (ccRCC). MicroRNAs are small, non-coding RNAs that regulate gene expression at posttranscriptional levels. The aim of this study was to analyze the potential regulation of DIO1 expression by microRNAs in ccRCC. Bioinformatic analysis revealed that 3′UTR of the human DIO1 gene transcript contains miR-224 and miR-383 target sites, which are conserved across mammalian species. Semi-quantitative real-time PCR was used to analyze the expression of miR-224 and miR-383 in 32 samples of ccRCC tumors (T) and in 32 matched control (C) samples. We observed statistically significant (p = 0.0002) more than four fold increase in miR-224 expression and nearly two fold increase in miR-383 expression in samples T compared to samples C. Tumor specific changes in expression of miR-224 negatively correlated with changes in DIO1 expression and intracellular T3 concentration. Transfection of HeLa cell line with miR-224 and miR-383 suppressed the activity of a luciferase reporter containing the 3′UTR of DIO1. This was abolished when constructs mutated at the miR-224 and miR-383 target sites were used instead, indicating that miR-224 and miR-383 directly bind to DIO1 3′UTR. Finally, induced expression of miR-224 in Caki-2 cells resulted in significant (p<0.01) reduction of DIO1 mRNA. This study provides a novel miRNA-mediated regulatory mechanism of DIO1 expression in ccRCC. PMID:21912701
Boguslawska, Joanna; Wojcicka, Anna; Piekielko-Witkowska, Agnieszka; Master, Adam; Nauman, Alicja
2011-01-01
Type 1 iodothyronine deiodinase (DIO1) catalyses the conversion of prohormone thyroxine to the active thyroid hormone 3,3',5-triiodothyronine (T3), important regulator of cell proliferation and differentiation. DIO1 expression is reduced in the most common type of kidney neoplasia, clear cell Renal Cell Carcinoma (ccRCC). MicroRNAs are small, non-coding RNAs that regulate gene expression at posttranscriptional levels. The aim of this study was to analyze the potential regulation of DIO1 expression by microRNAs in ccRCC. Bioinformatic analysis revealed that 3'UTR of the human DIO1 gene transcript contains miR-224 and miR-383 target sites, which are conserved across mammalian species. Semi-quantitative real-time PCR was used to analyze the expression of miR-224 and miR-383 in 32 samples of ccRCC tumors (T) and in 32 matched control (C) samples. We observed statistically significant (p = 0.0002) more than four fold increase in miR-224 expression and nearly two fold increase in miR-383 expression in samples T compared to samples C. Tumor specific changes in expression of miR-224 negatively correlated with changes in DIO1 expression and intracellular T3 concentration. Transfection of HeLa cell line with miR-224 and miR-383 suppressed the activity of a luciferase reporter containing the 3'UTR of DIO1. This was abolished when constructs mutated at the miR-224 and miR-383 target sites were used instead, indicating that miR-224 and miR-383 directly bind to DIO1 3'UTR. Finally, induced expression of miR-224 in Caki-2 cells resulted in significant (p<0.01) reduction of DIO1 mRNA. This study provides a novel miRNA-mediated regulatory mechanism of DIO1 expression in ccRCC.
Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei
2015-01-01
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H+-ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective. PMID:26557132
Wei, Xiaochun; Zhang, Xiaohui; Yao, Qiuju; Yuan, Yuxiang; Li, Xixiang; Wei, Fang; Zhao, Yanyan; Zhang, Qiang; Wang, Zhiyong; Jiang, Wusheng; Zhang, Xiaowei
2015-01-01
Chinese cabbage (Brassica rapa ssp. pekinensis) is one of the most important vegetables in Asia and is cultivated across the world. Ogura-type cytoplasmic male sterility (Ogura-CMS) has been widely used in the hybrid breeding industry for Chinese cabbage and many other cruciferous vegetables. Although, the cause of Ogura-CMS has been localized to the orf138 locus in the mitochondrial genome, however, the mechanism by which nuclear genes respond to the mutation of the mitochondrial orf138 locus is unclear. In this study, a series of whole genome small RNA, degradome and transcriptome analyses were performed on both Ogura-CMS and its maintainer Chinese cabbage buds using deep sequencing technology. A total of 289 known miRNAs derived from 69 families (including 23 new families first reported in B. rapa) and 426 novel miRNAs were identified. Among these novel miRNAs, both 3-p and 5-p miRNAs were detected on the hairpin arms of 138 precursors. Ten known and 49 novel miRNAs were down-regulated, while one known and 27 novel miRNAs were up-regulated in Ogura-CMS buds compared to the fertile plants. Using degradome analysis, a total of 376 mRNAs were identified as targets of 30 known miRNA families and 100 novel miRNAs. A large fraction of the targets were annotated as reproductive development related. Our transcriptome profiling revealed that the expression of the targets was finely tuned by the miRNAs. Two novel miRNAs were identified that were specifically highly expressed in Ogura-CMS buds and sufficiently suppressed two pollen development essential genes: sucrose transporter SUC1 and H (+) -ATPase 6. These findings provide clues for the contribution of a potential miRNA regulatory network to bud development and pollen engenderation. This study contributes new insights to the communication between the mitochondria and chromosome and takes one step toward filling the gap in the regulatory network from the orf138 locus to pollen abortion in Ogura-CMS plants from a miRNA perspective.
NASA Astrophysics Data System (ADS)
Chlenova, A. A.; Stepanova, E. A.; Golubeva, E. V.; Lotfollahi, Z.
2017-10-01
CoFeNiCrSiB amorphous ribbons have been prepared by rapid quenching and subjected to the post preparation heat treatments in air. Structure, magnetic properties and giant magnetoimpedance (MI) characteristics were investigated. Short annealing of the sample at 380°С for 4 min leads to a useful structural relaxation and the highest MI ratio ΔZ/Z =350% for the total impedance. In as prepared state ;two-peak; MI field dependences were well correlating with effective magnetic anisotropy features. Post preparation treatment resulted in clear transformation into ;one-peak; shaped MI curve typical for the ribbons with longitudinal effective anisotropy. Corresponding decrease of the field sensitivity by the order of magnitude as a result of short heat treatments in air shows their importance.
Liao, Xing-Hua; Wang, Nan; Zhao, Dong-Wei; Zheng, De-Liang; Zheng, Li; Xing, Wen-Jing; Zhou, Hao; Cao, Dong-Sun; Zhang, Tong-Cun
2014-12-01
Myocardin is well known to play a key role in the development of cardiomyocyte hypertrophy. But the exact molecular mechanism regulating myocardin stability and transactivity to affect cardiomyocyte hypertrophy has not been studied clearly. We now report that NF-κB (p65) can inhibit myocardin-induced cardiomyocyte hypertrophy. Then we explore the molecular mechanism of this response. First, we show that p65 can functionally repress myocardin transcriptional activity and also reduce the protein expression of myocardin. Second, the function of myocardin can be regulated by epigenetic modifications. Myocardin sumoylation is known to transactivate cardiac genes, but whether p65 can inhibit SUMO modification of myocardin is still not clear. Our data show that p65 weakens myocardin transcriptional activity through attenuating SUMO modification of myocardin by SUMO1/PIAS1, thereby impairing myocardin-mediated cardiomyocyte hypertrophy. Furthermore, the expression of myocardin can be regulated by several microRNAs, which play important roles in the development and function of the heart and muscle. We next investigated potential role of miR-1 in cardiac hypotrophy. Our results show that p65 can upregulate the level of miR-1 and miR-1 can decrease protein expression of myocardin in cardiac myocytes. Notably, miR-1 expression is also controlled by myocardin, leading to a feedback loop. These data thus provide important and novel insights into the function that p65 inhibits myocardin-mediated cardiomyocyte hypertrophy by downregulating the expression and SUMO modification of myocardin and enhancing the expression of miR-1. Copyright © 2014 Elsevier Inc. All rights reserved.
Long term and excessive use of 900 MHz radiofrequency radiation alter microRNA expression in brain.
Dasdag, Suleyman; Akdag, Mehmet Zulkuf; Erdal, Mehmet Emin; Erdal, Nurten; Ay, Ozlem Izci; Ay, Mustafa Ertan; Yilmaz, Senay Gorucu; Tasdelen, Bahar; Yegin, Korkut
2015-04-01
We still do not have any information on the interaction between radiofrequency radiation (RF) and miRNA, which play paramount role in growth, differentiation, proliferation and cell death by suppressing one or more target genes. The purpose of this study was to bridge this gap by investigating effects of long-term 900 MHz mobile phone exposure on some of the miRNA in brain tissue. The study was carried out on 14 Wistar Albino adult male rats by dividing them into two groups: Sham (n = 7) and exposure (n = 7). Rats in the exposure group were exposed to 900 MHz RF radiation for 3 h per day (7 days a week) for 12 months (one year). The same procedure was applied to the rats in the sham group except the generator was turned off. Immediately after the last exposure, rats were sacrificed and their brains were removed. rno-miR-9-5p, rno-miR-29a-3p, rno-miR-106b-5p, rno-miR-107 and rno-miR-125a-3p in brain were investigated in detail. Results revealed that long-term exposure of 900 MHz RF radiation only decreased rno-miR107 (adjP* = 0.045) value where the whole body (rms) SAR value was 0.0369 W/kg. However, our results indicated that other microRNA evaluated in this study was not altered by 900 MHz RF radiation. 900 MHz RF radiation can alter some of the miRNA, which, in turn, may lead to adverse effects. Therefore, further studies should be performed.
Devitt, Catherine; Boyle, Laura; Teixeira, D L; O'Connell, N E; Hawe, M; Hanlon, Alison
2015-01-01
Currently, there is growing interest in developing ante and post mortem meat inspection (MI) to incorporate measures of pig health and welfare for use as a diagnostic tool on pig farms. However, the success of the development of the MI process requires stakeholder engagement with the process. Knowledge gaps and issues of trust can undermine the effective exchange and utilisation of information across the supply chain. A social science research methodology was employed to establish stakeholder perspectives towards the development of MI to include measures of pig health and welfare. In this paper the findings of semi-structured telephone interviews with 18 pig producers from the Republic of Ireland and Northern Ireland are presented. Producers recognised the benefit of the utilisation of MI data as a health and welfare diagnostic tool. This acknowledgment, however, was undermined for some by dissatisfaction with the current system of MI information feedback, by trust and fairness concerns, and by concerns regarding the extent to which data would be used in the producers' interests. Tolerance of certain animal welfare issues may also have a negative impact on how producers viewed the potential of MI data. The private veterinary practitioner was viewed as playing a vital role in assisting them with the interpretation of MI data for herd health planning. The development of positive relationships based on trust, commitment and satisfaction across the supply chain may help build a positive environment for the effective utilisation of MI data in improving pig health and welfare. The utilisation of MI as a diagnostic tool would benefit from the development of a communication strategy aimed at building positive relationships between stakeholders in the pig industry.
Aalaei-Andabili, Seyed Hossein; Rezaei, Nima
2016-01-01
Human aging is a complex process with pivotal changes in gene expression of biological pathways. Immune system dysfunction has been recognized as one of the most important abnormalities induced by senescent names immunosenescence. Emerging evidences suggest miR role in immunosenescence. We aimed to systemically review all relevant reports to clearly state miR effects on immunosenescence process. Sensitive electronic searches carried out. Quality assessment has been performed. Since majority of the included studies were laboratory works, and therefore heterogen, we discussed miR effects on immunological aging process nonstatically. Forty-six articles were found in the initial search. After exclusion of 34 articles, 12 studies enrolled to the final stage. We found that miRs have crucial roles in exact function of immune system. MiRs are involved in the regulation of the aging process in the immune system components and target certain genes, promoting or inhibiting immune system reaction to invasion. Also, miRs control life span of the immune system members by regulation of the genes involved in the apoptosis. Interestingly, we found that immunosenescence is controllable by proper manipulation of the various miRs expression. DNA methylation and histone acetylation have been discovered as novel strategies, altering NF-κB binding ability to the miR promoter sites. Effect of miRs on impairment of immune system function due to the aging is emerging. Although it has been accepted that miRs have determinant roles in the regulation of the immunosenescence; however, most of the reports are concluded from animal/laboratory works, suggesting the necessity of more investigations in human.
2011-01-01
MicroRNAs (miRNAs) are small noncoding RNA molecules that negatively regulate gene expression via degradation or translational repression of their target messenger RNAs (mRNAs). Recent studies have clearly demonstrated that miRNAs play critical roles in several biologic processes, including cell cycle, differentiation, cell development, cell growth, and apoptosis and that miRNAs are highly expressed in regulatory T (Treg) cells and a wide range of miRNAs are involved in the regulation of immunity and in the prevention of autoimmunity. It has been increasingly reported that miRNAs are associated with various human diseases like autoimmune disease, skin disease, neurological disease and psychiatric disease. Recently, the identification of mi- RNAs in skin has added a new dimension in the regulatory network and attracted significant interest in this novel layer of gene regulation. Although miRNA research in the field of dermatology is still relatively new, miRNAs have been the subject of much dermatological interest in skin morphogenesis and in regulating angiogenesis. In addition, miRNAs are moving rapidly onto center stage as key regulators of neuronal development and function in addition to important contributions to neurodegenerative disorder. Moreover, there is now compelling evidence that dysregulation of miRNA networks is implicated in the development and onset of human neruodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, Tourette's syndrome, Down syndrome, depression and schizophrenia. In this review, I briefly summarize the current studies about the roles of miRNAs in various autoimmune diseases, skin diseases, psychoneurological disorders and mental stress. PMID:22194706
Miyauchi, Mizuho; Qu, Zhilin; Miyauchi, Yasushi; Zhou, Sheng-Mei; Pak, Hui; Mandel, William J; Fishbein, Michael C; Chen, Peng-Sheng; Karagueuzian, Hrayr S
2005-06-01
The potential of chronic nicotine exposure for atrial fibrillation (AF) and atrial flutter (AFL) in hearts with and without chronic myocardial infarction (MI) remains poorly explored. MI was created in dogs by permanent occlusion of the left anterior descending coronary artery, and dogs were administered nicotine (5 mg.kg(-1).day(-1) sc) for 1 mo using osmotic minipumps. High-resolution epicardial (1,792 bipolar electrodes) and endocardial Halo catheters were used to map activation during induced atrial rhythms. Nicotine promoted inducible sustained AFL at a mean cycle length of 134 +/- 10 ms in all MI dogs (n = 6) requiring pacing and electrical shocks for termination. No AFL could be induced in MI dogs (n = 6), control (non-MI) dogs (n = 3) not exposed to nicotine, and dogs with no MI and exposed to nicotine (n = 3). Activation maps during AFL showed a single reentrant wavefront in the right atrium that rotated either clockwise (60%) or counterclockwise (40%) around the crista terminalis and through the isthmus. Ablation of the isthmus prevented the induction of AFL. Nicotine caused a significant (P < 0.01) but highly heterogeneous increase in atrial interstitial fibrosis (2- to 10-fold increase in left and right atria, respectively) in the MI group but only a 2-fold increase in the right atrium in the non-MI group. Nicotine also flattened (P < 0.05) the slope of the epicardial monophasic action potential duration (electrical restitution) curve of both atria in the MI but not in non-MI dogs. Two-dimensional simulation in an excitable matrix containing an isthmus and nicotine's restitutional and reduced gap junctional coupling (fibrosis) parameters replicated the experiments. Chronic nicotine in hearts with MI promotes AFL that closely resembles typical human AFL. Increased atrial interstitial fibrosis and flattened electrical restitution are important substrates for the AFL.
Vegter, Eline L; Ovchinnikova, Ekaterina S; Silljé, Herman H W; Meems, Laura M G; van der Pol, Atze; van der Velde, A Rogier; Berezikov, Eugene; Voors, Adriaan A; de Boer, Rudolf A; van der Meer, Peter
2017-01-01
We recently identified a set of plasma microRNAs (miRNAs) that are downregulated in patients with heart failure in comparison with control subjects. To better understand their meaning and function, we sought to validate these circulating miRNAs in 3 different well-established rat and mouse heart failure models, and correlated the miRNAs to parameters of cardiac function. The previously identified let-7i-5p, miR-16-5p, miR-18a-5p, miR-26b-5p, miR-27a-3p, miR-30e-5p, miR-199a-3p, miR-223-3p, miR-423-3p, miR-423-5p and miR-652-3p were measured by means of quantitative real time polymerase chain reaction (qRT-PCR) in plasma samples of 8 homozygous TGR(mREN2)27 (Ren2) transgenic rats and 8 (control) Sprague-Dawley rats, 6 mice with angiotensin II-induced heart failure (AngII) and 6 control mice, and 8 mice with ischemic heart failure and 6 controls. Circulating miRNA levels were compared between the heart failure animals and healthy controls. Ren2 rats, AngII mice and mice with ischemic heart failure showed clear signs of heart failure, exemplified by increased left ventricular and lung weights, elevated end-diastolic left ventricular pressures, increased expression of cardiac stress markers and reduced left ventricular ejection fraction. All miRNAs were detectable in plasma from rats and mice. No significant differences were observed between the circulating miRNAs in heart failure animals when compared to the healthy controls (all P>0.05) and no robust associations with cardiac function could be found. The previous observation that miRNAs circulate in lower levels in human patients with heart failure could not be validated in well-established rat and mouse heart failure models. These results question the translation of data on human circulating miRNA levels to experimental models, and vice versa the validity of experimental miRNA data for human heart failure.
Todorich, Bozho; Shieh, Christine; DeSouza, Philip J.; Carrasco-Zevallos, Oscar M.; Cunefare, David L.; Stinnett, Sandra S.; Izatt, Joseph A.; Farsiu, Sina; Mruthyunjaya, Privthi; Kuo, Anthony N.; Toth, Cynthia A.
2016-01-01
Purpose The integration of swept-source optical coherence tomography (SS-OCT) into the operating microscope enables real-time, tissue-level three-dimensional (3D) imaging to aid in ophthalmic microsurgery. In this prospective randomized controlled study, we evaluated the impact of SS microscope-integrated OCT (MI-OCT) on ophthalmology residents' performance of ophthalmic microsurgical maneuvers. Methods Fourteen ophthalmology residents from a single institution were stratified by year of training and randomized to perform four anterior segment surgical maneuvers on porcine eyes with (MI-OCT+) or without (MI-OCT−) direct intraoperative OCT guidance. Subsequently, both groups repeated the same maneuvers without MI-OCT feedback to test whether initial MI-OCT experience affected subsequent surgical performance. Finally, the MI-OCT− group was crossed over and allowed to repeat the same maneuvers with direct MI-OCT guidance. Each resident completed a survey at the completion of the study. Results With direct MI-OCT feedback, residents demonstrated enhanced performance in depth-based anterior segment maneuvers (corneal suture passes at 50% and 90% depth and corneal laceration repair) compared with the residents operating without MI-OCT. Microscope-integrated OCT+ residents continued to outperform the controls when both groups subsequently operated without MI-OCT. For clear corneal wound geometry, there was no statistically significant effect of MI-OCT as applied in this study. Overall, the resident surgeons rated their subjective experience of using MI-OCT very favorably. Conclusions Microscope-integrated OCT feedback enhances performance of ophthalmology residents in select anterior segment surgical maneuvers. Microscope-integrated OCT represents a valuable tool in the surgical education of ophthalmology residents. PMID:27409466
Fang, Feng; Chang, Rui-min; Yu, Lei; Lei, Xiong; Xiao, Shuai; Yang, Hao; Yang, Lian-Yue
2015-10-01
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide. However, the detailed molecular mechanisms underlying HCC progression are still not completely clear. Given the crucial role of microRNAs (miRNAs) in cancer metastasis, we aimed to analyze the expression and function of a metastasis-associated miRNA named miR-188-5p in HCC. miRNA array analysis was performed to search for metastasis-associated miRNAs in HCC. miR-188-5p expressions in tumor tissues and adjacent non-tumorous liver tissues of HCC patients and cell lines were evaluated by real-time PCR. The protein expression levels were analyzed by Western blot and immunohistochemistry. Luciferase reporter assays was used to validate the target of miR-188-5p. The effect of miR-188-5p on HCC progression was studied in vitro and in vivo. miR-188-5p was significantly decreased in HCC and its expression levels were highly correlated with multiple nodules, microvascular invasion, overall and disease-free survival of HCC. Ectopic expression of miR-188-5p suppressed HCC cell proliferation and metastasis in vitro and in vivo. Fibroblast growth factor 5 (FGF5) was identified as a major target of miR-188-5p. Enforced expression of miR-188-5p inhibited the expression of FGF5 significantly and the restoration of FGF5 expression reversed the inhibitory effects of miR-188-5p on HCC cell proliferation and metastasis. These findings collectively demonstrate a tumor suppressor role of miR-188-5p in HCC progression via targeting FGF5, suggesting that miR-188-5p could serve as a potential prognostic biomarker and therapeutic target for HCC. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Cigarette smoking substantially alters plasma microRNA profiles in healthy subjects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takahashi, Kei; Yokota, Shin-ichi; Tatsumi, Naoyuki
Circulating microRNAs (miRNAs) are receiving attention as potential biomarkers of various diseases, including cancers, chronic obstructive pulmonary disease, and cardiovascular disease. However, it is unknown whether the levels of circulating miRNAs in a healthy subject might vary with external factors in daily life. In this study, we investigated whether cigarette smoking, a habit that has spread throughout the world and is a risk factor for various diseases, affects plasma miRNA profiles. We determined the profiles of 11 smokers and 7 non-smokers by TaqMan MicroRNA array analysis. A larger number of miRNAs were detected in smokers than in non-smokers, and themore » plasma levels of two-thirds of the detected miRNAs (43 miRNAs) were significantly higher in smokers than in non-smokers. A principal component analysis of the plasma miRNA profiles clearly separated smokers and non-smokers. Twenty-four of the miRNAs were previously reported to be potential biomarkers of disease, suggesting the possibility that smoking status might interfere with the diagnosis of disease. Interestingly, we found that quitting smoking altered the plasma miRNA profiles to resemble those of non-smokers. These results suggested that the differences in the plasma miRNA profiles between smokers and non-smokers could be attributed to cigarette smoking. In addition, we found that an acute exposure of ex-smokers to cigarette smoke (smoking one cigarette) did not cause a dramatic change in the plasma miRNA profile. In conclusion, we found that repeated cigarette smoking substantially alters the plasma miRNA profile, interfering with the diagnosis of disease or signaling potential smoking-related diseases. - Highlights: • Plasma miRNA profiles were unambiguously different between smokers and non-smokers. • Smoking status might interfere with the diagnosis of disease using plasma miRNAs. • Changes of plasma miRNA profiles may be a signal of smoking-related diseases.« less
Bhattacharjee, Surjyadipta; Zhao, Yuhai; Dua, Prerna; Rogaev, Evgeny I; Lukiw, Walter J
2016-01-01
The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3'UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-kB - [corrected] inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-kB - [corrected] sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti-NF-kB and/or anti-miRNA (AM)-based therapeutic strategies may be useful against deficits in TREM-2 receptor-based-sensing and -phagocytic signaling that promote pathogenic amyloidogenesis.
Dua, Prerna; Rogaev, Evgeny I.; Lukiw, Walter J.
2016-01-01
The aggregation of Aβ42-peptides and the formation of drusen in age-related macular degeneration (AMD) are due in part to the inability of homeostatic phagocytic mechanisms to clear self-aggregating Aβ42-peptides from the extracellular space. The triggering receptor expressed in myeloid/microglial cells-2 (TREM2), a trans-membrane-spanning, sensor-receptor of the immune-globulin/lectin-like gene superfamily is a critical component of Aβ42-peptide clearance. Here we report a significant deficit in TREM2 in AMD retina and in cytokine- or oxidatively-stressed microglial (MG) cells. RT-PCR, miRNA-array, LED-Northern and Western blot studies indicated up-regulation of a microglial-enriched NF-кB-sensitive miRNA-34a coupled to a down-regulation of TREM2 in the same samples. Bioinformatics/transfection-luciferase reporter assays indicated that miRNA-34a targets the 299 nucleotide TREM2-mRNA-3’UTR, resulting in TREM2 down-regulation. C8B4-microglial cells challenged with Aβ42 were able to phagocytose these peptides, while miRNA-34a down-regulated both TREM2 and the ability of microglial-cells to phagocytose. Treatment of TNFα-stressed MG cells with phenyl-butyl nitrone (PBN), caffeic-acid phenethyl ester (CAPE), the NF-B-inhibitor/resveratrol analog CAY10512 or curcumin abrogated these responses. Incubation of anti-miRNA-34a (AM-34a) normalized miRNA-34a abundance and restored TREM2 back to homeostatic levels. These data support five novel observations: (i) that a ROS- and NF-B-sensitive, miRNA-34a-mediated modulation of TREM2 may in part regulate the phagocytic response; (ii) that gene products encoded on two different chromosomes (miRNA-34a at chr1q36.22 and TREM2 at chr6p21.1) orchestrate a phagocytic-Aβ42-peptide clearance-system; (iii) that this NF-kB-mediated-miRNA-34a-TREM2 mechanism is inducible from outside of the cell; (iv) that when operating normally, this pathway can clear Aβ42 peptide monomers from the extracellular medium; and (v) that anti-NF-kB and/or anti-miRNA (AM)-based therapeutic strategies may be useful against deficits in TREM-2 receptor-based-sensing and -phagocytic signaling that promote pathogenic amyloidogenesis. PMID:26949937
NASA Astrophysics Data System (ADS)
Li, Shang; Kobayashi, Yoshiaki; Itoh, Masayuki; Hirai, Daigorou; Takagi, Hidenori
2017-04-01
31P NMR measurements have been made on polycrystalline samples to study a metal-insulator (MI) transition and magnetic fluctuations in Ru1 -xRhxP which has metallic (M), pseudogap (PG), insulating (I), and superconducting (SC) phases. We find that RuP undergoes a crossover from the high-temperature (high-T ) M phase to the PG phase with the pseudo spin-gap behavior probed by the nuclear spin-lattice relaxation rate at TPG=330 K . The first-order MI transition is observed to take place from the PG phase to the low-T nonmagnetic I phase with the spin-gap energy of 1250 K at TMI=270 K . In the PG phase of Ru1 -xRhxP with 0 ≤x <0.45 , an analysis based on the modified Korringa relation, which is applicable to an itinerant paramagnet with weak electron correlation, shows that antiferromagnetic (AFM) fluctuations described in the random-phase approximation are enhanced in the low-T and low-x region. Around the PG-M phase boundary at xc˜0.45 , there is the SC phase whose normal state has negligible electron-electron interaction. We discuss the MI transition, the crossover from the M phase to the PG phase, and the magnetic properties of each phase based on the band structure.
Tedder, Philip; Zubko, Elena; Westhead, David R.; Meyer, Peter
2009-01-01
Two pools of small RNAs were cloned from inflorescences of Petunia hybrida using a 5′-ligation dependent and a 5′-ligation independent approach. The two libraries were integrated into a public website that allows the screening of individual sequences against 359,769 unique clones. The library contains 15 clones with 100% identity and 53 clones with one mismatch to miRNAs described for other plant species. For two conserved miRNAs, miR159 and miR390, we find clear differences in tissue-specific distribution, compared with other species. This shows that evolutionary conservation of miRNA sequences does not necessarily include a conservation of the miRNA expression profile. Almost 60% of all clones in the database are 24-nucleotide clones. In accordance with the role of 24mers in marking repetitive regions, we find them distributed across retroviral and transposable element sequences but other 24mers map to promoter regions and to different transcript regions. For one target region we observe tissue-specific variation of matching 24mers, which demonstrates that, as for 21mers, 24mer concentrations are not necessarily identical in different tissues. Asymmetric distribution of a putative novel miRNA in the two libraries suggests that the cloning method can be selective for the representation of certain small RNAs in a collection. PMID:19369427
Signal amplification of microRNAs with modified strand displacement-based cycling probe technology.
Jia, Huning; Bu, Ying; Zou, Bingjie; Wang, Jianping; Kumar, Shalen; Pitman, Janet L; Zhou, Guohua; Song, Qinxin
2016-10-24
Micro ribose nucleic acids (miRNAs) play an important role in biological processes such as cell differentiation, proliferation and apoptosis. Therefore, miRNAs are potentially a powerful marker for monitoring cancer and diagnosis. Here, we present sensitive signal amplification for miRNAs based on modified cycling probe technology with strand displacement amplification. miRNA was captured by the template coupled with beads, and then the first cycle based on SDA was repeatedly extended to the nicking end, which was produced by the extension reaction of miRNA. The products generated by SDA are captured by a molecular beacon (MB), which is designed to initiate the second amplification cycle, with a similar principle to the cycling probe technology (CPT), which is based on repeated digestion of the DNA-RNA hybrid by the RNase H. After one sample enrichment and two steps of signal amplification, 0.1 pM of let-7a can be detected. The miRNA assay exhibits a great dynamic range of over 100 orders of magnitude and high specificity to clearly discriminate a single base difference in miRNA sequences. This isothermal amplification does not require any special temperature control instrument. The assay is also about signal amplification rather than template amplification, therefore minimising contamination issues. In addition, there is no need for the reverse transcription (RT) process. Thus the amplification is suitable for miRNA detection.
Li, Yiwei; Kong, Dejuan; Wang, Zhiwei
2010-01-01
In recent years, microRNAs have received greater attention in cancer research. These small, non-coding RNAs could inhibit target gene expression by binding to the 3′ untranslated region of target mRNA, resulting in either mRNA degradation or inhibition of translation. miRNAs play important roles in many normal biological processes; however, studies have also shown that aberrant miRNA expression is correlated with the development and progression of cancers. The miRNAs could have oncogenic or tumor suppressor activities. Moreover, some miRNAs could regulate formation of cancer stem cells and epithelial-mesenchymal transition phenotype of cancer cells which are typically drug resistant. Furthermore, miRNAs could be used as biomarkers for diagnosis and prognosis, and thus miRNAs are becoming emerging targets for cancer therapy. Recent studies have shown that natural agents including curcumin, isoflavone, indole-3-carbinol, 3,3′-diindolylmethane, (−)-epigallocatechin-3-gallate, resveratrol, etc. could alter miRNA expression profiles, leading to the inhibition of cancer cell growth, induction of apoptosis, reversal of epithelial-mesenchymal transition, or enhancement of efficacy of conventional cancer therapeutics. These emerging results clearly suggest that specific targeting of miRNAs by natural agents could open newer avenues for complete eradication of tumors by killing the drug-resistant cells to improve survival outcome in patients diagnosed with malignancies. PMID:20306121
Deshpande, Supriya; Abdollahi, Maryam; Wang, Mei; Lanting, Linda; Kato, Mitsuo; Natarajan, Rama
2018-05-03
Autophagy plays a key role in the pathogenesis of kidney diseases, however its role in diabetic nephropathy (DN), and particularly in kidney glomerular mesangial cells (MCs) is not very clear. Transforming Growth Factor- β1 (TGF-β), a key player in the pathogenesis of DN, regulates expression of various microRNAs (miRNAs), some of which are known to regulate the expression of autophagy genes. Here we demonstrate that miR-192, induced by TGF-β signaling, plays an important role in regulating autophagy in DN. The expression of key autophagy genes was decreased in kidneys of streptozotocin-injected type-1 and type-2 (db/db) diabetic mice and this was reversed by treatment with Locked Nucleic Acid (LNA) modified miR-192 inhibitors. Changes in autophagy gene expression were also attenuated in kidneys of diabetic miR-192-KO mice. In vitro studies using mouse glomerular mesangial cells (MMCs) also showed a decrease in autophagy gene expression with TGF-β treatment. miR-192 mimic oligonucleotides also decreased the expression of certain autophagy genes. These results demonstrate that TGF-β and miR-192 decrease autophagy in MMCs under diabetic conditions and this can be reversed by inhibition or deletion of miR-192, further supporting miR-192 as a useful therapeutic target for DN.
You, Chun-Xiang; Zhao, Qiang; Wang, Xiao-Fei; Xie, Xing-Bin; Feng, Xiao-Ming; Zhao, Ling-Ling; Shu, Huai-Rui; Hao, Yu-Jin
2014-02-01
Although numerous miRNAs have been already isolated from fruit trees, knowledge about miRNA biogenesis is largely unknown in fruit trees. Double-strand RNA-binding (DRB) protein plays an important role in miRNA processing and maturation; however, its role in the regulation of economically important traits is not clear yet in fruit trees. EST blast and RACE amplification were performed to isolate apple MdDRB1 gene. Following expression analysis, RNA binding and protein interaction assays, MdDRB1 was transformed into apple callus and in vitro tissue cultures to characterize the functions of MdDRB1 in miRNA biogenesis, adventitious rooting, leaf development and tree growth habit. MdDRB1 contained two highly conserved DRB domains. Its transcripts existed in all tissues tested and are induced by hormones. It bound to double-strand RNAs and interacted with AtDCL1 (Dicer-Like 1) and MdDCL1. Chip assay indicated its role in miRNA biogenesis. Transgenic analysis showed that MdDRB1 controls adventitious rooting, leaf curvature and tree architecture by modulating the accumulation of miRNAs and the transcript levels of miRNA target genes. Our results demonstrated that MdDRB1 functions in the miRNA biogenesis in a conserved way and that it is a master regulator in the formation of economically important traits in fruit trees. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Moussa, Issam D; Klein, Lloyd W; Shah, Binita; Mehran, Roxana; Mack, Michael J; Brilakis, Emmanouil S; Reilly, John P; Zoghbi, Gilbert; Holper, Elizabeth; Stone, Gregg W
2013-10-22
Numerous definitions have been proposed for the diagnosis of myocardial infarction (MI) after coronary revascularization. The universal definition for MI designates post procedural biomarker thresholds for defining percutaneous coronary intervention (PCI)-related MI (type 4a) and coronary artery bypass grafting (CABG)-related MI (type 5), which are of uncertain prognostic importance. In addition, for both the MI types, cTn is recommended as the biomarker of choice, the prognostic significance of which is less well validated than CK-MB. Widespread adoption of a MI definition not clearly linked to subsequent adverse events such as mortality or heart failure may have serious consequences for the appropriate assessment of devices and therapies, may affect clinical care pathways, and may result in misinterpretation of physician competence. Rather than using an MI definition sensitive for small degrees of myonecrosis (the occurrence of which, based on contemporary large-scale studies, are unlikely to have important clinical consequences), it is instead recommended that a threshold level of biomarker elevation which has been strongly linked to subsequent adverse events in clinical studies be used to define a "clinically relevant MI." The present document introduces a new definition for "clinically relevant MI" after coronary revascularization (PCI or CABG), which is applicable for use in clinical trials, patient care, and quality outcomes assessment. Copyright © 2013. Published by Elsevier Inc.
Motivational interviewing and the clinical science of Carl Rogers.
Miller, William R; Moyers, Theresa B
2017-08-01
The clinical method of motivational interviewing (MI) evolved from the person-centered approach of Carl Rogers, maintaining his pioneering commitment to the scientific study of therapeutic processes and outcomes. The development of MI pertains to all 3 of the 125th anniversary themes explored in this special issue. Applications of MI have spread far beyond clinical psychology into fields including health care, rehabilitation, public health, social work, dentistry, corrections, coaching, and education, directly impacting the lives of many people. The public relevance and impact of clinical psychology are illustrated in the similarity of MI processes and outcomes across such diverse fields and the inseparability of human services from the person who provides them, in that both relational and technical elements of MI predict client outcomes. Within the history of clinical psychology MI is a clear product of clinical science, arising from the seminal work of Carl Rogers whose own research grounded clinical practice in empirical science. As with Rogers' work 70 years ago, MI began as an inductive empirical approach, observing clinical practice to develop and test hypotheses about what actually promotes change. Research on MI bridges the current divide between evidence-based practice and the well-established importance of therapeutic relationship. Research on training and learning of MI further questions the current model of continuing professional education through self-study and workshops as a way of improving practice behavior and client outcomes. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
MicroRNA profiling of the murine hematopoietic system
Monticelli, Silvia; Ansel, K Mark; Xiao, Changchun; Socci, Nicholas D; Krichevsky, Anna M; Thai, To-Ha; Rajewsky, Nikolaus; Marks, Debora S; Sander, Chris; Rajewsky, Klaus; Rao, Anjana; Kosik, Kenneth S
2005-01-01
Background MicroRNAs (miRNAs) are a class of recently discovered noncoding RNA genes that post-transcriptionally regulate gene expression. It is becoming clear that miRNAs play an important role in the regulation of gene expression during development. However, in mammals, expression data are principally based on whole tissue analysis and are still very incomplete. Results We used oligonucleotide arrays to analyze miRNA expression in the murine hematopoietic system. Complementary oligonucleotides capable of hybridizing to 181 miRNAs were immobilized on a membrane and probed with radiolabeled RNA derived from low molecular weight fractions of total RNA from several different hematopoietic and neuronal cells. This method allowed us to analyze cell type-specific patterns of miRNA expression and to identify miRNAs that might be important for cell lineage specification and/or cell effector functions. Conclusion This is the first report of systematic miRNA gene profiling in cells of the hematopoietic system. As expected, miRNA expression patterns were very different between hematopoietic and non-hematopoietic cells, with further subtle differences observed within the hematopoietic group. Interestingly, the most pronounced similarities were observed among fully differentiated effector cells (Th1 and Th2 lymphocytes and mast cells) and precursors at comparable stages of differentiation (double negative thymocytes and pro-B cells), suggesting that in addition to regulating the process of commitment to particular cellular lineages, miRNAs might have an important general role in the mechanism of cell differentiation and maintenance of cell identity. PMID:16086853
Highly sensitive dual mode electrochemical platform for microRNA detection
NASA Astrophysics Data System (ADS)
Jolly, Pawan; Batistuti, Marina R.; Miodek, Anna; Zhurauski, Pavel; Mulato, Marcelo; Lindsay, Mark A.; Estrela, Pedro
2016-11-01
MicroRNAs (miRNAs) play crucial regulatory roles in various human diseases including cancer, making them promising biomarkers. However, given the low levels of miRNAs present in blood, their use as cancer biomarkers requires the development of simple and effective analytical methods. Herein, we report the development of a highly sensitive dual mode electrochemical platform for the detection of microRNAs. The platform was developed using peptide nucleic acids as probes on gold electrode surfaces to capture target miRNAs. A simple amplification strategy using gold nanoparticles has been employed exploiting the inherent charges of the nucleic acids. Electrochemical impedance spectroscopy was used to monitor the changes in capacitance upon any binding event, without the need for any redox markers. By using thiolated ferrocene, a complementary detection mode on the same sensor was developed where the increasing peaks of ferrocene were recorded using square wave voltammetry with increasing miRNA concentration. This dual-mode approach allows detection of miRNA with a limit of detection of 0.37 fM and a wide dynamic range from 1 fM to 100 nM along with clear distinction from mismatched target miRNA sequences. The electrochemical platform developed can be easily expanded to other miRNA/DNA detection along with the development of microarray platforms.
He, Xiao-Yan; Tan, Zheng-Lan; Mou, Qin; Liu, Fang-Jie; Liu, Shan; Yu, Chao-Wen; Zhu, Jin; Lv, Lin-Ya; Zhang, Jun; Wang, Shan; Bao, Li-Ming; Peng, Bin; Zhao, Hui; Zou, Lin
2017-06-01
Purpose: MYCN is one of the most well-characterized genetic markers of neuroblastoma. However, the mechanisms as to how MYCN mediate neuroblastoma tumorigenesis are not fully clear. Increasing evidence has confirmed that the dysregulation of miRNAs is involved in MYCN-mediated neuroblastoma tumorigenesis, supporting their potential as therapeutic targets for neuroblastoma. Although miR-221 has been reported as one of the upregulated miRNAs, the interplay between miR-221 and MYCN-mediated neuroblastoma progression remains largely elusive. Experimental Design: The expression of miR-221 in the formalin-fixed, paraffin-embedded tissues from 31 confirmed patients with neuroblastoma was detected by locked nucleic acid- in situ hybridization and qRT-PCR. The correlation between miR-221 expression and clinical features in patients with neuroblastoma was assessed. The mechanisms as to how miR-221 regulate MYCN in neuroblastoma were addressed. The effect of miR-221 on cellular proliferation in neuroblastoma was determined both in vitro and in vivo Results: miR-221 was significantly upregulated in neuroblastoma tumor cells and tissues that overexpress MYCN, and high expression of miR-221 was positively associated with poor survival in patients with neuroblastoma. Nemo-like kinase (NLK) as a direct target of miR-221 in neuroblastoma was verified. In addition, overexpression of miR-221 decreased LEF1 phosphorylation but increased the expression of MYCN via targeting of NLK and further regulated cell cycle, particularly in S-phase, promoting the growth of neuroblastoma cells. Conclusions: This study provides a novel insight for miR-221 in the control of neuroblastoma cell proliferation and tumorigenesis, suggesting potentials of miR-221 as a prognosis marker and therapeutic target for patients with MYCN overexpressing neuroblastoma. Clin Cancer Res; 23(11); 2905-18. ©2016 AACR . ©2016 American Association for Cancer Research.
Pettersen, Torunn; Brustad, Magritt
2013-01-01
Background In a situation where national censuses do not record information on ethnicity, studies of the indigenous Sámi people's health and living conditions tend to use varying Sámi inclusion criteria and categorizations. Consequently, the basis on which Sámi study participants are included and categorized when Sámi health and living conditions are explored and compared differs. This may influence the results and conclusions drawn. Objective To explore some numerical consequences of applying principles derived from Norway's Sámi Act as a foundation for formalized inclusion criteria in population-based Sámi studies in Norway. Design We established 1 geographically based (G1) and 3 individual-based Sámi example populations (I1–I3) by applying diverse Sámi inclusion criteria to data from 17 rural municipalities in Norway north of the Arctic Circle. The data were collected for a population-based study of health and living conditions in 2003–2004 (the SAMINOR study). Our sample consisted of 14,797 participants aged 36–79 years. Results The size of the individual-based populations varied significantly. I1 (linguistic connection Sámi) made up 35.5% of the sample, I2 (self-identified Sámi) made up 21.0% and I3 (active language Sámi) 17.7%. They were also noticeably unevenly distributed between the 5 Sámi regions defined for this study. The differences for the other characteristics studied were more ambiguous. For the population G1 (residents in the Sámi language area) the only significant difference found between the Sámi and the corresponding non-Sámi population was for household income (OR=0.69, 95% CI: 0.63–0.74). For the populations I1–I3 there were significant differences on all measures except for I2 and education (OR=1.09, 95% CI: 0.99–1.21). Conclusions The choice of Sámi inclusion criterion had a clear impact on the size and geographical distribution of the defined populations but lesser influence on the selected characteristics for the Sámi populations relative to the respective non-Sámi ones. PMID:24282785
miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4.
Winbanks, Catherine E; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V; Gregorevic, Paul
2013-01-01
microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 "sponge," featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype--an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature.
miR-206 Represses Hypertrophy of Myogenic Cells but Not Muscle Fibers via Inhibition of HDAC4
Winbanks, Catherine E.; Beyer, Claudia; Hagg, Adam; Qian, Hongwei; Sepulveda, Patricio V.; Gregorevic, Paul
2013-01-01
microRNAs regulate the development of myogenic progenitors, and the formation of skeletal muscle fibers. However, the role miRNAs play in controlling the growth and adaptation of post-mitotic musculature is less clear. Here, we show that inhibition of the established pro-myogenic regulator miR-206 can promote hypertrophy and increased protein synthesis in post-mitotic cells of the myogenic lineage. We have previously demonstrated that histone deacetylase 4 (HDAC4) is a target of miR-206 in the regulation of myogenic differentiation. We confirmed that inhibition of miR-206 de-repressed HDAC4 accumulation in cultured myotubes. Importantly, inhibition of HDAC4 activity by valproic acid or sodium butyrate prevented hypertrophy of myogenic cells otherwise induced by inhibition of miR-206. To test the significance of miRNA-206 as a regulator of skeletal muscle mass in vivo, we designed recombinant adeno-associated viral vectors (rAAV6 vectors) expressing miR-206, or a miR-206 “sponge,” featuring repeats of a validated miR-206 target sequence. We observed that over-expression or inhibition of miR-206 in the muscles of mice decreased or increased endogenous HDAC4 levels respectively, but did not alter muscle mass or myofiber size. We subsequently manipulated miR-206 levels in muscles undergoing follistatin-induced hypertrophy or denervation-induced atrophy (models of muscle adaptation where endogenous miR-206 expression is altered). Vector-mediated manipulation of miR-206 activity in these models of cell growth and wasting did not alter gain or loss of muscle mass respectively. Our data demonstrate that although the miR-206/HDAC4 axis operates in skeletal muscle, the post-natal expression of miR-206 is not a key regulator of basal skeletal muscle mass or specific modes of muscle growth and wasting. These studies support a context-dependent role of miR-206 in regulating hypertrophy that may be dispensable for maintaining or modifying the adult skeletal muscle phenotype – an important consideration in relation to the development of therapeutics designed to manipulate microRNA activity in musculature. PMID:24023888
Murray, Megan Y.; Rushworth, Stuart A.; Zaitseva, Lyubov; Bowles, Kristian M.; MacEwan, David J.
2013-01-01
Dexamethasone is a key front-line chemotherapeutic for B-cell malignant multiple myeloma (MM). Dexamethasone modulates MM cell survival signaling but fails to induce marked cytotoxicity when used as a monotherapy. We demonstrate here the mechanism behind this insufficient responsiveness of MM cells toward dexamethasone, revealing in MM a dramatic anti-apoptotic role for microRNA (miRNA)-125b in the insensitivity toward dexamethasone-induced apoptosis. MM cells responding to dexamethasone exhibited enhanced expression of oncogenic miR-125b. Dexamethasone also induced expression of miR-34a, which acts to suppress SIRT1 deacetylase, and thus allows maintained acetylation and inactivation of p53. p53 mRNA is also suppressed by miR-125b targeting. Reporter assays showed that both these dexamethasone-induced miRNAs act downstream of their target genes to prevent p53 tumor suppressor actions and, ultimately, resist cytotoxic responses in MM. Use of antisense miR-125b transcripts enhanced expression of pro-apoptotic p53, repressed expression of anti-apoptotic SIRT1 and, importantly, significantly enhanced dexamethasone-induced cell death responses in MM. Pharmacological manipulations showed that the key regulation enabling complete dexamethasone sensitivity in MM cells lies with miR-125b. In summary, dexamethasone-induced miR-125b induces cell death resistance mechanisms in MM cells via the p53/miR-34a/SIRT1 signaling network and provides these cells with an enhanced level of resistance to cytotoxic chemotherapeutics. Clearly, such anti-apoptotic mechanisms will need to be overcome to more effectively treat nascent, refractory and relapsed MM patients. These mechanisms provide insight into the role of miRNA regulation of apoptosis and their promotion of MM cell proliferative mechanisms. PMID:23759586
Ylla, Guillem; Piulachs, Maria-Dolors; Belles, Xavier
2017-10-11
Do miRNAs contribute to specify the germ-band type and the body structure in the insect embryo? Our goal was to address that issue by studying the changes in miRNA expression along the ontogeny of the German cockroach Blattella germanica, which is a short germ-band and hemimetabolan species. We sequenced small RNA libraries representing 11 developmental stages of B. germanica ontogeny (with especial emphasis on embryogenesis) and the changes in miRNA expression were examined. Data were compared with equivalent data for two long germ-band holometabolan species Drosophila melanogaster and Drosophila virilis, and the short germ-band holometabolan species Tribolium castaneum. The identification of B. germanica embryo small RNA sequences unveiled miRNAs not detected in previous studies, such as those of the MIR-309 family and 54 novel miRNAs. Four main waves of miRNA expression were recognized (with most miRNA changes occurring during the embryonic stages): the first from day 0 to day 1 of embryogenesis, the second during mid-embryogenesis (days 0-6), the third (with an acute expression peak) on day 2 of embryonic development, and the fourth during post-embryonic development. The second wave defined the boundaries of maternal-to-zygotic transition, with maternal mRNAs being cleared, presumably by Mir-309 and associated scavenger miRNAs. miRNAs follow well-defined patterns of expression over hemimetabolan ontogeny, patterns that are more diverse during embryonic development than during the nymphal stages. The results suggest that miRNAs play important roles in the developmental transitions between the embryonic stages of development (starting with maternal loading), during which they might influence the germ-band type and metamorphosis mode.
Hardcastle, Sarah J; Fortier, Michelle; Blake, Nicola; Hagger, Martin S
2017-03-01
Motivational interviewing (MI) is a complex intervention comprising multiple techniques aimed at changing health-related motivation and behaviour. However, MI techniques have not been systematically isolated and classified. This study aimed to identify the techniques unique to MI, classify them as content-related or relational, and evaluate the extent to which they overlap with techniques from the behaviour change technique taxonomy version 1 [BCTTv1; Michie, S., Richardson, M., Johnston, M., Abraham, C., Francis, J., Hardeman, W., … Wood, C. E. (2013). The behavior change technique taxonomy (v1) of 93 hierarchically clustered techniques: Building an international consensus for the reporting of behavior change interventions. Annals of Behavioral Medicine, 46, 81-95]. Behaviour change experts (n = 3) content-analysed MI techniques based on Miller and Rollnick's [(2013). Motivational interviewing: Preparing people for change (3rd ed.). New York: Guildford Press] conceptualisation. Each technique was then coded for independence and uniqueness by independent experts (n = 10). The experts also compared each MI technique to those from the BCTTv1. Experts identified 38 distinct MI techniques with high agreement on clarity, uniqueness, preciseness, and distinctiveness ratings. Of the identified techniques, 16 were classified as relational techniques. The remaining 22 techniques were classified as content based. Sixteen of the MI techniques were identified as having substantial overlap with techniques from the BCTTv1. The isolation and classification of MI techniques will provide researchers with the necessary tools to clearly specify MI interventions and test the main and interactive effects of the techniques on health behaviour. The distinction between relational and content-based techniques within MI is also an important advance, recognising that changes in motivation and behaviour in MI is a function of both intervention content and the interpersonal style in which the content is delivered.
Tao, Qian; Milles, Julien; Zeppenfeld, Katja; Lamb, Hildo J; Bax, Jeroen J; Reiber, Johan H C; van der Geest, Rob J
2010-08-01
Accurate assessment of the size and distribution of a myocardial infarction (MI) from late gadolinium enhancement (LGE) MRI is of significant prognostic value for postinfarction patients. In this paper, an automatic MI identification method combining both intensity and spatial information is presented in a clear framework of (i) initialization, (ii) false acceptance removal, and (iii) false rejection removal. The method was validated on LGE MR images of 20 chronic postinfarction patients, using manually traced MI contours from two independent observers as reference. Good agreement was observed between automatic and manual MI identification. Validation results showed that the average Dice indices, which describe the percentage of overlap between two regions, were 0.83 +/- 0.07 and 0.79 +/- 0.08 between the automatic identification and the manual tracing from observer 1 and observer 2, and the errors in estimated infarct percentage were 0.0 +/- 1.9% and 3.8 +/- 4.7% compared with observer 1 and observer 2. The difference between the automatic method and manual tracing is in the order of interobserver variation. In conclusion, the developed automatic method is accurate and robust in MI delineation, providing an objective tool for quantitative assessment of MI in LGE MR imaging.
Martino, Steve; Carroll, Kathleen; Kostas, Demetrios; Perkins, Jennifer; Rounsaville, Bruce
2013-01-01
Motivational Interviewing (MI) is a brief treatment approach for helping patients develop intrinsic motivation to change addictive behaviors. While initially developed to target primary substance using populations, professionals are increasingly recognizing the promise this approach has for addressing the motivational dilemmas faced by patients who have co-occurring psychiatric and psychoactive substance use disorders. Unfortunately, this recognition has not lead to a clear explication of how MI might be adopted for specific diagnostic populations of dually diagnosed patients. In this article we describe how we have applied the principles and practices of MI to patients who have psychotic disorders and co-occurring drug or alcohol use problems. Specifically, we provide two supplemental guidelines to augment basic MI principles (adopting an integrated dual diagnosis approach, accommodating cognitive impairments and disordered thinking). We present recommended modifications to primary MI skill sets (simplifying open-ended questions, refining reflective listening skills, heightening emphasis on affirmations, integrating psychiatric issues into personalized feedback and decisional balance matrices). Finally, we highlight other clinical considerations (handling psychotic exacerbation and crisis events, recommended professional qualifications) when using MI with psychotic disordered dually diagnosed patients. PMID:12495791
Rieckmann, Traci R; Abraham, Amanda J; Bride, Brian E
Despite considerable empirical evidence that psychosocial interventions improve addiction treatment outcomes across populations, implementation remains problematic. A small body of research points to the importance of research network participation as a facilitator of implementation; however, studies examined limited numbers of evidence-based practices. To address this gap, the present study examined factors impacting implementation of motivational interviewing (MI). This study used data from a national sample of privately funded treatment programs (n = 345) and programs participating in the National Drug Abuse Treatment Clinical Trials Network (CTN) (n = 156). Data were collected via face-to-face interviews with program administrators and clinical directors (2007-2009). Analysis included bivariate t tests and chi-square tests to compare private and CTN programs, and multivariable logistic regression of MI implementation. A majority (68.0%) of treatment programs reported use of MI. Treatment programs participating in the CTN (88.9%) were significantly more likely to report use of MI compared with non-CTN programs (58.5%; P < 0.01). CTN programs (82.1%) also were more likely to use trainers from the Motivational Interviewing Network of Trainers as compared with private programs (56.1%; P < 0.05). Multivariable logistic regression models reveal that CTN-affiliated programs and programs with a psychiatrist on staff were more likely to use MI. Programs that used the Stages of Change Readiness and Treatment Eagerness Scale assessment tool were more likely to use MI, whereas programs placing greater emphasis on confrontational group therapy were less likely to use MI. Findings suggest the critical role of research network participation, access to psychiatrists, and organizational compatibility in adoption and sustained use of MI.
MicroRNAs Associated with Von Hippel-Lindau Pathway in Renal Cell Carcinoma: A Comprehensive Review.
Schanza, Lisa-Maria; Seles, Maximilian; Stotz, Michael; Fosselteder, Johannes; Hutterer, Georg C; Pichler, Martin; Stiegelbauer, Verena
2017-11-22
Renal cell carcinoma (RCC) are the most common renal neoplasia and can be divided into three main histologic subtypes, among which clear cell RCC is by far the most common form of kidney cancer. Despite substantial advances over the last decade in the understanding of RCC biology, surgical treatments, and targeted and immuno-therapies in the metastatic setting, the prognosis for advanced RCC patients remains poor. One of the major problems with RCC treatment strategies is inherent or acquired resistance towards therapeutic agents over time. The discovery of microRNAs (miRNAs), a class of small, non-coding, single-stranded RNAs that play a crucial role in post-transcriptional regulation, has added new dimensions to the development of novel diagnostic and treatment tools. Because of an association between Von Hippel-Lindau (VHL) genes with chromosomal loss in 3p25-26 and clear cell RCC, miRNAs have attracted considerable scientific interest over the last years. The loss of VHL function leads to constitutional activation of the hypoxia inducible factor (HIF) pathway and to consequent expression of numerous angiogenic and carcinogenic factors. Since miRNAs represent key players of carcinogenesis, tumor cell invasion, angiogenesis, as well as in development of metastases in RCC, they might serve as potential therapeutic targets. Several miRNAs are already known to be dysregulated in RCC and have been linked to biological processes involved in tumor angiogenesis and response to anti-cancer therapies. This review summarizes the role of different miRNAs in RCC angiogenesis and their association with the VHL gene, highlighting their potential role as novel drug targets.
Roles of microRNA-34a in the pathogenesis of placenta accreta.
Umemura, Kota; Ishioka, Shin-Ichi; Endo, Toshiaki; Ezaka, Yoshiaki; Takahashi, Madoka; Saito, Tsuyoshi
2013-01-01
MicroRNA-34a (miR-34a) is associated with invasion and metastasis of various cancers. The trophoblastic cells of placenta accreta invade into the myometrium in a similar way to the invasion of cancers. We studied the roles of miR-34a in the pathogenesis of placenta accreta. The human choriocarcinoma cell line JAR was used for in vitro experiments as a model of trophoblasts, and placental tissues from the operative specimen of patients with or without placenta accreta were used for experiments in vivo. Morpholino antisense oligomer against miR-34a (miR-34a Morpho/AS) was added to JAR, and the expression of miR-34a and plasminogen activator inhibitor-1 (PAI-1) was determined by real time PCR. The effects of antisense, interleukin (IL)-6 and IL-8 in the process of invasion were studied with an invasion assay. Expression of miR-34a in vivo was studied with the use of fluorescent in situ hybridization (FISH). Expression of miR-34a was inhibited by 65% with the administration of antisense, and a slight increase in miR-34a expression was observed with the addition of IL-6 and IL-8. PAI-1 expression decreased with the addition of IL-6 and IL-8, and increased with the administration of antisense. There was an increase in invasive capacity through the inhibition of miR-34a expression. Strong FISH expression of miR-34a was observed in trophoblast cells of non-placenta accreta, and a clear decrease in miR-34a expression was observed in those of placenta accreta. Expression of miR-34a was downregulated in placenta accreta. In vitro experiments also showed that the invasive potential of JAR increased by suppressing miR-34a, probably through the expression of PAI-1. © 2012 The Authors. Journal of Obstetrics and Gynaecology Research © 2012 Japan Society of Obstetrics and Gynecology.
AsSb energetics in argentian sulfosalts
NASA Astrophysics Data System (ADS)
Ghosal, Subhabrata; Sack, Richard O.
1995-09-01
Experimental brackets on As-Sb partitioning between polybasite-pearceite {Pbp; (Cu, Ag) 16(Sb, As) 2S 11} and pyrargyrite-proustite {Ppr; (Cu, Ag) 3(Sb, As)S 3}, and between pyrargyrite-proustite, and miargyrite and smithite {αMi, βMi, Smt; Ag(Sb, As)S 2} (350-400°C; evacuated silica tubes) define standard state Gibbs energies of theAsSb exchange reactions {Ag 16As 2S 11+Ag 3SbS 3=Ag 16Sb 2S 11 + Ag 3AsS 3, Δ Gro Pbp-Ppr = 0.65 ± 0.60 kJ/gfw; Ag 3AsS 3, + AgSbS 2 = Ag 3SbS 3 + AgASS 2, Δ overlineGro Ppr-α Mi = 3.10 ± 0.50 kJ/gfw, Δ Gro PPr-Smt = 1.70 ± 0.50 kJ/gfw and the nonidealities associated with the AsSb substitutions in these minerals (measured by symmetric regular-solution parameters for formula units on a one AsSb site basis; WAsSbPbp = 4.00 ± 0.25 kJ/gfw; WAsSbPpr =6.00 ± 0 .60 kJ/gfw; WAsSbαMi = WAsSbSmt = 7.00 ± 0.50 kJ/gfw). The above constraints applied to the miscibility gap between Ag (Sb, As) S 2 solutions with α-miargyrite and smithite structures at 350°C determine the relative stabilities of these structures in the As and Sb endmembers to be: ( GSbo, α Mi - GSbo, Smt) ˜ -0.63 kJ/gfw; ( GAso, α Mi - GAsSmt) ˜ 0.77 kJ/gfw. Combining these constraints with the calorimetric data of Bryndzia and Kleppa (1988, 1989) and our melting point determinations we have constructed a phase diagram for the AgSbS 2AgAsS 2 subsystem. The salient features of this diagram are (1) eutectic behaviour ( T ˜ 396°C, XAs ˜ 0.50), (2) modest increase in the temperature of the α → β miargyrite transition with As substitution (˜380°C in Sb-subsystem; 386.6°C at XAsMi ˜ 0.36), (3) a 42.5°C depression of the trechmannite-smithite transition with preferential incorporation of Sb in smithite { smithite ( XAs ˜ 0.62) → α-miargyrite ( XAs ˜ 0.34) + trechmannite (X As ˜ 1.00) at ˜277.5°C}, and (4) widening of the miargyrite-trechmannite gap at lower temperatures. The latter feature is consistent with the inference that the most As-enriched epithermal miargyrites crystallized at temperatures above 195°C.
Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway Regulated-Circulating microRNA
2016-05-01
Award Number: W81XWH-11-1-0715 TITLE: Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway-Regulated Circulating microRNA PRINCIPAL...TITLE AND SUBTITLE Sa. CONTRACT NUMBER Early Diagnosis of Clear Cell Kidney Cancer via VHL/HIF Pathway- Regulated Circulating microRNA Sb. GRANT NUMBER...panel of diagnostic miRNAs that are measurable in serum and will be able to identify kidney cancer in its earliest stages. We hypothesized that serum
The entangled history of animal and plant microRNAs.
