Science.gov

Sample records for mi ghi ch

  1. Measurement of Ratios of <mi>νμ> Charged-Current Cross Sections on C, Fe, and Pb to CH at Neutrino Energies 2–20 GeV

    SciTech Connect

    Tice, B. G.; Datta, M.; Mousseau, J.; Aliaga, L.; Altinok, O.; Barrios Sazo, M. G.; Betancourt, M.; Bodek, A.; Bravar, A.; Brooks, W. K.; Budd, H.; Bustamante, M. J.; Butkevich, A.; Martinez Caicedo, D. A.; Castromonte, C. M.; Christy, M. E.; Chvojka, J.; da Motta, H.; Devan, J.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fiorentini, G. A.; Gago, A. M.; Gallagher, H.; Gran, R.; Harris, D. A.; Higuera, A.; Hurtado, K.; Jerkins, M.; Kafka, T.; Kordosky, M.; Kulagin, S. A.; Le, T.; Maggi, G.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martin Mari, C.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Miller, J.; Mislivec, A.; Morfín, J. G.; Muhlbeier, T.; Naples, D.; Nelson, J. K.; Norrick, A.; Osta, J.; Palomino, J. L.; Paolone, V.; Park, J.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ransome, R. D.; Ray, H.; Ren, L.; Rodrigues, P. A.; Savage, D. G.; Schellman, H.; Schmitz, D. W.; Simon, C.; Snider, F. D.; Solano Salinas, C. J.; Tagg, N.; Valencia, E.; Velásquez, J. P.; Walton, T.; Wolcott, J.; Zavala, G.; Zhang, D.; Ziemer, B. P.

    2014-06-01

    We present measurements of mi>νmi>mi>μ> charged-current cross section ratios on carbon, iron, and lead relative to a scintillator (CH) using the fine-grained MINERvA detector exposed to the NuMI neutrino beam at Fermilab. The measurements utilize events of energies 2<mi>Emi>mi>νmi><20mi>GeVmi>, with (mi>Emi>mi>ν>)=8mi>GeVmi>, which have a reconstructed mi>μmi>- scattering angle less than 17° to extract ratios of inclusive total cross sections as a function of neutrino energy mi>Emi>mi>ν> and flux-integrated differential cross sections with respect to the Bjorken scaling variable mi>x>. These results provide the first high-statistics direct measurements of nuclear effects in neutrino scattering using different targets in the same neutrino beam. Measured cross section ratios exhibit a relative

  2. Identification of periods of clear sky irradiance in time series of GHI measurements

    DOE PAGESBeta

    Reno, Matthew J.; Hansen, Clifford W.

    2016-01-18

    In this study, we present a simple algorithm for identifying periods of time with broadband global horizontal irradiance (GHI) similar to that occurring during clear sky conditions from a time series of GHI measurements. Other available methods to identify these periods do so by identifying periods with clear sky conditions using additional measurements, such as direct or diffuse irradiance. Our algorithm compares characteristics of the time series of measured GHI with the output of a clear sky model without requiring additional measurements. We validate our algorithm using data from several locations by comparing our results with those obtained from amore » clear sky detection algorithm, and with satellite and ground-based sky imagery.« less

  3. DOCKING OF STRUCTURALLY RELATED DIOLEPOXIDES OF BENZO(GHI)FLUORANTHENE WITH DNA

    EPA Science Inventory

    Docking of structurally-related diolepoxides of benzo{ghi}fluoranthene and benzo{c}phenanthrene with DNA
    Polycyclic aromatic hydrocarbons are a class of chemicals found in the environment. Some class members are potent carcinogens while others with similar structures show litt...

  4. Benzo[ghi]perylene activates the AHR pathway to exert biological effects on the NL-20 human bronchial cell line.

    PubMed

    Zaragoza-Ojeda, Montserrat; Eguía-Aguilar, Pilar; Perezpeña-Díazconti, Mario; Arenas-Huertero, Francisco

    2016-08-10

    Polycyclic aromatic hydrocarbons (PAH) are produced by incomplete combustion of organic material. In the Mexico City atmosphere, the most abundant PAH is benzo[ghi]perylene (BghiP), a gasoline combustion marker. At present, there are no reports of the effects of BghiP on human bronchial cells, so the aim of the study was to evaluate the effects in vitro of BghiP on the NL-20 cell line. Results showed that BghiP induced the formation of small vesicles throughout the cytoplasm, with absence of nuclear fragmentation. At 48h exposition, damage in cell membrane increased significantly at 1.24μg/mL of BghiP (p<0.05). Immunocytochemistry revealed that BghiP provokes nuclear translocation of AhR receptor, which indicates that this compound can induce transcription of genes via receptor binding (AhR pathway activation). BghiP induced a two-fold increase (p<0.05) in the expression of AhR and CYP4B1 (a lung-specific pathway effector). In the presence of the receptor antagonist CH-223191, the loss of viability, the nuclear translocation and the overexpression of genes decreased, though this did not prevent the formation of vesicles. BghiP induced oxidative stress and in presence of the receptor antagonist this increased significantly. In conclusion, BghiP can activate the overexpression of AhR and CYP4B1, and the effects are abated by the AhR receptor antagonist. This is the first report to prove that BghiP utilizes the AhR pathway to exert its toxic effects on the NL-20 human bronchial cell line . PMID:27234499

  5. Ultrasensitive photoelectrochemical aptasensing of miR-155 using efficient and stable CH3NH3PbI3 quantum dots sensitized ZnO nanosheets as light harvester.

    PubMed

    Pang, Xuehui; Qi, Jianni; Zhang, Yong; Ren, Yangyang; Su, Minhui; Jia, Baoxiu; Wang, Yaoguang; Wei, Qin; Du, Bin

    2016-11-15

    An ultrasensitive photoelectrochemical (PEC) aptasensor based on a novel signal amplification strategy was developed for the quantitative determination of microRNA (miR)-155. CH3NH3PbI3 quantum dots (QDs) functionalized ZnO nanosheets (NSs) were employed as the light harvester. Owing to the synergetic effect between CH3NH3PbI3 QDs and ZnO NSs, ZnO@CH3NH3PbI3 can provide an obviously increasing PEC signal by forming the heterojunction. Due to the larger steric hindrance, the sensitive decrease of the PEC signal can be achieved by the specific recognition between the primers and ssDNA of miR-155. In this sense, this developed aptasensor can achieve a high sensitivity (especially in the presence of the low concentrations of miR-155) and a wide detection range (0.01fmol/L to 20,000pmol/L). Under the optimal conditions, the proposed aptasensor offered an ultrasensitive and specific determination of miR-155 down to 0.005fmol/L. This aptassay method would open up a new promising platform at ultralow levels for early diagnose of different miRNA.

  6. Cavity ring-down spectroscopy and vibronic activity of benzo[ghi]perylene.

    PubMed

    Tan, Xiaofeng; Salama, Farid

    2005-07-01

    Gas-phase cavity ring-down spectroscopy of jet-cooled benzo[ghi]perylene (C22H12) in the 26 950-28 600-cm(-1) spectral range is reported for the first time. This study is part of our extensive laboratory astrophysics program for the study of interstellar polycyclic aromatic hydrocarbons. The observed spectrum shows an intermediate level structure and significant broadening and is associated with the vibronically coupled S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) electronic transitions. Time-dependent density-functional calculations were performed to calculate the energetics, vibrational frequencies, and normal coordinates of the S1 and S2 states. A simple vibronic model was employed to account for the vibronic interaction between the vibronic levels of the S1 and S2 states. The calculated vibronic spectrum is found to be in good agreement with the experimental spectrum. PMID:16035840

  7. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis

    PubMed Central

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-01-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300–500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered=−0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2=39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10−2∼10−1 cm2 V−1 s−1) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells. PMID:26395847

  8. Highly Soluble Benzo[ghi]perylenetriimide Derivatives: Stable and Air-Insensitive Electron Acceptors for Artificial Photosynthesis.

    PubMed

    Chen, Hung-Cheng; Hsu, Chao-Ping; Reek, Joost N H; Williams, René M; Brouwer, Albert M

    2015-11-01

    A series of new benzo[ghi]perylenetriimide (BPTI) derivatives has been synthesized and characterized. These remarkably soluble BPTI derivatives show strong optical absorption in the range of λ=300-500 nm and have a high triplet-state energy of 1.67 eV. A cyanophenyl substituent renders BPTI such a strong electron acceptor (Ered =-0.11 V vs. the normal hydrogen electrode) that electron-trapping reactions with O2 and H2 O do not occur. The BPTI radical anion on a fluorine-doped tin oxide|TiO2 electrode is persistent up to tens of seconds (t1/2 =39 s) in air-saturated buffer solution. As a result of favorable packing, theoretical electron mobilities (10(-2) ∼10(-1) cm(2) V(-1) s(-1)) are high and similar to the experimental values observed for perylene diimide and C60 derivatives. Our studies show the potential of the cyanophenyl-modified BPTI compounds as electron acceptors in devices for artificial photosynthesis in water splitting that are also very promising nonfullerene electron-transport materials for organic solar cells.

  9. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.

    PubMed

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K; Fields, Blanche L; Price-Whelan, Alexa; Hogan, Deborah A; Shepard, Kenneth; Dietrich, Lars E P

    2016-06-21

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen.

  10. The Pseudomonas aeruginosa efflux pump MexGHI-OpmD transports a natural phenazine that controls gene expression and biofilm development.

    PubMed

    Sakhtah, Hassan; Koyama, Leslie; Zhang, Yihan; Morales, Diana K; Fields, Blanche L; Price-Whelan, Alexa; Hogan, Deborah A; Shepard, Kenneth; Dietrich, Lars E P

    2016-06-21

    Redox-cycling compounds, including endogenously produced phenazine antibiotics, induce expression of the efflux pump MexGHI-OpmD in the opportunistic pathogen Pseudomonas aeruginosa Previous studies of P. aeruginosa virulence, physiology, and biofilm development have focused on the blue phenazine pyocyanin and the yellow phenazine-1-carboxylic acid (PCA). In P. aeruginosa phenazine biosynthesis, conversion of PCA to pyocyanin is presumed to proceed through the intermediate 5-methylphenazine-1-carboxylate (5-Me-PCA), a reactive compound that has eluded detection in most laboratory samples. Here, we apply electrochemical methods to directly detect 5-Me-PCA and find that it is transported by MexGHI-OpmD in P. aeruginosa strain PA14 planktonic and biofilm cells. We also show that 5-Me-PCA is sufficient to fully induce MexGHI-OpmD expression and that it is required for wild-type colony biofilm morphogenesis. These physiological effects are consistent with the high redox potential of 5-Me-PCA, which distinguishes it from other well-studied P. aeruginosa phenazines. Our observations highlight the importance of this compound, which was previously overlooked due to the challenges associated with its detection, in the context of P. aeruginosa gene expression and multicellular behavior. This study constitutes a unique demonstration of efflux-based self-resistance, controlled by a simple circuit, in a Gram-negative pathogen. PMID:27274079

  11. High-stability semiquinone intermediate in nitrate reductase A (NarGHI) from Escherichia coli is located in a quinol oxidation site close to heme bD.

    PubMed

    Lanciano, Pascal; Magalon, Axel; Bertrand, Patrick; Guigliarelli, Bruno; Grimaldi, Stéphane

    2007-05-01

    Quinol/nitrate oxidoreductase (NarGHI) is the first enzyme involved in respiratory denitrification in prokaryotes. Although this complex in E. coli is known to operate with both ubi and menaquinones, the location and the number of quinol binding sites remain elusive. NarGHI strongly stabilizes a semiquinone radical located within the dihemic anchor subunit NarI. To identify its location and function, we used a combination of mutagenesis, kinetics, EPR, and ENDOR spectroscopies. For the NarGHIH66Y and NarGHIH187Y mutants lacking the distal heme bD, no EPR signal of the semiquinone was observed. In contrast, a semiquinone was detected in the NarGHIH56Y mutant lacking the proximal heme bP. Its thermodynamic properties and spectroscopic characteristics, as revealed by Q-band EPR and ENDOR spectroscopies, are identical to those observed in the native enzyme. The substitution by Ala of the Lys86 residue close to heme bD, which was previously proposed to be in a quinol oxidation site of NarGHI (QD), also leads to the loss of the EPR signal of the semiquinone, although both hemes are present. Enzymatic assays carried out on the NarGHIK86A mutant reveal that the substitution dramatically reduces the rate of oxidation of both mena and ubiquinol analogues. These observations demonstrate that the semiquinone observed in NarI is strongly associated with heme bD and that Lys86 is required for its stabilization. Overall, our results indicate that the semiquinone is located within the quinol oxidation site QD. Details of the possible binding motif of the semiquinone and mechanistic implications are discussed. PMID:17439244

  12. Prognostic Significance of miRNA-1 (miR-1) Expression in Patients with Chordoma

    PubMed Central

    Duan, Zhenfeng; Shen, Jacson; Yang, Xiaoqian; Yang, Pei; Osaka, Eiji; Choy, Edwin; Cote, Gregory; Harmon, David; Zhang, Yu; Nielsen, G. Petur; Spentzos, Dimitrios; Mankin, Henry; Hornicek, Francis

    2014-01-01

    Reliable prognostic biomarkers for chordoma have not yet been established. Recent studies revealed that expression of miRNA-1(miR-1) is frequently downregulated in several cancer types including chordoma. The goal of this follow-up study is to investigate the expression of miR-1 as a prognostic biomarker and further confirm the functional role of miR-1 in chordoma cell growth and proliferation. We determined the relative expression levels of miR-1 and Met in chordoma tissue samples and correlated those to clinical variables. The results showed that miR-1 was downregulated in 93.7% of chordoma tissues and expression was inversely correlated with Met expression. miR-1 expression levels also correlated with clinical prognosis. To characterize and confirm the functional role of miR-1 in the growth and proliferation of chordoma cells, miR-1 precursors were stably transfected into chordoma cell lines UCH-1 and CH-22. Cell Proliferation Assay and MTT were used to evaluate cell growth and proliferation. Restoring expression of miR-1 precursor decreased cell growth and proliferation in UCH-1 and CH-22 cells. These results indicate that suppressed miR-1 expression in chordoma may in part be a driver for tumor growth, and that miR-1 has potential to serve as prognostic biomarker and therapeutic target for chordoma patients. PMID:24501096

  13. Synthesis, microsome-mediated metabolism, and identification of major metabolites of environmental pollutant naphtho(8,1,2-ghi)chrysene

    SciTech Connect

    Sharma, A.K.; Gowdahalli, K.; Gimbor, M.; Amin, S.

    2008-05-15

    Naphtho(8,1,2-ghi)chrysene, commonly known as naphtho(1,2-e)pyrene (N(1,2-e)P) is a widespread environmental pollutant, identified in coal tar extract, air borne particulate matter, marine sediment, cigarette smoke condensate, and vehicle exhaust. Herein, we determined the ability of rat liver microsomes to metabolize N(1,2-e)P and an unequivocal assignment of the metabolites by comparing them with independently,synthesized standards. We developed the synthesis of both the fjord region and the K-region dihydrodiols and various phenolic derivatives for metabolite identification. In summary, N(1,2-e)P trans-11, 12-dihydrodiol was the major metabolite formed along with N(1,2-e)P 4,5-trtins-dihydrodiol and 12-OH-N(1,2-e)P on exposure of rat liver microsomes to N(1,2-e)P. The presence of N(1,2-e)P in the environment and formation of fjord region dihydrodiol 14 as a major metabolite in in vitro metabolism studies strongly suggest the role of N(1,2-e)P as a potential health hazard.

  14. Measurement of the direct <mi>CP> -violating parameter <mi>Ami><mi>CP> in the decay <mi>D>+<mi>Kmi>-<mimi>+<mi>π>+

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Agnew, J. P.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Borysova, M.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duperrin, A.; Dutt, S.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Fauré, A.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garbincius, P. H.; Garcia-Bellido, A.; García-González, J. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Gogota, O.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Holzbauer, J. L.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Katsanos, I.; Kaur, M.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Mansour, J.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Ratoff, P. N.; Razumov, I.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Savitskyi, M.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.; Williams, M. R. J.; Wilson, G. W.; Wobisch, M.; Wood, D. R.; Wyatt, T. R.; Xie, Y.; Yamada, R.; Yang, S.; Yasuda, T.; Yatsunenko, Y. A.; Ye, W.; Ye, Z.; Yin, H.; Yip, K.; Youn, S. W.; Yu, J. M.; Zennamo, J.; Zhao, T. G.; Zhou, B.; Zhu, J.; Zielinski, M.; Zieminska, D.; Zivkovic, L.

    2014-12-01

    We measure the direct mi>Cmi>mi>P>-violating parameter mi>Ami>mi>Cmi>mi>Pmi> for the decay of the charged charm meson, mi>Dmi>+mi>Kmi>-mi>πmi>+mi>πmi>+ (and charge conjugate), using the full 10.4 mi>fbmi>-1 sample of mi>p>mi>p>¯ collisions at mi>smi>=1.96 mi>TeVmi> collected by the D0 detector at the Fermilab Tevatron collider. We extract the raw reconstructed charge asymmetry by fitting the invariant mass distributions for the sum and difference of charge-specific samples. This quantity is then corrected for detector-related asymmetries using data-driven methods and for possible physics asymmetries (from mi>B>mi>D

  15. Viral miRNAs.

    PubMed

    Plaisance-Bonstaff, Karlie; Renne, Rolf

    2011-01-01

    Since 2004, more than 200 microRNAs (miRNAs) have been discovered in double-stranded DNA viruses, mainly herpesviruses and polyomaviruses (Nucleic Acids Res 32:D109-D111, 2004). miRNAs are short 22  ±  3 nt RNA molecules that posttranscriptionally regulate gene expression by binding to 3'-untranslated regions (3'UTR) of target mRNAs, thereby inducing translational silencing and/or transcript degradation (Nature 431:350-355, 2004; Cell 116:281-297, 2004). Since miRNAs require only limited complementarity for binding, miRNA targets are difficult to determine (Mol Cell 27:91-105, 2007). To date, targets have only been experimentally verified for relatively few viral miRNAs, which either target viral or host cellular gene expression: For example, SV40 and related polyomaviruses encode miRNAs which target viral large T antigen expression (Nature 435:682-686, 2005; J Virol 79:13094-13104, 2005; Virology 383:183-187, 2009; J Virol 82:9823-9828, 2008) and miRNAs of α-, β-, and γ-herpesviruses have been implicated in regulating the transition from latent to lytic gene expression, a key step in the herpesvirus life cycle. Viral miRNAs have also been shown to target various host cellular genes. Although this field is just beginning to unravel the multiple roles of viral miRNA in biology and pathogenesis, the current data strongly suggest that virally encoded miRNAs are able to regulate fundamental biological processes such as immune recognition, promotion of cell survival, angiogenesis, proliferation, and cell differentiation. This chapter aims to summarize our current knowledge of viral miRNAs, their targets and function, and the challenges lying ahead to decipher their role in viral biology, pathogenesis, and for γ-herepsvirus-encoded miRNAs, potentially tumorigenesis. PMID:21431678

  16. MiR-125a TNF receptor-associated factor 6 to inhibit osteoclastogenesis

    SciTech Connect

    Guo, Li-Juan; Liao, Lan; Yang, Li; Li, Yu; Jiang, Tie-Jian

    2014-02-15

    MicroRNAs (miRNAs) play important roles in osteoclastogenesis and bone resorption. In the present study, we found that miR-125a was dramatically down-regulated during macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL) induced osteoclastogenesis of circulating CD14+ peripheral blood mononuclear cells (PBMCs). Overexpression of miR-125a in CD14+ PBMCs inhibited osteoclastogenesis, while inhibition of miR-125a promoted osteoclastogenesis. TNF receptor-associated factor 6 (TRAF6), a transduction factor for RANKL/RANK/NFATc1 signal, was confirmed to be a target of miR-125a. EMSA and ChIP assays confirmed that NFATc1 bound to the promoter of the miR-125a. Overexpression of NFATc1 inhibited miR-125a transcription, and block of NFATc1 expression attenuated RANKL-regulated miR-125a transcription. Here, we reported that miR-125a played a biological function in osteoclastogenesis through a novel TRAF6/ NFATc1/miR-125a regulatory feedback loop. It suggests that regulation of miR-125a expression may be a potential strategy for ameliorating metabolic disease. - Highlights: • MiR-125a was significantly down-regulated in osteoclastogenesis of CD14+ PBMCs. • MiR-125a inhibited osteoclast differentiation by targeting TRAF6. • NFATc1 inhibited miR-125a transciption by binding to the promoter of miR-125a. • TRAF6/NFATc1 and miR-125a form a regulatory feedback loop in osteoclastogenesis.

  17. Epstein-Barr Virus Proteins EBNA3A and EBNA3C Together Induce Expression of the Oncogenic MicroRNA Cluster miR-221/miR-222 and Ablate Expression of Its Target p57KIP2

    PubMed Central

    Bazot, Quentin; Paschos, Kostas; Skalska, Lenka; Kalchschmidt, Jens S.; Parker, Gillian A.; Allday, Martin J.

    2015-01-01

    We show that two host-encoded primary RNAs (pri-miRs) and the corresponding microRNA (miR) clusters – widely reported to have cell transformation-associated activity – are regulated by EBNA3A and EBNA3C. Utilising a variety of EBV-transformed lymphoblastoid cell lines (LCLs) carrying knockout-, revertant- or conditional-EBV recombinants, it was possible to demonstrate unambiguously that EBNA3A and EBNA3C are both required for transactivation of the oncogenic miR-221/miR-222 cluster that is expressed at high levels in multiple human tumours – including lymphoma/leukemia. ChIP, ChIP-seq, and chromosome conformation capture analyses indicate that this activation results from direct targeting of both EBV proteins to chromatin at the miR-221/miR-222 genomic locus and activation via a long-range interaction between enhancer elements and the transcription start site of a long non-coding pri-miR located 28kb upstream of the miR sequences. Reduced levels of miR-221/miR-222 produced by inactivation or deletion of EBNA3A or EBNA3C resulted in increased expression of the cyclin-dependent kinase inhibitor p57KIP2, a well-established target of miR-221/miR-222. MiR blocking experiments confirmed that miR-221/miR-222 target p57KIP2 expression in LCLs. In contrast, EBNA3A and EBNA3C are necessary to silence the tumour suppressor cluster miR-143/miR-145, but here ChIP-seq suggests that repression is probably indirect. This miR cluster is frequently down-regulated or deleted in human cancer, however, the targets in B cells are unknown. Together these data indicate that EBNA3A and EBNA3C contribute to B cell transformation by inhibiting multiple tumour suppressor proteins, not only by direct repression of protein-encoding genes, but also by the manipulation of host long non-coding pri-miRs and miRs. PMID:26153983

  18. miRWalk database for miRNA-target interactions.

    PubMed

    Dweep, Harsh; Gretz, Norbert; Sticht, Carsten

    2014-01-01

    miRWalk (http://mirwalk.uni-hd.de/) is a publicly available comprehensive resource, hosting the predicted as well as the experimentally validated microRNA (miRNA)-target interaction pairs. This database allows obtaining the possible miRNA-binding site predictions within the complete sequence of all known genes of three genomes (human, mouse, and rat). Moreover, it also integrates many novel features such as a comparative platform of miRNA-binding sites resulting from ten different prediction datasets, a holistic view of genetic networks of miRNA-gene pathway, and miRNA-gene-Online Mendelian Inheritance in Man disorder interactions, and unique experimentally validated information (e.g., cell lines, diseases, miRNA processing proteins). In this chapter, we describe a schematic workflow on how one can access the stored information from miRWalk and subsequently summarize its applications.

  19. MI1ANAV

    Atmospheric Science Data Center

    2014-09-03

    MI1ANAV MISR Level 1A Navigation Data: Reformatted Annotated Level 1A Product for the Navigation Data, which contains samples of the Terra Platform position and ... Specification Versioning History:  Engineering, Navigation SCAR-B Block:  SCAR-B ...

  20. MAS and MI+ Comparison.

    ERIC Educational Resources Information Center

    Grice, Ila M.

    1991-01-01

    Compares the compact disc read-only-memory (CD-ROM) Magazine Article Summaries (MAS) and Magazine Index Plus Backfile (MI+) in terms of system hardware, index coverage, searching capabilities, citation display, printing citations, local holdings, and miscellaneous features and costs. Finds in favor of MAS. (DMM)

  1. MI1AENG1

    Atmospheric Science Data Center

    2014-09-03

    MI1AENG1 MISR Level 1A Engineering Data File Type 1: Reformatted Annotated Level 1A product for the camera engineering data, which represents indicators of sampled measurements. ... Status Production Report Read Software Files :  Data Product Specification Versioning ...

  2. Interstellar CH, CH+ and abundance of atomic species

    NASA Astrophysics Data System (ADS)

    Gnacinski, P.; Krogulec, M.; Krelowski, J.

    2007-12-01

    The CH molecule is the only one molecule from the visual spectral range observed in two ionisation stages. The production of CH+ is commonly assigned to shock fronts, since the reaction C+ + H2 -> CH+ + H is endothermic. Moreover a velocity difference between the CH and CH+ spectral lines is often observed. We compare the CH/CH+ column densities with that of neutral and ionised atoms. The CH column density correlates better with neutral atoms, while column density of CH+ correlates better with ionised ones.

  3. MiRTargetLink--miRNAs, Genes and Interaction Networks.

    PubMed

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-04-14

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink.

  4. miRTargetLink—miRNAs, Genes and Interaction Networks

    PubMed Central

    Hamberg, Maarten; Backes, Christina; Fehlmann, Tobias; Hart, Martin; Meder, Benjamin; Meese, Eckart; Keller, Andreas

    2016-01-01

    Information on miRNA targeting genes is growing rapidly. For high-throughput experiments, but also for targeted analyses of few genes or miRNAs, easy analysis with concise representation of results facilitates the work of life scientists. We developed miRTargetLink, a tool for automating respective analysis procedures that are frequently applied. Input of the web-based solution is either a single gene or single miRNA, but also sets of genes or miRNAs, can be entered. Validated and predicted targets are extracted from databases and an interaction network is presented. Users can select whether predicted targets, experimentally validated targets with strong or weak evidence, or combinations of those are considered. Central genes or miRNAs are highlighted and users can navigate through the network interactively. To discover the most relevant biochemical processes influenced by the target network, gene set analysis and miRNA set analysis are integrated. As a showcase for miRTargetLink, we analyze targets of five cardiac miRNAs. miRTargetLink is freely available without restrictions at www.ccb.uni-saarland.de/mirtargetlink. PMID:27089332

  5. CH Packaging Operations Manual

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-13

    This procedure provides instructions for assembling the CH Packaging Drum payload assembly, Standard Waste Box (SWB) assembly, Abnormal Operations and ICV and OCV Preshipment Leakage Rate Tests on the packaging seals, using a nondestructive Helium (He) Leak Test.