Reis, Rodrigo S
2017-05-01
MicroRNAs (miRNAs) are small RNAs (sRNAs) that regulate gene expression in development and adaptive responses to the environment. The early days in the sRNA field was one of the most exciting and promising moments in modern biology, attracting large investments to the understanding of the underlining mechanisms and their applications, such as in gene therapy. miRNAs and other sRNAs have since been extensively studied in animals and plants, and are currently well established as an important part of most gene regulatory processes in animals and as master regulators in plants. Here, this review presents the critical discoveries and early misconceptions that shaped our current understanding of RNA silencing by miRNAs in most eukaryotes, with a focus on plant miRNAs. The presentation and language used are simple to facilitate a clear comprehension by researchers and students from various backgrounds. Hence, this is a valuable teaching tool and should also draw attention to the discovery processes themselves, such that scientists from various fields can gain insights from the successful and rapidly evolving miRNA field.
Endo, Kei; Hayashi, Karin; Saito, Hirohide
2016-02-23
The precise identification and separation of living cell types is critical to both study cell function and prepare cells for medical applications. However, intracellular information to distinguish live cells remains largely inaccessible. Here, we develop a method for high-resolution identification and separation of cell types by quantifying multiple microRNA (miRNA) activities in live cell populations. We found that a set of miRNA-responsive, in vitro synthesized mRNAs identify a specific cell population as a sharp peak and clearly separate different cell types based on less than two-fold differences in miRNA activities. Increasing the number of miRNA-responsive mRNAs enhanced the capability for cell identification and separation, as we precisely and simultaneously distinguished different cell types with similar miRNA profiles. In addition, the set of synthetic mRNAs separated HeLa cells into subgroups, uncovering heterogeneity of the cells and the level of resolution achievable. Our method could identify target live cells and improve the efficiency of cell purification from heterogeneous populations.
Building a functional multiple intelligences theory to advance educational neuroscience.
Cerruti, Carlo
2013-01-01
A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators' complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a "functional MI" theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers' concerns about teaching and learning.
Zhang, Jiang; Liu, Qi; Chen, Huafu; Yuan, Zhen; Huang, Jin; Deng, Lihua; Lu, Fengmei; Zhang, Junpeng; Wang, Yuqing; Wang, Mingwen; Chen, Liangyin
2015-01-01
Clustering analysis methods have been widely applied to identifying the functional brain networks of a multitask paradigm. However, the previously used clustering analysis techniques are computationally expensive and thus impractical for clinical applications. In this study a novel method, called SOM-SAPC that combines self-organizing mapping (SOM) and supervised affinity propagation clustering (SAPC), is proposed and implemented to identify the motor execution (ME) and motor imagery (MI) networks. In SOM-SAPC, SOM was first performed to process fMRI data and SAPC is further utilized for clustering the patterns of functional networks. As a result, SOM-SAPC is able to significantly reduce the computational cost for brain network analysis. Simulation and clinical tests involving ME and MI were conducted based on SOM-SAPC, and the analysis results indicated that functional brain networks were clearly identified with different response patterns and reduced computational cost. In particular, three activation clusters were clearly revealed, which include parts of the visual, ME and MI functional networks. These findings validated that SOM-SAPC is an effective and robust method to analyze the fMRI data with multitasks.
Yue, Erkui; Li, Chao; Li, Yu; Liu, Zhen; Xu, Jian-Hong
2017-07-01
MiR529a affects rice panicle architecture by targeting OsSPL2,OsSPL14 and OsSPL17 genes that could regulate their downstream panicle related genes. The panicle architecture determines the grain yield and quality of rice, which could be regulated by many transcriptional factors. The SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors are involved in the regulation of panicle development, which are targeted by miR156 and miR529. The expression profile demonstrated that miR529a is preferentially expressed in the early panicle of rice and it might regulate panicle development in rice. However, the regulation mechanism of miR529-SPL is still not clear. In this study, we predicted five miR529a putative target genes, OsSPL2, OsSPL14, OsSPL16, OsSPL17 and OsSPL18, while only the expression of OsSPL2, OsSPL14, and OsSPL17 was regulated by miR529a in the rice panicle. Overexpression of miR529a dramatically affected panicle architecture, which was regulated by OsSPL2, OsSPL14, and OsSPL17. Furthermore, the 117, 35, and 25 pathway genes associated with OsSPL2, OsSPL14 and OsSPL17, respectively, were predicted, and they shared 20 putative pathway genes. Our results revealed that miR529a could play a vital role in the regulation of panicle architecture through regulating OsSPL2, OsSPL14, OsSPL17 and the complex networks formed by their pathway and downstream genes. These findings will provide new genetic resources for reshaping ideal plant architecture and breeding high yield rice varieties.
Sun, Dawei; Han, Shen; Liu, Chao; Zhou, Rui; Sun, Weihai; Zhang, Zhijun; Qu, Jianjun
2016-04-11
BACKGROUND The objective of this study was to explore the role of miR-199a-5p in the development of thyroid cancer, including its anti-proliferation effect and downstream signaling pathway. MATERIAL AND METHODS We conducted qRT-PCR analysis to detect the expressions of several microRNAs in 42 follicular thyroid carcinoma patients and 42 controls. We identified CTGF as target of miR-491, and viability and cell cycle status were determined in FTC-133 cells transfected with CTGF siRNA, miR-199a mimics, or inhibitors. RESULTS We identified an underexpression of miR-199a-5p in follicular thyroid carcinoma tissue samples compared with controls. Then we confirmed CTGF as a target of miR-199a-5p thyroid cells by using informatics analysis and luciferase reporter assay. Additionally, we found that mRNA and protein expression levels of CTGF were both clearly higher in malignant tissues than in benign tissues. miR-199a-5p mimics and CTGF siRNA similarly downregulated the expression of CTGF, and reduced the viability of FTC-133 cells by arresting the cell cycle in G0 phase. Transfection of miR-199a-5p inhibitors increased the expression of CTGF and promoted the viability of the cells by increasing the fraction of cells in G2/M and S phases. CONCLUSIONS Our study proves that the CTGF gene is a target of miR-199a-5p, demonstrating the negatively related association between CTGF and miR-199a. These findings suggest that miR-199a-5p might be a novel therapeutic target in the treatment of follicular thyroid carcinoma.
Li, Haixia; Huang, Yuguang; Ma, Chao; Yu, Xuerong; Zhang, Zhiyong; Shen, Le
2015-01-01
Although microRNAs (miRNAs) have been shown to play a role in numerous biological processes, their function in neuropathic pain is not clear. The rat bilateral sciatic nerve chronic constriction injury (bCCI) is an established model of neuropathic pain, so we examined miRNA expression and function in the spinal dorsal horn in bCCI rats. Microarray and real-time polymerase chain reaction were used to examine the expression of miRNA in nerve system of bCCI rats, and the targets of miRNA were predicted by bioinformatic approaches. The function of specific miRNA was estimated through the methods of gene engineering. This study revealed substantially (∼10-fold) decreased miR-203 expression in the spinal dorsal horns but not the dorsal root ganglions, hippocampus, or anterior cingulate cortexes of bCCI rats. Rap1a protein expression was upregulated in bCCI rat spinal dorsal horns. We further verified that miR-203 directly targeted the 3'-untranslated region of the rap1a gene, thereby decreasing rap1a protein expression in neuron-like cells. Rap1a has diverse neuronal functions and their perturbation is responsible for several mental disorders. For example, Rap1a/MEK/ERK is involved in peripheral sensitization. These data suggest a potential role for miR-203 in regulating neuropathic pain development, and Rap1a is a validated target gene in vitro. Results from our study and others indicate the possibility that Rap1a may be involved in pain. We hope that these results can provide support for future research into miR-203 in gene therapy for neuropathic pain.
Jeunet, Camille; N'Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy-EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants' BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants' performance with a mean error of less than 3 points. This study determined how users' profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user.
Jeunet, Camille; N’Kaoua, Bernard; Subramanian, Sriram; Hachet, Martin; Lotte, Fabien
2015-01-01
Mental-Imagery based Brain-Computer Interfaces (MI-BCIs) allow their users to send commands to a computer using their brain-activity alone (typically measured by ElectroEncephaloGraphy—EEG), which is processed while they perform specific mental tasks. While very promising, MI-BCIs remain barely used outside laboratories because of the difficulty encountered by users to control them. Indeed, although some users obtain good control performances after training, a substantial proportion remains unable to reliably control an MI-BCI. This huge variability in user-performance led the community to look for predictors of MI-BCI control ability. However, these predictors were only explored for motor-imagery based BCIs, and mostly for a single training session per subject. In this study, 18 participants were instructed to learn to control an EEG-based MI-BCI by performing 3 MI-tasks, 2 of which were non-motor tasks, across 6 training sessions, on 6 different days. Relationships between the participants’ BCI control performances and their personality, cognitive profile and neurophysiological markers were explored. While no relevant relationships with neurophysiological markers were found, strong correlations between MI-BCI performances and mental-rotation scores (reflecting spatial abilities) were revealed. Also, a predictive model of MI-BCI performance based on psychometric questionnaire scores was proposed. A leave-one-subject-out cross validation process revealed the stability and reliability of this model: it enabled to predict participants’ performance with a mean error of less than 3 points. This study determined how users’ profiles impact their MI-BCI control ability and thus clears the way for designing novel MI-BCI training protocols, adapted to the profile of each user. PMID:26625261
Liu, Jie; Cheng, Xiliu; Liu, Da; Xu, Weihui; Wise, Roger; Shen, Qian-Hua
2014-01-01
Barley (Hordeum vulgare L.) Mla alleles encode coiled-coil (CC), nucleotide binding, leucine-rich repeat (NB-LRR) receptors that trigger isolate-specific immune responses against the powdery mildew fungus, Blumeria graminis f. sp. hordei (Bgh). How Mla or NB-LRR genes in grass species are regulated at post-transcriptional level is not clear. The microRNA family, miR9863, comprises four members that differentially regulate distinct Mla alleles in barley. We show that miR9863 members guide the cleavage of Mla1 transcripts in barley, and block or reduce the accumulation of MLA1 protein in the heterologous Nicotiana benthamiana expression system. Regulation specificity is determined by variation in a unique single-nucleotide-polymorphism (SNP) in mature miR9863 family members and two SNPs in the Mla miR9863-binding site that separates these alleles into three groups. Further, we demonstrate that 22-nt miR9863s trigger the biogenesis of 21-nt phased siRNAs (phasiRNAs) and together these sRNAs form a feed-forward regulation network for repressing the expression of group I Mla alleles. Overexpression of miR9863 members specifically attenuates MLA1, but not MLA10-triggered disease resistance and cell-death signaling. We propose a key role of the miR9863 family in dampening immune response signaling triggered by a group of MLA immune receptors in barley. PMID:25502438
Feng, Xueying; Zhang, Dongchuan; Gong, Qingjin; Zhang, Zhiyong; Quan, Li
2017-03-01
The roles of endoplasmic reticulum (ER) stress and microRNA in the brain tissue after fatal mechanical asphyxia have not been clearly elucidated. We examined the expression of glucose-regulated protein 78 (GRP78), the key regulator of unfolded protein response, and miR-199a in the brain tissues of rats subjected to fatal ligature strangulation to understand the roles of ER stress and microRNA in ligature strangulation. The expressions of GRP78 and miR-199a in rat cortex, hippocampi, and midbrain were measured by immunohistochemistry and Western blot analysis in a rat model of ligature strangulation. Furthermore, the levels of miR-199a-3p and miR-199a-5p were detected by real-time fluorescent quantitative polymerase chain reaction. Glucose-regulated protein 78 was highly expressed in the cortex and midbrain in the ligature strangulation group (P < 0.01) when compared with the control group. The expression of GRP78 in the hippocampi showed no significant difference between the 2 groups. miR-199a-3p in the cortex and midbrain was significantly down-regulated in the ligature strangulation group (P < 0.01). However, miR-199a-5p in each brain region showed no significant difference between the 2 groups. In conclusion, ER stress was involved in the physiological and pathological processes of ligature strangulation. Furthermore, upstream miR-199a may play an important regulatory role in mechanical asphyxia.
Lueong, Smiths; Leong, Smiths; Simo, Gustave; Camara, Mamadou; Jamonneau, Vincent; Kabore, Jacques; Ilboudo, Hamidou; Bucheton, Bruno; Hoheisel, Jörg D; Clayton, Christine
2013-01-01
Simple, reliable tools for diagnosis of human African Trypanosomiases could ease field surveillance and enhance patient care. In particular, current methods to distinguish patients with (stage II) and without (stage I) brain involvement require samples of cerebrospinal fluid. We describe here an exploratory study to find out whether miRNAs from peripheral blood leukocytes might be useful in diagnosis of human trypanosomiasis, or for determining the stage of the disease. Using microarrays, we measured miRNAs in samples from Trypanosoma brucei gambiense-infected patients (9 stage I, 10 stage II), 8 seronegative parasite-negative controls and 12 seropositive, but parasite-negative subjects. 8 miRNAs (out of 1205 tested) showed significantly lower expression in patients than in seronegative, parasite-negative controls, and 1 showed increased expression. There were no clear differences in miRNAs between patients in different disease stages. The miRNA profiles could not distinguish seropositive, but parasitologically negative samples from controls and results within this group did not correlate with those from the trypanolysis test. Some of the regulated miRNAs, or their predicted mRNA targets, were previously reported changed during other infectious diseases or cancer. We conclude that the changes in miRNA profiles of peripheral blood lymphocytes in human African trypanosomiasis are related to immune activation or inflammation, are probably disease-non-specific, and cannot be used to determine the disease stage. The approach has little promise for diagnostics but might yield information about disease pathology.
Mapping the involvement of BA 4a and 4p during Motor Imagery.
Sharma, Nikhil; Jones, P S; Carpenter, T A; Baron, Jean-Claude
2008-05-15
Motor Imagery (MI) is an attractive but intriguing means to access the motor network. There are marked inconsistencies in the functional imaging literature regarding the degree, extent and distribution of the primary motor cortex (BA 4) involvement during MI as compared to Executed Movement (EM), which may in part be related to the diverse role of BA 4 and its two subdivisions (i.e., 4a and 4p) in motor processes as well as to methodological issues. Here we used fMRI with monitoring of compliance to show that in healthy volunteers optimally screened for their ability to perform MI the contralateral BA 4 is involved during MI of a finger opposition sequence (2, 3, 4, 5; paced at 1 Hz), albeit less than during EM of the same sequence, and in a location sparing the hand area. Furthermore, both 4a and 4p subdivisions were found to be involved in MI, but the relative involvement of BA 4p appeared more robust and closer to that seen with EM. We suggest that during MI the role of BA 4 and its subdivisions may be non-executive, perhaps related to spatial encoding, though clearly further studies are needed. Finally, we report a similar hemispheric activation balance within BA 4 with both tasks, which extends the commonalities between EM and MI.
PVT1-derived miR-1207-5p promotes breast cancer cell growth by targeting STAT6.
Yan, Chen; Chen, Yaqing; Kong, Weiwei; Fu, Liya; Liu, Yunde; Yao, Qingjuan; Yuan, Yuhua
2017-05-01
Accumulating evidence indicates that ectopic expression of non-coding RNAs are responsible for breast cancer progression. Increased non-coding RNA PVT1, the host gene of microRNA-1207-5p (miR-1207-5p), has been associated with breast cancer proliferation. However, how PVT1 functions in breast cancer is still not clear. In this study, we show a PVT1-derived microRNA, miR-1207-5p, that promotes the proliferation of breast cancer cells by directly regulating STAT6. We first confirm the positive correlated expression pattern between PVT1 and miR-1207-5p by observing consistent induced expression by estrogen, and overexpression in breast cancer cell lines and breast cancer patient specimens. Moreover, silence of PVT1 also decreased miR-1207-5p expression. Furthermore, increased miR-1207-5p expression promoted, while decreased miR-1207-5p expression suppressed, cell proliferation, colony formation, and cell cycle progression in breast cancer cell lines. Mechanistically, a novel target of miR-1207-5p, STAT6, was identified by a luciferase reporter assay. Overexpression of miR-1207-5p decreased the levels of STAT6, which activated CDKN1A and CDKN1B to regulate the cell cycle. We also confirmed the reverse correlation of miR-1207-5p and STAT6 expression levels in breast cancer samples. Therefore, our findings reveal that PVT1-derived miR-1207-5p promotes the proliferation of breast cancer cells by targeting STAT6, which in turn controls CDKN1A and CDKN1B expression. These findings suggest miR-1207-5p might be a potential target for breast cancer therapy. © 2017 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.
Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie; Li, XiaoChing
2013-10-16
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3'-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3'-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network.
Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie
2013-01-01
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3′-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3′-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network. PMID:24133256
Tamilzhalagan, Sembulingam; Rathinam, Dhanasekaran; Ganesan, Kumaresan
2017-06-01
Frequent amplification of 7q21-22 genomic region is known in gastric cancer. Multiple genes including SHFM1, MCM7, and COL1A2 were reported to be the potential cancer candidate genes of this 20 Mb amplicon. This amplicon has two polycistrionic miRNA clusters and in the present study, miR-106b-25 cluster located in intron-13 of MCM7 was identified to express in gastric tumors. Among the 7q21-22 candidate genes, SHFM1 and MCM7 are expressed in intestinal type gastric tumors, whereas COL1A2 is expressed in diffuse type gastric tumors. Across gastric tumors, miR-25 was identified to co-express with MCM7 and SHFM1. On the other hand, negative correlation was observed between miR-25 and COL1A2 expression. miR-25 originating from MCM7 was found capable of selectively targeting the adjacent gene COL1A2. Silencing of miR-25 was found capable of elevating the expression of COL1A2 and inhibiting E-cadherin expression, revealing the diffuse type gastric cancer suppressive role conferred by miR-25. miR-25 was also found to suppress p53, and activate c-Src revealing its intestinal type gastric cancer associated oncogenic functions. Genome-wide expression profiling upon miR-25 silencing reveals that miR-25 is capable of suppressing 40 genes which are co-expressed with COL1A2, involved in epithelial to mesenchymal transition and angiogenesis which are the typical diffuse type gastric cancer features. The results clearly demonstrate 7q21-22 amplification, MCM7, and its intronic miR-25 are the major molecular switches involved in the complex oncogenic circuits of gastric cancer. © 2017 Wiley Periodicals, Inc.
Joy, Nisha; Maimoonath Beevi, Y P; Soniya, E V
2018-05-09
The central tenet of 'genome content' has been that the 'non-coding' parts are highly enriched with 'microsatellites' or 'Simple Sequence Repeats' (SSRs). We presume that the presence and change in number of repeat unit (n) of SSRs in different genomic locations may or may not become beneficial, depending on the position of SSRs in a gene. Very few studies have looked into the existence of SSRs in the hair-pin precursors of miRNAs (pre-miRNAs). The interplay between SSRs and miRNAs is not yet clearly understood. Considering the potential significance of SSRs in pre-miRNAs, we analysed the miRNA hair-pin precursors of 171 organisms, which revealed a noticeable (29.8%) existence of SSRs in their pre-miRNAs. The maintenance of SSRs in pre-miRNAs even in the complex, highly evolved phyla like Chordata and Magnoliophyta shed light upon its diverse functions. Putative effects of SSRs in either regulating the biogenesis or function of miRNAs were more underlined based on computational and experimental analysis. A preliminary computational analysis to explore the relevance of such SSRs maintained in pre-miRNA sequences led to the detection of splicing regulatory elements (SREs) either in or near to the SSRs. The absence of SSRs correspondingly decreased the detection of SREs. The present study is the first implication for the possible involvement of SSRs in shaping the SREs to undergo Alternative Splicing events to produce miRNA isoforms in accordance with different stress environments. This part of work well demonstrates the importance of studying such consistently maintained SSRs residing in pre-miRNAs and can enhance more and more research towards deciphering the exact function of SSRs in the near future.
Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity.
Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola
2017-02-17
Upon T cell receptor stimulation, CD4 + T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4 + T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4 + T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4 + T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Extracellular MicroRNA Signature of Human Helper T Cell Subsets in Health and Autoimmunity*
Torri, Anna; Carpi, Donatella; Bulgheroni, Elisabetta; Crosti, Maria-Cristina; Moro, Monica; Gruarin, Paola; Rossi, Riccardo L.; Rossetti, Grazisa; Di Vizio, Dolores; Hoxha, Mirjam; Bollati, Valentina; Gagliani, Cristina; Tacchetti, Carlo; Paroni, Moira; Geginat, Jens; Corti, Laura; Venegoni, Luigia; Berti, Emilio; Pagani, Massimiliano; Matarese, Giuseppe; Abrignani, Sergio; de Candia, Paola
2017-01-01
Upon T cell receptor stimulation, CD4+ T helper (Th) lymphocytes release extracellular vesicles (EVs) containing microRNAs. However, no data are available on whether human CD4+ T cell subsets release EVs containing different pattern of microRNAs. The present work aimed at filling this gap by assessing the microRNA content in EVs released upon in vitro T cell receptor stimulation of Th1, Th17, and T regulatory (Treg) cells. Our results indicate that EVs released by Treg cells are significantly different compared with those released by the other subsets. In particular, miR-146a-5p, miR-150-5p, and miR-21-5p are enriched, whereas miR-106a-5p, miR-155-5p, and miR-19a-3p are depleted in Treg-derived EVs. The in vitro identified EV-associated microRNA signature was increased in serum of autoimmune patients with psoriasis and returned to healthy levels upon effective treatment with etanercept, a biological drug targeting the TNF pathway and suppressing inflammation. Moreover, Gene Set Enrichment Analysis showed an over-representation of genes relevant for T cell activation, such as CD40L, IRAK1, IRAK2, STAT1, and c-Myb in the list of validated targets of Treg-derived EV miRNAs. At functional level, Treg-derived (but not Th1/Th17-derived) EVs inhibited CD4+ T cell proliferation and suppressed two relevant targets of miR-146a-5p: STAT1 and IRAK2. In conclusion, our work identified the miRNAs specifically released by different human CD4+ T cell subsets and started to unveil the potential use of their quantity in human serum to mark the pathological elicitation of these cells in vivo and their biological effect in cell to cell communication during the adaptive immune response. PMID:28077577
NASA Astrophysics Data System (ADS)
Zhang, Ye; Wu, Honglu; Ramesh, Govindarajan; Rohde, Larry; Story, Michael; Mangala, Lingegowda
2012-07-01
EFFECTS OF SIMULATED MICROGRAVITY ON THE EXPRESSION PROFILE OF MICRORNA IN HUMAN LYMPHOBLASTOID CELLS Lingegowda S. Mangala1,2, Ye Zhang1,3, Zhenhua He2, Kamal Emami1, Govindarajan T. Ramesh4, Michael Story 5, Larry H. Rohde2, and Honglu Wu1 1 NASA Johnson Space Center, Houston, Texas, USA 2 University of Houston Clear Lake, Houston, Texas, USA 3 Wyle Integrated Science and Engineering Group, Houston, Texas, USA 4 Norfolk State University, Norfolk, VA, USA 5 University of Texas, Southwestern Medical Center, Dallas, Texas, USA This study explores the changes in expression of microRNA (miRNA) and related genes under simulated microgravity conditions. In comparison to static 1g, microgravity has been shown to alter global gene expression patterns and protein levels in cultured cells or animals. miRNA has recently emerged as an important regulator of gene expression, possibly regulating as many as one-third of all human genes. However, very little is known about the effect of altered gravity on miRNA expression. To test the hypothesis that the miRNA expression profile would be altered in zero gravity resulting in altered regulation of gene expression leading to metabolic or functional changes in cells, we cultured TK6 human lymphoblastoid cells in a High Aspect Ratio Vessel (HARV; bioreactor) for 72 h either in the rotating condition to model microgravity in space or in the static condition as a control. Expression of several miRNA was changed significantly in the simulated microgravity condition including miR-150, miR-34a, miR-423-5p, miR-22 and miR-141, miR-618 and miR-222. To confirm whether this altered miRNA expression correlates with gene expression and functional changes of the cells, we performed DNA microarray and validated the related genes using q-RT PCR. Network and pathway analysis of gene and miRNA expression profiles indicates that the regulation of cell communication and catalytic activities, as well as pathways involved in immune response_IL-15 signaling and NGF mediated NF-kB activation were significantly altered under the simulated microgravity condition.
NASA Astrophysics Data System (ADS)
Xiao, Q.; Liu, Y.
2017-12-01
Satellite aerosol optical depth (AOD) has been used to assess fine particulate matter (PM2.5) pollution worldwide. However, non-random missing AOD due to cloud cover or high surface reflectance can cause up to 80% data loss and bias model-estimated spatial and temporal trends of PM2.5. Previous studies filled the data gap largely by spatial smoothing which ignored the impact of cloud cover and meteorology on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missingness. Using the Yangtze River Delta of China as an example, we present a flexible Multiple Imputation (MI) method that combines cloud fraction, elevation, humidity, temperature, and spatiotemporal trends to impute the missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM2.5 concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R2 of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall model 10-fold cross-validation R2 were 0.81 and 0.73 (for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy. This method provides reliable PM2.5 predictions with complete coverage at high resolution. By including all the pixels of all days into model development, this method corrected the sampling bias in satellite-driven air pollution modelling due to non-random missingness in AOD. Comparing with previously reported gap-filling methods, the MI method has the strength of not relying on ground PM2.5 measurements, therefore allows the prediction of historical PM2.5 levels prior to the establishment of regular ground monitoring networks.
Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei
2015-04-29
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles.
Chen, Xin; Ying, Xiang; Wang, Xinjing; Wu, Xiaoli; Zhu, Qinyi; Wang, Xipeng
2017-07-01
Hypoxia is a common feature of solid tumors. It is closely related to tumor progression. Exosomal microRNAs derived from cancers are considered to be mediators between cancer cells and the tumor microenvironment. In addition, the number of tumor-associated macrophages (TAMs) in the tumor microenvironment has also been demonstrated to correlate with tumor development. However, the relationship between tumor-secreted exosomes and TAM polarization under hypoxic conditions during tumor progression is not clear. Herein, we demonstrated that hypoxia induces the high expression of microRNA-940 (miR‑940) in exosomes derived from epithelial ovarian cancer (EOC). We also found that miR‑940 is highly expressed in exosomes isolated from ascites of EOC patients. Moreover, the overexpression of miR‑940 in macrophages delivered by exosomes stimulated M2 phenotype polarization, while the M2 subtype macrophages promoted EOC proliferation and migration. These results highlight the function of hypoxia in enhancing the high level of expression of miR‑940 in tumor exosomes taken up by macrophages. We also showed that the tumor-promoting function of miR‑940 is mediated by TAM polarization in EOC. These findings show that tumor-derived exosomal miR‑940 induced by hypoxia plays an important role in stimulating TAM polarization in the progression of EOC.
Pearce, Michelle; Haynes, Kerry; Rivera, Natalia R; Koenig, Harold G
2018-01-01
Post-traumatic stress disorder (PTSD) is a debilitating disorder, and current treatments leave the majority of patients with unresolved symptoms. Moral injury (MI) may be one of the barriers that interfere with recovery from PTSD, particularly among current or former military service members. Given the psychological and spiritual aspects of MI, an intervention that addresses MI using spiritual resources in addition to psychological resources may be particularly effective in treating PTSD. To date, there are no existing empirically based individual treatments for PTSD and MI that make explicit use of a patient's spiritual resources, despite the evidence that spiritual beliefs/activities predict faster recovery from PTSD. To address this gap, we adapted Cognitive Processing Therapy (CPT), an empirically validated treatment for PTSD, to integrate clients' spiritual beliefs, practices, values, and motivations. We call this treatment Spiritually Integrated CPT (SICPT). This article describes this novel manualized therapeutic approach for treating MI in the setting of PTSD for spiritual/religious clients. We provide a description of SICPT and a brief summary of the 12 sessions. Then, we describe a case study in which the therapist helps a client use his spiritual resources to resolve MI and assist in the recovery from PTSD. SICPT may be a helpful way to reduce PTSD by targeting MI, addressing spiritual distress, and using a client's spiritual resources. In addition to the spiritual version (applicable for those of any religion and those who do not identify as religious), we have also developed 5 religion-specific manuals (Christianity, Judaism, Islam, Buddhism, and Hinduism) for clients who desire a more religion-specific approach.
Pearce, Michelle; Haynes, Kerry; Rivera, Natalia R; Koenig, Harold G.
2018-01-01
Background Post-traumatic stress disorder (PTSD) is a debilitating disorder, and current treatments leave the majority of patients with unresolved symptoms. Moral injury (MI) may be one of the barriers that interfere with recovery from PTSD, particularly among current or former military service members. Objective Given the psychological and spiritual aspects of MI, an intervention that addresses MI using spiritual resources in addition to psychological resources may be particularly effective in treating PTSD. To date, there are no existing empirically based individual treatments for PTSD and MI that make explicit use of a patient’s spiritual resources, despite the evidence that spiritual beliefs/activities predict faster recovery from PTSD. Method To address this gap, we adapted Cognitive Processing Therapy (CPT), an empirically validated treatment for PTSD, to integrate clients’ spiritual beliefs, practices, values, and motivations. We call this treatment Spiritually Integrated CPT (SICPT). Results This article describes this novel manualized therapeutic approach for treating MI in the setting of PTSD for spiritual/religious clients. We provide a description of SICPT and a brief summary of the 12 sessions. Then, we describe a case study in which the therapist helps a client use his spiritual resources to resolve MI and assist in the recovery from PTSD. Conclusion SICPT may be a helpful way to reduce PTSD by targeting MI, addressing spiritual distress, and using a client’s spiritual resources. In addition to the spiritual version (applicable for those of any religion and those who do not identify as religious), we have also developed 5 religion-specific manuals (Christianity, Judaism, Islam, Buddhism, and Hinduism) for clients who desire a more religion-specific approach. PMID:29497585
Oleamide derivatives are prototypical anti-metastasis drugs that act by inhibiting Connexin 26.
Nojima, Hiroshi; Ohba, Yusuke; Kita, Yasuyuki
2007-09-01
Despite considerable research, metastasis remains a major challenge in the clinical management of cancer. Recent reports show that abnormally augmented expression of Cx26 is responsible for the enhanced spontaneous metastasis of mouse BL6 melanoma cells. The function of Cx26 appears to be responsible for this phenotype since exogenous expression of a dominant-negative form of Cx26 and oleamide derivatives called MI-18 and MI-22 that specifically inhibit Cx26-mediated gap junction-mediated intercellular communications (GJIC) prevent the spontaneous metastasis of BL6 cells. As expected from their structural similarity to oleic acid (the major component of olive oil), both MI-18 and MI-22 are safe drugs; nonetheless, they are potent inhibitors of the spontaneous metastasis of BL6 mouse melanoma cells. Thus, they are a novel prototype of an anti-metastasis drug that has minimal side effects. While the primary tumors do not necessarily show strong Cx26-immunostaining signals, pronounced Cx26 expression is detected in the highly invasive tumor regions; it is also more frequently observed in metastasized tumors. Thus, Cx26 expression may be useful as a prognostic tool that can predict the existence of highly metastatic cancer cells in clinical samples.
NASA Astrophysics Data System (ADS)
Bocsi, József; Nieschke, Kathleen; Mittag, Anja; Reichert, Thomas; Laffers, Wiebke; Marecka, Monika; Pierzchalski, Arkadiusz; Piltz, Joachim; Esche, Hans-Jürgen; Wolf, Günther; Dähnert, Ingo; Baumgartner, Adolf; Tarnok, Attila
2014-03-01
Myocardial infarction (MI) is an acute life-threatening disease with a high incidence worldwide. Aim of this study was to test lectin-carbohydrate binding-induced red blood cell (RBC) agglutination as an innovative tool for fast, precise and cost effective diagnosis of MI. Five lectins (Ricinus communis agglutinin (RCA), Phaseolus vulgaris erythroagglutinin (PHA), Datura stramonium agglutinin (DSA), Artocarpus agglutinin (ArA), Triticum agglutinin (TA)) were tested for ability to differentiate between agglutination characteristics in patients with MI (n = 101) or angina pectoris without MI (AP) (n = 34) and healthy volunteers (HV) as control (n =68) . RBC agglutination was analyzed by light absorbance of a stirred RBC suspension in the green to red light spectrum in an agglutimeter (amtec, Leipzig, Germany) for 15 min after lectin addition. Mean cell count in aggregates was estimated from light absorbance by a mathematical model. Each lectin induced RBC agglutination. RCA led to the strongest RBC agglutination (~500 RBCs/aggregate), while the others induced substantially slower agglutination and lead to smaller aggregate sizes (5-150 RBCs/aggregate). For all analyzed lectins the lectin-induced RBC agglutination of MI or AP patients was generally higher than for HV. However, only PHA induced agglutination that clearly distinguished MI from HV. Variance analysis showed that aggregate size after 15 min. agglutination induced by PHA was significantly higher in the MI group (143 RBCs/ aggregate) than in the HV (29 RBC-s/aggregate, p = 0.000). We hypothesize that pathological changes during MI induce modification of the carbohydrate composition on the RBC membrane and thus modify RBC agglutination. Occurrence of carbohydrate-lectin binding sites on RBC membranes provides evidence about MI. Due to significant difference in the rate of agglutination between MI > HV the differentiation between these groups is possible based on PHA-induced RBC-agglutination. This novel assay could serve as a rapid, cost effective valuable new tool for diagnosis of MI.
Gigante, Margherita; Pontrelli, Paola; Herr, Wolfgang; Gigante, Maddalena; D'Avenia, Morena; Zaza, Gianluigi; Cavalcanti, Elisabetta; Accetturo, Matteo; Lucarelli, Giuseppe; Carrieri, Giuseppe; Battaglia, Michele; Storkus, Walter J; Gesualdo, Loreto; Ranieri, Elena
2016-04-11
Mammalian microRNAs (miR) regulate the expression of genes relevant for the development of adaptive and innate immunity against cancer. Since T cell dysfunction has previously been reported in patients with renal cell carcinoma (RCC; clear cell type), we aimed to analyze these immune cells for genetic and protein differences when compared to normal donor T cells freshly after isolation and 35 days after in vitro stimulation (IVS) with HLA-matched RCC tumor cells. We investigated gene expression profiles of tumor-reactive CD8(+) T cells obtained from RCC patient and compared with their HLA-matched healthy sibling donors using a microarray approach. In addition, miRNAs analysis was performed in a validation cohort of peripheral blood CD8(+) T cells from 25 RCC patients compared to 15 healthy volunteers. We observed that CD8(+) T cells from RCC patients expressed reduced levels of anti-apoptotic and proliferation-associated gene products when compared with normal donor T cells both pre- and post-IVS. In particular, JAK3 and MCL-1 were down-regulated in patient CD8(+) T cells versus their normal counterparts, likely due to defective suppressor activity of miR-29b and miR-198 in RCC CD8(+) T cells. Indeed, specific inhibition of miR-29b or miR-198 in peripheral blood mononuclear cells (PBMCs) isolated from RCC patients, resulted in the up-regulation of JAK3 and MCL-1 proteins and significant improvement of cell survival in vitro. Our results suggest that miR-29b and miR-198 dysregulation in RCC patient CD8(+) T cells is associated with dysfunctional immunity and foreshadow the development of miR-targeted therapeutics to correct such T cell defects in vivo.
Fu, Lijuan; Shi, Zhimin; Luo, Guanzheng; Tu, Weihong; Wang, XiuJie; Fang, Zhide; Li, XiaoChing
2014-10-01
Mutations in the human FOXP2 gene cause speech and language impairments. The FOXP2 protein is a transcription factor that regulates the expression of many downstream genes, which may have important roles in nervous system development and function. An adequate amount of functional FOXP2 protein is thought to be critical for the proper development of the neural circuitry underlying speech and language. However, how FOXP2 gene expression is regulated is not clearly understood. The FOXP2 mRNA has an approximately 4-kb-long 3' untranslated region (3' UTR), twice as long as its protein coding region, indicating that FOXP2 can be regulated by microRNAs (miRNAs). We identified multiple miRNAs that regulate the expression of the human FOXP2 gene using sequence analysis and in vitro cell systems. Focusing on let-7a, miR-9, and miR-129-5p, three brain-enriched miRNAs, we show that these miRNAs regulate human FOXP2 expression in a dosage-dependent manner and target specific sequences in the FOXP2 3' UTR. We further show that these three miRNAs are expressed in the cerebellum of the human fetal brain, where FOXP2 is known to be expressed. Our results reveal novel regulatory functions of the human FOXP2 3' UTR sequence and regulatory interactions between multiple miRNAs and the human FOXP2 gene. The expression of let-7a, miR-9, and miR-129-5p in the human fetal cerebellum is consistent with their roles in regulating FOXP2 expression during early cerebellum development. These results suggest that various genetic and environmental factors may contribute to speech and language development and related neural developmental disorders via the miRNA-FOXP2 regulatory network.
The diagnostic effect of serum miR-196b as biomarker in colorectal cancer
Xu, Chunjie; Gu, Lei
2017-01-01
The microRNA, miR-196b, serves a role in normal cell differentiation, proliferation and tumorigenesis of different types of cancer. The aim of the present study was to explore the serum expression of miR-196b in colorectal cancer (CRC) and its correlation with clinicopathological features. Sera samples were obtained from 103 patients with CRC, 51 patients with colorectal adenoma (Ad) and 100 healthy individuals for the present study. The serum expression of miR-196b in sera samples of the three cohorts was detected using reverse transcription-quantitative polymerase chain reaction. The diagnostic value of miR-196b in the serum of the patients with CRC was evaluated by receiver operating characteristic (ROC) curve and survival analysis, using the Kaplan-Meier method, which was performed with the data from a 5-year follow-up. The expression of miR-196b in the serum of patients with CRC was significantly higher compared with that in Ad patients or healthy individuals (all P<0.001), and the overexpression of serum miR-196b was clearly associated with lymph node invasion, differentiation, and the tumor-lymph nodes-metastasis stage (all P<0.05). ROC curve analysis demonstrated that, comparing patients with CRC with healthy individuals, the area under the curve of serum miR-196b was 0.8135, and its specificity and sensitivity were 63 and 87.38%, respectively, at a diagnostic threshold of −4.785. Patients with CRC of miR-196b-high status had shorter overall survival and disease-free survival rates compared with those of miR-196b-low status. In conclusion, the results of the present study demonstrated that serum miR-196b is upregulated in CRC, and may have an application as a diagnostic and prognostic biomarker for patients with CRC. PMID:28123705
Cai, Lizhi; Cai, Xi
2014-12-31
MicroRNAs (miRNAs) are endogenous small (19-24 nt long) noncoding RNAs that regulate gene expression in a sequence specific manner. An increasing association between miRNA and cancer has been recently reported. Hepatocellular carcinoma (HCC), as the fifth most common cancer and the most common cause of death in men, has become the third leading cause of cancer-related deaths globally. In this study, we investigated the miR-9 expression in HCC to evaluate their value in prognosis of this tumor. The expression of miR-9 in matched normal and tumor tissues of HCC was evaluated using a quantitative real-time RT-PCR. A Kaplan-Meier survival curve was generated following a log-rank test. It was observed that miR-9 expression was upregulated in HCC tissues compared with noncancerous liver tissues (7.26 ± 1.30 vs. 3.14 ± 1.08, P < 0.001). The up-regulation of miR-9 in HCC cancer tissues was also significantly correlated with aggressive clinicopathological features. We found that the patients with high miR-9 expression have a higher tumor staging (P = 0.0389) and are in higher risk of venous infiltration (P < 0.0001). Moreover, the results of Kaplan-Meier analyses showed that HCC patients with the high miR-9 expression tend to have shorter overall survival (P < 0.0001). The multivariate analysis clearly indicated that the high miR-9 expression in biopsy samples may be considered as an independent prognostic factor in HCC for decreased survival (4.28; 95%CI, 2.77-7.23, P < 0.001). Our data indicate the potential of miR-9 as a novel prognostic biomarker for HCC. Large well-designed studies with diverse populations and functional evaluations are warranted to confirm and extend our findings. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_228.
Evolution of coding and non-coding genes in HOX clusters of a marsupial.
Yu, Hongshi; Lindsay, James; Feng, Zhi-Ping; Frankenberg, Stephen; Hu, Yanqiu; Carone, Dawn; Shaw, Geoff; Pask, Andrew J; O'Neill, Rachel; Papenfuss, Anthony T; Renfree, Marilyn B
2012-06-18
The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial.
Evolution of coding and non-coding genes in HOX clusters of a marsupial
2012-01-01
Background The HOX gene clusters are thought to be highly conserved amongst mammals and other vertebrates, but the long non-coding RNAs have only been studied in detail in human and mouse. The sequencing of the kangaroo genome provides an opportunity to use comparative analyses to compare the HOX clusters of a mammal with a distinct body plan to those of other mammals. Results Here we report a comparative analysis of HOX gene clusters between an Australian marsupial of the kangaroo family and the eutherians. There was a strikingly high level of conservation of HOX gene sequence and structure and non-protein coding genes including the microRNAs miR-196a, miR-196b, miR-10a and miR-10b and the long non-coding RNAs HOTAIR, HOTAIRM1 and HOXA11AS that play critical roles in regulating gene expression and controlling development. By microRNA deep sequencing and comparative genomic analyses, two conserved microRNAs (miR-10a and miR-10b) were identified and one new candidate microRNA with typical hairpin precursor structure that is expressed in both fibroblasts and testes was found. The prediction of microRNA target analysis showed that several known microRNA targets, such as miR-10, miR-414 and miR-464, were found in the tammar HOX clusters. In addition, several novel and putative miRNAs were identified that originated from elsewhere in the tammar genome and that target the tammar HOXB and HOXD clusters. Conclusions This study confirms that the emergence of known long non-coding RNAs in the HOX clusters clearly predate the marsupial-eutherian divergence 160 Ma ago. It also identified a new potentially functional microRNA as well as conserved miRNAs. These non-coding RNAs may participate in the regulation of HOX genes to influence the body plan of this marsupial. PMID:22708672
Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J
2015-07-01
Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting.
Berentzen, Tina Landsvig; Jakobsen, Marianne Uhre; Stegger, Jakob Gerhard; Halkjaer, Jytte; Tjønneland, Anne; Sørensen, Thorkild I. A.; Overvad, Kim
2011-01-01
Background Waist circumference (WC) measured at one point in time is positively associated with the risk of acute myocardial infarction (MI), but the association with changes in WC (DWC) is not clear. We investigated the association between DWC and the risk of MI in middle-aged men and women, and evaluated the influence from concurrent changes in BMI (DBMI). Methodology/Principal Findings Data on 38,593 participants from the Danish Diet, Cancer and Health study was analysed. Anthropometry was assessed in 1993–97 and 1999–02. Information on fatal and non-fatal MI was obtained from National Registers. Cases were validated by review of the medical records. Hazard ratios (HR) were calculated from Cox proportional hazard models with individuals considered at risk from 1999–02 until December 30 2009. During 8.4 years of follow-up, 1,041 incident cases of MI occurred. WC was positively associated with the risk of MI, but weakly after adjustment for BMI. DWC was not associated with the risk of MI (HR per 5 cm change = 1.01 (0.95, 1.09) with adjustment for covariates, baseline WC, BMI and DBMI). Associations with DWC were not notably different in sub-groups stratified according to baseline WC or DBMI, or when individuals with MI occurring within the first years of follow-up were excluded. Conclusions/Significance WC was positively associated with the risk of MI in middle-aged men and women, but changes in WC were not. These findings suggest that a reduction in WC may be an insufficient target for prevention of MI in middle-aged men and women. PMID:22046380
Wu, Q; Li, J V; Seyfried, F; le Roux, C W; Ashrafian, H; Athanasiou, T; Fenske, W; Darzi, A; Nicholson, J K; Holmes, E; Gooderham, N J
2015-01-01
Background/Objectives: Bariatric surgery offers sustained marked weight loss and often remission of type 2 diabetes, yet the mechanisms of establishment of these health benefits are not clear. Subjects/Methods: We mapped the coordinated systemic responses of gut hormones, the circulating miRNAome and the metabolome in a rat model of Roux-en-Y gastric bypass (RYGB) surgery. Results: The response of circulating microRNAs (miRNAs) to RYGB was striking and selective. Analysis of 14 significantly altered circulating miRNAs within a pathway context was suggestive of modulation of signaling pathways including G protein signaling, neurodegeneration, inflammation, and growth and apoptosis responses. Concomitant alterations in the metabolome indicated increased glucose transport, accelerated glycolysis and inhibited gluconeogenesis in the liver. Of particular significance, we show significantly decreased circulating miRNA-122 levels and a more modest decline in hepatic levels, following surgery. In mechanistic studies, manipulation of miRNA-122 levels in a cell model induced changes in the activity of key enzymes involved in hepatic energy metabolism, glucose transport, glycolysis, tricarboxylic acid cycle, pentose phosphate shunt, fatty-acid oxidation and gluconeogenesis, consistent with the findings of the in vivo surgery-mediated responses, indicating the powerful homeostatic activity of the miRNAs. Conclusions: The close association between energy metabolism, neuronal signaling and gut microbial metabolites derived from the circulating miRNA, plasma, urine and liver metabolite and gut hormone correlations further supports an enhanced gut-brain signaling, which we suggest is hormonally mediated by both traditional gut hormones and miRNAs. This transomic approach to map the crosstalk between the circulating miRNAome and metabolome offers opportunities to understand complex systems biology within a disease and interventional treatment setting. PMID:25783038
Bao, Bin; Wang, Zhiwei; Ali, Shadan; Ahmad, Aamir; Azmi, Asfar S.; Sarkar, Sanila H.; Banerjee, Sanjeev; Kong, Dejuan; Li, Yiwei; Thakur, Shivam; Sarkar, Fazlul H.
2013-01-01
Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States, which is, in part, due to intrinsic (de novo) and extrinsic (acquired) resistance to conventional therapeutics, suggesting that innovative treatment strategies are required for overcoming therapeutic resistance to improve overall survival of patients. Oral administration of metformin in patients with diabetes mellitus has been reported to be associated with reduced risk of pancreatic cancer and that metformin has been reported to kill cancer stem cells (CSC); however, the exact molecular mechanism(s) has not been fully elucidated. In the current study, we examined the effect of metformin on cell proliferation, cell migration and invasion, and self-renewal capacity of CSCs and further assessed the expression of CSC marker genes and microRNAs (miRNA) in human pancreatic cancer cells. We found that metformin significantly decreased cell survival, clonogenicity, wound-healing capacity, sphere-forming capacity (pancreatospheres), and increased disintegration of pancreatospheres in both gemcitabine-sensitive and gemcitabine-resistant pancreatic cancer cells. Metformin also decreased the expression of CSC markers, CD44, EpCAM, EZH2, Notch-1, Nanog and Oct4, and caused reexpression of miRNAs (let-7a, let-7b, miR-26a, miR-101, miR-200b, and miR-200c) that are typically lost in pancreatic cancer and especially in pancreatospheres. We also found that reexpression of miR-26a by transfection led to decreased expression of EZH2 and EpCAM in pancreatic cancer cells. These results clearly suggest that the biologic effects of metformin are mediated through reexpression of miRNAs and decreased expression of CSC-specific genes, suggesting that metformin could be useful for overcoming therapeutic resistance of pancreatic cancer cells. PMID:22086681
MicroRNA132 associated multimodal neuroimaging patterns in unmedicated major depressive disorder.
Qi, Shile; Yang, Xiao; Zhao, Liansheng; Calhoun, Vince D; Perrone-Bizzozero, Nora; Liu, Shengfeng; Jiang, Rongtao; Jiang, Tianzi; Sui, Jing; Ma, Xiaohong
2018-02-02
There is compelling evidence that epigenetic factors contribute to the manifestation of depression, in which microRNA132 (miR-132) is suggested to play a pivotal role in the pathogenesis and neuronal mechanisms underlying the symptoms of depression. Additionally, several depression-associated genes [MECP2, ARHGAP32 (p250GAP), CREB, and period genes] were experimentally validated as miR-132 targets. However, most studies regarding miR-132 in major depressive disorder are based on post-mortem, animal models or genetic comparisons. This work will be the first attempt to investigate how miR-132 dysregulation may impact covariation of multimodal brain imaging data in 81 unmedicated major depressive patients and 123 demographically-matched healthy controls, as well as in a medication-naïve subset of major depressive patients. MiR-132 values in blood (patients > controls) was used as a prior reference to guide fusion of three MRI features: fractional amplitude of low frequency fluctuations, grey matter volume, and fractional anisotropy. The multimodal components correlated with miR-132 also show significant group difference in loadings. Results indicate that (i) higher miR-132 levels in major depressive disorder are associated with both lower fractional amplitude of low frequency fluctuations and lower grey matter volume in fronto-limbic network; and (ii) the identified brain regions linked with increased miR-132 levels were also associated with poorer cognitive performance in attention and executive function. Using a data-driven, supervised-learning method, we determined that miR-132 dysregulation in major depressive disorder is associated with multi-facets of brain function and structure in fronto-limbic network (the key network for emotional regulation and memory), which deepens our understanding of how miR-132 dysregulation in major depressive disorders contribute to the loss of specific brain areas and is linked to relevant cognitive impairments. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Liu, Shikai; Song, Lili; Zeng, Saitian; Zhang, Liang
2016-01-01
Metastasis-associated lung adenocarcinoma transcript 1 (MALAT 1) is a large, infrequently spliced non-coding RNA aberrantly expressed in cervical cancer. But the molecular mechanisms of its oncogenic role are still not quite clear. The present study explored whether there is a competing endogenous RNAs (ceRNAs) mechanism involved in the oncogenic effect of MALAT1. MALAT1 expression was firstly verified in high-risk human papillomavirus (HR-HPV)-positive tumor tissues and cell lines. Its regulation over miR-124 and the downstream target of miR-124 in regulation of growth, invasion, and apoptosis of the cancer cells are also studied. Findings of this study confirmed higher MALAT1 expression in HR-HPV (+) cervical cancer. Knockdown of endogenous MALAT1 significantly reduced cell growth rate and invasion and increased cell apoptosis of Hela and siHa cells. Besides, knockdown of MALAT1 increased the expression of miRNA-124, while ectopic expression of miR-124 decreased MALAT1 expression. In addition, we also verified a direct interaction between miR-124 and 3'UTR of GRB2. MALAT1 can indirectly modulate GRB2 expression via competing miR-124. Knockdown of GRB2 reduced cell invasion and increased cell apoptosis. In conclusion, MALAT1 can promote HR-HPV (+) cancer cell growth and invasion at least partially through the MALAT1-miR-124-RBG2 axis. This finding might provide some useful evidence about the lncRNA interaction regulatory network in tumorigenesis cervical cancer.
[Study of the role of miRNA in mesenchymal stem cells isolated from osteoarthritis patients].
Tornero-Esteban, P; Hoyas, J A; Villafuertes, E; Garcia-Bullón, I; Moro, E; Fernández-Gutiérrez, B; Marco, F
2014-01-01
MiRNAs act as gene silencers that are involved in the regulation of essential cell functions. miR-335 is involved in regulating cell differentiation processes in progenitor cells. Mesenchymal stem cells (MSCs) are progenitor cells of chondrocytes and osteoblasts responsible for homeostatic maintenance of cartilage and bone. The aim of this study was to determine a possible relationship between the expression of miR-335 and osteoarthritis. MSCs obtained from the bone marrow of 3 osteoarthritic patients and 3 controls with no clinical signs of osteoarthritis or osteoporosis were cultured and phenotypically and functionally characterised in a 3-step culture. Expression levels of miR-335 and the mesoderm-specific transcript gene -MEST- that controls its expression were determined by quantitative PCR. Differences in the expression levels of miR-335 and MEST (median [interquartile range]: 1.69 [0.85-1.74], and 3.85 [3.20-5.67] were detected between MSCs isolated from patients with osteoarthritis and controls. Although the differences detected did not reach statistical significance (P=.1), a clear trend towards lower expression of miR-335 in osteoarthritis MSCs was observed. Given that miR-335 has the different genes involved in the Wnt signalling pathway as potential targets, the observed trend may help to ascertain, at least partially, some of the alterations which determine the onset or progression of osteoarthritis, and can therefore serve for the design of future therapeutic targets for the treatment of this disease. Copyright © 2013 SECOT. Published by Elsevier Espana. All rights reserved.
Liu, Xiaomin; Zhang, Yingjian; Wang, Ping; Wang, Hongyun; Su, Huanhuan; Zhou, Xin; Zhang, Lamei
2016-07-16
BACKGROUND This study was designed to improve our understanding of the role of miR-18a and its target (connective tissue growth factor (CTGF), which are mediators in HBX-induced hepatocellular carcinoma (HCC). MATERIAL AND METHODS We first investigated the expression of several candidate microRNAs (miRNAs) reported to have been aberrantly expressed between HepG2 and HepG2.2.15, which is characterized by stable HBV infection, while the CTGF is identified as a target of miR-18a. Furthermore, the expression of CTGF evaluated in HepG2 was transfected with HBX, while the HepG2.2.15 was transfected with miR-18a and CTGF siRNA. We examined the cell cycle at the same time. RESULTS We found that the expression of miR-18a was abnormally reduced in the HBV-positive HCC tissue samples compared with HBV-negative HCC samples. Through the use of a luciferase reporter system, we also identified CTGF 3'UTR (1046-1052 bp) as the exact binding site for miR-18a. We also observed a clear increase in CTGF mRNA and protein expression levels in HBV-positive HCC human tissue samples in comparison with the HBV-negative controls, indicating a possible negatively associated relationship between miR-18a and CTGF. Furthermore, we investigated the effect of HBX overexpression on miR-18a and CTGF, as well as the viability and cell cycle status of HepG2 cells. In addition, we found that HBX introduction downregulated miR-18a, upregulated CTGF, elevated the viability, and promoted cell cycle progression. We transfected HepG2.2.15 with miR-18a mimics and CTGF siRNA, finding that upregulated miR-18a and downregulated CTGF suppress the viability and cause cell cycle arrest. CONCLUSIONS Our study shows the role of the CTGF gene as a target of miR-18a, and identifies the function of HBV/HBX/miR-18a/CTGF as a key signaling pathway mediating HBV infection-induced HCC.
USDA-ARS?s Scientific Manuscript database
The wine cellar mold, Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, its mi...
miR-300 mediates Bmi1 function and regulates differentiation in primitive cardiac progenitors
Cruz, F M; Tomé, M; Bernal, J A; Bernad, A
2015-01-01
B lymphoma Mo-MLV insertion region 1 (Bmi1) is a polycomb-family transcriptional factor critical for self-renewal in many adult stem cells and human neoplasia. We sought to identify microRNAs regulated by Bmi1 that could play a role in multipotent cardiac progenitor cell (CPC) decisions. We found that miR-300, a poorly characterized microRNA mapping in the Dlk1-Dio3 microRNA cluster, was positively regulated by Bmi1 in CPCs. Forced expression of miR-300 in CPCs promoted an improved stemness signature with a significant increase in Oct4 levels, a reduction in senescence progression and an enhanced proliferative status via p19 activation and inhibition of p16 accumulation. Endothelial and cardiogenic differentiation were clearly compromised by sustained miR-300 expression. Additionally, RNA and protein analysis revealed a significant reduction in key cardiac transcription factors, including Nkx2.5 and Tbx5. Collectively, these results suggest that some functions attributed to Bmi1 are due to induction of miR-300, which decreases the cardiogenic differentiation potential of multipotent CPCs in vitro and promotes self-renewal. PMID:26512961
Motawi, Tarek K.; Shaker, Olfat G.; El-Maraghy, Shohda A.; Senousy, Mahmoud A.
2015-01-01
Circulating microRNAs are deregulated in liver fibrosis and hepatocellular carcinoma (HCC) and are candidate biomarkers. This study investigated the potential of serum microRNAs; miR-19a, miR-296, miR-130a, miR-195, miR-192, miR-34a, and miR-146a as early diagnostic biomarkers for hepatitis C virus (HCV)-related HCC. As how these microRNAs change during liver fibrosis progression is not clear, we explored their serum levels during fibrosis progression in HCV-associated chronic liver disease (CLD) and if they could serve as non-invasive biomarkers for fibrosis progression to HCC. 112 Egyptian HCV-HCC patients, 125 non-malignant HCV-CLD patients, and 42 healthy controls were included. CLD patients were subdivided according to Metavir fibrosis-scoring. Serum microRNAs were measured by qRT-PCR custom array. Serum microRNAs were deregulated in HCC versus controls, and except miR-130a, they were differentially expressed between HCC and CLD or late fibrosis (F3-F4) subgroup. Serum microRNAs were not significantly different between individual fibrosis-stages or between F1-F2 (early/moderate fibrosis) and F3-F4. Only miR-19a was significantly downregulated from liver fibrosis (F1-F3) to cirrhosis (F4) to HCC. Individual microRNAs discriminated HCC from controls, and except miR-130a, they distinguished HCC from CLD or F3-F4 patients by receiver-operating-characteristic analysis. Multivariate logistic analysis revealed a panel of four microRNAs (miR-19a, miR-195, miR-192, and miR-146a) with high diagnostic accuracy for HCC (AUC = 0.946). The microRNA panel also discriminated HCC from controls (AUC = 0.949), CLD (AUC = 0.945), and F3-F4 (AUC = 0.955). Studied microRNAs were positively correlated in HCC group. miR-19a and miR-34a were correlated with portal vein thrombosis and HCC staging scores, respectively. In conclusion, studied microRNAs, but not miR-130a, could serve as potential early biomarkers for HCC in high-risk groups, with miR-19a as a biomarker for liver fibrosis progression to cirrhosis to HCC. We identified a panel of four serum microRNAs with high accuracy in HCC diagnosis. Additional studies are required to confirm this panel and test its prognostic significance. PMID:26352740
Heintze, Siegward D; Forjanic, Monika; Roulet, François-Jean
2007-08-01
Using an optical sensor, to automatically evaluate the marginal seal of restorations placed with 21 adhesive systems of all four adhesive categories in cylindrical cavities of bovine dentin applying different outcome variables, and to evaluate their discriminatory power. Twenty-one adhesive systems were evaluated: three 3-step etch-and-rinse systems, three 2-step etch-and-rinse systems, five 2-step self-etching systems, and ten 1-step self-etching systems. All adhesives were applied in cylindrical cavities in bovine dentin together with Tetric Ceram (n=8). In the control group, no adhesive system was used. After 24 h of storage in water at 37 degrees C, the surface was polished with 4000-grit SiC paper, and epoxy resin replicas were produced. An optical sensor (FRT MicroProf) created 100 profiles of the restoration margin, and an algorithm detected gaps and calculated their depths and widths. The following evaluation criteria were used: percentage of specimens without gaps, the percentage of gap-free profiles in relation to all profiles per specimen, mean gap width, mean gap depth, largest gap, modified marginal integrity index MI. The statistical analysis was carried out on log-transformed data for all variables with ANOVA and post-hoc Tukey's test for multiple comparisons. The correlation between the variables was tested with regression analysis, and the pooled data accordingto the four adhesive categories were compared by applying the Mann-Whitney nonparametric test (p < 0.05). For all the variables that characterized the marginal adaptation, there was a great variation from material to material. In general, the etch-and-rinse adhesive systems demonstrated the best marginal adaptation, followed by the 2-step self-etching and the 1-step self-etching adhesives; the latter showed the highest variability in test results between materials and within the same material. The only exception to this rule was Xeno IV, which showed a marginal adaptation that was comparable to that of the best 3-step etch-and-rinse systems. Except for the variables "largest gap" and "mean gap depth", all the other variables had a similar ability to discriminate between materials. Pooled data according to the four adhesive categories revealed statistically significant differences between the one-step self-etching systems and the other three systems as well as between two-step self-etching and three-step etch-and-rinse systems. With one exception, the one-step self-etching systems yielded the poorest marginal adaptation results and the highest variability between materials and within the same material. Except for the variable "largest gap", the percentage of continuous margin, mean gap width, mean gap depth, and the marginal integrity index MI were closely related to one another and showed--with the exception of "mean gap depth"--similar discriminatory power.
Greiner, Joachim; Sankarankutty, Aparna C; Seemann, Gunnar; Seidel, Thomas; Sachse, Frank B
2018-01-01
Computational modeling is an important tool to advance our knowledge on cardiac diseases and their underlying mechanisms. Computational models of conduction in cardiac tissues require identification of parameters. Our knowledge on these parameters is limited, especially for diseased tissues. Here, we assessed and quantified parameters for computational modeling of conduction in cardiac tissues. We used a rabbit model of myocardial infarction (MI) and an imaging-based approach to derive the parameters. Left ventricular tissue samples were obtained from fixed control hearts (animals: 5) and infarcted hearts (animals: 6) within 200 μm (region 1), 250-750 μm (region 2) and 1,000-1,250 μm (region 3) of the MI border. We assessed extracellular space, fibroblasts, smooth muscle cells, nuclei and gap junctions by a multi-label staining protocol. With confocal microscopy we acquired three-dimensional (3D) image stacks with a voxel size of 200 × 200 × 200 nm. Image segmentation yielded 3D reconstructions of tissue microstructure, which were used to numerically derive extracellular conductivity tensors. Volume fractions of myocyte, extracellular, interlaminar cleft, vessel and fibroblast domains in control were (in %) 65.03 ± 3.60, 24.68 ± 3.05, 3.95 ± 4.84, 7.71 ± 2.15, and 2.48 ± 1.11, respectively. Volume fractions in regions 1 and 2 were different for myocyte, myofibroblast, vessel, and extracellular domains. Fibrosis, defined as increase in fibrotic tissue constituents, was (in %) 21.21 ± 1.73, 16.90 ± 9.86, and 3.58 ± 8.64 in MI regions 1, 2, and 3, respectively. For control tissues, image-based computation of longitudinal, transverse and normal extracellular conductivity yielded (in S/m) 0.36 ± 0.11, 0.17 ± 0.07, and 0.1 ± 0.06, respectively. Conductivities were markedly increased in regions 1 ( + 75 , + 171, and + 100%), 2 ( + 53 , + 165, and + 80%), and 3 ( + 42 , + 141, and + 60%) . Volume fractions of the extracellular space including interlaminar clefts strongly correlated with conductivities in control and MI hearts. Our study provides novel quantitative data for computational modeling of conduction in normal and MI hearts. Notably, our study introduces comprehensive statistical information on tissue composition and extracellular conductivities on a microscopic scale in the MI border zone. We suggest that the presented data fill a significant gap in modeling parameters and extend our foundation for computational modeling of cardiac conduction.
Kim, Joohwan; Lee, Kyu-Sun; Kim, Ji-Hee; Lee, Dong-Keon; Park, Minsik; Choi, Seunghwan; Park, Wonjin; Kim, Suji; Choi, Yoon Kyung; Hwang, Jong Yun; Choe, Jongseon; Won, Moo-Ho; Jeoung, Dooil; Lee, Hansoo; Ryoo, Sungwoo; Ha, Kwon-Soo; Kwon, Young-Guen; Kim, Young-Myeong
2017-03-01
Preeclampsia is an inflammatory disease with endothelial cell dysfunction that occurs via decreased endothelial nitric oxide synthase/nitric oxide (eNOS/NO) activity. Aspirin reduces the incidence of hypertensive pregnancy complications. However, the underlying mechanism has not been clearly explained. Here, we found that tumor necrosis factor (TNF)-α, microRNA (miR)-155, and eNOS levels as well as endothelial redox phenotype were differentially regulated in preeclamptic patients, implying the involvement of TNF-α- and redox signal-mediated miR-155 biogenesis and eNOS downregulation in the pathogenesis of preeclampsia. Aspirin prevented the TNF-α-mediated increase in miR-155 biogenesis and decreases in eNOS expression and NO/cGMP production in cultured human umbilical vein endothelial cells (HUVECs). Similar effects of aspirin were also observed in HUVECs treated with H 2 O 2 . The preventive effects of aspirin was associated with the inhibition of nuclear factor-κB (NF-κB)-dependent MIR155HG (miR-155 host gene) expression. Aspirin recovered the TNF-α-mediated decrease in wild-type, but not mutant, eNOS 3'-untranslated region reporter activity, whose effect was blocked by miR-155 mimic. Moreover, aspirin prevented TNF-α-mediated endothelial cell dysfunction associated with impaired vasorelaxation, angiogenesis, and trophoblast invasion, and the preventive effects were blocked by miR-155 mimic or an eNOS inhibitor. Aspirin rescued TNF-α-mediated eNOS downregulation coupled with endothelial dysfunction by inhibiting NF-κB-dependent transcriptional miR-155 biogenesis. Thus, the redox-sensitive NF-κB/miR-155/eNOS axis may be crucial in the pathogenesis of vascular disorders including preeclampsia. Copyright © 2017 Elsevier Inc. All rights reserved.
Xu, Meng; Wang, Hai-Feng; Zhang, Ying-Ying; Zhuang, Hui-Wen
2016-07-01
MicroRNAs are extensively included in the pathogenesis and progression of many diseases by inhibiting target gene expression. Recently, studies have demonstrated that microRNA-497 (miR-497) may be implicated in human breast cancer that miR-497 predicts the prognosis of breast cancer patients from the posttranscriptional level. However, the specific function of miR-497 in spinal cord ischemia-reperfusion (IR) injury is far from clear nowadays. The present study was designed to determine the role of miR-497 in spinal cord IR injury and investigate the underlying spinal cord protective mechanism. The rat spinal cord IR injury model was performed by occluding the left anterior descending coronary artery for 30 min, which is then followed by 12h reperfusion. As predicted, miR-497 over-expression markedly decreased the expression of IL-1 receptor associated kinase (IRAK1) and Cyclic AMP response element binding protein (CREB). Moreover, Toll-like receptor 4 (TLR4), nuclear factor-kappa B (NF-κB) and Caspase-3, as miR-497 potential targets were significantly suppressed after miR-497 transfection, then preventing inflammatory cytokines and factors regulating apoptosis. We also found that tumor necrosis factor-a (TNF-α) and interleukin-1beta (IL-1β) activity, pro-apoptotic related genes, such as extracellular regulated protein kinases (ERK), Bcl-2 Associated X Protein (Bax), Bcl-2, Bcl-xL levels were all decreased associated with the down-regulation of IRAK1 and CREB. In conclusion, our data demonstrate that miR-497 could inhibit inflammation and apoptosis of spinal cord IR through its targets, IRAK1 of TLR4 and CREB signaling pathway. Thus, miR-497 may constitute a new therapeutic target for the prevention of spinal cord IR injury. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
The microRNA expression signature of CD4+ T cells in the transition of brucellosis into chronicity
Bal, Salih Haldun; Akalın, Emin Halis; Yılmaz, Abdullah; Hız, Pınar
2018-01-01
Brucellosis is a serious infectious disease that continues to be a significant cause of morbidity worldwide and across all ages. Despite early diagnosis and treatment, 10–30% of patients develop chronic brucellosis. Although there have been recent advances in our knowledge of Brucella virulence factors and hosts’ immune response to the infection, there is a lack of clear data regarding how the infection bypasses the immune system and becomes chronic. The present study investigated immunological factors and their roles in the transition of brucellosis from an acute to a chronic infection in CD4+ T cells. CD4+ T cells sorted from peripheral blood samples of patients with acute or chronic brucellosis and healthy controls using flow cytometry as well as more than 2000 miRNAs were screened using the GeneSpring GX (Agilent) 13.0 miRNA microarray software and were validated using reverse transcription polymerase chain reaction (RT-qPCR). Compared to acute cases, the expression levels of 28 miRNAs were significantly altered in chronic cases. Apart from one miRNA (miR-4649-3p), 27 miRNAs were not expressed in the acute cases (p <0.05, fold change> 2). According to KEGG pathway analysis, these miRNAs are involved in the regulation of target genes that were previously involved in the MAPK signalling pathway, regulation of the actin cytoskeleton, endocytosis, and protein processing in the endoplasmic reticulum. This indicates the potential role of these miRNAs in the development of chronic brucellosis. We suggest that these miRNAs can be used as markers to determine the transition of the disease into chronicity. This is the first study of miRNA expression that analyses human CD4+ T cells to clarify the mechanism of chronicity in brucellosis. PMID:29897958
NASA Technical Reports Server (NTRS)
1986-01-01
Uranus' outermost and largest moon, Oberon, is seen in this Voyager 2 image, obtained Jan. 22, 1986, from a distance of 2.77 million kilometers (1.72 million miles). The clear-filter image, shuttered by Voyager's narrow-angle camera, shows that Oberon displays several distinct highly reflective (high-albedo) patches with low-albedo centers. Some of the bright patches are suggestive of radial patterns that could represent impact craters excavated from an icy surface. On average, Oberon reflects about 20 percent of the incident sunlight. The moon is about 1,600 km (1,000 mi) in diameter; resolution of this image is 51 km (32 mi). It was taken two days before Voyager's closest approach to Oberon, at which point the spacecraft will be about 471,000 km (293,000 mi) away. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D’Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R.
2016-01-01
Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes. PMID:26774561
Panneerdoss, Subbarayalu; Viswanadhapalli, Suryavathi; Abdelfattah, Nourhan; Onyeagucha, Benjamin C; Timilsina, Santosh; Mohammad, Tabrez A; Chen, Yidong; Drake, Michael; Vuori, Kristiina; Kumar, T Rajendra; Rao, Manjeet K
2017-09-19
Phagocytic clearance of apoptotic germ cells by Sertoli cells is vital for germ cell development and differentiation. Here, using a tissue-specific miRNA transgenic mouse model, we show that interaction between miR-471-5p and autophagy member proteins regulates clearance of apoptotic germ cells via LC3-associated phagocytosis (LAP). Transgenic mice expressing miR-471-5p in Sertoli cells show increased germ cell apoptosis and compromised male fertility. Those effects are due to defective engulfment and impaired LAP-mediated clearance of apoptotic germ cells as miR-471-5p transgenic mice show lower levels of Dock180, LC3, Atg12, Becn1, Rab5 and Rubicon in Sertoli cells. Our results reveal that Dock180 interacts with autophagy member proteins to constitute a functional LC3-dependent phagocytic complex. We find that androgen regulates Sertoli cell phagocytosis by controlling expression of miR-471-5p and its target proteins. These findings suggest that recruitment of autophagy machinery is essential for efficient clearance of apoptotic germ cells by Sertoli cells using LAP.Although phagocytic clearance of apoptotic germ cells by Sertoli cells is essential for spermatogenesis, little of the mechanism is known. Here the authors show that Sertoli cells employ LC3-associated phagocytosis (LAP) by recruiting autophagy member proteins to clear apoptotic germ cells.
Ma, Jideng; Wang, Hongmei; Liu, Rui; Jin, Long; Tang, Qianzi; Wang, Xun; Jiang, Anan; Hu, Yaodong; Li, Zongwen; Zhu, Li; Li, Ruiqiang; Li, Mingzhou; Li, Xuewei
2015-01-01
MicroRNAs (miRNAs) are small non-coding RNAs that can regulate their target genes at the post-transcriptional level. Skeletal muscle comprises different fiber types that can be broadly classified as red, intermediate, and white. Recently, a set of miRNAs was found expressed in a fiber type-specific manner in red and white fiber types. However, an in-depth analysis of the miRNA transcriptome differences between all three fiber types has not been undertaken. Herein, we collected 15 porcine skeletal muscles from different anatomical locations, which were then clearly divided into red, white, and intermediate fiber type based on the ratios of myosin heavy chain isoforms. We further illustrated that three muscles, which typically represented each muscle fiber type (i.e., red: peroneal longus (PL), intermediate: psoas major muscle (PMM), white: longissimus dorsi muscle (LDM)), have distinct metabolic patterns of mitochondrial and glycolytic enzyme levels. Furthermore, we constructed small RNA libraries for PL, PMM, and LDM using a deep sequencing approach. Results showed that the differentially expressed miRNAs were mainly enriched in PL and played a vital role in myogenesis and energy metabolism. Overall, this comprehensive analysis will contribute to a better understanding of the miRNA regulatory mechanism that achieves the phenotypic diversity of skeletal muscles. PMID:25938964
Yoshizumi, Tomo; Zhu, Yang; Jiang, Hongbin; D'Amore, Antonio; Sakaguchi, Hirokazu; Tchao, Jason; Tobita, Kimimasa; Wagner, William R
2016-03-01
Intramyocardial injection of various injectable hydrogel materials has shown benefit in positively impacting the course of left ventricular (LV) remodeling after myocardial infarction (MI). However, since LV remodeling is a complex, time dependent process, the most efficacious time of hydrogel injection is not clear. In this study, we injected a relatively stiff, thermoresponsive and bioabsorbable hydrogel in rat hearts at 3 different time points - immediately after MI (IM), 3 d post-MI (3D), and 2 w post-MI (2W), corresponding to the beginnings of the necrotic, fibrotic and chronic remodeling phases. The employed left anterior descending coronary artery ligation model showed expected infarction responses including functional loss, inflammation and fibrosis with distinct time dependent patterns. Changes in LV geometry and contractile function were followed by longitudinal echocardiography for 10 w post-MI. While all injection times positively affected LV function and wall thickness, the 3D group gave better functional outcomes than the other injection times and also exhibited more local vascularization and less inflammatory markers than the earlier injection time. The results indicate an important role for injection timing in the increasingly explored concept of post-MI biomaterial injection therapy and suggest that for hydrogels with mechanical support as primary function, injection at the beginning of the fibrotic phase may provide improved outcomes. Copyright © 2015 Elsevier Ltd. All rights reserved.
1993-01-01
while using a sterile glass slide, held parallel to the monolayer, as a MATERIALS AND METHODS straight edge. Cultures were photographed using phase...contrastmicrosoyo tonoa~r movng ofi I spheria mi rocr rie bed ntI h CEILL CELIL CONTACT AND DIFFU SION 23 and cytokeratin 8 antibodies (refer to Figs. 4a
Zhu, Qubo; Sun, Wenyu; Okano, Kiichiro; Chen, Yu; Zhang, Ning; Maeda, Tadao; Palczewski, Krzysztof
2011-01-01
MicroRNA-183 (miR-183), miR-96, and miR-182 comprising the miR-183/96/182 cluster are highly expressed in photoreceptor cells. Although in vitro data have indicated an important role for this cluster in the retina, details of its in vivo biological activity are still unknown. To observe the impact of the miR-183/96/182 cluster on retinal maintenance and light adaptation, we generated a sponge transgenic mouse model that disrupted the activities of the three-component microRNAs simultaneously and selectively in the retina. Although our morphological and functional studies showed no differences between transgenic and wild type mice under normal laboratory lighting conditions, sponge transgenic mice displayed severe retinal degeneration after 30 min of exposure to 10,000 lux light. Histological studies showed that the outer nuclear layer thickness was dramatically reduced in the superior retina of transgenic mice. Real time PCR experiments in both the sponge transgenic mouse model and different microRNA stable cell lines identified Arrdc3, Neurod4, and caspase-2 (Casp2) as probable downstream targets of this cluster, a result also supported by luciferase assay and immunoblotting analyses. Further studies indicated that expression of both the cluster and Casp2 increased in response to light exposure. Importantly, Casp2 expression was enhanced in transgenic mice, and inhibition of Casp2 partially rescued their light-induced retinal degeneration. By connecting the microRNA and apoptotic pathways, these findings imply an important role for the miR-183/96/182 cluster in acute light-induced retinal degeneration of mice. This study demonstrates a clear involvement of miRs in the physiology of postmitotic cells in vivo. PMID:21768104
MicroRNA-155 Inhibition Promoted Wound Healing in Diabetic Rats.
Ye, Junna; Kang, Yutian; Sun, Xiaofang; Ni, Pengwen; Wu, Minjie; Lu, Shuliang
2017-06-01
Diabetes leads to amputation in approximately 15% to 20% of patients and is associated with high morbidity and mortality. Thus, improving the quality of wound healing in this condition is essential. Diabetes is associated with acute/chronic inflammation affecting all organs especially the foot, while, inhibition of microRNA-155 (miR-155) has been reported to improve or reduce inflammatory situation. However, the role of miR-155 inhibition in promoting diabetic wound healing is not clear. To further study the potential benefit of miR-155 inhibition, a study of male Sprague-Dawley rats was conducted and diabetes was induced by injection of streptozotocin. Real-time polymerase chain reaction (PCR), hematoxylin and eosin staining and immunohistochemistry were then performed. The PCR results confirmed that miR-155 expression was lower after miR-155 inhibition on days 3, 7, and 13 (all Ps <.05). The wound healing rate between the normal glucose group (N group), diabetic PBS group (PBS group) and the topical miR-155 inhibitor group was compared. Faster healing of cutaneous wounds was observed in the miR-155 inhibitor group than in the PBS group and normal glucose group ( P < .05). In addition, downregulation of inflammatory cells, including neutrophils (MPO-positive) and macrophages (CD68-positive), and upregulation of the angiogenic protein CD31 and markers indicative of fibroblast proliferation and collagen deposition, such as collagen 1, TGF-β1, and α-SMA, were observed. These data permit the observation that miR-155 inhibition possesses the potential to reduce inflammation in acute wounds. This property may benefit the healing of diabetic foot wounds.
Lopez, Juan Pablo; Pereira, Fabricio; Richard-Devantoy, Stéphane; Berlim, Marcelo; Chachamovich, Eduardo; Fiori, Laura M; Niola, Paola; Turecki, Gustavo; Jollant, Fabrice
2017-09-01
MicroRNAs are short non-coding molecules that play a major role in regulating gene expression. Peripheral levels of miR-1202 have been shown to predict and mediate antidepressant response. However, it is not clear to what extent these peripheral measures reflect central neural changes in vivo. We approached this problem with the combined use of peripheral miR-1202 measures and neuroimaging. At baseline and after 8 weeks of desvenlafaxine (50-100 mg die), 20 patients were scanned with 3T magnetic resonance imaging, first at rest then during the Go/NoGo task, a classical test of response inhibition. Blood samples were collected at both time points. During resting state, lower baseline miR-1202 levels were predictive of increased connectivity from T0 to T8 between the posterior cingulate and the prefrontal, parietal, and occipital cortices. Changes in miR-1202 levels following desvenlafaxine treatment were negatively correlated with changes in activity in right precuneus within the default-mode network, and in connectivity between the posterior cingulate and the temporal and prefrontal cortices, and the precuneus. During the Go/NoGo task, baseline miR-1202 levels and changes in these levels were correlated with activity changes in different regions, including bilateral prefrontal, insular, cingulate, and temporal cortices, and left putamen and claustrum. Finally, secondary analyses in a subset of patients showed a trend for a significant correlation between miR-1202 levels and glutamate levels measured by spectroscopy. Changes in peripheral miR-1202 levels were therefore associated with changes in brain activity and connectivity in a network of brain regions associated with depression and antidepressant response. These effects may be mediated by the glutamatergic system.
Ferrero, Giulio; Cordero, Francesca; Tarallo, Sonia; Arigoni, Maddalena; Riccardo, Federica; Gallo, Gaetano; Ronco, Guglielmo; Allasia, Marco; Kulkarni, Neha; Matullo, Giuseppe; Vineis, Paolo; Calogero, Raffaele A; Pardini, Barbara; Naccarati, Alessio
2018-01-09
The role of non-coding RNAs in different biological processes and diseases is continuously expanding. Next-generation sequencing together with the parallel improvement of bioinformatics analyses allows the accurate detection and quantification of an increasing number of RNA species. With the aim of exploring new potential biomarkers for disease classification, a clear overview of the expression levels of common/unique small RNA species among different biospecimens is necessary. However, except for miRNAs in plasma, there are no substantial indications about the pattern of expression of various small RNAs in multiple specimens among healthy humans. By analysing small RNA-sequencing data from 243 samples, we have identified and compared the most abundantly and uniformly expressed miRNAs and non-miRNA species of comparable size with the library preparation in four different specimens (plasma exosomes, stool, urine, and cervical scrapes). Eleven miRNAs were commonly detected among all different specimens while 231 miRNAs were globally unique across them. Classification analysis using these miRNAs provided an accuracy of 99.6% to recognize the sample types. piRNAs and tRNAs were the most represented non-miRNA small RNAs detected in all specimen types that were analysed, particularly in urine samples. With the present data, the most uniformly expressed small RNAs in each sample type were also identified. A signature of small RNAs for each specimen could represent a reference gene set in validation studies by RT-qPCR. Overall, the data reported hereby provide an insight of the constitution of the human miRNome and of other small non-coding RNAs in various specimens of healthy individuals.
Davis, Hannah M; Pacheco-Costa, Rafael; Atkinson, Emily G; Brun, Lucas R; Gortazar, Arancha R; Harris, Julia; Hiasa, Masahiro; Bolarinwa, Surajudeen A; Yoneda, Toshiyuki; Ivan, Mircea; Bruzzaniti, Angela; Bellido, Teresita; Plotkin, Lilian I
2017-06-01
Skeletal aging results in apoptosis of osteocytes, cells embedded in bone that control the generation/function of bone forming and resorbing cells. Aging also decreases connexin43 (Cx43) expression in bone; and osteocytic Cx43 deletion partially mimics the skeletal phenotype of old mice. Particularly, aging and Cx43 deletion increase osteocyte apoptosis, and osteoclast number and bone resorption on endocortical bone surfaces. We examined herein the molecular signaling events responsible for osteocyte apoptosis and osteoclast recruitment triggered by aging and Cx43 deficiency. Cx43-silenced MLO-Y4 osteocytic (Cx43 def ) cells undergo spontaneous cell death in culture through caspase-3 activation and exhibit increased levels of apoptosis-related genes, and only transfection of Cx43 constructs able to form gap junction channels reverses Cx43 def cell death. Cx43 def cells and bones from old mice exhibit reduced levels of the pro-survival microRNA miR21 and, consistently, increased levels of the miR21 target phosphatase and tensin homolog (PTEN) and reduced phosphorylated Akt, whereas PTEN inhibition reduces Cx43 def cell apoptosis. miR21 reduction is sufficient to induce apoptosis of Cx43-expressing cells and miR21 deletion in miR21 fl/fl bones increases apoptosis-related gene expression, whereas a miR21 mimic prevents Cx43 def cell apoptosis, demonstrating that miR21 lies downstream of Cx43. Cx43 def cells release more osteoclastogenic cytokines [receptor activator of NFκB ligand (RANKL)/high-mobility group box-1 (HMGB1)], and caspase-3 inhibition prevents RANKL/HMGB1 release and the increased osteoclastogenesis induced by conditioned media from Cx43 def cells, which is blocked by antagonizing HMGB1-RAGE interaction. These findings identify a novel Cx43/miR21/HMGB1/RANKL pathway involved in preventing osteocyte apoptosis that also controls osteoclast formation/recruitment and is impaired with aging. © 2017 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ngalame, Ntube N.O., E-mail: ngalamenn@niehs.nih.g
Inorganic arsenic, an environmental contaminant and a human carcinogen is associated with prostate cancer. Emerging evidence suggests that cancer stem cells (CSCs) are the driving force of carcinogenesis. Chronic arsenic exposure malignantly transforms the human normal prostate stem/progenitor cell (SC) line, WPE-stem to arsenic-cancer SCs (As-CSCs), through unknown mechanisms. MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the posttranscriptional level. In prior work, miR-143 was markedly downregulated in As-CSCs, suggesting a role in arsenic-induced malignant transformation. In the present study, we investigated whether loss of miR-143 expression is important in arsenic-induced transformation of prostate SCs. Restorationmore » of miR-143 in As-CSCs was achieved by lentivirus-mediated miR-143 overexpression. Cells were assessed bi-weekly for up to 30 weeks to examine mitigation of cancer phenotype. Secreted matrix metalloproteinase (MMP) activity was increased by arsenic-induced malignant transformation, but miR-143 restoration decreased secreted MMP-2 and MMP-9 enzyme activities compared with scramble controls. Increased cell proliferation and apoptotic resistance, two hallmarks of cancer, were decreased upon miR-143 restoration. Increased apoptosis was associated with decreased BCL2 and BCL-XL expression. miR-143 restoration dysregulated the expression of SC/CSC self-renewal genes including NOTCH-1, BMI-1, OCT4 and ABCG2. The anticancer effects of miR-143 overexpression appeared to be mediated by targeting and inhibiting LIMK1 protein, and the phosphorylation of cofilin, a LIMK1 substrate. These findings clearly show that miR-143 restoration mitigated multiple cancer characteristics in the As-CSCs, suggesting a potential role in arsenic-induced transformation of prostate SCs. Thus, miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer. - Highlights: • Chronic arsenic exposure malignantly transforms human prostate stem cells (SCs) to arsenic-cancer SCs via unknown mechanisms. • miR-143 was several fold downregulated in the arsenic-cancer SCs (As-CSCs), suggesting a likely role in transformation. • miR-143 restoration reduced cancer characteristics in the As-CSC, suggesting a role in arsenic-induced SC transformation. • miR-143 appears to exert its anticancer effect by inhibiting expression and activity of LIMK1, its predicted gene target. • These findings suggest miR-143 is a potential biomarker and therapeutic target for arsenic-induced prostate cancer.« less
Health Assessment Document for Vinylidene Chloride (Final Report, 1983)
Vinylidene chloride is a highly reactive, flammable, clear colorless liquid. In the absence of chemical inhibitors, it can produce violently explosive, complex peroxides. The estimated, ambient air level of vinylidene chloride in urban-suburban areas of the United States is 20 mi...
Henmi, Tomoko; Minami, Kazutoshi; Uchida, Yuzou; Shiraishi, Yoshinori; Nunohiro, Tatsuya; Maemura, Koji
2013-01-01
Aims: There exists a discrepancy regarding the relationship between obstructive sleep apnoea (OSA) and circadian variation during the onset of acute myocardial infarction (MI). We hypothesized that OSA patients show a characteristic circadian variation and that the severity of OSA significantly affects this variation. Methods and results: The present study included 288 patients with first acute MI who underwent percutaneous coronary intervention within 12 h of symptom onset. The diagnosis of OSA required an apnoea–hypopnoea index (AHI) of ≥5 events/h. A total of 216 patients fulfilled the OSA criteria. The incidence of MI onset between 06:00 and 11:59 hours was significantly higher in OSA patients than in control patients (38 vs. 25%, p=0.039). Circadian variation in the morning peak of MI onset was attenuated in mild OSA (as defined by AHI, 5.0–14.9 events/h; 33 vs. 25%, p=0.240). Moderate-to-severe OSA (as defined by AHI ≥15.0 events/h) clearly increased the incidence of MI onset between 06:00 and 11:59 hours (43 vs. 25%, p=0.014). Multiple logistic regression adjusting for AHI (≥15.0 events/h), age, body mass index, hypertension, and current smoking showed that moderate-to-severe OSA significantly contributed to MI onset between 06:00 and 11:59 hours (odds ratio 2.00, p=0.010). Conclusions: OSA showed a morning peak with regard to MI onset, and moderate-to-severe OSA significantly enhanced this circadian variation. PMID:24222825
Shin, Kayeong; Choi, Jaeyeong; Kim, Yeoju; Lee, Yoonjeong; Kim, Joohoon; Lee, Seungho; Chung, Hoeil
2018-06-29
We propose a new analytical scheme in which field-flow fractionation (FFF)-based separation of target-specific polystyrene (PS) particle probes of different sizes are incorporated with amplified surface-enhanced Raman scattering (SERS) tagging for the simultaneous and sensitive detection of multiple microRNAs (miRNAs). For multiplexed detection, PS particles of three different diameters (15, 10, 5 μm) were used for the size-coding, and a probe single stranded DNA (ssDNA) complementary to a target miRNA was conjugated on an intended PS particle. After binding of a target miRNA on PS probe, polyadenylation reaction was executed to generate a long tail composed of adenine (A) serving as a binding site to thymine (T) conjugated Au nanoparticles (T-AuNPs) to increase SERS intensity. The three size-coded PS probes bound with T-AuNPs were then separated in a FFF channel. With the observation of extinction-based fractograms, separation of three size-coded PS probes was clearly confirmed, thereby enabling of measuring three miRNAs simultaneously. Raman intensities of FFF fractions collected at the peak maximum of 15, 10 and 5 μm PS probes varied fairy quantitatively with the change of miRNA concentrations, and the reproducibility of measurement was acceptable. The proposed method is potentially useful for simultaneous detection of multiple miRNAs with high sensitivity. Copyright © 2018 Elsevier B.V. All rights reserved.
Epigenetic regulation of miRNA-Cancer Stem Cells nexus by Nutraceuticals
Ahmad, Aamir; Li, Yiwei; Bao, Bin; Kong, Dejuan; Sarkar, Fazlul H.
2014-01-01
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds. PMID:24272883
Involvement of miR528 in the Regulation of Arsenite Tolerance in Rice (Oryza sativa L.).
Liu, Qingpo; Hu, Haichao; Zhu, Leyi; Li, Ruochen; Feng, Ying; Zhang, Liqing; Yang, Yuyan; Liu, Xingquan; Zhang, Hengmu
2015-10-14
Tens of miRNAs were previously established as being arsenic (As) stress responsive in rice. However, their functional role in As tolerance remains unclear. This study demonstrates that transgenic plants overexpressing miR528 (Ubi::MIR528) were more sensitive to arsenite [As(III)] compared with wild-type (WT) rice. Under normal and stress conditions, miR528-5p and -3p were highly up-regulated in both the roots and leaves of transgenic plants, which exhibited a negative correlation with the expression of seven target genes. Compared with WT plants, Ubi::MIR528 plants showed excessive oxidative stress generation and remarkable amino acid content changes in the roots and leaves upon As(III) exposure. Notably, the expression profiles of diverse functional genes were clearly different between WT and transgenic plants. Thus, the observed As(III) sensitivity of Ubi::MIR528 plants was likely due to the strong alteration of antioxidant enzyme activity and amino acid profiles and the impairment of the As(III) uptake, translocation, and tolerance systems of rice.
2009-01-01
Background Flat epithelial atypia (FEA) of the breast is characterised by a few layers of mildly atypical luminal epithelial cells. Genetic changes found in ductal carcinoma in situ (DCIS) and invasive ductal breast cancer (IDC) are also found in FEA, albeit at a lower concentration. So far, miRNA expression changes associated with invasive breast cancer, like miR-21, have not been studied in FEA. Methods We performed miRNA in-situ hybridization (ISH) on 15 cases with simultaneous presence of normal breast tissue, FEA and/or DCIS and 17 additional cases with IDC. Expression of the miR-21 targets PDCD4, TM1 and PTEN was investigated by immunohistochemistry. Results Two out of fifteen cases showed positive staining for miR-21 in normal breast ductal epithelium, seven out of fifteen cases were positive in the FEA component and nine out of twelve cases were positive in the DCIS component. A positive staining of miR-21 was observed in 15 of 17 IDC cases. In 12 cases all three components were present in one tissue block and an increase of miR-21 from normal breast to FEA and to DCIS was observed in five cases. In three cases the FEA component was negative, whereas the DCIS component was positive for miR-21. In three other cases, normal, FEA and DCIS components were negative for miR-21 and in the last case all three components were positive. Overall we observed a gradual increase in percentage of miR-21 positive cases from normal, to FEA, DCIS and IDC. Immunohistochemical staining for PTEN revealed no obvious changes in staining intensities in normal, FEA, DCIS and IDC. Cytoplasmic staining of PDCD4 increased from normal to IDC, whereas, the nuclear staining decreased. TM1 staining decreased from positive in normal breast to negative in most DCIS and IDC cases. In FEA, the staining pattern for TM1 was similar to normal breast tissue. Conclusion Upregulation of miR-21 from normal ductal epithelial cells of the breast to FEA, DCIS and IDC parallels morphologically defined carcinogenesis. No clear relation was observed between the staining pattern of miR-21 and its previously reported target genes. PMID:19473551
Bjersing, Jan L; Bokarewa, Maria I; Mannerkorpi, Kaisa
2015-04-01
Fibromyalgia (FM) is characterized by generalized chronic pain and reduced pain thresholds. Disturbed neuroendocrine function and impairment of growth hormone/insulin-like growth factor-1 is common. However, the pathophysiology of FM is not clear. MicroRNAs are important regulatory factors reflecting interface of genes and environment. Our aim was to identify characteristic microRNAs in FM and relations of specific microRNAs with characteristic symptoms. A total of 374 circulating microRNAs were measured in women with FM (n = 20; median 52.5 years) and healthy women (n = 20; 52.5 years) by quantitative PCR. Pain thresholds were examined by algometry. Pain [fibromyalgia impact questionnaire (FIQ) pain] levels were rated (0-100 mm) using FIQ. Fatigue (FIQ fatigue) was rated (0-100 mm) using FIQ and multidimensional fatigue inventory general fatigue. Sleep quantity and quality (1-4) rated from satisfactory to nonsatisfactory. Higher scores indicate more severe symptoms. Eight microRNAs differed significantly between FM and healthy women. Seven microRNAs, miR-103a-3p, miR-107, let-7a-5p, miR-30b-5p, miR-151a-5p, miR-142-3p and miR-374b-5p, were lower in FM. However, levels of miR-320a were higher in FM. MiR-103a-3p correlated with pain (r = 0.530, p = 0.016) and sleep quantity (r = 0.593, p = 0.006) in FM. MiR-320a correlated inversely with pain (r = -0.468, p = 0.037). MiR-374b-5p correlated inversely with pain threshold (r = -0.612, p = 0.004). MiR-30b-5p correlated with sleep quantity (r = 0.509, p = 0.022), and let-7a-5p was associated with sleep symptoms. When adjusted for body mass index, the correlation of sleep quantity with miR-103a and miR-30b was no longer significant. To our knowledge, this is the first study of circulating microRNAs in FM. Levels of several microRNAs differed significantly in FM compared to healthy women. Three microRNAs were associated with pain or pain threshold in FM.
Li, Jin; Su, Lei; Gong, Ying-Ying; Ding, Mei-Lin; Hong, Shu-Bin; Yu, Shuang; Xiao, Hai-Peng
2017-01-01
Liraglutide is administered as glucagon-like peptide-1 (GLP-1) receptor agonist for diabetic patients and can protect pancreatic β-cells by inhibiting their apoptosis. MicroRNA-139-5p (miRNA-139-5p) participates in the regulation of cancer cell apoptosis. However, it is not clear whether miR-139-5p contributes to the anti-apoptotic effect of liraglutide in β-cells. The objective of the present study was to investigate the role of miR-139-5p on apoptosis of pancreatic β-cells. MicroRNA levels in pancreatic tissue from diabetic rats and INS-1 cells treated with liraglutide were measured by real-time quantitative RT-PCR. The role of miR-139-5p on apoptosis was studied by transfecting INS-1 cells with miR-139-5p mimics. The mRNA and protein expression of the target gene, insulin receptor substrate-1 (IRS1), were measured by qRT-PCR and Western blot, respectively. Apoptosis in rat pancreatic tissue and INS-1 cells was detected by TUNEL and annexin V/propidium iodide costaining. Apoptosis of pancreatic tissue from diabetic rats and INS-1 cells was decreased by administration of liraglutide. The expression of miR-139-5p increased in the pancreas of diabetic rats and decreased with liraglutide treatment. Incubation with liraglutide (100 nM) for 48 h attenuated the expression of miR-139-5p and increased the mRNA and protein levels of IRS1. Direct regulatory effects of miR-139-5p on IRS1 were found by a dual-luciferase reporter assay. Transfection of INS-1 cells with miR-139-5p mimics led to decreases in the mRNA and protein expression of IRS1. In conclusion, our observations suggest that decreased miR-139-5p expression contributes to the anti-apoptotic effect of liraglutide on the diabetic rat pancreas and INS-1 cells by targeting IRS1.
Microarray expression profile of circular RNAs in chronic thromboembolic pulmonary hypertension
Miao, Ran; Wang, Ying; Wan, Jun; Leng, Dong; Gong, Juanni; Li, Jifeng; Liang, Yan; Zhai, Zhenguo; Yang, Yuanhua
2017-01-01
Abstract Background: Chronic thromboembolic pulmonary hypertension (CTEPH) is a rare but debilitating and life-threatening complication of acute pulmonary embolism. Circular RNAs (circRNAs), presenting as covalently closed continuous loops, are RNA molecules with covalently joined 3′- and 5′-ends formed by back-splicing events. circRNAs may be significant biological molecules to understand disease mechanisms and to identify biomarkers for disease diagnosis and therapy. The aim of this study was to investigate the potential roles of circRNAs in CTEPH. Methods: Ten human blood samples (5 each from CTEPH and control groups) were included in the Agilent circRNA chip. The differentially expressed circRNAs were evaluated using t test, with significance set at a P value of < .05. A functional enrichment analysis for differentially expressed circRNAs was performed using DAVID online tools, and a Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis for target genes of miRNAs was performed using the R package clusterProfiler. Furthermore, miRNAs that interacted with differentially expressed circRNAs were predicted using the miRanda package. mRNAs that had clear biological functions and were regulated by miRNAs were predicted using miRWalk2.0 and then combined into a circRNA–miRNA–mRNA network. Results: In total, 351 differentially expressed circRNAs (122 upregulated and 229 downregulated) between CTEPH and control groups were obtained; among these circRNAs, hsa_circ_0002062 and hsa_circ_0022342 might be important because they can regulate 761 (e.g., hsa-miR-942–5p) and 453 (e.g., hsa-miR-940) miRNAs, respectively. Target genes (e.g., cyclin-dependent kinase 6) of hsa-miR-942–5p were mainly enriched in cancer-related pathways, whereas target genes (e.g., CRK-Like Proto-Oncogene, Adaptor Protein) of hsa-miR-940 were enriched in the ErbB signaling pathway. Therefore, these pathways are potentially important in CTEPH. Conclusions: Our findings suggested that hsa_circ_0002062 and hsa_circ_0022342 may be key circRNAs for CTEPH development and that their targeted regulation may be an effective approach for treating CTEPH. PMID:28682884
Wang, Li-Na; Zhu, Xin-Qing; Song, Xi-Shuang; Xu, Yong
2018-06-22
Recently, long noncoding RNAs have emerged as new gene regulators and prognostic markers in several cancers, including renal cell carcinoma (RCC). Here, we focused on the long noncoding RNA lung cancer associated transcript 1 (LUCAT1) based on clear cell RCC (ccRCC) the cancer genome atlas (TCGA) data. However, whether aberrant expression of LUCAT1 in ccRCC is correlated with malignancy, metastasis or prognosis has not been elucidated. In the current study, we found that the expression of LUCAT1 was upregulated in ccRCC tissues and cancer cell lines. Upregulated LUCAT1 was positively correlated with larger tumor size, advanced tumor-node-metastasis (TNM) stage, higher smoking frequency, nodal metastasis and shorter overall survival in patients with ccRCC. Inhibition of LUCAT1 by small interfering RNA reduced cell proliferation and invasion of ccRCC cells in vitro. In vivo assay showed that the tumor volume and weight were lower in the group of LUCAT1 inhibition than that in the control group. We then found that LUCAT1 directly bound and inhibited the expression of micoRNA-495-3p (miR-495-3p), which subsequently regulated the expression of special adenine-thymine (AT)-rich DNA-binding protein 1 (SATB1). Collectively, LUCAT1 was critical for proliferation and invasion of ccRCC cells by regulating miR-495-3p and SATB1. Our findings indicated that LUCAT1 and miR-495-3p may offer potential novel therapeutic targets of treatment of ccRCC. © 2018 Wiley Periodicals, Inc.
The impact of feature selection on one and two-class classification performance for plant microRNAs.
Khalifa, Waleed; Yousef, Malik; Saçar Demirci, Müşerref Duygu; Allmer, Jens
2016-01-01
MicroRNAs (miRNAs) are short nucleotide sequences that form a typical hairpin structure which is recognized by a complex enzyme machinery. It ultimately leads to the incorporation of 18-24 nt long mature miRNAs into RISC where they act as recognition keys to aid in regulation of target mRNAs. It is involved to determine miRNAs experimentally and, therefore, machine learning is used to complement such endeavors. The success of machine learning mostly depends on proper input data and appropriate features for parameterization of the data. Although, in general, two-class classification (TCC) is used in the field; because negative examples are hard to come by, one-class classification (OCC) has been tried for pre-miRNA detection. Since both positive and negative examples are currently somewhat limited, feature selection can prove to be vital for furthering the field of pre-miRNA detection. In this study, we compare the performance of OCC and TCC using eight feature selection methods and seven different plant species providing positive pre-miRNA examples. Feature selection was very successful for OCC where the best feature selection method achieved an average accuracy of 95.6%, thereby being ∼29% better than the worst method which achieved 66.9% accuracy. While the performance is comparable to TCC, which performs up to 3% better than OCC, TCC is much less affected by feature selection and its largest performance gap is ∼13% which only occurs for two of the feature selection methodologies. We conclude that feature selection is crucially important for OCC and that it can perform on par with TCC given the proper set of features.
Oertelt-Prigione, Sabine; Wiedmann, Silke; Endres, Matthias; Nolte, Christian H; Regitz-Zagrosek, Vera; Heuschmann, Peter
2011-01-01
Major gender differences exist in cardiovascular diseases and lead to different outcomes in women and men. However, attention and incorporation of sex-/gender-specific research might vary among disciplines. We therefore conducted a systematic review comparing publication characteristics and trends between stroke and myocardial infarction (MI) with respect to sex- and gender-related aspects. A systematic literature search was performed in PubMed to identify gender-/sex-related articles published for stroke and MI between 1977 and 2008. A specifically designed text mining program was used, and all literature was rated by two independent investigators. Publications were classified according to type of research performed, publication year, funding, geographical location, and gender of first and last authors. 962 articles were retrieved and limited to 405 (42%) gender-relevant publications; 131 on stroke and 274 on MI. Type of performed research differed, especially in disease management, which received little attention (17%) in stroke, while representing the major focus in MI (40%). In both areas, clinical presentation received little attention (3 and 5%). Although publications progressively increased in both fields, an 8- to 10-year time gap emerged for stroke compared to MI. Last authors in both areas were predominantly men, but female last authorship is increasing more significantly over time in the field of stroke. Research on sex and gender differences in MI and stroke is largely underfunded, particularly by the EU. The data demonstrate how sex-/gender-specific research differs between specialties, most likely due to the diverse interest, funding opportunities and authorship distributions identified. Copyright © 2011 S. Karger AG, Basel.
Optimization of miRNA-seq data preprocessing.
Tam, Shirley; Tsao, Ming-Sound; McPherson, John D
2015-11-01
The past two decades of microRNA (miRNA) research has solidified the role of these small non-coding RNAs as key regulators of many biological processes and promising biomarkers for disease. The concurrent development in high-throughput profiling technology has further advanced our understanding of the impact of their dysregulation on a global scale. Currently, next-generation sequencing is the platform of choice for the discovery and quantification of miRNAs. Despite this, there is no clear consensus on how the data should be preprocessed before conducting downstream analyses. Often overlooked, data preprocessing is an essential step in data analysis: the presence of unreliable features and noise can affect the conclusions drawn from downstream analyses. Using a spike-in dilution study, we evaluated the effects of several general-purpose aligners (BWA, Bowtie, Bowtie 2 and Novoalign), and normalization methods (counts-per-million, total count scaling, upper quartile scaling, Trimmed Mean of M, DESeq, linear regression, cyclic loess and quantile) with respect to the final miRNA count data distribution, variance, bias and accuracy of differential expression analysis. We make practical recommendations on the optimal preprocessing methods for the extraction and interpretation of miRNA count data from small RNA-sequencing experiments. © The Author 2015. Published by Oxford University Press.
Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells.
Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi
2016-01-01
Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients.
Comparative Analysis of the miRNome of Bovine Milk Fat, Whey and Cells
Li, Ran; Dudemaine, Pier-Luc; Zhao, Xin; Lei, Chuzhao; Ibeagha-Awemu, Eveline Mengwi
2016-01-01
Abundant miRNAs have been identified in milk and mammary gland tissues of different species. Typically, RNA in milk can be extracted from different fractions including fat, whey and cells and the mRNA transcriptome of milk could serve as an indicator of the transcriptome of mammary gland tissue. However, it has not been adequately validated if the miRNA transcriptome of any milk fraction could be representative of that of mammary gland tissue. The objectives of this study were to (1) characterize the miRNA expression spectra from three milk fractions- fat, whey and cells; (2) compare miRNome profiles of milk fractions (fat, whey and cells) with mammary gland tissue miRNome, and (3) determine which milk fraction miRNome profile could be a better representative of the miRNome profile of mammary gland tissue. Milk from four healthy Canadian Holstein cows in mid lactation was collected and fractionated. Total RNA extracted from each fraction was used for library preparation followed by small RNA sequencing. In addition, miRNA transcripts of mammary gland tissues from twelve Holstein cows in our previous study were used to compare our data. We identified 210, 200 and 249 known miRNAs from milk fat, whey and cells, respectively, with 188 universally expressed in the three fractions. In addition, 33, 31 and 36 novel miRNAs from milk fat, whey and cells were identified, with 28 common in the three fractions. Among 20 most highly expressed miRNAs in each fraction, 14 were expressed in common and 11 were further shared with mammary gland tissue. The three milk fractions demonstrated a clear separation from each other using a hierarchical cluster analysis with milk fat and whey being most closely related. The miRNome correlation between milk fat and mammary gland tissue (rmean = 0.866) was significantly higher than the other two pairs (p < 0.01), whey/mammary gland tissue (rmean = 0.755) and milk cell/mammary gland tissue (rmean = 0.75), suggesting that milk fat could be an alternative non-invasive source of RNA in assessing miRNA activities in bovine mammary gland. Predicted target genes (1802) of 14 highly expressed miRNAs in milk fractions were enriched in fundamental cellular functions, infection, organ and tissue development. Furthermore, some miRNAs were highly enriched (FDR <0.05) in milk whey (3), cells (11) and mammary gland tissue (14) suggesting specific regulatory functions in the various fractions. In conclusion, we have obtained a comprehensive miRNA profile of the different milk fractions using high throughput sequencing. Our comparative analysis showed that miRNAs from milk fat accurately portrayed the miRNome of mammary gland tissue. Functional annotation of the top expressed miRNAs in milk confirmed their critical regulatory roles in mammary gland functions and potentially to milk recipients. PMID:27100870
Characterization of Transverse Tubule Vesicles Isolated from Skeletal Muscle
1984-08-20
phenylmethylsulfonylfluoride (PMSF), 15 s the Polytron was stopped and the blade quercetin , sodium azide, sodium arsenate, N- cleared of connective tissue...the absence of tors of other ATPase enzymes (oligomycin. ATP. Low-density vesic les (26 pg protein/mi) were incubated ouabain. vanadate. quercetin
The Vertical Structure of Urban Soils - Portland
We compared observed to reference pedons for two cities (Detroit MI; Cleveland OH), where it was clearly illustrated that urban soils had fewer soil horizons than their non-urban references. The ordering of observed urban soil horizons was distinct from both the theoretical (A-B-...
Comparison of co-expression measures: mutual information, correlation, and model based indices.
Song, Lin; Langfelder, Peter; Horvath, Steve
2012-12-09
Co-expression measures are often used to define networks among genes. Mutual information (MI) is often used as a generalized correlation measure. It is not clear how much MI adds beyond standard (robust) correlation measures or regression model based association measures. Further, it is important to assess what transformations of these and other co-expression measures lead to biologically meaningful modules (clusters of genes). We provide a comprehensive comparison between mutual information and several correlation measures in 8 empirical data sets and in simulations. We also study different approaches for transforming an adjacency matrix, e.g. using the topological overlap measure. Overall, we confirm close relationships between MI and correlation in all data sets which reflects the fact that most gene pairs satisfy linear or monotonic relationships. We discuss rare situations when the two measures disagree. We also compare correlation and MI based approaches when it comes to defining co-expression network modules. We show that a robust measure of correlation (the biweight midcorrelation transformed via the topological overlap transformation) leads to modules that are superior to MI based modules and maximal information coefficient (MIC) based modules in terms of gene ontology enrichment. We present a function that relates correlation to mutual information which can be used to approximate the mutual information from the corresponding correlation coefficient. We propose the use of polynomial or spline regression models as an alternative to MI for capturing non-linear relationships between quantitative variables. The biweight midcorrelation outperforms MI in terms of elucidating gene pairwise relationships. Coupled with the topological overlap matrix transformation, it often leads to more significantly enriched co-expression modules. Spline and polynomial networks form attractive alternatives to MI in case of non-linear relationships. Our results indicate that MI networks can safely be replaced by correlation networks when it comes to measuring co-expression relationships in stationary data.
Fu, Shangyi; Yang, Luquan; Tania, Mousumi; Zhang, Xianqin; Xiao, Xiuli; Zhang, Xianning; Fu, Junjiang
2017-01-01
MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3′-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced. PMID:28423483
Imani, Saber; Wei, Chunli; Cheng, Jingliang; Khan, Md Asaduzzaman; Fu, Shangyi; Yang, Luquan; Tania, Mousumi; Zhang, Xianqin; Xiao, Xiuli; Zhang, Xianning; Fu, Junjiang
2017-03-28
MicroRNA-34a (miR-34a) plays an essential role against tumorigenesis and progression of cancer metastasis. Here, we analyzed the expression, targets and functional effects of miR-34a on epithelial to mesenchymal transition-inducing transcription factors (EMT-TFs), such as TWIST1, SLUG and ZEB1/2, and an EMT-inducing protein NOTCH1 in breast cancer (BC) cell migration and invasion and its correlation with tumorigenesis and clinical outcomes. Expression of miR-34a is downregulated in human metastatic breast cancers (MBC) compared to normal breast tissues and is negatively correlated with clinicopathological features of MBC patients. Ectopic expression of miR-34a in MBC cell-line BT-549 significantly inhibits cell migration and invasion, but exhibits no clear effect on BC cell growth. We found that miR-34a is able to inactivate EMT signaling pathway with mediatory of NOTCH1, TWIST1, and ZEB1 upon 3'-UTR activity in MBC cell lines, but has no inhibitory effects on SLUG and ZEB2. Furthermore, we investigated the synergistic effects of Thymoquinone (TQ) and miR-34a together on the expression of EMT-associated proteins. Results showed that co-delivery of miR-34a and TQ is able to inactivate EMT signaling pathway by directly targeting TWIST1 and ZEB1 in BT-549 cell line, indicating that they might be a promising therapeutic combination against breast cancer metastasis. Epigenetic inactivation of the EMT-TFs/miR-34a pathway can potentially alter the equilibrium of these regulations, facilitating EMT and metastasis in BC. Altogether, our findings suggest that miR-34a alone could serve as a potential therapeutic agent for MBC, and together with TQ, their therapeutic potential is synergistically enhanced.
Chen, Yue-Feng; Weltman, Nathan Y; Li, Xiang; Youmans, Steven; Krause, David; Gerdes, Anthony Martin
2013-02-14
Left ventricular (LV) remodeling following large transmural myocardial infarction (MI) remains a pivotal clinical issue despite the advance of medical treatment over the past few decades. Identification of new medications to improve the remodeling process and prevent progression to heart failure after MI is critical. Thyroid hormones (THs) have been shown to improve LV function and remodeling in animals post-MI and in the human setting. However, changes in underlying cellular remodeling resulting from TH treatment are not clear. MI was produced in adult female Sprague-Dawley rats by ligation of the left descending coronary artery. L-thyroxine (T4) pellet (3.3 mg, 60 days sustained release) was used to treat MI rats for 8 weeks. Isolated myocyte shape, arterioles, and collagen deposition in the non-infarcted area were measured at terminal study. T4 treatment improved LV ±dp/dt, normalized TAU, and increased myocyte cross-sectional area without further increasing myocyte length in MI rats. T4 treatment increased the total LV tissue area by 34%, increased the non-infarcted tissue area by 41%, and increased the thickness of non-infarcted area by 36% in MI rats. However, myocyte volume accounted for only ~1/3 of the increase in myocyte mass in the non-infarct area, indicating the presence of more myocytes with treatment. T4 treatment tended to increase the total length of smaller arterioles (5 to 15 μm) proportional to LV weight increase and also decreased collagen deposition in the LV non-infarcted area. A tendency for increased metalloproteinase-2 (MMP-2) expression and tissue inhibitor of metalloproteinases (TIMPs) -1 to -4 expression was also observed in T4 treated MI rats. These results suggest that long-term T4 treatment after MI has beneficial effects on myocyte, arteriolar, and collagen matrix remodeling in the non-infarcted area. Most importantly, results suggest improved survival of myocytes in the peri-infarct area.
NASA Technical Reports Server (NTRS)
Xiao, Qingyang; Wang, Yujie; Chang, Howard H.; Meng, Xia; Geng, Guannan; Lyapustin, Alexei Ivanovich; Liu, Yang
2017-01-01
Satellite aerosol optical depth (AOD) has been used to assess population exposure to fine particulate matter (PM (sub 2.5)). The emerging high-resolution satellite aerosol product, Multi-Angle Implementation of Atmospheric Correction(MAIAC), provides a valuable opportunity to characterize local-scale PM(sub 2.5) at 1-km resolution. However, non-random missing AOD due to cloud snow cover or high surface reflectance makes this task challenging. Previous studies filled the data gap by spatially interpolating neighboring PM(sub 2.5) measurements or predictions. This strategy ignored the effect of cloud cover on aerosol loadings and has been shown to exhibit poor performance when monitoring stations are sparse or when there is seasonal large-scale missngness. Using the Yangtze River Delta of China as an example, we present a Multiple Imputation (MI) method that combines the MAIAC high-resolution satellite retrievals with chemical transport model (CTM) simulations to fill missing AOD. A two-stage statistical model driven by gap-filled AOD, meteorology and land use information was then fitted to estimate daily ground PM(sub 2.5) concentrations in 2013 and 2014 at 1 km resolution with complete coverage in space and time. The daily MI models have an average R(exp 2) of 0.77, with an inter-quartile range of 0.71 to 0.82 across days. The overall Ml model 10-fold cross-validation R(exp 2) (root mean square error) were 0.81 (25 gm(exp 3)) and 0.73 (18 gm(exp 3)) for year 2013 and 2014, respectively. Predictions with only observational AOD or only imputed AOD showed similar accuracy.Comparing with previous gap-filling methods, our MI method presented in this study performed bette rwith higher coverage, higher accuracy, and the ability to fill missing PM(sub 2.5) predictions without ground PM(sub 2.5) measurements. This method can provide reliable PM(sub 2.5)predictions with complete coverage that can reduce biasin exposure assessment in air pollution and health studies.
Inside the Gap: Innovative Uses of Technology and Student Teachers
ERIC Educational Resources Information Center
Mahoney-O'Neil, Maryellen
2010-01-01
The technological generation gap is a societal phenomenon that also reaches into school classrooms. Typically when the generation gap in technology is discussed it puts students on one side of the gap and teachers on the other, with a clear demarcation implied based on age and assumed experience. This assumption does not account for the emergence…
Identifying and analyzing methods for reducing the energy consumption of helicopters
NASA Technical Reports Server (NTRS)
Davis, S. J.; Rosenstein, H. J.
1976-01-01
Reductions in helicopter energy consumption can be accomplished through the use of advanced technology in the areas of powerplant design, improved rotor efficiency, reduced parasite drag, and reduced structural empty weight. Baseline helicopters incorporating technology were designed for a short range (200 n mi) and a very short haul (100 n mi) mission scenario. Parametric analyses were then conducted to determine the impact of technology improvement. Many of the parameters varied are interrelated. A summary of such interactions is presented, and some additional sensitivity values were added so that energy reduction and DOC as affected by the major technological factors or operational modes are clearly defined.
Saturn and 4 Icy Moons in Natural Color
1998-06-08
This approximate natural-color image shows Saturn, its rings, and four of its icy satellites. Three satellites (Tethys, Dione, and Rhea) are visible against the darkness of space, and another smaller satellite (Mimas) is visible against Saturn's cloud tops very near the left horizon and just below the rings. The dark shadows of Mimas and Tethys are also visible on Saturn's cloud tops, and the shadow of Saturn is seen across part of the rings. Saturn, second in size only to Jupiter in our Solar System, is 120,660 km (75,000 mi) in diameter at its equator (the ring plane) but, because of its rapid spin, Saturn is 10% smaller measured through its poles. Saturn's rings are composed mostly of ice particles ranging from microscopic dust to boulders in size. These particles orbit Saturn in a vast disk that is a mere 100 meters (330 feet) or so thick. The rings' thinness contrasts with their huge diameter--for instance 272,400 km (169,000 mi) for the outer part of the bright A ring, the outermost ring visible here. The pronounced concentric gap in the rings, the Cassini Division (named after its discoverer), is a 3500-km wide region (2200 mi, almost the width of the United States) that is much less populated with ring particles than the brighter B and A rings to either side of the gap. The rings also show some enigmatic radial structure ('spokes'), particularly at left. This image was synthesized from images taken in Voyager's blue and violet filters and was processed to recreate an approximately natural color and contrast. http://photojournal.jpl.nasa.gov/catalog/PIA00400
Wang, Yu-Hui; Hu, Han-Ning; Weng, Hong; Chen, Hao; Luo, Chang-Liang; Ji, Jia; Yin, Chang-Qing; Yuan, Chun-Hui; Wang, Fu-Bing
2017-01-01
Accumulating evidence has demonstrated that some single nucleotide polymorphisms (SNPs) existing in miRNAs correlate with the susceptibility to urological cancers. However, a clear consensus still not reached due to the limited statistical power in individual study. Thus, we concluded a meta-analysis to systematically evaluate the association between microRNA SNPs and urological cancer risk. Eligible studies were collected from PubMed, Embase, Web of Science, and CNKI databases. Pooled odds ratio (OR) and corresponding 95% confidence interval (95% CI) were calculated to assess the strength of the relationships between three SNPs (miR-196a2, C>T rs11614913; miR-146a, G>C rs2910164; and miR-499, A>G rs3746444) and the risk of urological cancers. In addition, the stability of our analysis was evaluated by publication bias, sensitivity and heterogeneity analysis. Overall, a total of 17,019 subjects from 14 studies were included in this meta-analysis. We found that CT (miR-196a2, C>T rs11614913) was a risk factor for renal cell carcinoma (CT vs. CC: OR = 1.72, 95%CI = 1.05–2.80, P = 0.03, I2 = 66%), especially in Asian population (CT vs. CC: OR = 1.17, 95%CI = 1.04–1.32, P < 0.01, I2 = 0%). miR-146a G>C rs2910164 was a protective factor of urological cancers (C vs. G: OR = 0.87, 95%CI = 0.81–0.93, P < 0.01, I2 = 0%), especially for bladder cancer. miR-499 A>G rs3746444 was correlated with an increased risk of urological cancers, specifically in Asian population. In conclusion, our meta-analysis suggests that polymorphisms in microRNAs, miR-196a2, C>T rs11614913, miR-146a G>C rs2910164 and miR-499 A>G rs3746444, may be associated with the development of urological cancers and the risks mainly exist in Asian populations. PMID:28579964
Haemmig, S; Baumgartner, U; Glück, A; Zbinden, S; Tschan, M P; Kappeler, A; Mariani, L; Vajtai, I; Vassella, E
2014-01-01
Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O6-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy. PMID:24901050
Resveratrol Reduces Prostate Cancer Growth and Metastasis by Inhibiting the Akt/MicroRNA-21 Pathway
Sheth, Sandeep; Jajoo, Sarvesh; Kaur, Tejbeer; Mukherjea, Debashree; Sheehan, Kelly; Rybak, Leonard P.; Ramkumar, Vickram
2012-01-01
The consumption of foods containing resveratrol produces significant health benefits. Resveratrol inhibits cancer by reducing cell proliferation and metastasis and by inducing apoptosis. These actions could be explained by its ability to inhibit (ERK-1/2), Akt and suppressing the levels of estrogen and insulin growth factor -1 (IGF-1) receptor. How these processes are manifested into the antitumor actions of resveratrol is not clear. Using microarray studies, we show that resveratrol reduced the expression of various prostate-tumor associated microRNAs (miRs) including miR-21 in androgen-receptor negative and highly aggressive human prostate cancer cells, PC-3M-MM2. This effect of resveratrol was associated with reduced cell viability, migration and invasiveness. Additionally, resveratrol increased the expression of tumor suppressors, PDCD4 and maspin, which are negatively regulated by miR-21. Short interfering (si) RNA against PDCD4 attenuated resveratrol’s effect on prostate cancer cells, and similar effects were observed following over expression of miR-21 with pre-miR-21 oligonucleotides. PC-3M-MM2 cells also exhibited high levels of phospho-Akt (pAkt), which were reduced by both resveratrol and LY294002 (a PI3-kinase inhibitor). MiR-21 expression in these cells appeared to be dependent on Akt, as LY294002 reduced the levels of miR-21 along with a concurrent increase in PDCD4 expression. These in vitro findings were further corroborated in a severe combined immunodeficient (SCID) mouse xenograft model of prostate cancer. Oral administration of resveratrol not only inhibited the tumor growth but also decreased the incidence and number of metastatic lung lesions. These tumor- and metastatic-suppressive effects of resveratrol were associated with reduced miR-21 and pAkt, and elevated PDCD4 levels. Similar anti-tumor effects of resveratrol were observed in DU145 and LNCaP prostate cancer cells which were associated with suppression of Akt and PDCD4, but independent of miR-21.These data suggest that resveratrol’s anti-tumor actions in prostate cancer could be explained, in part, through inhibition of Akt/miR-21 signaling pathway. PMID:23272133
Convergent neuromodulation onto a network neuron can have divergent effects at the network level.