  6. Identifying TF-MiRNA Regulatory Relationships Using Multiple Features

    PubMed Central

    Shao, Mingyu; Sun, Yanni; Zhou, Shuigeng

    2015-01-01

    MicroRNAs are known to play important roles in the transcriptional and post-transcriptional regulation of gene expression. While intensive research has been conducted to identify miRNAs and their target genes in various genomes, there is only limited knowledge about how microRNAs are regulated. In this study, we construct a pipeline that can infer the regulatory relationships between transcription factors and microRNAs from ChIP-Seq data with high confidence. In particular, after identifying candidate peaks from ChIP-Seq data, we formulate the inference as a PU learning (learning from only positive and unlabeled examples) problem. Multiple features including the statistical significance of the peaks, the location of the peaks, the transcription factor binding site motifs, and the evolutionary conservation are derived from peaks for training and prediction. To further improve the accuracy of our inference, we also apply a mean reciprocal rank (MRR)-based method to the candidate peaks. We apply our pipeline to infer TF-miRNA regulatory relationships in mouse embryonic stem cells. The experimental results show that our approach provides very specific findings of TF-miRNA regulatory relationships. PMID:25922940

  7. NF-κB-Regulated miR-99a Modulates Endothelial Cell Inflammation

    PubMed Central

    Bao, Mei-hua; Li, Jian-Ming; Luo, Huai-qing; Tang, Liang; Lv, Qiao-li; Li, Guang-yi; Zhou, Hong-hao

    2016-01-01

    Objective. The present study was performed to investigate the effects and mechanisms of miR-99a on LPS-induced endothelial cell inflammation, as well as the regulation of NF-κB on miR-99a production. Methods and Results. ELISA showed that LPS treatment significantly promoted the secretion of inflammatory factors (TNF-α, IL-6, IL-1β, and MCP-1). LPS treatment also inhibited miR-99a production and promoted mTOR expression and NF-κB nuclear translocation. Overexpression of miR-99a suppressed the LPS-induced TNF-α, IL-6, IL-1β, and MCP-1 overproduction, mTOR upregulation, and NF-κB nuclear translocation. The PROMO software analysis indicated NF-κB binding site in the −1643 to −1652 region of miR-99a promoter. Dual luciferase reporter analysis, electrophoretic mobility shift assays (EMSA), and chromosome immunoprecipitation (ChIP) assays demonstrated that NF-κB promoted the transcription of miR-99a by binding to the −1643 to −1652 region of miR-99a promoter. Further studies on HUVECs verified the regulatory effects of NF-κB on miR-99a production. Conclusion. MiR-99a inhibited the LPS-induced HUVECs inflammation via inhibition of the mTOR/NF-κB signal. NF-κB promoted miR-99a production by binding to the −1643 to −1652 region of miR-99a promoter. Considering the importance of endothelial inflammation on cardiovascular diseases, such as atherosclerosis, our results may provide a new insight into the pathogenesis and therapy of atherosclerosis. PMID:27403035

  8. C-Myc negatively controls the tumor suppressor PTEN by upregulating miR-26a in glioblastoma multiforme cells

    SciTech Connect

    Guo, Pin; Nie, Quanmin; Lan, Jin; Ge, Jianwei; Qiu, Yongming; Mao, Qing

    2013-11-08

    Highlights: •The c-Myc oncogene directly upregulates miR-26a expression in GBM cells. •ChIP assays demonstrate that c-Myc interacts with the miR-26a promoter. •Luciferase reporter assays show that PTEN is a specific target of miR-26a. •C-Myc–miR-26a suppression of PTEN may regulate the PTEN/AKT pathway. •Overexpression of c-Myc enhances the proliferative capacity of GBM cells. -- Abstract: The c-Myc oncogene is amplified in many tumor types. It is an important regulator of cell proliferation and has been linked to altered miRNA expression, suggesting that c-Myc-regulated miRNAs might contribute to tumor progression. Although miR-26a has been reported to be upregulated in glioblastoma multiforme (GBM), the mechanism has not been established. We have shown that ectopic expression of miR-26a influenced cell proliferation by targeting PTEN, a tumor suppressor gene that is inactivated in many common malignancies, including GBM. Our findings suggest that c-Myc modulates genes associated with oncogenesis in GBM through deregulation of miRNAs via the c-Myc–miR-26a–PTEN signaling pathway. This may be of clinical relevance.

  9. Role of pri-miRNA tertiary structure in miR-17~92 miRNA biogenesis.

    PubMed

    Chaulk, Steven G; Thede, Gina L; Kent, Oliver A; Xu, Zhizhong; Gesner, Emily M; Veldhoen, Richard A; Khanna, Suneil K; Goping, Ing Swie; MacMillan, Andrew M; Mendell, Joshua T; Young, Howard S; Fahlman, Richard P; Glover, J N Mark

    2011-01-01

    MicroRNAs (miRNAs) regulate gene expression in a variety of biological pathways such as development and tumourigenesis. miRNAs are initially expressed as long primary transcripts (pri-miRNAs) that undergo sequential processing by Drosha and then Dicer to yield mature miRNAs. miR-17~92 is a miRNA cluster that encodes 6 miRNAs and while it is essential for development it also has reported oncogenic activity. To date, the role of RNA structure in miRNA biogenesis has only been considered in terms of the secondary structural elements required for processing of pri-miRNAs by Drosha. Here we report that the miR-17~92 cluster has a compact globular tertiary structure where miRNAs internalized within the core of the folded structure are processed less efficiently than miRNAs on the surface of the structure. Increased miR-92 expression resulting from disruption of the compact miR-17~92 structure results in increased repression of integrin α5 mRNA, a known target of miR-92a. In summary, we describe the first example of pri-miRNA structure modulating differential expression of constituent miRNAs.

  10. Urinary miR-16 transactivated by C/EBPβ reduces kidney function after ischemia/reperfusion–induced injury

    PubMed Central

    Chen, Hsi-Hsien; Lan, Yi-Fan; Li, Hsiao-Fen; Cheng, Ching-Feng; Lai, Pei-Fang; Li, Wei-Hua; Lin, Heng

    2016-01-01

    Ischemia-reperfusion (I/R) induced acute kidney injury (AKI) is regulated by transcriptional factors and microRNAs (miRs). However, modulation of miRs by transcriptional factors has not been characterized in AKI. Here, we found that urinary miR-16 was 100-fold higher in AKI patients. MiR-16 was detected earlier than creatinine in mouse after I/R. Using TargetScan, the 3′UTR of B-cell lymphoma 2 (BCL-2) was found complementary to miR-16 to decrease the fluorescent reporter activity. Overexpression of miR-16 in mice significantly attenuated renal function and increased TUNEL activity in epithelium tubule cells. The CCAAT enhancer binding protein beta (C/EBP-β) increased the expression of miR-16 after I/R injury. The ChIP and luciferase promoter assay indicated that about −1.0 kb to −0.5 kb upstream of miR-16 genome promoter region containing C/EBP-β binding motif transcriptionally regulated miR-16 expression. Meanwhile, the level of pri-miR-16 was higher in mice infected with lentivirus containing C/EBP-β compared with wild-type (WT) mice and overexpression of C/EBP-β in the kidney of WT mice reduced kidney function, increased kidney apoptosis, and elevated urinary miR-16 level. Our results indicated that miR-16 was transactivated by C/EBP-β resulting in aggravated I/R induced AKI and that urinary miR-16 may serve as a potential biomarker for AKI. PMID:27297958

  11. Conformational analysis of (CH 3) 2CCl(CH 2) xCH(CH 3) 2

    NASA Astrophysics Data System (ADS)

    Crowder, G. A.; Richardson, Mary Townsend

    Liquid and solid-state i.r. spectra and liquid-state Raman spectra were obtained for three compounds in a family of compounds with the general formula (CH 3) 2CCl(CH 2) xCH(CH 3) 2 with x = 0, 1 and 2. Two carbon—chlorine stretching bands were observed in the liquid-state spectra of each of the three: 2-chloro-2,3-dimethylbutane, 569 and 611 cm -1; 2-chloro-2,4-dimethypentane, 573 and 628 cm -1; 2-chloro-2,5-dimethylhexane, 561 and 626 cm -1. It was determined that two conformers ( TCHH and THHH) exist in the liquid state of 2-chloro-2,3-dimethylbutane and that only the THHH conformer was present in the crystalline solid. For both 2-chloro-2,4-dimethylpentane and 2-chloro-2,5-dimethylhexane, the liquid is composed of the TCHH conformer and at least one of the two possible THHH conformers. The crystalline solid exists as one of the two possible THHH conformers. Normal coordinate calculations were made for all three compounds and a force field was developed for the family. It was not possible to distinguish between the two THHH forms of 2-chloro-2,4-dimethylpentane and 2-chloro-2,5-dimethylhexane.

  12. Celastrol Induces Autophagy by Targeting AR/miR-101 in Prostate Cancer Cells.

    PubMed

    Guo, Jianquan; Huang, Xuemei; Wang, Hui; Yang, Huanjie

    2015-01-01

    Autophagy is an evolutionarily conserved process responsible for the degradation and recycling of cytoplasmic components through autolysosomes. Targeting AR axis is a standard strategy for prostate cancer treatment; however, the role of AR in autophagic processes is still not fully understood. In the present study, we found that AR played a negative role in AR degrader celastrol-induced autophagy. Knockdown of AR in AR-positive prostate cancer cells resulted in enhanced autophagy. Ectopic expression of AR in AR-negative prostate cancer cells, or gain of function of the AR signaling in AR-positive cells, led to suppression of autophagy. Since miR-101 is an inhibitor of autophagy and its expression was decreased along with AR in the process of celastrol-induced autophagy, we hypothesize that AR inhibits autophagy through transactivation of miR-101. AR binding site was defined in the upstream of miR-101 gene by luciferase reporter and ChIP assays. MiR-101 expression correlated with AR status in prostate cancer cell lines. The inhibition of celastrol-induced autophagy by AR was compromised by blocking miR-101; while transfection of miR-101 led to inhibition of celastrol-induced autophagy in spite of AR depletion. Furthermore, mutagenesis of the AR binding site in miR-101 gene led to decreased suppression of autophagy by AR. Finally, autophagy inhibition by miR-101 mimic was found to enhance the cytotoxic effect of celastrol in prostate cancer cells. Our results demonstrate that AR inhibits autophagy via transactivation of miR-101, thus combination of miR-101 mimics with celastrol may represent a promising therapeutic approach for treating prostate cancer.

  13. miRNAs Related to Skeletal Diseases.

    PubMed

    Seeliger, Claudine; Balmayor, Elizabeth R; van Griensven, Martijn

    2016-09-01

    miRNAs as non-coding, short, double-stranded RNA segments are important for cellular biological functions, such as proliferation, differentiation, and apoptosis. miRNAs mainly contribute to the inhibition of important protein translations through their cleavage or direct repression of target messenger RNAs expressions. In the last decade, miRNAs got in the focus of interest with new publications on miRNAs in the context of different diseases. For many types of cancer or myocardial damage, typical signatures of local or systemically circulating miRNAs have already been described. However, little is known about miRNA expressions and their molecular effect in skeletal diseases. An overview of published studies reporting miRNAs detection linked with skeletal diseases was conducted. All regulated miRNAs were summarized and their molecular interactions were illustrated. This review summarizes the involvement and interaction of miRNAs in different skeletal diseases. Thereby, 59 miRNAs were described to be deregulated in tissue, cells, or in the circulation of osteoarthritis (OA), 23 miRNAs deregulated in osteoporosis, and 107 miRNAs deregulated in osteosarcoma (OS). The molecular influences of miRNAs regarding OA, osteoporosis, and OS were illustrated. Specific miRNA signatures for skeletal diseases are described in the literature. Some overlapped, but also unique ones for each disease exist. These miRNAs may present useful targets for the development of new therapeutic approaches and are candidates for diagnostic evaluations. PMID:27418331

  14. Circulating microRNAs, miR-939, miR-595, miR-519d and miR-494, Identify Cirrhotic Patients with HCC

    PubMed Central

    Fornari, Francesca; Ferracin, Manuela; Trerè, Davide; Milazzo, Maddalena; Marinelli, Sara; Galassi, Marzia; Venerandi, Laura; Pollutri, Daniela; Patrizi, Clarissa; Borghi, Alberto; Foschi, Francesco G.; Stefanini, Giuseppe F.; Negrini, Massimo; Bolondi, Luigi; Gramantieri, Laura

    2015-01-01

    The performance of circulating biomarkers for the diagnosis of hepatocellular carcinoma (HCC) is sub-optimal. In this study we tested circulating microRNAs as biomarkers for HCC in cirrhotic patients by performing a two stage study: a discovery phase conducted by microarray and a validation phase performed by qRT-PCR in an independent series of 118 patients. Beside miRNAs emerged from the discovery phase, miR-21, miR-221, miR-519d were also tested in the validation setting on the basis of literary and tissue findings. Deregulated microRNAs were assayed in HCC-derived cells in the intracellular compartment, cell culture supernatant and exosomal fraction. Serum and tissue microRNA levels were compared in 14 patients surgically treated for HCC. From the discovery study, it emerged that seven circulating microRNAs were differentially expressed in cirrhotic patients with and without HCC. In the validation set, miR-939, miR-595 and miR-519d were shown to differentiate cirrhotic patients with and without HCC. MiR-939 and miR-595 are independent factors for HCC. ROC curves of miR-939, miR-595 and miR-519d displayed that AUC was higher than AFP. An exosomal secretion of miR-519d, miR-21, miR-221 and miR-1228 and a correlation between circulating and tissue levels of miR-519d, miR-494 and miR-21 were found in HCC patients. Therefore, we show that circulating microRNAs deserve attention as non-invasive biomarkers in the diagnostic setting of HCC and that exosomal secretion contributes to discharging a subset of microRNAs into the extracellular compartment. PMID:26509672

  15. Identifying miRNAs, targets and functions

    PubMed Central

    Liu, Bing; Li, Jiuyong

    2014-01-01

    microRNAs (miRNAs) are small endogenous non-coding RNAs that function as the universal specificity factors in post-transcriptional gene silencing. Discovering miRNAs, identifying their targets and further inferring miRNA functions have been a critical strategy for understanding normal biological processes of miRNAs and their roles in the development of disease. In this review, we focus on computational methods of inferring miRNA functions, including miRNA functional annotation and inferring miRNA regulatory modules, by integrating heterogeneous data sources. We also briefly introduce the research in miRNA discovery and miRNA-target identification with an emphasis on the challenges to computational biology. PMID:23175680

  16. Reactions of CH3, CH3O, and CH3O2 radicals with O3

    NASA Technical Reports Server (NTRS)

    Simonaitis, R.; Heicklen, J.

    1975-01-01

    Ozone was photolyzed at 253.7 nm at 25 and -52 degrees in the presence of CH4 and O2 to measure the reactions of O3 with CH3, CH3O, and CH3O2. The O(1D) atoms produced in the primary photochemical act react with CH4 to give CH3 radicals which in turn can react with O2 to give CH3O2 and CH3O radicals. At very high O2 to O3 concentration ratios, the quantum yield of O3 disappearance approached 1.0, indicating that O3 reactions with CH3O2 and CH3O are slow. Upper limits to the rate coefficients at 25 degrees were computed. At lower values of the concentration ratio, chain decomposition of O3 occurred which could be explained by the reaction of O3 with CH3 radicals to produce CH2O, O2, and H atoms all the time. The two routes to these products are considered, and the preferred reaction channel is found.

  17. Convergence of miRNA Expression Profiling, α-Synuclein Interacton and GWAS in Parkinson's Disease

    PubMed Central

    Martins, Madalena; Rosa, Alexandra; Guedes, Leonor C.; Fonseca, Benedita V.; Gotovac, Kristina; Violante, Sara; Mestre, Tiago; Coelho, Miguel; Rosa, Mário M.; Martin, Eden R.; Vance, Jeffery M.; Outeiro, Tiago F.; Wang, Liyong; Borovecki, Fran; Ferreira, Joaquim J.; Oliveira, Sofia A.

    2011-01-01

    miRNAs were recently implicated in the pathogenesis of numerous diseases, including neurological disorders such as Parkinson's disease (PD). miRNAs are abundant in the nervous system, essential for efficient brain function and play important roles in neuronal patterning and cell specification. To further investigate their involvement in the etiology of PD, we conducted miRNA expression profiling in peripheral blood mononuclear cells (PBMCs) of 19 patients and 13 controls using microarrays. We found 18 miRNAs differentially expressed, and pathway analysis of 662 predicted target genes of 11 of these miRNAs revealed an over-representation in pathways previously linked to PD as well as novel pathways. To narrow down the genes for further investigations, we undertook a parallel approach using chromatin immunoprecipitation-sequencing (ChIP-seq) analysis to uncover genome-wide interactions of α-synuclein, a molecule with a central role in both monogenic and idiopathic PD. Convergence of ChIP-seq and miRNomics data highlighted the glycosphingolipid biosynthesis and the ubiquitin proteasome system as key players in PD. We then tested the association of target genes belonging to these pathways with PD risk, and identified nine SNPs in USP37 consistently associated with PD susceptibility in three genome-wide association studies (GWAS) datasets (0.46≤OR≤0.63) and highly significant in the meta-dataset (3.36×10−4miRNAs may act as regulators of both known and novel biological processes leading to idiopathic PD. PMID:22003392

  18. Estudio del CH interestelar

    NASA Astrophysics Data System (ADS)

    Olano, C.; Lemarchand, G.; Sanz, A. J.; Bava, J. A.

    El objetivo principal de este proyecto consiste en el estudio de la distribución y abundancia del CH en nubes interestelares a través de la observación de las líneas hiperfinas del CH en 3,3 GHz. El CH es una molécula de amplia distribución en el espacio interestelar y una de las pocas especies que han sido observadas tanto con técnicas de radio como ópticas. Desde el punto de vista tecnológico se ha desarrollado un cabezal de receptor que permitirá la realización de observaciones polarimétricas en la frecuencia de 3,3 GHz, con una temperatura del sistema de 60 K y un ancho de banda de 140 MHz, y que será instalado en el foco primario de la antena parabólica del IAR. El cabezal del receptor es capaz de detectar señales polarizadas, separando las componentes de polarización circular derecha e izquierda. Para tal fin el cabezal consta de dos ramas receptoras que amplificarán la señal y la trasladarán a una frecuencia más baja (frecuencia intermedia), permitiendo de esa forma un mejor transporte de la señal a la sala de control para su posterior procesamiento. El receptor además de tener características polarimétricas, podrá ser usado en el continuo y en la línea, utilizando las ventajas observacionales y de procesamiento de señal que actualmente posee el IAR.

  19. Identification of miRNAs and miRNA-mediated regulatory pathways in Carica papaya.

    PubMed

    Liang, Gang; Li, Yang; He, Hua; Wang, Fang; Yu, Diqiu

    2013-10-01

    Plant microRNAs (miRNAs) post-transcriptionally regulate target gene expression to modulate growth and development and biotic and abiotic stress responses. By analyzing small RNA deep sequencing data in combination with the genome sequence, we identified 75 conserved miRNAs and 11 novel miRNAs. Their target genes were also predicted. For most conserved miRNAs, the miRNA-target pairs were conserved across plant species. In addition to these conserved miRNA-target pairs, we also identified some papaya-specific miRNA-target regulatory pathways. Both miR168 and miR530 target the Argonaute 1 gene, indicating a second autoregulatory mechanism for miRNA regulation. A non-conserved miRNA was mapped within an intron of Dicer-like 1 (DCL1), suggesting a conserved homeostatic autoregulatory mechanism for DCL1 expression. A 21-nt miRNA triggers secondary siRNA production from its target genes, nucleotide-binding site leucine-rich repeat protein genes. Certain phased-miRNAs were processed from their conserved miRNA precursors, indicating a putative miRNA evolution mechanism. In addition, we identified a Carica papaya-specific miRNA that targets an ethylene receptor gene, implying its function in the ethylene signaling pathway. This work will also advance our understanding of miRNA functions and evolution in plants.

  20. miRiadne: a web tool for consistent integration of miRNA nomenclature

    PubMed Central

    Bonnal, Raoul J. P.; Rossi, Riccardo L.; Carpi, Donatella; Ranzani, Valeria; Abrignani, Sergio; Pagani, Massimiliano

    2015-01-01

    The miRBase is the official miRNA repository which keeps the annotation updated on newly discovered miRNAs: it is also used as a reference for the design of miRNA profiling platforms. Nomenclature ambiguities generated by loosely updated platforms and design errors lead to incompatibilities among platforms, even from the same vendor. Published miRNA lists are thus generated with different profiling platforms that refer to diverse and not updated annotations. This greatly compromises searches, comparisons and analyses that rely on miRNA names only without taking into account the mature sequences, which is particularly critic when such analyses are carried over automatically. In this paper we introduce miRiadne, a web tool to harmonize miRNA nomenclature, which takes into account the original miRBase versions from 10 up to 21, and annotations of 40 common profiling platforms from nine brands that we manually curated. miRiadne uses the miRNA mature sequence to link miRBase versions and/or platforms to prevent nomenclature ambiguities. miRiadne was designed to simplify and support biologists and bioinformaticians in re-annotating their own miRNA lists and/or data sets. As Ariadne helped Theseus in escaping the mythological maze, miRiadne will help the miRNA researcher in escaping the nomenclature maze. miRiadne is freely accessible from the URL http://www.miriadne.org. PMID:25897123

  1. Allogeneic T cell responses are regulated by a specific miRNA-mRNA network

    PubMed Central

    Sun, Yaping; Tawara, Isao; Zhao, Meng; Qin, Zhaohui S.; Toubai, Tomomi; Mathewson, Nathan; Tamaki, Hiroya; Nieves, Evelyn; Chinnaiyan, Arul M.; Reddy, Pavan

    2013-01-01

    Donor T cells that respond to host alloantigens following allogeneic bone marrow transplantation (BMT) induce graft-versus-host (GVH) responses, but their molecular landscape is not well understood. MicroRNAs (miRNAs) regulate gene (mRNA) expression and fine-tune the molecular responses of T cells. We stimulated naive T cells with either allogeneic or nonspecific stimuli and used argonaute cross-linked immunoprecipitation (CLIP) with subsequent ChIP microarray analyses to profile miR responses and their direct mRNA targets. We identified a unique expression pattern of miRs and mRNAs following the allostimulation of T cells and a high correlation between the expression of the identified miRs and a reduction of their mRNA targets. miRs and mRNAs that were predicted to be differentially regulated in allogeneic T cells compared with nonspecifically stimulated T cells were validated in vitro. These analyses identified wings apart-like homolog (Wapal) and synaptojanin 1 (Synj1) as potential regulators of allogeneic T cell responses. The expression of these molecular targets in vivo was confirmed in MHC-mismatched experimental BMT. Targeted silencing of either Wapal or Synj1 prevented the development of GVH response, confirming a role for these regulators in allogeneic T cell responses. Thus, this genome-wide analysis of miRNA-mRNA interactions identifies previously unrecognized molecular regulators of T cell responses. PMID:24216511

  2. The Nuclear Receptor FXR Uncouples the Actions of miR-33 from SREBP-2

    PubMed Central

    Tarling, Elizabeth J.; Ahn, Hannah; de Aguiar Vallim, Thomas Q.

    2015-01-01

    Objective To determined whether activation of FXR alters cellular and plasma cholesterol homeostasis as a result of regulation of Srebp-2 and miR-33. Approach and Results ChIP-seq data identified an FXR-response element within intron 10 of the Srebp-2 gene. Consistent with this observation, treatment of mice with FXR-specific agonists (GSK2324 or GW4064) rapidly increased hepatic levels of Srebp-2 mRNA, pSREBP-2 protein, and miR-33. Further, miR-33 targets, that include ABCA1, NSF and CPT1, were all reduced in GSK2324-treated mice. In contrast, neither nSREBP-2 protein, nor SREBP-2 target genes were induced following FXR activation. The inability to process pSREBP-2 to nSREBP-2 is likely a consequence of induction of INSIG-2a by FXR agonists. Finally, we show that FXR-dependent induction of both Srebp-2 and miR-33 is ablated in Scap−/− mice that lack nSREBP-2. Conclusions We demonstrate that activation of FXR uncouples the expression of nSREBP-2 and miR-33, and the regulation of their respective target genes. Further, we conclude that the FXR agonist-dependent increase in miR-33 requires transcription of the Srebp-2 gene. PMID:25593129

  3. Serum miRNAs panel (miR-16-2*, miR-195, miR-2861, miR-497) as novel non-invasive biomarkers for detection of cervical cancer

    PubMed Central

    Zhang, Yujuan; Zhang, Donghong; Wang, Fei; Xu, Danfei; Guo, Ye; Cui, Wei

    2015-01-01

    miRNAs have been established as critical layer of regulation during tumorigenesis; extracellular miRNAs are extraordinarily stable; and, quantitative reverse transcript polymerase chain reaction (qRT-PCR) provides a sensitive platform for quantifying miRNAs with a broad dynamic range. Herein, we aimed to establish a serum miRNA signature for diagnosing cervical cancer (CC). In this study, we recruited a cohort of 184 CC, 186 cervical intraepithelial neoplasia (CIN) patients and 193 healthy control subjects. qRT-PCR was performed with serum samples to screen a pool of 444 miRNAs at the initial phase, 66 miRNAs at the training phase, and 7 miRNAs at the validation phase. The profile of 4 circulating miRNAs (miR-16-2*, miR-195, miR-2861, miR-497) was established for CC diagnosis. By Receiver Operating Characteristic (ROC) curve analysis, this 4-miRNA signature showed high accuracy in discriminating CC (AUC = 0.849), and CIN individuals (AUC = 0.734) from healthy controls. Among these 4 miRNAs, only miR-16-2*, but not miR-195, miR-2861 or miR497, shared a similar pattern in sera of breast cancer and ovarian cancer patients. Overall, our studies have identified a novel noninvasive biomarker constituted with a panel of four miRNAs (miR-16-2*, miR-195, miR-2861, miR-497). PMID:26656154

  4. miRNAs in brain development

    SciTech Connect

    Petri, Rebecca; Malmevik, Josephine; Fasching, Liana; Åkerblom, Malin; Jakobsson, Johan

    2014-02-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. In the brain, a large number of miRNAs are expressed and there is a growing body of evidence demonstrating that miRNAs are essential for brain development and neuronal function. Conditional knockout studies of the core components in the miRNA biogenesis pathway, such as Dicer and DGCR8, have demonstrated a crucial role for miRNAs during the development of the central nervous system. Furthermore, mice deleted for specific miRNAs and miRNA-clusters demonstrate diverse functional roles for different miRNAs during the development of different brain structures. miRNAs have been proposed to regulate cellular functions such as differentiation, proliferation and fate-determination of neural progenitors. In this review we summarise the findings from recent studies that highlight the importance of miRNAs in brain development with a focus on the mouse model. We also discuss the technical limitations of current miRNA studies that still limit our understanding of this family of non-coding RNAs and propose the use of novel and refined technologies that are needed in order to fully determine the impact of specific miRNAs in brain development. - Highlights: • miRNAs are essential for brain development and neuronal function. • KO of Dicer is embryonically lethal. • Conditional Dicer KO results in defective proliferation or increased apoptosis. • KO of individual miRNAs or miRNA families is necessary to determine function.

  5. Implementing Motivational Interviewing (MI) in a Non-MI World: A MI Knowledge Adoption Study

    ERIC Educational Resources Information Center

    D'Ambrosio, Ryan; Laws, Katherine E.; Gabriel, Roy M.; Hromco, Joe; Kelly, Pamela

    2006-01-01

    The Oregon Practice Improvement Collaborative (OPIC) facilitated the implementation of motivational interviewing (MI) in two community-based substance abuse treatment agencies. "The Change Book: A Blueprint for Technology Transfer" was used to structure and support the implementation of motivational interviewing. As part of the implementation…

  6. miRegulome: a knowledge-base of miRNA regulomics and analysis

    PubMed Central

    Barh, Debmalya; Kamapantula, Bhanu; Jain, Neha; Nalluri, Joseph; Bhattacharya, Antaripa; Juneja, Lucky; Barve, Neha; Tiwari, Sandeep; Miyoshi, Anderson; Azevedo, Vasco; Blum, Kenneth; Kumar, Anil; Silva, Artur; Ghosh, Preetam

    2015-01-01

    miRNAs regulate post transcriptional gene expression by targeting multiple mRNAs and hence can modulate multiple signalling pathways, biological processes, and patho-physiologies. Therefore, understanding of miRNA regulatory networks is essential in order to modulate the functions of a miRNA. The focus of several existing databases is to provide information on specific aspects of miRNA regulation. However, an integrated resource on the miRNA regulome is currently not available to facilitate the exploration and understanding of miRNA regulomics. miRegulome attempts to bridge this gap. The current version of miRegulome v1.0 provides details on the entire regulatory modules of miRNAs altered in response to chemical treatments and transcription factors, based on validated data manually curated from published literature. Modules of miRegulome (upstream regulators, downstream targets, miRNA regulated pathways, functions, diseases, etc) are hyperlinked to an appropriate external resource and are displayed visually to provide a comprehensive understanding. Four analysis tools are incorporated to identify relationships among different modules based on user specified datasets. miRegulome and its tools are helpful in understanding the biology of miRNAs and will also facilitate the discovery of biomarkers and therapeutics. With added features in upcoming releases, miRegulome will be an essential resource to the scientific community. Availability: http://bnet.egr.vcu.edu/miRegulome. PMID:26243198

  7. Dissociative recombination of CH4(+).

    PubMed

    Thomas, Richard D; Kashperka, Iryna; Vigren, E; Geppert, Wolf D; Hamberg, Mathias; Larsson, Mats; af Ugglas, Magnus; Zhaunerchyk, Vitali

    2013-10-01

    CH4(+) is an important molecular ion in the astrochemistry of diffuse clouds, dense clouds, cometary comae, and planetary ionospheres. However, the rate of one of the common destruction mechanisms for molecular ions in these regions, dissociative recombination (DR), is somewhat uncertain. Here, we present absolute measurements for the DR of CH4(+) made using the heavy ion storage ring CRYRING in Stockholm, Sweden. From our collision-energy dependent cross-sections, we infer a thermal rate constant of k(Te) = 1.71(±0.02) × 10(–6)(Te/300)(−0.66(±0.02)) cm3 s(–1) over the region of electron temperatures 10 ≤ Te ≤ 1000 K. At low collision energies, we have measured the branching fractions of the DR products to be CH4 (0.00 ± 0.00); CH3 + H (0.18 ± 0.03); CH2 + 2H (0.51 ± 0.03); CH2 + H2 (0.06 ± 0.01); CH + H2 + H (0.23 ± 0.01); and CH + 2H2 (0.02 ± 0.01), indicating that two or more C–H bonds are broken in 80% of all collisions.