Kintos, Nickolas; Nusbaum, Michael P; Nadim, Farzan
2016-04-01
Different neuromodulators often target the same ion channel. When such modulators act on different neuron types, this convergent action can enable a rhythmic network to produce distinct outputs. Less clear are the functional consequences when two neuromodulators influence the same ion channel in the same neuron. We examine the consequences of this seeming redundancy using a mathematical model of the crab gastric mill (chewing) network. This network is activated in vitro by the projection neuron MCN1, which elicits a half-center bursting oscillation between the reciprocally-inhibitory neurons LG and Int1. We focus on two neuropeptides which modulate this network, including a MCN1 neurotransmitter and the hormone crustacean cardioactive peptide (CCAP). Both activate the same voltage-gated current (I MI ) in the LG neuron. However, I MI-MCN1 , resulting from MCN1 released neuropeptide, has phasic dynamics in its maximal conductance due to LG presynaptic inhibition of MCN1, while I MI-CCAP retains the same maximal conductance in both phases of the gastric mill rhythm. Separation of time scales allows us to produce a 2D model from which phase plane analysis shows that, as in the biological system, I MI-MCN1 and I MI-CCAP primarily influence the durations of opposing phases of this rhythm. Furthermore, I MI-MCN1 influences the rhythmic output in a manner similar to the Int1-to-LG synapse, whereas I MI-CCAP has an influence similar to the LG-to-Int1 synapse. These results show that distinct neuromodulators which target the same voltage-gated ion channel in the same network neuron can nevertheless produce distinct effects at the network level, providing divergent neuromodulator actions on network activity.
Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Goeman, Frauke; Ferraiuolo, Maria; Pasanisi, Patrizia; Campagnoli, Carlo; Berrino, Franco; Fanciulli, Maurizio; Ford, Rebecca J; Levrero, Massimo; Pediconi, Natalia; Ciuffreda, Ludovica; Milella, Michele; Steinberg, Gregory R; Cioce, Mario; Muti, Paola; Strano, Sabrina; Blandino, Giovanni
2017-01-01
Metformin is a commonly prescribed type II diabetes medication that exhibits promising anticancer effects. Recently, these effects were found to be associated, at least in part, with a modulation of microRNA expression. However, the mechanisms by which single modulated microRNAs mediate the anticancer effects of metformin are not entirely clear and knowledge of such a process could be vital to maximize the potential therapeutic benefits of this safe and well-tolerated therapy. Our analysis here revealed that the expression of miR-21-5p was downregulated in multiple breast cancer cell lines treated with pharmacologically relevant doses of metformin. Interestingly, the inhibition of miR-21-5p following metformin treatment was also observed in mouse breast cancer xenografts and in sera from 96 breast cancer patients. This modulation occurred at the levels of both pri-miR-21 and pre-miR-21, suggesting transcriptional modulation. Antagomir-mediated ablation of miR-21-5p phenocopied the effects of metformin on both the clonogenicity and migration of the treated cells, while ectopic expression of miR-21-5p had the opposite effect. Mechanistically, this reduction in miR-21-5p enhanced the expression of critical upstream activators of the AMP-activated protein kinase, calcium-binding protein 39-like and Sestrin-1, leading to AMP-activated protein kinase activation and inhibition of mammalian target of rapamycin signaling. Importantly, these effects of metformin were synergistic with those of everolimus, a clinically relevant mammalian target of rapamycin inhibitor, and were independent of the phosphatase and tensin homolog status. This highlights the potential relevance of metformin in combinatorial settings for the treatment of breast cancer. PMID:28698800
Metformin-induced ablation of microRNA 21-5p releases Sestrin-1 and CAB39L antitumoral activities.
Pulito, Claudio; Mori, Federica; Sacconi, Andrea; Goeman, Frauke; Ferraiuolo, Maria; Pasanisi, Patrizia; Campagnoli, Carlo; Berrino, Franco; Fanciulli, Maurizio; Ford, Rebecca J; Levrero, Massimo; Pediconi, Natalia; Ciuffreda, Ludovica; Milella, Michele; Steinberg, Gregory R; Cioce, Mario; Muti, Paola; Strano, Sabrina; Blandino, Giovanni
2017-01-01
Metformin is a commonly prescribed type II diabetes medication that exhibits promising anticancer effects. Recently, these effects were found to be associated, at least in part, with a modulation of microRNA expression. However, the mechanisms by which single modulated microRNAs mediate the anticancer effects of metformin are not entirely clear and knowledge of such a process could be vital to maximize the potential therapeutic benefits of this safe and well-tolerated therapy. Our analysis here revealed that the expression of miR-21-5p was downregulated in multiple breast cancer cell lines treated with pharmacologically relevant doses of metformin. Interestingly, the inhibition of miR-21-5p following metformin treatment was also observed in mouse breast cancer xenografts and in sera from 96 breast cancer patients. This modulation occurred at the levels of both pri-miR-21 and pre-miR-21, suggesting transcriptional modulation. Antagomir-mediated ablation of miR-21-5p phenocopied the effects of metformin on both the clonogenicity and migration of the treated cells, while ectopic expression of miR-21-5p had the opposite effect. Mechanistically, this reduction in miR-21-5p enhanced the expression of critical upstream activators of the AMP-activated protein kinase, calcium-binding protein 39-like and Sestrin-1, leading to AMP-activated protein kinase activation and inhibition of mammalian target of rapamycin signaling. Importantly, these effects of metformin were synergistic with those of everolimus, a clinically relevant mammalian target of rapamycin inhibitor, and were independent of the phosphatase and tensin homolog status. This highlights the potential relevance of metformin in combinatorial settings for the treatment of breast cancer.
Wang, Dongqing; Campos, Hannia; Baylin, Ana
2017-08-01
The adverse effect of red meat consumption on the risk for CVD is a major population health concern, especially in developing Hispanic/Latino countries in which there are clear trends towards increased consumption. This population-based case-control study examined the associations between total, processed and unprocessed red meat intakes and non-fatal acute myocardial infarction (MI) in Costa Rica. The study included 2131 survivors of a first non-fatal acute MI and 2131 controls individually matched by age, sex and area of residence. Dietary intake was assessed with a FFQ. OR were estimated by using conditional logistic regression. Higher intakes of total and processed red meat were associated with increased odds of acute MI. The OR were 1·31 (95 % CI 1·04, 1·65) and 1·29 (95 % CI 1·01, 1·65) for the highest quintiles of total red meat (median: 110·8 g or 1 serving/d) and processed red meat intake (median: 36·1 g or 5 servings/week), respectively. There were increasing trends in the odds of acute MI with higher total (P trend=0·01) and processed (P trend=0·02) red meat intakes. Unprocessed red meat intake was not associated with increased odds of acute MI. Substitutions of 50 g of alternative foods (fish, milk, chicken without skin and chicken without fat) for 50 g of total, processed and unprocessed red meat were associated with lower odds of acute MI. The positive association between red meat intake and acute MI in Costa Rica highlights the importance of reducing red meat consumption in middle-income Hispanic/Latino populations.
Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3.
Torres, Rodrigo F; Hidalgo, Cecilia; Kerr, Bredford
2017-01-01
Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 ( Ryr3 ) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132 -dependent suppression of p250GAP , a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3 , contributing to experience-dependent plasticity.
Liu, Xiangjun; Xu, Xiaohui
2018-08-01
Osteoporosis is defined as a loss of bone mass and deterioration of its architecture resulting in bone weakness, which becomes prone to fracture. The objective of this study was to investigate the molecular mechanism by which miR-137 can reduce the risk of fracture in patients with osteoporosis. An online miRNA database and a luciferase reporter assay system were used to confirm that leucine-rich repeat-containing G-protein-coupled receptor 4 (LGR4) was the target of miR-137. Real-time PCR and western blot analysis were used to study miR-137 mRNA, the expression of LGR4 mRNA and protein among different groups or cells transfected with a scrambled miRNA control, miR-137 mimic, LGR4 siRNA and miR-137 inhibitor. Expression of miR-137 was upregulated to higher levels in cells isolated from osteoporosis patients with fracture than in those without fracture. The 'seed sequence' was found to be located within the 3' untranslated region (3'-UTR) of LGR4 mRNA by searching an online miRNA database. Luciferase reporter assay was performed to confirm that LGR4 is a direct target gene of miR-137 with a potential binding site in the 3'UTR of LGR4. Luciferase activity of cells transfected with wild-type LGR4 3'UTR was much lower than that of the cells transfected with mutant LGR4 3'UTR. The results of real-time PCR and immunohistochemistry experiments demonstrated that the expression levels of LGR4 mRNA and protein were much higher in osteoporosis patients with fracture than osteoporosis patients without fracture. We found that the expression levels of LGR4 mRNA and protein were clearly upregulated following transfection with miR-137 inhibitor, while noticeably downregulated following transfection with miR-137 mimic when compared with the scramble control. Furthermore, the expression of ALP mRNA and ALP activity in bone tissue were much higher in osteoporosis patients with fracture than those without fracture. In conclusion, these data prove that the overexpression of miR-137 was associated with an altered risk of fracture in patients with osteoporosis, and can be used as a biomarker for the prediction of risk of fracture in osteoporosis.
Wang, Zhiyao; Liu, Fan; Wei, Min; Qiu, Yue; Ma, Chao; Shen, Le; Huang, Yuguang
2018-06-09
microRNA-146a-5p (miRNA-146a-5p) is a key molecule in the negative regulation pathway of TLRs and IL-1 receptor (TIR) signaling. Our recent study demonstrated that MyD88-dependent signaling pathway of TIR in the dorsal root ganglion (DRG) and spinal dorsal horn (SDH) plays a role in peripheral nerve injury-induced neuropathic pain. However, it was not clear whether and how miRNA-146a-5p regulates the TIR pathway of DRG and SDH in the development of neuropathic pain. The sciatic nerve chronic constriction injury (CCI) model of rat was used to induce chronic neuropathic pain. The levels and cellular distribution of miRNA-146a-5p were detected with quantitative real-time PCR (qPCR) and fluorescent in situ hybridization (FISH). The RNA level, protein level, and cellular distribution of IRAK1 and TRAF6 that is targeted by miRNA-146a-5p were detected with qPCR, western blot, and immunofluorescent. The pain-related behavioral effect of miRNA-146a-5p was accessed after intrathecal administration. Mechanical stimuli and radiant heat were used to evaluate mechanical allodynia and thermal hyperalgesia. We found that the level of miRNA-146a-5p significantly increased in L4-L6 DRGs and SDH after CCI surgery; meanwhile, the protein level of IRAK1 and TRAF6 in DRGs was significantly increased after CCI. Intrathecal injection of miR146a-5p agomir or miRNA-146a-5p antagomir regulates miRNA-146a-5p level of L4-L6 DRGs and SDH. We found that intrathecal injection of miR146a-5p agomir can alleviate mechanical and thermal hyperalgesia in CCI rats and reverse the upregulation of IRAK1 and TRAF6 of L4-L6 DRGs and SDH induced by CCI. We furthermore found that intrathecal injection of miRNA-146a-5p antagomir can exacerbate the mechanical and thermal pain-related behavior of CCI rats and meanwhile increase IRAK1 and TRAF6 of L4-L6 DRGs and SDH expression even further. miRNA-146a-5p of DRG and SDH can modulate the development of CCI-induced neuropathic pain through inhibition of IRAK1 and TRAF6 in the TIR signaling pathway. Hence, miRNA-146a-5p may serve as a potential therapeutic target for neuropathic pain.
A derivative of oleamide potently inhibits the spontaneous metastasis of mouse melanoma BL6 cells.
Ito, Akihiko; Morita, Nobuyoshi; Miura, Daisaku; Koma, Yu-Ichiro; Kataoka, Tatsuki R; Yamasaki, Hiroshi; Kitamura, Yukihiko; Kita, Yasuyuki; Nojima, Hiroshi
2004-10-01
We reported previously that the abnormally augmented expression of connexin 26 (Cx26) is responsible for the enhanced spontaneous metastasis of mouse BL6 melanoma cells, and that the exogenous expression of a dominant negative form of Cx26 inhibits the spontaneous metastasis of BL6. Here we show that daily intraperitoneal (i.p.) injections of oleamide, a sleep-inducing lipid hormone, weakly inhibited the spontaneous metastasis of BL6 cells. To obtain a more effective reagent, 19 oleamide derivatives were chemically synthesized and tested for their ability to inhibit the gap junction-mediated intercellular communications (GJIC) that are formed between HeLa cells by the ectopic expression of Cx26 or Cx43. One of these, denoted metastasis inhibitor-18 (MI-18), inhibited the GJIC formed by Cx26 as well as oleamide but unlike oleamide, which is a non-selective inhibitor of connexin, it did not inhibit the GJIC formed by Cx43. Daily i.p. injections of MI-18 potently blocked the spontaneous metastasis of BL6 cells down to 15% of that in the untreated control mice. MI-18 was safe because even after >7 weeks of daily injections, the survival rate of the mice was 93%. We propose that MI-18 may serve as a novel and clinically important prototype of a potent inhibitor of spontaneous metastasis.
Ganta, Vijay Chaitanya; Choi, Min Hyub; Kutateladze, Anna; Fox, Todd E.; Farber, Charles R.; Annex, Brian H.
2017-01-01
Background Currently no therapies exist for treating, and improving outcomes in patients with severe peripheral arterial disease (PAD). MicroRNA93 (miR93) has been shown to favorably modulate angiogenesis and reduce tissue loss in genetic PAD models. However, the cell specific function, downstream mechanisms or signaling involved in miR93 mediated ischemic muscle neovascularization is not clear. Macrophages were best known to modulate arteriogenic response in PAD and the extent of arteriogenic response induced by macrophages is dependent on greater M2 to M1-activation/polarization state. In the current study, we identified a novel mechanism by which miR93 regulates macrophage-polarization to promote angiogenesis and arteriogenesis to revascularize ischemic muscle in experimental-PAD. Methods In vitro (macrophages, endothelial cells, skeletal muscle cells under normal and hypoxia serum starvation (HSS) conditions) and in vivo experiments in preclinical-PAD models (unilateral femoral artery ligation and resection)) were conducted to examine the role of miR93-interferon regulatory factor-9 (IRF9)-immune responsive gene-1 (IRG1)-itaconic acid pathway in macrophage-polarization, angiogenesis, arteriogenesis and perfusion recovery. Results In vivo, compared to wild type (WT) controls, miR106b-93-25 cluster deficient mice (miR106b-93-25−/−) showed decreased angiogenesis and arteriogenesis correlating with increased M1-like-macrophages following experimental-PAD. Intra-muscular delivery of miR93 in miR106b-93-25−/− PAD mice increased angiogenesis, arteriogenesis, the extent of perfusion which correlated with more M2-like-macrophages in the proximal and distal hind-limb muscles. In vitro, miR93 promotes and sustains M2-like-polarization even under M1-like-polarizing conditions (HSS). Delivery of bone marrow derived macrophages from miR106b-93-25−/− to WT ischemic-muscle decreased angiogenesis, arteriogenesis and perfusion, while transfer of wild-type macrophages to miR106b-93-25−/− had the opposite effect. Systematic analysis of top-differentially upregulated genes from RNA-sequencing between miR106b-93-25−/− and WT ischemic-muscle showed that miR93 regulates IRG1 function to modulate itaconic acid production and macrophage-polarization. 3′UTR luciferase-assays performed to determine whether IRG1 is a direct target of miR93 revealed that IRG1 is not a miR93 target but IRF9 that can regulate IRG1-expression is a miR93 target. In vitro, increased expression of IRF9, IRG1 and itaconic acid treatment significantly decreased endothelial angiogenic potential. Conclusion We conclude that miR93 inhibits IRF9 to decrease IRG1-itaconic acid production to induce M2-like-polarization in ischemic muscle to enhance angiogenesis, arteriogenesis and perfusion recovery in experimental-PAD. PMID:28356443
Chen, Hau-Yun; Albert, Karunya; Wen, Cheng-Che; Hsieh, Pei-Ying; Chen, Sih-Yu; Huang, Nei-Chung; Lo, Shen-Chuan; Chen, Jen-Kun; Hsu, Hsin-Yun
2017-04-01
Novel therapeutics is urgently needed to prevent cancer-related deaths. MicroRNAs that act as tumor suppressors have been recognized as a next-generation tumor therapy, and the restoration of tumor-suppressive microRNAs using microRNA replacements or mimics may be a less toxic, more effective strategy due to fewer off-target effects. Here, we designed the novel multifunctional oligonucleotide nanocarrier complex composed of a tumor-targeting aptamer sequence specific to mucin 1 (MUC1), poly-cytosine region for fluorescent silver nanocluster (AgNC) synthesis, and complimentary sequence for microRNA miR-34a loading. MiR-34a was employed because of its therapeutic effect of inhibiting oncogene expression and inducing apoptosis in carcinomas. By monitoring the intrinsic fluorescence of AgNC, it was clearly shown that the constructed complex (MUC1-AgNC m -miR-34a) enters MCF-7 cells. To evaluate the efficacy of this nanocarrier for microRNA delivery, we investigated the gene and protein expression levels of downstream miR-34a targets (BCL-2, CDK6, and CCND1) by quantitative PCR and western blotting, respectively, and the results indicated their effective inhibition by miR-34a. This novel multifunctional AgNC-based nanocarrier can aid in improving the efficacy of breast cancer theranostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Messner, Barbara; Kern, Johann; Wiedemann, Dominik; Schwaiger, Stefan; Türkcan, Adrian; Ploner, Christian; Trockenbacher, Alexander; Aumayr, Klaus; Bonaros, Nikolaos; Laufer, Günther; Stuppner, Hermann; Untergasser, Gerold; Bernhard, David
2013-01-01
Background Insufficient angiogenesis and arteriogenesis in cardiac tissue after myocardial infarction (MI) is a significant factor hampering the functional recovery of the heart. To overcome this problem we screened for compounds capable of stimulating angiogenesis, and herein investigate the most active molecule, 5-Methoxyleoligin (5ML), in detail. Methods and Results 5ML potently stimulated endothelial tube formation, angiogenic sprouting, and angiogenesis in a chicken chorioallantoic membrane assay. Further, microarray- and knock down- based analyses revealed that 5ML induces angiogenesis by upregulation of CYP26B1. In an in vivo rat MI model 5ML potently increased the number of arterioles in the peri-infarction and infarction area, reduced myocardial muscle loss, and led to a significant increase in LV function (plus 21% 28 days after MI). Conclusion The present study shows that 5ML induces CYP26B1-dependent angiogenesis in vitro, and arteriogenesis in vivo. Whether or not CYP26B1 is relevant for in vivo arteriogenesis is not clear at the moment. Importantly, 5ML-induced arteriogenesis in vivo makes the compound even more interesting for a post MI therapy. 5ML may constitute the first low molecular weight compound leading to an improvement of myocardial function after MI. PMID:23554885
Building a functional multiple intelligences theory to advance educational neuroscience
Cerruti, Carlo
2013-01-01
A key goal of educational neuroscience is to conduct constrained experimental research that is theory-driven and yet also clearly related to educators’ complex set of questions and concerns. However, the fields of education, cognitive psychology, and neuroscience use different levels of description to characterize human ability. An important advance in research in educational neuroscience would be the identification of a cognitive and neurocognitive framework at a level of description relatively intuitive to educators. I argue that the theory of multiple intelligences (MI; Gardner, 1983), a conception of the mind that motivated a past generation of teachers, may provide such an opportunity. I criticize MI for doing little to clarify for teachers a core misunderstanding, specifically that MI was only an anatomical map of the mind but not a functional theory that detailed how the mind actually processes information. In an attempt to build a “functional MI” theory, I integrate into MI basic principles of cognitive and neural functioning, namely interregional neural facilitation and inhibition. In so doing I hope to forge a path toward constrained experimental research that bears upon teachers’ concerns about teaching and learning. PMID:24391613
Role of the immune system in cardiac tissue damage and repair following myocardial infarction.
Saparov, Arman; Ogay, Vyacheslav; Nurgozhin, Talgat; Chen, William C W; Mansurov, Nurlan; Issabekova, Assel; Zhakupova, Jamilya
2017-09-01
The immune system plays a crucial role in the initiation, development, and resolution of inflammation following myocardial infarction (MI). The lack of oxygen and nutrients causes the death of cardiomyocytes and leads to the exposure of danger-associated molecular patterns that are recognized by the immune system to initiate inflammation. At the initial stage of post-MI inflammation, the immune system further damages cardiac tissue to clear cell debris. The excessive production of reactive oxygen species (ROS) by immune cells and the inability of the anti-oxidant system to neutralize ROS cause oxidative stress that further aggravates inflammation. On the other hand, the cells of both innate and adaptive immune system and their secreted factors are critically instrumental in the very dynamic and complex processes of regulating inflammation and mediating cardiac repair. It is important to decipher the balance between detrimental and beneficial effects of the immune system in MI. This enables us to identify better therapeutic targets for reducing the infarct size, sustaining the cardiac function, and minimizing the likelihood of heart failure. This review discusses the role of both innate and adaptive immune systems in cardiac tissue damage and repair in experimental models of MI.
Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals.
Ahmad, Aamir; Li, Yiwei; Bao, Bin; Kong, Dejuan; Sarkar, Fazlul H
2014-01-01
Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
[Research on the cytotoxic and genotoxic effects of rare-earth element holmium to Vicia faba].
Qu, Ai; Wang, Cheng-Run; Bo, Jun
2004-03-01
Crystal of nitrate, made by the reaction of holmium trioxide and nitric acid, was dissolved in distilled water, thus diluted into gradient solution. Soaked in the solution for 6 hours (6h), the root tips of Vicia faba were then recovered and cultivated for 22 h and 24 h, respectively. By observing the change of root tips and calculating the frequency of micronucleus (FMN), the frequency of chromosomal aberrations(CAF) and mitosis index (MI),we find that the dosage below 4mg/L (expressed by concentration of holmium trioxide) could accelerate the growth of root tips of Vicia faba. CAF and FMN increased while MI decreased with the rise of concentrations. From it a dosage effect relationship is clearly seen. And it indicated that the rare earth element holmium has certain cytotoxic and genotoxic effects. Furthermore, the different recovery groups have different FMN, CAF and MI, and the difference lies in the fact that FMN of 22 h recovery group was lower than that of 24 h recovery group, while CAF and MI were higher than those of 24 h recovery group. The results suggest that the statistics of FMN should be made after that of CAF.
Al-Ansari, Mysoon M; Aboussekhra, Abdelilah
2015-10-06
Increasing evidence support the critical roles of active stromal fibroblasts in breast cancer development and spread. However, the mediators and the mechanisms of regulation are still not well defined. We have shown here that the tumor suppressor p16(INK4A) protein inhibits the pro-carcinogenic effects of breast stromal fibroblasts through repressing the expression/secretion of IL-6. Indeed, p16(INK4A) suppresses IL-6 at the mRNA and protein levels. This effect is mediated trough miR-146b-5p, which inhibits IL-6 expression through a specific sequence at the IL-6 3'UTR. In addition, we present clear evidence that miR-146b-5p inhibition is sufficient to transactivate breast stromal fibroblasts, which promote epithelial-to-mesenchymal-transition in breast cancer cells in a paracrine manner. By contrast, ectopic expression of miR-146b-5p in active fibroblasts abrogated their pro-carcinogenic effects. The physiological importance of miR-146b-5p inhibition was revealed by showing that the levels of pre-miR-146b-5p as well as its mature form are reduced in cancer-associated fibroblasts as compared with their normal adjacent counterparts from cancer-free tissues isolated from the same patients. Interestingly, treatment of active breast stromal fibroblasts with curcumin increased the level of the p16(INK4A) coding CDKN2A mRNA and miR-146b-5p and suppressed IL-6, which confirms the repressive effect of these two tumor suppressor molecules on IL-6, and shows the possible "normalization" of cancer-related active fibroblasts. These results show that miR-146b-5p has non-cell-autonomous tumor suppressor function through inhibition of IL-6, suggesting that targeting this microRNA in breast stromal fibroblasts could be of great therapeutic value.
Chen, Zhenfei; Qi, Yinliang; Gao, Chao
2015-01-01
MicroRNA-22 (miR-22) was previously reported to elicit cardiac myocyte hypertrophy and had an anti-apoptotic effect on neurons. However, its effects on cardiac myocyte apoptosis and cardiac function during ischemia and reperfusion (I/R) are not clear. In the present study, we demonstrate that pre-administration of miR-22 mimic reduced I/R-induced cardiac dysfunction significantly in a rat model. We found that miR-22 overexpression inhibited cardiac myocyte apoptosis, and reduced cardiac remodeling during I/R. Significant cardiac myocyte apoptosis was also observed in a cardiac myocyte model after hypoxia/reoxygenation (H/R), a representative process of I/R. Further experiments showed that eNOS activity and the following NO production were significantly decreased during I/R and H/R, while such decrease was inhibited by overexpression of miR-22. Mechanistically, overexpression of miR-22 had little effect on the total protein level of eNOS, but restored the level of p-eNOS (Ser1177) which was down-regulated during H/R. Further RT-PCR results demonstrated that Caveolin 3 (Cav3), an upstream negative regulator of eNOS, was upregulated during H/R, resulting in a decrease of p-eNOS. However, such upregulation of Cav3 transcript level was inhibited directly by miR-22 during H/R, leading to a restored p-eNOS level and followed NO production in cardiac myocytes. Together, the present study revealed that miR-22 down-regulated Cav3, leading to restored eNOS activity and NO production, which further inhibited cardiac myocyte apoptosis and promoted cardiac function after I/R. Of clinical interest, the present study may highlight miR-22 as a potential therapeutic agent for reducing I/R induced cardiac injury. PMID:26191152
Kure, Elin H; Sæbø, Mona; Stangeland, Astrid M; Hamfjord, Julian; Hytterød, Sigurd; Heggenes, Jan; Lydersen, Espen
2013-08-15
Atlantic salmon (Salmo salar) is among the most sensitive organisms toward acidic, aluminum exposure. Main documented responses to this type of stress are a combination of hypoxia and loss of blood plasma ions. Physiological responses to stress in fish are often grouped into primary, secondary and tertiary responses, where the above mentioned effects are secondary responses, while primary responses include endocrine changes as measurable levels of catecholamines and corticosteroids. In this study we have exposed young (14 months) Atlantic salmon to acid/Al water (pH ≈ 5.6, Al(i) ≈ 80 μg L⁻¹) for 3 days, and obtained clear and consistent decrease of Na⁺ and Cl⁻ ions, and increases of glucose in blood plasma, hematocrit and P(CO₂) in blood. We did not measure plasma cortisol (primary response compound), but analyzed effects on microRNA level (miRNA) in muscle tissue, as this may represent initial markers of primary stress responses. miRNAs regulate diverse biological processes, many are evolutionarily conserved, and hundreds have been identified in various animals, although only in a few fish species. We used a novel high-throughput sequencing (RNA-Seq) method to identify miRNAs in Atlantic salmon and specific miRNAs as potential early markers for stress. A total of 18 miRNAs were significantly differentially expressed (FDR<0.1) in exposed compared to control fish, four down-regulated and 14 up-regulated. An unsupervised hierarchical clustering of significant miRNAs revealed two clusters representing exposed and non-exposed individuals. Utilizing the genome of the zebrafish and bioinformatic tools, we identified 224 unique miRNAs in the Atlantic salmon samples sequenced. Additional laboratory studies focusing on function, stress dose-responses and temporal expression of the identified miRNAs will facilitate their use as initial markers for stress responses. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology
Salgado, Claudio Guedes; Pinto, Pablo; Bouth, Raquel Carvalho; Gobbo, Angélica Rita; Messias, Ana Caroline Cunha; Sandoval, Tatiana Vinasco; dos Santos, André Mauricio Ribeiro; Moreira, Fabiano Cordeiro; Vidal, Amanda Ferreira; Goulart, Luiz Ricardo; Barreto, Josafá Gonçalves; da Silva, Moisés Batista; Frade, Marco Andrey Cipriani; Spencer, John Stewart; Santos, Sidney; Ribeiro-dos-Santos, Ândrea
2018-01-01
Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1, and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial–mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1, and aquaporin-1 (AQP1) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain. PMID:29593724
miRNome Expression Analysis Reveals New Players on Leprosy Immune Physiopathology.
Salgado, Claudio Guedes; Pinto, Pablo; Bouth, Raquel Carvalho; Gobbo, Angélica Rita; Messias, Ana Caroline Cunha; Sandoval, Tatiana Vinasco; Dos Santos, André Mauricio Ribeiro; Moreira, Fabiano Cordeiro; Vidal, Amanda Ferreira; Goulart, Luiz Ricardo; Barreto, Josafá Gonçalves; da Silva, Moisés Batista; Frade, Marco Andrey Cipriani; Spencer, John Stewart; Santos, Sidney; Ribeiro-Dos-Santos, Ândrea
2018-01-01
Leprosy remains as a public health problem and its physiopathology is still not fully understood. MicroRNAs (miRNA) are small RNA non-coding that can interfere with mRNA to regulate gene expression. A few studies using DNA chip microarrays have explored the expression of miRNA in leprosy patients using a predetermined set of genes as targets, providing interesting findings regarding the regulation of immune genes. However, using a predetermined set of genes restricted the possibility of finding new miRNAs that might be involved in different mechanisms of disease. Thus, we examined the miRNome of tuberculoid (TT) and lepromatous (LL) patients using both blood and lesional biopsies from classical leprosy patients (LP) who visited the Dr. Marcello Candia Reference Unit in Sanitary Dermatology in the State of Pará and compared them with healthy subjects. Using a set of tools to correlate significantly differentially expressed miRNAs with their gene targets, we identified possible interactions and networks of miRNAs that might be involved in leprosy immunophysiopathology. Using this approach, we showed that the leprosy miRNA profile in blood is distinct from that in lesional skin as well as that four main groups of genes are the targets of leprosy miRNA: (1) recognition and phagocytosis, with activation of immune effector cells, where the immunosuppressant profile of LL and immunoresponsive profile of TT are clearly affected by miRNA expression; (2) apoptosis, with supportive data for an antiapoptotic leprosy profile based on BCL2, MCL1 , and CASP8 expression; (3) Schwann cells (SCs), demyelination and epithelial-mesenchymal transition (EMT), supporting a role for different developmental or differentiation gene families, such as Sox, Zeb, and Hox; and (4) loss of sensation and neuropathic pain, revealing that RHOA, ROCK1, SIGMAR1 , and aquaporin-1 ( AQP1 ) may be involved in the loss of sensation or leprosy pain, indicating possible new therapeutic targets. Additionally, AQP1 may also be involved in skin dryness and loss of elasticity, which are well known signs of leprosy but with unrecognized physiopathology. In sum, miRNA expression reveals new aspects of leprosy immunophysiopathology, especially on the regulation of the immune system, apoptosis, SC demyelination, EMT, and neuropathic pain.
Manderbacka, Kristiina; Hetemaa, Tiina; Keskimäki, Ilmo; Luukkainen, Pekka; Koskinen, Seppo; Reunanen, Antti
2006-01-01
Background Systematic socioeconomic differences in mortality have been reported among myocardial infarction (MI) patients in many countries, including Finland. The findings have been similar irrespective of country, study period, age group, or length of follow up, but few studies have examined the disparities among other groups of coronary patients. This study examined whether similar socioeconomic differences in outcomes exist among patients with angina pectoris (AP). Methods The data were based on individual register linkages among a population based 40–79 year‐old cohort of 61 350 patients with incident AP or MI during 1995–1998 in Finland. Two year coronary heart disease mortality and one year MI incidence and its 28 day case fatality was studied among AP patients using Cox's and logistic regression analysis, and the results compared with those of the MI patient group. Results A clear socioeconomic pattern was found in two year coronary heart disease (CHD) mortality: the lower the socioeconomic group the higher the mortality risk. The socioeconomic patterning of mortality was similar to that found among MI patients. Controlling for comorbidity or disease severity did not change the results. Among AP patients a similar pattern was also found in MI incidence during the follow up, but no systematic socioeconomic differences were detected in its 28 day case fatality. Conclusions Socioeconomic differences in CHD outcomes also exist among angina patients. These results suggest that targeted measures of secondary prevention are needed among CHD patients with lower socioeconomic status to reduce socioeconomic disparities in fatal and non‐fatal coronary events. PMID:16614336
ERIC Educational Resources Information Center
Kinyaduka, Bryson D.
2017-01-01
This paper raises pertinent issues regarding an obvious gap that prevails between theory and practice in various professions. The paper makes it clear that there is theory-practice gap among professions; however, it focuses more on informing theory-practice gap in the teaching profession. The paper identifies and informs of causes, effects and…
Hepatitis B virus pathogenesis: Fresh insights into hepatitis B virus RNA.
Sekiba, Kazuma; Otsuka, Motoyuki; Ohno, Motoko; Yamagami, Mari; Kishikawa, Takahiro; Suzuki, Tatsunori; Ishibashi, Rei; Seimiya, Takahiro; Tanaka, Eri; Koike, Kazuhiko
2018-06-07
Hepatitis B virus (HBV) is still a worldwide health concern. While divergent factors are involved in its pathogenesis, it is now clear that HBV RNAs, principally templates for viral proteins and viral DNAs, have diverse biological functions involved in HBV pathogenesis. These functions include viral replication, hepatic fibrosis and hepatocarcinogenesis. Depending on the sequence similarities, HBV RNAs may act as sponges for host miRNAs and may deregulate miRNA functions, possibly leading to pathological consequences. Some parts of the HBV RNA molecule may function as viral-derived miRNA, which regulates viral replication. HBV DNA can integrate into the host genomic DNA and produce novel viral-host fusion RNA, which may have pathological functions. To date, elimination of HBV-derived covalently closed circular DNA has not been achieved. However, RNA transcription silencing may be an alternative practical approach to treat HBV-induced pathogenesis. A full understanding of HBV RNA transcription and the biological functions of HBV RNA may open a new avenue for the development of novel HBV therapeutics.
Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J
2013-01-01
The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.
Studies of Neurofibromatosis-1 Modifier Genes
2005-06-01
inhibitors of GTPase activation by preventing the dissociation of GDP from the inactive GTPase. [E3 DDff The current dogma, at least in the context of...dissociation the cycle is less clear. inhibitors (GD/s), the activity of each of which is potentially modulated in response to various signals. Inactive...function No. of No. of No. of No. of No. of ArfGAPs RabGAPs RapGAPs RasGAPs RhoGAPs BAR IPR004148 Membrane curvature sensor 6 (4) 0 0 0 6 (6) BTK
Gao, Hongmei; Yin, Jie; Shi, Yugen; Hu, Hesheng; Li, Xiaolu; Xue, Mei; Cheng, Wenjuan; Wang, Ye; Li, Xinran; Li, Yongkang; Wang, Yu; Yan, Suhua
2017-04-01
Inflammation-dominated sympathetic sprouting adjacent to the necrotic region following myocardial infarction (MI) has been implicated in the etiology of arrhythmias resulting in sudden cardiac death; however, the mechanisms responsible remain to be elucidated. Although P2X 7 R is a key immune mediator, its role has yet to be explored. We investigated whether P2X 7 R regulates NF-κB and affects cardiac sympathetic reinnervation in rats undergoing MI. An adenoviral vector with a short hairpin RNA (shRNA) sequence inserted was adopted for the inhibition of P2X 7 R in vivo. Myocardial infarction was induced by left coronary artery ligation, and immediately after that, recombinant P2X 7 R-shRNA adenovirus, negative adenovirus (control), or normal saline solution (vehicle) was injected intramyocardially around the MI region and border areas. A high level of P2X 7 R was activated in the infarcted tissue at an early stage. The administration of P2X 7 R RNAi resulted in the inhibition of Akt and Erk1/2 phosphorylation and decreased the activation of NF-κB and macrophage infiltration, as well as attenuated the expression of nerve growth factor (NGF). Eventually, the NGF-induced sympathetic hyperinnervation was blunted, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth-associated protein 43 (GAP 43). At 7 days post-MI, the arrhythmia score of programmed electrical stimulation in the vehicle-treated infarcted rats was higher than the MI-shRNA group. Further amelioration of cardiac dysfunction was also detected. The administration of P2X 7 R RNAi during the acute inflammatory response phase prevented the process of sympathetic hyperinnervation after MI, which was associated in part with inhibiting the Akt and ERK1/2 pathways and NF-κB activation. © 2016 John Wiley & Sons Ltd.
The Dynamics and Implications of Gap Clearing via Planets in Planetesimal (Debris) Disks
NASA Astrophysics Data System (ADS)
Morrison, Sarah Jane
Exoplanets and debris disks are examples of solar systems other than our own. As the dusty reservoirs of colliding planetesimals, debris disks provide indicators of planetary system evolution on orbital distance scales beyond those probed by the most prolific exoplanet detection methods, and on timescales 10 r to 10 Gyr. The Solar System possesses both planets and small bodies, and through studying the gravitational interactions between both, we gain insight into the Solar System's past. As we enter the era of resolved observations of debris disks residing around other stars, I add to our theoretical understanding of the dynamical interactions between debris, planets, and combinations thereof. I quantify how single planets clear material in their vicinity and how long this process takes for the entire planetary mass regime. I use these relationships to assess the lowest mass planet that could clear a gap in observed debris disks over the system's lifetime. In the distant outer reaches of gaps in young debris systems, this minimum planet mass can exceed Neptune's. To complement the discoveries of wide-orbit, massive, exoplanets by direct imaging surveys, I assess the dynamical stability of high mass multi-planet systems to estimate how many high mass planets could be packed into young, gapped debris disks. I compare these expectations to the planet detection rates of direct imaging surveys and find that high mass planets are not the primary culprits for forming gaps in young debris disk systems. As an alternative model for forming gaps in planetesimal disks with planets, I assess the efficacy of creating gaps with divergently migrating pairs of planets. I find that migrating planets could produce observed gaps and elude detection. Moreover, the inferred planet masses when neglecting migration for such gaps could be expected to be observable by direct imaging surveys for young, nearby systems. Wide gaps in young systems would likely still require more than two planets even with plantesimal-driven migration. These efforts begin to probe the types of potential planets carving gaps in disks of different evolutionary stages and at wide orbit separations on scales similar to our outer Solar System.
Systematic review regulatory principles of non-coding RNAs in cardiovascular diseases.
Li, Yongsheng; Huo, Caiqin; Pan, Tao; Li, Lili; Jin, Xiyun; Lin, Xiaoyu; Chen, Juan; Zhang, Jinwen; Guo, Zheng; Xu, Juan; Li, Xia
2017-08-16
Cardiovascular diseases (CVDs) continue to be a major cause of morbidity and mortality, and non-coding RNAs (ncRNAs) play critical roles in CVDs. With the recent emergence of high-throughput technologies, including small RNA sequencing, investigations of CVDs have been transformed from candidate-based studies into genome-wide undertakings, and a number of ncRNAs in CVDs were discovered in various studies. A comprehensive review of these ncRNAs would be highly valuable for researchers to get a complete picture of the ncRNAs in CVD. To address these knowledge gaps and clinical needs, in this review, we first discussed dysregulated ncRNAs and their critical roles in cardiovascular development and related diseases. Moreover, we reviewed >28 561 published papers and documented the ncRNA-CVD association benchmarking data sets to summarize the principles of ncRNA regulation in CVDs. This data set included 13 249 curated relationships between 9503 ncRNAs and 139 CVDs in 12 species. Based on this comprehensive resource, we summarized the regulatory principles of dysregulated ncRNAs in CVDs, including the complex associations between ncRNA and CVDs, tissue specificity and ncRNA synergistic regulation. The highlighted principles are that CVD microRNAs (miRNAs) are highly expressed in heart tissue and that they play central roles in miRNA-miRNA functional synergistic network. In addition, CVD-related miRNAs are close to one another in the functional network, indicating the modular characteristic features of CVD miRNAs. We believe that the regulatory principles summarized here will further contribute to our understanding of ncRNA function and dysregulation mechanisms in CVDs. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Leucht, Stefan; Winter-van Rossum, Inge; Heres, Stephan; Arango, Celso; Fleischhacker, W Wolfgang; Glenthøj, Birte; Leboyer, Marion; Leweke, F Markus; Lewis, Shôn; McGuire, Phillip; Meyer-Lindenberg, Andreas; Rujescu, Dan; Kapur, Shitij; Kahn, René S; Sommer, Iris E
2015-05-01
Most of the 13 542 trials contained in the Cochrane Schizophrenia Group's register just tested the general efficacy of pharmacological or psychosocial interventions. Studies on the subsequent treatment steps, which are essential to guide clinicians, are largely missing. This knowledge gap leaves important questions unanswered. For example, when a first antipsychotic failed, is switching to another drug effective? And when should we use clozapine? The aim of this article is to review the efficacy of switching antipsychotics in case of nonresponse. We also present the European Commission sponsored "Optimization of Treatment and Management of Schizophrenia in Europe" (OPTiMiSE) trial which aims to provide a treatment algorithm for patients with a first episode of schizophrenia. We searched Pubmed (October 29, 2014) for randomized controlled trials (RCTs) that examined switching the drug in nonresponders to another antipsychotic. We described important methodological choices of the OPTiMiSE trial. We found 10 RCTs on switching antipsychotic drugs. No trial was conclusive and none was concerned with first-episode schizophrenia. In OPTiMiSE, 500 first episode patients are treated with amisulpride for 4 weeks, followed by a 6-week double-blind RCT comparing continuation of amisulpride with switching to olanzapine and ultimately a 12-week clozapine treatment in nonremitters. A subsequent 1-year RCT validates psychosocial interventions to enhance adherence. Current literature fails to provide basic guidance for the pharmacological treatment of schizophrenia. The OPTiMiSE trial is expected to provide a basis for clinical guidelines to treat patients with a first episode of schizophrenia. © The Author 2015. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Johnston, Nina; Bodegard, Johan; Jerström, Susanna; Åkesson, Johanna; Brorsson, Hilja; Alfredsson, Joakim; Albertsson, Per A; Karlsson, Jan-Erik; Varenhorst, Christoph
2016-08-01
Patients with myocardial infarction (MI) seldom reach recommended targets for secondary prevention. This study evaluated a smartphone application ("app") aimed at improving treatment adherence and cardiovascular lifestyle in MI patients. Multicenter, randomized trial. A total of 174 ticagrelor-treated MI patients were randomized to either an interactive patient support tool (active group) or a simplified tool (control group) in addition to usual post-MI care. Primary end point was a composite nonadherence score measuring patient-registered ticagrelor adherence, defined as a combination of adherence failure events (2 missed doses registered in 7-day cycles) and treatment gaps (4 consecutive missed doses). Secondary end points included change in cardiovascular risk factors, quality of life (European Quality of Life-5 Dimensions), and patient device satisfaction (System Usability Scale). Patient mean age was 58 years, 81% were men, and 21% were current smokers. At 6 months, greater patient-registered drug adherence was achieved in the active vs the control group (nonadherence score: 16.6 vs 22.8 [P = .025]). Numerically, the active group was associated with higher degree of smoking cessation, increased physical activity, and change in quality of life; however, this did not reach statistical significance. Patient satisfaction was significantly higher in the active vs the control group (system usability score: 87.3 vs 78.1 [P = .001]). In MI patients, use of an interactive patient support tool improved patient self-reported drug adherence and may be associated with a trend toward improved cardiovascular lifestyle changes and quality of life. Use of a disease-specific interactive patient support tool may be an appreciated, simple, and promising complement to standard secondary prevention. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Price, Brandee A; Bednarski, Brian K; You, Y Nancy; Manandhar, Meryna; Dean, E Michelle; Alawadi, Zeinab M; Bryce Speer, B; Gottumukkala, Vijaya; Weldon, Marla; Massey, Robert L; Wang, Xuemei; Qiao, Wei; Chang, George J
2017-01-01
Introduction Definitive treatment of localised colorectal cancer involves surgical resection of the primary tumour. Short-stay colectomies (eg, 23-hours) would have important implications for optimising the efficiency of inpatient care with reduced resource utilisation while improving the overall recovery experience with earlier return to normalcy. It could permit surgical treatment of colorectal cancer in a wider variety of settings, including hospital-based ambulatory surgery environments. While a few studies have shown that discharge within the first 24 hours after minimally invasive colectomy is possible, the safety, feasibility and patient acceptability of a protocol for short-stay colectomy for colorectal cancer have not previously been evaluated in a prospective randomised study. Moreover, given the potential for some patients to experience a delay in recovery of bowel function after colectomy, close outpatient monitoring may be necessary to ensure safe implementation. Methods and analysis In order to address this gap, we propose a prospective randomised trial of accelerated enhanced Recovery following Minimally Invasive colorectal cancer surgery (RecoverMI) that leverages the combination of minimally invasive surgery with enhanced recovery protocols and early coordinated outpatient remote televideo conferencing technology (TeleRecovery) to improve postoperative patien-provider communication, enhance postoperative treatment navigation and optimise postdischarge care. We hypothesise that RecoverMI can be safely incorporated into multidisciplinary practice to improve patient outcomes and reduce the overall 30-day duration of hospitalisation while preserving the quality of the patient experience. Ethics and dissemination RecoverMI has received institutional review board approval and funding from the American Society of Colorectal Surgeons (ASCRS; LPG103). Results from RecoverMI will be published in a peer-reviewed publication and be used to inform a multisite trial. Trial registration number NCT02613728; Pre-results. PMID:28729319
Detection and clearing of trapped ions in the high current Cornell photoinjector
Full, S.; Bartnik, A.; Bazarov, I. V.; ...
2016-03-03
Here, we have recently performed experiments to test the effectiveness of three ion-clearing strategies in the Cornell high intensity photoinjector: DC clearing electrodes, bunch gaps, and beam shaking. The photoinjector reaches a new regime of linac beam parameters where high continuous wave beam currents lead to ion trapping. Therefore ion mitigation strategies must be evaluated for this machine and other similar future high current linacs. We have developed several techniques to directly measure the residual trapped ions. Our two primary indicators of successful clearing are the amount of ion current removed by a DC clearing electrode, and the absence ofmore » bremsstrahlung radiation generated by beam-ion interactions. Measurements were taken for an electron beam with an energy of 5 MeV and continuous wave beam currents in the range of 1–20 mA. Several theoretical models have been developed to explain our data. Using them, we are able to estimate the clearing electrode voltage required for maximum ion clearing, the creation and clearing rates of the ions while employing bunch gaps, and the sinusoidal shaking frequency necessary for clearing via beam shaking. In all cases, we achieve a maximum ion clearing of at least 70% or higher, and in some cases our data is consistent with full ion clearing.« less
Li, Shenglei; Li, Xin; Zhao, Huasi; Gao, Ming; Wang, Feng; Li, Wencai
2015-10-01
MicroRNAs (miRs) are a family of small non-coding RNAs that are 21‑24 nucleotides in length. Decreased expression of hsa‑miR‑125a‑3p is observed in a number of patients with non‑small cell lung cancer; however, it is not clear how this miRNA regulates the growth and invasion of lung tumor cells. The aim of the present study was to identify the function of hsa‑miR‑125a‑3p in the growth and invasion of lung cancer cells. The expression of hsa‑miR‑125a‑3p in the A549, NCI‑H460 and SPCA‑1 lung cancer cell lines was analyzed by reverse transcription‑quantitative polymerase chain reaction and the human bronchiolar epithelium cell line (HBE) was used as a control. The results demonstrated that the expression of hsa‑miR‑125a‑3p was significantly lower in NCI‑H460, A549 and SPCA‑1 cells, compared with that in HBE cells. Overexpression of sense miR‑125a‑3p in the A549 lung cancer cell line inhibited cell proliferation for 5‑7 days (P<0.01), and transfection of antisense miR‑125a‑3p did not suppress the cell growth of the lung cancer cells. In addition, overexpression of miR‑125a‑3p in the NCI‑H460 lung cancer cell line markedly induced cell apoptosis, which was detected by fluorescence‑activated cell sorting with annexin V‑fluorescein isothiocyanate/propidium iodide staining. The results of the Transwell migration assay also revealed that transfection of miR‑125a‑3p resulted in decreased migration of lung cancer tumor cells. The pro‑apoptotic gene p53 expression was detected by western blot analysis. The results revealed that the expression of mouse double minute (MDM)‑2 homolog, the principal cellular antagonist of p53, was decreased and p53 expression was upregulated in sense has‑miR‑125a‑3p transfected A549 cells. This was consistent with that observed in NCI‑H460 cells, suggesting that hsa‑miR‑125a‑3p may be involved in the regulation of the MDM2/p53 signaling pathway in lung cancer cells. In conclusion, overexpression of hsa‑miR‑125a‑3p significantly inhibited the proliferation and invasion of lung cancer cells, which may aid in determining the mechanisms underlying the development of lung cancer.
School Segregation and Racial Academic Achievement Gaps. CEPA Working Paper No. 15-12
ERIC Educational Resources Information Center
Reardon, Sean F.
2015-01-01
Although it is clear that racial segregation is linked to academic achievement gaps, the mechanisms underlying this link have been debated since Coleman published his eponymous 1966 report. In this paper, I examine 16 distinct measures of segregation to determine which is most strongly associated with academic achievement gaps. I find very clear…
Romanel, Elisson; Silva, Tatiane F; Corrêa, Régis L; Farinelli, Laurent; Hawkins, Jennifer S; Schrago, Carlos E G; Vaslin, Maite F S
2012-11-01
Small RNAs (sRNAs) are a class of non-coding RNAs ranging from 20- to 40-nucleotides (nts) that are present in most eukaryotic organisms. In plants, sRNAs are involved in the regulation of development, the maintenance of genome stability and the antiviral response. Viruses, however, can interfere with and exploit the silencing-based regulatory networks, causing the deregulation of sRNAs, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). To understand the impact of viral infection on the plant sRNA pathway, we deep sequenced the sRNAs in cotton leaves infected with Cotton leafroll dwarf virus (CLRDV), which is a member of the economically important virus family Luteoviridae. A total of 60 putative conserved cotton miRNAs were identified, including 19 new miRNA families that had not been previously described in cotton. Some of these miRNAs were clearly misregulated during viral infection, and their possible role in symptom development and disease progression is discussed. Furthermore, we found that the 24-nt heterochromatin-associated siRNAs were quantitatively and qualitatively altered in the infected plant, leading to the reactivation of at least one cotton transposable element. This is the first study to explore the global alterations of sRNAs in virus-infected cotton plants. Our results indicate that some CLRDV-induced symptoms may be correlated with the deregulation of miRNA and/or epigenetic networks.
miRNAs as Circulating Biomarkers for Alzheimer's Disease and Parkinson's Disease.
Mushtaq, Gohar; Greig, Nigel H; Anwar, Firoz; Zamzami, Mazin A; Choudhry, Hani; Shaik, Munvar M; Tamargo, Ian A; Kamal, Mohammad A
2016-01-01
Detection of biomarkers for neurodegenerative disorders (NDDs) within brain tissues of Alzheimer's disease (AD) and Parkinson's disease (PD) patients has always been hampered by our inability to access and biopsy tissue of key brain regions implicated in disease occurrence and progression. Currently, diagnosis of NDDs is principally based on clinical observations of symptoms that present at later stages of disease progression, followed by neuroimaging and, possibly, CSF evaluation. One way to potentially detect and diagnose NDDs at a far earlier stage is to screen for abnormal levels of specific disease markers within the peripheral circulation of patients with NDDs. Increasing evidence suggests that there is dysregulation of microRNAs (miRNAs) in NDDs. Peripheral blood mononuclear cells, as well as biofluids, such as plasma, serum, urine and cerebrospinal fluid, contain miRNAs that can be identified and quantified. Circulating miRNAs within blood and other biofluids may thus be characterized and used as non-invasive, diagnostic biomarkers that facilitate the early detection of disease and potentially the continual monitoring of disease progression for NDDs such as AD and PD. Plainly, such a screen is only possible with a clear understanding of which miRNAs change with disease, and when these changes occur during the progression of AD and PD. Such information is becoming increasingly available and, in the near future, may not only support disease diagnosis, but provide the opportunity to evaluate therapeutic interventions earlier in the disease process.
Hou, Chunyu; Wang, Fei; Liu, Xuewen; Chang, Guangming; Wang, Feng; Geng, Xin
2017-08-01
Telomerase reverse transcriptase (TERT) is the protein component of telomerase complex. Evidence has accumulated showing that the nontelomeric functions of TERT are independent of telomere elongation. However, the mechanisms governing the interaction between TERT and its target genes are not clearly revealed. The biological functions of TERT are not fully elucidated and have thus far been underestimated. To further explore these functions, we investigated TERT interaction networks using multiple bioinformatic databases, including BioGRID, STRING, DAVID, GeneCards, GeneMANIA, PANTHER, miRWalk, mirTarBase, miRNet, miRDB, and TargetScan. In addition, network diagrams were built using Cytoscape software. As competing endogenous RNAs (ceRNAs) are endogenous transcripts that compete for the binding of microRNAs (miRNAs) by using shared miRNA recognition elements, they are involved in creating widespread regulatory networks. Therefore, the ceRNA regulatory networks of TERT were also investigated in this study. Interestingly, we found that the three genes PABPC1, SLC7A11, and TP53 were present in both TERT interaction networks and ceRNAs target genes. It was predicted that TERT might play nontelomeric roles in the generation or development of some rare diseases, such as Rift Valley fever and dyscalculia. Thus, our data will help to decipher the interaction networks of TERT and reveal the unknown functions of telomerase in cancer and aging-related diseases.
Mohamadi, Maryam; Mostafavi, Ali; Torkzadeh-Mahani, Masoud
2017-11-01
The aim of this research was the determination of a microRNA (miRNA) using a DNA electrochemical aptasensor. In this biosensor, the complementary complementary DNA (cDNA) of miRNA-145 (a sense RNA transcript) was the target strand and the cDNA of miRNA-145 was the probe strand. Both cDNAs can be the product of the reverse transcriptase-polymerase chain reaction of miRNA. The proposed aptasensor's function was based on the hybridization of target strands with probes immobilized on the surface of a working electrode and the subsequent intercalation of doxorubicin (DOX) molecules functioning as the electroactive indicators of any double strands that formed. Electrochemical transduction was performed by measuring the cathodic current resulting from the electrochemical reduction of the intercalated molecules at the electrode surface. In the experiment, because many DOX molecules accumulated on each target strand on the electrode surface, amplification was inherently easy, without a need for enzymatic or complicated amplification strategies. The proposed aptasensor also had the excellent ability to regenerate as a result of the melting of the DNA duplex. Moreover, the use of DNA probe strands obviated the challenges of working with an RNA probe, such as sensitivity to RNase enzyme. In addition to the linear relationship between the electrochemical signal and the concentration of the target strands that ranged from 2.0 to 80.0 nM with an LOD of 0.27 nM, the proposed biosensor was clearly capable of distinguishing between complementary (target strand) and noncomplementary sequences. The presented biosensor was successfully applied for the quantification of DNA strands corresponding to miRNA-145 in human serum samples.
Brain correlates to facial motor imagery and its somatotopy in the primary motor cortex.
Soliman, Ramy S; Lee, Sanghoon; Eun, Seulgi; Mohamed, Abdalla Z; Lee, Jeungchan; Lee, Eunyoung; Makary, Meena M; Kathy Lee, Seung Min; Lee, Hwa-Jin; Choi, Woo Suk; Park, Kyungmo
2017-03-22
Motor imagery (MI) has attracted increased interest for motor rehabilitation as many studies have shown that MI shares the same neural networks as motor execution (ME). Nevertheless, MI in terms of facial movement has not been studied extensively; thus, in the present study, we investigated shared neural networks between facial motor imagery (FMI) and facial motor execution (FME). In addition, FMI somatotopy within-face was investigated between the forehead and the mouth. Functional MRI was used to examine 34 healthy individuals with ME and MI paradigms for the forehead and the mouth. The general linear model and a paired t-test were performed to define the facial area in the primary motor cortex (M1) and this area has been used to investigate somatotopy between the forehead and mouth FMI. FMI recruited similar brain motor areas as FME, but showed less neural activity in all activated regions. The facial areas in M1 were distinguishable from other body movements such as finger movement. Further investigation of this area showed that forehead and mouth imagery tended to lack a somatotopic representation for position on M1, and yet had distinct characteristics in terms of neural activity level. FMI showed different characteristics from general MI as the former exclusively activated facial processing areas. In addition, FME and FMI showed different characteristics in terms of BOLD signal level, while sharing the same neural areas. The results imply a potential usefulness of MI training for rehabilitation of facial motor disease considering that forehead and mouth somatotopy showed no clear position difference, and yet showed a significant BOLD signal intensity variation.
Molecular imaging and the unification of multilevel mechanisms and data in medical physics.
Nikiforidis, George C; Sakellaropoulos, George C; Kagadis, George C
2008-08-01
Molecular imaging (MI) constitutes a recently developed approach of imaging, where modalities and agents have been reinvented and used in novel combinations in order to expose and measure biologic processes occurring at molecular and cellular levels. It is an approach that bridges the gap between modalities acquiring data from high (e.g., computed tomography, magnetic resonance imaging, and positron-emitting isotopes) and low (e.g., PCR, microarrays) levels of a biological organization. While data integration methodologies will lead to improved diagnostic and prognostic performance, interdisciplinary collaboration, triggered by MI, will result in a better perception of the underlying biological mechanisms. Toward the development of a unifying theory describing these mechanisms, medical physicists can formulate new hypotheses, provide the physical constraints bounding them, and consequently design appropriate experiments. Their new scientific and working environment calls for interventions in their syllabi to educate scientists with enhanced capabilities for holistic views and synthesis.
NASA Astrophysics Data System (ADS)
Tanner, Peter A.; Duan, Chang-Kui; Jia, Guohua; Cheng, Bing-Ming
2012-04-01
The excitation and emission spectra of a series of cubic hexachloroelpasolites doped with europium have been investigated using synchrotron radiation at 10 K. Besides the Eu3+ emission from 5DJ (J=0-3) multiplets, emission from 5H3 is also observed for Cs2NaIn0.995Eu0.005Cl6, since the gap to the next lowest level is spanned by seven phonons. The excitation spectra of samples indicate impurities due to oxygen and divalent europium. Broad band emission from Eu2+ is reported from the crystalline samples grown in vacuum by the Bridgman process, with the maximum wavelength shifting to the red with increasing lattice parameter for the series Cs2NaMCl6:Eu2+ (M=Lu, Y, Eu).
Singh, S L; Singh, S B; Ghatak, K P
2018-04-01
In this paper an attempt is made to study the 2D Fermi Level Mass (FLM) in accumulation and inversion layers of nano MOSFET devices made of nonlinear optical, III-V, ternary, Quaternary, II-VI, IV-VI, Ge and stressed materials by formulating 2D carrier dispersion laws on the basis of
Through a glass darkly: some insights on change talk via magnetoencephalography.
Houck, Jon M; Moyers, Theresa B; Tesche, Claudia D
2013-06-01
Motivational interviewing (MI) is a directive, client-centered therapeutic method employed in the treatment of substance abuse, with strong evidence of effectiveness. To date, the sole mechanism of action in MI with any consistent empirical support is "change talk" (CT), which is generally defined as client within-session speech in support of a behavior change. "Sustain talk" (ST) incorporates speech in support of the status quo. MI maintains that during treatment, clients essentially talk themselves into change. Multiple studies have now supported this theory, linking within-session speech to substance use outcomes. Although a causal chain has been established linking therapist behavior, client CT, and substance use outcome, the neural substrate of CT has been largely uncharted. We addressed this gap by measuring neural responses to clients' own CT using magnetoencephalography (MEG), a noninvasive neuroimaging technique with excellent spatial and temporal resolution. Following a recorded MI session, MEG was used to measure brain activity while participants heard multiple repetitions of their CT and ST utterances from that session, intermingled and presented in a random order. Results suggest that CT processing occurs in a right-hemisphere network that includes the inferior frontal gyrus, insula, and superior temporal cortex. These results support a representation of CT at the neural level, consistent with the role of these structures in self-perception. This suggests that during treatment sessions, clinicians who are able to evoke this special kind of language are tapping into neural circuitry that may be essential to behavior change. 2013 APA, all rights reserved
Fahlgren, Noah; Howell, Miya D.; Kasschau, Kristin D.; Chapman, Elisabeth J.; Sullivan, Christopher M.; Cumbie, Jason S.; Givan, Scott A.; Law, Theresa F.; Grant, Sarah R.; Dangl, Jeffery L.; Carrington, James C.
2007-01-01
In plants, microRNAs (miRNAs) comprise one of two classes of small RNAs that function primarily as negative regulators at the posttranscriptional level. Several MIRNA genes in the plant kingdom are ancient, with conservation extending between angiosperms and the mosses, whereas many others are more recently evolved. Here, we use deep sequencing and computational methods to identify, profile and analyze non-conserved MIRNA genes in Arabidopsis thaliana. 48 non-conserved MIRNA families, nearly all of which were represented by single genes, were identified. Sequence similarity analyses of miRNA precursor foldback arms revealed evidence for recent evolutionary origin of 16 MIRNA loci through inverted duplication events from protein-coding gene sequences. Interestingly, these recently evolved MIRNA genes have taken distinct paths. Whereas some non-conserved miRNAs interact with and regulate target transcripts from gene families that donated parental sequences, others have drifted to the point of non-interaction with parental gene family transcripts. Some young MIRNA loci clearly originated from one gene family but form miRNAs that target transcripts in another family. We suggest that MIRNA genes are undergoing relatively frequent birth and death, with only a subset being stabilized by integration into regulatory networks. PMID:17299599
Changes in soil carbon cycling accompanying conversion of row-crop fields to grazing dairy pastures
NASA Astrophysics Data System (ADS)
Thompson, A.; Kramer, M. G.; Hill, N.; Machmuller, M. B.; Cyle, K.
2011-12-01
Increasingly, the dairy industry in the eastern US is transitioning from total confinement dairy systems (TCD) toward pasture-based, management intensive grazing dairy (MiGD) systems. This transition is driven by the fact that MiGDs require substantially less operating capital and are more economically efficient than TCD systems. Consequently, the impact of this transition and shift in land-use practice on carbon dynamics may be considerable. Land-use in a Management intensive Grazing Dairy (MiGD) system is fundamentally different than conventional confinement dairies and conventional no-till pastures. The forage system involves rotational grazing at optimal digestibility, when the plants are immature (~20-days) and consequently protein-rich. MiGD cows spend >90% of their time in the field and deposit > 90% of their waste directly to the soil surface. Thus, little above ground plant residues are directly returned to the soil, but rather substantial C inputs derive from bovine manure. We sampled a MiGD-chronosequence of row-crop to MiGD conversion established in 2007 in eastern Georgia. All soils across the MiGD-chronosequence, all occur in relative (40 km) close proximity to one another, are deep, well-drained, fine and fine sandy loam Ultisols formed on Coastal Plain sediments. Prior to MiGD established, the soils were farmed for > 50 yrs using conventional tillage techniques. Our current sampling to 1m depths captures fields at 0, 2, 3, and 5 yrs since conversion. Total soil carbon (C) and the carbon concentration of the clay fraction increased following conversion, with the greatest increases occurring between 3 and 5 yrs since conversion. These C increases were limited to the upper 40cm of the soil, with minimal change occurring at depth. Characterization of the protein and ligand content of these soils via 13C NMR and chemolytic techniques as a function of soil particle density and size is in progress and will be presented along with estimates of carbon dioxide and methane fluxes across the MiGD chronosequence. Our broad goal is to quantify ruminal methane emissions and changes to soil C-stocks and stability associated with this land-use shift. Our preliminary data suggest such a land-use change will likely improve soil health and increase C-stocks. Balancing this against potential increases in methane emissions is a key knowledge gap for future southeastern U.S. C-cycling estimates.
NASA Astrophysics Data System (ADS)
Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae
2017-04-01
In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and investigated the effects of the BAOD assumption. The satellite-based BAOD was significantly higher than the ground-based value over urban area, and thus, resulted in the underestimation of surface reflectance and the overestimation of AOD. The error analysis of the MI AOD also showed sensitivity to cloud contamination, clearly. Therefore, improvements of cloud masking process in the developed single channel MI algorithm as well as the modification of the surface reflectance estimation will be required for the future study.
ErŽen, Barbara; Šilar, Mira; Šabovič, Mišo
2014-11-22
The role of vascular endothelial growth factor (VEGF) in patients in the stable phase after myocardial infarction (MI) has not yet been explored. Therefore, we compared the values of VEGF in post-MI patients with those obtained in healthy controls. Furthermore, we investigated whether the values of VEGF correlate to either inflammation markers or the atherosclerotic burden. 41 male patients (on average 44 years old) in the stable phase after MI (on average 20.5 months after MI) were recruited, while 25 healthy age-matched males served as controls. Plasma levels of VEGF and several markers of inflammation were measured by standard procedures. The atherosclerotic burden was determined by the angiographic severity of coronary atherosclerosis, endothelial dysfunction (measured by ultrasound measurement of the flow mediated dilation of the brachial artery), the intima-media thickness of the common carotid artery and the ankle-brachial pressure index. VEGF values were significantly elevated in post-MI patients compared to the controls (53.8 ± 42.7 pg/ml vs. 36.3 ± 8.9 pg/ml, p = 0.014). The elevated VEGF values significantly correlated to the (increased) values of the inflammatory molecules interleukin 6 and 8 (r = 0.37, p = 0.017; and r = 0.45, p = 0.003; respectively). In contrast, no correlation was found between VEGF and the parameters of the atherosclerotic burden, although FMD and IMT were significantly impaired in patients. We found that plasma levels of VEGF are increased in the stable phase after MI and correlate with inflammation cytokines, but not with the atherosclerotic burden. Thus, this suggests that increased levels of VEGF are a part of ongoing inflammatory activity. Since VEGF in these patients stimulates neovascularization of inflamed plaques and induces their destabilization, the VEGF level can have an important negative prognostic value. Clearly, further studies are needed to clarify the role of VEGF as a prognostic marker.
Hosoya, Y; Kubota, I; Shibata, T; Yamaki, M; Ikeda, K; Tomoike, H
1992-06-01
There were few studies on the relation between the body surface distribution of high- and low-frequency components within the QRS complex and ventricular tachycardia (VT). Eighty-seven signal-averaged ECGs were obtained from 30 normal subjects (N group) and 30 patients with previous anterior myocardial infarction (MI) with VT (MI-VT[+] group, n = 10) or without VT (MI-VT[-] group, n = 20). The onset and offset of the QRS complex were determined from 87-lead root mean square values computed from the averaged (but not filtered) ECG waveforms. Fast Fourier transform analysis was performed on signal-averaged ECG. The resulting Fourier coefficients were attenuated by use of the transfer function, and then inverse transform was done with five frequency ranges (0-25, 25-40, 40-80, 80-150, and 150-250 Hz). From the QRS onset to the QRS offset, the time integration of the absolute value of reconstructed waveforms was calculated for each of the five frequency ranges. The body surface distributions of these areas were expressed as QRS area maps. The maximal values of QRS area maps were compared among the three groups. In the frequency ranges of 0-25 and 150-250 Hz, there were no significant differences in the maximal values among these three groups. Both MI groups had significantly smaller maximal values of QRS area maps in the frequency ranges of 25-40 and 40-80 Hz compared with the N group. The MI-VT(+) group had significantly smaller maximal values in the frequency ranges of 40-80 and 80-150 Hz than the MI-VT(-) group. These three groups were clearly differentiated by the maximal values of the 40-80-Hz QRS area map. It was suggested that the maximal value of the 40-80-Hz QRS area map was a new marker for VT after anterior MI.
Uptake of dietary milk microRNAs by adult humans: Rules for the game of hide and seek
USDA-ARS?s Scientific Manuscript database
Milk producers recently used a social media campaign to build public confidence in the health benefits of their product; however, it is not clear why they did not tout the abundant microRNAs (miRNAs), small non-coding RNA molecules that function in RNA silencing and post-transcriptional regulation o...
Childhood to adolescence: dust and gas clearing in protoplanetary disks
NASA Astrophysics Data System (ADS)
Brown, Joanna Margaret
Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike their classical T Tauri star counterparts. The gaps are cleared of most ~100 μm sized grains as well as the ~10 μm sized grains visible in the mid-infrared as silicate emission features.
1986-01-24
Range : 236,000 km. ( 147,000 mi. ) Resolution : 33 km. ( 20 mi. ) P-29525B/W This Voyager 2 image reveals a contiuos distribution of small particles throughout the Uranus ring system. This unigue geometry, the highest phase angle at which Voyager imaged the rings, allows us to see lanes of fine dust particles not visible from other viewing angles. All the previously known rings are visible. However, some of the brightest features in the image are bright dust lanes not previously seen. the combination of this unique geometry and a long, 96 second exposure allowed this spectacular observation, acquired through the clear filter if Voyager 2's wide angle camera. the long exposure produced a noticable, non-uniform smear, as well as streaks due to trailed stars.
Mecp2 Mediates Experience-Dependent Transcriptional Upregulation of Ryanodine Receptor Type-3
Torres, Rodrigo F.; Hidalgo, Cecilia; Kerr, Bredford
2017-01-01
Mecp2 is a DNA methylation reader that plays a critical role in experience-dependent plasticity. Increasing evidence supports a role for epigenetic modifications in activity-induced gene expression. Hence, candidate genes related to such phenomena are of great interest. Ryanodine receptors are intracellular calcium channels that contribute to hippocampal synaptic plasticity, dendritic spine remodeling, and participate in learning and memory processes. Here we exposed mice to the enriched environment (EE) paradigm, which through increased stimulation induces experience dependent-plasticity, to explore a role for methyl-cytosines, and Mecp2 in directing Ryanodine receptor 3 (Ryr3) transcriptional activity. EE induced a hippocampal-specific increase in the methylation of discrete cytosines located at a Ryr3 isoform promoter; chromatin immunoprecipitation experiments revealed that EE increased Mecp2 binding to this Ryr3 isoform promoter. Interestingly, the experimental paradigm induced robust Ryr3 upregulation, accompanied by miR132-dependent suppression of p250GAP, a pathway driving synaptogenesis. In contrast to WT mice, Mecp2-null mice showed diminished levels of Ryr3 and displayed impaired EE-induced Ryr3 upregulation, compromising miR132 dependent suppression of p250GAP and experience-dependent structural plasticity. Based on these results, we propose that Mecp2 acts as a transcriptional activator of Ryr3, contributing to experience-dependent plasticity. PMID:28659760
Overcoming gaps and bottlenecks to advance precision agriculture
USDA-ARS?s Scientific Manuscript database
Maintaining a clear understanding of the technology gaps, knowledge needs, and training bottlenecks is required for improving adoption of precision agriculture. As an industry, precision agriculture embraces tools, methods, and practices that are constantly changing, requiring industry, education, a...
ERIC Educational Resources Information Center
Czehut, Katherine Jessica Drake
2012-01-01
International mathematics assessments have established students in East Asia as among the best in the world and their U.S. counterparts as mediocre. What is not clear is why this "achievement gap" exists. The last major study to address this question, Stevenson and Stigler's (1992) "The Learning Gap," was published prior to…
Wang, Kefeng; Sun, Yin; Tao, Wei; Fei, Xiang; Chang, Chawnshang
2017-05-28
Increasing evidence has demonstrated that the androgen receptor (AR) plays important roles to promote the metastasis of clear cell renal cell carcinoma (ccRCC). The detailed mechanisms, especially how AR functions via altering the circular RNAs (circRNAs) remain unclear. Here we identified a new circRNA (named as circHIAT1) whose expression was lower in ccRCCs than adjacent normal tissues. Targeting AR could suppress ccRCC cell progression via increasing circHIAT1 expression. ChIP assay and luciferase assay demonstrated that AR suppressed circHIAT1 expression via regulating its host gene, Hippocampus Abundant Transcript 1 (HIAT1) expression at the transcriptional level. The consequences of AR-suppressed circHIAT1 resulted in deregulating miR-195-5p/29a-3p/29c-3p expressions, which increased CDC42 expression to enhance ccRCC cell migration and invasion. Increasing this newly identified signal via circHIAT1 suppressed AR-enhanced ccRCC cell migration and invasion. Together, these results suggested that circHIAT1 functioned as a metastatic inhibitor to suppress AR-enhanced ccRCC cell migration and invasion. Targeting this newly identified AR-circHIAT1-mediated miR-195-5p/29a-3p/29c-3p/CDC42 signals may help us develop potential new therapies to better suppress ccRCC metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.
Amene, E; Horn, B; Pirie, R; Lake, R; Döpfer, D
2016-09-06
Data containing notified cases of disease are often compromised by incomplete or partial information related to individual cases. In an effort to enhance the value of information from enteric disease notifications in New Zealand, this study explored the use of Bayesian and Multiple Imputation (MI) models to fill risk factor data gaps. As a test case, overseas travel as a risk factor for infection with campylobacteriosis has been examined. Two methods, namely Bayesian Specification (BAS) and Multiple Imputation (MI), were compared regarding predictive performance for various levels of artificially induced missingness of overseas travel status in campylobacteriosis notification data. Predictive performance of the models was assessed through the Brier Score, the Area Under the ROC Curve and the Percent Bias of regression coefficients. Finally, the best model was selected and applied to predict missing overseas travel status of campylobacteriosis notifications. While no difference was observed in the predictive performance of the BAS and MI methods at a lower rate of missingness (<10 %), but the BAS approach performed better than MI at a higher rate of missingness (50 %, 65 %, 80 %). The estimated proportion (95 % Credibility Intervals) of travel related cases was greatest in highly urban District Health Boards (DHBs) in Counties Manukau, Auckland and Waitemata, at 0.37 (0.12, 0.57), 0.33 (0.13, 0.55) and 0.28 (0.10, 0.49), whereas the lowest proportion was estimated for more rural West Coast, Northland and Tairawhiti DHBs at 0.02 (0.01, 0.05), 0.03 (0.01, 0.08) and 0.04 (0.01, 0.06), respectively. The national rate of travel related campylobacteriosis cases was estimated at 0.16 (0.02, 0.48). The use of BAS offers a flexible approach to data augmentation particularly when the missing rate is very high and when the Missing At Random (MAR) assumption holds. High rates of travel associated cases in urban regions of New Zealand predicted by this approach are plausible given the high rate of travel in these regions, including destinations with higher risk of infection. The added advantage of using a Bayesian approach is that the model's prediction can be improved whenever new information becomes available.
EarthCache as a Tool to Promote Earth-Science in Public School Classrooms
NASA Astrophysics Data System (ADS)
Gochis, E. E.; Rose, W. I.; Klawiter, M.; Vye, E. C.; Engelmann, C. A.
2011-12-01
Geoscientists often find it difficult to bridge the gap in communication between university research and what is learned in the public schools. Today's schools operate in a high stakes environment that only allow instruction based on State and National Earth Science curriculum standards. These standards are often unknown by academics or are written in a style that obfuscates the transfer of emerging scientific research to students in the classroom. Earth Science teachers are in an ideal position to make this link because they have a background in science as well as a solid understanding of the required curriculum standards for their grade and the pedagogical expertise to pass on new information to their students. As part of the Michigan Teacher Excellence Program (MiTEP), teachers from Grand Rapids, Kalamazoo, and Jackson school districts participate in 2 week field courses with Michigan Tech University to learn from earth science experts about how the earth works. This course connects Earth Science Literacy Principles' Big Ideas and common student misconceptions with standards-based education. During the 2011 field course, we developed and began to implement a three-phase EarthCache model that will provide a geospatial interactive medium for teachers to translate the material they learn in the field to the students in their standards based classrooms. MiTEP participants use GPS and Google Earth to navigate to Michigan sites of geo-significance. At each location academic experts aide participants in making scientific observations about the locations' geologic features, and "reading the rocks" methodology to interpret the area's geologic history. The participants are then expected to develop their own EarthCache site to be used as pedagogical tool bridging the gap between standards-based classroom learning, contemporary research and unique outdoor field experiences. The final phase supports teachers in integrating inquiry based, higher-level learning student activities to EarthCache sites near their own urban communities, or in regional areas such as nature preserves and National Parks. By working together, MiTEP participants are developing a network of regional EarthCache sites and shared lesson plans which explore places that are meaningful to students while simultaneously connecting them to geologic concepts they are learning in school. We believe that the MiTEP EarthCaching model will help participants emerge as leaders of inquiry style, and virtual place-based educators within their districts.
Kitaoka, Satoshi; Watanabe, Yoko; Koike, Takayoshi
2009-12-01
To understand the leaf-level responses of successional tree species to forest gap formation and nitrogen deposition, we performed canopy clearing and nitrogen-amendment treatments in larch plantations and investigated the changes in the light-use characteristics and the leaf structure of the invading deciduous broad-leaved tree seedlings. We hypothesized that the responses of the tree seedlings to clearing and nitrogen input would reflect specific traits in the shoot development that would be related to the species-specific successional characteristics. The gap phase species Magnolia hyporeuca Siebold et Zucc. and the mid-late successional tree species Quercus mongolica Fischer ex Ledeb. var. crispula (Blume) Ohashi., which grow in or near the forest gaps, had higher light-saturated photosynthetic rates (Psat), enhanced mesophyll surface area (Smes) and increased leaf mass per area (LMA) under both the clearing treatment and the clearing with nitrogen-amendment treatment. These two species therefore increased their Psat via an increase in Smes and LMA. The LMA values of the late successional tree species Prunus ssiori F. Schmidt and Carpinus cordata Blume, which grow in the forest understory, were enhanced by the clearing treatment. However, they displayed lesser responses to the clearing treatment under which there were no marked increases in Psat or Smes values in the second year. These results indicate distinct and varied responses to disturbance regimes among the four seral tree seedlings. The Psat value largely increased in line with the increase in Smes value during the second year in M. hyporeuca and Q. mongolica. The nitrogen supply accelerated the change in LMA and increased the Smes value in the leaves of Q. mongolica.
Ohno, K; Takeda, N; Kubo, T; Kiyama, H
1994-10-01
Growth-associated protein (GAP)-43 plays a significant role in nerve regeneration and synaptic remodeling. We examined the profiles of GAP-43 mRNA expression in vestibular efferent neurons after labyrinthectomy in adult rats, and clearly demonstrated that labyrinthectomy increased GAP-43 expression in these neurons. This finding suggests the ability of vestibular efferent nerves to regenerate after nerve injury.
A comparison of radiometric normalization methods when filling cloud gaps in Lansat imagery.
E. H. Helmer
2007-01-01
Mapping persistently cloudy tropical landscapes with optical satellite imagenery usually requires assembling the clear imagery from several dates. this study compares methods for normalizing image data when filling cloud gaps in Landsat imagery with imagery from other dates.
Morton, Patricia M; Turiano, Nicholas A; Mroczek, Daniel K; Ferraro, Kenneth F
2016-03-12
Previous research has revealed a link between childhood experiences and adult health, but the mechanisms underlying this relationship are less clear. To elucidate this relationship, we investigated the pathway from childhood misfortune to nonfatal myocardial infarction (MI) via individual differences in personality. Longitudinal data were drawn from the National Survey of Midlife Development in the United States, which sampled 3,032 men and women aged 25-74 years at baseline. Big 5 personality traits and multiple measures of childhood misfortune were used to assess whether personality mediated the effect of childhood misfortune on MI risk. A series of proportional hazards models revealed that neuroticism mediated the effect of additive childhood misfortune on adult MI risk. Childhood misfortune may be formative in the development of personality, which, subsequently, can be consequential to health. These findings highlight the salient roles of early-life experiences and personality to shape health and aging. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
In Galápagos … and Uncomfortable with Evolution
ERIC Educational Resources Information Center
Cotner, Sehoya; Graczyk, Hannah; Rodríguez Garcia, José Luis; Moore, Randy
2016-01-01
In June 2013, the third World Evolution Summit convened on San Cristóbal, hosting scientists from around the world (Paz-y-Miño-C and Espinosa 2013)--neither the first nor likely the last gathering of biologists on these remote islands. Clearly, both locals and an international audience perceive Galápagos as figuring prominently in discourse about…
Park, Ju Yeon; Lee, Sang-Hak; Shin, Min-Jeong; Hwang, Geum-Sook
2015-01-01
Lipid metabolites are indispensable regulators of physiological and pathological processes, including atherosclerosis and coronary artery disease (CAD). However, the complex changes in lipid metabolites and metabolism that occur in patients with these conditions are incompletely understood. We performed lipid profiling to identify alterations in lipid metabolism in patients with angina and myocardial infarction (MI). Global lipid profiling was applied to serum samples from patients with CAD (angina and MI) and age-, sex-, and body mass index-matched healthy subjects using ultra-performance liquid chromatography/quadruple time-of-flight mass spectrometry and multivariate statistical analysis. A multivariate analysis showed a clear separation between the patients with CAD and normal controls. Lysophosphatidylcholine (lysoPC) and lysophosphatidylethanolamine (lysoPE) species containing unsaturated fatty acids and free fatty acids were associated with an increased risk of CAD, whereas species of lysoPC and lyso-alkyl PC containing saturated fatty acids were associated with a decreased risk. Additionally, PC species containing palmitic acid, diacylglycerol, sphingomyelin, and ceramide were associated with an increased risk of MI, whereas PE-plasmalogen and phosphatidylinositol species were associated with a decreased risk. In MI patients, we found strong positive correlation between lipid metabolites related to the sphingolipid pathway, sphingomyelin, and ceramide and acute inflammatory markers (high-sensitivity C-reactive protein). The results of this study demonstrate altered signatures in lipid metabolism in patients with angina or MI. Lipidomic profiling could provide the information to identity the specific lipid metabolites under the presence of disturbed metabolic pathways in patients with CAD.
NASA Technical Reports Server (NTRS)
1986-01-01
This image of Miranda, obtained by Voyager 2 on approach, shows an unusual 'chevron' figure and regions of distinctly differing terrain on the Uranian moon. Voyager was 42,000 kilometers (26,000 miles) away when its narrow-angle camera acquired this clear-filter view. Grooved areas baring light and dark bands, distinct from other areas of mottled terrain, are visible at this resolution of about 600 meters (2,000 feet). The bright V-shaped feature in the grooved areas is the 'chevron' observed in earlier, lower-resolution images. Cutting across the bands are sinuous scarps, probably faults. Superimposed on both types of terrain are many bowl-shaped impact craters less than 5 km (3 mi) wide. The entire picture spans an area about 220 km (140 mi) across. The Voyager project is managed for NASA by the Jet Propulsion Laboratory.
Manucha, Varsha; Sessums, Mary T; Lewin, Jack; Akhtar, Israh
2018-03-01
The MiT family translocation renal cell carcinomas (RCCs) are relatively rare in comparison to the conventional RCC. The cytologic features overlap with conventional clear cell RCC and papillary RCCs, thereby making the diagnosis extremely challenging. Here, we describe a case of TFE3 translocation associated RCC in a 58-year-old patient, with emphasis on cytomorphologic features and clues toward this diagnostic entity. Correlating the cytohistologic findings and review of touch imprints revealed that presence of hyaline nodules resembling leisegang rings and psammoma bodies in cytologic smears from kidney tumors serve as an important clue in raising a suspicion for the diagnosis of MiT family translocation RCCs. © 2017 Wiley Periodicals, Inc.
Studies of a Next-Generation Silicon-Photomultiplier-Based Time-of-Flight PET/CT System.
Hsu, David F C; Ilan, Ezgi; Peterson, William T; Uribe, Jorge; Lubberink, Mark; Levin, Craig S
2017-09-01
This article presents system performance studies for the Discovery MI PET/CT system, a new time-of-flight system based on silicon photomultipliers. System performance and clinical imaging were compared between this next-generation system and other commercially available PET/CT and PET/MR systems, as well as between different reconstruction algorithms. Methods: Spatial resolution, sensitivity, noise-equivalent counting rate, scatter fraction, counting rate accuracy, and image quality were characterized with the National Electrical Manufacturers Association NU-2 2012 standards. Energy resolution and coincidence time resolution were measured. Tests were conducted independently on two Discovery MI scanners installed at Stanford University and Uppsala University, and the results were averaged. Back-to-back patient scans were also performed between the Discovery MI, Discovery 690 PET/CT, and SIGNA PET/MR systems. Clinical images were reconstructed using both ordered-subset expectation maximization and Q.Clear (block-sequential regularized expectation maximization with point-spread function modeling) and were examined qualitatively. Results: The averaged full widths at half maximum (FWHMs) of the radial/tangential/axial spatial resolution reconstructed with filtered backprojection at 1, 10, and 20 cm from the system center were, respectively, 4.10/4.19/4.48 mm, 5.47/4.49/6.01 mm, and 7.53/4.90/6.10 mm. The averaged sensitivity was 13.7 cps/kBq at the center of the field of view. The averaged peak noise-equivalent counting rate was 193.4 kcps at 21.9 kBq/mL, with a scatter fraction of 40.6%. The averaged contrast recovery coefficients for the image-quality phantom were 53.7, 64.0, 73.1, 82.7, 86.8, and 90.7 for the 10-, 13-, 17-, 22-, 28-, and 37-mm-diameter spheres, respectively. The average photopeak energy resolution was 9.40% FWHM, and the average coincidence time resolution was 375.4 ps FWHM. Clinical image comparisons between the PET/CT systems demonstrated the high quality of the Discovery MI. Comparisons between the Discovery MI and SIGNA showed a similar spatial resolution and overall imaging performance. Lastly, the results indicated significantly enhanced image quality and contrast-to-noise performance for Q.Clear, compared with ordered-subset expectation maximization. Conclusion: Excellent performance was achieved with the Discovery MI, including 375 ps FWHM coincidence time resolution and sensitivity of 14 cps/kBq. Comparisons between reconstruction algorithms and other multimodal silicon photomultiplier and non-silicon photomultiplier PET detector system designs indicated that performance can be substantially enhanced with this next-generation system. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.
Tepp, Kersti; Timohhina, Natalja; Chekulayev, Vladimir; Shevchuk, Igor; Kaambre, Tuuli; Saks, Valdur
2010-01-01
The main focus of this research was to apply Metabolic Control Analysis to quantitative investigation of the regulation of respiration by components of the Mitochondrial Interactosome (MI, a supercomplex consisting of ATP Synthasome, mitochondrial creatine kinase (MtCK), voltage dependent anion channel (VDAC), and tubulin) in permeabilized cardiomyocytes. Flux control coefficients (FCC) were measured using two protocols: 1) with direct ADP activation, and 2) with MtCK activation by creatine (Cr) in the presence of ATP and pyruvate kinase-phosphoenolpyruvate system. The results show that the metabolic control is much stronger in the latter case: the sum of the measured FCC is 2.7 versus 0.74 (ADP activation). This is consistent with previous data showing recycling of ADP and ATP inside the MI due to the functional coupling between MtCK and ANT and limited permeability of VDAC for these compounds, PCr being the major energy carrier between the mitochondria and ATPases. In physiological conditions, when the MI is activated, the key sites of regulation of respiration in mitochondria are MtCK (FCC = 0.93), adenine nucleotide translocase ANT (FCC = 0.95) and CoQ cytochrome c oxidoreductase (FCC = 0.4). These results show clearly that under the physiological conditions the energy transfer from mitochondria to the cytoplasm is regulated by the MI supercomplex and is very sensitive to metabolic signals.
DIY Materials: A Consciousness-Raising Exercise Prepared in Response to a Textbook "GAP."
ERIC Educational Resources Information Center
Maddalena, Sean R.
2003-01-01
Presents one teacher's evaluation of his own English-as-a-Second/Foreign-Language teaching materials produced in response to a textbook "gap" in Japan. Focuses on a consciousness-raising exercise created to elucidate clearly the difference between two grammatical forms. (Author/VWL)
miRiaD: A Text Mining Tool for Detecting Associations of microRNAs with Diseases.
Gupta, Samir; Ross, Karen E; Tudor, Catalina O; Wu, Cathy H; Schmidt, Carl J; Vijay-Shanker, K
2016-04-29
MicroRNAs are increasingly being appreciated as critical players in human diseases, and questions concerning the role of microRNAs arise in many areas of biomedical research. There are several manually curated databases of microRNA-disease associations gathered from the biomedical literature; however, it is difficult for curators of these databases to keep up with the explosion of publications in the microRNA-disease field. Moreover, automated literature mining tools that assist manual curation of microRNA-disease associations currently capture only one microRNA property (expression) in the context of one disease (cancer). Thus, there is a clear need to develop more sophisticated automated literature mining tools that capture a variety of microRNA properties and relations in the context of multiple diseases to provide researchers with fast access to the most recent published information and to streamline and accelerate manual curation. We have developed miRiaD (microRNAs in association with Disease), a text-mining tool that automatically extracts associations between microRNAs and diseases from the literature. These associations are often not directly linked, and the intermediate relations are often highly informative for the biomedical researcher. Thus, miRiaD extracts the miR-disease pairs together with an explanation for their association. We also developed a procedure that assigns scores to sentences, marking their informativeness, based on the microRNA-disease relation observed within the sentence. miRiaD was applied to the entire Medline corpus, identifying 8301 PMIDs with miR-disease associations. These abstracts and the miR-disease associations are available for browsing at http://biotm.cis.udel.edu/miRiaD . We evaluated the recall and precision of miRiaD with respect to information of high interest to public microRNA-disease database curators (expression and target gene associations), obtaining a recall of 88.46-90.78. When we expanded the evaluation to include sentences with a wide range of microRNA-disease information that may be of interest to biomedical researchers, miRiaD also performed very well with a F-score of 89.4. The informativeness ranking of sentences was evaluated in terms of nDCG (0.977) and correlation metrics (0.678-0.727) when compared to an annotator's ranked list. miRiaD, a high performance system that can capture a wide variety of microRNA-disease related information, extends beyond the scope of existing microRNA-disease resources. It can be incorporated into manual curation pipelines and serve as a resource for biomedical researchers interested in the role of microRNAs in disease. In our ongoing work we are developing an improved miRiaD web interface that will facilitate complex queries about microRNA-disease relationships, such as "In what diseases does microRNA regulation of apoptosis play a role?" or "Is there overlap in the sets of genes targeted by microRNAs in different types of dementia?"."
Price, Brandee A; Bednarski, Brian K; You, Y Nancy; Manandhar, Meryna; Dean, E Michelle; Alawadi, Zeinab M; Bryce Speer, B; Gottumukkala, Vijaya; Weldon, Marla; Massey, Robert L; Wang, Xuemei; Qiao, Wei; Chang, George J
2017-07-20
Definitive treatment of localised colorectal cancer involves surgical resection of the primary tumour. Short-stay colectomies (eg, 23-hours) would have important implications for optimising the efficiency of inpatient care with reduced resource utilisation while improving the overall recovery experience with earlier return to normalcy. It could permit surgical treatment of colorectal cancer in a wider variety of settings, including hospital-based ambulatory surgery environments. While a few studies have shown that discharge within the first 24 hours after minimally invasive colectomy is possible, the safety, feasibility and patient acceptability of a protocol for short-stay colectomy for colorectal cancer have not previously been evaluated in a prospective randomised study. Moreover, given the potential for some patients to experience a delay in recovery of bowel function after colectomy, close outpatient monitoring may be necessary to ensure safe implementation. In order to address this gap, we propose a prospective randomised trial of accelerated enhanced Recover y following M inimally I nvasive colorectal cancer surgery ( RecoverMI ) that leverages the combination of minimally invasive surgery with enhanced recovery protocols and early coordinated outpatient remote televideo conferencing technology ( TeleRecovery ) to improve postoperative patien-provider communication, enhance postoperative treatment navigation and optimise postdischarge care. We hypothesise that RecoverMI can be safely incorporated into multidisciplinary practice to improve patient outcomes and reduce the overall 30-day duration of hospitalisation while preserving the quality of the patient experience. ETHICS AND DISSEMINATION: RecoverMI has received institutional review board approval and funding from the American Society of Colorectal Surgeons (ASCRS; LPG103). Results from RecoverMI will be published in a peer-reviewed publication and be used to inform a multisite trial. NCT02613728; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Yang, Fan; Luo, Lei; Zhu, Zhi-De; Zhou, Xuan; Wang, Yao; Xue, Juan; Zhang, Juan; Cai, Xin; Chen, Zhi-Lin; Ma, Qian; Chen, Yun-Fei; Wang, Yu-Jie; Luo, Ying-Ying; Liu, Pan; Zhao, Lei
2017-01-01
Aims: Chlorogenic acid (CGA) is a phenolic acid that has a wide range of pharmacological effects. However, the protective effects and mechanisms of CGA on liver fibrosis are not clear. This study explored the effects of CGA on miR-21-regulated TGF-β1/Smad7 liver fibrosis in the hepatic stellate LX2 cell line and in CCl4-induced liver fibrosis in Sprague-Dawley rats. Methods: The mRNA expression of miR-21, Smad7, connective tissue growth factor (CTGF), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase-9 (MMP-9), and transforming growth factor-β1 (TGF-β1) and the protein levels of Smad2, p-Smad2, Smad3, p-Smad3, Smad2/3, p-Smad2/3, Smad7, CTGF, α-SMA, TIMP-1, MMP-9 and TGF-β1 were assayed in LX2 cells and liver tissue. The effects of CGA after miR-21 knockdown or overexpression were analyzed in LX2 cells. The liver tissue and serum were collected for histopathological examination, immunohistochemistry (IHC) and ELISA. Results: The mRNA expression of miR-21, CTGF, α-SMA, TIMP-1, and TGF-β1 and the protein expression of p-Smad2, p-Smad3, p-Smad2/3, CTGF, α-SMA, TIMP-1, and TGF-β1 were inhibited by CGA both in vitro and in vivo . Meanwhile, CGA elevated the mRNA and protein expression of Smad7 and MMP-9. After miR-21 knockdown and overexpression, the downstream molecules also changed accordingly. CGA also lessened the degree of liver fibrosis in the pathological manifestation and reduced α-SMA and collagen I expression in liver tissue and TGF-β1 in serum. Conclusion: CGA might relieve liver fibrosis through the miR-21-regulated TGF-β1/Smad7 signaling pathway, which suggests that CGA might be a new anti-fibrosis agent that improves liver fibrosis.
Shen, Jing; Zhang, Min; Sun, Mingfang; Tang, Kang; Zhou, Bo
2015-12-01
Atherosclerosis (AS) is regarded as the major cause of disability and death in diabetic patients. However, its precise pathogenesis is not entirely clear. Recent genome-wide association studies (GWAS) have revealed AS is related to some epigenetic changes. This study aimed to investigate the possible associations of miR-146a and transcriptional coactivator p300 polymorphisms with carotid atherosclerosis in type 2 diabetes mellitus. This case-control study included 596 type 2 diabetes mellitus patients with carotid atherosclerosis and 379 patients without carotid atherosclerosis. Genotyping of miR-146a and p300 polymorphisms was performed by allelic discrimination assay with TaqMan-MGB probes. The CC genotype of rs2910164 in miR-146a was found to be associated with an increased risk of carotid vulnerable plaque in the Chinese type 2 diabetes mellitus patients, but this association was not found in the type 2 diabetes mellitus patients with carotid atherosclerosis or in the plaque load group. In addition, no significant difference in transcriptional coactivator p300 genotype distribution was observed between the type 2 diabetes mellitus patients with and without carotid atherosclerosis, plaque stability or plaque load, respectively. Stratified analyses revealed that the miR-146aCC genotype was associated with an increased risk of vulnerable plaque in subjects who were older, females, those with diabetes duration of more than 10 years, and those with hypertension. The gene-gene interactions between the miR-146a rs2910164 and p300 rs20551 polymorphisms were further analysed, but no combined effects of these two genes on enhancing the risk of carotid atherosclerosis, plaque stability, or plaque load were detected. The miR-146a rs2910164 polymorphism might be associated with carotid vulnerable plaque risk in Chinese type 2 diabetes mellitus patients, particularly in older patients, females, those with diabetes duration of more than 10 years and those with hypertension. The transcriptional coactivator p300 rs20551 polymorphism may not be a risk factor for the development or progression of atherosclerosis in type 2 diabetes mellitus. Copyright © 2015 Elsevier Ltd. All rights reserved.
Dark blood late enhancement imaging.
Kellman, Peter; Xue, Hui; Olivieri, Laura J; Cross, Russell R; Grant, Elena K; Fontana, Marianna; Ugander, Martin; Moon, James C; Hansen, Michael S
2016-11-07
Bright blood late gadolinium enhancement (LGE) imaging typically achieves excellent contrast between infarcted and normal myocardium. However, the contrast between the myocardial infarction (MI) and the blood pool is frequently suboptimal. A large fraction of infarctions caused by coronary artery disease are sub-endocardial and thus adjacent to the blood pool. It is not infrequent that sub-endocardial MIs are difficult to detect or clearly delineate. In this present work, an inversion recovery (IR) T2 preparation was combined with single shot steady state free precession imaging and respiratory motion corrected averaging to achieve dark blood LGE images with good signal to noise ratio while maintaining the desired spatial and temporal resolution. In this manner, imaging was conducted free-breathing, which has benefits for image quality, patient comfort, and clinical workflow in both adults and children. Furthermore, by using a phase sensitive inversion recovery reconstruction the blood signal may be made darker than the myocardium (i.e., negative signal values) thereby providing contrast between the blood and both the MI and remote myocardium. In the proposed approach, a single T1-map scout was used to measure the myocardial and blood T1 using a MOdified Look-Locker Inversion recovery (MOLLI) protocol and all protocol parameters were automatically calculated from these values within the sequence thereby simplifying the user interface. The contrast to noise ratio (CNR) between MI and remote myocardium was measured in n = 30 subjects with subendocardial MI using both bright blood and dark blood protocols. The CNR for the dark blood protocol had a 13 % loss compared to the bright blood protocol. The CNR between the MI and blood pool was positive for all dark blood cases, and was negative in 63 % of the bright blood cases. The conspicuity of subendocardial fibrosis and MI was greatly improved by dark blood (DB) PSIR as well as the delineation of the subendocardial border. Free-breathing, dark blood PSIR LGE imaging was demonstrated to improve the visualization of subendocardial MI and fibrosis in cases with low contrast with adjacent blood pool. The proposed method also improves visualization of thin walled fibrous structures such as atrial walls and valves, as well as papillary muscles.
Tan, Ker-Kan; Liu, Jody Zhiyang; Go, Tsung-Shyen; Vijayan, Appasamy; Chiu, Ming-Terk
2010-05-01
Computed tomographic (CT) scans have become invaluable in the management of patients with blunt abdominal trauma. No clear consensus exists on its role in hollow viscus injuries (HVI) and mesenteric injuries (MI). The aim of this study was to correlate operative findings of HVI and MI to findings on pre-operative CT. All patients treated for blunt abdominal trauma at Tan Tock Seng Hospital from January 2003 to January 2008 were reviewed. CT scans were only performed if the patients were haemodynamically stable and indicated. All scans were performed with intravenous contrast using a 4-slice CT scanner from 2003 to December 2004 and a 64-slice CT scanner from January 2005 onwards. All cases with documented HVI/MI that underwent both CT scans and exploratory laparotomy were analysed. Thirty-one patients formed the study group, with median age of 40 (range, 22-65) years and a significant male (83.9%) predominance. Vehicular-related incidents accounted for 67.7% of the injuries and the median Injury Severity Score (ISS) was 13 (4-50). The 2 commonest findings on CT scans were extra-luminal gas (35.5%) and free fluid without significant solid organ injuries (93.5%). During exploratory laparotomy, perforation of hollow viscus (51.6%) occurred more frequently than suspected from the initial CT findings of extra-luminal gas. Other notable findings included haemoperitoneum (64.5%), and mesenteric tears (67.7%). None of our patients with HVI and MI had a normal pre-operative CT scan. Our study suggests that patients with surgically confirmed HVI and MI found at laparotomy were very likely to have an abnormal pre-operative CT scan. Unexplained free fluid was a very common finding in blunt HVI/MI and is one major indication to consider exploratory laparotomy. (c) 2009 Elsevier Ltd. All rights reserved.
Goryainov, Pavel; Landa, Natalie; Barshack, Iris; Avivi, Camila; Semo, Jonathan; Keren, Gad
2014-01-01
Purpose A novel family of transient receptor potential (TRP) channels, that may hold a role in calcium homeostasis, has recently been described. By employing a GeneChip array analysis we have demonstrated a clear and specific upregulation of the TRP vanilloid 2 (TRPV2) mRNA in the left ventricles (LV) 3–5 days post-acute myocardial infarction (MI) compared to sham-operated controls, both in rats and in mice. We sought to characterize the cardiac cellular subpopulations in which TRPV2 is overexpressed upon acute MI. Methods Lewis rats underwent an acute MI by ligation of the left anterior descending artery or chest opening only (sham). The animals were terminated at various time points and an immunohistochemical (IHC) and immunofloerescent (IFC) staining of the LV sections as well as a flow cytometry analysis of LV-derived cells were carried out, using anti-TRPV2 and anti-monocyte/macrophage antibodies. Rat alveolar macrophage cells, NR8383, transiently transfected with TRPV2 siRNA were allowed to migrate towards hypoxic conditioned media of the rat cardiac myoblast line H9C2 using a trans-well migration assay. The macrophage cells migrating to the bottom side of the inserts were counted. Results The IHC and IFC staining as well as the flow cytometry data demonstrated a substantial expression of TRPV2 in infiltrating macrophages in the peri-infarct region 3–5 days post-acute MI. The in vitro migration assay data demonstrated that following inhibition of the TRPV2 channel, the number of migrating macrophages towards conditioned medium of hypoxic cardiomyocytes was significantly reduced. Conclusions TRPV2 is highly expressed on the peri-infarct infiltrating macrophages and may play an important role in post-MI phagocytosis. Better characterization of this channel may pave the way for identifying a new target for modulating the dramatic post-MI immune reactions. PMID:25136832
Mantri, Chinmay K; Mantri, Jyoti V; Pandhare, Jui; Dash, Chandravanu
2014-01-01
Methamphetamine is the second most frequently used illicit drug in the United States. Methamphetamine abuse is associated with increased risk of HIV-1 acquisition, higher viral loads, and enhanced HIV-1 pathogenesis. Although a direct link between methamphetamine abuse and HIV-1 pathogenesis remains to be established in patients, methamphetamine has been shown to increase HIV-1 replication in macrophages, dendritic cells, and cells of HIV transgenic mice. Intriguingly, the effects of methamphetamine on HIV-1 replication in human CD4(+) T cells that serve as the primary targets of infection in vivo are not clearly understood. Therefore, we examined HIV-1 replication in primary CD4(+) T cells in the presence of methamphetamine in a dose-dependent manner. Our results demonstrate that methamphetamine had a minimal effect on HIV-1 replication at concentrations of 1 to 50 μmol/L. However, at concentrations >100 μmol/L, it inhibited HIV-1 replication in a dose-dependent manner. We also discovered that methamphetamine up-regulated the cellular anti-HIV-1 microRNAs (miR-125b, miR-150, and miR-28-5p) in CD4(+) T cells. Knockdown experiments illustrated that up-regulation of the anti-HIV miRNAs inhibited HIV-1 replication. These results are contrary to the paradigm that methamphetamine accentuates HIV-1 pathogenesis by increasing HIV-1 replication. Therefore, our findings underline the complex interaction between drug use and HIV-1 and necessitate comprehensive understanding of the effects of methamphetamine on HIV-1 pathogenesis. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
The MetOp second generation 3MI instrument
NASA Astrophysics Data System (ADS)
Manolis, Ilias; Grabarnik, Semen; Caron, Jérôme; Bézy, Jean-Loup; Loiselet, Marc; Betto, Maurizio; Barré, Hubert; Mason, Graeme; Meynart, Roland
2013-10-01
The MetOp-SG programme is a joint Programme of EUMETSAT and ESA. ESA develops the prototype MetOp-SG satellites (including associated instruments) and procures, on behalf of EUMETSAT, the recurrent satellites (and associated instruments). Two parallel, competitive phase A/B1 studies for MetOp Second Generation (MetOp-SG) have been concluded in May 2013. The implementation phases (B2/C/D/E) are planned to start the first quarter of 2014. ESA is responsible for instrument design of six missions, namely Microwave Sounding Mission (MWS), Scatterometer mission (SCA), Radio Occultation mission (RO), Microwave Imaging mission (MWI), Ice Cloud Imager (ICI) and Multi-viewing, Multi-channel, Multi-polarisation imaging mission (3MI). The paper will present the main performances of the 3MI instrument and will highlight the performance improvements with respect to its heritage derived by the POLDER instrument, such as number of spectral channels and spectral range coverage, swath and ground spatial resolution. The engineering of some key performance requirements (multi-viewing, polarisation sensitivity, straylight etc.) will also be discussed. The results of the feasibility studies will be presented together with the programmatics for the instrument development. Several pre-development activities have been initiated to retire highest risks and to demonstrate the ultimate performances of the 3MI optics. The scope, objectives and current status of those activities will be presented. Key technologies involved in the 3MI instrument design and implementation are considered to be: the optical design featuring aspheric optics, the implementation of broadband Anti Reflection coatings featuring low polarisation and low de-phasing properties, the development and qualification of polarisers with acceptable performances as well as spectral filters with good uniformities over a large clear aperture.
Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling.
Tourki, Bochra; Halade, Ganesh
2017-10-01
In response to myocardial infarction (MI), time-dependent leukocyte infiltration is critical to program the acute inflammatory response. Post-MI leukocyte density, residence time in the infarcted area, and exit from the infarcted injury predict resolving or nonresolving inflammation. Overactive or unresolved inflammation is the primary determinant in heart failure pathology post-MI. Here, our review describes supporting evidence that the acute inflammatory response also guides the generation of healing and regenerative mediators after cardiac damage. Time-dependent leukocyte density and diversity and the magnitude of myocardial injury is responsible for the resolving and nonresolving pathway in myocardial healing. Post MI, the diversity of leukocytes, such as neutrophils, macrophages, and lymphocytes, has been explored that regulate the clearance of deceased cardiomyocytes by using the classic and reparative pathways. Among the innovative factors and intermediates that have been recognized as essential in acute the self-healing and clearance mechanism, we highlight specialized proresolving mediators as the emerging factor for post-MI reparative mechanisms-translational leukocyte modifiers, such as aging, the source of leukocytes, and the milieu around the leukocytes. In the clinical setting, it is possible that leukocyte diversity is more prominent as a result of risk factors, such as obesity, diabetes, and hypertension. Pharmacologic agents are critical modifiers of leukocyte diversity in healing mechanisms that may impair or stimulate the clearance mechanism. Future research is needed, with a focused approach to understand the molecular targets, cellular effectors, and receptors. A clear understanding of resolving and nonresolving inflammation in myocardial healing will help to develop novel targets with major emphasis on the resolution of inflammation in heart failure pathology.-Tourki, B., Halade, G. Leukocyte diversity in resolving and nonresolving mechanisms of cardiac remodeling. © FASEB.
Lawrie, Charles H; Armesto, María; Fernandez-Mercado, Marta; Arestín, María; Manterola, Lorea; Goicoechea, Ibai; Larrea, Erika; Caffarel, María M; Araujo, Angela M; Sole, Carla; Sperga, Maris; Alvarado-Cabrero, Isabel; Michal, Michal; Hes, Ondrej; López, José I
2018-01-01
Tubulocystic renal cell carcinoma (TC-RCC) is a rare recently described renal neoplasm characterized by gross, microscopic, and immunohistochemical differences from other renal tumor types and was recently classified as a distinct entity. However, this distinction remains controversial particularly because some genetic studies suggest a close relationship with papillary RCC (PRCC). The molecular basis of this disease remains largely unexplored. We therefore performed noncoding (nc) RNA/miRNA expression analysis and targeted next-generation sequencing mutational profiling on 13 TC-RCC cases (11 pure, two mixed TC-RCC/PRCC) and compared with other renal neoplasms. The expression profile of miRNAs and other ncRNAs in TC-RCC was distinct and validated 10 differentially expressed miRNAs by quantitative RT-PCR, including miR-155 and miR-34a, that were significantly down-regulated compared with PRCC cases (n = 22). With the use of targeted next-generation sequencing we identified mutations in 14 different genes, most frequently (>60% of TC-RCC cases) in ABL1 and PDFGRA genes. These mutations were present in <5% of clear cell RCC, PRCC, or chromophobe RCC cases (n > 600) of The Cancer Genome Atlas database. In summary, this study is by far the largest molecular study of TC-RCC cases and the first to investigate either ncRNA expression or their genomic profile. These results add molecular evidence that TC-RCC is indeed a distinct entity from PRCC and other renal neoplasms. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.
Chaotic trajectories in the standard map. The concept of anti-integrability
NASA Astrophysics Data System (ADS)
Aubry, Serge; Abramovici, Gilles
1990-07-01
A rigorous proof is given in the standard map (associated with a Frenkel-Kontorowa model) for the existence of chaotic trajectories with unbounded momenta for large enough coupling constant k > k0. These chaotic trajectories (with finite entropy per site) are coded by integer sequences { mi} such that the sequence bi = |m i+1 + m i-1-2m i| be bounded by some integer b. The bound k0 in k depends on b and can be lowered for coding sequences { mi} fulfilling more restrictive conditions. The obtained chaotic trajectories correspond to stationary configurations of the Frenkel-Kontorowa model with a finite (non-zero) photon gap (called gap parameter in dimensionless units). This property implies that the trajectory (or the configuration { ui}) can be uniquely continued as a uniformly continuous function of the model parameter k in some neighborhood of the initial configuration. A non-zero gap parameter implies that the Lyapunov coefficient is strictly positive (when it is defined). In addition, the existence of dilating and contracting manifolds is proven for these chaotic trajectories. “Exotic” trajectories such as ballistic trajectories are also proven to exist as a consequence of these theorems. The concept of anti-integrability emerges from these theorems. In the anti-integrable limit which can be only defined for a discrete time dynamical system, the coordinates of the trajectory at time i do not depend on the coordinates at time i - 1. Thus, at this singular limit, the existence of chaotic trajectories is trivial and the dynamical system reduces to a Bernoulli shift. It is well known that the KAM tori of symplectic dynamical originates by continuity from the invariant tori which exists in the integrible limit (under certain conditions). In a similar way, it appears that the chaotic trajectories of dynamical systems originate by continuity from those which exists at the anti-integrable limits (also under certain conditions).
Apparatus and method for tuned unsteady flow purging of high pulse rate spark gaps
Thayer, III, William J.
1990-01-01
A spark gap switch apparatus is disclosed which is capable of operating at a high pulse rate which comprises an insulated housing; a pair of spaced apart electrodes each having one end thereof within a first bore formed in the housing and defining a spark gap therebetween; a pressure wave reflector in the first bore in the housing and spaced from the spark gap and capable of admitting purge flow; and a second enlarged bore contiguous with the first bore and spaced from the opposite side of the spark gap; whereby pressure waves generated during discharge of a spark across the spark gap will reflect off the wave reflector and back from the enlarged bore to the spark gap to clear from the spark gap hot gases residues generated during the discharge and simultaneously restore the gas density and pressure in the spark gap to its initial value.
RASH, JOHN E.; DAVIDSON, KIMBERLY G. V.; KAMASAWA, NAOMI; YASUMURA, THOMAS; KAMASAWA, MASAMI; ZHANG, CHUNBO; MICHAELS, ROBIN; RESTREPO, DIEGO; OTTERSEN, OLE P.; OLSON, CARL O.; NAGY, JAMES I.
2006-01-01
Odorant/receptor binding and initial olfactory information processing occurs in olfactory receptor neurons (ORNs) within the olfactory epithelium. Subsequent information coding involves high-frequency spike synchronization of paired mitral/tufted cell dendrites within olfactory bulb (OB) glomeruli via positive feedback between glutamate receptors and closely-associated gap junctions. With mRNA for connexins Cx36, Cx43 and Cx45 detected within ORN somata and Cx36 and Cx43 proteins reported in ORN somata and axons, abundant gap junctions were proposed to couple ORNs. We used freeze-fracture replica immunogold labeling (FRIL) and confocal immunofluorescence microscopy to examine Cx36, Cx43 and Cx45 protein in gap junctions in olfactory mucosa, olfactory nerve and OB in adult rats and mice and early postnatal rats. In olfactory mucosa, Cx43 was detected in gap junctions between virtually all intrinsic cell types except ORNs and basal cells; whereas Cx45 was restricted to gap junctions in sustentacular cells. ORN axons contained neither gap junctions nor any of the three connexins. In OB, Cx43 was detected in homologous gap junctions between almost all cell types except neurons and oligodendrocytes. Cx36 and, less abundantly, Cx45 were present in neuronal gap junctions, primarily at “mixed” glutamatergic/electrical synapses between presumptive mitral/tufted cell dendrites. Genomic analysis revealed multiple miRNA (micro interfering RNA) binding sequences in 3′-untranslated regions of Cx36, Cx43 and Cx45 genes, consistent with cell-type-specific post-transcriptional regulation of connexin synthesis. Our data confirm absence of gap junctions between ORNs, and support Cx36- and Cx45-containing gap junctions at glutamatergic mixed synapses between mitral/tufted cells as contributing to higher-order information coding within OB glomeruli. PMID:16841170
Magnetic Design Guidelines for Electronic Power Supplies.
1986-09-30
henries ",= peak flux density in gauss d = wire (conductor) dia in mils CM = d2 = circular mi’s Irms = RMS current in amperes Idc = DC current in...component lac = RMS ac current in the inductor f = minimum frequency in hertz L = inductance in henries Then Eac 2 16.83 x 2, x 760 x .05 10 Eac 1 168.3 x 2...duty cycle x 1/f L inductance in henries *permeability in gauss/oersted H magnetizing force in oersteds ’. i g length of air gap in cm ic length of
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawakita, Masatoshi; Okabe, Kyota; Kimura, Takashi
2016-01-11
We have developed a fabrication process for a laterally configured resistive switching device based on a Gd oxide. A nano-gap electrode connected by a Gd oxide with the ideal interfaces has been created by adapting the electro-migration method in a metal/GdO{sub x} bilayer system. Bipolar set and reset operations have been clearly observed in the Pt/GdO{sub x} system similarly in the vertical device based on GdO{sub x}. Interestingly, we were able to observe a clear bipolar switching also in a ferromagnetic CoFeB nano-gap electrode with better stability compared to the Pt/GdO{sub x} device. The superior performance of the CoFeB/GdO{sub x}more » device implies the importance of the spin on the resistive switching.« less
DOT National Transportation Integrated Search
1998-04-01
The effect on driving performance of using a speed, steering, and gap control system (SSGCS) and a collision warning system (CWS) was assessed in an experiment conducted in the Iowa Driving Simulator. Driving performance data were obtained from 52 dr...
The Relevance of Software Development Education for Students
ERIC Educational Resources Information Center
Liebenberg, Janet; Huisman, Magda; Mentz, Elsa
2015-01-01
Despite a widely-acknowledged shortage of software developers, and reports of a gap between industry needs and software education, the possible gap between students' needs and software development education has not been explored in detail. In their university education, students want to take courses and carry out projects that clearly relate to…
NetWork News. Number 21, Fall 2005
ERIC Educational Resources Information Center
Learning Point Associates / North Central Regional Educational Laboratory (NCREL), 2005
2005-01-01
An Interview With Kiley Walsh In her ground-breaking study, titled "After the Test: How Schools Are Using Data to Close the Achievement Gap", researcher Kiley Walsh shows clear evidence of specific work being done to close achievement gaps. Walsh selected 32 schools across six counties in the San Francisco Bay Area and compared those…
Global ionospheric dynamics and electrodynamics during geomagnetic storms (Invited)
NASA Astrophysics Data System (ADS)
Mannucci, A. J.; Tsurutani, B.; Verkhoglyadova, O. P.; Komjathy, A.; Butala, M. D.
2013-12-01
Globally distributed total electron content (TEC) data has become an important tool for exploring the consequences of storm-time electrodynamics. Magnetosphere-ionosphere coupling during the main phase is responsible for the largest ionospheric effects observed during geomagnetic storms, mediated by global scale electrodynamics. Recent research using case studies reveals a complex picture of M-I coupling and its relationship to interplanetary drivers such as the solar wind electric field. Periods of direct coupling exist where the solar wind electric field is strongly correlated with prompt penetration electric fields, observed as enhanced vertical plasma drifts or an enhanced electrojet in the daytime equatorial ionosphere. Periods of decoupling between low latitude electric fields and the solar wind electric field are also observed, but the factors distinguishing these two types of response have not been clearly identified. Recent studies during superstorms suggest a role for the transverse (y-component) of the interplanetary magnetic field, which affects magnetospheric current systems and therefore may affect M-I coupling, with significant ionospheric consequences. Observations of the global ionospheric response to a range of geomagnetic storm intensities are presented. Scientific understanding of the different factors that affect electrodynamic aspects of M-I coupling are discussed.
Deng, Xiuhao; Jia, Chunjing; Chien, Chih-Chun
2015-02-23
We report that the Bose Hubbard model (BHM) of interacting bosons in a lattice has been a paradigm in many-body physics, and it exhibits a Mott insulator (MI)-superfluid (SF) transition at integer filling. Here a quantum simulator of the BHM using a superconducting circuit is proposed. Specifically, a superconducting transmission line resonator supporting microwave photons is coupled to a charge qubit to form one site of the BHM, and adjacent sites are connected by a tunable coupler. To obtain a mapping from the superconducting circuit to the BHM, we focus on the dispersive regime where the excitations remain photonlike. Standardmore » perturbation theory is implemented to locate the parameter range where the MI-SF transition may be simulated. This simulator allows single-site manipulations and we illustrate this feature by considering two scenarios where a single-site manipulation can drive a MI-SF transition. The transition can be analyzed by mean-field analyses, and the exact diagonalization was implemented to provide accurate results. The variance of the photon density and the fidelity metric clearly show signatures of the transition. Lastly, experimental realizations and other possible applications of this simulator are also discussed.« less
Sobanjo-ter Meulen, Ajoke; Duclos, Philippe; McIntyre, Peter; Lewis, Kristen D. C.; Van Damme, Pierre; O'Brien, Katherine L.; Klugman, Keith P.
2016-01-01
Implementation of effective interventions has halved maternal and child mortality over the past 2 decades, but less progress has been made in reducing neonatal mortality. Almost 45% of under-5 global mortality now occurs in infants <1 month of age, with approximately 86% of neonatal deaths occurring in low- and lower-middle-income countries (LMICs). As an estimated 23% of neonatal deaths globally are due to infectious causes, maternal immunization (MI) is one intervention that may reduce mortality in the first few months of life, when direct protection often relies on passively transmitted maternal antibodies. Despite all countries including pertussis-containing vaccines in their routine childhood immunization schedules, supported through the Expanded Programme on Immunization, pertussis continues to circulate globally. Although based on limited robust epidemiologic data, current estimates derived from modeling implicate pertussis in 1% of under-5 mortality, with infants too young to be vaccinated at highest risk of death. Pertussis MI programs have proven effective in reducing infant pertussis mortality in high-income countries using tetanus-diphtheria-acellular pertussis (Tdap) vaccines in their maternal and infant programs; however, these vaccines are cost-prohibitive for routine use in LMICs. The reach of antenatal care programs to deliver maternal pertussis vaccines, particularly with respect to infants at greatest risk of pertussis, needs to be further evaluated. Recognizing that decisions on the potential impact of pertussis MI in LMICs need, as a first step, robust contemporary mortality data for early infant pertussis, a symposium of global key experts was held. The symposium reviewed current evidence and identified knowledge gaps with respect to the infant pertussis disease burden in LMICs, and discussed proposed strategies to assess the potential impact of pertussis MI. PMID:27838664
Reorienting health systems to meet the demand for consumer health solutions.
Buckeridge, David L
2014-01-01
There is a clear and pronounced gap between the demand for and access to consumer health solutions. Existing health information systems and broader health system factors such as funding models are reasons for this gap. There are strong arguments from the perspectives of the consumer and population health for closing this gap, but the case from the perspective of the current health system is mixed. Closing the gap will require a concerted effort to reorient health information systems and funding models to support online access by consumers to health information and health services.