  8. Detection of Interstellar CH3.

    PubMed

    Feuchtgruber; Helmich; van Dishoeck EF; Wright

    2000-06-01

    Observations with the Short Wavelength Spectrometer on board the Infrared Space Observatory have led to the first detection of the methyl radical CH(3) in the interstellar medium. The nu(2) Q-branch at 16.5 µm and the R(0) line at 16.0 µm have been unambiguously detected toward the Galactic center Sagittarius A*. The analysis of the measured bands gives a column density of &parl0;8.0+/-2.4&parr0;x1014 cm(-2) and an excitation temperature of 17+/-2 K. Gaseous CO at a similarly low excitation temperature and C(2)H(2) are detected for the same line of sight. Using constraints on the H(2) column density obtained from C(18)O and visual extinction, the inferred CH(3) abundance is &parl0;1.3+2.2-0.7&parr0;x10-8. The chemically related CH(4) molecule is not detected, but the pure rotational lines of CH are seen with the Long Wavelength Spectrometer. The absolute abundances and the CH(3)/CH(4) and CH(3)/CH ratios are inconsistent with published pure gas-phase models of dense clouds. The data require a mix of diffuse and translucent clouds with different densities and extinctions, and/or the development of translucent models in which gas-grain chemistry, freeze-out, and reactions of H with polycyclic aromatic hydrocarbons and solid aliphatic material are included.

  9. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. Physiological roles of miR-155

    PubMed Central

    Mashima, Ryuichi

    2015-01-01

    miR-155 is involved in non-coding microRNAs found in humans, mice and chickens of which the sequence is conserved. Historically, miR-155 was identified as a B-cell integration cluster (bic), which induces B-cell leucosis in chickens, by its activation through viral promoter insertion. Subsequent studies have shown that transgenic mice expressing miR-155 in B cells generated lymphoma, showing that miR-155 is oncogenic. Biochemical investigation identifies many substrates of miR-155, and one of them in B cells and macrophages is the SH2-domain containing inositol-5′-phosphatase 1. A deficiency of miR-155 in the immune system causes attenuated immune functions. Clinically, several types of malignancy including diffuse large B-cell lymphoma have high miR-155 expression levels. PMID:25829072

  10. miRNome Analysis of CML Cells.

    PubMed

    Yang, Yadong; Ding, Nan; Dong, Xunong; Fang, Xiangdong

    2016-01-01

    Next-generation sequencing technologies have greatly accelerated the biological and medical progression. As one of the applications, miRNA-Seq is invaluable in detecting and characterizing genome-wide miRNAs of either too high or too low abundance. Besides, it can also be used in detecting novel miRNAs. Here, we describe an ab initio analysis of an example chronic myeloid leukemia miRNA sequencing data set to quantify the global expression of miRNAs, detect differential expression and novel miRNAs, and predict target genes. The run time of this protocol may vary depending on the volume of miRNA sequencing data and available computing resources but takes ~5 h of computing time for typical experiments and less than 1 h of hands-on time. PMID:27581150

  11. miRNA Digger: a comprehensive pipeline for genome-wide novel miRNA mining.

    PubMed

    Yu, Lan; Shao, Chaogang; Ye, Xinghuo; Meng, Yijun; Zhou, Yincong; Chen, Ming

    2016-01-01

    MicroRNAs (miRNAs) are important regulators of gene expression. The recent advances in high-throughput sequencing (HTS) technique have greatly facilitated large-scale detection of the miRNAs. However, thoroughly discovery of novel miRNAs from the available HTS data sets remains a major challenge. In this study, we observed that Dicer-mediated cleavage sites for the processing of the miRNA precursors could be mapped by using degradome sequencing data in both animals and plants. In this regard, a novel tool, miRNA Digger, was developed for systematical discovery of miRNA candidates through genome-wide screening of cleavage signals based on degradome sequencing data. To test its sensitivity and reliability, miRNA Digger was applied to discover miRNAs from four organs of Arabidopsis. The results revealed that a majority of already known mature miRNAs along with their miRNA*s expressed in these four organs were successfully recovered. Notably, a total of 30 novel miRNA-miRNA* pairs that have not been registered in miRBase were discovered by miRNA Digger. After target prediction and degradome sequencing data-based validation, eleven miRNA-target interactions involving six of the novel miRNAs were identified. Taken together, miRNA Digger could be applied for sensitive detection of novel miRNAs and it could be freely downloaded from http://www.bioinfolab.cn/miRNA_Digger/index.html. PMID:26732371

  12. Bioinformatics of cardiovascular miRNA biology.

    PubMed

    Kunz, Meik; Xiao, Ke; Liang, Chunguang; Viereck, Janika; Pachel, Christina; Frantz, Stefan; Thum, Thomas; Dandekar, Thomas

    2015-12-01

    MicroRNAs (miRNAs) are small ~22 nucleotide non-coding RNAs and are highly conserved among species. Moreover, miRNAs regulate gene expression of a large number of genes associated with important biological functions and signaling pathways. Recently, several miRNAs have been found to be associated with cardiovascular diseases. Thus, investigating the complex regulatory effect of miRNAs may lead to a better understanding of their functional role in the heart. To achieve this, bioinformatics approaches have to be coupled with validation and screening experiments to understand the complex interactions of miRNAs with the genome. This will boost the subsequent development of diagnostic markers and our understanding of the physiological and therapeutic role of miRNAs in cardiac remodeling. In this review, we focus on and explain different bioinformatics strategies and algorithms for the identification and analysis of miRNAs and their regulatory elements to better understand cardiac miRNA biology. Starting with the biogenesis of miRNAs, we present approaches such as LocARNA and miRBase for combining sequence and structure analysis including phylogenetic comparisons as well as detailed analysis of RNA folding patterns, functional target prediction, signaling pathway as well as functional analysis. We also show how far bioinformatics helps to tackle the unprecedented level of complexity and systemic effects by miRNA, underlining the strong therapeutic potential of miRNA and miRNA target structures in cardiovascular disease. In addition, we discuss drawbacks and limitations of bioinformatics algorithms and the necessity of experimental approaches for miRNA target identification. This article is part of a Special Issue entitled 'Non-coding RNAs'.

  13. Association of miR-34a, miR-130a, miR-150 and miR-155 polymorphisms with the risk of ischemic stroke.

    PubMed

    Choi, Gun Ho; Ko, Ki Han; Kim, Jung Oh; Kim, Jinkwon; Oh, Seung Hun; Han, In Bo; Cho, Kyung Gi; Kim, Ok Joon; Bae, Jinkun; Kim, Nam Keun

    2016-07-01

    MicroRNAs (miRNAs or miRs) are small (19-23 nt) non-coding RNA molecules that are endogenous regulators of gene expression. Previous studies have found that some miRNAs are related to the progression of ischemia in the cerebral artery. Furthermore, a recent study found a significant association between miRNA single nucleotide polymorphisms (SNPs) and the risk of ischemic stroke. Therefore, it may be valuable to investigate associations between megakaryocyte formation-related miRNA polymorphisms and the prevalence of ischemic stroke. We thus conducted a case-control study of 1,000 individuals who were screened for 4 miRNA polymorphisms (miR‑34a rs6577555C>A, miR-130a rs731384C>T, miR-150 rs73056059G>A and miR‑155 rs767649T>A) by PCR-RFLP analysis. The study population comprised 596 patients with ischemic stroke and 404 control subjects without any history of neurological disorders. We observed associations between miRNA polymorphisms and individual stroke subtypes. The miR‑150 polymorphisms were significantly associated with ischemic stroke subgroups, such as left anterior descending artery (LAD) disease [GG vs. AA: adjusted odds ratio (AOR), 1.922; 95% confidence interval (CI), 1.003-3.681] and cardioembolism (GG vs. AA: AOR, 2.996; 95% CI, 1.293-6.939). Additionally, Cox proportional analysis indicated that the miR‑150GA genotype was associated with survival in patients with ischemic stroke [adjusted hazard ratio (HR), 2.063; 95% CI, 1.142-3.727; P=0.017] and with the LAD subgroup [adjusted HR, 3.021; 95% CI, 1.345-6.785; P=0.008]. Our findings suggest that miR‑150 polymorphisms may contribute to the development of ischemic stroke and may potentially act as biomarkers to predict the risk of ischemic stroke. To the best of our knowledge, this is the first study to evaluate the association between miRNA polymorphisms (miR-34aC>A, miR-130aC>T, miR-150G>A and miR-155T>A) and ischemic stroke. PMID:27246008

  14. miR-203 is a direct transcriptional target of E2F1 and causes G1 arrest in esophageal cancer cells.

    PubMed

    Zhang, Kun; Dai, Limeng; Zhang, Bo; Xu, Xueqing; Shi, Jiazhong; Fu, Liyuan; Chen, Xuedan; Li, Juan; Bai, Yun

    2015-04-01

    miR-203 act as tumor repressor by inhibiting cell proliferation and is repressed in a variety of human tumors, although the molecular mechanisms responsible have not been elucidated. Here, we reveal that miR-203 is regulated by E2F1, an important transcription factor that can induce cell proliferation by controlling cell cycle progression. We found that miR-203 expression was induced by cisplatin, which also induced E2F1 protein accumulation in esophageal squamous cell carcinoma (ESCC) cell lines. miR-203 expression was elevated upon activation of ectopic E2F1, whereas this induction was abolished when the E2F1 gene was silenced. Moreover, with luciferase reporter assays and chromatin immunoprecipitation (ChIP) assays, we demonstrated that E2F1 transactivates miR-203 by directly binding to the miR-203 gene promoter. In addition, we found that miR-203 inhibited cell proliferation by inducing G1/S cell cycle arrest, but not apoptosis, in ESCC cell lines. Finally, we observed that miR-203 negatively inhibited the expression of CDK6, subsequently decreasing E2F1 expression possibly through Rb phosphorylation. Taken together, our data show that cancer-related miR-203 is a novel transcriptional target of E2F1 and that it regulates cell cycle arrest by participating in a feedback loop with E2F1.

  15. Fluorescence from excitation of CH4, CH3OH and CH3SH by extreme vacuum ultraviolet radiation

    NASA Technical Reports Server (NTRS)

    Ma, Guang; Suto, Masako; Lee, L. C.

    1990-01-01

    The photoabsorption and fluorescence cross sections of CH4, CH3OH, and CH3SH were measured in the wavelength regions of 52-106, 48-106, and 48-106 nm, respectively. The fluorescence spectra were dispersed to identify the emitting species. Emissions from the excited species of H(asterisk) and CH(asterisk) are commonly observed for all three molecules. Emission from the excited CH2(asterisk) is observed from CH4, OH(asterisk) from CH3OH and CS(asterisk) from CH3SH. The photoexcitation processes that may produce the observed emission bands are discussed.

  16. miR-340 suppresses glioblastoma multiforme

    PubMed Central

    Ge, Ruiguang; He, Lei; Li, Mei; Li, Yi; Peng, Ying

    2015-01-01

    Deregulation of microRNAs (miRs) contributes to tumorigenesis. Down-regulation of miR-340 is observed in multiple types of cancers. However, the biological function of miR-340 in glioblastoma multiforme (GBM) remains largely unknown. In the present study, we demonstrated that expression of miR-340 was downregulated in both glioma cell lines and tissues. Survival of GBM patients with high levels of miR-340 was significantly extended in comparison to patients expressing low miR-340 levels. Biological functional experiments showed that the restoration of miR-340 dramatically inhibited glioma cell proliferation, induced cell-cycle arrest and apoptosis, suppressed cell motility and promoted autophagy and terminal differentiation. Mechanistic studies disclosed that, miR-340 over-expression suppressed several oncogenes including p-AKT, EZH2, EGFR, BMI1 and XIAP. Furthermore, ROCK1 was validated as a direct functional target miR-340 and silencing of ROCK1 phenocopied the anti-tumor effect of mR-340. Our findings indicate an important role of miR-340 as a glioma killer, and suggest a potential prognosis biomarker and therapeutic target for GBM. PMID:25831237

  17. miR-326-histone deacetylase-3 feedback loop regulates the invasion and tumorigenic and angiogenic response to anti-cancer drugs.

    PubMed

    Kim, Youngmi; Kim, Hyuna; Park, Hyunmi; Park, Deokbum; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2014-10-01

    Histone modification is known to be associated with multidrug resistance phenotypes. Cancer cell lines that are resistant or have been made resistant to anti-cancer drugs showed lower expression levels of histone deacetylase-3 (HDAC3), among the histone deacetylase(s), than cancer cell lines that were sensitive to anti-cancer drugs. Celastrol and Taxol decreased the expression of HDAC3 in cancer cell lines sensitive to anti-cancer drugs. HDAC3 negatively regulated the invasion, migration, and anchorage-independent growth of cancer cells. HDAC3 conferred sensitivity to anti-cancer drugs in vitro and in vivo. TargetScan analysis predicted miR-326 as a negative regulator of HDAC3. ChIP assays and luciferase assays showed a negative feedback loop between HDAC3 and miR-326. miR-326 decreased the apoptotic effect of anti-cancer drugs, and the miR-326 inhibitor increased the apoptotic effect of anti-cancer drugs. miR-326 enhanced the invasion and migration potential of cancer cells. The miR-326 inhibitor negatively regulated the tumorigenic, metastatic, and angiogenic potential of anti-cancer drug-resistant cancer cells. HDAC3 showed a positive feedback loop with miRNAs such as miR-200b, miR-217, and miR-335. miR-200b, miR-217, and miR-335 negatively regulated the expression of miR-326 and the invasion and migration potential of cancer cells while enhancing the apoptotic effect of anti-cancer drugs. TargetScan analysis predicted miR-200b and miR-217 as negative regulators of cancer-associated gene, a cancer/testis antigen, which is known to regulate the response to anti-cancer drugs. HDAC3 and miR-326 acted upstream of the cancer-associated gene. Thus, we show that the miR-326-HDAC3 feedback loop can be employed as a target for the development of anti-cancer therapeutics.

  18. So, Why Sol-Mi? American Music Education

    ERIC Educational Resources Information Center

    Bennett, Peggy D.

    2005-01-01

    Walk into any primary grade music class in the U.S., and you will likely hear teacher and students singing a musical greeting, such as "Good morning boys and girls" (sol-mi-mi-sol-sol-mi) and the response "Good morning Miss Purdy" (sol-mi-mi-sol-mi-mi). Since about the 1970s, teachers have been beginning and ending music class for young children…

  19. Two miRNA clusters, miR-34b/c and miR-449, are essential for normal brain development, motile ciliogenesis, and spermatogenesis

    PubMed Central

    Wu, Jingwen; Bao, Jianqiang; Kim, Minkyung; Yuan, Shuiqiao; Tang, Chong; Zheng, Huili; Mastick, Grant S.; Xu, Chen; Yan, Wei

    2014-01-01

    Ablation of a single miRNA gene rarely leads to a discernable developmental phenotype in mice, in some cases because of compensatory effects by other functionally related miRNAs. Here, we report that simultaneous inactivation of two functionally related miRNA clusters (miR-34b/c and miR-449) encoding five miRNAs (miR-34b, miR-34c, miR-449a, miR-449b, and miR-449c) led to sexually dimorphic, partial perinatal lethality, growth retardation, and infertility. These developmental defects correlated with the dysregulation of ∼240 target genes, which are mainly involved in three major cellular functions, including cell-fate control, brain development and microtubule dynamics. Our data demonstrate an essential role of a miRNA family in brain development, motile ciliogenesis, and spermatogenesis. PMID:24982181

  20. Tertiary structure mapping of the pri-miRNA miR-17~92.

    PubMed

    Chaulk, Steven G; Fahlman, Richard P

    2014-01-01

    The understanding of RNA in regulating gene expression has exploded over the past 15 years. MicroRNAs (miRNAs) have vastly expanded the role of RNA in gene regulation beyond spliceosomal, ribosomal, and messenger RNAs. Approximately one half of miRNAs are polycistronic, where two or more miRNAs are encoded on a single pri-miRNA transcript, termed a miRNA cluster. The six miRNAs of the miR-17~92 cluster are contained within a ~800 nucleotide region within intron 3 of the cl13orf25 ~7 kb pri-miRNA transcript. We recently reported on the tertiary structured domain of miR-17~92 and its role in modulating miRNA biogenesis. The key finding was that the cluster structure explained the differential processing of the miRNA hairpins by Drosha. This work demonstrated the need to consider pri-miRNA tertiary structure in miRNA biogenesis. Since biochemical structure probing is typically performed on relatively short RNAs (≤200 nucleotides), we had to adapt these methodologies for application on large RNAs (~800 nucleotide miR-17~92 pri-miRNA). We present here our adaptation of a protection footprinting method using ribonucleases to probe the structure of the ~800 nucleotide miR-17~92 pri-miRNA. We outline the technical difficulties involved in probing large RNAs and data visualization using denaturing polyacrylamide gel electrophoresis and how we adapted the existing approaches to probe large RNAs. The methodology outlined here is generally applicable to large RNAs including long noncoding RNAs (lncRNA).

  1. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database

    PubMed Central

    Chou, Chih-Hung; Chang, Nai-Wen; Shrestha, Sirjana; Hsu, Sheng-Da; Lin, Yu-Ling; Lee, Wei-Hsiang; Yang, Chi-Dung; Hong, Hsiao-Chin; Wei, Ting-Yen; Tu, Siang-Jyun; Tsai, Tzi-Ren; Ho, Shu-Yi; Jian, Ting-Yan; Wu, Hsin-Yi; Chen, Pin-Rong; Lin, Nai-Chieh; Huang, Hsin-Tzu; Yang, Tzu-Ling; Pai, Chung-Yuan; Tai, Chun-San; Chen, Wen-Liang; Huang, Chia-Yen; Liu, Chun-Chi; Weng, Shun-Long; Liao, Kuang-Wen; Hsu, Wen-Lian; Huang, Hsien-Da

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs of approximately 22 nucleotides, which negatively regulate the gene expression at the post-transcriptional level. This study describes an update of the miRTarBase (http://miRTarBase.mbc.nctu.edu.tw/) that provides information about experimentally validated miRNA-target interactions (MTIs). The latest update of the miRTarBase expanded it to identify systematically Argonaute-miRNA-RNA interactions from 138 crosslinking and immunoprecipitation sequencing (CLIP-seq) data sets that were generated by 21 independent studies. The database contains 4966 articles, 7439 strongly validated MTIs (using reporter assays or western blots) and 348 007 MTIs from CLIP-seq. The number of MTIs in the miRTarBase has increased around 7-fold since the 2014 miRTarBase update. The miRNA and gene expression profiles from The Cancer Genome Atlas (TCGA) are integrated to provide an effective overview of this exponential growth in the miRNA experimental data. These improvements make the miRTarBase one of the more comprehensively annotated, experimentally validated miRNA-target interactions databases and motivate additional miRNA research efforts. PMID:26590260

  2. Twist1-related miR-26b-5p suppresses epithelial-mesenchymal transition, migration and invasion by targeting SMAD1 in hepatocellular carcinoma

    PubMed Central

    Zhao, Xiulan; Zhao, Nan; Sun, Ran; Zhu, Dongwang; Zhang, Yanhui; Li, Yanlei; Gu, Qiang; Dong, Xueyi; Wang, Meili; An, Jindan

    2016-01-01

    Twist1 is well known to induce epithelial-mesenchymal transition (EMT) and promote tumor metastasis. MicroRNAs (miRNAs) are involved in the EMT process and are associated with metastasis in hepatocellular carcinoma (HCC). In the present study, microRNA-26b-5p (miR-26b-5p) expression was consistently and significantly downregulated in HepG2-Twist1 HCC cell lines compared with HepG2-vector cell lines using microarrays (the HepG2-Twist1 cell line can stably express Twist1). miR-26b- 5p downregulation was directly mediated by Twist1 through binding to the promoter region of miR-26b-5p in HepG2-Twist1 cells by ChIP-seq technology. Both gain- and loss-of-function studies showed that miR-26b-5p dramatically suppressed EMT and the invasion ability of HCC cells in vitro. Using mouse models, tumors derived from miR- 26b-5p-overexpressed HCC cells exhibited a significant reduction in tumorigenicity compared with the control group. Subsequent investigation revealed that miR-26b-5p directly inhibited SMAD family member 1 (SMAD1) expression. miR-26b-5p repressed BMP4/Smad1 signaling following SMAD1 inhibition. Overexpression of SMAD1 reversed the function of miR-26b-5p. In human HCC tissues and mouse xenograft tumors, miR-26b-5p levels were inversely correlated with SMAD1 expression as well as metastasis. Conclusion: miR-26b-5p suppresses Twist1-induced EMT, invasion, and metastasis of HCC cells by targeting SMAD1 and BMP4/Smad1 signaling. This suggests a promising application for miR-26b-5p in anti-HCC therapy. PMID:27027434

  3. Computational and in vitro Investigation of miRNA-Gene Regulations in Retinoblastoma Pathogenesis: miRNA Mimics Strategy

    PubMed Central

    Venkatesan, Nalini; Deepa, Perinkulam Ravi; Khetan, Vikas; Krishnakumar, Subramanian

    2015-01-01

    PURPOSE Retinoblastoma (RB), a primary pediatric intraocular tumor, arises from primitive retinal layers. Several novel molecular strategies are being developed for the clinical management of RB. miRNAs are known to regulate cancer-relevant biological processes. Here, the role of selected miRNAs, namely, miR-532-5p and miR-486-3p, has been analyzed for potential therapeutic targeting in RB. METHODS A comprehensive bioinformatic analysis was performed to predict the posttranscriptional regulators (miRNAs) of the select panel of genes [Group 1: oncogenes (HMGA2, MYCN, SYK, FASN); Group 2: cancer stem cell markers (TACSTD, ABCG2, CD133, CD44, CD24) and Group 3: cell cycle regulatory proteins (p53, MDM2)] using Microcosm, DIANALAB, miRBase v 18, and REFSEQ database, and RNA hybrid. The expressions of five miRNAs, namely, miR-146b-5p, miR-532-5p, miR-142-5p, miR-328, and miR-486-3p, were analyzed by qRT–PCR on primary RB tumor samples (n = 30; including 17 invasive RB tumors and 13 noninvasive RB tumors). Detailed complementary alignment between 5’ seed sequence of differentially expressed miRNAs and the sequence of target genes was determined. Based on minimum energy level and piCTAR scores, the gene targets were selected. Functional roles of these miRNA clusters were studied by using mimics in cultured RB (Y79, Weri Rb-1) cells in vitro. The gene targets (SYK and FASN) of the studied miRNAs were confirmed by qRT-PCR and western blot analysis. Cell proliferation and apoptotic studies were performed. RESULTS Nearly 1948 miRNAs were identified in the in silico analysis, From this list, only 9 upregulated miRNAs (miR-146b-5p, miR-305, miR-663b, miR-299, miR-532-5p, miR-892b, miR-501, miR-142-5p, and miR-513b) and 10 downregulated miRNAs (miR-1254, miR-328, miR-133a, miR-1287, miR-1299, miR-375, miR-486-3p, miR-720, miR-98, and miR-122*) were found to be common with the RB serum miRNA profile. Downregulation of five miRNAs (miR-146b-5p, miR-532-5p, miR-142-5p, miR-328

  4. miRNA polymorphisms (miR‑146a, miR‑149, miR‑196a2 and miR‑499) are associated with the risk of coronary artery disease.

    PubMed

    Sung, Jung-Hoon; Kim, Sang-Hoon; Yang, Woo-In; Kim, Won-Jang; Moon, Jae-Youn; Kim, In Jai; Cha, Dong-Hun; Cho, Seung-Yun; Kim, Jung Oh; Kim, Kyeong Ah; Kim, Ok-Joon; Lim, Sang-Wook; Kim, Nam-Keun

    2016-09-01

    Small non‑coding microRNAs (miRNAs) are not only important for heart and vascular development but are also important in cardiovascular pathophysiology and diseases, such as ischemia and atherosclerosis‑related diseases. However, the effect of miR‑146a, miR‑149, miR‑196a2 and miR‑499 polymorphisms on coronary artery disease (CAD) susceptibility remain unknown. The aim of the present study was to examine the genotype frequencies of miR‑146a, miR‑149, miR‑196a2 and miR‑499 polymorphisms in patients with CAD, and assess their clinical applications for diagnosing and monitoring CAD. Using polymerase chain reaction‑amplified DNA, microRNA polymorphisms were analyzed in 522 patients with CAD and 535 control subjects. The miR‑149 rs2292832 C>T and miR‑196a2 rs11614913 T>C polymorphisms were shown to be significantly associated with CAD prevalence. In subgroup analyses according to disease severity, the miR‑146a rs2910164GG genotype was significantly associated with CAD risk in the stent ≥2 group. In addition, miR‑146aG/‑149T/‑196a2C/‑499 G allele combination was significantly associated with CAD prevalence (G‑T‑C‑G and G‑C‑C‑G of miR‑146a/‑149/‑196a2/‑499). The combination genotypes of miR‑146aGG/149TC+CC and miR‑149CC/196a2TC were significantly associated with CAD incidence. In subgroup analyses, miR‑146a rs2910164 C>G increased the risk of developing CAD in non‑smoking, hypertensive and nondiabetic subgroups. Furthermore, miR‑149 rs2292832 C>T and miR‑196a2 rs11614913 T>C was shown to increase CAD risk in females and patients aged >63 years old. The miR‑149T allele, miR‑196a2C allele and miR‑146aG/‑149T/‑196a2C/‑499 G allele combination were associated with CAD pathogenesis. The combined effects of environmental factor and genotype combination of miRNA polymorphisms may contribute to CAD prevalence. PMID:27430349

  5. Evaluation of inhibition of miRNA expression induced by anti-miRNA oligonucleotides.

    PubMed

    Chae, Dong-Kyu; Ban, Eunmi; Yoo, Young Sook; Baik, Ja-Hyun; Song, Eun Joo

    2016-07-01

    MicroRNAs (miRNAs) are short RNA molecules that control the expression of mRNAs associated with various biological processes. Therefore, deregulated miRNAs play an important role in the pathogenesis of diseases. Numerous studies aimed at developing novel miRNA-based drugs or determining miRNA functions have been conducted by inhibiting miRNAs using anti-miRNA oligonucleotides (AMOs), which inhibit the function by hybridizing with miRNA. To increase the binding affinity and specificity to target miRNA, AMOs with various chemical modifications have been developed. Evaluating the potency of these various types of AMOs is an essential step in their development. In this study, we developed a capillary electrophoresis with laser-induced fluorescence (CE-LIF) method to evaluate the potency of AMOs by measuring changes in miRNA levels with fluorescence-labeled ssDNA probes using AMO-miR-23a, which inhibits miR-23a related to lung cancer. In order to eliminate interference by excess AMOs during hybridization of the ssDNA probe with the miR-23a, the concentration of the ssDNA probe was optimized. This newly developed method was used to compare the potency of two different modified AMOs. The data were supported by the results of a luciferase assay. This study demonstrated that CE-LIF analysis could be used to accurately evaluate AMO potency in biological samples. PMID:27178549

  6. Non-inhibited miRNAs shape the cellular response to anti-miR.

    PubMed

    Androsavich, John R; Chau, B Nelson

    2014-06-01

    Identification of primary microRNA (miRNA) gene targets is critical for developing miRNA-based therapeutics and understanding their mechanisms of action. However, disentangling primary target derepression induced by miRNA inhibition from secondary effects on the transcriptome remains a technical challenge. Here, we utilized RNA immunoprecipitation (RIP) combined with competitive binding assays to identify novel primary targets of miR-122. These transcripts physically dissociate from AGO2-miRNA complexes when anti-miR is spiked into liver lysates. mRNA target displacement strongly correlated with expression changes in these genes following in vivo anti-miR dosing, suggesting that derepression of these targets directly reflects changes in AGO2 target occupancy. Importantly, using a metric based on weighted miRNA expression, we found that the most responsive mRNA target candidates in both RIP competition assays and expression profiling experiments were those with fewer alternative seed sites for highly expressed non-inhibited miRNAs. These data strongly suggest that miRNA co-regulation modulates the transcriptomic response to anti-miR. We demonstrate the practical utility of this 'miR-target impact' model, and encourage its incorporation, together with the RIP competition assay, into existing target prediction and validation pipelines.