Jiang, Xiaoou; Yu, Han; Teo, Cui Rong; Tan, Genim Siu Xian; Goh, Sok Chin; Patel, Parasvi; Chua, Yiqiang Kevin; Hameed, Nasirah Banu Sahul; Bertoletti, Antonio; Patzel, Volker
2016-09-01
Dumbbell-shaped DNA minimal vectors lacking nontherapeutic genes and bacterial sequences are considered a stable, safe alternative to viral, nonviral, and naked plasmid-based gene-transfer systems. We investigated novel molecular features of dumbbell vectors aiming to reduce vector size and to improve the expression of noncoding or coding RNA. We minimized small hairpin RNA (shRNA) or microRNA (miRNA) expressing dumbbell vectors in size down to 130 bp generating the smallest genetic expression vectors reported. This was achieved by using a minimal H1 promoter with integrated transcriptional terminator transcribing the RNA hairpin structure around the dumbbell loop. Such vectors were generated with high conversion yields using a novel protocol. Minimized shRNA-expressing dumbbells showed accelerated kinetics of delivery and transcription leading to enhanced gene silencing in human tissue culture cells. In primary human T cells, minimized miRNA-expressing dumbbells revealed higher stability and triggered stronger target gene suppression as compared with plasmids and miRNA mimics. Dumbbell-driven gene expression was enhanced up to 56- or 160-fold by implementation of an intron and the SV40 enhancer compared with control dumbbells or plasmids. Advanced dumbbell vectors may represent one option to close the gap between durable expression that is achievable with integrating viral vectors and short-term effects triggered by naked RNA.
Chatterjee, Saurav; Tripathi, Byomesh; Virk, Hafeez Ul Hassan; Ahmed, Mohammed; Bavishi, Chirag; Krishnamoorthy, Parasuram; Sardar, Partha; Giri, Jay; Omidvari, Karan; Chikwe, Joanna
2016-03-01
Mitral regurgitation (MR) is one of the common complications in myocardial infarction (MI) patients. Almost half of the post MI patients have MR (ischemic MR)(17) which is moderate to severe (grade II-IV). Whether there is a mortality benefit of performing mitral valve repair (MVR) along with coronary artery bypass grafting (CABG) in patients with post MI moderate MR remains inconclusive. Literature search was done from PubMed, Google scholar, Ovid, and Medline databases. Studies which included post MI patients with moderate ischemic MR and reported mortality outcomes of performing CABG and MVR were chosen for the systematic review. Our preliminary literature search identified 194 studies, of which 11 studies met our inclusion criteria. Nine studies showed no survival benefit of performing simultaneous MVR and CABG. One study demonstrated survival benefit of performing CABG plus MVR only in the New York Heart Association (NYHA) class III-IV, and one study suggested survival benefit of performing CABG plus MVR as compared to CABG alone in patient with ischemic MR irrespective of preoperative NYHA functional class. Review of current literature showed mixed results in terms of improvement in functional status but failed to show any survival benefit of performing MVR along with CABG. Limitations of studies include small sample size, difference in baseline demographic variables, and short follow-up period which might influence the outcome of the study. Prospective randomized studies are required to establish clear benefit of performing MVR simultaneously with CABG.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K. H.; Watson, Dan M.; Manoj, P.
We present 5-40 {mu}m Spitzer Infrared Spectrograph spectra of a collection of transitional disks, objects for which the spectral energy distribution (SED) indicates central clearings (holes) or gaps in the dust distribution, in the Chamaeleon I star-forming region. Like their counterparts in the Taurus-Auriga star-forming region that we have previously observed, the spectra of these young objects (1-3 Myr old) reveal that the central clearings or gaps are very sharp-edged, and are surrounded by optically thick dusty disks similar to those around other classical T Tauri stars in the Chamaeleon I association. Also like the Taurus transitional disks, the Chamaeleonmore » I transitional disks have extremely large depletion factors for small dust grains in their gaps, compared to the full accretion disks whose SEDs are represented by the median SED of Class II objects in the region. We find that the fraction of transitional disks in the Chamaeleon I cloud is somewhat higher than that in the Taurus-Auriga cloud, possibly indicating that the frequency of transitional disks, on average, increases with cluster age. We also find a significant correlation between the stellar mass and the radius of the outer edge of the gap. We discuss the disk structures implied by the spectra and the constraints they place on gap-formation mechanisms in protoplanetary disks.« less
Jani, Sandeep M; Montoye, Cecelia; Mehta, Rajendra; Riba, Arthur L; DeFranco, Anthony C; Parrish, Robert; Skorcz, Stephen; Baker, Patricia L; Faul, Jessica; Chen, Benrong; Roychoudhury, Canopy; Elma, Mary Anne C; Mitchell, Kristi R; Eagle, Kim A
2006-06-12
Studies have shown that women with acute myocardial infarction (AMI) are less likely to receive evidence-based care compared with men. The American College of Cardiology's AMI Guidelines Applied in Practice (GAP) program has been shown to increase the rates of evidence-based medicine use and reduce mortality in patients with AMI. The objective of this study was to investigate the relative benefits of the GAP program in men and women. By using a predesign-postdesign, standard orders, and a discharge tool to improve evidence-based indicator rates and long-term mortality in patients with AMI in Michigan, this study compared the success of GAP in men vs women. Logistic regression was used to develop predictive models for death at 30 days and 1 year in men and women. Use of evidence-based care, including use of beta-blockers and aspirin in men and women at hospital discharge and lipid-lowering agent use in men, was higher in the post-GAP sample (P<.01 for all). Use of the discharge tool promoted by the GAP program was independently protective against death at 1 year in women (adjusted odds ratio, 0.46; 95% confidence interval, 0.27-0.79), and a trend existed for similar results in men (adjusted odds ratio, 0.62; 95% confidence interval, 0.36-1.06). However, the tool was used slightly less often with women (27.9% vs 33.96%; P=.003). The GAP program increased the use of evidence-based therapies in male and female patients. In addition, the GAP discharge tool may decrease mortality rates at 1 year in patients with AMI; however, the tool was used less often with women. Greater use of the GAP discharge tool in women might narrow the post-MI sex mortality gap.
Optical response of bowtie antennas
NASA Astrophysics Data System (ADS)
Guo, Ying-Nan; Pan, Shi; Li, Xu-Feng; Wang, Shuo; Wang, Qiao
2010-10-01
Optical properties of bowtie antennas are investigated using a numerical method of finite-difference time-domain (FDTD). The optical response in the antenna feed gap is simulated as functions of its geometry parameters (flare angle, arm length, apex width, thickness, gap dimension, as well as the index of substrate), which provide a clear guideline to exploit such antenna structures in practice.
1986-01-25
P-29502C Range: 1.04 million kilometers (650,000 miles) This color photo of Umbriel, the darkest of Uranus' five large moons was synthesized from frames exposed with the Voyager narrow-angle camera's violet and clear filters and has a resolution of 19 km (12 mi.). Umbriel is characterized by the darkest surface and smallest brightness variations of any of the large satellites of Uranus. As seen here, the surface is also generally gray and colorless. Nevertheless, at this resolution, considerable topographic detail is revealed, showing that Umbriel's surface is covered by impact craters. The brightest spot (shown at top near the equator at approxiamately 270 ° longitude) appears as a bright ring. Its geological significance is not yet understood. Umbriel has a diameter of about 1,200 km (750 miles) and orbits 267,000 km (166,000 mi) from Uranus' center. The satellite's name, from Alexander Pope's 'Rape of the Lock,' means 'dark angel'.
38. Photocopied August 1978. THE POWER CANAL AT THE JUNCTION ...
38. Photocopied August 1978. THE POWER CANAL AT THE JUNCTION BETWEEN SECTIONS I AND II ON AUGUST 1, 1902. THE RECTANGULAR PRISM OF THE ROCK SECTION (I) AND THE TRAPEZOIDAL PRISM OF SECTION II BOTH SHOW UP VERY CLEARLY. COMPANY CREWS ON THE LEFT HAND WALL ARE COMPLETING SOME SMOOTHING-UP WORK ON THE ROCK SECTION WALL. (265) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI
Nelson, Steven W.; Miller, Marti L.; Dumoulin, Julie A.
1987-01-01
The Resurrection Peninsula forms the east side of Resurrection Bay (Fig. 1). The city of Seward is located at the head of the bay and can be reached from Anchorage by highway (127 mi;204 km). Relief ranges from 1,434 ft (437 m) at the southern end of the peninsula to more than 4,800 ft (1,463 m) 17 mi (28 km) to the north. All rock units composing the informally named Resurrection Peninsula ophiolite are visible and (or) accessible by boat.The eastern half of the peninsula is located within the Chugach National Forest; the western half is mainly state land, but there is some private land with recreational cabins. The Seward A6 and A7 and Blying Sound D6 and D7 maps at 1:63,360 scale (mile-to-the-inch) cover the entire Resurrection Peninsula.Knight Island is located 53 mi (85 km) east of Seward (Fig. 1). Numerous fiords indent the 31-mi-long (50 km) by 7.4-mi-wide (12 km) island and offer excellent bedrock exposures. The island is rugged and has a maximum elevation of 3,000 ft (914 m). It has numerous mineral prospects (Tysdal, 1978; Nelson and others, 1984; Jansons and others, 1984; Koski and others, 1985), and several abandoned canneries are located on the island. Knight Island lies entirely within the Chugach National Forest—state and private inholdings constitute less than five percent of its total land area. The Seward A2, A3, B2, B3, and C2, 1:63,360-scale U.S. Geological Survey topographic maps cover the entire island.Montague Island, 50 mi (80 km) long and up to 11 mi (18 km) wide, lies 10.6 mi (17 km) southeast of Knight Island. It belongs to an island group that forms the southern margin of Prince William Sound (Fig. 1). Montague Island is less rugged and less heavily vegetated than either the Resurrection Peninsula or Knight Island. Rock exposures are excellent along the beaches, and ground disruption due to recent fault movements is clearly visible. The Seward Al and A2 and Blying Sound Dl, D2, and D3 maps cover the areas of interest on Montague Island.In all areas, access is by float-equipped aircraft, helicopter, or boat. Wheel-equipped aircraft can land on the beaches or at several landing strips on Montague Island.
Aboulnasr, Fatma; Hazari, Sidhartha; Nayak, Satyam; Chandra, Partha K.; Panigrahi, Rajesh; Ferraris, Pauline; Chava, Srinivas; Kurt, Ramazan; Song, Kyongsub; Dash, Asha; Balart, Luis A.; Garry, Robert F.; Wu, Tong; Dash, Srikanta
2015-01-01
Background HCV replication in persistently infected cell culture remains resistant to IFN-α/RBV combination treatment, whereas IFN-λ1 induces viral clearance. The antiviral mechanisms by which IFN-λ1 induces sustained HCV clearance have not been determined. Aim To investigate the mechanisms by which IFN-λ clears HCV replication in an HCV cell culture model. Methods IFN-α sensitive (S3-GFP) and resistant (R4-GFP) cells were treated with equivalent concentrations of either IFN-α or IFN-λ. The relative antiviral effects of IFN-α and IFN-λ1 were compared by measuring the HCV replication, quantification of HCV-GFP expression by flow cytometry, and viral RNA levels by real time RT-PCR. Activation of Jak-Stat signaling, interferon stimulated gene (ISG) expression, and miRNA-122 transcription in S3-GFP and R4-GFP cells were examined. Results We have shown that IFN-λ1 induces HCV clearance in IFN-α resistant and sensitive replicon cell lines in a dose dependent manner through Jak-Stat signaling, and induces STAT 1 and STAT 2 activation, ISRE-luciferase promoter activation and ISG expression. Stat 3 activation is also involved in IFN-λ1 induced antiviral activity in HCV cell culture. IFN-λ1 induced Stat 3 phosphorylation reduces the expression of hepatocyte nuclear factor 4 alpha (HNF4α) through miR-24 in R4-GFP cells. Reduced expression of HNF4α is associated with decreased expression of miR-122 resulting in an anti-HCV effect. Northern blot analysis confirms that IFN-λ1 reduces miR-122 levels in R4-GFP cells. Our results indicate that IFN-λ1 activates the Stat 3-HNF4α feedback inflammatory loop to inhibit miR-122 transcription in HCV cell culture. Conclusions In addition to the classical Jak–Stat antiviral signaling pathway, IFN-λ1 inhibits HCV replication through the suppression of miRNA-122 transcription via an inflammatory Stat 3–HNF4α feedback loop. Inflammatory feedback circuits activated by IFNs during chronic inflammation expose non-responders to the risk of hepatocellular carcinoma. PMID:26657215
Unlocking the Ice House: Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion
NASA Astrophysics Data System (ADS)
Miller, Kenneth G.; Wright, James D.; Fairbanks, Richard G.
1991-04-01
Oxygen isotope records and glaciomarine sediments indicate at least an intermittent presence of large continental ice sheets on Antarctica since the earliest Oligocene (circa 35 Ma). The growth and decay of ice sheets during the Oligocene to modern "ice house world" caused glacioeustatic sea level changes. The early Eocene was an ice-free "greenhouse world," but it is not clear if ice sheets existed during the middle to late Eocene "doubt house world." Benthic foraminiferal δ18O records place limits on the history of glaciation, suggesting the presence of ice sheets at least intermittently since the earliest Oligocene. The best indicator of ice growth is a coeval increase in global benthic and western equatorial planktonic δ18O records. Although planktonic isotope records from the western equatorial regions are limited, subtropical planktonic foraminifera may also record such ice volume changes. It is difficult to apply these established principles to the Cenozoic δ18O record because of the lack of adequate data and problems in stratigraphic correlations that obscure isotope events. We improved Oligocene to Miocene correlations of δ18O records and erected eight oxygen isotope zones (Oi1-Oi2, Mi1-Mi6). Benthic foraminiferal δ18O increases which are associated with the bases of Zones Oil (circa 35.8 Ma), Oi2 (circa 32.5 Ma), and Mil (circa 23.5 Ma) can be linked with δ18O increases in subtropical planktonic foraminifera and with intervals of glacial sedimentation on or near Antarctica. Our new correlations of middle Miocene benthic and western equatorial planktonic δ18O records show remarkable agreement in timing and amplitude. We interpret benthic-planktonic covariance to reflect substantial ice volume increases near the bases of Zones Mi2 (circa 16.1 Ma), Mi3 (circa 13.6 Ma), and possibly Mi5 (circa 11.3 Ma). Possible glacioeustatic lowerings are associated with the δ18O increases which culminated with the bases of Zone Mi4 (circa 12.6 Ma) and Mi6 (circa 9.6 Ma), although low-latitude planktonic δ18O records are required to test this. These inferred glacioeustatic lowerings can be linked to seismic and rock disconformities. For example, we link 12 Oligocene-early late Miocene inferred glacioeustatic lowerings with 12 of the sequence boundaries (= inferred eustatic lowerings) of Haq et al. (1987).
Duan, Yun-Fei; An, Yong; Zhu, Feng; Jiang, Yong
2017-08-15
Ischemic preconditioning (IPC) is a strategy to reduce ischemia-reperfusion (I/R) injury. The protective effect of remote ischemic preconditioning (RIPC) on liver I/R injury is not clear. This study aimed to investigate the roles of RIPC in liver I/R in fatty liver rats and the involvement of endothelial nitric oxide synthase-nitric oxide (eNOS-NO) pathway and microRNA expressions in this process. A total of 32 fatty rats were randomly divided into the sham group, I/R group, RIPC group and RIPC+I/R group. Serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and nitric oxide (NO) were measured. Hematoxylin-eosin staining was used to observe histological changes of liver tissues, TUNEL to detect hepatocyte apoptosis, and immunohistochemistry assay to detect heat shock protein 70 (HSP70) expression. Western blotting was used to detect liver inducible NOS (iNOS) and eNOS protein levels and real-time quantitative polymerase chain reaction to detect miR-34a, miR-122 and miR-27b expressions. Compared with the sham and RIPC groups, serum ALT, AST and iNOS in liver tissue were significantly higher in other two groups, while serum NO and eNOS in liver tissue were lower, and varying degrees of edema, degeneration and inflammatory cell infiltration were found. Cell apoptosis number was slightly lower in the RIPC+I/R group than that in I/R group. Compared with the sham group, HSP70 expressions were significantly increased in other three groups (all P<0.05). Compared with the sham and RIPC groups, elevated miR-34a expressions were found in I/R and RIPC+I/R groups (P<0.05). MiR-122 and miR-27b were found significantly decreased in I/R and RIPC+I/R groups compared with the sham and RIPC groups (all P<0.05). RIPC can reduce fatty liver I/R injury by affecting the eNOS-NO pathway and liver microRNA expressions. Copyright © 2017 The Editorial Board of Hepatobiliary & Pancreatic Diseases International. Published by Elsevier B.V. All rights reserved.
Milojevic, Ai; Wilkinson, Paul; Armstrong, Ben; Bhaskaran, Krishnan; Smeeth, Liam; Hajat, Shakoor
2014-07-01
To inform potential pathophysiological mechanisms of air pollution effects on cardiovascular disease (CVD), we investigated short-term associations between ambient air pollution and a range of cardiovascular events from three national databases in England and Wales. Using a time-stratified case-crossover design, over 400,000 myocardial infarction (MI) events from the Myocardial Ischaemia National Audit Project (MINAP) database, over 2 million CVD emergency hospital admissions and over 600,000 CVD deaths were linked with daily mean concentrations of carbon monoxide (CO), nitrogen dioxide (NO2), particulate matter less than 10 μm in aerodynamic diameter (PM10), particulate matter less than 2.5 μm in aerodynamic diameter (PM2.5) and sulfur dioxide (SO2), and daily maximum of 8-hourly running mean of O3 measured at the nearest air pollution monitoring site to the place of residence. Pollutant effects were modelled using lags up to 4 days and adjusted for ambient temperature and day of week. For mortality, no CVD outcome analysed was clearly associated with any pollutant, except for PM2.5 with arrhythmias, atrial fibrillation and pulmonary embolism. With hospital admissions, only NO2 was associated with a raised risk: CVD 1.7% (95% CI 0.9 to 2.6), non-MI CVD 2.0% (1.1 to 2.9), arrhythmias 2.9% (0.6 to 5.2), atrial fibrillation 2.8% (0.3 to 5.4) and heart failure 4.4% (2.0 to 6.8) for a 10th-90th centile increase. With MINAP, only NO2 was associated with an increased risk of MI, which was specific to non-ST-elevation myocardial infarction (non-STEMIs): 3.6% (95% CI 0.4 to 6.9). This study found no clear evidence for pollution effects on STEMIs and stroke, which ultimately represent thrombogenic processes, though it did for pulmonary embolism. The strongest associations with air pollution were observed with selected non-MI outcomes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Kertai, Miklos D; Li, Yi-Ju; Li, Yen-Wei; Ji, Yunqi; Alexander, John; Newman, Mark F; Smith, Peter K; Joseph, Diane; Mathew, Joseph P; Podgoreanu, Mihai V
2015-05-06
Identification of patient subpopulations susceptible to develop myocardial infarction (MI) or, conversely, those displaying either intrinsic cardioprotective phenotypes or highly responsive to protective interventions remain high-priority knowledge gaps. We sought to identify novel common genetic variants associated with perioperative MI in patients undergoing coronary artery bypass grafting using genome-wide association methodology. 107 secondary and tertiary cardiac surgery centres across the USA. We conducted a stage I genome-wide association study (GWAS) in 1433 ethnically diverse patients of both genders (112 cases/1321 controls) from the Genetics of Myocardial Adverse Outcomes and Graft Failure (GeneMAGIC) study, and a stage II analysis in an expanded population of 2055 patients (225 cases/1830 controls) combined from the GeneMAGIC and Duke Perioperative Genetics and Safety Outcomes (PEGASUS) studies. Patients undergoing primary non-emergent coronary bypass grafting were included. The primary outcome variable was perioperative MI, defined as creatine kinase MB isoenzyme (CK-MB) values ≥10× upper limit of normal during the first postoperative day, and not attributable to preoperative MI. Secondary outcomes included postoperative CK-MB as a quantitative trait, or a dichotomised phenotype based on extreme quartiles of the CK-MB distribution. Following quality control and adjustment for clinical covariates, we identified 521 single nucleotide polymorphisms in the stage I GWAS analysis. Among these, 8 common variants in 3 genes or intergenic regions met p<10(-5) in stage II. A secondary analysis using CK-MB as a quantitative trait (minimum p=1.26×10(-3) for rs609418), or a dichotomised phenotype based on extreme CK-MB values (minimum p=7.72×10(-6) for rs4834703) supported these findings. Pathway analysis revealed that genes harbouring top-scoring variants cluster in pathways of biological relevance to extracellular matrix remodelling, endoplasmic reticulum-to-Golgi transport and inflammation. Using a two-stage GWAS and pathway analysis, we identified and prioritised several potential susceptibility loci for perioperative MI. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
2011-01-01
Background Cigarette smoking has been shown to be one of the most important risk factors for cardiovascular diseases. However, little is known about cumulative effects of daily tar and nicotine intake on the risk of incident myocardial infarction (MI) so far. To bridge this gap, we conducted an analysis in a large prospective study from Southern Germany investigating associations of daily tar and nicotine intake with an incident MI event. Methods The study was based on 4,099 men and 4,197 women participating in two population-based MONICA Augsburg surveys between 1984 and 1990 and followed up within the KORA framework until 2002. During a mean follow-up of 13.3 years, a number of 307 men and 80 women developed an incident MI event. Relative risks were calculated as hazard ratios (HRs) estimated by Cox proportional hazards models adjusted for cardiovascular risk factors. Results In the present study, male regular smokers consumed on average more cigarettes per day than female regular smokers (20 versus 15) and had a higher tar and nicotine intake per day. In men, the MI risk compared to never-smokers increased with higher tar intake: HRs were 2.24 (95% CI 1.40-3.56) for 1-129 mg/day, 2.12 (95% CI 1.37-3.29) for 130-259 mg/day and 3.01 (95% CI 2.08-4.36) for ≥ 260 mg/day. In women, the corresponding associations were comparable but more pronounced for high tar intake (HR 4.67, 95% CI 1.76-12.40). Similar associations were observed for nicotine intake. Conclusions The present study based on a large population-based sample adds important evidence of cumulative effects of tar and nicotine intake on the risk of incident MI. Even low or medium tar and nicotine intake revealed substantial risk increases as compared to never-smokers. Therefore, reduction of tar and nicotine contents in cigarettes cannot be seen as a suitable public health policy in preventing myocardial infarction. PMID:21542909
Sellami, Mohamed Hichem; Torjemane, Lamia; Espadas de Arias, Alejandro; Kaabi, Houda; Ladeb, Saloua; Ben Othman, Tarek; Poli, Francesca; Hmida, Slama
2010-01-01
Graft-versus-Host disease (GVHD) has been widely linked to immunogenetic causes such as disparity between the recipient and its HLA geno-identical donor for some Non-HLA antigens called minor histocompatibility antigens (MiHAgs). HA-2 is one of potential human MiHAgs but its effect on the GVHD occurrence remains not clear. In order to examine such association in the Tunisian cohort of HSCs recipients, we performed a retrospective study on patients who received an HLA-identical HSCT between 2000 and 2009. The study was performed on 60 HLA-A2-positive patients who had received a haematopoietic stem cell transplant from an HLA-identical sibling. All patients received cyclosporine A and/or methotrexate for GVHD prophylaxis. HA-2 genotyping assay was performed with SSP-PCR method and HLA-A*0201 positive samples were identified mainly with Luminex HLA-Typing method. Luminex HLA-Typing assay showed that only 53 cases were positives for the HLA-A*0201 allele. Among these cases, only 3 pairs were mismatched for the MiHAg HA-2. Acute GVHD occurred in 01 HA-2-mismatched pair while chronic GVHD was detected in 02 disparate couples. Univariate and multivariate analyses showed that MiHAg HA-2 disparity does not have any significant effect on the occurrence of either acute or chronic GVHD. This last one appeared to be correlated only with the age of patient (adulthood) (p: 0.011, OR: 22.092). Our findings support the previously reported data denying the influence of the HA-2 disparity on the GVHD occurrence after HSCT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pees, S.T.; Palmquist, J.C.
1984-12-01
Circular to elliptical patterns are expressed in many diverse ways and scales on earth's surface. Some are clearly of endogenic origin, whereas others are proved to be astroblemes. Many are still of indeterminate origin, but hypotheses have been offered to explain some of them. The Lake Chautauqua-Kinzua composite feature in New York and Pennsylvania is expressed by an inner ring of 29 km (18 mi) (long axis) and fragmented concentric bands extending up to 48 km (30 mi) from its center to include a curved part of the Allegheny River in the Kinzua reservoir area (Pennsylvania). It is bisected bymore » the northeast-southwest Chautauqua anticline and fault zone (decollement), locus of the Bass Islands-Akron dolomite oil and gas play. The Pymatuning reservoir, inverted teardrop feature of 34 km (21 mi) north-south length in Pennsylvania, is defined by impounded water and drainage courses bounding a topographically positive area. A slight anticlinal flexure is coaxial with the ellipse. A deep well found gas in the upper Gatesburg Formation. A nearly circular ring of 9.75 km (6 mi) diameter near New Lyme, Ashtabula County, Ohio, is seen as a tonal design on a specially enhanced composite false-color Landsat image. Elliptical patters may reflect deep deformation, differential compaction over buried basement hills, salt tectonics, filled negative areas, impact phenomena, or various other conditions that cause differences in surface configurations, surficial material, and moisture content. Investigation of such features, especially by seismic surveys and basement drill tests, is suggested for oil and gas exploration in this area.« less
Anti-inflammatory therapies in myocardial infarction: failures, hopes and challenges.
Huang, Shuaibo; Frangogiannis, Nikolaos G
2018-05-01
In the infarcted heart, the damage-associated molecular pattern proteins released by necrotic cells trigger both myocardial and systemic inflammatory responses. Induction of chemokines and cytokines and up-regulation of endothelial adhesion molecules mediate leukocyte recruitment in the infarcted myocardium. Inflammatory cells clear the infarct of dead cells and matrix debris and activate repair by myofibroblasts and vascular cells, but may also contribute to adverse fibrotic remodelling of viable segments, accentuate cardiomyocyte apoptosis and exert arrhythmogenic actions. Excessive, prolonged and dysregulated inflammation has been implicated in the pathogenesis of complications and may be involved in the development of heart failure following infarction. Studies in animal models of myocardial infarction (MI) have suggested the effectiveness of pharmacological interventions targeting the inflammatory response. This article provides a brief overview of the cell biology of the post-infarction inflammatory response and discusses the use of pharmacological interventions targeting inflammation following infarction. Therapy with broad anti-inflammatory and immunomodulatory agents may also inhibit important repair pathways, thus exerting detrimental actions in patients with MI. Extensive experimental evidence suggests that targeting specific inflammatory signals, such as the complement cascade, chemokines, cytokines, proteases, selectins and leukocyte integrins, may hold promise. However, clinical translation has proved challenging. Targeting IL-1 may benefit patients with exaggerated post-MI inflammatory responses following infarction, not only by attenuating adverse remodelling but also by stabilizing the atherosclerotic plaque and by inhibiting arrhythmia generation. Identification of the therapeutic window for specific interventions and pathophysiological stratification of MI patients using inflammatory biomarkers and imaging strategies are critical for optimal therapeutic design. © 2018 The British Pharmacological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo
By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operatesmore » unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.« less
NASA Astrophysics Data System (ADS)
Grinevich, P. G.; Santini, P. M.
2018-04-01
The focusing Nonlinear Schrödinger (NLS) equation is the simplest universal model describing the modulation instability (MI) of quasi monochromatic waves in weakly nonlinear media, the main physical mechanism for the generation of rogue (anomalous) waves (RWs) in Nature. In this paper we investigate the x-periodic Cauchy problem for NLS for a generic periodic initial perturbation of the unstable constant background solution, in the case of N = 1 , 2 unstable modes. We use matched asymptotic expansion techniques to show that the solution of this problem describes an exact deterministic alternate recurrence of linear and nonlinear stages of MI, and that the nonlinear RW stages are described by the N-breather solution of Akhmediev type, whose parameters, different at each RW appearance, are always given in terms of the initial data through elementary functions. This paper is motivated by a preceding work of the authors in which a different approach, the finite gap method, was used to investigate periodic Cauchy problems giving rise to RW recurrence.
HIDING IN THE SHADOWS: SEARCHING FOR PLANETS IN PRE-TRANSITIONAL AND TRANSITIONAL DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dobinson, Jack; Leinhardt, Zoë M.; Dodson-Robinson, Sarah E.
Transitional and pre-transitional disks can be explained by a number of mechanisms. This work aims to find a single observationally detectable marker that would imply a planetary origin for the gap and, therefore, indirectly indicate the presence of a young planet. N-body simulations were conducted to investigate the effect of an embedded planet of one Jupiter mass on the production of instantaneous collisional dust derived from a background planetesimal disk. Our new model allows us to predict the dust distribution and resulting observable markers with greater accuracy than previous works. Dynamical influences from a planet on a circular orbit aremore » shown to enhance dust production in the disk interior and exterior to the planet orbit, while removing planetesimals from the orbit itself, creating a clearly defined gap. In the case of an eccentric planet, the gap opened by the planet is not as clear as the circular case, but there is a detectable asymmetry in the dust disk.« less
Rydzanicz, Małgorzata; Wrzesiński, Tomasz; Bluyssen, Hans A R; Wesoły, Joanna
2013-12-01
Majority of clear cell renal cell carcinomas (ccRCCs) are diagnosed in the advanced metastatic stage resulting in dramatic decrease of patient survival. Thereby, early detection and monitoring of the disease may improve prognosis and treatment results. Recent technological advances enable the identification of genetic events associated with ccRCC and reveal significant molecular heterogeneity of ccRCC tumors. This review summarizes recent findings in ccRCC genomics and epigenomics derived from chromosomal aberrations, DNA sequencing and methylation, mRNA, miRNA expression profiling experiments. We provide a molecular insight into ccRCC pathology and recapitulate possible clinical applications of genomic alterations as predictive and prognostic biomarkers. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
GAPS IN PROTOPLANETARY DISKS AS SIGNATURES OF PLANETS. II. INCLINED DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang-Condell, Hannah; Turner, Neal J.
2013-07-20
We examine the observational appearance of partial gaps being opened by planets in protoplanetary disks, considering the effects of the inclination relative to the line of sight. We model the disks with static {alpha}-models with detailed radiative transfer, parameterizing the shape and size of the partially cleared gaps based on the results of hydrodynamic simulations. As in previous work, starlight falling across the gap leads to high surface brightness contrasts. The gap's trough is darkened by both shadowing and cooling, relative to the uninterrupted disk. The gap's outer wall is brightened by direct illumination and also by heating, which puffsmore » it up so that it intercepts more starlight. In this paper, we examine the effects of inclination on resolved images of disks with and without gaps at a wide range of wavelengths. The scattering surface's offset from the disk midplane creates a brightness asymmetry along the axis of inclination, making the disk's near side appear brighter than the far side in scattered light. Finite disk thickness also causes the projected distances of equidistant points on the disk surface to be smaller on the near side of the disk as compared to the far side. Consequently, the gap shoulder on the near side of the disk should appear brighter and closer to the star than on the far side. However, if the angular resolution of the observation is coarser than the width of the brightened gap shoulder, then the gap shoulder on the far side may appear brighter because of its larger apparent size. We present a formula to recover the scale height and inclination angle of an imaged disk using simple geometric arguments and measuring disk asymmetries. Resolved images of circumstellar disks have revealed clearings and gaps, such as the transitional disk in LkCa 15. Models created using our synthetic imaging attempting to match the morphology of observed scattered light images of LkCa 15 indicate that the H-band flux deficit in the inner {approx}0.''5 of the disk can be explained with a planet if mass is greater than 0.5 Jupiter mass.« less
NASA Astrophysics Data System (ADS)
Lan, C. Y.; Li, M. H.; Chen, Y. Y.
2016-12-01
Appropriate estimations of gaps appeared in eddy covariance (EC) flux observations are critical to the reliability of long-term EC applications. In this study we present a semi-parametric multivariate gap-filling model for tower-based measurement of CO2 flux. The raw EC data passing QC/QA was separated into two groups, clear sky, having net radiation greater than 50 W/m2, and nighttime/cloudy. For the clear sky conditions, the principle component analysis (PCA) was used to resolve the multicollinearity relationships among various environmental variables, including net radiation, wind speed, vapor pressure deficit, soil moisture deficit, leaf area index, and soil temperature, in association with CO2 assimilated by forest. After the principal domains were determined by the PCA, the relationships between CO2 fluxes and selected PCs (key factors) were built up by nonlinear interpolations to estimate the gap-filled CO2 flux. In view of limited photosynthesis at nighttime/cloudy conditions, respiration rate of the forest ecosystem was estimated by the Lloyd-Tylor equation. Artificial gaps were randomly selected to exam the applicability of our PCA approach. Based on tower-based measurement of CO2 flux at the Lien-Hua-Chih site, a total of 5.8 ton-C/ha/yr was assimilated in 2012.
NASA Astrophysics Data System (ADS)
Wen, Hai-Hu; Hai-Hu Wen Team
The pairing mechanism and gap structure in iron based superconductors (IBS) remains unresolved. We have conducted extensive STM/STS study on the Na(Fe1-xTx) As (T =Co, Cu, Mn), Ba1-xKxFe2As2KFe2As2, and Li1-xFexOHFeSe single crystals. We found the clear evidence of the in-gap quasi-particle states induced by the non-magnetic Cu impurities in Na(Fe0.97- x Co0.03Cux) As, giving strong evidence of the S+/- pairing. Furthermore, we show the presence of the bosonic mode with the energy identical to that of the neutron resonance and a simple linear relation Ω/kBTc ~ 4.3, being explained a consequence of the S+/-pairing. The STS spectrum in Li1-x FexOHFeSe clearly indicates the presence of double superconducting gaps with Δ1 ~ 14.3 meV and Δ2 ~ 8.6 meV. Further analysis based on QPI allows us to assign the larger (smaller) gap to the outer (inner) hybridized electron pockets. The huge value 2Δ1/kBTc = 8.7 discovered here undoubtedly proves the strong coupling mechanism. This work was supported by the Ministry of Science and Technology of China, National Natural Science Foundation of China.
Dynamical Analysis of bantam-Regulated Drosophila Circadian Rhythm Model
NASA Astrophysics Data System (ADS)
Li, Ying; Liu, Zengrong
MicroRNAs (miRNAs) interact with 3‧untranslated region (UTR) elements of target genes to regulate mRNA stability or translation, and play a crucial role in regulating many different biological processes. bantam, a conserved miRNA, is involved in several functions, such as regulating Drosophila growth and circadian rhythm. Recently, it has been discovered that bantam plays a crucial role in the core circadian pacemaker. In this paper, based on experimental observations, a detailed dynamical model of bantam-regulated circadian clock system is developed to show the post-transcriptional behaviors in the modulation of Drosophila circadian rhythm, in which the regulation of bantam is incorporated into a classical model. The dynamical behaviors of the model are consistent with the experimental observations, which shows that bantam is an important regulator of Drosophila circadian rhythm. The sensitivity analysis of parameters demonstrates that with the regulation of bantam the system is more sensitive to perturbations, indicating that bantam regulation makes it easier for the organism to modulate its period against the environmental perturbations. The effectiveness in rescuing locomotor activity rhythms of mutated flies shows that bantam is necessary for strong and sustained rhythms. In addition, the biological mechanisms of bantam regulation are analyzed, which may help us more clearly understand Drosophila circadian rhythm regulated by other miRNAs.
[Onchocerciasis among Yanomámi Indians].
Moraes, M A
1991-01-01
The main features of the Brazilian focus of onchocerciasis are reported. This focus encompasses large areas of the states of Amazonas and Roraima, in the densely forested highlands of Northern Brazil. It is not clear how the local inhabitants, Indians of the group Yanomámi, an isolated group that has lived in the region for centuries, acquired the infection. However, in some of their villages the prevalence rate among adults is as high as 80%. Aspects of the focus, as its origins, manifestations of the illness among the Indians, and the distribution and importance of the recognized vectors of O. volvulus in the region, are reviewed. The author also makes some considerations on the behavior and probable future of the focus, including the possible dissemination of onchocerciasis to some other sites of Brazil. Gold miners that in recent years have invaded the Yanomámi territory and became infected in contact with the Indians will be the cause of this dissemination. Methods for controlling onchocerciasis are discussed and, besides the treatment of the infected Indians with Ivermectin, it is proposed the use of larvicides to eliminate the vectors. This method would be employed in some limited areas where the population is already stable and shows a very high prevalence rate.
psRNATarget: a plant small RNA target analysis server (2017 release).
Dai, Xinbin; Zhuang, Zhaohong; Zhao, Patrick Xuechun
2018-04-30
Plant regulatory small RNAs (sRNAs), which include most microRNAs (miRNAs) and a subset of small interfering RNAs (siRNAs), such as the phased siRNAs (phasiRNAs), play important roles in regulating gene expression. Although generated from genetically distinct biogenesis pathways, these regulatory sRNAs share the same mechanisms for post-translational gene silencing and translational inhibition. psRNATarget was developed to identify plant sRNA targets by (i) analyzing complementary matching between the sRNA sequence and target mRNA sequence using a predefined scoring schema and (ii) by evaluating target site accessibility. This update enhances its analytical performance by developing a new scoring schema that is capable of discovering miRNA-mRNA interactions at higher 'recall rates' without significantly increasing total prediction output. The scoring procedure is customizable for the users to search both canonical and non-canonical targets. This update also enables transmitting and analyzing 'big' data empowered by (a) the implementation of multi-threading chunked file uploading, which can be paused and resumed, using HTML5 APIs and (b) the allocation of significantly more computing nodes to its back-end Linux cluster. The updated psRNATarget server has clear, compelling and user-friendly interfaces that enhance user experiences and present data clearly and concisely. The psRNATarget is freely available at http://plantgrn.noble.org/psRNATarget/.
Ding, Xue; Yu, Chengyuan; Liu, Yang; Yan, Sen; Li, Wenpeng; Wang, Dingyu; Sun, Li; Han, Yu; Li, Minghui; Zhang, Song; Yun, Fengxiang; Zhao, Hongwei; Li, Yue
2016-09-06
Chronic obstructive sleep apnea syndrome (OSAS) is considered to be associated with pulmonary diseases. However, the roles and mechanisms of OSA in pulmonary remodeling remain ambiguous. Thus, this study was aimed to elucidate the morphological and mechanical action of OSA in lung remodeling. In the present study, we employed a novel OSA model to mimic the OSA patient and investigate the role of OSA in pulmonary remodeling. We showed that pulmonary artery pressure of OSA group has no significant increased compared with the sham group. Nevertheless, we found that fibrotic tissue was predominantly located around the bronchi and vascular in the lung. Additionally, inflammatory cell infiltration was also detected in the peribonchial and perivascular space. The morphological change in OSA canines was ascertained by ultrastructure variation characterized by mitochondrial swelling, lamellar bodies degeneration and vascular smooth muscle incrassation. Moreover, sympathetic nerve sprouting was markedly increased in OSA group. Mechanistically, we showed that several pivotal proteins including collagen type I(CoLA1), GAP-43, TH and NGF were highly expressed in OSA groups. Furthermore, we found OSA could activated the expression of TGF-β, which subsequently suppressed miR-185 and promoted CoL A1 expression. This signaling cascade leads to pulmonary remodeling. In conclusion, Our data demonstrates that OSA can accelerate the progression of pulmonary remodeling through TGF-β/miR-185/CoLA1 signaling, which would potentially provide therapeutic strategies for chronic OSAS.
Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong
2016-09-08
SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.
Lin, Runmao; He, Liye; He, Jiayu; Qin, Peigang; Wang, Yanran; Deng, Qiming; Yang, Xiaoting; Li, Shuangcheng; Wang, Shiquan; Wang, Wenming; Liu, Huainian; Li, Ping; Zheng, Aiping
2016-07-03
MicroRNAs (miRNAs) are ∼22 nucleotide non-coding RNAs that regulate gene expression by targeting mRNAs for degradation or inhibiting protein translation. To investigate whether miRNAs regulate the pathogenesis in necrotrophic fungus Rhizoctonia solani AG1 IA, which causes significant yield loss in main economically important crops, and to determine the regulatory mechanism occurring during pathogenesis, we constructed hyphal small RNA libraries from six different infection periods of the rice leaf. Through sequencing and analysis, 177 miRNA-like small RNAs (milRNAs) were identified, including 15 candidate pathogenic novel milRNAs predicted by functional annotations of their target mRNAs and expression patterns of milRNAs and mRNAs during infection. Reverse transcription-quantitative polymerase chain reaction results for randomly selected milRNAs demonstrated that our novel comprehensive predictions had a high level of accuracy. In our predicted pathogenic protein-protein interaction network of R. solani, we added the related regulatory milRNAs of these core coding genes into the network, and could understand the relationships among these regulatory factors more clearly at the systems level. Furthermore, the putative pathogenic Rhi-milR-16, which negatively regulates target gene expression, was experimentally validated to have regulatory functions by a dual-luciferase reporter assay. Additionally, 23 candidate rice miRNAs that may involve in plant immunity against R. solani were discovered. This first study on novel pathogenic milRNAs of R. solani AG1 IA and the recognition of target genes involved in pathogenicity, as well as rice miRNAs, participated in defence against R. solani could provide new insights into revealing the pathogenic mechanisms of the severe rice sheath blight disease. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.
Chakrabarti, Mrinmay; Ray, Swapan K
2016-03-01
Glioblastoma is the deadliest brain tumor in humans. High systemic toxicity of conventional chemotherapies prompted the search for natural compounds for controlling glioblastoma. The natural flavonoids luteolin (LUT) and silibinin (SIL) have anti-tumor activities. LUT inhibits autophagy, cell proliferation, metastasis, and angiogenesis and induces apoptosis; while SIL activates caspase-8 cascades to induce apoptosis. However, synergistic anti-tumor effects of LUT and SIL in glioblastoma remain unknown. Overexpression of tumor suppressor microRNA (miR) could enhance the anti-tumor effects of LUT and SIL. Here, we showed that 20 µM LUT and 50 µM SIL worked synergistically for inhibiting growth of two different human glioblastoma U87MG (wild-type p53) and T98G (mutant p53) cell lines and natural combination therapy was more effective than conventional chemotherapy (10 µM BCNU or 100 µM TMZ). Combination of LUT and SIL caused inhibition of growth of glioblastoma cells due to induction of significant amounts of apoptosis and complete inhibition of invasion and migration. Further, combination of LUT and SIL inhibited rapamycin (RAPA)-induced autophagy, a survival mechanism, with suppression of PKCα and promotion of apoptosis through down regulation of iNOS and significant increase in expression of the tumor suppressor miR-7-1-3p in glioblastoma cells. Our in vivo studies confirmed that overexpression of miR-7-1-3p augmented anti-tumor activities of LUT and SIL in RAPA pre-treated both U87MG and T98G tumors. In conclusion, our results clearly demonstrated that overexpression of miR-7-1-3p augmented the anti-tumor activities of LUT and SIL to inhibit autophagy and induce apoptosis for controlling growth of different human glioblastomas in vivo.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sullivan, Robert; Abplanalp, Jennifer M.
2015-03-01
This report presents the results of a study conducted to document the visibility and visual characteristics of the Ivanpah Solar Electric Generating System (ISEGS), a utility-scale solar power tower facility located on land administered by the U.S. Department of the Interior Bureau of Land Management in southern California. Study activities consisted of field observations of the ISEGS facility and comparison of the observations made in the field with the visual contrast assessments and visual simulations in the ISEGS Final Environmental Impact Statement (Final EIS) and supporting documents created prior to ISEGS construction. Field observations of ISEGS were made from 19more » locations within 35 mi (56 km) of the facility in the course of one week in September 2014. The study results established that reflected sunlight from the receivers was the primary source of visual contrast from the operating ISEGS facility. The ISEGS facility was found to be a major source of visual contrast for all observations up to 20 mi (32 km), and was easily visible at 35 mi. Glare from individual heliostats was frequently visible, and often brighter than the reflected light from the receivers. Heliostat glare caused discomfort for one or more viewers at distances up to 20 mi. The ISEGS power blocks were brightly lit at night, and were conspicuous at the observation distance of approximately 6 mi (10 km). The facility is substantially brighter and is seen more clearly in the field than in photographs of the facility or in the prepared simulations, which were based on photographs. The simulations of the ISEGS facility in the Final EIS, which were evaluated as part of this study, sometimes lacked spatial accuracy and realism. The evaluated simulations generally under-represented the actual visual contrast from the project, and some of the contrast ratings in the Final EIS predicted substantially lower levels of visual contrast than were actually observed for the operating facility.« less
A Model of Cancer Stem Cells Derived from Mouse Induced Pluripotent Stem Cells
Chen, Ling; Kasai, Tomonari; Li, Yueguang; Sugii, Yuh; Jin, Guoliang; Okada, Masashi; Vaidyanath, Arun; Mizutani, Akifumi; Satoh, Ayano; Kudoh, Takayuki; Hendrix, Mary J. C.; Salomon, David S.; Fu, Li; Seno, Masaharu
2012-01-01
Cancer stem cells (CSCs) are capable of continuous proliferation and self-renewal and are proposed to play significant roles in oncogenesis, tumor growth, metastasis and cancer recurrence. CSCs are considered derived from normal stem cells affected by the tumor microenvironment although the mechanism of development is not clear yet. In 2007, Yamanaka's group succeeded in generating Nanog mouse induced pluripotent stem (miPS) cells, in which green fluorescent protein (GFP) has been inserted into the 5′-untranslated region of the Nanog gene. Usually, iPS cells, just like embryonic stem cells, are considered to be induced into progenitor cells, which differentiate into various normal phenotypes depending on the normal niche. We hypothesized that CSCs could be derived from Nanog miPS cells in the conditioned culture medium of cancer cell lines, which is a mimic of carcinoma microenvironment. As a result, the Nanog miPS cells treated with the conditioned medium of mouse Lewis lung carcinoma acquired characteristics of CSCs, in that they formed spheroids expressing GFP in suspension culture, and had a high tumorigenicity in Balb/c nude mice exhibiting angiogenesis in vivo. In addition, these iPS-derived CSCs had a capacity of self-renewal and expressed the marker genes, Nanog, Rex1, Eras, Esg1 and Cripto, associated with stem cell properties and an undifferentiated state. Thus we concluded that a model of CSCs was originally developed from miPS cells and proposed the conditioned culture medium of cancer cell lines might perform as niche for producing CSCs. The model of CSCs and the procedure of their establishment will help study the genetic alterations and the secreted factors in the tumor microenvironment which convert miPS cells to CSCs. Furthermore, the identification of potentially bona fide markers of CSCs, which will help the development of novel anti-cancer therapies, might be possible though the CSC model. PMID:22511923
Newton, Amanda S; Dong, Kathryn; Mabood, Neelam; Ata, Nicole; Ali, Samina; Gokiert, Rebecca; Vandermeer, Ben; Tjosvold, Lisa; Hartling, Lisa; Wild, T Cameron
2013-05-01
Brief intervention (BI) is recommended for use with youth who use alcohol and other drugs. Emergency departments (EDs) can provide BIs at a time directly linked to harmful and hazardous use. The objective of this systematic review was to determine the effectiveness of ED-based BIs. We searched 14 electronic databases, a clinical trial registry, conference proceedings, and study references. We included randomized controlled trials with youth 21 years or younger. Two reviewers independently selected studies and assessed methodological quality. One reviewer extracted and a second verified data. We summarized findings qualitatively. Two trials with low risk of bias, 2 trials with unclear risk of bias, and 5 trials with high risk of bias were included. Trials evaluated targeted BIs for alcohol-positive (n = 3) and alcohol/other drug-positive youth (n = 1) and universal BIs for youth reporting recent alcohol (n = 4) or cannabis use (n = 1). Few differences were found in favor of ED-based BIs, and variation in outcome measurement and poor study quality precluded firm conclusions for many comparisons. Universal and targeted BIs did not significantly reduce alcohol use more than other care. In one targeted BI trial with high risk of bias, motivational interviewing (MI) that involved parents reduced drinking quantity per occasion and high-volume alcohol use compared with MI that was delivered to youth only. Another trial with high risk of bias reported an increase in abstinence and reduction in physical altercations when youth received peer-delivered universal MI for cannabis use. In 2 trials with unclear risk of bias, MI reduced drinking and driving and alcohol-related injuries after the ED visit. Computer-based MI delivered universally in 1 trial with low risk of bias reduced alcohol-related consequences 6 months after the ED visit. Clear benefits of using ED-based BI to reduce alcohol and other drug use and associated injuries or high-risk behaviours remain inconclusive because of variation in assessing outcomes and poor study quality.
ERIC Educational Resources Information Center
Berger, Dan; Wild, Charles
2017-01-01
Teaching standards within the UK's higher education sector are under unprecedented scrutiny not only in terms of perceived "highly variable" standards of teaching but also in relation to the clear attainment gap between black, Asian and minority ethnic (BAME) students and their white counterparts. Gentle taps at the door to the higher…
ERIC Educational Resources Information Center
Mueller, Dan
2005-01-01
The achievement gap is clearly visible throughout the school years, from grade-school test scores through high school graduation and higher education. It divides American Indian, Asian, Black, Latino, and White students, and it divides the economically advantaged from the disadvantaged regardless of their race/ethnicity. Under the federal No Child…
Evidence for unseen companions around T Tauri stars
NASA Technical Reports Server (NTRS)
Marsh, Kenneth A.; Mahoney, Michael J.
1992-01-01
The observed spectral energy distributions of HK Tau, T Tau, and R Y Tau exhibit shallow (but significant) dips at mid-infrared wavelengths. This behavior can be explained by the existence of discrete gaps in their circumstellar disks since, if the temperature in the disks decreases monotonically outward, a gap would result in a range of "missing" temperatures. The gap centers for the three objects occur at radial distances of 0.5, 1.4, and 1.6 AU, respectively, while the corresponding ratios of outer to inner radii of the gaps are 6:1, 7:1, and 15:1, respectively. Larger mid-infrared dips are observed for SU Aur and GM Aur and are interpreted as correspondingly larger gaps, with almost complete clearing of the inner region of the disk in the latter case. The gaps in all cases are consistent with the tidal effects of either companion stars or planets.
Salicylate-Induced Hearing Loss and Gap Detection Deficits in Rats
Radziwon, Kelly E.; Stolzberg, Daniel J.; Urban, Maxwell E.; Bowler, Rachael A.; Salvi, Richard J.
2015-01-01
To test the “tinnitus gap-filling” hypothesis in an animal psychoacoustic paradigm, rats were tested using a go/no-go operant gap detection task in which silent intervals of various durations were embedded within a continuous noise. Gap detection thresholds were measured before and after treatment with a dose of sodium salicylate (200 mg/kg) that reliably induces tinnitus in rats. Noise-burst detection thresholds were also measured to document the amount of hearing loss and aid in interpreting the gap detection results. As in the previous human psychophysical experiments, salicylate had little or no effect on gap thresholds measured in broadband noise presented at high-stimulus levels (30–60 dB SPL); gap detection thresholds were always 10 ms or less. Salicylate also did not affect gap thresholds presented in narrowband noise at 60 dB SPL. Therefore, rats treated with a dose of salicylate that reliably induces tinnitus have no difficulty detecting silent gaps as long as the noise in which they are embedded is clearly audible. PMID:25750635
Molecular mechanisms regulating formation, trafficking and processing of annular gap junctions.
Falk, Matthias M; Bell, Cheryl L; Kells Andrews, Rachael M; Murray, Sandra A
2016-05-24
Internalization of gap junction plaques results in the formation of annular gap junction vesicles. The factors that regulate the coordinated internalization of the gap junction plaques to form annular gap junction vesicles, and the subsequent events involved in annular gap junction processing have only relatively recently been investigated in detail. However it is becoming clear that while annular gap junction vesicles have been demonstrated to be degraded by autophagosomal and endo-lysosomal pathways, they undergo a number of additional processing events. Here, we characterize the morphology of the annular gap junction vesicle and review the current knowledge of the processes involved in their formation, fission, fusion, and degradation. In addition, we address the possibility for connexin protein recycling back to the plasma membrane to contribute to gap junction formation and intercellular communication. Information on gap junction plaque removal from the plasma membrane and the subsequent processing of annular gap junction vesicles is critical to our understanding of cell-cell communication as it relates to events regulating development, cell homeostasis, unstable proliferation of cancer cells, wound healing, changes in the ischemic heart, and many other physiological and pathological cellular phenomena.
NASA Astrophysics Data System (ADS)
Zheng, Xiaochen; Lin, Douglas N. C.; Kouwenhoven, M. B. N.; Mao, Shude; Zhang, Xiaojia
2017-11-01
Extended gaps in the debris disks of both Vega and Fomalhaut have been observed. These structures have been attributed to tidal perturbations by multiple super-Jupiter gas giant planets. Within the current observational limits, however, no such massive planets have been detected. Here we propose a less stringent “lone-planet” scenario to account for the observed structure with a single eccentric gas giant and suggest that clearing of these wide gaps is induced by its sweeping secular resonance. With a series of numerical simulations, we show that the gravitational potential of the natal disk induces the planet to precess. At the locations where its precession frequency matches the precession frequency the planet imposes on the residual planetesimals, their eccentricity is excited by its resonant perturbation. Due to the hydrodynamic drag by the residual disk gas, the planetesimals undergo orbital decay as their excited eccentricities are effectively damped. During the depletion of the disk gas, the planet’s secular resonance propagates inward and clears a wide gap over an extended region of the disk. Although some residual intermediate-size planetesimals may remain in the gap, their surface density is too low to either produce super-Earths or lead to sufficiently frequent disruptive collisions to generate any observable dusty signatures. The main advantage of this lone-planet sweeping-secular-resonance model over the previous multiple gas giant tidal truncation scenario is the relaxed requirement on the number of gas giants. The observationally inferred upper mass limit can also be satisfied provided the hypothetical planet has a significant eccentricity. A significant fraction of solar or more massive stars bear gas giant planets with significant eccentricities. If these planets acquired their present-day kinematic properties prior to the depletion of their natal disks, their sweeping secular resonance would effectively impede the retention of neighboring planets and planetesimals over a wide range of orbital semimajor axes.
Black carbon emissions in gasoline vehicle exhaust: a measurement and instrument comparison.
Kamboures, Michael A; Hu, Shishan; Yu, Yong; Sandoval, Julia; Rieger, Paul; Huang, Shiou-Mei; Zhang, Sherry; Dzhema, Inna; Huo, Darey; Ayala, Alberto; Chang, M C Oliver
2013-08-01
A pilot study was conducted to evaluate the performance and agreement of several commercially available black carbon (BC) measurement instruments, when applied to the quantification of BC in light-duty vehicle (LDV) exhaust. Samples from six vehicles, three fuels, and three driving cycles were used. The pilot study included determinations of the method detection limit (MDL) and repeatability. With respect to the MDL, the real-time instruments outperformed the time-integrated instruments, with MDL = 0.12 mg/mi for the AE51 Aethalometer, and 0.15 mg/mi for the Micro Soot Sensor (MSS), versus 0.38 mg/mi for the IMPROVE_A thermal/ optical method, and 0.35 mg/mi for the OT21_T Optical Transmissometer. The real-time instruments had repeatability values ranging from 30% to 35%, which are somewhat better than those of the time-integrated instruments (40-41%). These results suggest that, despite being less resource intensive, real-time methods can be equivalent or superior to time-integrated methods in terms of sensitivity and repeatability. BC mass data, from the photoacoustic and light attenuation instruments, were compared against same-test EC data, determined using the IMPROVE_A method. The MSS BC data was well correlated with EC, with R2 = 0.85 for the composite results and R2 = 0.86 for the phase-by-phase (PBP) results. The correlation of BC, by the AE51, AE22, and OT21_T with EC was moderate to weak. The weaker correlation was driven by the inclusion of US06 test data in the linear regression analysis. We hypothesize that test-cycle-dependent BC:EC ratios are due to the different physicochemical properties of particulate matter (PM) in US06 and Federal Test Procedure (FTP) tests. Correlation amongst the real-time MSS, PASS-1, AE51, and AE22 instruments was excellent (R2 = 0.83-0.95), below 1 mg/mi levels. In the process of investigating these BC instruments, we learned that BC emissions at sub-1 mg/mi levels can be measured and are achievable by current-generation gasoline engines. Most comparison studies of black carbon (BC) measurement methods were carried out in the ambient air. This study assesses the agreement among various BC measurement instrument in emissions from light-duty gasoline vehicles (LDGVs) on standard test cycles, and evaluates applicability of these methods under various fuel types, driving cycles, and engine combustion technologies. This research helps to fill in the knowledge gap of BC method standardization as stated in the U.S. Environmental Protection Agency (EPA) 2011 Report to Congress on Black Carbon, and these results demonstrate the feasibility of quantification of BC at the 1 mg/mi PM standard in California Low Emission Vehicle III regulations.
Xu, Bin; Xu, Hao; Cao, Heng; Liu, Xiaoxiao; Qin, Chunhuan; Zhao, Yanzhou; Han, Xiaolin; Li, Hongli
2017-01-01
Emerging evidence has suggested that intermedin (IMD), a novel member of the calcitonin gene-related peptide (CGRP) family, has a wide range of cardioprotective effects. The present study investigated the effects of long-term administration of IMD on cardiac function and sympathetic neural remodeling in heart failure (HF) rats, and studied potential underlying mechanism. HF was induced in rats by myocardial infarction (MI). Male Sprague Dawley rats were randomly assigned to either saline or IMD (0.6 µg/kg/h) treatment groups for 4 weeks post-MI. Another group of sham-operated rats served as controls. Cardiac function was assessed by echocardiography, cardiac catheterization and plasma level of B-type natriuretic peptide (BNP). Cardiac sympathetic neural remodeling was assessed by immunohistochemistical study of tyrosine hydroxylase (TH) and growth associated protein 43 (GAP43) immunoreactive nerve fibers. The protein expression levels of nerve growth factor (NGF), TH and GAP43 in the ventricular myocardium were studied by western blotting. Ventricular fibrillation threshold (VFT) was determined to evaluate the incidence of ventricular arrhythmia. Oxidative stress was assessed by detecting the activity of superoxide dismutase and the level of malondialdehyde. Compared with rats administrated with saline, IMD significantly improved cardiac function, decreased the plasma BNP level, attenuated sympathetic neural remodeling, increased VFT and suppressed oxidative stress. In conclusion, these results indicated that IMD prevents ventricle remodeling and improves the performance of a failing heart. In addition, IMD attenuated sympathetic neural remodeling and reduced the incidence of ventricular arrhythmia, which may contribute to its anti-oxidative property. These results implicate IMD as a potential therapeutic agent for the treatment of HF. PMID:28627670
ERIC Educational Resources Information Center
Oberauer, Klaus; Oaksford, Mike
2008-01-01
In Barrouillet, Gauffroy, and Lecas's postscript to the current authors' original comment on Barrouillet, Gauffroy, and Lecas's original article, they made four clearly argued points. First, they argued that they had provided a clear rationale for truth value gaps. This misses the point of what a computational-level explanation means. Such an…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jia, E-mail: jiali@hebut.edu.cn; Research Institute for Energy Equipment Materials, Hebei University of Technology, Tianjin 300401; Zhang, Zhidong
The Heusler alloy Ti{sub 2}CrGe is a stable L2{sub 1} phase with antiferromagnetic ordering. With band-gap energy (∼ 0.18 eV) obtained from a first-principles calculation, it belongs to the group of narrow band gap semiconductor. The band-gap energy decreases with increasing lattice compression and disappears until a strain of −5%; moreover, gap contraction only occurs in the spin-down states, leading to half-metallic character at the −5% strain. The Ti{sub 1}, Ti{sub 2}, and Cr moments all exhibit linear changes in behavior within strains of −5%– +5%. Nevertheless, the total zero moment is robust for these strains. The imaginary part ofmore » the dielectric function for both up and down spin states shows a clear onset energy, indicating a corresponding electronic gap for the two spin channels.« less
Using Enthalpy as a Prognostic Variable in Atmospheric Modelling with Variable Composition
2016-04-14
the first place. It then becomes clear that specific enthalpy provides a viable alternative to account for the effects of composi- tional changes on...forces. It is also assumed that external forces acting on a molecule are proportional to its mass, mi , as is the case with the gravity or Coriolis ...relative humidity and is introduced into Equation (11) to account for the effects of water vapour on the gas constant R and, consequently, on the
1986-01-24
P-29516 BW Range: 125, 000 kilometers (78,000 miles) Voyager 2's wide-angle camera captured this view of the outer part of the Uranian ring system just 11 minutes before passing though the ring plane. The resolution in this clear-filter view is slightly better than 9 km (6 mi). The brightest, outermost ring is known as epsilon. Interior to epsilon lie (from top) the newly discovered 10th ring of Uranus--designated 1986UR1 and barely visible here--and then the delta, gamma and eta rings.
Hawkes, Anna L; Atherton, John; Taylor, C Barr; Scuffham, Paul; Eadie, Kathy; Miller, Nancy Houston; Oldenburg, Brian
2009-05-09
Coronary heart disease (CHD) is a significant cause of health and economic burden. Secondary prevention programs play a pivotal role in the treatment and management of those affected by CHD although participation rates are poor due to patient, provider, health system and societal-level barriers. As such, there is a need to develop innovative secondary prevention programs to address the treatment gap. Telephone-delivered care is convenient, flexible and has been shown to improve behavioural and clinical outcomes following myocardial infarction (MI). This paper presents the design of a randomised controlled trial to evaluate the efficacy of a six-month telephone-delivered secondary prevention program for MI patients (ProActive Heart). 550 adult MI patients have been recruited over a 14 month period (December 2007 to January 2009) through two Brisbane metropolitan hospitals, and randomised to an intervention or control group (n = 225 per group). The intervention commences within two weeks of hospital discharge delivered by study-trained health professionals ('health coaches') during up to 10 x 30 minute scripted telephone health coaching sessions. Participants also receive a ProActive Heart handbook and an educational resource to use during the health coaching sessions. The intervention focuses on appropriate modification of CHD risk factors, compliance with pharmacological management, and management of psychosocial issues. Data collection occurs at baseline or prior to commencement of the intervention (Time 1), six months follow-up or the completion of the intervention (Time 2), and at 12 months follow-up for longer term outcomes (Time 3). Primary outcome measures include quality of life (Short Form-36) and physical activity (Active Australia Survey). A cost-effective analysis of the costs and outcomes for patients in the intervention and control groups is being conducted from the perspective of health care costs to the government. The results of this study will provide valuable new information about an innovative telephone-delivered cost-effective secondary prevention program for MI patients.
Mindfulness and motivational interviewing: two candidate methods for promoting self-management.
Benzo, Roberto P
2013-08-01
There is no conclusive evidence about the way to a promote behavior change in self-management programs for patients with chronic obstructive pulmonary disease (COPD). The latter is a significant knowledge gap as there is a need to promote a sustained effect in interventions like Pulmonary Rehabilitation or Supporting Programs. Embracing patient's values seems to be a key ingredient to ignite genuine motivation for behavior change. This manuscript describes two pilot qualitative studies carried out in patients with severe COPD aimed to engage the patient inner experience and promote self-management: a trial testing motivational interviewing (MI) as one style of helping patients with severe COPD make changes in their behavior and second a trial testing a mindfulness-based intervention. The MI study consisted of a 3-month program of weekly coaching phone calls after one face-to-face visit. The following themes were outstanding: patients value the supportive communication with coach and believe the MI-based coaching created increased level of awareness and accountability. They perceived an increase in physical activity and reported "feeling better" or other benefits not directly related to exercise. The Mindfulness for Health Program was a mandatory 8-week program that consisted on 2-hour classes aimed to cultivate nonjudgmental attention in the moment (through different meditative practices and sharing) plus monthly face-to-face encounters aimed to sustain practice and sharing of life experiences for 1 year. The following themes (at 1 year) were outstanding: appreciating life by seeing hardships as opportunities, valuing the self through compassion and awareness, cultivating connectedness with others, acquiring joy, and adopting healthy behaviors. In the search for the "holy grail" for self-management programs that can promote a behavior change, mindfulness and MI seem promising for cultivating a way to live a life in which people are fully present and consciously agree with.
Resnicow, Ken; McMaster, Fiona; Rollnick, Stephen
2012-07-01
When using Motivational Interviewing (MI), once resistance or ambivalence are resolved and motivation is solidified, many practitioners struggle with how best to transition the discussion toward action planning, while still retaining the spirit and style of client centeredness, i.e., moving from the WHY phase to the HOW phase of counseling in a style that is MI-consistent. For many, there is a perception that the counseling style, skills, and strategies used to build motivation are distinct from those used in the action planning phase. The WHY to HOW transition does not, however, necessitate abandoning a client-centered style for a more overtly educational or directive style. Goal setting, action planning, provision of advice, and relapse prevention can be implemented from an autonomy supportive, MI consistent framework. To this end, this article will present a new class of reflection, which we have termed "action reflections", that can be used to help bridge the WHY-HOW gap. Action reflections (AR) allow the clinician to maintain a tone and orientation that are consistent with MI, i.e. autonomy support; guiding versus directing, during the action phase of counseling. They differ from reflecting change talk as they focus not on the WHY of change, but the HOW, WHEN, or WHERE. Action Reflections (ARs) also differ from the more common type of reflections such as those that focus on client feelings, rolling with resistance, or acknowledging ambivalence as ARs usually contain a potential concrete step that the client has directly or obliquely mentioned. Like any type of reflection, ARs represent the clinician's best guess for what the client has said or, more apropos here, where the conversation might be heading. This article describes the various types of ARs and provides examples of each to help clinicians incorporate them into their behavior change counseling.
Sobanjo-Ter Meulen, Ajoke; Duclos, Philippe; McIntyre, Peter; Lewis, Kristen D C; Van Damme, Pierre; O'Brien, Katherine L; Klugman, Keith P
2016-12-01
Implementation of effective interventions has halved maternal and child mortality over the past 2 decades, but less progress has been made in reducing neonatal mortality. Almost 45% of under-5 global mortality now occurs in infants <1 month of age, with approximately 86% of neonatal deaths occurring in low- and lower-middle-income countries (LMICs). As an estimated 23% of neonatal deaths globally are due to infectious causes, maternal immunization (MI) is one intervention that may reduce mortality in the first few months of life, when direct protection often relies on passively transmitted maternal antibodies. Despite all countries including pertussis-containing vaccines in their routine childhood immunization schedules, supported through the Expanded Programme on Immunization, pertussis continues to circulate globally. Although based on limited robust epidemiologic data, current estimates derived from modeling implicate pertussis in 1% of under-5 mortality, with infants too young to be vaccinated at highest risk of death. Pertussis MI programs have proven effective in reducing infant pertussis mortality in high-income countries using tetanus-diphtheria-acellular pertussis (Tdap) vaccines in their maternal and infant programs; however, these vaccines are cost-prohibitive for routine use in LMICs. The reach of antenatal care programs to deliver maternal pertussis vaccines, particularly with respect to infants at greatest risk of pertussis, needs to be further evaluated. Recognizing that decisions on the potential impact of pertussis MI in LMICs need, as a first step, robust contemporary mortality data for early infant pertussis, a symposium of global key experts was held. The symposium reviewed current evidence and identified knowledge gaps with respect to the infant pertussis disease burden in LMICs, and discussed proposed strategies to assess the potential impact of pertussis MI. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America.
The Abort Kicker System for the PEP-II Storage Rings at SLAC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delamare, Jeffrey E
2003-06-20
The PEP-II project has two storage rings. The HER (High Energy Ring) has up to 1.48 A of election beam at 9 GeV, and the LER (Low Energy Ring) has up to 2.14 A of positron beam at 3.1 GeV. To protect the HER and LER beam lines in the event of a ring component failure, each ring has an abort kicker system which directs the beam into a dump when a failure is detected. Due to the high current of the beams, the beam kick is tapered from 100% to 80% in 7.33 {micro}S (the beam transit time aroundmore » the ring). This taper distributes the energy evenly across the window which separates the ring from the beam dump such that the window is not damaged. The abort kicker trigger is synchronized with the ion clearing gap of the beam allowing for the kicker field to rise from 0-80% while there is no beam in the kicker magnet. Originally the kicker system was designed for a rise time of 370nS [1], but because the ion clearing gap was reduced in half, so was the rise time requirement for the kicker. This report discusses the design of the system interlocks, diagnostics, and modulator with the modifications necessary to accommodate an ion clearing gap of 185nS.« less
Electron elevator: Excitations across the band gap via a dynamical gap state
Lim, Anthony; Foulkes, W. M. C.; Horsfield, A. P.; ...
2016-01-27
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. Lastly, an analysis of the time dependence of the transition rates using coupled linear rate equations enables one of themore » excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.« less
Electron Elevator: Excitations across the Band Gap via a Dynamical Gap State.
Lim, A; Foulkes, W M C; Horsfield, A P; Mason, D R; Schleife, A; Draeger, E W; Correa, A A
2016-01-29
We use time-dependent density functional theory to study self-irradiated Si. We calculate the electronic stopping power of Si in Si by evaluating the energy transferred to the electrons per unit path length by an ion of kinetic energy from 1 eV to 100 keV moving through the host. Electronic stopping is found to be significant below the threshold velocity normally identified with transitions across the band gap. A structured crossover at low velocity exists in place of a hard threshold. An analysis of the time dependence of the transition rates using coupled linear rate equations enables one of the excitation mechanisms to be clearly identified: a defect state induced in the gap by the moving ion acts like an elevator and carries electrons across the band gap.
NASA Astrophysics Data System (ADS)
Helmer, E.; Ruzycki, T. S.; Wunderle, J. M.; Kwit, C.; Ewert, D. N.; Voggesser, S. M.; Brandeis, T. J.
2011-12-01
We mapped tropical dry forest height (RMSE = 0.9 m, R2 = 0.84, range 0.6-7 m) and foliage height profiles with a time series of gap-filled Landsat and Advanced Land Imager (ALI) imagery for the island of Eleuthera, The Bahamas. We also mapped disturbance type and age with decision tree classification of the image time series. Having mapped these variables in the context of studies of wintering habitat of an endangered Nearctic-Neotropical migrant bird, the Kirtland's Warbler (Dendroica kirtlandii), we then illustrated relationships between forest vertical structure, disturbance type and counts of forage species important to the Kirtland's Warbler. The ALI imagery and the Landsat time series were both critical to the result for forest height, which the strong relationship of forest height with disturbance type and age facilitated. Also unique to this study was that seven of the eight image time steps were cloud-gap-filled images: mosaics of the clear parts of several cloudy scenes, in which cloud gaps in a reference scene for each time step are filled with image data from alternate scenes. We created each cloud-cleared image, including a virtually seamless ALI image mosaic, with regression tree normalization of the image data that filled cloud gaps. We also illustrated how viewing time series imagery as red-green-blue composites of tasseled cap wetness (RGB wetness composites) aids reference data collection for classifying tropical forest disturbance type and age.
MiT family translocation renal cell carcinoma.
Argani, Pedram
2015-03-01
The MiT subfamily of transcription factors includes TFE3, TFEB, TFC, and MiTF. Gene fusions involving two of these transcription factors have been identified in renal cell carcinoma (RCC). The Xp11 translocation RCCs were first officially recognized in the 2004 WHO renal tumor classification, and harbor gene fusions involving TFE3. The t(6;11) RCCs harbor a specific Alpha-TFEB gene fusion and were first officially recognized in the 2013 International Society of Urologic Pathology (ISUP) Vancouver classification of renal neoplasia. These two subtypes of translocation RCC have many similarities. Both were initially described in and disproportionately involve young patients, though adult translocation RCC may overall outnumber pediatric cases. Both often have unusual and distinctive morphologies; the Xp11 translocation RCCs frequently have clear cells with papillary architecture and abundant psammomatous bodies, while the t(6;11) RCCs frequently have a biphasic appearance with both large and small epithelioid cells and nodules of basement membrane material. However, the morphology of these two neoplasms can overlap, with one mimicking the other. Both of these RCCs underexpress epithelial immunohistochemical markers like cytokeratin and epithelial membrane antigen (EMA) relative to most other RCCs. Unlike other RCCs, both frequently express the cysteine protease cathepsin k and often express melanocytic markers like HMB45 and Melan A. Finally, TFE3 and TFEB have overlapping functional activity as these two transcription factors frequently heterodimerize and bind to the same targets. Therefore, on the basis of clinical, morphologic, immunohistochemical, and genetic similarities, the 2013 ISUP Vancouver classification of renal neoplasia grouped these two neoplasms together under the heading of "MiT family translocation RCC." This review summarizes our current knowledge of these recently described RCCs. Copyright © 2015 Elsevier Inc. All rights reserved.
Hirao, Hajime; Chuanprasit, Pratanphorn; Cheong, Ying Yi; Wang, Xiaoqing
2013-06-03
A precise understanding of the mechanism-based inactivation of cytochrome P450 enzymes (P450s) at the quantum mechanical level should allow more reliable predictions of drug-drug interactions than those currently available. Hydrazines are among the molecules that act as mechanism-based inactivators to terminate the function of P450s, which are essential heme enzymes responsible for drug metabolism in the human body. Despite its importance, the mechanism explaining how a metabolic intermediate (MI) is formed from hydrazine is not fully understood. We used density functional theory (DFT) calculations to compare four possible mechanisms underlying the reaction between 1,1-dimethylhydrazine (or unsymmetrical dimethylhydrazine, UDMH) and the reactive compound I (Cpd I) intermediate of P450. Our DFT calculations provided a clear view on how an aminonitrene-type MI is formed from UDMH. In the most favorable pathway, hydrogen is spontaneously abstracted from the N2 atom of UDMH by Cpd I, followed by a second hydrogen abstraction from the N2 atom by Cpd II. Nitrogen oxidation of nitrogen atoms and hydrogen abstraction from the C-H bond of the methyl group were found to be less favorable than the hydrogen abstraction from the N-H bond. We also found that the reaction of protonated UDMH with Cpd I is rather sluggish. The aminonitrene-type MI binds to the ferric heme more strongly than a water molecule. This is consistent with the notion that the catalytic cycle of P450 is impeded when such an MI is produced through the P450-catalyzed reaction. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Semework, Mulugeta; DiStasio, Marcello
2014-01-01
Recording the activity of large populations of neurons requires new methods to analyze and use the large volumes of time series data thus created. Fast and clear methods for finding functional connectivity are an important step toward the goal of understanding neural processing. This problem presents itself readily in somatosensory neuroprosthesis (SSNP) research, which uses microstimulation (MiSt) to activate neural tissue to mimic natural stimuli, and has the capacity to potentiate, depotentiate, or even destroy functional connections. As the aim of SSNP engineering is artificially creating neural responses that resemble those observed during natural inputs, a central goal is describing the influence of MiSt on activity structure among groups of neurons, and how this structure may be altered to affect perception or behavior. In this paper, we demonstrate the concept of Granger causality, combined with maximum likelihood methods, applied to neural signals recorded before, during, and after natural and electrical stimulation. We show how these analyses can be used to evaluate the changing interactions in the thalamocortical somatosensory system in response to repeated perturbation. Using LFPs recorded from the ventral posterolateral thalamus (VPL) and somatosensory cortex (S1) in anesthetized rats, we estimated pair-wise functional interactions between functional microdomains. The preliminary results demonstrate input-dependent modulations in the direction and strength of information flow during and after application of MiSt. Cortico-cortical interactions during cortical MiSt and baseline conditions showed the largest causal influence differences, while there was no statistically significant difference between pre- and post-stimulation baseline causal activities. These functional connectivity changes agree with physiologically accepted communication patterns through the network, and their particular parameters have implications for both rehabilitation and brain—machine interface SSNP applications. PMID:25249973
NASA Astrophysics Data System (ADS)
KIM, M.; Kim, J.
2016-12-01
Numerous efforts to retrieve aerosol optical properties (AOPs) using satellite measurements have been accumulated for decades, resulted in several qualified data which can be used for the analysis of spatiotemporal characteristics of AOPs. However, the limitation in the instrument lifetime restricts temporal window of the analysis of long-term AOPs variation. In this point of view, single channel algorithm, which uses a single visible channel to retrieve aerosol optical depth (AOD), has an advantage to extent the time domain of the analysis. The Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean and Meteorological Satellite (COMS) includes the single channel Meteorological Imager (MI), which can also be utilized for the retrieval of AOPs. Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs over Northeast Asia, we can analyze the spatiotemporal characteristic of the aerosol using MI observations. In this study, we investigate the trend of AOD and also discuss the impact of long-range transport of aerosol on the temporal variation. Since the year 2010 when the COMS was launched, AODs over Northeast China and Yellow Sea region show 3.02 % and 2.74 % decrease per year, respectively, which are significant trends in spite of only 5-year short period. The decreasing behavior seems associated with the recent decreasing frequency of dust event over the region. But other Northeast Asia regions do not show clear temporal change. The accuracy of retrieved AOD can relates to the uncertainty of this trend analysis. According to the error analysis, cloud contamination and error in bright surface reflectance results in the accuracy of AOD. Therefore, improvements of cloud masking process and surface reflectance estimation in the developed single channel MI algorithm will be required for the future study.
Constraining Solar Wind Heating Processes by Kinetic Properties of Heavy Ions
NASA Astrophysics Data System (ADS)
Tracy, Patrick J.; Kasper, Justin C.; Raines, Jim M.; Shearer, Paul; Gilbert, Jason A.; Zurbuchen, Thomas H.
2016-06-01
We analyze the heavy ion components (A >4 amu ) in collisionally young solar wind plasma and show that there is a clear, stable dependence of temperature on mass, probably reflecting the conditions in the solar corona. We consider both linear and power law forms for the dependence and find that a simple linear fit of the form Ti/Tp=(1.35 ±.02 )mi/mp describes the observations twice as well as the equivalent best fit power law of the form Ti/Tp=(mi/mp) 1.07 ±.01 . Most importantly we find that current model predictions based on turbulent transport and kinetic dissipation are in agreement with observed nonthermal heating in intermediate collisional age plasma for m /q <3.5 , but are not in quantitative or qualitative agreement with the lowest collisional age results. These dependencies provide new constraints on the physics of ion heating in multispecies plasmas, along with predictions to be tested by the upcoming Solar Probe Plus and Solar Orbiter missions to the near-Sun environment.
Mutants in the mouse NuRD/Mi2 component P66alpha are embryonic lethal.
Marino, Susan; Nusse, Roel
2007-06-13
The NuRD/Mi2 chromatin complex is involved in histone modifications and contains a large number of subunits, including the p66 protein. There are two mouse and human p66 paralogs, p66alpha and p66beta. The functions of these genes are not clear, in part because there are no mutants available, except in invertebrate model systems. We made loss of function mutants in the mouse p66alpha gene (mp66alpha, official name Gatad2a, MGI:2384585). We found that mp66alpha is essential for development, as mutant embryos die around day 10 of embryogenesis. The gene is not required for normal blastocyst development or for implantation. The phenotype of mutant embryos and the pattern of gene expression in mutants are consistent with a role of mp66alpha in gene silencing. mp66alpha is an essential gene, required for early mouse development. The lethal phenotype supports a role in execution of methylated DNA silencing.
Beam diagnostics at high-intensity storage rings
NASA Astrophysics Data System (ADS)
Plum, Mike
1994-10-01
Beam diagnostics at high-intensity facilities feature their own special set of problems and characteristics, issues peculiar to high-intensity storage rings include beam loss, beam halos, extraction efficiency, beam in the gap, clearing electrodes, and beam-profile measurement. The Los Alamos Proton Storage Ring (PSR) is a nice example of a high-intensity storage ring. I will discuss in some detail three diagnostic systems currently in use at the PSR: the beam-loss-monitor system, the electron-clearing system, and the beam-in-the-gap monitor. Much of our discussion is inspired by the problems we have encountered and the useful things we have learned while commissioning and developing the PSR. Another inspiration is our work on the next-generation neutron-spallation source, also known as the National Center for Neutron Research (NCNR).
Popp, Paul S; Herrmann, Janning F; Fritz, Eva-Corinna; Ravoo, Bart Jan; Höppener, Christiane
2016-03-23
Coupling of plasmon resonances in metallic gap antennas is of interest for a wide range of applications due to the highly localized strong electric fields supported by these structures, and their high sensitivity to alterations of their structure, geometry, and environment. Morphological alterations of asymmetric nanoparticle dimer antennas with (sub)-nanometer size gaps are assigned to changes of their optical response in correlative dark-field spectroscopy and high-resolution transmission electron microscopy (HR-TEM) investigations. This multimodal approach to investigate individual dimer structures clearly demonstrates that the coupling of the plasmon modes, in addition to well-known parameters such as the particle geometry and the gap size, is also affected by the relative alignment of both nanoparticles. The investigations corroborate that the alignment of the gap forming facets, and with that the gap area, is crucial for their scattering properties. The impact of a flat versus a rounded gap structure on the optical properties of equivalent dimers becomes stronger with decreasing gap size. These results hint at a higher confinement of the electric field in the gap and possibly a different onset of quantum transport effects for flat and rounded gap antennas in corresponding structures for very narrow gaps. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Magers, Martin J; Udager, Aaron M; Mehra, Rohit
2015-10-01
Translocation-associated renal cell carcinoma (t-RCC) is a relatively uncommon subtype of renal cell carcinoma characterized by recurrent gene rearrangements involving the TFE3 or TFEB loci. TFE3 and TFEB are members of the microphthalmia transcription factor (MiT) family, which regulates differentiation in melanocytes and osteoclasts, and MiT family gene fusions activate unique molecular programs that can be detected immunohistochemically. Although the overall clinical behavior of t-RCC is variable, emerging molecular data suggest the possibility of targeted approaches to advanced disease. Thus, distinguishing t-RCC from its morphologic, immunophenotypic, and molecular mimics may have important clinical implications. The differential diagnosis for t-RCC includes a variety of common renal neoplasms, particularly those demonstrating clear cell and papillary features; in addition, because of immunophenotypic overlap and/or shared molecular abnormalities (ie, TFE3 gene rearrangement), a distinctive set of nonepithelial renal tumors may also warrant consideration. Directed ancillary testing is an essential aspect to the workup of t-RCC cases and may include a panel of immunohistochemical stains, such as PAX8, pancytokeratins, epithelial membrane antigen, carbonic anhydrase IX, HMB-45, and Melan-A. Dual-color, break-apart fluorescent in situ hybridization for TFE3 or TFEB gene rearrangement may be helpful in diagnostically challenging cases or when molecular confirmation is needed.
Yang, Mingxiao; Yu, Zheng; Deng, Shufang; Chen, Xiaomin; Chen, Liang; Guo, Zhenyu; Zheng, Hui; Chen, Lin; Cai, Dingjun; Wen, Bo; Wu, Qiaofeng; Liang, Fanrong
2016-05-16
The critical role of metabolic abnormality in hypertension is increasingly recognized, but its biomarkers are not clearly identified. In this study, 47 chemical compounds recorded by literature were employed as target metabolites of essential hypertension (EH). We detected their content in the plasma of EH patients and healthy subjects by using the Multiple Reaction Monitoring-Mass Spectrometry (MRM-MS). After screening the most altered compounds, acupuncture was used to treat patients for 3 months and these plasma metabolites were tested again. The results showed that oleic acid (OA) and myoinositol (MI) were the most important differential metabolites between the hypertensive plasma and the healthy plasma. They were also closely correlated with 24-hour blood pressure and nocturnal dipping. Moreover, plasma OA and MI could be restored to normal levels by acupuncture, accompanying with reduction of 24-hour systolic and diastolic blood pressure [from 145.10 ± 9.28 mm Hg to 140.70 ± 9.59 mm Hg (P < 0.0001), and 88.35 ± 7.92 mm Hg to 85.86 ± 7.95 mm Hg (P = 0.0024), respectively] and improvement of circadian blood pressure rhythm. This study demonstrated that plasma OA and MI were potential hypertension biomarkers and they could be used to preliminarily assess the treating effects such as acupuncture.
When music tempo affects the temporal congruence between physical practice and motor imagery.
Debarnot, Ursula; Guillot, Aymeric
2014-06-01
When people listen to music, they hear beat and a metrical structure in the rhythm; these perceived patterns enable coordination with the music. A clear correspondence between the tempo of actual movement (e.g., walking) and that of music has been demonstrated, but whether similar coordination occurs during motor imagery is unknown. Twenty participants walked naturally for 8m, either physically or mentally, while listening to slow and fast music, or not listening to anything at all (control condition). Executed and imagined walking times were recorded to assess the temporal congruence between physical practice (PP) and motor imagery (MI). Results showed a difference when comparing slow and fast time conditions, but each of these durations did not differ from soundless condition times, hence showing that body movement may not necessarily change in order to synchronize with music. However, the main finding revealed that the ability to achieve temporal congruence between PP and MI times was altered when listening to either slow or fast music. These data suggest that when physical movement is modulated with respect to the musical tempo, the MI efficacy of the corresponding movement may be affected by the rhythm of the music. Practical applications in sport are discussed as athletes frequently listen to music before competing while they mentally practice their movements to be performed. Copyright © 2014 Elsevier B.V. All rights reserved.
Chen, Jun; Zhou, Xueqing; Ma, Yingjun; Lin, Xiulian; Dai, Zong; Zou, Xiaoyong
2016-01-01
The sensitive and specific analysis of microRNAs (miRNAs) without using a thermal cycler instrument is significant and would greatly facilitate biological research and disease diagnostics. Although exponential amplification reaction (EXPAR) is the most attractive strategy for the isothermal analysis of miRNAs, its intrinsic limitations of detection efficiency and inevitable non-specific amplification critically restrict its use in analytical sensitivity and specificity. Here, we present a novel asymmetric EXPAR based on a new biotin/toehold featured template. A biotin tag was used to reduce the melting temperature of the primer/template duplex at the 5′ terminus of the template, and a toehold exchange structure acted as a filter to suppress the non-specific trigger of EXPAR. The asymmetric EXPAR exhibited great improvements in amplification efficiency and specificity as well as a dramatic extension of dynamic range. The limit of detection for the let-7a analysis was decreased to 6.02 copies (0.01 zmol), and the dynamic range was extended to 10 orders of magnitude. The strategy enabled the sensitive and accurate analysis of let-7a miRNA in human cancer tissues with clearly better precision than both standard EXPAR and RT-qPCR. Asymmetric EXPAR is expected to have an important impact on the development of simple and rapid molecular diagnostic applications for short oligonucleotides. PMID:27257058
Liang, Wei-Wei; Huang, Jing-Hao; Li, Chun-Ping; Yang, Lin-Tong; Ye, Xin; Lin, Dan; Chen, Li-Song
2017-08-24
Magnesium (Mg)-deficiency occurs most frequently in strongly acidic, sandy soils. Citrus are grown mainly on acidic and strong acidic soils. Mg-deficiency causes poor fruit quality and low fruit yield in some Citrus orchards. For the first time, we investigated Mg-deficiency-responsive miRNAs in 'Xuegan' (Citrus sinensis) roots using Illumina sequencing in order to obtain some miRNAs presumably responsible for Citrus Mg-deficiency tolerance. We obtained 101 (69) miRNAs with increased (decreased) expression from Mg-starved roots. Our results suggested that the adaptation of Citrus roots to Mg-deficiency was related to the several aspects: (a) inhibiting root respiration and related gene expression via inducing miR158 and miR2919; (b) enhancing antioxidant system by down-regulating related miRNAs (miR780, miR6190, miR1044, miR5261 and miR1151) and the adaptation to low-phosphorus (miR6190); (c) activating transport-related genes by altering the expression of miR6190, miR6485, miR1044, miR5029 and miR3437; (d) elevating protein ubiquitination due to decreased expression levels of miR1044, miR5261, miR1151 and miR5029; (e) maintaining root growth by regulating miR5261, miR6485 and miR158 expression; and (f) triggering DNA repair (transcription regulation) by regulating miR5176 and miR6485 (miR6028, miR6190, miR6485, miR5621, miR160 and miR7708) expression. Mg-deficiency-responsive miRNAs involved in root signal transduction also had functions in Citrus Mg-deficiency tolerance. We obtained several novel Mg-deficiency-responsive miRNAs (i.e., miR5261, miR158, miR6190, miR6485, miR1151 and miR1044) possibly contributing to Mg-deficiency tolerance. These results revealed some novel clues on the miRNA-mediated adaptation to nutrient deficiencies in higher plants.
Nisbet, Ashley M; Camelliti, Patrizia; Walker, Nicola L; Burton, Francis L; Cobbe, Stuart M; Kohl, Peter; Smith, Godfrey L
2016-05-01
Conduction abnormalities are frequently associated with cardiac disease, though the mechanisms underlying the commonly associated increases in PQ interval are not known. This study uses a chronic left ventricular (LV) apex myocardial infarction (MI) model in the rabbit to create significant left ventricular dysfunction (LVD) 8weeks post-MI. In vivo studies established that the PQ interval increases by approximately 7ms (10%) with no significant change in average heart rate. Optical mapping of isolated Langendorff perfused rabbit hearts recapitulated this result: time to earliest activation of the LV was increased by 14ms (16%) in the LVD group. Intra-atrial and LV transmural conduction times were not altered in the LVD group. Isolated AVN preparations from the LVD group demonstrated a significantly longer conduction time (by approximately 20ms) between atrial and His electrograms than sham controls across a range of pacing cycle lengths. This difference was accompanied by increased effective refractory period and Wenckebach cycle length, suggesting significantly altered AVN electrophysiology post-MI. The AVN origin of abnormality was further highlighted by optical mapping of the isolated AVN. Immunohistochemistry of AVN preparations revealed increased fibrosis and gap junction protein (connexin43 and 40) remodelling in the AVN of LVD animals compared to sham. A significant increase in myocyte-non-myocyte connexin co-localization was also observed after LVD. These changes may increase the electrotonic load experienced by AVN muscle cells and contribute to slowed conduction velocity within the AVN. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
APADB: a database for alternative polyadenylation and microRNA regulation events
Müller, Sören; Rycak, Lukas; Afonso-Grunz, Fabian; Winter, Peter; Zawada, Adam M.; Damrath, Ewa; Scheider, Jessica; Schmäh, Juliane; Koch, Ina; Kahl, Günter; Rotter, Björn
2014-01-01
Alternative polyadenylation (APA) is a widespread mechanism that contributes to the sophisticated dynamics of gene regulation. Approximately 50% of all protein-coding human genes harbor multiple polyadenylation (PA) sites; their selective and combinatorial use gives rise to transcript variants with differing length of their 3′ untranslated region (3′UTR). Shortened variants escape UTR-mediated regulation by microRNAs (miRNAs), especially in cancer, where global 3′UTR shortening accelerates disease progression, dedifferentiation and proliferation. Here we present APADB, a database of vertebrate PA sites determined by 3′ end sequencing, using massive analysis of complementary DNA ends. APADB provides (A)PA sites for coding and non-coding transcripts of human, mouse and chicken genes. For human and mouse, several tissue types, including different cancer specimens, are available. APADB records the loss of predicted miRNA binding sites and visualizes next-generation sequencing reads that support each PA site in a genome browser. The database tables can either be browsed according to organism and tissue or alternatively searched for a gene of interest. APADB is the largest database of APA in human, chicken and mouse. The stored information provides experimental evidence for thousands of PA sites and APA events. APADB combines 3′ end sequencing data with prediction algorithms of miRNA binding sites, allowing to further improve prediction algorithms. Current databases lack correct information about 3′UTR lengths, especially for chicken, and APADB provides necessary information to close this gap. Database URL: http://tools.genxpro.net/apadb/ PMID:25052703
Ito, Satoko; Hyodo, Toshinori; Hasegawa, Hitoki; Yuan, Hong; Hamaguchi, Michinari; Senga, Takeshi
2010-09-17
Gap junctional communication, which is mediated by the connexin protein family, is essential for the maintenance of normal tissue function and homeostasis. Loss of intercellular communication results in a failure to coordinately regulate cellular functions, and it can facilitate tumorigenesis. Expression of oncogenes and stimulation with cytokines has been shown to suppress intercellular communication; however, the exact mechanism by which intercellular communication is disrupted by these factors remains uncertain. In this report, we show that Akt is essential for the disruption of gap junctional communication in v-Src-transformed cells. In addition, inhibition of Akt restores gap junctional communication after it is suppressed by TNF-α signaling. Furthermore, we demonstrate that the expression of a constitutively active form of Akt1, but not of Akt2 or Akt3, is sufficient to suppress gap junctional communication. Our results clearly define Akt1 as one of the critical regulators of gap junctional communication. Copyright © 2010 Elsevier Inc. All rights reserved.
Modulated wave formation in myocardial cells under electromagnetic radiation
NASA Astrophysics Data System (ADS)
Takembo, Clovis N.; Mvogo, A.; Ekobena Fouda, H. P.; Kofané, T. C.
2018-06-01
We exclusively analyze the onset and condition of formation of modulated waves in a diffusive FitzHugh-Nagumo model for myocardial cell excitations. The cells are connected through gap junction coupling. An additive magnetic flux variable is used to describe the effect of electromagnetic induction, while electromagnetic radiation is imposed on the magnetic flux variable as a periodic forcing. We used the discrete multiple scale expansion and obtained, from the model equations, a single differential-difference amplitude nonlinear equation. We performed the linear stability analysis of this equation and found that instability features are importantly influenced by the induced electromagnetic gain. We present the unstable and stable regions of modulational instability (MI). The resulting analytic predictions are confirmed by numerical experiments of the generic equations. The results reveal that due to MI, an initial steady state that consisted of a plane wave with low amplitude evolves into a modulated localized wave patterns, soliton-like in shape, with features of synchronization. Furthermore, the formation of periodic pulse train with breathing motion presents a disappearing pattern in the presence of electromagnetic radiation. This could provide guidance and better understanding of sudden heart failure exposed to heavily electromagnetic radiation.
Liang, Jun; Wei, Kunyan; Meng, Qun; Chen, Zhenying; Zhang, Jiajie
2017-01-01
Background China launched its second health reform in 2010 with considerable investments in medical informatics (MI). However, to the best of our knowledge, research on the outcomes of this ambitious undertaking has been limited. Objective Our aim was to understand the development of MI and the state of continuing education in China and the United States from the perspective of conferences. Methods We conducted a quantitative and qualitative analysis of four MI conferences in China and two in the United States: China Medical Information Association Annual Symposium (CMIAAS), China Hospital Information Network Annual Conference (CHINC), China Health Information Technology Exchange Annual Conference (CHITEC), China Annual Proceeding of Medical Informatics (CPMI) versus the American Medical Informatics Association (AMIA) and Healthcare Information and Management Systems Society (HIMSS). The scale, composition, and regional distribution of attendees, topics, and research fields for each conference were summarized and compared. Results CMIAAS and CPMI are mainstream academic conferences, while CHINC and CHITEC are industry conferences in China. Compared to HIMSS 2016, the meeting duration of CHITEC was 3 versus 5 days, the number of conference sessions was 132 versus 950+, the number of attendees was 5000 versus 40,000+, the number of vendors was 152 versus 1400+, the number of subforums was 12 versus 230, the number of preconference education symposiums and workshops was 0 versus 12, and the duration of preconference educational symposiums and workshops was 0 versus 1 day. Compared to AMIA, the meeting duration of Chinese CMIAAS was 2 versus 5 days, the number of conference sessions was 42 versus 110, the number of attendees was 200 versus 2500+, the number of vendors was 5 versus 75+, and the number of subforums was 4 versus 10. The number of preconference tutorials and working groups was 0 versus 29, and the duration of tutorials and working group was 0 versus 1.5 days. Conclusions Given the size of the Chinese economy and the substantial investment in MI, the output in terms of conferences remains low. The impact of conferences on continuing education to professionals is not significant. Chinese researchers and professionals should approach MI with greater rigor, including validated research methods, formal training, and effective continuing education, in order to utilize knowledge gained by other countries and to expand collaboration. PMID:28637638
Expression Profile of C19MC microRNAs in Placental Tissue in Pregnancy-Related Complications
Kotlabova, Katerina; Ondrackova, Marketa; Pirkova, Petra; Kestlerova, Andrea; Novotna, Veronika; Hympanova, Lucie; Krofta, Ladislav
2015-01-01
To demonstrate that pregnancy-related complications are associated with alterations in placental microRNA expression. Gene expression of 15 C19MC microRNAs (miR-512-5p, miR-515-5p, miR-516-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-519e-5p, miR-520a-5p, miR-520h, miR-524-5p, miR-525, miR-526a, and miR-526b) was assessed in placental tissues, compared between groups (21 gestational hypertension [GH], 63 preeclampsia, 36 fetal growth restriction [FGR], and 42 normal pregnancies), and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. The expression profile of microRNAs was different between pregnancy-related complications and controls. The downregulation of 4 of 15 (miR-517-5p, miR-519d, miR-520a-5p, and miR-525), 6 of 15 (miR-517-5p, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, and miR-525), and 11 of 15 (miR-515-5p, miR-517-5p, miR-518b, miR-518f-5p, miR-519a, miR-519d, miR-520a-5p, miR-520h, miR-524-5p, miR-525, and miR-526a) microRNAs was associated with GH, FGR, and preeclampsia, respectively. Sudden onset of severe preeclampsia requiring immediate termination of gestation and mild forms of preeclampsia (persisting for several weeks) were associated with similar microRNA expression profile (downregulation of miR-517-5p, miR-520a-5p, miR-524-5p, and miR-525). In addition, miR-519a was found to be associated with severe preeclampsia. The longer the pregnancy-related disorder lasted, the more extensive was the downregulation of microRNAs (miR-515-5p, miR-518b, miR-518f-5p, miR-519d, and miR-520h). The downregulation of some C19MC microRNAs is a common phenomenon shared between GH, preeclampsia, and FGR. On the other hand, some of the C19MC microRNAs are only downregulated just in preeclampsia. PMID:25825993
Patient safety, quality of care, and knowledge translation in the intensive care unit.
Needham, Dale M
2010-07-01
A large gap exists between the completion of clinical research demonstrating the benefit of new treatment interventions and improved patient outcomes resulting from implementation of these interventions as part of routine clinical practice. This gap clearly affects patient safety and quality of care. Knowledge translation is important for addressing this gap, but evaluation of the most appropriate and effective knowledge translation methods is still ongoing. Through describing one model for knowledge translation and an example of its implementation, insights can be gained into systematic methods for advancing the implementation of evidence-based interventions to improve safety, quality, and patient outcomes.
Molecular gap and energy level diagram for pentacene adsorbed on filled d-band metal surfaces
NASA Astrophysics Data System (ADS)
Baldacchini, Chiara; Mariani, Carlo; Betti, Maria Grazia; Gavioli, L.; Fanetti, M.; Sancrotti, M.
2006-10-01
The authors present a combined photoemission and scanning-tunneling spectroscopy study of the filled electronic states, the molecular energy gap, and the energy level diagram of highly ordered arrays of pentacene deposited on the Cu(119) vicinal surface. The states localized at the interface are clearly singled out, comparing the results at different pentacene thicknesses and with gas-phase photoemission data. The molecular gap of 2.35eV, the hole injection barrier of 1.05eV, and the electron injection barrier of 1.30eV determine the energy level diagram of the states localized at the pentacene molecules.
Yilmaz, Ismail; Narli, Gizem; Haholu, Aptullah; Kucukodaci, Zafer; Demirel, Dilaver
2014-01-01
Purpose We examined expression profiles of 16 micro RNAs (miRNAs) in triple negative breast cancers to identify their potential as biomarkers for lymph node metastasis. Methods The expression profiles of miR-9, miR-21, miR-30a, miR-30d, miR-31, miR-34a, miR-34c, miR-100, miR-122, miR-125b, miR-146a, miR-146b, miR-155, miR-181a, miR-200c, and miR-205 were examined by using real-time quantitative reverse transcription polymerase chain reaction in tumor samples and corresponding benign breast tissues. Their associations with histopathological features and prognostic parameters were assessed. Results When compared with the expression in benign breast tissues, seven of the miRNAs (miR-31, miR-205, miR-34a, miR-146a, miR-125b, miR-34c, and miR-181a) were downregulated more than 1.5-fold in tumor tissues, whereas, only miR-21 was found to be upregulated more than 1.5-fold in tumor tissues. Although miR-200c levels were decreased only 1.12-fold in tumor tissues, the reduced expressions of miR-200c and miR-205 were significantly associated with lymph node metastasis (p=0.021 and p=0.016, respectively). Conclusion Our results demonstrate that miR-205 and miR-200c expression levels may be useful in predicting lymph node metastasis in triple negative breast cancer patients. PMID:25013435
Zhu, Shibo; He, Qiuming; Zhang, Ruizhong; Wang, Yong; Zhong, Wei; Xia, Huimin; Yu, Jiakang
2016-07-01
The pathogenesis of congenital diaphragmatic hernia (CDH) and the causes of pulmonary hypoplasia and hypertension remain unclear. miRNAs have been identified to play important regulatory roles in pulmonary pathological processes and lung development. We carried out the study to investigate the hypothesis that specific miRNAs are expressed differently in the lungs of nitrofen-induced rats, and to explore the possible targeting genes and roles of miR-33 in the pathological process of CDH. Pregnant rats were divided into nitrofen and control group, and were exposed to nitrofen or vehicle respectively on D9. Fetuses were harvested on D21 and left lungs were dissected. 4 samples from each group underwent miRNAs microarray analysis using Agilent miRNA Array. Quantitative real-time polymerase chain reaction (qRT-PCR) was further performed to validate the miR-33 expression. 11 miRNAs exhibited increased expression in nitrofen group compared with control (p<0.05): miR-3588, miR-382*, miR-363, miR-375, miR-487b, miR-483, miR-382, miR-495, miR-434, miR-181a, and miR-99a. 14 miRNAs showed decreased expression (p<0.05): miR-33, miR-193, miR-338, miR-30c-2*, miR-22, miR-18a, miR-532-5p, miR-28, miR-96, miR-551b, miR-141, miR-362*, miR-30a*, and miR-3559-5p. Among them, miR-33 expression was markedly decreased in CDH lungs compared to controls and the result was confirmed by qRT-PCR. Decreased expression of miR-33 was found in the nitrofen-induced hypoplastic lung on D21. This finding suggests that pathogenesis of lung hypoplasia and CDH in the nitrofen model involve epigenetic layer of regulation. Copyright © 2016 Elsevier Inc. All rights reserved.
Inner disk clearing around the Herbig Ae star HD 139614: Evidence for a planet-induced gap?
NASA Astrophysics Data System (ADS)
Matter, A.; Labadie, L.; Augereau, J. C.; Kluska, J.; Crida, A.; Carmona, A.; Gonzalez, J. F.; Thi, W. F.; Le Bouquin, J.-B.; Olofsson, J.; Lopez, B.
2016-02-01
Spatially resolving the inner dust cavity (or gap) of the so-called (pre-)transitional disks is a key to understanding the connection between the processes of planetary formation and disk dispersal. The disk around the Herbig star HD 139614 is of particular interest since it presents a pretransitional nature with an au-sized gap structure that is spatially resolved by mid-infrared interferometry in the dust distribution. With the aid of new near-infrared interferometric observations, we aim to characterize the 0.1-10 au region of the HD 139614 disk further and then identify viable mechanisms for the inner disk clearing. We report the first multiwavelength modeling of the interferometric data acquired on HD 139614 with the VLTI instruments PIONIER, AMBER, and MIDI, complemented by Herschel/PACS photometric measurements. We first performed a geometrical modeling of the new near-infrared interferometric data, followed by radiative transfer modeling of the complete dataset using the code RADMC3D. We confirm the presence of a gap structure in the warm μm-sized dust distribution, extending from about 2.5 au to 6 au, and constrained the properties of the inner dust component: e.g., a radially increasing dust surface density profile, and a depletion in dust of ~103 relative to the outer disk. Since self-shadowing and photoevaporation appears unlikely to be responsible for the au-sized gap of HD 139614, we thus tested if dynamical clearing could be a viable mechanism using hydrodynamical simulations to predict the structure of the gaseous disk. Indeed, a narrow au-sized gap is consistent with the expected effect of the interaction between a single giant planet and the disk. Assuming that small dust grains are well coupled to the gas, we found that an approximately 3 Mjup planet located at ~4.5 au from the star could, in less than 1 Myr, reproduce most of the aspects of the dust surface density profile, while no significant depletion (in gas) occurred in the inner disk, in contrast to the dust. However, this "dust-depleted" inner disk could be explained by the expected dust filtration by the gap and the efficient dust growth/fragmentation occurring in the inner disk regions. Our results support the hypothesis of a giant planet opening a gap and shaping the inner region of the HD 139614 disk. This makes HD 139614 an exciting candidate specifically for witnessing planet-disk interaction. Based on observations collected at the European Southern Observatory, Chile (ESO IDs : 385.C-0886, 087.C-0811, 089.C-0456, and 190.C-0963).
Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald
2014-01-01
Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40–50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92—or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed—about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to “Cellular Growth and Proliferation” and “Cell Cycle.” Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID:25202322
75 FR 62571 - Labor Surplus Area Classification Under Executive Orders 12073 and 10582
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... City, MA Michigan Alcona County, MI Alcona County, MI Alger County, MI Alger County, MI Alpena County, MI Alpena County, MI Antrim County, MI Antrim County, MI Arenac County, MI Arenac County, MI Balance...
Dong, Peixin; Ihira, Kei; Xiong, Ying; Watari, Hidemichi; Hanley, Sharon J B; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-04-12
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial-mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2'-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene.
Watari, Hidemichi; Hanley, Sharon J.B.; Yamada, Takahiro; Hosaka, Masayoshi; Kudo, Masataka; Yue, Junming; Sakuragi, Noriaki
2016-01-01
Overexpression of IQGAP1 and microRNA (miRNA) dysregulation are frequent in human tumors, but little is known about the role of IQGAP1 and its relationship to miRNA in endometrial carcinogenesis. We demonstrate that IQGAP1 activates the epithelial–mesenchymal transition (EMT) program and that miR-124 directly represses IQGAP1 expression in endometrial cancer (EC) cells. The overexpression of IQGAP1 stimulates EMT features and enhances migration, invasion and proliferation of EC cells, whereas knocking down IQGAP1 expression reverses EMT and inhibits these malignant properties. Using miRNA microarray profiling, we identified 29 miRNAs (let-7b, let-7f, miR-10b, miR-15b, miR-23a, miR-24, miR-25, miR-27a, miR-29b, miR-30a-5p, miR-34a, miR-124, miR-127, miR-130b, miR-148a, miR-155, miR-191*, miR-194, miR-224, miR-362, miR-409-3p, miR-422b, miR-424, miR-453, miR-497, miR-518d, miR-518f*, miR-526a and miR-656) that are significantly down-regulated in an in vitro-selected highly invasive derivative cell line (HEC-50-HI) relative to the parental HEC-50 cells. We further identified miR-124 as a direct regulator of IQGAP1 in EC cells. Enforced expression of miR-124 suppresses EC cell invasion and proliferation. The expression of IQGAP1 mRNA was significantly elevated in EC tissues, while the expression of miR-124 was decreased. The downregulation of miR-124 correlates with a poor survival outcome for patients with EC. Treating EC cells with the demethylating agent 5-aza-2′-deoxycytidine increased miR-124 expression and down-regulated IQGAP1 levels. Our data suggest that IQGAP1 promotes EMT, migration and invasion of EC cells. MiR-124, a novel tumor suppressor miRNA that is epigenetically silenced in EC, can reverse EMT and the invasive properties, by attenuating the expression of the IQGAP1 oncogene. PMID:26934121
Rachagani, Satyanarayana; Macha, Muzafar A; Menning, Melanie S; Dey, Parama; Pai, Priya; Smith, Lynette M; Mo, Yin-Yuan; Batra, Surinder K
2015-11-24
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in the downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets.
Rachagani, Satyanarayana; Dey, Parama; Pai, Priya; Smith, Lynette M.; Mo, Yin-Yuan; Batra, Surinder K.
2015-01-01
Differential expression of microRNAs (miRNAs) has been demonstrated in various cancers, including pancreatic cancer (PC). Due to the lack of tissue samples from early-stages of PC, the stage-specific alteration of miRNAs during PC initiation and progression is largely unknown. In this study, we investigated the global miRNA expression profile and their processing machinery during PC progression using the KrasG12D;Pdx1-Cre (KC) mouse model. At 25 weeks, the miRNA microarray analysis revealed significant downregulation of miR-150, miR-494, miR-138, miR-148a, miR-216a, and miR-217 and upregulation of miR-146b, miR-205, miR-31, miR-192, and miR-21 in KC mice compared to controls. Further, expression of miRNA biosynthetic machinery including Dicer, Exportin-5, TRKRA, and TARBP2 were downregulated, while DGCR8 and Ago2 were upregulated in KC mice. In addition, from 10 to 50 weeks of age, stage-specific expression profiling of miRNA in KC mice revealed downregulation of miR-216, miR-217, miR-100, miR-345, miR-141, miR-483-3p, miR-26b, miR-150, miR-195, Let-7b and Let-96 and upregulation of miR-21, miR-205, miR-146b, miR-34c, miR-1273, miR-223 and miR-195 compared to control mice. Interestingly, the differential expression of miRNA in mice also corroborated with the miRNA expression in human PC cell lines and tissue samples; ectopic expression of Let-7b in CD18/HPAF and Capan1 cells resulted in downregulation of KRAS and MSST1 expression. Overall, the present study aids an understanding of miRNA expression patterns during PC pathogenesis and helps to facilitate the identification of promising and novel early diagnostic/prognostic markers and therapeutic targets. PMID:26516699
Rancan, Lisa; Simón, Carlos; Marchal-Duval, Emmeline; Casanova, Javier; Paredes, Sergio Damian; Calvo, Alberto; García, Cruz; Rincón, David; Turrero, Agustín; Garutti, Ignacio; Vara, Elena
2016-12-01
Ischemia-reperfusion injury (IRI) is associated with morbidity and mortality. MicroRNAs (miRNAs) have emerged as regulators of IRI, and they are involved in the pathogenesis of organ rejection. Lidocaine has proven anti-inflammatory activity in several tissues but its modulation of miRNAs has not been investigated. This work aims to investigate the involvement of miRNAs in lung IRI in a lung auto-transplantation model and to investigate the effect of lidocaine. Three groups (sham, control, and Lidocaine), each comprising 6 pigs, underwent a lung autotransplantation. All groups received the same anesthesia. In addition, animals of lidocaine group received a continuous intravenous administration of lidocaine (1.5 mg/kg/h) during surgery. Lung biopsies were taken before pulmonary artery clamp, before reperfusion, 30 minutes postreperfusion (Rp-30), and 60 minutes postreperfusion (Rp-60). Samples were analyzed for different miRNAs (miR-122, miR-145, miR-146a, miR-182, miR-107, miR-192, miR-16, miR-21, miR-126, miR-127, miR142-5p, miR152, miR155, miR-223, and let7) via the use of reverse-transcription quantitative polymerase chain reaction. Results were normalized with miR-103. The expression of miR-127 and miR-16 did not increase after IRI. Let-7d, miR-21, miR-107, miR-126, miR-145, miR-146a, miR-182, and miR-192 significantly increased at the Rp-60 (control versus sham P < .001). miR-142-5p, miR-152, miR-155, and miR 223 significantly increased at the Rp-30 (control versus sham P < .001) and at the Rp-60 (control versus. sham P < .001). The administration of lidocaine was able to attenuate these alterations in a significant way (control versus Lidocaine P < .001). Lung IRI caused dysregulation miRNA. The administration of lidocaine reduced significantly miRNAs alterations.
Cinegaglia, Naiara C.; Andrade, Sonia Cristina S.; Tokar, Tomas; Pinheiro, Maísa; Severino, Fábio E.; Oliveira, Rogério A.; Hasimoto, Erica N.; Cataneo, Daniele C.; Cataneo, Antônio J.M.; Defaveri, Júlio; Souza, Cristiano P.; Marques, Márcia M.C.; Carvalho, Robson F.; Coutinho, Luiz L.; Gross, Jefferson L.; Rogatto, Silvia R.; Lam, Wan L.; Jurisica, Igor; Reis, Patricia P.
2016-01-01
Herein, we aimed at identifying global transcriptome microRNA (miRNA) changes and miRNA target genes in lung adenocarcinoma. Samples were selected as training (N = 24) and independent validation (N = 34) sets. Tissues were microdissected to obtain >90% tumor or normal lung cells, subjected to miRNA transcriptome sequencing and TaqMan quantitative PCR validation. We further integrated our data with published miRNA and mRNA expression datasets across 1,491 lung adenocarcinoma and 455 normal lung samples. We identified known and novel, significantly over- and under-expressed (p ≤ 0.01 and FDR≤0.1) miRNAs in lung adenocarcinoma compared to normal lung tissue: let-7a, miR-10a, miR-15b, miR-23b, miR-26a, miR-26b, miR-29a, miR-30e, miR-99a, miR-146b, miR-181b, miR-181c, miR-421, miR-181a, miR-574 and miR-1247. Validated miRNAs included let-7a-2, let-7a-3, miR-15b, miR-21, miR-155 and miR-200b; higher levels of miR-21 expression were associated with lower patient survival (p = 0.042). We identified a regulatory network including miR-15b and miR-155, and transcription factors with prognostic value in lung cancer. Our findings may contribute to the development of treatment strategies in lung adenocarcinoma. PMID:27081085
Spitzer Spectroscopy of the Transition Object TW Hya
2010-02-24
results bear on our understanding of the evolutionary state of the TW Hya disk . Subject headings: (stars:) circumstellar matter — (stars:) planetary systems... protoplanetary disks — stars: pre-main sequence — (stars: individual) TW Hya 1. Introduction Spectroscopy with the Spitzer Space Telescope has...region of the disk . (2) If a planet has formed with a mass sufficient to open a gap (∼ 1MJ), gas will be cleared in the vicinity of its orbit, but gap
Buechner-Maxwell, Virginia A.; Witonsky, Sharon G.; Pleasant, R. Scott; Werre, Stephen R.; Ahmed, S. Ansar
2017-01-01
The innate immune response to lipopolysaccharide contributes substantially to the morbidity and mortality of gram-negative sepsis. Horses and humans share an exquisite sensitivity to lipopolysaccharide and thus the horse may provide valuable comparative insights into this aspect of the inflammatory response. MicroRNAs, small non-coding RNA molecules acting as post-transcriptional regulators of gene expression, have key roles in toll-like receptor signaling regulation but have not been studied in this context in horses. The central hypothesis of this study was that lipopolysaccharide induces differential microRNA expression in equine peripheral blood mononuclear cells in a manner comparable to humans. Illumina Next Generation Sequencing was used to characterize the basal microRNA transcriptome in isolated peripheral blood mononuclear cells from healthy adult horses, and to evaluate LPS-induced changes in microRNA expression in cells cultured for up to four hours. Selected expression changes were validated using quantitative reverse-transcriptase PCR. Only miR-155 was significantly upregulated by LPS, changing in parallel with supernatant tumor necrosis factor-α concentration. Eight additional microRNAs, including miR-146a and miR-146b, showed significant expression change with time in culture without a clear LPS effect. Target predictions indicated a number of potential immunity-associated targets for miR-155 in the horse, including SOCS1, TAB2 and elements of the PI3K signaling pathway, suggesting that it is likely to influence the acute inflammatory response to LPS. Gene alignment showed extensive conservation of the miR-155 precursor gene and associated promoter regions between horses and humans. The basal and LPS-stimulated microRNA expression pattern characterized here were similar to those described in human leukocytes. As well as providing a resource for further research into the roles of microRNAs in immune responses in horses, this will facilitate inter-species comparative study of the role of microRNAs in the inflammatory cascade during endotoxemia and sepsis. PMID:28552958
Periodic ReMi-MASW surveys on active landslides in the Emilia Romagna region (Northern Apennines)
NASA Astrophysics Data System (ADS)
Bertello, Lara; Squarzoni, Gabriela; Berti, Matteo
2017-04-01
From January 2014 to December 2016, several combined ReMi-MASW seismic surveys (Refraction Microtremor- Multi Channel Analysis of Surface Waves) were conducted on active landslides. All the landslides are located in the Emilia Romagna region (Northern Apennines), and were classified as: 1) flows and 2) slides. For the seismic campaigns, we used eight vertical polarized geophones at 4.5 Hz, placed at intervals of 2 m each, and a total array length in the range of 10-14 m. As suggested by Louie (2001), we used a single geophone sensor at each channel, with the geophones connected to a SoilSpy Rosina acquisition system (Micromed spa). The first 5 minutes of each acquisition were performed in the passive mode, just acquiring the ambient seismic noise, and the last minute was in the active mode. For the active source, we used the jump of an operator at 5 m from the first geophone. The MASW approach relies on mid-to-high frequency artificial sources and usually provides better results in the high frequency domain (i.e. low depth). The ReMi analysis relies on ambient noise, which is ubiquitous and spans a wider frequency range, potentially working better in the mid-to low frequency domain (i.e. mid-to-high depths). The surveys were interpreted with Grilla (Micromed Software) with a manual procedure. ReMi-MASW lines were done both inside and outside the landslide area to compare the shear wave velocity (Vs) of the displaced soil with that of the source material. Often, the first campaign survey was performed in the range of 15 days from the reactivation of the landslide, than, where it was possible, we conducted periodic ReMi-MASW acquisitions, in order to evaluate the Vs variation over time. Analyzing all the data, it is clear that the Vs detected in the flow types landslide are lower than the ones detected in the slide types. It is also interesting to observe the increase of shear wave velocity over time, due to the consolidation of the material and the decrease of void index.
Ivanes, Fabrice; Susen, Sophie; Mouquet, Frédéric; Pigny, Pascal; Cuilleret, François; Sautière, Karine; Collet, Jean-Philippe; Beygui, Farzin; Hennache, Bernadette; Ennezat, Pierre Vladimir; Juthier, Françis; Richard, Florence; Dallongeville, Jean; Hillaert, Marieke A; Doevendans, Pieter A; Jude, Brigitte; Bertrand, Michel; Montalescot, Gilles; Van Belle, Eric
2012-01-01
Recent studies have demonstrated that aldosterone levels measured in patients with heart failure or acute myocardial infarction (MI) are associated with long-term mortality, but the association with aldosterone levels in patients with coronary artery disease (CAD) outside these specific settings remains unknown. In addition, no clear mechanism has been elucidated to explain these observations. The present study was designed to evaluate the relationship between the level of aldosterone and the risk of death and acute ischaemic events in CAD patients with a preserved left ventricular (LV) function and no acute MI. In 799 consecutive CAD patients referred for elective coronary angioplasty measurements were obtained before the procedure for: aldosterone (median = 25 pg/mL), brain natriuretic peptide (BNP) (median = 35 pg/mL), hsC-reactive protein (median = 4.17 mg/L), and left ventricular ejection fraction (mean = 58%). Patients with acute MI or coronary syndrome (ACS) who required urgent revascularization were not included in the study. The primary endpoint, cardiovascular death, occurred in 41 patients during a median follow-up period of 14.9 months. Secondary endpoints-total mortality, acute ischaemic events (acute MI or ischaemic stroke), and the composite of death and acute ischaemic events-were observed in 52, 54, and 94 patients, respectively. Plasma aldosterone was found to be related to BMI, hypertension and NYHA class, and inversely related to age, creatinine clearance, and use of beta-blockers. Multivariate Cox model analysis demonstrated that aldosterone was independently associated with cardiovascular mortality (P = 0.001), total mortality (P = 0.001), acute ischaemic events (P = 0.01), and the composite of death and acute ischaemic events (P = 0.004). Reclassification analysis, using integrated discrimination improvement (IDI) and net reclassification improvement (NRI), demonstrated incremental predictive value of aldosterone (P < 0.0001). Our results demonstrate that, in patients with CAD but without heart failure or acute MI, the level of aldosterone is strongly and independently associated with mortality and the occurrence of acute ischaemic events.