  7. NORTH EMBANKMENT IN FOREGROUND, WITH (LR) SUBSTATION (MI98D), POWERHOUSE (MI98C), ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    NORTH EMBANKMENT IN FOREGROUND, WITH (L-R) SUBSTATION (MI-98-D), POWERHOUSE (MI-98-C), AND COOKE DAM POND IN BACKGROUND. VIEW TO SOUTH - Cooke Hydroelectric Plant, North Embankment, Cook Dam Road at Au Sable River, Oscoda, Iosco County, MI

  8. Spatiotemporal plasticity of miRNAs functions: The miR-17-92 case.

    PubMed

    Bonaldi, Tiziana; Mihailovich, Marija

    2016-05-01

    The functional effect of a specific miRNA is tightly linked to the transcriptome, thus having the potential to elicit distinct outcomes in different cellular states. Our recent discovery of a dual role of the miR-17-92 cluster, which shifts from oncogene to tumor suppressor during lymphoma progression, exemplifies the spatiotemporal plasticity of miRNAs. PMID:27314099

  9. Regulation of miRNA Processing and miRNA Mediated Gene Repression in Cancer

    PubMed Central

    Bajan, Sarah; Hutvagner, Gyorgy

    2014-01-01

    The majority of human protein-coding genes are predicted to be targets of miRNA-mediated post-transcriptional regulation. The widespread influence of miRNAs is illustrated by their essential roles in all biological processes. Regulated miRNA expression is essential for maintaining cellular differentiation; therefore alterations in miRNA expression patterns are associated with several diseases, including various cancers. High-throughput sequencing technologies revealed low level expressing miRNA isoforms, termed isomiRs. IsomiRs may differ in sequence, length, target preference and expression patterns from their parental miRNA and can arise from differences in miRNA biosynthesis, RNA editing, or SNPs inherent to the miRNA gene. The association between isomiR expression and disease progression is largely unknown. Misregulated miRNA expression is thought to contribute to the formation and/or progression of cancer. However, due to the diversity of targeted transcripts, miRNAs can function as both tumor-suppressor genes and oncogenes as defined by cellular context. Despite this, miRNA profiling studies concluded that the differential expression of particular miRNAs in diseased tissue could aid the diagnosis and treatment of some cancers. PMID:25069508

  10. [Expressions of miR-21, miR-155 and miR-210 in plasma of patients with lymphoma and its clinical significance].

    PubMed

    Ge, Tian-Tian; Liang, Yong; Fu, Rong; Wang, Guo-Jin; Ruan, Er-Bao; Qu, Wen; Wang, Xiao-Ming; Liu, Hong; Wu, Yu-Hong; Song, Jia; Wang, Hua-Quan; Xing, Li-Min; Guan, Jing; Li, Li-Juan; Shao, Zong-Hong

    2012-04-01

    This study was purposed to investigate the expressions of miR-21, miR-155 and miR-210 in plasma of patients with lymphoma, and explore their role played in diagnosis, evaluation of chemotherapy effect and prognosis of lymphoma. The expressions of miR-21, miR-155 and miR-210 were assayed by RT-PCR in plasma of 54 cases of lymphoma, 10 cases of lymphonode inflammation and 27 cases of normal controls. The results indicated that the expressions of miR-21, miR-155 and miR-210 in plasma of lymphoma patients were higher than those of control group and lymphonode inflammation group (P < 0.05). The expressions of miR-21 and miR-210 in plasma of control group and lymphonode inflammation group had no significant differences (P > 0.05). The expression of miR-21 in plasma of lymphoma patient group significantly correlated with their serum LDH level. The expressions of miR-21 and miR-210 in plasma of previously untreated lymphoma patient group were higher than those of the patients treated for 6 or more courses (P < 0.05). The diagnostic accuracy of miR-21, miR-155 and miR-210 used for lymphoma patients was 56, 65, 48 respectively, and reached to 83 when combined three of them. It is concluded that the expressions of miR-21, miR-155 and miR-210 in plasma of lymphoma patients were significantly higher. Detection of these 3 miRNA in plasma of patients can contribute to the clinical diagnosis, treatment and prognosis evaluation of lymphoma.

  11. Enhancing miRNA annotation confidence in miRBase by continuous cross dataset analysis

    PubMed Central

    Kjems, Jørgen; Bramsen, Jesper B

    2011-01-01

    The immaculate annotation of all microRNAs (miRNAs) is a prerequisite to study their biological function on a genome-wide scale. However, the original criteria for proper miRNA annotation seem unsuited for the automated analysis of the immense number of small RNA reads available in next generation sequencing (NGS) datasets. Here we analyze the confidence of past miRNA annotation in miRBase by cross-analyzing publicly available NGS datasets using strengthened annotation requirements. Our analysis highlights that a large number of annotated human miRNAs in miRBase seems to require more experimental validation to be confidently annotated. Notably, our dataset analysis also identified almost 300 currently non-annotated miRNA*s and 28 novel miRNAs. These observations hereby greatly increase the confidence of past miRNA annotation in miRBase but also illustrate the usefulness of continuous re-evaluating NGS datasets in the identification of novel miRNAs. PMID:21558790

  12. miR-isomiRExp: a web-server for the analysis of expression of miRNA at the miRNA/isomiR levels

    PubMed Central

    Guo, Li; Yu, Jiafeng; Liang, Tingming; Zou, Quan

    2016-01-01

    MicroRNA (miRNA) locus has been found that can generate a series of varied isomiR sequences. Most studies always focus on determining miRNA level, however, the canonical miRNA sequence is only a specific member in the multiple isomiRs. Some studies have shown that isomiR sequences play versatile roles in biological progress, and the analysis and research should be simultaneously performed at the miRNA/isomiR levels. Based on the biological characteristics of miRNA and isomiR, we developed miR-isomiRExp to analyze expression pattern of miRNA at the miRNA/isomiR levels, provide insights into tracking miRNA/isomiR maturation and processing mechanisms, and reveal functional characteristics of miRNA/isomiR. Simultaneously, we also performed expression analysis of specific human diseases using public small RNA sequencing datasets based on the analysis platform, which may help in surveying the potential deregulated miRNA/isomiR expression profiles, especially sequence and function-related isomiRs for further interaction analysis and study. The miR-isomiRExp platform provides miRNA/isomiR expression patterns and more information to study deregulated miRNA loci and detailed isomiR sequences. This comprehensive analysis will enrich experimental miRNA studies. miR-isomiRExp is available at http://mirisomirexp.aliapp.com. PMID:27009551

  13. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    NASA Astrophysics Data System (ADS)

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-05-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms.

  14. Low-dose irradiation promotes Rad51 expression by down-regulating miR-193b-3p in hepatocytes

    PubMed Central

    Lee, Eon-Seok; Won, Yeo Jin; Kim, Byoung-Chul; Park, Daeui; Bae, Jin-Han; Park, Seong-Joon; Noh, Sung Jin; Kang, Yeong-Rok; Choi, Si Ho; Yoon, Je-Hyun; Heo, Kyu; Yang, Kwangmo; Son, Tae Gen

    2016-01-01

    Current evidence indicates that there is a relationship between microRNA (miRNA)-mediated gene silencing and low-dose irradiation (LDIR) responses. Here, alterations of miRNA expression in response to LDIR exposure in male BALB/c mice and three different types of hepatocytes were investigated. The miRNome of the LDIR-exposed mouse spleens (0.01 Gy, 6.5 mGy/h) was analyzed, and the expression of miRNA and mRNA was validated by qRT-PCR. Western blotting, chromatin immunoprecipitation (ChIP), and luciferase assays were also performed to evaluate the interaction between miRNAs and their target genes and to gain insight into the regulation of miRNA expression. The expression of miRNA-193b-3p was down-regulated in the mouse spleen and liver and in various hepatocytes (NCTC, Hepa, and HepG2 cell lines) in response to LDIR. The down-regulation of miR-193b-3p expression was caused by histone deacetylation on the miR-193b-3p promoter in the HepG2 cells irradiated with 0.01 Gy. However, the alteration of histone deacetylation and miR-193b-3p and Rad51 expression in response to LDIR was restored by pretreatment with N-acetyl-cyctein. In conclusion, we provide evidence that miRNA responses to LDIR include the modulation of cellular stress responses and repair mechanisms. PMID:27225532

  15. miRNAFold: a web server for fast miRNA precursor prediction in genomes.

    PubMed

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-07-01

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. PMID:27242364

  16. miRNAFold: a web server for fast miRNA precursor prediction in genomes

    PubMed Central

    Tav, Christophe; Tempel, Sébastien; Poligny, Laurent; Tahi, Fariza

    2016-01-01

    Computational methods are required for prediction of non-coding RNAs (ncRNAs), which are involved in many biological processes, especially at post-transcriptional level. Among these ncRNAs, miRNAs have been largely studied and biologists need efficient and fast tools for their identification. In particular, ab initio methods are usually required when predicting novel miRNAs. Here we present a web server dedicated for miRNA precursors identification at a large scale in genomes. It is based on an algorithm called miRNAFold that allows predicting miRNA hairpin structures quickly with high sensitivity. miRNAFold is implemented as a web server with an intuitive and user-friendly interface, as well as a standalone version. The web server is freely available at: http://EvryRNA.ibisc.univ-evry.fr/miRNAFold. PMID:27242364

  17. MiRNAs in bone diseases.

    PubMed

    Moore, Benjamin T; Xiao, Peng

    2013-01-01

    MicroRNAs (miRNAs), which mainly inhibit protein expression by targeting the 3'UTR (untranslated region) of mRNAs, are known to play various roles in the pathogenesis of many different types of diseases. Specifically, in bone diseases, recent emphasis has been placed on the involvement of miRNAs in the differentiation and proliferation of bone and cartilage cells, particularly with regards to how these mechanisms contribute to bone homeostasis. In this review, we summarize miRNAs that are important in the differentiation and proliferation of bone cells, and specific miRNAs associated with bone diseases, such as osteoporosis, osteoarthritis and rheumatoid arthritis. This review also provides the perspective that miRNA studies will identify not only new mechanisms in basic bone research, but also potential novel diagnostic biomarkers and drug targets for bone diseases.

  18. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma.

    PubMed

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Di Gennaro, Gianfranco; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-05-10

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30-50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs. PMID:27057640

  19. miRNA array screening reveals cooperative MGMT-regulation between miR-181d-5p and miR-409-3p in glioblastoma

    PubMed Central

    Khalil, Susanna; Fabbri, Enrica; Santangelo, Alessandra; Bezzerri, Valentino; Cantù, Cinzia; Gennaro, Gianfranco Di; Finotti, Alessia; Ghimenton, Claudio; Eccher, Albino; Dechecchi, Maria; Scarpa, Aldo; Hirshman, Brian; Chen, Clark; Ferracin, Manuela; Negrini, Massimo; Gambari, Roberto; Cabrini, Giulio

    2016-01-01

    The levels of expression of O6-methylguanine-DNA methyltransferase (MGMT) are relevant in predicting the response to the alkylating chemotherapy in patients affected by glioblastoma. MGMT promoter methylation and the published MGMT regulating microRNAs (miRNAs) do not completely explain the expression pattern of MGMT in clinical glioblastoma specimens. Here we used a genome-wide microarray-based approach to identify MGMT regulating miRNAs. Our screen unveiled three novel MGMT regulating miRNAs, miR-127-3p, miR-409-3p, and miR-124-3p, in addition to the previously identified miR-181d-5p. Transfection of these three novel miRNAs into the T98G glioblastoma cell line suppressed MGMT mRNA and protein expression. However, their MGMT- suppressive effects are 30–50% relative that seen with miR-181d-5p transfection. In silico analyses of The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) revealed that miR-181d-5p is the only miRNA that consistently exhibited inverse correlation with MGMT mRNA expression. However, statistical models incorporating both miR-181d-5p and miR-409-3p expression better predict MGMT expression relative to models involving either miRNA alone. Our results confirmed miR-181d-5p as the key MGMT-regulating miRNA. Other MGMT regulating miRNAs, including the miR-409-3p identified in this report, modify the effect of miR-181d-5p on MGMT expression. MGMT expression is, thus, regulated by cooperative interaction between key MGMT-regulating miRNAs. PMID:27057640

  20. Classification of various muscular tissues using miRNA profiling.

    PubMed

    Endo, Kosuke; Weng, Huachun; Naito, Yukiko; Sasaoka, Toshikuni; Takahashi, Akio; Fukushima, Yasue; Iwai, Naoharu

    2013-01-01

    MicroRNAs (miRNAs) are endogenous small RNAs of 18-23 nucleotides that regulate gene expression. Recently, plasma miRNAs have been investigated as biomarkers for various diseases. In the present study, we explored whether miRNA expression profiling of various muscle cells may be useful for the diagnosis of various diseases involving muscle necrosis. miRNA expression profiling was assessed by miRNA array and real-time reverse-transcriptase polymerase chain reaction by using a reverse primer of a stem loop structure. Profiling of various muscle cells of mouse, including cardiac muscles, skeletal muscles, and vascular and visceral smooth muscles, indicated that profiling of miR-1, miR-133a, miR-133b, miR-145, miR-206, miR-208a, miR-208b, and miR499 were adequate to discriminate muscle cells. miR-145 was remarkably highly expressed in smooth muscles. miR-208a and miR-499 were highly expressed in cardiomyocytes. miR-133a was highly expressed in fast-twitch skeletal muscles. miR-206 and miR-208b were expressed in the slow-twitch skeletal muscles, and they can likely discriminate fast- and slow-twitch types of skeletal muscle cells. We observed that brown fat adipose cells had an miRNA expression profile very similar to those of skeletal muscle cells in the mouse. Plasma concentrations of miR-133a and miR-145 were extremely useful in diagnosing skeletal muscle necrosis in a mouse model of Duchenne muscular dystrophy and colon smooth muscle necrosis in a rat ischemic colitis model, respectively. In the present study, we investigated the miRNA expression profiles of various muscular tissues. Our results suggest that expression profiling would be useful for the diagnosis of various diseases such as muscular necrosis.

  1. Serum miR-21, miR-29a and miR-125b are promising biomarkers for the early detection of colorectal neoplasia

    PubMed Central

    Yamada, Atsushi; Horimatsu, Takahiro; Okugawa, Yoshinaga; Nishida, Naoshi; Honjo, Hajime; Ida, Hiroshi; Kou, Tadayuki; Kusaka, Toshihiro; Sasaki, Yu; Makato, Yagi; Higurashi, Takuma; Yukawa, Norio; Amanuma, Yusuke; Kikuchi, Osamu; Muto, Manabu; Ueno, Yoshiyuki; Nakajima, Atsushi; Chiba, Tsutomu; Boland, C. Richard; Goel, Ajay

    2015-01-01

    Purpose Circulating microRNAs (miRNAs) are emerging as promising diagnostic biomarkers for colorectal cancer (CRC), but their usefulness for detecting early colorectal neoplasms (CRNs) remains unclear. This study aimed to identify serum miRNA biomarkers for the identification of patients with early CRNs. Experimental Design A cohort of 237 serum samples from 160 patients with early CRNs (148 precancerous lesions and 12 cancers) and 77 healthy subjects was analyzed in a three-step approach that included: a comprehensive literature review for published biomarkers, a screening phase, and a validation phase. RNA was extracted from sera, and levels of miRNAs were examined by real-time RT-PCR. Results Nine miRNAs (miR-18a, miR-19a, miR-19b, miR-20a, miR-21, miR-24, miR-29a, miR-92 and miR-125b) were selected as candidate biomarkers for initial analysis. In the screening phase, serum levels of miR-21, miR-29a and miR-125b were significantly higher in patients with early CRN compared to healthy controls. Elevated levels of miR-21, miR-29a and miR-125b were confirmed in the validation phase using an independent set of subjects. Area under the curve (AUC) values for serum miR-21, miR-29a, miR-125b, and their combined score in discriminating early CRN patients from healthy controls were 0.706, 0.741, 0.806 and 0.827 respectively. Serum levels of miR-29a and miR-125b were significantly higher in patients who only had small CRNs (≤5mm) compared to healthy subjects. Conclusions Since serum levels of miR-21, miR-29a and miR-125b discriminated early CRN patients from healthy controls, our data highlight the potential clinical use of these molecular signatures for noninvasive screening of patients with colorectal neoplasia. PMID:26038573

  2. Thz Spectroscopy of 12CH^+, 13CH^+, and 12CD^+

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, Brian; Pearson, John; Amano, Takayoshi

    2015-06-01

    In 1937, Dunham detected a couple of unidentified lines in near-UV, and later Douglas and Herzberg identified them based on their laboratory observations to be low-J electronic transitions of CH^+. The electronic spectra, in particular the A^1Π-X^1σ^+ band, have been investigated extensively. On the other hand, the pure rotational transitions have not been studied so extensively. Only the lowest rotational transition, J=1-0, was observed in the laboratory for the normal species, 13CH^+, and CD^+. Based on the laboratory frequency, CH^+ was detected in star forming regions with the Hershel space observatory. Cernicharo et al identified pure rotational transitions from J=2-1 to J=6-5 in the far-infrared region in the ISO spectrum of the planetary nebula NGC 7027. The ISO spectra, however, were of low-resolution, so high-resolution spectroscopic observation is highly desirable. In this presentation, we have extended the measurements to higher-J lines up to 2 THz. For production of CH^+, an extended negative glow discharge in a gas mixture of CH_4 (˜ 0.5 mTorr) diluted in He (˜ 60 mTorr) was used. The optimum discharge current was about 15 mA and the axial magnetic filed to 160 Gauss was applied up. The discharge cell was cooled down to liquid nitrogen temperature. Several frequency multiplier chains, developed at JPL and purchased from Virginia Diodes, were used as THz radiation sources. New THz measurements are not only useful for providing better characterization of spectroscopic properties but also will serve as starting point for astronomical observations. T. Dunham, Publ. Astron. Soc. Pac., 49,~26 (1937) A. E. Douglas and G. Herzberg, Ap. J. 94,~381 (1941) T. Amano, Ap.J.Lett., 716, L1 (2010) T. Amano, J. Chem. Phys., 133, 244305 (2010) J. Cernicharo et al., Ap. J. Lett., 483, L65 (1997)

  3. miRNA signature identification of retinoblastoma and the correlations between differentially expressed miRNAs during retinoblastoma progression

    PubMed Central

    Yang, Yang

    2015-01-01

    Purpose Retinoblastoma (RB) is a common pediatric cancer. The study aimed to uncover the mechanisms of RB progression and identify novel therapeutic biomarkers. Methods The miRNA expression profile GSE7072, which includes three RB samples and three healthy retina samples, was used. After data normalization using the preprocessCore package, differentially expressed miRNAs (DE-miRs) were selected by the limma package. The targets of the DE-miRs were predicted based on two databases, followed by construction of the miRNA–target network. Pathway enrichment analysis was conducted for the targets of the DE-miRNAs using DAVID. The CTD database was used to predict RB-related genes, followed by clustering analysis using the pvclust package. The correlation network of DE-miRs was established. MiRNA expression was validated in another data set, GSE41321. Results In total, 24 DE-miRs were identified whose targets were correlated with the cell cycle pathway. Among them, hsa-miR-373, hsa-miR-125b, and hsa-miR-181a were highlighted in the miRNA–target regulatory network; 14 DE-miRs, including hsa-miR-373, hsa-miR-125b, hsa-miR-18a, hsa-miR-25, hsa-miR-20a, and hsa-let-7 (a, b, c), were shown to distinguish RB from healthy tissue. In addition, hsa-miR-25, hsa-miR-18a, and hsa-miR-20a shared the common target BCL2L11; hsa-let-7b and hsa-miR-125b targeted the genes CDC25A, CDK6, and LIN28A. Expression of three miRNAs in GSE41321 was consistent with that in GSE7072. Conclusions Several critical miRNAs were identified in RB progression. Hsa-miR-373 might regulate RB invasion and metastasis, hsa-miR-181a might involve in the CDKN1B-mediated cell cycle pathway, and hsa-miR-125b and hsa-let-7b might serve as tumor suppressors by coregulating CDK6, CDC25A, and LIN28A. The miRNAs hsa-miR-25, hsa-miR-18a, and hsa-miR-20a might exert their function by coregulating BCL2L1. PMID:26730174

  4. Influence of interstitial Mn on magnetism in the room-temperature ferromagnet <mi>Mn>1+<mi>δSb>

    SciTech Connect

    Taylor, Alice E.; Berlijn, Tom; Hahn, Steven E.; May, Andrew F.; Williams, Travis J.; Poudel, Lekhanath N; Calder, Stuart A.; Fishman, Randy Scott; Stone, Matthew B.; Aczel, Adam A.; Cao, Huibo; Lumsden, Mark D.; Christianson, Andrew D.

    2015-06-15

    We report elastic and inelastic neutron scattering measurements of the high-TC ferromagnet <mi>Mn>1+<mi>δSb>. Measurements were performed on a large, TC = 434 K, single crystal with interstitial Mn content of δ ≈ 0.13. The neutron diffraction results reveal that the interstitial Mn has a magnetic moment, and that it is aligned antiparallel to the main Mn moment. We perform density functional theory calculations including the interstitial Mn, and find the interstitial to be magnetic in agreement with the diffraction data. The inelastic neutron scattering measurements reveal two features in the magnetic dynamics: i) a spin-wave-like dispersion emanating from ferromagnetic Bragg positions (H K 2n), and ii) a broad, non-dispersive signal centered at forbidden Bragg positions (H K 2n+1). The inelastic spectrum cannot be modeled by simple linear spin-wave theory calculations, and appears to be significantly altered by the presence of the interstitial Mn ions. Finally, the results show that the influence of the interstitial Mn on the magnetic state in this system is more important than previously understood.

  5. Inference of gene regulation via miRNAs during ES cell differentiation using MiRaGE method.

    PubMed

    Yoshizawa, Masato; Taguchi, Y-H; Yasuda, Jun

    2011-01-01

    MicroRNA (miRNA) is a critical regulator of cell growth, differentiation, and development. To identify important miRNAs in a biological process, many bioinformatical tools have been developed. We have developed MiRaGE (MiRNA Ranking by Gene Expression) method to infer the regulation of gene expression by miRNAs from changes of gene expression profiles. The method does not require precedent array normalization. We applied the method to elucidate possibly important miRNAs during embryonic stem (ES) cell differentiation to neuronal cells and we infer that certain miRNAs, including miR-200 family, miR-429, miR-302 family, and miR-17-92 cluster members may be important to the maintenance of undifferentiated status in ES cells. PMID:22272132

  6. Peroxisome proliferator-activated receptor-α-mediated transcription of miR-301a and miR-454 and their host gene SKA2 regulates endothelin-1 and PAI-1 expression in sickle cell disease.

    PubMed

    Gonsalves, Caryn S; Li, Chen; Malik, Punam; Tahara, Stanley M; Kalra, Vijay K

    2015-01-01

    Endothelin-1 (ET-1) and plasminogen activator inhibitor-1 (PAI-1) play important roles in pulmonary hypertension (PH) in sickle cell disease (SCD). Our previous studies show higher levels of placenta growth factor (PlGF) in SCD correlate with increased plasma levels of ET-1, PAI-1, and other physiological markers of PH. PlGF-mediated ET-1 and PAI-1 expression occurs via activation of hypoxia-inducible factor-1α (HIF-1α). However, relatively little is understood regarding post-transcriptional regulation of PlGF-mediated expression of ET-1 and PAI-1. Herein, we show PlGF treatment of endothelial cells reduced levels of miR-301a and miR-454 from basal levels. In addition, both miRNAs targeted the 3'-UTRs of ET-1 and PAI-1 mRNAs. These results were corroborated in the mouse model of SCD [Berkeley sickle mice (BK-SS)] and in SCD subjects. Plasma levels of miR-454 in SCD subjects were significantly lower compared with unaffected controls, which correlated with higher plasma levels of both ET-1 and PAI-1. Moreover, lung tissues from BK-SS mice showed significantly reduced levels of pre-miR-301a and concomitantly higher levels of ET-1 and PAI-1. Furthermore, we show that miR-301a/miR-454 located in the spindle and kinetochore-associated protein-2 (SKA2) transcription unit was co-transcriptionally regulated by both HIF-1α and peroxisome proliferator-activated receptor-α (PPAR-α) as demonstrated by SKA2 promoter mutational analysis and ChIP. Finally we show that fenofibrate, a PPAR-α agonist, increased the expression of miR-301a/miR-454 and SKA2 in human microvascular endothelial cell line (HMEC) cells; the former were responsible for reduced expression of ET-1 and PAI-1. Our studies provide a potential therapeutic approach whereby fenofibrate-induced miR-301a/miR-454 expression can ameliorate PH and lung fibrosis by reduction in ET-1 and PAI-1 levels in SCD.

  7. Elevated serum miR-93, miR-191, and miR-499 are noninvasive biomarkers for the presence and progression of traumatic brain injury.

    PubMed

    Yang, Ting; Song, Jiaxi; Bu, Xiaomin; Wang, Cheng; Wu, Jia; Cai, Jialu; Wan, Shujun; Fan, Chunli; Zhang, Chunni; Wang, Junjun

    2016-04-01

    The levels of miR-93, miR-191, and miR-499 have been reported to be up-regulated in the tissues of experimental traumatic brain injury (TBI) rat models. However, the clinical diagnostic and prognostic values of the serum signatures of these 3 miRNAs in TBI remain unclear. The purpose of this study was to determine the expression levels of these 3 microRNAs (miRNAs) in the sera of TBI patients and to evaluate their relationships with the severity and clinical outcome of TBI. The serum levels of these miRNAs were assessed in TBI patients (n = 76) and healthy controls (n = 38) by quantitative reverse-transcription PCR. The severities and clinical outcomes of the TBI patients were evaluated with the Glasgow coma scale and the Glasgow outcome scale. The serum miR-93, miR-191, and miR-499 levels were significantly increased in the TBI patients compared with the controls at all examined time points, and these levels were significantly higher in the patients with severe TBI than in those with moderate or mild TBI (p < 0.05). The serum miR-93, miR-191, and miR-499 levels were significantly higher in the patients with a poor outcome than in those with a good outcome (p < 0.05). The AUCs of miR-93, miR-191, and miR-499 for distinguishing the TBI patients from the healthy controls were 1.000 (p < 0.001), 0.727 (p < 0.001) and 0.801 (p < 0.001), respectively. Interestingly, the AUCs of miR-93, miR-191, and miR-499 for distinguishing the mild TBI patients from the healthy controls were 1.000 (p < 0.001), 0.742 (p < 0.001) and 0.819 (p < 0.001), respectively. Taken together, these results indicate that miR-93, miR-191, and miR-499 are potentially valuable indicators of the diagnosis, severity, and prognosis of TBI. Our study showed that the serum levels of miR-93, miR-191, and miR-499 are all increased in traumatic brain injury (TBI) patients. Their serum levels are associated with TBI severity and outcome, which suggest that these miRNAs play important roles in the pathogenesis

  8. Obtaining miRNA-Target Interaction Information from miRWalk2.0.

    PubMed

    Parveen, Alisha; Gretz, Norbert; Dweep, Harsh

    2016-01-01

    miRWalk2.0 (http://zmf.umm.uni-heidelberg.de/mirwalk2) is a freely accessible, regularly updated comprehensive archive supplying the largest available collection of predicted and experimentally verified miRNA-target interactions, with various novel and unique features to assist the scientific community. Approximately 949 million interactions between 11,748 miRNAs, 308,700 genes, and 68,460 lncRNAs are documented in miRWalk2.0 with 5,146,217 different kinds of identifiers to offer a one-stop site to collect an abundance of information. This article describes a schematic workflow on how to obtain miRNA-target interactions from miRWalk2.0. © 2016 by John Wiley & Sons, Inc. PMID:27603021

  9. Restoration of BRG1 inhibits proliferation and metastasis of lung cancer by regulating tumor suppressor miR-148b

    PubMed Central

    Zhou, Zheng; Su, Yanhe; Fa, Xianen

    2015-01-01

    Background Brahma-related gene 1 (BRG1) has been implicated in a variety of biological processes, and it has been found to be mutated or silenced in numerous cancers, including lung cancer. Recent reports have proposed BRG1 as a tumor suppressor, but its roles in cell proliferation and metastasis remain unknown. miR-148b functions as a tumor suppressor in non-small-cell lung cancer. However, the mechanism responsible for the downregulation of miR-148b in lung cancer is still elusive. Methods The expression of BRG1 and miR-148b was evaluated in lung cancer tissues and cells using quantitative real-time polymerase chain reaction. The effect of BRG1 on proliferation of lung cancer cells was investigated using MTT assay. Transwell and Western blot assays were used to analyze the effect of BRG1 on invasion and epithelial–mesenchymal transition (EMT), respectively. The target of miR-148b was ascertained using luciferase reporter assay. Chromatin immunoprecipitation (ChIP) assay was performed to analyze the relation of BRG1 and the promoter region of miR-148b. Results Restoration of BRG1 was demonstrated to inhibit cell proliferation, metastasis, and EMT in lung cancer cell lines. Furthermore, we found that miR-148b was positively regulated by BRG1. Additionally, we suggested that miR-148b suppressed cell proliferation, metastasis, and EMT in lung cancer cells by directly binging to 3′-untranslated region of WNT1, blocking the WNT1/β-catenin signaling pathway. ChIP assay showed that BRG1 bound to the promoter of miR-148b in A549 cells. Conclusion BRG1 positively regulated the expression of miR-148b, leading to inhibition of cell proliferation, metastasis, restraint of EMT, and inactivation of the WNT/β-catenin signaling pathway, which highlights potential therapeutic possibilities for the treatment of lung cancer. PMID:26664144

  10. Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression.

    PubMed

    Wang, Honghe; Liu, Wei; Black, ShaNekkia; Turner, Omari; Daniel, Juliet M; Dean-Colomb, Windy; He, Qinghua P; Davis, Melissa; Yates, Clayton

    2016-02-01

    Kaiso, a member of the BTB/POZ zinc finger protein family, functions as a transcriptional repressor by binding to sequence-specific Kaiso binding sites or to methyl-CpG dinucleotides. Previously, we demonstrated that Kaiso overexpression and nuclear localization correlated with the progression of prostate cancer (PCa). Therefore, our objective was to explore the molecular mechanisms underlying Kaiso-mediated PCa progression. Comparative analysis of miRNA arrays revealed that 13 miRNAs were significantly altered (> 1.5 fold, p < 0.05) in sh-Kaiso PC-3 compared to sh-Scr control cells. Real-time PCR validated that three miRNAs (9, 31, 636) were increased in sh-Kaiso cells similar to cells treated with 5-aza-2'-deoxycytidine. miR-31 expression negatively correlated with Kaiso expression and with methylation of the miR-31 promoter in a panel of PCa cell lines. ChIP assays revealed that Kaiso binds directly to the miR-31 promoter in a methylation-dependent manner. Over-expression of miR-31 decreased cell proliferation, migration and invasiveness of PC-3 cells, whereas cells transfected with anti-miR-31 restored proliferation, migration and invasiveness of sh-Kaiso PC-3 cells. In PCa patients, Kaiso high/miR-31 low expression correlated with worse overall survival relative to each marker individually. In conclusion, these results demonstrate that Kaiso promotes cell migration and invasiveness through regulation of miR-31 expression.

  11. Kaiso, a transcriptional repressor, promotes cell migration and invasion of prostate cancer cells through regulation of miR-31 expression

    PubMed Central

    Wang, Honghe; Liu, Wei; Black, ShaNekkia; Turner, Omari; Daniel, Juliet M.; Dean-Colomb, Windy; He, Qinghua P.; Davis, Melissa; Yates, Clayton

    2016-01-01

    Kaiso, a member of the BTB/POZ zinc finger protein family, functions as a transcriptional repressor by binding to sequence-specific Kaiso binding sites or to methyl-CpG dinucleotides. Previously, we demonstrated that Kaiso overexpression and nuclear localization correlated with the progression of prostate cancer (PCa). Therefore, our objective was to explore the molecular mechanisms underlying Kaiso-mediated PCa progression. Comparative analysis of miRNA arrays revealed that 13 miRNAs were significantly altered (> 1.5 fold, p < 0.05) in sh-Kaiso PC-3 compared to sh-Scr control cells. Real-time PCR validated that three miRNAs (9, 31, 636) were increased in sh-Kaiso cells similar to cells treated with 5-aza-2′-deoxycytidine. miR-31 expression negatively correlated with Kaiso expression and with methylation of the miR-31 promoter in a panel of PCa cell lines. ChIP assays revealed that Kaiso binds directly to the miR-31 promoter in a methylation-dependent manner. Over-expression of miR-31 decreased cell proliferation, migration and invasiveness of PC-3 cells, whereas cells transfected with anti-miR-31 restored proliferation, migration and invasiveness of sh-Kaiso PC-3 cells. In PCa patients, Kaiso high/miR-31 low expression correlated with worse overall survival relative to each marker individually. In conclusion, these results demonstrate that Kaiso promotes cell migration and invasiveness through regulation of miR-31 expression. PMID:26734997

  12. MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology.

    PubMed

    Karathanasis, Nestoras; Tsamardinos, Ioannis; Poirazi, Panayiota

    2015-01-01

    We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs.

  13. MiRduplexSVM: A High-Performing MiRNA-Duplex Prediction and Evaluation Methodology.

    PubMed

    Karathanasis, Nestoras; Tsamardinos, Ioannis; Poirazi, Panayiota

    2015-01-01

    We address the problem of predicting the position of a miRNA duplex on a microRNA hairpin via the development and application of a novel SVM-based methodology. Our method combines a unique problem representation and an unbiased optimization protocol to learn from mirBase19.0 an accurate predictive model, termed MiRduplexSVM. This is the first model that provides precise information about all four ends of the miRNA duplex. We show that (a) our method outperforms four state-of-the-art tools, namely MaturePred, MiRPara, MatureBayes, MiRdup as well as a Simple Geometric Locator when applied on the same training datasets employed for each tool and evaluated on a common blind test set. (b) In all comparisons, MiRduplexSVM shows superior performance, achieving up to a 60% increase in prediction accuracy for mammalian hairpins and can generalize very well on plant hairpins, without any special optimization. (c) The tool has a number of important applications such as the ability to accurately predict the miRNA or the miRNA*, given the opposite strand of a duplex. Its performance on this task is superior to the 2nts overhang rule commonly used in computational studies and similar to that of a comparative genomic approach, without the need for prior knowledge or the complexity of performing multiple alignments. Finally, it is able to evaluate novel, potential miRNAs found either computationally or experimentally. In relation with recent confidence evaluation methods used in miRBase, MiRduplexSVM was successful in identifying high confidence potential miRNAs. PMID:25961860

  14. Global profiling of miRNAs and the hairpin precursors: insights into miRNA processing and novel miRNA discovery

    PubMed Central

    Li, Na; You, Xintian; Chen, Tao; Mackowiak, Sebastian D.; Friedländer, Marc R.; Weigt, Martina; Du, Hang; Gogol-Döring, Andreas; Chang, Zisong; Dieterich, Christoph; Hu, Yuhui; Chen, Wei

    2013-01-01

    MicroRNAs (miRNAs) constitute an important class of small regulatory RNAs that are derived from distinct hairpin precursors (pre-miRNAs). In contrast to mature miRNAs, which have been characterized in numerous genome-wide studies of different organisms, research on global profiling of pre-miRNAs is limited. Here, using massive parallel sequencing, we have performed global characterization of both mouse mature and precursor miRNAs. In total, 87 369 704 and 252 003 sequencing reads derived from 887 mature and 281 precursor miRNAs were obtained, respectively. Our analysis revealed new aspects of miRNA/pre-miRNA processing and modification, including eight Ago2-cleaved pre-miRNAs, eight new instances of miRNA editing and exclusively 5′ tailed mirtrons. Furthermore, based on the sequences of both mature and precursor miRNAs, we developed a miRNA discovery pipeline, miRGrep, which does not rely on the availability of genome reference sequences. In addition to 239 known mouse pre-miRNAs, miRGrep predicted 41 novel ones with high confidence. Similar as known ones, the mature miRNAs derived from most of these novel loci showed both reduced abundance following Dicer knockdown and the binding with Argonaute2. Evaluation on data sets obtained from Caenorhabditis elegans and Caenorhabditis sp.11 demonstrated that miRGrep could be widely used for miRNA discovery in metazoans, especially in those without genome reference sequences. PMID:23396444

  15. The NuMI Neutrino Beam

    SciTech Connect

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Berstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A.B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallahger, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M.S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Sher, S. Moed; Moore, C. D.; Morfin, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O'connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlovic, Z.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfutzner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  16. The NuMI neutrino beam

    DOE PAGESBeta

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; et al

    2015-10-20

    Our paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important part of our design details pertaining to individual components is described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  17. The NuMI neutrino beam

    NASA Astrophysics Data System (ADS)

    Adamson, P.; Anderson, K.; Andrews, M.; Andrews, R.; Anghel, I.; Augustine, D.; Aurisano, A.; Avvakumov, S.; Ayres, D. S.; Baller, B.; Barish, B.; Barr, G.; Barrett, W. L.; Bernstein, R. H.; Biggs, J.; Bishai, M.; Blake, A.; Bocean, V.; Bock, G. J.; Boehnlein, D. J.; Bogert, D.; Bourkland, K.; Cao, S. V.; Castromonte, C. M.; Childress, S.; Choudhary, B. C.; Coelho, J. A. B.; Cobb, J. H.; Corwin, L.; Crane, D.; Cravens, J. P.; Cronin-Hennessy, D.; Ducar, R. J.; De Jong, J. K.; Devan, A. V.; Devenish, N. E.; Diwan, M. V.; Erwin, A. R.; Escobar, C. O.; Evans, J. J.; Falk, E.; Feldman, G. J.; Fields, T. H.; Ford, R.; Frohne, M. V.; Gallagher, H. R.; Garkusha, V.; Gomes, R. A.; Goodman, M. C.; Gouffon, P.; Graf, N.; Gran, R.; Grossman, N.; Grzelak, K.; Habig, A.; Hahn, S. R.; Harding, D.; Harris, D.; Harris, P. G.; Hartnell, J.; Hatcher, R.; Hays, S.; Heller, K.; Holin, A.; Huang, J.; Hylen, J.; Ibrahim, A.; Indurthy, D.; Irwin, G. M.; Isvan, Z.; Jaffe, D. E.; James, C.; Jensen, D.; Johnstone, J.; Kafka, T.; Kasahara, S. M. S.; Koizumi, G.; Kopp, S.; Kordosky, M.; Kreymer, A.; Lang, K.; Laughton, C.; Lefeuvre, G.; Ling, J.; Litchfield, P. J.; Loiacono, L.; Lucas, P.; Mann, W. A.; Marchionni, A.; Marshak, M. L.; Mayer, N.; McGivern, C.; Medeiros, M. M.; Mehdiyev, R.; Meier, J. R.; Messier, M. D.; Michael, D. G.; Milburn, R. H.; Miller, J. L.; Miller, W. H.; Mishra, S. R.; Moed Sher, S.; Moore, C. D.; Morfín, J.; Mualem, L.; Mufson, S.; Murgia, S.; Murtagh, M.; Musser, J.; Naples, D.; Nelson, J. K.; Newman, H. B.; Nichol, R. J.; Nowak, J. A.; O`Connor, J.; Oliver, W. P.; Olsen, M.; Orchanian, M.; Osprey, S.; Pahlka, R. B.; Paley, J.; Para, A.; Patterson, R. B.; Patzak, T.; Pavlović, Ž.; Pawloski, G.; Perch, A.; Peterson, E. A.; Petyt, D. A.; Pfützner, M. M.; Phan-Budd, S.; Plunkett, R. K.; Poonthottathil, N.; Prieto, P.; Pushka, D.; Qiu, X.; Radovic, A.; Rameika, R. A.; Ratchford, J.; Rebel, B.; Reilly, R.; Rosenfeld, C.; Rubin, H. A.; Ruddick, K.; Sanchez, M. C.; Saoulidou, N.; Sauer, L.; Schneps, J.; Schoo, D.; Schreckenberger, A.; Schreiner, P.; Shanahan, P.; Sharma, R.; Smart, W.; Smith, C.; Sousa, A.; Stefanik, A.; Tagg, N.; Talaga, R. L.; Tassotto, G.; Thomas, J.; Thompson, J.; Thomson, M. A.; Tian, X.; Timmons, A.; Tinsley, D.; Tognini, S. C.; Toner, R.; Torretta, D.; Trostin, I.; Tzanakos, G.; Urheim, J.; Vahle, P.; Vaziri, K.; Villegas, E.; Viren, B.; Vogel, G.; Webber, R. C.; Weber, A.; Webb, R. C.; Wehmann, A.; White, C.; Whitehead, L.; Whitehead, L. H.; Wojcicki, S. G.; Wong-Squires, M. L.; Yang, T.; Yumiceva, F. X.; Zarucheisky, V.; Zwaska, R.

    2016-01-01

    This paper describes the hardware and operations of the Neutrinos at the Main Injector (NuMI) beam at Fermilab. It elaborates on the design considerations for the beam as a whole and for individual elements. The most important design details of individual components are described. Beam monitoring systems and procedures, including the tuning and alignment of the beam and NuMI long-term performance, are also discussed.

  18. Efficient transformation and artificial miRNA gene silencing in Lemna minor

    PubMed Central

    Cantó-Pastor, Alex; Mollá-Morales, Almudena; Ernst, Evan; Dahl, William; Zhai, Jixian; Yan, Yiheng; Meyers, Blake; Shanklin, John; Martienssen, Robert

    2015-01-01

    Lack of genetic tools in the Lemnaceae (duckweed) has impeded full implementation of this organism as model for biological research, despite its rapid doubling time, simple architecture and unusual metabolic characteristics. Here we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a Magnesium Chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic Lemna minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. PMID:24989135

  19. THE PROTOTYPE ALUMINUM - CARBON SINGLE, DOUBLE, AND TRIPLE BONDS: Al - CH3, Al = CH2, AND Al. = CH

    SciTech Connect

    Fox, Douglas J.; Ray, Douglas; Rubesin, Philip C.; Schaefer III, Henry F.

    1980-06-01

    Nonempirical quantum mechanical methods have been used to investigate the A{ell}CH{sub 3}, A{ell}CH{sub 2}, and A{ell}CH molecules, which may be considered to represent the simplest aluminum-carbon single, double, and triple bonds. Equilibrium geometries and vibrational frequencies were determined at the self-consistent-field level of theory using double zeta basis set: A{ell}(11s7p/6s4p), C(9s5p/4s2p), H(4s/2s). The {sup 1}A{sub 1} ground state of A{ell}CH{sub 3} has a reasonably conventional A{ell}-C single bond of length 2.013 {angstrom}, compared to 1.96 {angstrom} in the known molecule A{ell}(CH{sub 3}){sub 3}. The CH equilibrium distance is 1.093 {angstrom} and the A{ell}-C-H angle 111.9{sup o}. The structures of three electron states each of A{ell}CH{sub 2} and A{ell}CH were similarly predicted, The interesting result is that the ground state of A{ell}CH{sub 2} does not contain an A{ell}-C double bond, and the ground state of A{ell}CH is not characterized by an A{ell}{triple_bond}C bond. The multiply-bonded electronic states do exist but they lie 21 kcal (A{ell}CH{sub 2}) and 86 kcal (A{ell}CH) above the respective ground states. The dissociation energies of the three ground electronic states are predicted to be 68 kcal (A{ell}CH{sub 3}), 77 kcal (A{ell}CH{sub 2}), and 88 kcal (A{ell}CH), Vibrational frequencies are also predicted for the three molecules, and their electronic structures are discussed with reference to Mulliken populations and dipole moments.

  20. Addendum to NuMI shielding assessment

    SciTech Connect

    Vaziri, Kamran; /Fermilab

    2007-10-01

    The original safety assessment and the Safety Envelope for the NuMI beam line corresponds to 400 kW of beam power. The Main Injector is currently capable of and approved for producing 500 kW of beam power2. However, operation of the NuMI beam line at 400 kW of power brings up the possibility of an occasional excursion above 400 kW due to better than usual tuning in one of the machines upstream of the NuMI beam line. An excursion above the DOE approved Safety Envelope will constitute a safety violation. The purpose of this addendum is to evaluate the radiological issues and modifications required to operate the NuMI beam line at 500 kW. This upgrade will allow 400 kW operations with a reasonable safety margin. Configuration of the NuMI beam line, boundaries, safety system and the methodologies used for the calculations are as described in the original NuMI SAD. While most of the calculations presented in the original shielding assessment were based on Monte Carlo simulations, which were based on the design geometries, most of the results presented in this addendum are based on the measurements conducted by the AD ES&H radiation safety group.

  1. Prediction of miRNA targets.

    PubMed

    Oulas, Anastasis; Karathanasis, Nestoras; Louloupi, Annita; Pavlopoulos, Georgios A; Poirazi, Panayiota; Kalantidis, Kriton; Iliopoulos, Ioannis

    2015-01-01

    Computational methods for miRNA target prediction are currently undergoing extensive review and evaluation. There is still a great need for improvement of these tools and bioinformatics approaches are looking towards high-throughput experiments in order to validate predictions. The combination of large-scale techniques with computational tools will not only provide greater credence to computational predictions but also lead to the better understanding of specific biological questions. Current miRNA target prediction tools utilize probabilistic learning algorithms, machine learning methods and even empirical biologically defined rules in order to build models based on experimentally verified miRNA targets. Large-scale protein downregulation assays and next-generation sequencing (NGS) are now being used to validate methodologies and compare the performance of existing tools. Tools that exhibit greater correlation between computational predictions and protein downregulation or RNA downregulation are considered the state of the art. Moreover, efficiency in prediction of miRNA targets that are concurrently verified experimentally provides additional validity to computational predictions and further highlights the competitive advantage of specific tools and their efficacy in extracting biologically significant results. In this review paper, we discuss the computational methods for miRNA target prediction and provide a detailed comparison of methodologies and features utilized by each specific tool. Moreover, we provide an overview of current state-of-the-art high-throughput methods used in miRNA target prediction. PMID:25577381

  2. Tumor-suppressing roles of miR-214 and miR-218 in breast cancer

    PubMed Central

    LIU, BO; TIAN, YANFENG; LI, FANG; ZHAO, ZENGREN; JIANG, XIA; ZHAI, CONGJIE; HAN, XIAODONG; ZHANG, LIKE

    2016-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are key post-transcriptional regulators of gene expression. MicroRNA-214 (miR-214) and microRNA-218 (miR-218) have shown the function of tumor suppressors in various types of human cancers. However, the biological functions of miR-214 and miR-218 in breast cancer have not been elucidated completely. The present study evaluated the expression and biological function of miR-214 and miR-218 in human breast cancer. Our results revealed that the expression of miR-214 and miR-218 were significantly decreased in breast cancer tissues compared with adjacent tissues. The aberrant expression of miR-214 and miR-218 were negatively associated with Ki-67, and the miR-218 expression was positively associated with progesterone receptor (PR) in breast cancer tissues. In vitro, the cell proliferation and migration were decreased, cell apoptosis was induced, and cell cycle was also disturbed in miR-214 or miR-218 overexpressed breast cancer cells. Our results demonstrated that miR-214 and miR-218 function as tumor suppressors in breast cancer, and may become biomarkers and potential therapeutic targets in breast cancer. PMID:27109339

  3. Telomere Length, TERT, and miRNA Expression

    PubMed Central

    Slattery, Martha L.; Herrick, Jennifer S.; Pellatt, Andrew J.; Wolff, Roger K.; Mullany, Lila E.

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  4. Telomere Length, TERT, and miRNA Expression.

    PubMed

    Slattery, Martha L; Herrick, Jennifer S; Pellatt, Andrew J; Wolff, Roger K; Mullany, Lila E

    2016-01-01

    It has been proposed that miRNAs are involved in the control of telomeres. We test that hypothesis by examining the association between miRNAs and telomere length (TL). Additionally, we evaluate if genetic variation in telomerase reverse transcriptase (TERT) is associated with miRNA expression levels. We use data from a population-based study of colorectal cancer (CRC), where we have previously shown associations between TL and TERT and CRC, to test associations between TL and miRNA expression and TERT and miRNA expression. To gain insight into functions of miRNAs associated with TERT we tested linear associations between miRNAs and their targeted gene mRNAs. An Agilent platform that contained information on over 2000 miRNAs was used. TL was measured using a multiplexed quantitative PCR (qPCR). RNAseq was used to assess gene expression. Our sample consisted of 1152 individuals with SNP data and miRNA expression data; 363 individuals with both TL and miRNA; and 148 individuals with miRNA and mRNA data. Thirty-three miRNAs were directly associated with TL after adjusting for age and sex (false discovery rate (FDR) of 0.05). TERT rs2736118 was associated with differences in miRNA expression between carcinoma and normal colonic mucosa for 75 miRNAs (FDR <0.05). Genes regulated by these miRNAs, as indicated by mRNA/miRNA associations, were associated with major signaling pathways beyond their TL-related functions, including PTEN, and PI3K/AKT signaling. Our data support a direct association between miRNAs and TL; differences in miRNA expression levels by TERT genotype were observed. Based on miRNA and targeted mRNA associations our data suggest that TERT is involved in non-TL-related functions by acting through altered miRNA expression. PMID:27627813

  5. Novel regulation and functional interaction of polycistronic miRNAs.

    PubMed

    Truscott, Mary; Islam, Abul B M M K; Frolov, Maxim V

    2016-01-01

    The importance of microRNAs in gene expression and disease is well recognized. However, what is less appreciated is that almost half of miRNA genes are organized in polycistronic clusters and are therefore coexpressed. The mir-11∼998 cluster consists of two miRNAs, miR-11 and miR-998. Here, we describe a novel layer of regulation that links the processing and expression of miR-998 to the presence of the mir-11 gene. We show that the presence of miR-11 in the pri-miRNA is required for processing by Drosha, and deletion of mir-11 prevents the expression of miR-998. Replacing mir-11 with an unrelated miRNA rescued miR-998 expression in vivo and in vitro, as did expressing miR-998 from a shorter, more canonical miRNA scaffold. The embedded regulation of miR-998 is functionally important because unchecked miR-998 expression in the absence of miR-11 resulted in pleiotropic developmental defects. This novel regulation of expression of miRNAs within a cluster is not limited to the mir-11∼998 cluster and, thus, likely reflects the more general cis-regulation of expression of individual miRNAs. Collectively, our results uncover a novel layer of regulation within miRNA clusters that tempers the functions of the individual miRNAs. Unlinking their expression has the potential to change the expression of multiple miRNA targets and shift a biological response. PMID:26554028

  6. Aberrant miRNA profiles associated with chronic benzene poisoning.

    PubMed

    Bai, Wenlin; Chen, Yujiao; Yang, Jing; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, miRNA profiles and mRNA expression pattern from the peripheral blood mononuclear cells of chronic benzene poisoning patients and health controls matched age and gender without benzene exposure were performed using the Exiqon miRNA PCR ARRAY and Gene Chip Human Gene 2.0ST Arrays, respectively. Totally, 6 up-regulated miRNAs (miR-34a, miR-205, miR-10b, let-7d, miR-185 and miR-423-5p-2) and 7 down-regulated miRNAs (miR-133a, miR-543, hsa-miR-130a, miR-27b,miR-223, miR-142-5p and miR-320b) were found in chronic benzene poisoning group compared to health controls (P ≤ 0.05). By integrating miRNA and mRNA expression data, these differential miRNAs were mainly involved in regulation of transcription from RNA polymerase II promoter, axon guidance, regulation of transcription, DNA-dependent, nervous system development, and regulation of actin cytoskeleton organization. Further, pathway analysis indicated that SMAD4, PLCB1, NFAT5, GNAI2, PTEN, VEGFA, BCL2, CTNNB1 and CCND1 were key target genes of differential miRNAs which were implicated in Adherens junction, TGF-beta signaling pathway, Wnt signaling pathway, tight junction and Pathways in cancer. In conclusion, the aberrant miRNAs might be a potential biomarker of chronic benzene poisoning.

  7. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor

    PubMed Central

    Donà, Ada; Rizza, Pietro; Aquila, Saveria; Avena, Paola; Lanzino, Marilena; Pellegrino, Michele; Vivacqua, Adele; Tucci, Paola; Morelli, Catia; Andò, Sebastiano; Sisci, Diego

    2016-01-01

    Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21. The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues. Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells. Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies. PMID:26862856

  8. Androgens downregulate miR-21 expression in breast cancer cells underlining the protective role of androgen receptor.

    PubMed

    Casaburi, Ivan; Cesario, Maria Grazia; Donà, Ada; Rizza, Pietro; Aquila, Saveria; Avena, Paola; Lanzino, Marilena; Pellegrino, Michele; Vivacqua, Adele; Tucci, Paola; Morelli, Catia; Andò, Sebastiano; Sisci, Diego

    2016-03-15

    Although the protective role of androgen receptor (AR) in breast cancer (BC) is well established, the mechanisms involved remains largely unexplored. MicroRNAs play fundamental roles in many biological processes, including tumor cell development and metastasis. Herein, we report that androgens reduce BC cells proliferation acting as a negative modulator of the onco-miRNA-21.The synthetic androgen miboleron (Mib) decreases BC cell proliferation induced by miR-21 over-expression and AR knockdown evidenced the requirement of AR in the down-regulation of miR-21 expression. These effects seem to be a general mechanism occurring in BC tissues.Chromatin immune-precipitation (ChIP) analysis disclosed the binding of AR to a specific ARE sequence in miR-21 proximal promoter and recognizes the recruitment of HDAC3 as component for AR-mediated transcriptional repression. Such event is associated to a significantly reduced PolII binding in Mib treated extracts confirming that activated AR is a transcriptional repressor of miR-21 expression, providing further insight into the protective role of androgens in breast cancer cells.Collectively, our data and the widespread AR expression in primary and metastatic breast tumours, suggest a careful examination of the therapeutic potential of androgens also in potentiating the effectiveness of anti-oestrogen adjuvant therapies. PMID:26862856

  9. miR-24, miR-30b, and miR-142-3p regulate phagocytosis in myeloid inflammatory cells.

    PubMed

    Naqvi, Afsar Raza; Fordham, Jezrom B; Nares, Salvador

    2015-02-15

    Micro-RNAs (miRNAs) are small noncoding RNAs that regulate various biological pathways. As their role in phagocytosis remains poorly understood, we investigated their impact on phagocytosis in myeloid inflammatory cells. Seven miRNAs (miR-24, -30b, -101, 142-3p, -652-3p, -652-5p, and -1275) that were differentially expressed during monocyte to macrophage (Mφ) and monocyte to dendritic cell (DC) differentiation were screened for their potential role in phagocytosis. Among these, overexpression of miR-24, miR-30b, and miR-142-3p in human monocyte-derived Mφ, DC, monocytes, and PBMCs significantly attenuate phagocytosis of Escherichia coli and Staphylococcus aureus, as well as the secretion of inflammatory mediators, including TNF-α, IL-6, and IL-12p40. miRNA-mediated changes in cytokine profiles were observed at transcriptional and/or posttranscriptional levels and importantly exhibit miRNA-specific impact. To examine the underlying mechanism, we monitored the expression of phagocytosis pathway-associated genes and identified several genes that were altered in Mφ and DC transfected with miR-24, miR-30b, and miR-142-3p mimics. Some of these genes with altered expression also harbor putative miRNA binding sites. We show that miR-142-3p directly regulates protein kinase Cα (PKCα), a key gene involved in phagocytosis. Interestingly, miR-142-3p and PKCα exhibit antagonistic expression during Mφ and DC differentiation. Short interfering RNA-mediated knockdown of PKCα in Mφ leads to reduced bacterial uptake, further highlighting the role of the gene in phagocytosis. Overall, these results demonstrate that miR-24, miR-30b, and miR-142-3p regulate phagocytosis and associated cytokine production in myeloid inflammatory cells through modulation of various genes involved in the pathway.