Detroit, MI, Toledo, OH and Lake Erie
1973-06-22
SL2-05-390 (22 June 1973) --- Greater Detroit (42.0N, 82.5W) is located at the southeastern border of Michigan on the Detroit River across from Windsor, Ontario, Canada and Lake Huron to the north. The river connecting Lake Erie is a channel left over from the Ice Age Glaciers. The land use pattern in this scene is typical of this part of the upper Midwest. The once extensive forests have been cleared for farmland and pasture, but narrow rows of trees still line farm boundaries. Photo credit: NASA
Hromadnikova, Ilona; Kotlabova, Katerina; Hympanova, Lucie; Krofta, Ladislav
2016-01-01
To demonstrate that pregnancy-related complications are associated with alterations in cardiovascular and cerebrovascular microRNA expression. Gene expression of 29 microRNAs (miR-1-3p, miR-16-5p, miR-17-5p, miR-20a-5p, miR-20b-5p, miR-21-5p, miR-23a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-92a-3p, miR-100-5p, miR-103a-3p, miR-122-5p, miR-125b-5p, miR-126-3p, miR-130b-3p, miR-133a-3p, miR-143-3p, miR-145-5p, miR-146a-5p, miR-181a-5p, miR-195-5p, miR-199a-5p, miR-210-3p, miR-221-3p, miR-342-3p, miR-499a-5p, and miR-574-3p) was assessed in maternal whole peripheral blood, compared between groups (39 gestational hypertension, 68 preeclampsia, 33 intrauterine growth restriction and 20 normal pregnancies) and correlated with the severity of the disease with respect to clinical signs, delivery date, and Doppler ultrasound parameters. Initially, selection and validation of endogenous controls for microRNA expression studies in patients affected by pregnancy-related complications have been carried out. The expression profile of microRNAs was different between pregnancy-related complications and controls. The down-regulation of miR-100-5p, miR-125b-5p and miR-199a-5p was a common phenomenon shared between gestational hypertension, preeclampsia, and intrauterine growth restriction. Moreover, IUGR pregnancies induced down-regulation of miR-17-5p, miR-146a-5p, miR-221-3p and miR-574-3p in maternal circulation. Irrespective of the severity of the disease, preeclampsia was associated with the dysregulation of miR-100-5p and miR-125b-5p and IUGR with dysregulation of miR-199a-5p. Preeclampsia requiring termination of gestation before 34 weeks was associated with down-regulation of miR-146a-5p, miR-199a-5p and miR-221-3p. Weak negative correlation between miR-146a-5p and miR-221-3p expression and the pulsatility index in the umbilical artery was found. Additional microRNAs (miR-103a-3p, miR-126-3p, miR-195-5p and miR-499a-5p) showed a trend to down-regulation in appropriate pregnancy-related complications. Epigenetic changes are induced by pregnancy-related complications in maternal whole peripheral blood. Copyright © 2015 Elsevier Ltd. All rights reserved.
A preliminary analysis of microRNA as potential clinical biomarker for schizophrenia.
Sun, Xin-yang; Zhang, Jin; Niu, Wei; Guo, Wei; Song, Hong-tao; Li, Heng-yu; Fan, Hui-min; Zhao, Lin; Zhong, Ai-fang; Dai, Yun-hua; Guo, Zhong-min; Zhang, Li-yi; Lu, Jim; Zhang, Qiao-li
2015-04-01
MicroRNAs (miRNA, miR) have been implicated as promising blood-based biomarkers for schizophrenia patients. This study aimed to clinically validate miRNA as potential schizophrenia biomarkers. Plasma levels of 10 miRNAs were analyzed using qPCR in a cohort of 61 schizophrenia patients and 62 normal controls, as well as 25 patients particularly selected for a six-week antipsychotic treatment course. Positive And Negative Syndrome Scale (PANSS), Global Assessment Scale (GAS) and Clinical Global Impression (CGI) were administered to assess the clinical symptoms. The results demonstrated that a panel of miRNAs consisting of miR-30e, miR-181b, miR-34a, miR-346 and miR-7 had significantly increased expression levels with significant combined diagnostic value (AUC:0.713; sensitivity:35.5%; specificity:90.2%). In response to pharmacological treatment, expression levels of miR-132, miR-181b, miR-432 and miR-30e were significantly decreased. In addition, the improvement of clinical symptomatology was significantly correlated with the changes of miR-132, miR-181b, miR-212 and miR-30e expression levels. Furthermore, the decreases of plasma levels of miR-132 and miR-432 were significantly greater in high-effect subgroup than those in low-effect subgroup after six-week treatment course. We conclude that miR-30e, miR-181b, miR-34a, miR-346 and miR-7 combined as a panel are potentially useful non-invasive biomarkers for schizophrenia diagnosis. Markers miR-132, miR-181b, miR-30e and miR-432 are potential indicators for symptomatology improvements, treatment responses and prognosis for schizophrenia patients. © 2015 Wiley Periodicals, Inc.
Murray, G L; Schad, N; Bush, A J
1997-04-01
Although positron emission tomography (PET) assesses myocardial viability (V) accurately, a rapid, inexpensive substitute is needed. Therefore, the authors developed a low-dose (1 mCi) Iodine-123-Iodophenylpentadecanoic Acid (IPPA) myocardial viability scan requiring analysis of only the first three minutes of data acquired at rest with a standard multicrystal gamma camera. Twenty-one patients > 2 weeks after myocardial infarction (MI) (24 MIs, 10 anterior, 14 inferoposterior, 21 akinetic or dyskinetic) had cardiac catheterization and resting IPPA imaging. V was determined by either transmural myocardial biopsy during coronary bypass surgery (12 patients, 14 MIs) or reinjection tomographic thallium scan (9 patients, 10 MIs), and 50% of MIs were viable. The IPPA variables analyzed were: time to initial left ventricular (LV) uptake in the region of interest (ROI), the ratio of three-minute uptake in the ROI to three-minute LV uptake, three-minute clearing (counts/pixel) in the ROI (decrease in IPPA after initial uptake), and three-minute accumulation (increase in IPPA after initial uptake) in the ROI. Rules for detecting V were generated and applied to 10 healthy volunteers to determine normalcy. While three-minute uptake in nonviable MIs was only 67% of volunteers (P < 0.0001) and 75% of viable MIs, uptake alone identified only 50% of viable MIs and 75% of nonviable MIs. IPPA clearing, however, was > or = 13.5 counts/pixel in 10/12 (83%) of viable MIs, and IPPA accumulation > or = 6.75 counts/pixel identified one more viable MI, for a sensitivity for V of 11/12 (92%), with a specificity of 11/12 (92%), and a 100% normalcy rate. The authors conclude low-dose IPPA (five-minute acquisition with analysis of the first three minutes of data) has potential for providing rapid, inexpensive V data after MI. Since newer multicrystal cameras are mobile, IPPA scans can be done in emergency rooms or coronary care units generating information that might be useful in decisions regarding thrombolysis, angioplasty, or bypass surgery.
The influece of forest gaps on some properties of humus in a managed beech forest, northern Iran
NASA Astrophysics Data System (ADS)
Vajari, K. A.
2015-10-01
The present research focuses on the effect of eight-year-old artificially created gaps on some properties of humus in managed beech-dominated stand in Hyrcanian forest of northern Iran. In this study, six-teen gaps were sampled in site and were classified into four classes (small, medium, large, and very large) with four replications for each. Humus sampling was carried out at the centre and at the cardinal points within each gap as well as in the adjacent closed stand, separately, as composite samples. The variables of organic carbon, P, K, pH, and total N were measured for each sample. It was found that the gap size had significant effect only on total N (%) and organic carbon (%) in beech stand. The amount of potassium clearly differed among three positions in beech forest. The adjacent stand had higher significantly potassium than center and edge of gaps. Different amount of potassium was detected in gap center and gap edge. Comparison of humus properties between gaps and its adjacent stand pointed to the higher amount of potassium in adjacent stand than that in gaps but there was no difference between them regarding other humus properties. According to the results, it can be concluded that there is relatively similar condition among gaps and closed adjacent stands in terms of humus properties eight years after logging in the beech stand.
Up-Regulation of miR-21, miR-25, miR-93, and miR-106b in Gastric Cancer
LArki, Pegah; Ahadi, Alireza; Zare, Ali; Tarighi, Shahriar; Zaheri, Mahrokh; Souri, Mojgan; Zali, Mohammad Reza; Ghaedi, Hamid; Omrani, Mir Davood
2018-06-03
Differential expression profile of microRNAs (miRNAs) could be a diagnosis signature for the monitoring of gastric cancer (GC) progression. In this study, we focus on the comparison of expression levels of miR-21, miR-25, miR-93, miR-106b, and miR-375 during the sequential pattern of GC development, including normal gastric, gastric dysplasia, and GC sample. We used SYBR Green-based quantitative-PCR to quantify miRNAs expression. Our analysis revealed the increased expression levels of miR-21 (p = 0.034), miR-25 (p = 0.0003) miR-93 (p = 0.0406), and miR-106b (p = 0.023) in GC samples. In addition, GC patients with positive lymph node metastasis showed the up-regulation of miR-25, miR-93, and miR-106b (p < 0.05). Our findings suggested that miR-21, miR-25, miR-93, and miR-106b altered expression in GC, and some of them may be further investigated as biomarkers for GC early detection and prognosis prediction.
Exosomal microRNA profiling to identify hypoxia-related biomarkers in prostate cancer
Panigrahi, Gati K.; Ramteke, Anand; Birks, Diane; Abouzeid Ali, Hamdy E.; Venkataraman, Sujatha; Agarwal, Chapla; Vibhakar, Rajeev; Miller, Lance D.; Agarwal, Rajesh; Abd Elmageed, Zakaria Y.; Deep, Gagan
2018-01-01
Hypoxia and expression of hypoxia-related biomarkers are associated with disease progression and treatment failure in prostate cancer (PCa). We have reported that exosomes (nanovesicles of 30-150 nm in diameter) secreted by human PCa cells under hypoxia promote invasiveness and stemness in naïve PCa cells. Here, we identified the unique microRNAs (miRNAs) loaded in exosomes secreted by PCa cells under hypoxia. Using TaqMan® array microRNA cards, we analyzed the miRNA profile in exosomes secreted by human PCa LNCaP cells under hypoxic (ExoHypoxic) and normoxic (ExoNormoxic) conditions. We identified 292 miRNAs loaded in both ExoHypoxic and ExoNormoxic. The top 11 miRNAs with significantly higher level in ExoHypoxic compared to ExoNormoxic were miR-517a, miR-204, miR-885, miR-143, miR-335, miR-127, miR-542, miR-433, miR-451, miR-92a and miR-181a; and top nine miRNA with significantly lower expression level in ExoHypoxic compared to ExoNormoxic were miR-521, miR-27a, miR-324, miR-579, miR-502, miR-222, miR-135b, miR-146a and miR-491. Importantly, the two differentially expressed miRNAs miR-885 (increased expression) and miR-521 (decreased expression) showed similar expression pattern in exosomes isolated from the serum of PCa patients compared to healthy individuals. Additionally, miR-204 and miR-222 displayed correlated expression patterns in prostate tumors (Pearson R = 0.66, p < 0.0001) by The Cancer Genome Atlas (TCGA) prostate adenocarcinoma (PRAD) genomic dataset analysis. Overall, the present study identified unique miRNAs with differential expression in exosomes secreted from hypoxic PCa cells and suggests their potential usefulness as a biomarker of hypoxia in PCa patients. PMID:29568403
Šalamún, Peter; Hanzelová, Vladimíra; Miklisová, Dana; Šestinová, Oľga; Findoráková, Lenka; Kováčik, Peter
2017-08-15
Better understanding of interactions among belowground and aboveground components in biotopes may improve our knowledge about soil ecosystem, and is necessary in environment assessment using indigenous soil organisms. In this study, we proposed that in disturbed biotopes, vegetation play important role in the buffering of contamination impact on soil communities and decrease the ecological pressure on soil biota. To assess the effects of these interactions we compared nematode communities, known for their bioindication abilities, from four types of disturbed and undisturbed biotopes (coniferous forest, permanent grassland, agricultural field, clearings), where the main stress agent was represented by long-term acidic industrial emissions containing heavy metals (As, Cd, Cu, and Pb). To understand the ecological interactions taking place in studied biotopes, we studied abiotic factors (soil properties) and biotic factors (vegetation, nematode communities). Except significant increase in metals total and mobile concentrations in disturbed biotopes soil, we found acidification of soil horizon, mainly in the clearings (pH=3.68), due to SO 2 precipitation. These factors has caused in clearings degradation of native phytocoenoses and decrease in decomposition rate characterized by high amount of organic matter (C ox =4.29%). Nematodes reacts to these conditions by shifts in trophic structure (bacteriovores to fungal feeders), increase in c-p 2 genera (Aphelenchoides, Acrobeloides, and Cephalobus), absence of sensitive groups (c-p 3-5, omnivores, predators), and decrease in ecological indices (SI, MI, MI2-5, H'). Similar contamination was found in forest biotope, but the nematodes composition indicates more suitable conditions; more complex community structure (presence of sensitive trophic and higher c-p groups), higher abundance and indices values, comparable with less stressed field and grassland biotopes. As showed our results, the vegetation undoubtedly plays an important role not only as a resource of services indispensable for the ecosystem, but also as a significant buffer of negative impacts acting within. Copyright © 2017 Elsevier B.V. All rights reserved.
Urinary Exosomal miRNA Signature in Type II Diabetic Nephropathy Patients
Delić, Denis; Eisele, Claudia; Schmid, Ramona; Baum, Patrick; Wiech, Franziska; Gerl, Martin; Zimdahl, Heike; Pullen, Steven S.; Urquhart, Richard
2016-01-01
MicroRNAs (miRNAs) are short non-coding RNA species which are important post-transcriptional regulators of gene expression and play an important role in the pathogenesis of diabetic nephropathy. miRNAs are present in urine in a remarkably stable form packaged in extracellular vesicles, predominantly exosomes. In the present study, urinary exosomal miRNA profiling was conducted in urinary exosomes obtained from 8 healthy controls (C), 8 patients with type II diabetes (T2D) and 8 patients with type II diabetic nephropathy (DN) using Agilent´s miRNA microarrays. In total, the expression of 16 miRNA species was deregulated (>2-fold) in DN patients compared to healthy donors and T2D patients: the expression of 14 miRNAs (miR-320c, miR-6068, miR-1234-5p, miR-6133, miR-4270, miR-4739, miR-371b-5p, miR-638, miR-572, miR-1227-5p, miR-6126, miR-1915-5p, miR-4778-5p and miR-2861) was up-regulated whereas the expression of 2 miRNAs (miR-30d-5p and miR-30e-5p) was down-regulated. Most of the deregulated miRNAs are involved in progression of renal diseases. Deregulation of urinary exosomal miRNAs occurred in micro-albuminuric DN patients but not in normo-albuminuric DN patients. We used qRT-PCR based analysis of the most strongly up-regulated miRNAs in urinary exosomes from DN patients, miRNAs miR-320c and miR-6068. The correlation of miRNA expression and micro-albuminuria levels could be replicated in a confirmation cohort. In conclusion, urinary exosomal miRNA content is altered in type II diabetic patients with DN. Deregulated miR-320c, which might have an impact on the TGF-β-signaling pathway via targeting thrombospondin 1 (TSP-1) shows promise as a novel candidate marker for disease progression in type II DN that should be evaluated in future studies. PMID:26930277
Skaftnesmo, K O; Edvardsen, R B; Furmanek, T; Crespo, D; Andersson, E; Kleppe, L; Taranger, G L; Bogerd, J; Schulz, R W; Wargelius, A
2017-10-18
Our understanding of the molecular mechanisms implementing pubertal maturation of the testis in vertebrates is incomplete. This topic is relevant in Atlantic salmon aquaculture, since precocious male puberty negatively impacts animal welfare and growth. We hypothesize that certain miRNAs modulate mRNAs relevant for the initiation of puberty. To explore which miRNAs regulate mRNAs during initiation of puberty in salmon, we performed an integrated transcriptome analysis (miRNA and mRNA-seq) of salmon testis at three stages of development: an immature, long-term quiescent stage, a prepubertal stage just before, and a pubertal stage just after the onset of single cell proliferation activity in the testis. Differentially expressed miRNAs clustered into 5 distinct expression profiles related to the immature, prepubertal and pubertal salmon testis. Potential mRNA targets of these miRNAs were predicted with miRmap and filtered for mRNAs displaying negatively correlated expression patterns. In summary, this analysis revealed miRNAs previously known to be regulated in immature vertebrate testis (miR-101, miR-137, miR-92b, miR-18a, miR-20a), but also miRNAs first reported here as regulated in the testis (miR-new289, miR-30c, miR-724, miR-26b, miR-new271, miR-217, miR-216a, miR-135a, miR-new194 and the novel predicted n268). By KEGG enrichment analysis, progesterone signaling and cell cycle pathway genes were found regulated by these differentially expressed miRNAs. During the transition into puberty we found differential expression of miRNAs previously associated (let7a/b/c), or newly associated (miR-15c, miR-2184, miR-145 and the novel predicted n7a and b) with this stage. KEGG enrichment analysis revealed that mRNAs of the Wnt, Hedgehog and Apelin signaling pathways were potential regulated targets during the transition into puberty. Likewise, several regulated miRNAs in the pubertal stage had earlier been associated (miR-20a, miR-25, miR-181a, miR-202, let7c/d/a, miR-125b, miR-222a/b, miR-190a) or have now been found connected (miR-2188, miR-144, miR-731, miR-8157 and the novel n2) to the initiation of puberty. This study has - for the first time - linked testis maturation to specific miRNAs and their inversely correlated expressed targets in Atlantic salmon. The study indicates a broad functional conservation of already known miRNAs and associated pathways involved in the transition into puberty in vertebrates. The analysis also reveals miRNAs not previously associated with testis tissue or its maturation, which calls for further functional studies in the testis.
MicroRNA meta-signature of oral cancer: evidence from a meta-analysis.
Zeljic, Katarina; Jovanovic, Ivan; Jovanovic, Jasmina; Magic, Zvonko; Stankovic, Aleksandra; Supic, Gordana
2018-03-01
It was the aim of the study to identify commonly deregulated miRNAs in oral cancer patients by performing a meta-analysis of previously published miRNA expression profiles in cancer and matched normal non-cancerous tissue in such patients. Meta-analysis included seven independent studies analyzed by a vote-counting method followed by bioinformatic enrichment analysis. Amongst seven independent studies included in the meta-analysis, 20 miRNAs were found to be deregulated in oral cancer when compared with non-cancerous tissue. Eleven miRNAs were consistently up-regulated in three or more studies (miR-21-5p, miR-31-5p, miR-135b-5p, miR-31-3p, miR-93-5p, miR-34b-5p, miR-424-5p, miR-18a-5p, miR-455-3p, miR-450a-5p, miR-21-3p), and nine were down-regulated (miR-139-5p, miR-30a-3p, miR-376c-3p, miR-885-5p, miR-375, miR-486-5p, miR-411-5p, miR-133a-3p, miR-30a-5p). The meta-signature of identified miRNAs was functionally characterized by KEGG enrichment analysis. Twenty-four KEGG pathways were significantly enriched, and TGF-beta signaling was the most enriched signaling pathway. The highest number of meta-signature miRNAs was involved in the sphingolipid signaling pathway. Natural killer cell-mediated cytotoxicity was the pathway with most genes regulated by identified miRNAs. The rest of the enriched pathways in our miRNA list describe different malignancies and signaling. The identified miRNA meta-signature might be considered as a potential battery of biomarkers when distinguishing oral cancer tissue from normal, non-cancerous tissue. Further mechanistic studies are warranted in order to confirm and fully elucidate the role of deregulated miRNAs in oral cancer.
Sand, Michael; Hessam, Schapoor; Amur, Susanne; Skrygan, Marina; Bromba, Michael; Stockfleth, Eggert; Gambichler, Thilo; Bechara, Falk G
2017-05-01
A variety of cancers are associated with the expression of the oncogenic miR-17-92 cluster (Oncomir-1) and tumor suppressor miR-143-5p/miR-145-5p. Epidermal skin cancer has not been investigated for the expression of miR-17-92 and miR-143-145 clusters, despite being extensively studied regarding global microRNA profiles. The goal of this study was to investigate the expression and possible correlation of expression of miR17-92 and miR-143-145 cluster members in epidermal skin cancer. We evaluated punch biopsies from patients with cutaneous squamous cell carcinoma (cSCC, n=15) and basal cell carcinoma (BCC, n=16), along with control specimens from non-lesional epidermal skin (n=16). Expression levels of the miR17-92 cluster (including miR-17-5p, miR-17-3p, miR-18a-3p, miR-18a-5p, miR-19a-3p, miR-19a-5p, miR-19b-3p, miR-19b-1-5p, miR-20a-3p, miR-20a-5p, miR-92a-3p, and miR-92a-5p) and the tumor-suppressive cluster miR-143-145 (including miR-143-5p and miR-145-5p) were detected by quantitative real-time reverse transcriptase polymerase chain reaction. We noted a highly significant increased expression of the miR-17-92 members miR-17-5p, miR-18a-5p, miR19a-3p, and miR-19b-3p and tumor suppressor miR-143-5p (p<0.01) in cSCC. miR-145-5p had a significantly decreased expression (p<0.05) for in BCC. A correlation analysis revealed multiple correlating miRNA-pairs within and between the investigated clusters. This study marks the first evidence for the participation of members of the miR-17-92 cluster in cSCC and miR-143-145 cluster in BCC. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.
MicroRNA in sperm from Duroc, Landrace and Yorkshire boars
Kasimanickam, Vanmathy; Kastelic, John
2016-01-01
Sperm contain microRNAs (miRNAs), which may have roles in epigenetic control. Regarding phylogenetic relationships among various swine breeds, Yorkshire and Landrace, are considered phenotypically and genetically very similar, but distinctly different from Duroc. The objective of the present study was to compare abundance of boar sperm miRNAs in these three breeds. Overall, 252 prioritized miRNAs were investigated using real-time PCR; relative expression of miRNAs in sperm was similar in Yorkshire and Landrace boars, but significantly different compared to Duroc. Seventeen miRNAs (hsa-miR-196a-5p, hsa-miR-514a-3p, hsa-miR-938, hsa-miR-372-3p, hsa-miR-558, hsa-miR-579-3p, hsa-miR-595, hsa-miR-648, hsa-miR-524-3p, hsa-miR-512-3p, hsa-miR-429, hsa-miR-639, hsa-miR-551a, hsa-miR-624-5p, hsa-miR-585-3p, hsa-miR-508-3p and hsa-miR-626) were down-regulated (P < 0.05; fold regulation ≤−2) in Yorkshire and Landrace sperm, compared to Duroc sperm. Furthermore, three miRNAs (hsa-miR-9-5p, hsa-miR-150-5p, and hsa-miR-99a-5p) were significantly up-regulated in Yorkshire and Landrace sperm compared to Duroc sperm, However, 240 miRNAs were not significantly different (within + 2 fold) between Yorkshire and Landrace sperm. We concluded that miRNAs in sperm were not significantly different between Yorkshire and Landrace boars, but there were significant differences between those two breeds and Duroc boars. Furthermore, integrated target genes for selected down-regulated miRNAs (identified via an in-silico method) appeared to participate in spermatogenesis and sperm functions. PMID:27597569
ATP-dependent chromatin remodeling in T cells.
Wurster, Andrea L; Pazin, Michael J
2012-02-01
One of the best studied systems for mammalian chromatin remodeling is transcriptional regulation during T cell development. The variety of these studies have led to important findings in T cell gene regulation and cell fate determination. Importantly, these findings have also advanced our knowledge of the function of remodeling enzymes in mammalian gene regulation. First we briefly present biochemical and cell-free analysis of 3 types of ATP dependent remodeling enzymes (SWI/SNF, Mi2, and ISWI) to construct an intellectual framework to understand how these enzymes might be working. Second, we compare and contrast the function of these enzymes during early (thymic) and late (peripheral) T cell development. Finally, we examine some of the gaps in our present understanding.
Troppan, Katharina; Wenzl, Kerstin; Pichler, Martin; Pursche, Beata; Schwarzenbacher, Daniela; Feichtinger, Julia; Thallinger, Gerhard G.; Beham-Schmid, Christine; Neumeister, Peter; Deutsch, Alexander
2015-01-01
Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma patients most likely by modifying drug sensitivity to immunochemotherapy. This functional impairment may serve as a potential novel therapeutic target in future treatment of patients with DLBCL. PMID:26251897
Parafioriti, Antonina; Bason, Caterina; Armiraglio, Elisabetta; Calciano, Lucia; Daolio, Primo Andrea; Berardocco, Martina; Di Bernardo, Andrea; Colosimo, Alessia; Luksch, Roberto; Berardi, Anna C
2016-04-30
The molecular mechanism responsible for Ewing's Sarcoma (ES) remains largely unknown. MicroRNAs (miRNAs), a class of small non-coding RNAs able to regulate gene expression, are deregulated in tumors and may serve as a tool for diagnosis and prediction. However, the status of miRNAs in ES has not yet been thoroughly investigated. This study compared global miRNAs expression in paraffin-embedded tumor tissue samples from 20 ES patients, affected by primary untreated tumors, with miRNAs expressed in normal human mesenchymal stromal cells (MSCs) by microarray analysis. A miRTarBase database was used to identify the predicted target genes for differentially expressed miRNAs. The miRNAs microarray analysis revealed distinct patterns of miRNAs expression between ES samples and normal MSCs. 58 of the 954 analyzed miRNAs were significantly differentially expressed in ES samples compared to MSCs. Moreover, the qRT-PCR analysis carried out on three selected miRNAs showed that miR-181b, miR-1915 and miR-1275 were significantly aberrantly regulated, confirming the microarray results. Bio-database analysis identified BCL-2 as a bona fide target gene of the miR-21, miR-181a, miR-181b, miR-29a, miR-29b, miR-497, miR-195, miR-let-7a, miR-34a and miR-1915. Using paraffin-embedded tissues from ES patients, this study has identified several potential target miRNAs and one gene that might be considered a novel critical biomarker for ES pathogenesis.
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C.; Ellinger, Jörg
2015-01-01
Introduction MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). Materials and Methods The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. Results MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. Conclusions MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC. PMID:25629698
Kriebel, Stephanie; Schmidt, Doris; Holdenrieder, Stefan; Goltz, Diane; Kristiansen, Glen; Moritz, Rudolf; Fisang, Christian; Müller, Stefan C; Ellinger, Jörg
2015-01-01
MicroRNAs play an important role in many human malignancies; so far, their expression remains to be studied in upper urinary tract urothelial cancer (UUTUC). The expression of eleven microRNAs (miR-10a, miR-21, miR-96, miR-135, miR-141, miR-182, miR-200b, miR-205, miR-429, miR-520b, miR-1244) formerly shown to be upregulated in urothelial bladder cancer were studied in corresponding normal and cancerous tissue samples of patients undergoing nephroureterectomy for UUTUC. Upregulated microRNAs were then measured in serum samples of patients with UUTUC and patients with non-malignant urological diseases to evaluate their potential as non-invasive biomarkers for UUTUC. MicroRNA expression allowed differentiation of normal and cancerous tissue: miR-21, miR-96, miR-135, miR-141, miR-182, miR-205, miR-429 and miR-520b were significantly overexpressed. Furthermore, miR-205 was upregulated in poorly differentiated UUTUC. The analysis of circulating RNA in serum demonstrated an increase of miR-141 in patients with UUTUC; receiver operator characteristic analysis demonstrated an area under the curve of 0.726 for miR-141 as a diagnostic biomarker. Furthermore, we observed lower levels of miR-10a and miR-135 in UUTUC patients. MicroRNA expression is altered in UUTUC. The analysis of circulating miR-141 may be useful to identify patients with UUTUC.
Boštjančič, Emanuela; Zidar, Nina; Glavač, Damjan
2012-10-15
Cardiac sarco(endo)plasmic reticulum calcium ATPase-2 (SERCA2) plays one of the central roles in myocardial contractility. Both, SERCA2 mRNA and protein are reduced in myocardial infarction (MI), but the correlation has not been always observed. MicroRNAs (miRNAs) act by targeting 3'-UTR mRNA, causing translational repression in physiological and pathological conditions, including cardiovascular diseases. One of the aims of our study was to identify miRNAs that could influence SERCA2 expression in human MI. The protein SERCA2 was decreased and 43 miRNAs were deregulated in infarcted myocardium compared to corresponding remote myocardium, analyzed by western blot and microRNA microarrays, respectively. All the samples were stored as FFPE tissue and in RNAlater. miRNAs binding prediction to SERCA2 including four prediction algorithms (TargetScan, PicTar, miRanda and mirTarget2) identified 213 putative miRNAs. TAM and miRNApath annotation of deregulated miRNAs identified 18 functional and 21 diseased states related to heart diseases, and association of the half of the deregulated miRNAs to SERCA2. Free-energy of binding and flanking regions (RNA22, RNAfold) was calculated for 10 up-regulated miRNAs from microarray analysis (miR-122, miR-320a/b/c/d, miR-574-3p/-5p, miR-199a, miR-140, and miR-483), and nine miRNAs deregulated from microarray analysis were used for validation with qPCR (miR-21, miR-122, miR-126, miR-1, miR-133, miR-125a/b, and miR-98). Based on qPCR results, the comparison between FFPE and RNAlater stored tissue samples, between Sybr Green and TaqMan approaches, as well as between different reference genes were also performed. Combing all the results, we identified certain miRNAs as potential regulators of SERCA2; however, further functional studies are needed for verification. Using qPCR, we confirmed deregulation of nine miRNAs in human MI, and show that qPCR normalization strategy is important for the outcome of miRNA expression analysis in human MI.
Fluitt, Maurice B; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K
2016-12-01
The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=-0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=-0.89, p=0.01). To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults.
Fluitt, Maurice B.; Kumari, Namita; Nunlee-Bland, Gail; Nekhai, Sergei; Gambhir, Kanwal K.
2017-01-01
Aims The use of circulatory miRNAs as biomarkers and therapeutic targets for T2DM is an explosive area of study. However, no study has investigated circulatory miRNA expression exclusively in African-American adults. The aim of this study was to identify the expression of nine selected miRNAs in erythrocytes of pre-diabetic and type 2 diabetic African-American adults. Main Methods Patients were recruited from the Howard University Hospital Diabetes Treatment Center following an 8 to 10 hour overnight fast. Expression of the nine selected miRNAs (miRNA-499, miRNA-146, miRNA-126, miRNA-223, miRNA-15a, miRNA-15b, miRNA-224, miRNA-326, and miRNA-375) was evaluated using quantitative real time PCR. Key Findings miRNA-15a, miRNA-15b, and miRNA-499 were significantly reduced in erythrocytes of pre-diabetic African-American adults. In the T2DM group, we found significant correlations between miRNA-15a and BMI (r=0.59, p=0.04), miRNA-15a and weight (r=0.52, p=0.01), and miRNA-15b and diastolic blood pressure (r=−0.52, p=0.02). In the pre-diabetic group, we found significant correlations between miRNA-15b and weight (r=0.90, p=0.02) and miRNA-499 and HbA1c (r=−0.89, p=0.01). Significance To our knowledge, this is the first study investigating miRNA expression in erythrocytes of non-diabetic high-risk obese--pre-diabetic and type 2 diabetic African-American adults. The findings of this study are consistent with previous reports of reduced expression of miRNA-15a, miRNA-15b, and miRNA-499 in human plasma or serum and in animal models. The current findings support the use of circulating miRNA-15a, miRNA-15b, and miRNA-499 as potential biomarkers for T2DM in African-American adults. PMID:29399662
The role of microRNAs in myopia.
Jiang, Bo; Huo, Yanan; Gu, Yangshun; Wang, Jianyong
2017-01-01
In recent years, research on microRNAs (miRNAs) has become popular because of the critical role these macromolecules play in post-transcriptional gene regulation. Recent efforts have been made to identify miRNAs and their possible roles in myopia. The aim of this review was to summarize the expression and function of miRNAs during the development of myopia. In this article, we reviewed the current research on the mechanisms that regulate miRNA expression, the potential for miRNAs as a diagnostic biomarker for myopia, and the mechanisms by which miRNAs promote the development of myopia. We also discussed the miRNA expression profiles in human fetal sclera. We summarized the miRNA expression profiles in myopia, including miR-328, miR-184, miR-29a, and miR-let-7i, and also the miRNA expression profiles in fetal sclera, including miR-214, miR-let-7, miR-103, miR-107, miR-29b, miR-328, and miR-98. Such knowledge could lead to more precise diagnosis, prognosis, and response predictions for future treatments for myopia, and the pace of discovery is expected to accelerate dramatically in the near future.
Vongsakulyanon, A; Kitpoka, P; Kunakorn, M; Srikhirin, T
2015-12-01
To develop reliable and convenient methods for Miltenberger (Mi(a) ) blood group typing. To apply real-time polymerase chain reaction (qPCR) melting curve analysis to Mi(a) blood group typing. The Mi(a) blood group is the collective set of glycophorin hybrids in the MNS blood group system. Mi(a+) blood is common among East Asians and is also found in the Thai population. Incompatible Mi(a) blood transfusions pose the risk of life-threatening haemolysis; therefore, Mi(a) blood group typing is necessary in ethnicities where the Mi(a) blood group is prevalent. One hundred and forty-three blood samples from Thai blood donors were used in the study. The samples included 50 Mi(a+) samples and 93 Mi(a-) samples, which were defined by serology. The samples were typed by Mi(a) typing qPCR, and 50 Mi(a+) samples were sequenced to identify the Mi(a) subtypes. Mi(a) subtyping qPCR was performed to define GP.Mur. Both Mi(a) typing and Mi(a) subtyping were tested on a conventional PCR platform. The results of Mi(a) typing qPCR were all concordant with serology. Sequencing of the 50 Mi(a+) samples revealed 47 GP.Mur samples and 3 GP.Hop or Bun samples. Mi(a) subtyping qPCR was the supplementary test used to further define GP.Mur from other Mi(a) subtypes. Both Mi(a) typing and Mi(a) subtyping performed well using a conventional PCR platform. Mi(a) typing qPCR correctly identified Mi(a) blood groups in a Thai population with the feasibility of Mi(a) subtype discrimination, and Mi(a) subtyping qPCR was able to further define GP.Mur from other Mi(a) subtypes. © 2015 British Blood Transfusion Society.
Wan, Yong; Cui, Ruixia; Gu, Jingxian; Zhang, Xing; Xiang, Xiaohong; Liu, Chang; Qu, Kai; Lin, Ting
2017-01-01
Increasing evidence suggests that oxidative stress plays an essential role during carcinogenesis. However, the underlying mechanism between oxidative stress and carcinogenesis remains unknown. Recently, microRNAs (miRNAs) are revealed to be involved in oxidative stress response and carcinogenesis. This study aims to identify miRNAs in hepatocellular carcinoma (HCC) cells which might involve in oxidative stress response. An integrated analysis of miRNA expression signature was performed by employing robust rank aggregation (RRA) method, and four miRNAs (miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p) were identified as the oxidative stress-responsive miRNAs. Pathway enrichment analysis suggested that these four miRNAs played an important role in antiapoptosis process. Our data also revealed miR-34a-5p and miR-1915-3p, but not miR-150-3p and miR-638, were regulated by p53 in HCC cell lines under oxidative stress. In addition, clinical investigation revealed that these four miRNAs might be involved in oxidative stress response by targeting oxidative stress-related genes in HCC tissues. Kaplan-Meier analysis showed that these four miRNAs were associated with patients' overall survival. In conclusion, we identified four oxidative stress-responsive miRNAs, which were regulated by p53-dependent (miR-34a-5p and miR-1915-3p) and p53-independent pathway (miR-150-3p and miR-638). These four miRNAs may offer new strategy for HCC diagnosis and prognosis.
The transcardiac gradient of cardio-microRNAs in the failing heart.
Marques, Francine Z; Vizi, Donna; Khammy, Ouda; Mariani, Justin A; Kaye, David M
2016-08-01
Differential microRNA expression in peripheral blood has been observed in patients with heart failure, suggesting their value as potential biomarkers and likely contributors to disease mechanisms. In the present study, we aimed to evaluate the transcardiac gradient of 84 cardio-microRNAs in healthy and failing hearts to determine which microRNAs are released or absorbed by the myocardium in heart failure. Eight healthy volunteers and nine patients with congestive heart failure were included. Arterial and coronary sinus blood samples were collected, and microRNAs were extracted. The expression of microRNAs was analysed using real-time PCR by the miScript miRNA PCR Array Human Cardiovascular Disease. In coronary sinus samples, the microRNAs miR-16-5p, miR-27a-3p, miR-27b-3p, miR-29b-3p, miR-29c-3p, miR-30e-5p, miR-92a-3p, miR-125b-5p, miR-140-5p, miR-195-5p, miR-424-5p, and miR-451a were significantly down-regulated, and let-7a-5p, let-7c-5p, let-7e-5p, miR-23b-3p, miR-107, miR-155-5p, miR-181a-5p, miR-181b-5p and miR-320a were up-regulated in heart failure. Left ventricular filling pressure was negatively correlated with miR-195, miR-16, miR-29b-3p, miR-29c-3p, miR-451a, and miR-92a-3p. The failing heart released let-7b-5p, let-7c-5p, let-7e-5p, miR-122-5p, and miR-21-5p, and absorbed miR-16-5p, miR-17-5p, miR-27a-3p, miR-30a-5p, miR-30d-5p, miR-30e-5p, miR-130a-3p, miR-140-5p, miR-199a-5p, and miR-451a. In silico analyses suggest that the transcardiac gradient of microRNAs in heart failure may target pathways related to heart disease. We determined the transcardiac gradient of cardio-microRNAs in failing hearts, which supports the use of these microRNAs as potential biomarkers. The microRNAs described here may have a role in the pathophysiology of heart failure as they might be involved in pathways related to disease progression, including fibrosis. © 2016 The Authors European Journal of Heart Failure © 2016 European Society of Cardiology.
Chávez-Hernández, Elva C.; Alejandri-Ramírez, Naholi D.; Juárez-González, Vasti T.; Dinkova, Tzvetanka D.
2015-01-01
Maize somatic embryogenesis (SE) is induced from the immature zygotic embryo in darkness and under the appropriate hormones' levels. Small RNA expression is reprogrammed and certain miRNAs become particularly enriched during induction while others, characteristic to the zygotic embryo, decrease. To explore the impact of different environmental cues on miRNA regulation in maize SE, we tested specific miRNA abundance and their target gene expression in response to photoperiod and hormone depletion for two different maize cultivars (VS-535 and H-565). The expression levels of miR156, miR159, miR164, miR168, miR397, miR398, miR408, miR528, and some predicted targets (SBP23, GA-MYB, CUC2, AGO1c, LAC2, SOD9, GR1, SOD1A, PLC) were examined upon staged hormone depletion in the presence of light photoperiod or darkness. Almost all examined miRNA, except miR159, increased upon hormone depletion, regardless photoperiod absence/presence. miR528, miR408, and miR398 changed the most. On the other hand, expression of miRNA target genes was strongly regulated by the photoperiod exposure. Stress-related miRNA targets showed greater differences between cultivars than development-related targets. miRNA/target inverse relationship was more frequently observed in darkness than light. Interestingly, miR528, but not miR159, miR168 or miR398, was located on polyribosome fractions suggesting a role for this miRNA at the level of translation. Overall our results demonstrate that hormone depletion exerts a great influence on specific miRNA expression during plant regeneration independently of light. However, their targets are additionally influenced by the presence of photoperiod. The reproducibility or differences observed for particular miRNA-target regulation between two different highly embryogenic genotypes provide clues for conserved miRNA roles within the SE process. PMID:26257760
MicroRNA profiles following metformin treatment in a mouse model of non-alcoholic steatohepatitis
KATSURA, AKIKO; MORISHITA, ASAHIRO; IWAMA, HISAKAZU; TANI, JOJI; SAKAMOTO, TEPPEI; TATSUTA, MIWA; TOYOTA, YUKA; FUJITA, KOJI; KATO, KIYOHITO; MAEDA, EMIKO; NOMURA, TAKAKO; MIYOSHI, HISAAKI; YONEYAMA, HIROHITO; HIMOTO, TAKASHI; FUJIWARA, SHINTARO; KOBARA, HIDEKI; MORI, HIROHITO; NIKI, TOSHIRO; ONO, MASAFUMI; HIRASHIMA, MITSUOMI; MASAKI, TSUTOMU
2015-01-01
Non-alcoholic steatohepatitis (NASH) is one of the most common causes of chronic liver disease and is considered to be a causative factor of cryptogenic cirrhosis and hepatocellular carcinoma. microRNAs (miRNAs) are small non-coding RNAs that negatively regulate messenger RNA (mRNA). Recently, it was demonstrated that the aberrant expression of certain miRNAs plays a pivotal role in liver disease. The aim of the present study was to evaluate changes in miRNA profiles associated with metformin treatment in a NASH model. Eight-week-old male mice were fed a methionine- and choline-deficient (MCD) diet alone or with 0.08% metformin for 15 weeks. Metformin significantly downregulated the level of plasma transaminases and attenuated hepatic steatosis and liver fibrosis. The expression of miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p was enhanced among the 71 upregulated miRNAs, and the expression of miRNA-122, miRNA-194, miRNA-101b and miRNA-705 was decreased among 60 downregulated miRNAs in the liver of MCD-fed mice when compared with control mice. Of note, miRNA profiles were altered following treatment with metformin in MCD-fed mice. miRNA-376a, miRNA-127, miRNA-34a, miRNA-300 and miRNA-342-3p were down-regulated, but miRNA-122, miRNA-194, miRNA-101b and miRNA-705 were significantly upregulated in MCD-fed mice treated with metformin. miRNA profiles were altered in MCD-fed mice and metformin attenuated this effect on miRNA expression. Therefore, miRNA profiles are a potential tool that may be utilized to clarify the mechanism behind the metformin-induced improvement of hepatic steatosis and liver fibrosis. Furthermore, identification of targetable miRNAs may be used as a novel therapy in human NASH. PMID:25672270
Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge.
Jung, Jaeyun; Yeom, Chanjoo; Choi, Yeon-Sook; Kim, Sinae; Lee, EunJi; Park, Min Ji; Kang, Sang Wook; Kim, Sung Bae; Chang, Suhwan
2015-08-21
The roles of oncogenic miRNAs are widely recognized in many cancers. Inhibition of single miRNA using antagomiR can efficiently knock-down a specific miRNA. However, the effect is transient and often results in subtle phenotype, as there are other miRNAs contribute to tumorigenesis. Here we report a multi-potent miRNA sponge inhibiting multiple miRNAs simultaneously. As a model system, we targeted miR-21, miR-155 and miR-221/222, known as oncogenic miRNAs in multiple tumors including breast and pancreatic cancers. To achieve efficient knockdown, we generated perfect and bulged-matched miRNA binding sites (MBS) and introduced multiple copies of MBS, ranging from one to five, in the multi-potent miRNA sponge. Luciferase reporter assay showed the multi-potent miRNA sponge efficiently inhibited 4 miRNAs in breast and pancreatic cancer cells. Furthermore, a stable and inducible version of the multi-potent miRNA sponge cell line showed the miRNA sponge efficiently reduces the level of 4 target miRNAs and increase target protein level of these oncogenic miRNAs. Finally, we showed the miRNA sponge sensitize cells to cancer drug and attenuate cell migratory activity. Altogether, our study demonstrates the multi-potent miRNA sponge is a useful tool to examine the functional impact of simultaneous inhibition of multiple miRNAs and proposes a therapeutic potential.
Superconducting gap of the single crystal β-PdBi2
NASA Astrophysics Data System (ADS)
Matsuzaki, H.; Nagai, K.; Kase, N.; Nakano, T.; Takeda, N.
2017-07-01
We investigate superconducting and normal properties of the single crystal of β-PdBi2. The electrical resistivity ρ(T) shows superconductivity at Tc = 5.0 K. Residual resistivity ratio (RRR) is estimated to be 2.9 obtained from ρ(300 K)/ρ(5.0 K). The H c2 curve obtained from ρ(T) in magnetic fields shows cleat enhancement from the Wertharmer-Helfand-Hohenberg theory in dirty limit. Specific heat C(T) measurement shows that clear jump is observed at T c = 4.8 K. T-dependence of the electronic specific heat C e(T) suggests full-gap symmetry with a single gap and strong coupling with ΔC e/γT c = 1.8.
NASA Astrophysics Data System (ADS)
Pulido Castro, Sergio D.; López López, Juan M.
2017-11-01
Movement intention (MI) is the mental state in which it is desired to make an action that implies movement. There are certain signals that are directly related with MI; mainly obtained in the primary motor cortex. These signals can be used in a brain-computer interface (BCI). BCIs have a wide variety of applications for the general population, classified in two groups: optimization of conventional neuromuscular performances and enhancement of conventional neuromuscular performances beyond normal capacities. The main goal of this project is to analyze if neural rhythm modulation enhancement could be achieved by practicing, through a BCI based on MI detection, which was designed in a previous study. A six-session experiment was made with eight healthy subjects. Each session was composed by two stages: a training stage and a testing stage, which allowed control of a videogame. The scores in the game were recorded and analyzed. Changes in alpha and beta bands were also analyzed in order to observe if attention could in fact be enhanced. The obtained results were partially satisfactory, as most subjects showed a clear improvement in performance at some point in the trials. As well, the alpha to beta wave ratio of all the tasks was analyzed to observe if there are changes as the experiment progresses. The results are promising, and a different protocol must be implemented to assess the impact of the BCI on the attention span, which can be analyzed with the alpha and beta waves.
The investigation of circulating microRNAs associated with lipid metabolism in childhood obesity.
Can, U; Buyukinan, M; Yerlikaya, F H
2016-06-01
Childhood obesity is an increasing health challenge related to increased risk of chronic diseases. microRNAs (miRNAs) are noncoding short RNA molecules regulating multiple biological processes linked to obesity. We aimed at evaluating the association between circulating miRNA levels and lipid metabolism in obese and non-obese children and adolescents. By constituting study group, 45 obese children and adolescents were recruited. To perform comparisons with study group, 41 lean controls were matched for age and sex. Using real-time quantitative PCR analysis, circulating miRNAs were evaluated in both groups. Circulating miR-335 (P < 0.001), miR-143 (P = 0.001) and miR-758 (P = 0.006) in obese children were significantly lower than those of controls. However, circulating miR-27 (P = 0.032), miR-378 (P < 0.001) and miR-370 (P = 0.045) in obese children were significantly higher, compared with those of controls. In addition, circulating miR-33 in obese children was higher than those of controls, but no significant difference was present (P = 0.687). Our findings showed that a significant association is present between circulating miR-370, miR-33, miR-378, miR-27, miR-335, miR-143 and miR-758 values, and childhood obesity. Low levels of miR-335, miR-143 and miR-758, and high levels of miR-27, miR-378, miR-33 and miR-370 may have been responsible for elevated triglycerides and low-density lipoprotein (LDL-C) levels, and low level of high-density lipoprotein (HDL-C) in obese subjects. Therefore, miRNAs may be a good novel biomarker for childhood obesity. © 2015 World Obesity.
Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping
2015-01-01
To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients' blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca(2+) concentration and prevent the AF.
Lu, Yingmin; Hou, Shuxin; Huang, Damin; Luo, Xiaohan; Zhang, Jinchun; Chen, Jian; Xu, Weiping
2015-01-01
Objective: To investigate the changes in expression profile of circulating microRNAs (miRNAs) and the regulatory effect of atrial fibrilation (AF)-related miRNAs on ion channels. Methods: 112 patients with AF were assigned into observation group, and another 112 non-AF people were assigned into control group. Total plasma RNAs were extracted from patients’ blood samples. Differentially expressed miRNA-1s were transfected into primary-cultured neonatal rat cardiac myocytes. Results: Compared with control group, significant differences were observed in 15 kinds of miRNAs in observation group. Down-regulation of the expression of miRNAs included hsa-miR-328, hsa-miR-145, hsa-miR-222, hsa-miR-1, hsa-miR-162, hsa-miR-432, and hsa-miR-493b; Up-regulation of the expression included hsa-miR634, hsa-miR-664, hsa-miR-9, hsa-miR-152, hsa-miR-19, hsa-miR-454, hsa-miR-146, and hsa-miR-374a. The expression level of CACNB2 protein in miRNA-1 group was significantly lower than that in blank control group, negative control group, MTmiRNA-1 group, AMO-1 group and miRNA-1+AMO-1 cotransfection group (P < 0.05), while in AMO-1 group, the expression level of CACNB2 protein was significantly higher than that in other groups (P < 0.05). These results indicated that transfected miRNA-1 could significantly inhibit the expression of CACNB2 protein. Conclusions: Circulating miRNAs can be used in studies concerning on the regulation mechanism of the occurrence and development of AF. MiRNA-1 can decrease the intracellular Ca2+ concentration and prevent the AF. PMID:25785065
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Hisashi; Tatsumi, Tomohide; Hosui, Atsushi
2011-08-19
Highlights: {yields} HCV infection upregulated miR-192, -194, -215, downregulated miR-320, -491. {yields} Transfection of miR-192, -215, and -491 enhanced HCV replication. {yields} Transfection of miR-491 inhibited Akt phosphorylation. {yields} Akt inhibition could be responsible for augmentation of HCV replication by miR-491. -- Abstract: The aim of this study was to investigate the role of microRNA (miRNA) on hepatitis C virus (HCV) replication in hepatoma cells. Using miRNA array analysis, miR-192/miR-215, miR-194, miR-320, and miR-491 were identified as miRNAs whose expression levels were altered by HCV infection. Among them, miR-192/miR-215 and miR-491 were capable of enhancing replication of the HCV repliconmore » as well as HCV itself. HCV IRES activity or cell proliferation was not increased by forced expression of miR-192/miR-215 or miR-491. Investigation of signaling pathways revealed that miR-491 specifically suppressed the phosphoinositol-3 (PI3) kinase/Akt pathway. Under inhibition of PI3 kinase by LY294002, the suppressive effect of miR-491 on HCV replication was abolished, indicating that suppression of HCV replication by miR-491 was dependent on the PI3 kinase/Akt pathway. miRNAs altered by HCV infection would then affect HCV replication, which implies a complicated mechanism for regulating HCV replication. HCV-induced miRNA may be involved in changes in cellular properties including hepatocarcinogenesis.« less
NASA Astrophysics Data System (ADS)
Sasamori, Kota; Takahashi, Kazuyuki; Kodama, Takeshi; Fujita, Wataru; Kikuchi, Koichi; Yamada, Jun-ichi
2013-05-01
The pressure-induced organic superconductor β-(BDA-TTP)2FeCl4 [BDA-TTP = 2,5-bis(1,3-dithian-2-ylidene)-1,3,4,6-tetrathiapentalene], which shows a metal--insulator (MI) transition at TMI = 113 K under ambient pressure, has been found by X-ray study to have a two-fold crystal structure along the c-axis in the insulating state at 10 K. In the donor layer, there are four independent BDA-TTP molecules, which are divided into two charge-poor ones and two charge-rich ones on the basis of the folding dihedral angles around the intramolecular sulfur-to-sulfur axes of two outer dithiane rings in BDA-TTP. The charge separation leads to the formation of two types of dimers: a dimer consisting of two charge-poor donors and a dimer consisting of two charge-rich ones. The tight-binding band calculation revealed a band gap of 5.3 meV in the energy dispersion. The MI transition can be therefore accounted for by the charge separation. In addition, we investigated the crystal and electronic structures of β-(BDA-TTP)2FeCl4 at different pressures up to 21 kbar, and found that the application of pressures causes variations in both the conformation of donor molecule and the donor arrangement, which are responsible for almost uniform interaction in the donor stacking and for an increase in bandwidth (W). As a result, the suppression of MI transition and subsequent occurrence of superconductivity in β-(BDA-TTP)2FeCl4 would be observed with increasing pressure.
Riley, Christina; Dellicour, Stephanie; Ouma, Peter; Kioko, Urbanus; Omar, Ahmeddin; Kariuki, Simon; Ng'ang'a, Zipporah; Desai, Meghna; Buff, Ann M; Gutman, Julie R
2018-05-01
Prompt diagnosis and effective treatment of acute malaria in pregnancy (MiP) is important for the mother and fetus; data on health-care provider adherence to diagnostic guidelines in pregnancy are limited. From September to November 2013, a cross-sectional survey was conducted in 51 health facilities and 39 drug outlets in Western Kenya. Provider knowledge of national diagnostic guidelines for uncomplicated MiP were assessed using standardized questionnaires. The use of parasitologic testing was assessed in health facilities via exit interviews with febrile women of childbearing age and in drug outlets via simulated-client scenarios, posing as pregnant women or their spouses. Overall, 93% of providers tested for malaria or accurately described signs and symptoms consistent with clinical malaria. Malaria was parasitologically confirmed in 77% of all patients presenting with febrile illness at health facilities and 5% of simulated clients at drug outlets. Parasitological testing was available in 80% of health facilities; 92% of patients evaluated at these facilities were tested. Only 23% of drug outlets had malaria rapid diagnostic tests (RDTs); at these outlets, RDTs were offered in 17% of client simulations. No differences were observed in testing rates by pregnancy trimester. The study highlights gaps among health providers in diagnostic knowledge and practice related to MiP, and the lack of malaria diagnostic capacity, particularly in drug outlets. The most important factor associated with malaria testing of pregnant women was the availability of diagnostics at the point of service. Interventions that increase the availability of malaria diagnostic services might improve malaria case management in pregnant women.
Kasimanickam, Vanmathy R; Kasimanickam, Ramanathan K; Dernell, William S
2014-01-01
Spermatogenesis is a multistep synchronized process. Diploid spermatogonia differentiate into haploid spermatozoa following mitosis, meiosis and spermiogenesis. Division and differentiation of male germ cells is achieved through the sequential expression of several genes. Numerous mRNAs in the differentiating germ cells undergo post-transcriptional and translational regulation. MiRNAs are powerful negative regulators of mRNA transcription, stability, and translation and recognize their mRNA targets through base-pairing. Retinoic acid (RA) signaling is essential for spermatogenesis and testicular function. Testicular RA level is critical for RA signal transduction. This study investigated the miRNAs modulation in an RA- induced testicular environment following the administration of all-trans RA (2 µM) and CYP26B1- inhibitor (1 µM) compared to control. Eighty four canine mature miRNAs were analyzed and their expression signatures were distinguished using real-time PCR based array technology. Of the miRNAs analyzed, miRNA families such as miR-200 (cfa-miR-200a, cfa-miR-200b and cfa-miR-200c), Mirlet-7 (cfa-let-7a, cfa-let-7b, cfa-let-7c, cfa-let-7g and cfa-let-7f), miR-125 (cfa-miR-125a and cfa-miR-125b), miR-146 (cfa-miR-146a and cfa-miR-146b), miR-34 (cfa-miR-34a, cfa-miR-34b and cfa-miR-34c), miR-23 (cfa-miR-23a and cfa-miR-23b), cfa-miR-184, cfa-miR-214 and cfa-miR-141 were significantly up-regulated with testicular RA intervention via administration of CYP26B1 inhibitor and all-trans-RA and species of miRNA such as cfa-miR-19a, cfa-miR-29b, cfa-miR-29c, cfa-miR-101 and cfa-miR-137 were significantly down-regulated. This study explored information regarding chromosome distribution, human orthologous sequences and the interaction of target genes of miRNA families significantly distinguished in this study using prediction algorithms. This study importantly identified dysregulated miRNA species resulting from RA-induced spermatogenesis. The present contribution serves as a useful resource for further elucidation of the regulatory role of individual miRNA in RA synchronized canine spermatogenesis.
A biogenesis step upstream of Microprocessor controls miR-17~92 expression
Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I.
2015-01-01
SUMMARY The precise control of miR-17~92 microRNA (miRNA) is essential for normal development and overexpression of certain miRNAs from this cluster is oncogenic. Here we find the relative expression of the six miRNAs processed from the primary (pri-miR-17~92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17~92 is processed to a biogenesis intermediate, termed ‘progenitor-miRNA’ (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, -18a, -19a, 20a, and -19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17~92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73), and the Spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is key step controlling miRNA expression and explains the posttranscriptional control of miR-17~92 expression in development. PMID:26255770
Li, Yao; Li, Shengjie; Li, Ruimin; Xu, Jiao; Jin, Ping; Chen, Liming; Ma, Fei
2017-03-01
Although innate immunity mediated by Toll signaling has been extensively studied in Drosophila melanogaster, the role of miRNAs in regulating the Toll-mediated immune response remains largely unknown. In this study, following Gram-positive bacterial challenge, we identified 93 differentially expressed miRNAs via genome-wide miRNA screening. These miRNAs were regarded as immune response related (IRR). Eight miRNAs were confirmed to be involved in the Toll-mediated immune response upon Gram-positive bacterial infection through genetic screening of 41 UAS-miRNA lines covering 60 miRNAs of the 93 IRR miRNAs. Interestingly, four out of these eight miRNAs, miR-310, miR-311, miR-312 and miR-313, are clustered miRNAs and belong to the miR-310 family. These miR-310 family members were shown to target and regulate the expression of Drosomycin, an antimicrobial peptide produced by Toll signaling. Taken together, our study implies important regulatory roles of miRNAs in the Toll-mediated innate immune response of Drosophila upon Gram-positive bacterial infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bofill-De Ros, Xavier; Gironella, Meritxell; Fillat, Cristina
2014-09-01
Oncolytic virotherapy shows promise for pancreatic ductal adenocarcinoma (PDAC) treatment, but there is the need to minimize associated-toxicities. In the current work, we engineered artificial target sites recognized by miR-216a and/or miR-148a to provide pancreatic tumor-selectivity to replication-competent adenoviruses (Ad-miRTs) and improve their safety profile. Expression analysis in PDAC patients identified miR-148a and miR-216a downregulated in resectable (FC(miR-148a) = 0.044, P < 0.05; FC(miR-216a) = 0.017, P < 0.05), locally advanced (FC(miR-148a) = 0.038, P < 0.001; FC(miR-216a) = 0.001, P < 0.001) and metastatic tumors (FC(miR-148a) = 0.041, P < 0.01; FC(miR-216a) = 0.002, P < 0.001). In mouse tissues, miR-216a was highly specific of the exocrine pancreas whereas miR-148a was abundant in the exocrine pancreas, Langerhans islets, and the liver. In line with the miRNA content and the miRNA target site design, we show E1A gene expression and viral propagation efficiently controlled in Ad-miRT-infected cells. Consequently, Ad-miRT-infected mice presented reduced pancreatic and liver damage without perturbation of the endogenous miRNAs and their targets. Interestingly, the 8-miR148aT design showed repressing activity by all miR-148/152 family members with significant detargeting effects in the pancreas and liver. Ad-miRTs preserved their oncolytic activity and triggered strong antitumoral responses. This study provides preclinical evidences of miR-148a and miR-216a target site insertions to confer adenoviral selectivity and proposes 8-miR148aT as an optimal detargeting strategy for genetically-engineered therapies against PDAC.
Evaluation of miR-182/miR-100 Ratio for Diagnosis and Survival Prediction in Bladder Cancer.
Chen, Zhanguo; Wu, Lili; Lin, Qi; Shi, Jing; Lin, Xiangyang; Shi, Liang
2016-09-01
Abnormal expression of microRNAs (miRNAs) plays an important role in development of several cancer types, including bladder cancer (BCa). However, the relationship between the ratio of miR-181/miR-100 and the prognosis of BCa has not been studied yet. The aim of this study was to evaluate the expression of miR-182, miR-100 and their clinical significance in BCa. Upregulation of miR-182 and down-regulation of miR-100 were validated in tissue specimens of 134 BCa cases compared with 148 normal bladder epithelia (NBE) specimens using TaqMan-based real-time reverse transcription quantitative PCR (RT-qPCR). The diagnostic and prognostic evaluation of miR-182, miR-100, and miR-182/miR-100 ratio was also performed. miR-182 was upregulated in BCa and miR-100 was down-regulated in BCa compared with NBE (P < 0.001). The areas under receiver operating characteristic curves (AUCs-ROC) for miR-182 and miR-100 were 0.913 and 0.810, respectively. However, miR-182/miR-100 ratio increased the diagnostic performance, yielding an AUC of 0.981 (97.01% sensitivity and 90.54% specificity). Moreover, miR-182/miR-100 ratio was associated with pT-stage, histological grade, BCa recurrence and carcinoma in situ (P < 0.05 for all). Multivariate Cox regression analysis indicated that miR-182/miR-100 ratio was an independent prognostic factor for overall survival (Hazard ratio: 7.142; 95% CI: 2.106 - 9.891; P < 0.01). Furthermore, Kaplan-Meier curve analysis revealed that high-level of miR-182/miR-100 ratio was significantly correlated with shortened survival time for BCa patients (P < 0.01). The miR-182/miR-100 ratio may serve as a novel promising biomarker for diagnosis and survival prediction in BCa. Further studies are needed to elucidate the role of miR-182/miR-100 ratio as a non‑invasive diagnostic tool for BCa.