  10. miRNA-335 and miRNA-182 affect the occurrence of tongue squamous cell carcinoma by targeting survivin

    PubMed Central

    Ou, Deming; Wu, Ying; Liu, Jun; Lao, Xiaomei; Zhang, Sien; Liao, Guiqing

    2016-01-01

    The aim of the present study was to characterize the roles of two microRNAs (miRs) that have been reported to be differentially expressed in tongue squamous cell carcinoma (TSCC), miR-335 and miR-182. In total, 20 tumor tissue samples and 20 corresponding adjacent non-cancerous samples were collected from patients with TSCC to measure the expression of miR-335 and miR-182 and the potential shared target of these miRs, survivin, using reverse transcription-quantitative polymerase chain reaction and western blotting. In the TSCC tissue samples, significantly decreased expression of the two miRs and increased expression of survivin were detected compared with adjacent non-cancerous controls. Subsequently, it was confirmed that survivin was the target gene of miR-335 and miR-182 using a luciferase assay in TSCC cells. In order to examine the function of miR-335 and miR-182 in the development of TSCC, TSCC cells were transiently transfected with the mimics of the two miRs, and it was confirmed that the introduction of miR-335 and miR-182 to cells suppressed the expression of survivin and markedly inhibited the proliferation of the TSCC cells. Furthermore, miR-335 and miR-182 were found to induce cell cycle arrest by suppressing the expression of survivin. The present study revealed a negative regulatory role of miR-335 and miR-182 in the proliferation of TSCC cells by targeting survivin, and miR-335 and miR-182 may be novel therapeutic targets for the treatment of TSCC. PMID:27698823

  11. miRNA-335 and miRNA-182 affect the occurrence of tongue squamous cell carcinoma by targeting survivin

    PubMed Central

    Ou, Deming; Wu, Ying; Liu, Jun; Lao, Xiaomei; Zhang, Sien; Liao, Guiqing

    2016-01-01

    The aim of the present study was to characterize the roles of two microRNAs (miRs) that have been reported to be differentially expressed in tongue squamous cell carcinoma (TSCC), miR-335 and miR-182. In total, 20 tumor tissue samples and 20 corresponding adjacent non-cancerous samples were collected from patients with TSCC to measure the expression of miR-335 and miR-182 and the potential shared target of these miRs, survivin, using reverse transcription-quantitative polymerase chain reaction and western blotting. In the TSCC tissue samples, significantly decreased expression of the two miRs and increased expression of survivin were detected compared with adjacent non-cancerous controls. Subsequently, it was confirmed that survivin was the target gene of miR-335 and miR-182 using a luciferase assay in TSCC cells. In order to examine the function of miR-335 and miR-182 in the development of TSCC, TSCC cells were transiently transfected with the mimics of the two miRs, and it was confirmed that the introduction of miR-335 and miR-182 to cells suppressed the expression of survivin and markedly inhibited the proliferation of the TSCC cells. Furthermore, miR-335 and miR-182 were found to induce cell cycle arrest by suppressing the expression of survivin. The present study revealed a negative regulatory role of miR-335 and miR-182 in the proliferation of TSCC cells by targeting survivin, and miR-335 and miR-182 may be novel therapeutic targets for the treatment of TSCC.

  12. Aryl hydrocarbon receptor-dependent regulation of miR-196a expression controls lung fibroblast apoptosis but not proliferation

    SciTech Connect

    Hecht, Emelia; Zago, Michela; Sarill, Miles; Rico de Souza, Angela; Gomez, Alvin; Matthews, Jason; Hamid, Qutayba; Eidelman, David H.; Baglole, Carolyn J.

    2014-11-01

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor implicated in the regulation of apoptosis and proliferation. Although activation of the AhR by xenobiotics such as dioxin inhibits the cell cycle and control apoptosis, paradoxically, AhR expression also promotes cell proliferation and survival independent of exogenous ligands. The microRNA (miRNA) miR-196a has also emerged as a regulator of proliferation and apoptosis but a relationship between the AhR and miR-196a is not known. Therefore, we hypothesized that AhR-dependent regulation of endogenous miR-196a expression would promote cell survival and proliferation. Utilizing lung fibroblasts from AhR deficient (AhR{sup −/−}) and wild-type (AhR{sup +/+}) mice, we show that there is ligand-independent regulation of miRNA, including low miR-196a in AhR{sup −/−} cells. Validation by qRT-PCR revealed a significant decrease in basal expression of miR-196a in AhR{sup −/−} compared to AhR{sup +/+} cells. Exposure to AhR agonists benzo[a]pyrene (B[a]P) and FICZ as well as AhR antagonist CH-223191 decreased miR-196a expression in AhR{sup +/+} fibroblasts concomitant with decreased AhR protein levels. There was increased proliferation only in AhR{sup +/+} lung fibroblasts in response to serum, corresponding to a decrease in p27{sup KIP1} protein, a cyclin-dependent kinase inhibitor. Increasing the cellular levels of miR-196a had no effect on proliferation or expression of p27{sup KIP1} in AhR{sup −/−} fibroblasts but attenuated cigarette smoke-induced apoptosis. This study provides the first evidence that AhR expression is essential for the physiological regulation of cellular miRNA levels- including miR-196a. Future experiments designed to elucidate the functional relationship between the AhR and miR-196a may delineate additional novel ligand-independent roles for the AhR. - Highlights: • The AhR controls proliferation and apoptosis in lung cells. • The AhR regulates the

  13. The Type I IFN-Induced miRNA, miR-21

    PubMed Central

    Yang, Chuan He; Li, Kui; Pfeffer, Susan R.; Pfeffer, Lawrence M.

    2015-01-01

    The interferon (IFN) family of cytokines not only has antiviral properties at various steps in the viral replication cycle, but also anticancer activity through multiple pathways that include inhibiting cell proliferation, regulating cellular responses to inducers of apoptosis and modulating angiogenesis and the immune system. IFNs are known to induce their biological activity through the induction of protein encoding IFN-stimulated genes. However, recent studies have established that IFNs also induce the expression of microRNAs (miRNAs), which are small endogenous non-coding RNAs that suppress gene expression at the post-transcriptional level. MiRNAs play critical roles in tumorigenesis and have been implicated to act as either oncogenes or tumor suppressors in various human cancers. Therefore, IFN-induced miRNAs play an important role, not only in the host response to innate immune response to cancer, but also in the tumorigenic process itself. Furthermore, IFN-induced miRNAs may participate in and/or orchestrate antiviral defense in certain viral infections. In this review, we describe our recent studies on the induction of miR-21 by type I IFN, the role of the STAT3 and NFκB signaling pathways in IFN-induced miR-21 expression, the role of miR-21 in different cancers and the role of miR-21 in regulating the antiviral response. PMID:26610525

  14. Close correlation between magnetic properties and the soft phonon mode of the structural transition in <mi>BaFe>2<mi>As>2 and <mi>SrFe>2<mi>As>2

    SciTech Connect

    Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; Castellan, J. -P.; Lamago, D.; Mittal, R.; Wolf, Th.; Reznik, Dmitry

    2015-04-27

    Parent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in <mi>BaFe>2<mi>As>2 and <mi>SrFe>2<mi>As>2. We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.

  15. CCAR1 5′ UTR as a natural miRancer of miR-1254 overrides tamoxifen resistance

    PubMed Central

    Li, Gaopeng; Wu, Xiaoli; Qian, Wenchang; Cai, Huayong; Sun, Xinbao; Zhang, Weijie; Tan, Sheng; Wu, Zhengsheng; Qian, Pengxu; Ding, Keshuo; Lu, Xuefei; Zhang, Xiao; Yan, Hong; Song, Haifeng; Guang, Shouhong; Wu, Qingfa; Lobie, Peter E; Shan, Ge; Zhu, Tao

    2016-01-01

    MicroRNAs (miRNAs) typically bind to unstructured miRNA-binding sites in target RNAs, leading to a mutual repression of expression. Here, we report that miR-1254 interacts with structured elements in cell cycle and apoptosis regulator 1 (CCAR1) 5′ untranslated region (UTR) and this interaction enhances the stability of both molecules. miR-1254 can also act as a repressor when binding to unstructured sites in its targets. Interestingly, structured miR-1254-targeting sites act as both a functional RNA motif-sensing unit, and an independent RNA functional unit that enhances miR-1254 expression. Artificially designed miRNA enhancers, termed “miRancers”, can stabilize and enhance the activity of miRNAs of interest. We further demonstrate that CCAR1 5′ UTR as a natural miRancer of endogenous miR-1254 re-sensitizes tamoxifen-resistant breast cancer cells to tamoxifen. Thus, our study presents a novel model of miRNA function, wherein highly structured miRancer-like motif-containing RNA fragments or miRancer molecules specifically interact with miRNAs, leading to reciprocal stabilization. PMID:27002217

  16. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis.

    PubMed

    Huang, Qihong; Gumireddy, Kiranmai; Schrier, Mariette; le Sage, Carlos; Nagel, Remco; Nair, Suresh; Egan, David A; Li, Anping; Huang, Guanghua; Klein-Szanto, Andres J; Gimotty, Phyllis A; Katsaros, Dionyssios; Coukos, George; Zhang, Lin; Puré, Ellen; Agami, Reuven

    2008-02-01

    MicroRNAs (miRNAs) are single-stranded, noncoding RNAs that are important in many biological processes. Although the oncogenic and tumour-suppressive functions of several miRNAs have been characterized, the role of miRNAs in mediating tumour metastasis was addressed only recently and still remains largely unexplored. To identify potential metastasis-promoting miRNAs, we set up a genetic screen using a non-metastatic, human breast tumour cell line that was transduced with a miRNA-expression library and subjected to a trans-well migration assay. We found that human miR-373 and miR-520c stimulated cancer cell migration and invasion in vitro and in vivo, and that certain cancer cell lines depend on endogenous miR-373 activity to migrate efficiently. Mechanistically, the migration phenotype of miR-373 and miR-520c can be explained by suppression of CD44. We found significant upregulation of miR-373 in clinical breast cancer metastasis samples that correlated inversely with CD44 expression. Taken together, our findings indicate that miRNAs are involved in tumour migration and invasion, and implicate miR-373 and miR-520c as metastasis-promoting miRNAs.

  17. miR-126 and miR-126*: new players in cancer.

    PubMed

    Meister, Jeannette; Schmidt, Mirko H H

    2010-01-01

    Cancer progression is characterized by autarky in growth signals, insensitivity to growth-restrictive signals, evasion of apoptosis, a limitless potential to replicate, sustained angiogenesis, and tissue invasion, including metastasis. The regulation of these cellular processes relies on a fine-tuned control of molecular signal cascades. In recent years, short noncoding RNAs termed microRNAs (miRNAs) have been described as a novel class of molecular regulators. These affect various signaling cascades during the progression of neoplastic diseases by the regulation of gene expression on the post-transcriptional level. The novel endothelial cell-derived secreted protein epidermal growth factor-like domain 7 (EGFL7) has been suggested to control vascular tubulogenesis. Further, the two biologically active miRNAs miR-126 and its complement miR-126*, which are encoded by intron 7 of the egfl7 gene, have been described to mediate vascular functions. Knock-out studies in zebrafish and mice suggested a major role of miR-126 in angiogenesis and vascular integrity, which was mediated by the repression of inhibitors of VEGF-induced proliferation in endothelial cells. Recent studies revealed the distribution and function of miR-126 and miR-126* in various types of cancer, and assigned a role to both miRNAs as suppressors of tumor formation. Indeed, miR-126 and miR-126* have been reported to impair cancer progression through signaling pathways that control tumor cell proliferation, migration, invasion, and survival. Conversely, miR-126 and miR-126* may have a supportive role in the progression of cancer as well, which might be mediated by the promotion of blood vessel growth and inflammation. In this work, we will summarize the current knowledge on functions of miR-126/miR-126* that are relevant for cancer formation, and we will discuss their potential clinical use as predictive markers of survival and application as novel therapeutic targets for the treatment of neoplastic

  18. Impact of Host Genes and Strand Selection on miRNA and miRNA* Expression

    PubMed Central

    Biasiolo, Marta; Sales, Gabriele; Lionetti, Marta; Agnelli, Luca; Todoerti, Katia; Bisognin, Andrea; Coppe, Alessandro; Romualdi, Chiara; Neri, Antonino; Bortoluzzi, Stefania

    2011-01-01

    Dysregulation of miRNAs expression plays a critical role in the pathogenesis of genetic, multifactorial disorders and in human cancers. We exploited sequence, genomic and expression information to investigate two main aspects of post-transcriptional regulation in miRNA biogenesis, namely strand selection regulation and expression relationships between intragenic miRNAs and host genes. We considered miRNAs expression profiles, measured in five sizeable microarray datasets, including samples from different normal cell types and tissues, as well as different tumours and disease states. First, the study of expression profiles of “sister” miRNA pairs (miRNA/miRNA*, 5′ and 3′ strands of the same hairpin precursor) showed that the strand selection is highly regulated since it shows tissue-/cell-/condition-specific modulation. We used information about the direction and the strength of the strand selection bias to perform an unsupervised cluster analysis for the sample classification evidencing that is able to distinguish among different tissues, and sometimes between normal and malignant cells. Then, considering a minimum expression threshold, in few miRNA pairs only one mature miRNA is always present in all considered cell types, whereas the majority of pairs were concurrently expressed in some cell types and alternatively in others. In a significant fraction of concurrently expressed pairs, the major and the minor forms found at comparable levels may contribute to post-transcriptional gene silencing, possibly in a coordinate way. In the second part of the study, the behaved tendency to co-expression of intragenic miRNAs and their “host” mRNA genes was confuted by expression profiles examination, suggesting that the expression profile of a given host gene can hardly be a good estimator of co-transcribed miRNA(s) for post-transcriptional regulatory networks inference. Our results point out the regulatory importance of post-transcriptional phases of mi

  19. Serum profiling identifies novel muscle miRNA and cardiomyopathy-related miRNA biomarkers in Golden Retriever muscular dystrophy dogs and Duchenne muscular dystrophy patients.

    PubMed

    Jeanson-Leh, Laurence; Lameth, Julie; Krimi, Soraya; Buisset, Julien; Amor, Fatima; Le Guiner, Caroline; Barthélémy, Inès; Servais, Laurent; Blot, Stéphane; Voit, Thomas; Israeli, David

    2014-11-01

    Duchenne muscular dystrophy (DMD) is a fatal, X-linked neuromuscular disease that affects 1 boy in 3500 to 5000 boys. The golden retriever muscular dystrophy dog is the best clinically relevant DMD animal model. Here, we used a high-thoughput miRNA sequencing screening for identification of candidate serum miRNA biomarkers in golden retriever muscular dystrophy dogs. We confirmed the dysregulation of the previously described muscle miRNAs, miR-1, miR-133, miR-206, and miR-378, and identified a new candidate muscle miRNA, miR-95. We identified two other classes of dysregulated serum miRNAs in muscular dystrophy: miRNAs belonging to the largest known miRNA cluster that resides in the imprinting DLK1-DIO3 genomic region and miRNAs associated with cardiac disease, including miR-208a, miR-208b, and miR-499. No simple correlation was identified between serum levels of cardiac miRNAs and cardiac functional parameters in golden retriever muscular dystrophy dogs. Finally, we confirmed a dysregulation of miR-95, miR-208a, miR-208b, miR-499, and miR-539 in a small cohort of DMD patients. Given the interspecies conservation of miRNAs and preliminary data in DMD patients, these newly identified dysregulated miRNAs are strong candidate biomarkers for DMD patients.

  20. Introns of plant pri-miRNAs enhance miRNA biogenesis

    PubMed Central

    Bielewicz, Dawid; Kalak, Malgorzata; Kalyna, Maria; Windels, David; Barta, Andrea; Vazquez, Franck; Szweykowska-Kulinska, Zofia; Jarmolowski, Artur

    2013-01-01

    Plant MIR genes are independent transcription units that encode long primary miRNA precursors, which usually contain introns. For two miRNA genes, MIR163 and MIR161, we show that introns are crucial for the accumulation of proper levels of mature miRNA. Removal of the intron in both cases led to a drop-off in the level of mature miRNAs. We demonstrate that the stimulating effects of the intron mostly reside in the 5′ss rather than on a genuine splicing event. Our findings are biologically significant as the presence of functional splice sites in the MIR163 gene appears mandatory for pathogen-triggered accumulation of miR163 and proper regulation of at least one of its targets. PMID:23681439

  1. NFkappaB activation is essential for miR-21 induction by TGFβ1 in high glucose conditions

    SciTech Connect

    Madhyastha, Radha Madhyastha, HarishKumar; Pengjam, Yutthana; Nakajima, Yuichi; Omura, Sayuri; Maruyama, Masugi

    2014-09-05

    Highlights: • Transforming growth factor beta 1 (TGFβ1) induces miR-21 in high glucose conditions. • NFkappaB activation and subsequent ROS generation are necessary for TGFβ1’s effect. • TGFβ1 facilitates binding of NFkB p65 to miR-21 promoter. • SMAD proteins bind to R-SBE sites on primary miR-21, in NFkB dependent manner. - Abstract: Transforming growth factor beta1 (TGFβ1) is a pleiotropic growth factor with a very broad spectrum of effects on wound healing. Chronic non-healing wounds such as diabetic foot ulcers express reduced levels of TGFβ1. On the other hand, our previous studies have shown that the microRNA miR-21 is differentially regulated in diabetic wounds and that it promotes migration of fibroblast cells. Although interplay between TGFβ1 and miR-21 are studied in relation to cancer, their interaction in the context of chronic wounds has not yet been investigated. In this study, we examined if TGFβ1 could stimulate miR-21 in fibroblasts that are subjected to high glucose environment. MiR-21 was, in fact, induced by TGFβ1 in high glucose conditions. The induction by TGFβ1 was dependent on NFκB activation and subsequent ROS generation. TGFβ1 was instrumental in degrading the NFκB inhibitor IκBα and facilitating the nuclear translocation of NFκB p65 subunit. EMSA studies showed enhanced DNA binding activity of NFκB in the presence of TGFβ1. ChIP assay revealed binding of p65 to miR-21 promoter. NFκB activation was also required for the nuclear translocation of Smad 4 protein and subsequent direct interaction of Smad proteins with primary miR-21 as revealed by RNA-IP studies. Our results show that manipulation of TGFβ1–NFκB–miR-21 pathway could serve as an innovative approach towards therapeutics to heal diabetic ulcers.

  2. miR-15/miR-16 loss, miR-21 upregulation, or deregulation of their target genes predicts poor prognosis in prostate cancer patients.

    PubMed

    Bonci, Désirée; De Maria, Ruggero

    2016-07-01

    It is clear that several prostate cancers remain indolent whereas others develop into advanced forms. There is a need to improve patient management by identifying biomarkers for personalized treatment. We demonstrated that miR-15/miR-16 loss, miR-21 upregulation, and deregulation of their target genes represent a promising predictive signature of poor patient prognosis. PMID:27652312

  3. Hepatic miRNA expression reprogrammed by Plasmodium chabaudi malaria.

    PubMed

    Delić, Denis; Dkhil, Mohamed; Al-Quraishy, Saleh; Wunderlich, Frank

    2011-05-01

    Evidence is accumulating that miRNAs are critically implicated in the outcome of diseases, but little information is available for infectious diseases. This study investigates the hepatic miRNA signature in female C57BL/6 mice infected with self-healing Plasmodium chabaudi malaria. Primary infections result in approximately 50% peak parasitemia on day 8 p.i., approximately 80% survival, and development of protective immunity. The latter is evidenced as 100% survival and 1.5% peak parasitemia upon homolog re-infections of those mice which are still alive on day 56 after primary infection. Such immune mice exhibit increased levels of IgG2a and IgG2b isotypes and still contain P. chabaudi-infected erythrocytes in their livers as revealed by light microscopy and PCR analysis. Primary infections, but not secondary infections, induce an upregulation of hepatic mRNAs encoding IL-1β, TNFα, IFNγ, NF-κB, and iNOS, and a downregulation of mRNAs for CYP7A1 and SULT2A2, respectively. Using miRXplore microarrays containing 634 mouse miRNAs in combination with quantitative RT-PCR, the liver is found to respond to primary infections with an upregulation of the three miRNA species miR-26b, MCMV-miR-M23-1-5p, and miR-1274a, and a downregulation of the 16 miRNA species miR-101b, let-7a, let-7g, miR-193a-3p, miR-192, miR-142-5p, miR-465d, miR-677, miR-98, miR-694, miR-374(*), miR-450b-5p, miR-464, miR-377, miR-20a(*), and miR-466d-3p, respectively. Surprisingly, about the same pattern of miRNA expression is revealed in immune mice, and this pattern is even sustained upon homolog re-infections of immune mice. These data suggest that development of protective immunity against malarial blood stages of P. chabaudi is associated with a reprogramming of the expression of distinct miRNA species in the female mouse liver.

  4. Discovery of miRNAs and Their Corresponding miRNA Genes in Atlantic Cod (Gadus morhua): Use of Stable miRNAs as Reference Genes Reveals Subgroups of miRNAs That Are Highly Expressed in Particular Organs

    PubMed Central

    Andreassen, Rune; Rangnes, Fredrik; Sivertsen, Maria; Chiang, Michelle; Tran, Michelle; Worren, Merete Molton

    2016-01-01

    Background Atlantic cod (Gadus morhua) is among the economically most important species in the northern Atlantic Ocean and a model species for studying development of the immune system in vertebrates. MicroRNAs (miRNAs) are an abundant class of small RNA molecules that regulate fundamental biological processes at the post-transcriptional level. Detailed knowledge about a species miRNA repertoire is necessary to study how the miRNA transcriptome modulate gene expression. We have therefore discovered and characterized mature miRNAs and their corresponding miRNA genes in Atlantic cod. We have also performed a validation study to identify suitable reference genes for RT-qPCR analysis of miRNA expression in Atlantic cod. Finally, we utilized the newly characterized miRNA repertoire and the dedicated RT-qPCR method to reveal miRNAs that are highly expressed in certain organs. Results The discovery analysis revealed 490 mature miRNAs (401 unique sequences) along with precursor sequences and genomic location of the miRNA genes. Twenty six of these were novel miRNA genes. Validation studies ranked gmo-miR-17-1—5p or the two-gene combination gmo-miR25-3p and gmo-miR210-5p as most suitable qPCR reference genes. Analysis by RT-qPCR revealed 45 miRNAs with significantly higher expression in tissues from one or a few organs. Comparisons to other vertebrates indicate that some of these miRNAs may regulate processes like growth, lipid metabolism, immune response to microbial infections and scar damage repair. Three teleost-specific and three novel Atlantic cod miRNAs were among the differentially expressed miRNAs. Conclusions The number of known mature miRNAs was considerably increased by our identification of miRNAs and miRNA genes in Atlantic cod. This will benefit further functional studies of miRNA expression using deep sequencing methods. The validation study showed that stable miRNAs are suitable reference genes for RT-qPCR analysis of miRNA expression. Applying RT-qPCR we

  5. Transcriptional regulation of mammalian miRNA genes

    PubMed Central

    Schanen, Brian C.; Li, Xiaoman

    2010-01-01

    MicroRNAs (miRNAs) are members of a growing family of non-coding transcripts, 21-23 nucleotides long, which regulate a diverse collection of biological processes and various diseases by RNA-mediated gene-silencing mechanisms. While currently many studies focus on defining the regulatory functions of miRNAs, few are directed towards how miRNA genes are themselves transcriptionally regulated. Recent studies of miRNA transcription have elucidated RNA polymerase II as the major polymerase of miRNAs, however, little is known of the structural features of miRNA promoters, especially those of mammalian miRNAs. Here, we review the current literature regarding features conserved among miRNA promoters useful for their detection and the current novel methodologies available to enable researchers to advance our understanding of the transcriptional regulation of miRNA genes. PMID:20977933

  6. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect

    Jensen, Chris; /Fermilab

    2008-10-01

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets

  7. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer

    PubMed Central

    Letelier, Pablo; García, Patricia; Leal, Pamela; Álvarez, Héctor; Ili, Carmen; López, Jaime; Castillo, Jonathan; Brebi, Priscilla; Roa, Juan Carlos

    2014-01-01

    The development of miRNA-based therapeutics represents a new strategy in cancer treatment. The objectives of this study were to evaluate the differential expression of microRNAs in gallbladder cancer (GBC) and to assess the functional role of miR-1 and miR-145 in GBC cell behavior. A profile of miRNA expression was determined using DharmaconTM microarray technology. Differential expression of five microRNAs was validated by TaqMan reverse transcription quantitative-PCR in a separate cohort of 8 tumors and 3 non-cancerous samples. Then, we explored the functional role of miR-1 and miR-145 in tumor cell behavior by ectopic in vitro expression in the GBC NOZ cell line. Several miRNAs were found to be aberrantly expressed in GBC; most of these showed a significantly decreased expression compared to non-neoplastic tissues (Q value < 0.05). The differential expression of 7 selected miRNAs was confirmed by real time PCR. Pathway enrichment analysis revealed that the most deregulated miRNAs (miR-1, miR-133, miR-143 and miR-145) collectively targeted a number of genes belonging to signaling pathways such as TGF-β, ErbB3, WNT and VEGF, and those regulating cell motility or adhesion. The ectopic expression of miR-1 and miR-145 in NOZ cells significantly inhibited cell viability and colony formation (P < 0.01) and reduced gene expression of VEGF-A and AXL. This study represents the first investigation of the miRNA expression profile in gallbladder cancer, and our findings showed that several miRNAs are deregulated in this neoplasm. In vitro functional assays suggest that miR-1 and miR-145 act as tumor suppressor microRNAs in GBC. PMID:24966896

  8. miR-1 and miR-145 act as tumor suppressor microRNAs in gallbladder cancer.

    PubMed

    Letelier, Pablo; García, Patricia; Leal, Pamela; Álvarez, Héctor; Ili, Carmen; López, Jaime; Castillo, Jonathan; Brebi, Priscilla; Roa, Juan Carlos

    2014-01-01

    The development of miRNA-based therapeutics represents a new strategy in cancer treatment. The objectives of this study were to evaluate the differential expression of microRNAs in gallbladder cancer (GBC) and to assess the functional role of miR-1 and miR-145 in GBC cell behavior. A profile of miRNA expression was determined using DharmaconTM microarray technology. Differential expression of five microRNAs was validated by TaqMan reverse transcription quantitative-PCR in a separate cohort of 8 tumors and 3 non-cancerous samples. Then, we explored the functional role of miR-1 and miR-145 in tumor cell behavior by ectopic in vitro expression in the GBC NOZ cell line. Several miRNAs were found to be aberrantly expressed in GBC; most of these showed a significantly decreased expression compared to non-neoplastic tissues (Q value<0.05). The differential expression of 7 selected miRNAs was confirmed by real time PCR. Pathway enrichment analysis revealed that the most deregulated miRNAs (miR-1, miR-133, miR-143 and miR-145) collectively targeted a number of genes belonging to signaling pathways such as TGF-β, ErbB3, WNT and VEGF, and those regulating cell motility or adhesion. The ectopic expression of miR-1 and miR-145 in NOZ cells significantly inhibited cell viability and colony formation (P<0.01) and reduced gene expression of VEGF-A and AXL. This study represents the first investigation of the miRNA expression profile in gallbladder cancer, and our findings showed that several miRNAs are deregulated in this neoplasm. In vitro functional assays suggest that miR-1 and miR-145 act as tumor suppressor microRNAs in GBC. PMID:24966896

  9. Polysome shift assay for direct measurement of miRNA inhibition by anti-miRNA drugs.

    PubMed

    Androsavich, John R; Sobczynski, Daniel J; Liu, Xueqing; Pandya, Shweta; Kaimal, Vivek; Owen, Tate; Liu, Kai; MacKenna, Deidre A; Chau, B Nelson

    2016-01-29

    Anti-miRNA (anti-miR) oligonucleotide drugs are being developed to inhibit overactive miRNAs linked to disease. To help facilitate the transition from concept to clinic, new research tools are required. Here we report a novel method--miRNA Polysome Shift Assay (miPSA)--for direct measurement of miRNA engagement by anti-miR, which is more robust than conventional pharmacodynamics using downstream target gene derepression. The method takes advantage of size differences between active and inhibited miRNA complexes. Active miRNAs bind target mRNAs in high molecular weight polysome complexes, while inhibited miRNAs are sterically blocked by anti-miRs from forming this interaction. These two states can be assessed by fractionating tissue or cell lysates using differential ultracentrifugation through sucrose gradients. Accordingly, anti-miR treatment causes a specific shift of cognate miRNA from heavy to light density fractions. The magnitude of this shift is dose-responsive and maintains a linear relationship with downstream target gene derepression while providing a substantially higher dynamic window for aiding drug discovery. In contrast, we found that the commonly used 'RT-interference' approach, which assumes that inhibited miRNA is undetectable by RT-qPCR, can yield unreliable results that poorly reflect the binding stoichiometry of anti-miR to miRNA. We also demonstrate that the miPSA has additional utility in assessing anti-miR cross-reactivity with miRNAs sharing similar seed sequences.

  10. MIGS: miRNA-induced gene silencing.

    PubMed

    Felippes, Felipe Fenselau de; Wang, Jia-wei; Weigel, Detlef

    2012-05-01

    Gene silencing is an important tool in the study of gene function. Virus-induced gene silencing (VIGS) and hairpin RNA interference (hpRNAi), both of which rely on small interfering RNAs, together with artificial microRNAs (amiRNA), are amongst the most popular methods for reduction of gene activity in plants. However, all three approaches have limitations. Here, we introduce miRNA-induced gene silencing (MIGS). This method exploits a special 22-nucleotide miRNA of Arabidopsis thaliana, miR173, which can trigger production of another class of small RNAs called trans-acting small interfering RNAs (tasiRNAs). We show that fusion of gene fragments to an upstream miR173 target site is sufficient for effective silencing of the corresponding endogenous gene. MIGS can be reliably used for the knockdown of a single gene or of multiple unrelated genes. In addition, we show that MIGS can be applied to other species by co-expression of miR173.

  11. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death.

    PubMed

    Chen, Peng-Hsu; Chang, Cheng-Kuei; Shih, Chwen-Ming; Cheng, Chia-Hsiung; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Ho, Kuo-Hao; Chen, Ku-Chung

    2016-11-01

    Xanthohumol (XN), a prenylated chalcone extracted from hop plant Humulus lupulus L. (Cannabaceae), has potential for cancer therapy, including gliomas. Micro (mi)RNAs are small noncoding RNAs that control gene expression. Several miRNAs have been identified to participate in regulating glioma development. However, no studies have demonstrated whether miRNA is involved in XN cytotoxicity resulting in glioma cell death. This study investigated the effects of XN-mediated miRNA expression in activating apoptotic pathways in glioblastoma U87 MG cells. First, we found that XN significantly reduced cell viability and induced apoptosis via pro-caspase-3/8 cleavage and poly(ADP ribose) polymerase (PARP) degradation. We also identified that pro-caspase-9 cleavage, Bcl2 family expression changes, mitochondrial dysfunction, and intracellular ROS generation also participated in XN-induced glioma cell death. With a microarray analysis, miR-204-3p was identified as the most upregulated miRNA induced by XN cytotoxicity. The extracellular signal-regulated kinase (ERK)/c-Fos pathway was validated to participate in XN-upregulated miR-204-3p expression. With a promoter assay and ChIP analysis, we found that c-Fos dose-dependently bound to the miR-204-3p gene promoter region. Furthermore, miR-204-3p levels decreased in several glioma cell lines compared to astrocytes. Overexpression of miR-204-3p enhanced glioma cell apoptosis. IGFBP2, an upregulated regulator of glioma proliferation, was validated by a TCGA analysis as a direct target gene of miR-204-3p. XN's inhibition of the IGFBP2/AKT/Bcl2 pathway via miR-204-3p targeting played a critical role in mediating glioma cell death. These results emphasized that the XN-mediated miR-204-3p network may provide novel therapeutic strategies for future glioblastoma therapy and drug development.

  12. The miR-204-3p-targeted IGFBP2 pathway is involved in xanthohumol-induced glioma cell apoptotic death.

    PubMed

    Chen, Peng-Hsu; Chang, Cheng-Kuei; Shih, Chwen-Ming; Cheng, Chia-Hsiung; Lin, Cheng-Wei; Lee, Chin-Cheng; Liu, Ann-Jeng; Ho, Kuo-Hao; Chen, Ku-Chung

    2016-11-01

    Xanthohumol (XN), a prenylated chalcone extracted from hop plant Humulus lupulus L. (Cannabaceae), has potential for cancer therapy, including gliomas. Micro (mi)RNAs are small noncoding RNAs that control gene expression. Several miRNAs have been identified to participate in regulating glioma development. However, no studies have demonstrated whether miRNA is involved in XN cytotoxicity resulting in glioma cell death. This study investigated the effects of XN-mediated miRNA expression in activating apoptotic pathways in glioblastoma U87 MG cells. First, we found that XN significantly reduced cell viability and induced apoptosis via pro-caspase-3/8 cleavage and poly(ADP ribose) polymerase (PARP) degradation. We also identified that pro-caspase-9 cleavage, Bcl2 family expression changes, mitochondrial dysfunction, and intracellular ROS generation also participated in XN-induced glioma cell death. With a microarray analysis, miR-204-3p was identified as the most upregulated miRNA induced by XN cytotoxicity. The extracellular signal-regulated kinase (ERK)/c-Fos pathway was validated to participate in XN-upregulated miR-204-3p expression. With a promoter assay and ChIP analysis, we found that c-Fos dose-dependently bound to the miR-204-3p gene promoter region. Furthermore, miR-204-3p levels decreased in several glioma cell lines compared to astrocytes. Overexpression of miR-204-3p enhanced glioma cell apoptosis. IGFBP2, an upregulated regulator of glioma proliferation, was validated by a TCGA analysis as a direct target gene of miR-204-3p. XN's inhibition of the IGFBP2/AKT/Bcl2 pathway via miR-204-3p targeting played a critical role in mediating glioma cell death. These results emphasized that the XN-mediated miR-204-3p network may provide novel therapeutic strategies for future glioblastoma therapy and drug development. PMID:27487563

  13. The regulation roles of miR-125b, miR-221 and miR-27b in porcine Salmonella infection signalling pathway

    PubMed Central

    Yao, Min; Gao, Weihua; Yang, Jun; Liang, Xiongyan; Luo, Jingbo; Huang, Tinghua

    2016-01-01

    miRNAs are non-coding RNA molecules typically 18–22 nucleotides long that can suppress the expression of their target genes. Several laboratories have attempted to identify miRNAs from the pig that are involved in Salmonella infection. These bioinformatics strategies using the newly available genomic sequence are generally successful. Here, we report an in silico identification of miRNAs in pig focusing on the Salmonella infection pathway, and further investigated the differential expression of those miRNAs by quantitative real-time PCR during pre- and post-natal stage of Salmonella inoculation from the peripheral blood of commercially breed pigs. We identified 29 miRNAs that have predicted targets in the Salmonella infection pathway and nine of them were not yet described in pig. In addition, the expression of nine selected miRNAs was validated in the peripheral blood by northern blotting. Through expression analyses, differences were found between pre- and post-natal stages of Salmonella inoculation for miR-221, miR-125b and miR-27b—all of them were suppressed 2 days after Salmonella inoculation. The predicted targets of those three miRNAs were validated by luciferase reporter assays. We show that FOS is a direct target of miR-221, miR-125b can suppress MAPK14, and miR-27b can target IFNG. These findings will be helpful in understanding the function and processing of these miRNAs in Salmonella infection. The miRNA differentially expressed in the peripheral blood of commercial breed pigs suggest that it can be used as genetic markers for salmonella infection resistance in pigs. PMID:27474500

  14. Cholinesterase (ChE) response and related mortality among birds fed ChE inhibitors

    USGS Publications Warehouse

    Ludke, J.L.; Hill, E.F.; Dieter, M.P.

    1975-01-01

    Patterns of mortality and inhibition of brain and plasma ChE in birds treated with ChE inhibitors were studied in an attempt to determine the validity of using ChE activity as a monitoring and diagnostic technique. Analysis of brain ChE activity proved to be reliable for diagnosing and monitoring effects of selected ChE inhibitors in birds. Brain ChE inhibition exceeding 20% indicated exposure, and inhibition greater than 50% was sufficient for diagnosing cause of death. Individuals that died from dietary exposure to parathion or carbofuran had brain ChE activities below 55% of normal; although individuals could survive with brain ChE activity lower than 50%. Problems associated with collection, storage, and analysis of tissues for ChE activity are discussed.

  15. miRConnect 2.0: identification of oncogenic, antagonistic miRNA families in three human cancers

    PubMed Central

    2013-01-01

    Background Based on their function in cancer micro(mi)RNAs are often grouped as either tumor suppressors or oncogenes. However, miRNAs regulate multiple tumor relevant signaling pathways raising the question whether two oncogenic miRNAs could be functional antagonists by promoting different steps in tumor progression. We recently developed a method to connect miRNAs to biological function by comparing miRNA and gene array expression data from the NCI60 cell lines without using miRNA target predictions (miRConnect). Results We have now extended this analysis to three primary human cancers (ovarian cancer, glioblastoma multiforme, and kidney renal clear cell carcinoma) available at the Cancer Genome Atlas (TCGA), and have correlated the expression of the clustered miRNAs with 158 oncogenic signatures (miRConnect 2.0). We have identified functionally antagonistic groups of miRNAs. One group (the agonists), which contains many of the members of the miR-17 family, correlated with c-Myc induced genes and E2F gene signatures. A group that was directly antagonistic to the agonists in all three primary cancers contains miR-221 and miR-222. Since both miR-17 ~ 92 and miR-221/222 are considered to be oncogenic this points to a functional antagonism of different oncogenic miRNAs. Analysis of patient data revealed that in certain patients agonistic miRNAs predominated, whereas in other patients antagonists predominated. In glioblastoma a high ratio of miR-17 to miR-221/222 was predictive of better overall survival suggesting that high miR-221/222 expression is more adverse for patients than high miR-17 expression. Conclusion miRConnect 2.0 is useful for identifying activities of miRNAs that are relevant to primary cancers. The new correlation data on miRNAs and mRNAs deregulated in three primary cancers are available at miRConnect.org PMID:23497354

  16. Fluoxetine Increases the Expression of miR-572 and miR-663a in Human Neuroblastoma Cell Lines

    PubMed Central

    Mundalil Vasu, Mahesh; Anitha, Ayyappan; Takahashi, Taro; Thanseem, Ismail; Iwata, Keiko; Asakawa, Tetsuya; Suzuki, Katsuaki

    2016-01-01

    Evidence suggests neuroprotective effects of fluoxetine, a selective serotonin reuptake inhibitor (SSRI), on the developed neurons in the adult brain. In contrast, the drug may be deleterious to immature or undifferentiated neural cells, although the mechanism is unclear. Recent investigations have suggested that microRNAs (miRNA) may be critical for effectiveness of psychotropic drugs including SSRI. We investigated whether fluoxetine could modulate expressions of neurologically relevant miRNAs in two neuroblastoma SK-N-SH and SH-SY5Y cell lines. Initial screening results revealed that three (miR-489, miR-572 and miR-663a) and four (miR-320a, miR-489, miR-572 and miR-663a) miRNAs were up-regulated in SK-N-SH cells and SH-SY5Y cells, respectively, after 24 hours treatment of fluoxetine (1–25 μM). Cell viability was reduced according to the dose of fluoxetine. The upregulation of miR-572 and miR-663a was consistent in both the SH-SY5Y and SK-N-SH cells, confirmed by a larger scale culture condition. Our data is the first in vitro evidence that fluoxetine could increase the expression of miRNAs in undifferentiated neural cells, and that putative target genes of those miRNAs have been shown to be involved in fundamental neurodevelopmental processes. PMID:27716787

  17. miR-29 and miR-30 regulate B-Myb expression during cellular senescence

    PubMed Central

    Martinez, Ivan; Cazalla, Demian; Almstead, Laura L.; Steitz, Joan A.; DiMaio, Daniel

    2011-01-01

    Cellular senescence is a form of irreversible growth arrest and a major tumor suppressor mechanism. We show here that the miR-29 and miR-30 microRNA families are up-regulated during induced and replicative senescence and that up-regulation requires activation of the Rb pathway. Expression of a reporter construct containing the 3′UTR of the B-Myb oncogene is repressed during senescence, and repression is blocked by mutations in conserved miR-29 and miR-30 binding sites in the B-Myb 3′UTR. In proliferating cells, transfection of miR-29 and miR-30 represses a reporter construct containing the wild-type but not the mutant B-Myb 3′UTR, and repression of the mutant 3′UTR is reinstituted by compensatory mutations in miR-29 and miR-30 that restore binding to the mutant sites. miR-29 and miR-30 introduction also represses expression of endogenous B-Myb and inhibits cellular DNA synthesis. Finally, interference with miR-29 and miR-30 expression inhibits senescence. These findings demonstrate that miR-29 and miR-30 regulate B-Myb expression by binding to its 3′UTR and suggest that these microRNAs play an important role in Rb-driven cellular senescence. PMID:21187425

  18. miR-1, miR-133a/b, and miR-208a in human fetal hearts correlate to the apoptotic and proliferation markers

    PubMed Central

    Jerše, Maja; Glavač, Damjan; Zidar, Nina

    2015-01-01

    The heart is the first organ to function in the developing embryo. MicroRNAs (miRNAs) are small non-coding RNAs involved in the translational regulation of gene expression, which is beside transcriptional regulation crucial for the morphologic development of muscle tissue. The aim of our study was to test the hypothesis that the expression of miR-1, miR-133a/b, and miR-208a correlates with gestational age as well as with an apoptotic and proliferative index in the developing human heart. Our study included normal heart tissue samples obtained at autopsy from 46 fetuses, 12 children, and 15 adults. Proliferation and apoptosis were measured by the immunohistochemical detection of Ki67 and cleaved-CK18. Expression of miR-1, miR-133a, miR-133b, and miR-208a was measured using real-time PCR. We found a similar level of expression of miR-133a/b in fetal and children hearts that was different from the levels in healthy adults. We also found a correlation between a miR-208a expression to the gestational age of fetuses. We observed an inverse correlation between Ki67 expression and gestational age. Expression of Ki67 was positively correlated to the expression of miR-208a and miR-1, but inversely correlated to the expression of miR-133a/b. Expression of cleaved-CK18 was also inversely correlated to the expression of miR-133a/b. Our results showed a general decrease in the expression of miR-1 and an increase of miR-133a/b with increasing gestational age. We also found a general decrease in the expression of miR-208a, mimicking the expression of its host gene. Our results also suggest the involvement of miR-208a and miR-1 in the proliferation as well as anti-proliferative and anti-apoptotic roles of miR-133a/b. PMID:25125495

  19. A path-based measurement for human miRNA functional similarities using miRNA-disease associations.

    PubMed

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-01-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity. PMID:27585796

  20. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    PubMed Central

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-01-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity. PMID:27585796

  1. miR-511 and miR-1297 Inhibit Human Lung Adenocarcinoma Cell Proliferation by Targeting Oncogene TRIB2

    PubMed Central

    Wang, Ping Yu; Wang, Ya Qi; Zhang, Yan Xia; Deng, Jingti; Lv, Chang Jun; Xie, Shu Yang

    2012-01-01

    microRNAs (miRNAs) are small noncoding RNAs that regulate genes and contribute to many kinds of human diseases, including cancer. Two miRNAs, miR-511 and miR-1297, were investigated for a possible role in adenocarcinoma based on predicted binding sites for the TRIB2 oncogene by microRNA analysis software, and the pcDNA-GFP-TRIB2–3′UTR vector was constructed to investigate the interaction between TRIB2 and miR-511/1297 in the adenocarcinoma cell line A549. Green fluorescent protein (GFP) expression was estimated by fluorescence microscopy and flow cytometry after A549 cells were co-transfected with miR-511 (or miR-1297) and pcDNA-GFP-TRIB2–3′UTR vector. The expression of GFP in the miR-511- and miR-1297-treated cells was significantly downregulated in contrast with the negative-control (NC) miRNA-treated cells. The decreased expression of TRIB2 was further detected after miR-511 (or miR-1297) treatment by western blotting. The MTT test showed inhibition of A549 cell proliferation and Annexin V-FITC/PI dual staining showed increased apoptosis in the miR-511- and miR-1297-treated cells compared to the NC cultures. A transcription factor downstream of TRIB2, the CCAAT/enhancer-binding protein alpha (C/EBPα), was expression at higher levels after miR-511 (or miR-1297) decreasing TRIB2 expression. Our results illustrate that miR-511 and miR-1297 act as tumor suppressor genes, which could suppress A549 cell proliferation in vitro and in vivo by suppressing TRIB2 and further increasing C/EBPα expression. PMID:23071539

  2. A path-based measurement for human miRNA functional similarities using miRNA-disease associations

    NASA Astrophysics Data System (ADS)

    Ding, Pingjian; Luo, Jiawei; Xiao, Qiu; Chen, Xiangtao

    2016-09-01

    Compared with the sequence and expression similarity, miRNA functional similarity is so important for biology researches and many applications such as miRNA clustering, miRNA function prediction, miRNA synergism identification and disease miRNA prioritization. However, the existing methods always utilized the predicted miRNA target which has high false positive and false negative to calculate the miRNA functional similarity. Meanwhile, it is difficult to achieve high reliability of miRNA functional similarity with miRNA-disease associations. Therefore, it is increasingly needed to improve the measurement of miRNA functional similarity. In this study, we develop a novel path-based calculation method of miRNA functional similarity based on miRNA-disease associations, called MFSP. Compared with other methods, our method obtains higher average functional similarity of intra-family and intra-cluster selected groups. Meanwhile, the lower average functional similarity of inter-family and inter-cluster miRNA pair is obtained. In addition, the smaller p-value is achieved, while applying Wilcoxon rank-sum test and Kruskal-Wallis test to different miRNA groups. The relationship between miRNA functional similarity and other information sources is exhibited. Furthermore, the constructed miRNA functional network based on MFSP is a scale-free and small-world network. Moreover, the higher AUC for miRNA-disease prediction indicates the ability of MFSP uncovering miRNA functional similarity.

  3. miRNAs in Bone Development

    PubMed Central

    Papaioannou, Garyfallia

    2015-01-01

    Skeletal development is a multistage process during which mesenchymal progenitor cells undergo proliferation and differentiation and subsequently give rise to bone and cartilage forming cells. Each step is regulated by various transcription factors and signaling molecules. microRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression. Several in vivo and in vitro studies have shown that miRNAs play significant roles in skeletal development. Identifying their functions may give insights into the treatment of developmental disorders of the skeleton. This review summarizes miRNAs that have been shown to participate in various stages of skeletal development by targeting crucial factors. PMID:27019617

  4. PGC-Enriched miRNAs Control Germ Cell Development

    PubMed Central

    Bhin, Jinhyuk; Jeong, Hoe-Su; Kim, Jong Soo; Shin, Jeong Oh; Hong, Ki Sung; Jung, Han-Sung; Kim, Changhoon; Hwang, Daehee; Kim, Kye-Seong

    2015-01-01

    Non-coding microRNAs (miRNAs) regulate the translation of target messenger RNAs (mRNAs) involved in the growth and development of a variety of cells, including primordial germ cells (PGCs) which play an essential role in germ cell development. However, the target mRNAs and the regulatory networks influenced by miRNAs in PGCs remain unclear. Here, we demonstrate a novel miRNAs control PGC development through targeting mRNAs involved in various cellular pathways. We reveal the PGC-enriched expression patterns of nine miRNAs, including miR-10b, -18a, -93, -106b, -126-3p, -127, -181a, -181b, and -301, using miRNA expression analysis along with mRNA microarray analysis in PGCs, embryonic gonads, and postnatal testes. These miRNAs are highly expressed in PGCs, as demonstrated by Northern blotting, miRNA in situ hybridization assay, and miRNA qPCR analysis. This integrative study utilizing mRNA microarray analysis and miRNA target prediction demonstrates the regulatory networks through which these miRNAs regulate their potential target genes during PGC development. The elucidated networks of miRNAs disclose a coordinated molecular mechanism by which these miRNAs regulate distinct cellular pathways in PGCs that determine germ cell development. PMID:26442865

  5. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development.

  6. miEAA: microRNA enrichment analysis and annotation

    PubMed Central

    Backes, Christina; Khaleeq, Qurratulain T.; Meese, Eckart; Keller, Andreas

    2016-01-01

    Similar to the development of gene set enrichment and gene regulatory network analysis tools over a decade ago, microRNA enrichment tools are currently gaining importance. Building on our experience with the gene set analysis toolkit GeneTrail, we implemented the miRNA Enrichment Analysis and Annotation tool (miEAA). MiEAA is a web-based application that offers a variety of commonly applied statistical tests such as over-representation analysis and miRNA set enrichment analysis, which is similar to Gene Set Enrichment Analysis. Besides the different statistical tests, miEAA also provides rich functionality in terms of miRNA categories. Altogether, over 14 000 miRNA sets have been added, including pathways, diseases, organs and target genes. Importantly, our tool can be applied for miRNA precursors as well as mature miRNAs. To make the tool as useful as possible we additionally implemented supporting tools such as converters between different miRBase versions and converters from miRNA names to precursor names. We evaluated the performance of miEAA on two sets of miRNAs that are affected in lung adenocarcinomas and have been detected by array analysis. The web-based application is freely accessible at: http://www.ccb.uni-saarland.de/mieaa_tool/. PMID:27131362

  7. miRNA expression during prickly pear cactus fruit development.

    PubMed

    Rosas-Cárdenas, Flor de Fátima; Caballero-Pérez, Juan; Gutiérrez-Ramos, Ximena; Marsch-Martínez, Nayelli; Cruz-Hernández, Andrés; de Folter, Stefan

    2015-02-01

    miRNAs are a class of small non-coding RNAs that regulate gene expression. They are involved in the control of many developmental processes, including fruit development. The increasing amount of information on miRNAs, on their expression, abundance, and conservation between various species, provides a new opportunity to study the role of miRNAs in non-model plant species. In this work, we used a combination of Northern blot and tissue print hybridization analysis to identify conserved miRNAs expressed during prickly pear cactus (Opuntia ficus indica) fruit development. Comparative profiling detected the expression of 34 miRNAs, which were clustered in three different groups that were associated with the different phases of fruit development. Variation in the level of miRNA expression was observed. Gradual expression increase of several miRNAs was observed during fruit development, including miR164. miR164 was selected for stem-loop RT-PCR and for a detailed spatial-temporal expression analysis. At early floral stages, miR164 was mainly localized in meristematic tissues, boundaries and fusion zones, while it was more homogenously expressed in fruit tissues. Our results provide the first evidence of miRNA expression in the prickly pear cactus and provide the basis for future research on miRNAs in Opuntia. Moreover, our analyses suggest that miR164 plays different roles during prickly pear cactus fruit development. PMID:25366556

  8. Dissection of miRNA pathways using arabidopsis mesophyll protoplasts.

    PubMed

    Martinho, Cláudia; Confraria, Ana; Elias, Carlos Alexandre; Crozet, Pierre; Rubio-Somoza, Ignacio; Weigel, Detlef; Baena-González, Elena

    2015-02-01

    MicroRNAs (miRNAs) control gene expression mostly post-transcriptionally by guiding transcript cleavage and/or translational repression of complementary mRNA targets, thereby regulating developmental processes and stress responses. Despite the remarkable expansion of the field, the mechanisms underlying miRNA activity are not fully understood. In this article, we describe a transient expression system in Arabidopsis mesophyll protoplasts, which is highly amenable for the dissection of miRNA pathways. We show that by transiently overexpressing primary miRNAs and target mimics, we can manipulate miRNA levels and consequently impact on their targets. Furthermore, we developed a set of luciferase-based sensors for quantifying miRNA activity that respond specifically to both endogenous and overexpressed miRNAs and target mimics. We demonstrate that these miRNA sensors can be used to test the impact of putative components of the miRNA pathway on miRNA activity, as well as the impact of specific mutations, by either overexpression or the use of protoplasts from the corresponding mutants. We further show that our miRNA sensors can be used for investigating the effect of chemicals on miRNA activity. Our cell-based transient expression system is fast and easy to set up, and generates quantitative results, being a powerful tool for assaying miRNA activity in vivo.

  9. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer

    PubMed Central

    Meng, Xiaodan; Müller, Volkmar; Milde-Langosch, Karin; Trillsch, Fabian; Pantel, Klaus; Schwarzenbach, Heidi

    2016-01-01

    Exosomes are membrane vesicles that mediate intercellular communication by transporting their molecular cargo from cell to cell. We investigated whether serum levels of exosomal miR-373, miR-200a, miR-200b and miR-200c and circulating exosomes have diagnostic and prognostic relevance in a cohort of 163 epithelial ovarian cancer (EOC) patients using TaqMan MicroRNA assays and ELISA. The serum concentrations of exosomal miR-373 (p = 0.0001), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.028) were significantly higher in EOC patients than healthy women. The levels of miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.019) could distinguish between malignant and benign ovarian tumors. While the levels of miR-373 and miR-200a were increased in all FIGO/lymph node stages (p = 0.0001), the levels of miR-200b and miR-200c were higher in patients with FIGO stage III–IV (p = 0.0001, p = 0.008, respectively) including lymph node metastasis (p = 0.0001, p = 0.004, respectively) than FIGO stages I–II. The increased levels of miR-200b and miR-200c were also associated with CA125 values (p = 0.0001, p = 0.0001, respectively) and a shorter overall survival (p = 0.007, p = 0.017, respectively). The levels of exosomes were excessively elevated in EOC patients (p = 0.0001). In all three cohorts, they were positively associated with the serum levels of exosomal miR-373 (p = 0.004), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.008). In conclusion, the increased levels of exosomal miR-200b and miR-200c mainly observed in advanced EOC suggest that these microRNAs may be involved in tumor progression. The high concentrations of exosomes in EOC patients imply an excessive, active exosomal secretion in EOC. PMID:26943577

  10. Diagnostic and prognostic relevance of circulating exosomal miR-373, miR-200a, miR-200b and miR-200c in patients with epithelial ovarian cancer.

    PubMed

    Meng, Xiaodan; Müller, Volkmar; Milde-Langosch, Karin; Trillsch, Fabian; Pantel, Klaus; Schwarzenbach, Heidi

    2016-03-29

    Exosomes are membrane vesicles that mediate intercellular communication by transporting their molecular cargo from cell to cell. We investigated whether serum levels of exosomal miR-373, miR-200a, miR-200b and miR-200c and circulating exosomes have diagnostic and prognostic relevance in a cohort of 163 epithelial ovarian cancer (EOC) patients using TaqMan MicroRNA assays and ELISA. The serum concentrations of exosomal miR-373 (p = 0.0001), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.028) were significantly higher in EOC patients than healthy women. The levels of miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.019) could distinguish between malignant and benign ovarian tumors. While the levels of miR-373 and miR-200a were increased in all FIGO/lymph node stages (p = 0.0001), the levels of miR-200b and miR-200c were higher in patients with FIGO stage III-IV (p = 0.0001, p = 0.008, respectively) including lymph node metastasis (p = 0.0001, p = 0.004, respectively) than FIGO stages I-II. The increased levels of miR-200b and miR-200c were also associated with CA125 values (p = 0.0001, p = 0.0001, respectively) and a shorter overall survival (p = 0.007, p = 0.017, respectively). The levels of exosomes were excessively elevated in EOC patients (p = 0.0001). In all three cohorts, they were positively associated with the serum levels of exosomal miR-373 (p = 0.004), miR-200a (p = 0.0001), miR-200b (p = 0.0001) and miR-200c (p = 0.008). In conclusion, the increased levels of exosomal miR-200b and miR-200c mainly observed in advanced EOC suggest that these microRNAs may be involved in tumor progression. The high concentrations of exosomes in EOC patients imply an excessive, active exosomal secretion in EOC.

  11. A double-negative feedback loop between E2F3b and miR- 200b regulates docetaxel chemosensitivity of human lung adenocarcinoma cells

    PubMed Central

    Gao, Yanping; Chen, Longbang; Song, Haizhu; Chen, Yitian; Wang, Rui; Feng, Bing

    2016-01-01

    MicroRNAs (miRNAs) are non-coding small RNAs which negatively regulate gene expressions mainly through 3′-untranslated region (3′-UTR) binding of target mRNAs. Recent studies have highlighted the feedback loops between miRNAs and their target genes in physiological and pathological processes including chemoresistance of cancers. Our previous study identified miR-200b/E2F3 axis as a chemosensitivity restorer of human lung adenocarcinoma (LAD) cells. Moreover, E2F3b was bioinformatically proved to be a potential transcriptional regulator of pre-miR-200b gene promoter. The existance of this double-negative feedback minicircuitry comprising E2F3b and miR-200b was confirmed by chromatin immunoprecipitation (ChIP) assay, site-specific mutation and luciferase reporter assay. And the underlying regulatory mechanisms of this feedback loop on docetaxel resistance of LAD cells were further investigated by applying in vitro chemosensitivity assay, colony formation assay, flow cytometric analysis of cell cycle and apoptosis, as well as mice xenograft model. In conclusion, our results suggest that the double-negative feedback loop between E2F3b and miR-200b regulates docetaxel chemosensitivity of human LAD cells mainly through cell proliferation, cell cycle distribution and apoptosis. PMID:27027446

  12. SMAR1 binds to T(C/G) repeat and inhibits tumor progression by regulating miR-371-373 cluster

    PubMed Central

    Mathai, Jinumary; Mittal, Smriti P. K.; Alam, Aftab; Ranade, Payal; Mogare, Devraj; Patel, Sonal; Saxena, Smita; Ghorai, Suvankar; Kulkarni, Abhijeet P.; Chattopadhyay, Samit

    2016-01-01

    Chromatin architecture and dynamics are regulated by various histone and non-histone proteins. The matrix attachment region binding proteins (MARBPs) play a central role in chromatin organization and function through numerous regulatory proteins. In the present study, we demonstrate that nuclear matrix protein SMAR1 orchestrates global gene regulation as determined by massively parallel ChIP-sequencing. The study revealed that SMAR1 binds to T(C/G) repeat and targets genes involved in diverse biological pathways. We observe that SMAR1 binds and targets distinctly different genes based on the availability of p53. Our data suggest that SMAR1 binds and regulates one of the imperative microRNA clusters in cancer and metastasis, miR-371-373. It negatively regulates miR-371-373 transcription as confirmed by SMAR1 overexpression and knockdown studies. Further, deletion studies indicate that a ~200 bp region in the miR-371-373 promoter is necessary for SMAR1 binding and transcriptional repression. Recruitment of HDAC1/mSin3A complex by SMAR1, concomitant with alteration of histone marks results in downregulation of the miRNA cluster. The regulation of miR-371-373 by SMAR1 inhibits breast cancer tumorigenesis and metastasis as determined by in vivo experiments. Overall, our study highlights the binding of SMAR1 to T(C/G) repeat and its role in cancer through miR-371-373. PMID:27671416

  13. The photolysis of CH3ONO

    NASA Technical Reports Server (NTRS)

    Wiebe, H. A.; Heicklen, J.

    1972-01-01

    The photolysis of CH3ONO, alone and in the presence of NO, NO-N2 mixtures, and NO-CO mixtures was studied between 25 and 150 C. The major products are CH2O, N2O, and H2O. The quantum yields of N2O were measured. The N2O yield is large at low pressures but approaches a high-pressure limiting value of 0.055 at all temperatures as the excited CH3O produced in the primary step is stabilized by collision. In the presence of excess CO, and N2O yield drops, and CO2 is produced (though not in sufficient amounts to account for the drop in N2O). When pure CH2ONO is photolyzed, CO is produced and NO accumulates in the system. Both products are formed in related processes and result from CH3O attack on CH2O.

  14. Full CI benchmark calculations on CH3

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Taylor, Peter R.

    1987-01-01

    Full CI calculations have been performed on the CH3 radical. The full CI results are compared to those obtained using CASSCF/multireference CI and coupled-pair functional methods, both at the equilibrium CH distance and at geometries with the three CH bonds extended. In general, the performance of the approximate methods is similar to that observed in calculations on other molecules in which one or two bonds were stretched.

  15. CONSTRAINING THE ENVIRONMENT OF CH{sup +} FORMATION WITH CH{sup +}{sub 3} OBSERVATIONS

    SciTech Connect

    Indriolo, Nick; McCall, Benjamin J.; Oka, Takeshi; Geballe, T. R.

    2010-03-10

    The formation of CH{sup +} in the interstellar medium (ISM) has long been an outstanding problem in chemical models. In order to probe the physical conditions of the ISM in which CH{sup +} forms, we propose the use of CH{sup +}{sub 3} observations. The pathway to forming CH{sup +}{sub 3} begins with CH{sup +}, and a steady-state analysis of CH{sup +}{sub 3} and the reaction intermediary CH{sup +}{sub 2} results in a relationship between the CH{sup +} and CH{sup +}{sub 3} abundances. This relationship depends on the molecular hydrogen fraction, f{sub H{sub 2}}, and gas temperature, T, so observations of CH{sup +} and CH{sup +}{sub 3} can be used to infer the properties of the gas in which both species reside. We present observations of both molecules along the diffuse cloud sight line toward Cyg OB2 No. 12. Using our computed column densities and upper limits, we put constraints on the f{sub H{sub 2}} versus T parameter space in which CH{sup +} and CH{sup +}{sub 3} form. We find that average, static, diffuse molecular cloud conditions (i.e., f{sub H{sub 2}}{approx}>0.2, T {approx} 60 K) are excluded by our analysis. However, current theory suggests that non-equilibrium effects drive the reaction C{sup +} + H{sub 2} -> CH{sup +} + H, endothermic by 4640 K. If we consider a higher effective temperature due to collisions between neutrals and accelerated ions, the CH{sup +}{sub 3} partition function predicts that the overall population will be spread out into several excited rotational levels. As a result, observations of more CH{sup +}{sub 3} transitions with higher signal-to-noise ratios are necessary to place any constraints on models where magnetic acceleration of ions drives the formation of CH{sup +}.

  16. Simultaneous conversion of CHClF(2) and CH(3)Br to CH(2)CF(2).

    PubMed

    Yu, Hai; Kennedy, Eric M; Mackie, John C; Dlugogorski, Bogdan Z

    2007-08-01

    Gas phase reaction of CHClF(2) with CH(3)Br in an alumina tube reactor at 773-1123 K as a function of various input ratios of CH(3)Br to CHClF(2) is presented. The major products detected include C(2)F(4), CH(2)CF(2), and CH(4). Minor products include CH(3)Cl, CHF(3), C(2)H(4), C(2)H(2), CH(2)CF-CF(3), and C(2)H(3)F. The reaction produces a high yield of CH(2)CF(2) (53% based on CHClF(2) feed) at 1123 K and an input molar ratio of CH(3)Br to CHClF(2) of 1.8, suggesting that the reaction potentially can be developed as a process to convert two ozone depleting substances (CHClF(2) and CH(3)Br) to a highly valuable chemical, CH(2)CF(2). The reaction of CHClF(2) with CH(3)Cl and CH(3)I was also investigated under similar reaction conditions, to assist in understanding the reaction chemistry involved in the reaction of CHClF(2) with CH(3)Br.

  17. Rotational spectrum of 4-methylcyanoallene (CH3CH=C=CH-CN), a chiral molecule of potential astrochemical interest

    NASA Astrophysics Data System (ADS)

    Carles, S.; Møllendal, H.; Trolez, Y.; Guillemin, J.-C.

    2014-04-01

    Context. A successful identification of an interstellar compound requires that its spectrum has first been assigned in the laboratory. New and sensitive radiotelescopes, such as ALMA, will make it possible to detect interstellar molecules in much smaller concentrations than before. Cyanoallene (CH2=C=CH-CN) has recently been observed in the dense molecular cloud TMC-1 by means of its rotational spectrum. Its methyl congener, 4-methylcyanoallene (CH3CH=C=CH-CN), may also be present in the interstellar medium (ISM). This chiral compound exists in two forms, which are mirror images. Chirality is an essential feature of life. So far, no chiral compounds have been detected in the ISM. Aims: The synthesis and assignment of the rotational spectrum of CH3CH=C=CH-CN, will facilitate the potential detection of this compound in the ISM. Methods: The spectrum of 4-methylcyanoallene has been recorded between 13 and 116 GHz using the microwave spectrometer at the University of Oslo. The spectroscopic study has been augmented with high-level quantum chemical calculations at the B3LYP/cc-pVTZ and CCSD/cc-pVTZ levels of theory. Results: The rotational spectra of CH3CH=C=CH-CN in the ground vibrational state and in the first vibrationally excited state are reported for the first time and accurate spectroscopic constants have been obtained from a large number of transitions. Full Tables 3 and 4 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/564/A82

  18. miR-155: A Novel Target in Allergic Asthma

    PubMed Central

    Zhou, Hong; Li, Junyao; Gao, Peng; Wang, Qi; Zhang, Jie

    2016-01-01

    MicroRNAs (miRNAs), a class of small non-coding RNAs of 18–24 nucleotides in length, function to posttranscriptionally regulate protein expression. miR-155 was one of the first identified and, to date, the most studied miRNA, and has been linked to various cellular processes such as modulation of immune responses and oncogenesis. Previous studies have identified miR-155 as a crucial positive regulator of Th1 immune response in autoimmune diseases, but as a suppressor of Th2 immunity in allergic disorders. However, recent studies have found new evidence that miR-155 plays an indispensible role in allergic asthma. This review summarizes the recent findings with respect to miR-155 in immune responses and the underlying mechanisms responsible for miR-155-related allergic diseases, as well as the similarities between miR-155 and glucocorticoids in immunity. PMID:27783037

  19. 21. Photocopy of drawing (from Sault Ste. Marie, MI city ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Photocopy of drawing (from Sault Ste. Marie, MI city archives) showing ROADWAY ACROSS SECTION DETAILS - Spruce Street Bridge, East Spruce Street, 500 Block, spanning Power Canal, Sault Ste. Marie, Chippewa County, MI

  20. RNA Binding Proteins in the miRNA Pathway

    PubMed Central

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2015-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  1. RNA Binding Proteins in the miRNA Pathway.

    PubMed

    Connerty, Patrick; Ahadi, Alireza; Hutvagner, Gyorgy

    2016-01-01

    microRNAs (miRNAs) are short ~22 nucleotides (nt) ribonucleic acids which post-transcriptionally regulate gene expression. miRNAs are key regulators of all cellular processes, and the correct expression of miRNAs in an organism is crucial for proper development and cellular function. As a result, the miRNA biogenesis pathway is highly regulated. In this review, we outline the basic steps of miRNA biogenesis and miRNA mediated gene regulation focusing on the role of RNA binding proteins (RBPs). We also describe multiple mechanisms that regulate the canonical miRNA pathway, which depends on a wide range of RBPs. Moreover, we hypothesise that the interaction between miRNA regulation and RBPs is potentially more widespread based on the analysis of available high-throughput datasets. PMID:26712751

  2. miR-24 and miR-205 expression is dependent on HPV onco-protein expression in keratinocytes

    SciTech Connect

    McKenna, Declan J.; Patel, Daksha; McCance, Dennis J.

    2014-01-05

    A screen of microRNA (miRNA) expression following differentiation in human foreskin keratinocytes (HFKs) identified changes in several miRNAs, including miR-24 and miR-205. We investigated how expression of Human Papilloma Virus Type-16 (HPV16) onco-proteins E6 and E7 affected expression of miR-24 and miR-205 during proliferation and differentiation of HFKs. We show that the induction of both miR-24 and miR-205 observed during differentiation of HFKs is lost in HFKs expressing E6 and E7. We demonstrate that the effect on miR-205 is due to E7 activity, as miR-205 expression is dependent on pRb expression. Finally, we provide evidence that miR-24 effects in the cell may be due to targeting of cyclin dependent kinase inhibitor p27. In summary, these results indicate that expression of both miR-24 and miR-205 are impacted by E6 and/or E7 expression, which may be one mechanism by which HPV onco-proteins can disrupt the balance between proliferation and differentiation in keratinocytes. - Highlights: • miR-24 and miR-205 are induced during keratinocyte differentiation. • This induction is lost in keratinocytes expressing HPV onco-proteins E6 and E7. • miR-205 is dependent upon pRb expression. • miR-24 targets p27 in cycling keratinocytes.

  3. The Products of the Thermal Decomposition of CH3CHO

    SciTech Connect

    Vasiliou, AnGayle; Piech, Krzysztof M.; Zhang, Xu; Nimlos, Mark R.; Ahmed, Musahid; Golan, Amir; Kostko, Oleg; Osborn, David L.; Daily, John W.; Stanton, John F.; Ellison, G. Barney

    2011-04-06

    We have used a heated 2 cm x 1 mm SiC microtubular (mu tubular) reactor to decompose acetaldehyde: CH3CHO + DELTA --> products. Thermal decomposition is followed at pressures of 75 - 150 Torr and at temperatures up to 1700 K, conditions that correspond to residence times of roughly 50 - 100 mu sec in the mu tubular reactor. The acetaldehyde decomposition products are identified by two independent techniques: VUV photoionization mass spectroscopy (PIMS) and infrared (IR) absorption spectroscopy after isolation in a cryogenic matrix. Besides CH3CHO, we have studied three isotopologues, CH3CDO, CD3CHO, and CD3CDO. We have identified the thermal decomposition products CH3(PIMS), CO (IR, PIMS), H (PIMS), H2 (PIMS), CH2CO (IR, PIMS), CH2=CHOH (IR, PIMS), H2O (IR, PIMS), and HC=CH (IR, PIMS). Plausible evidence has been found to support the idea that there are at least three different thermal decomposition pathways for CH3CHO: Radical decomposition: CH3CHO + DELTA --> CH3 + [HCO] --> CH3 + H + CO Elimination: CH3CHO + DELTA --> H2 + CH2=C=O. Isomerization/elimination: CH3CHO + DELTA --> [CH2=CH-OH] --> HC=CH + H2O. Both PIMS and IR spectroscopy show compelling evidence for the participation of vinylidene, CH2=C:, as an intermediate in the decomposition of vinyl alchohol: CH2=CH-OH + DELTA --> [CH2=C:] + H2O --> HC=CH + H2O.

  4. miR-132 and miR-212 are increased in pancreatic cancer and target the retinoblastoma tumor suppressor

    SciTech Connect

    Park, Jong-Kook; Henry, Jon C.; Jiang, Jinmai; Esau, Christine; Gusev, Yuriy; Lerner, Megan R.; Postier, Russell G.; Brackett, Daniel J.; Schmittgen, Thomas D.

    2011-03-25

    Research highlights: {yields} The expression of miR-132 and miR-212 are significantly increased in pancreatic cancer. {yields} miR-132 and miR-212 target the tumor suppressor pRb, resulting in enhanced proliferation. {yields} miR-132 and miR-212 expression is increased by a {beta}2 adrenergic receptor agonist, suggesting a novel mechanism for pancreatic cancer progression. -- Abstract: Numerous microRNAs (miRNAs) are reported as differentially expressed in cancer, however the consequence of miRNA deregulation in cancer is unknown for many miRNAs. We report that two miRNAs located on chromosome 17p13, miR-132 and miR-212, are over-expressed in pancreatic adenocarcinoma (PDAC) tissues. Both miRNAs are predicted to target the retinoblastoma tumor suppressor, Rb1. Validation of this interaction was confirmed by luciferase reporter assay and western blot in a pancreatic cancer cell line transfected with pre-miR-212 and pre-miR-132 oligos. Cell proliferation was enhanced in Panc-1 cells transfected with pre-miR-132/-212 oligos. Conversely, antisense oligos to miR-132/-212 reduced cell proliferation and caused a G{sub 2}/M cell cycle arrest. The mRNA of a number of E2F transcriptional targets were increased in cells over expressing miR-132/-212. Exposing Panc-1 cells to the {beta}2 adrenergic receptor agonist, terbutaline, increased the miR-132 and miR-212 expression by 2- to 4-fold. We report that over-expression of miR-132 and miR-212 result in reduced pRb protein in pancreatic cancer cells and that the increase in cell proliferation from over-expression of these miRNAs is likely due to increased expression of several E2F target genes. The {beta}2 adrenergic pathway may play an important role in this novel mechanism.

  5. Targeting pre-miRNA by Peptide Nucleic Acids

    PubMed Central

    Avitabile, Concetta; Saviano, Michele; D'Andrea, Luca; Bianchi, Nicoletta; Fabbri, Enrica; Brognara, Eleonora; Gambari, Roberto; Romanelli, Alessandra

    2012-01-01

    PNAs conjugated to carrier peptides have been employed for the targeting of miRNA precursor, with the aim to develop molecules able to interfere in the pre-miRNA processing. The capability of the molecules to bind pre-miRNA has been tested in vitro by fluorescence assayes on Thiazole Orange labeled molecules and in vivo, in K562 cells, evaluating the amount of miRNA produced after treatment of cells with two amounts of PNAs. PMID:22699795

  6. Theoretical investigation of the interstellar CH3NC/CH3CN ratio.

    PubMed

    DeFrees, D J; McLean, A D; Herbst, E

    1985-06-01

    Calculations have been performed to determine the abundance ratio of the metastable isomer CH3NC to the stable isomer CH3CN in dense interstellar clouds. According to gas phase, ion-molecule treatments, these molecules are both synthesized via protonated ion precursors. We have calculated the ratio of the formation rates of the protonated precursor ions-- CH3NCH+ and CH3CNH+ --synthesized via the radiative association reaction between CH3+ and HCN, which is thought to the dominant formation process of the two isomeric ions. Our calculations, which involve both ab initio quantum chemistry and equilibrium determinations, lead to a predicted CH3NCH+/CH3CNH+ formation rate ratio between 0.1 and 0.4. If this ratio is maintained in the neutral species formed from the precursor ions, theory predicts a sizable abundance for methyl isocyanide (CH3NC) and lends credence to its tentative observation.

  7. 78 FR 36631 - Michigan Disaster #MI-00039

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-18

    ... From the Federal Register Online via the Government Publishing Office SMALL BUSINESS ADMINISTRATION Michigan Disaster MI-00039 AGENCY: U.S. Small Business Administration. ACTION: Notice. SUMMARY... Application Deadline Date: 03/12/2014. ADDRESSES: Submit completed loan applications to: U.S. Small...

  8. MiSIS: Michigan Student Information System.

    ERIC Educational Resources Information Center

    Michigan State Dept. of Education, Lansing. Higher Education Management Services.

    The Michigan Student Information System (MiSIS) is the student flow component, of the Michigan Community College Occupational Education Evaluation System (MCCOEES), a comprehensive state-wide system for evaluating occupational education. It was developed by the Michigan community college system as a systematic and valid method of collecting…

  9. Viral miRNAs and immune evasion.

    PubMed

    Boss, Isaac W; Renne, Rolf

    2011-01-01

    Viral miRNAs, ~22nt RNA molecules which post-transcriptionally regulate gene expression, are emerging as important tools in immune evasion. Viral infection is a complex process that requires immune evasion in order to establish persistent life-long infection of the host. During this process viruses express both protein-coding and non-coding genes, which help to modulate the cellular environment making it more favorable for infection. In the last decade, it was uncovered that DNA viruses express a diverse and abundant pool of small non-coding RNA molecules, called microRNAs (miRNAs). These virally encoded miRNAs are non-immunogenic and therefore are important tools used to evade both innate and adaptive immune responses. This review aims to summarize our current knowledge of herpesvirus- and polyomavirus-encoded miRNAs, and how they contribute to immune evasion by targeting viral and/or host cellular genes. This article is part of a Special Issue entitled: MicroRNAs in viral gene regulation.

  10. Methyl-CpG binding protein MBD2 is implicated in methylation-mediated suppression of miR-373 in hilar cholangiocarcinoma.

    PubMed

    Chen, Yongjun; Gao, Wei; Luo, Jian; Tian, Rui; Sun, Huawen; Zou, Shengquan

    2011-02-01

    Aberrant expression of miRNAs is associated with particular cancers showing tissue- and clinical-feature-specificity patterns. Some miRNA genes harboring or being embedded in CpG islands undergo methylation mediated silencing. MBP, methyl CpG binding protein, suppresses transcription through binding to methylated CpG dinucleotides. Expression of miR-373 has been reported to be suppressed in malignant bile duct cell lines. Bioinformatic prediction reveals that the transcription start site (TSS) of miR-373 is implanted in a 402 bp canonical CpG island containing 26 CpG dinucleotides. In this study, we aim to determine the epigenetic regulation of miR-373 gene in hilar cholangiocarcinoma. Taqman microRNA assay shows that down-regulation of miR-373 is closely associated with poor cell differentiation, advanced clinical stage and shorter overall and disease-free survival in hilar cholangiocarcinomas. Methylation analysis shows that the promoter-associated CpG island is hypermethylated which is consistent with the inhibition of miR-373. Chromatin immunoprecipitation (ChIP) assay indicates that down-regulation of miR-373 results from the selective recruitment of MBD2 to methylated CpG islands. In contrast, MBD2 knock-down by use of a specific siRNA promoted the expression of miR-373. Reactivation of miR-373 by pharmacologic induction of 5-aza-CdR and trichostatin A (TSA) led to decreased enrichment of MBD2 at CpG island regions. Enhanced expression of exogenous MBD2 in stable QBC939 cells which stably express pGL4-m373-prom induces strengthened recruitment of MBD2. Our findings suggest that miR-373 is a methylation-mediated gene and the implication of MBD2 in methylation-mediated suppression of miR-373 plays an important role in tumourigenesis and development in hilar cholangiocarcinoma.

  11. Ferromagnetism and Nonmetallic Transport of Thin-Film <mimi>-<mi>FeSi>2 : A Stabilized Metastable Material

    SciTech Connect

    Cao, Guixin; Singh, D. J.; Zhang, X. -G.; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E. Andrew; Biegalski, Michael; Ward, T. Z.; Mandrus, David; Stocks, G. M.; Gai, Zheng

    2015-04-07

    The epitaxially stabilized metallic <mimi>-<mi>FeSi>2 thin films on Si(001) were grown using pulsed laser deposition. While the bulk material of <mimi>-<mi>FeSi>2 is a high temperature metastable phase and nonmagnetic, the thin film is stabilized at room temperature and shows unusual electronic transport and magnetic properties due to strain modification. The transport renders two different conducting states with a strong crossover at 50 K accompanied by an onset of ferromagnetism as well as a substantial magnetocaloric effect and magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of <mimi>-<mi>FeSi>2 obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our findings provide an example of a tailored material with interesting physics properties for practical applications.

  12. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- <mi>Tmi>c> superconductors

    SciTech Connect

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recently it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the <mi>d>-wave nodal lines (nodal gap) contrasts the common understanding of the <mi>d>-wave pairing symmetry, which challenges the present theories for the high-<mi>Tmi><mi>c>superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high-<mi>Tmi><mi>c>superconductors.

  13. Protocol for miRNA isolation from biofluids.

    PubMed

    Lekchnov, Evgeny A; Zaporozhchenko, Ivan A; Morozkin, Evgeny S; Bryzgunova, Olga E; Vlassov, Valentin V; Laktionov, Pavel P

    2016-04-15

    MicroRNAs (miRNAs) have been identified as promising biomarkers in cancer and other diseases. Packaging of miRNAs into vesicles and complexes with proteins ensures their stability in biological fluids but also complicates their isolation. Conventional protocols used to isolate cell-free RNA are generally successful in overcoming these difficulties; however, they are costly, labor-intensive, or heavily reliant on the use of hazardous chemicals. Here we describe a protocol that is suitable for isolating miRNAs from biofluids, including blood plasma and urine. The protocol is based on precipitation of proteins, denaturation of miRNA-containing complexes with octanoic acid and guanidine isothiocyanate, and subsequent purification of miRNA on spin columns. The efficacy of miRNA extraction by phenol-chloroform extraction, miRCURY RNA isolation kit--biofluids (Exiqon), and the proposed protocol was compared by quantitative reverse-transcription PCR of miR-16 and miR-126. The proposed protocol was slightly more effective for isolating miRNA from plasma and significantly superior to the other two methods for miRNA isolation from urine. Spectrophotometry and SDS-PAGE data suggest that the disparity in performance between miRCURY Biofluids and the proposed protocol can be attributed to differences in precipitation mechanisms, as confirmed by the retention of different proteins in the supernatant. PMID:26874020

  14. Dynamic regulation of novel and conserved miRNAs across various tissues of diverse Cucurbit spp.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNA genes (miRNAs) encoding small non-coding RNAs are abundant in plant genomes and play a key role in regulating several biological mechanisms. Five conserved miRNAs, miR156, miR168-1, miR168-2, miR164, and miR166 were selected for analysis from the 21 known plant miRNA families that were rec...

  15. miR-146a and miR-155 Expression Levels in Acute Graft-Versus-Host Disease Incidence

    PubMed Central

    Atarod, Sadaf; Ahmed, Mohammed Mahid; Lendrem, Clare; Pearce, Kim Frances; Cope, Wei; Norden, Jean; Wang, Xiao-Nong; Collin, Matthew; Dickinson, Anne Mary

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a curative treatment for numerous hematological malignancies. However, acute graft-versus-host disease (aGVHD) is still the major complication causing mortality. MicroRNAs (miRNAs) play a significant role in inflammation and have potential as prognostic and diagnostic biomarkers. This study investigated the role of two immune-specific miRNAs (miR-146a and miR-155) as biomarkers for aGVHD incidence in the peripheral blood of allo-HSCT patients prior to disease onset. The study showed that miR-146a and its statistical interaction with miR-155 at day +28 were predictive of aGVHD incidence. Interestingly, the expression levels of miR-146a and miR-155 negatively correlated with the transcription factor, SPI1 (PU.1gene) mRNA expression. PMID:27014257

  16. Defects in the MITF(mi/mi) apical surface are associated with a failure of outer segment elongation.

    PubMed

    Bumsted, K M; Rizzolo, L J; Barnstable, C J

    2001-09-01

    The loss of MITF function in the MITF(mi/mi)mouse affects not only RPE differentiation, but also the development of rod photoreceptor outer segments. Our data indicate that opsin immunoreactivity is detected in the cell membrane and along the ONL/RPE border of developing MITF(mi/mi)rod photoreceptors and that rod outer segment morphogenesis is initiated. Although molecules associated with the outer segment continued to be expressed, outer segments did not elongate and develop stacked organized discs perpendicular to the RPE. The MITF(mi/mi)RPE also failed to form apical microvilli and lacked the apical network of the phosphoprotein ezrin seen in wild type tissue. The MITF(mi/mi)RPE basal surface was loosely organized and retained ezrin labelling which indicated some degree of differentiation. The correlation seen in our data suggest that there may be a link between the failure of the RPE apical domain to form and lack of rod outer segment elongation.

  17. MicroRNAs miR-30b, miR-30d, and miR-494 Regulate Human Endometrial Receptivity

    PubMed Central

    Martinez-Conejero, Jose A.; Esteban, Francisco J.; Ruiz-Alonso, Maria; Stavreus-Evers, Anneli; Horcajadas, Jose A.; Salumets, Andres

    2013-01-01

    MicroRNAs (miRNAs) act as important epigenetic posttranscriptional regulators of gene expression. We aimed to gain more understanding of the complex gene expression regulation of endometrial receptivity by analyzing miRNA signatures of fertile human endometria. We set up to analyze miRNA signatures of receptive (LH + 7, n = 4) versus prereceptive (LH + 2, n = 5) endometrium from healthy fertile women. We found hsa-miR-30b and hsa-miR-30d to be significantly upregulated, and hsa-miR-494 and hsa-miR-923 to be downregulated in receptive endometrium. Three algorithms (miRanda, PicTar, and TargetScan) were used for target gene prediction. Functional analyses of the targets using Ingenuity Pathways Analysis and The Database for Annotation, Visualization and Integrated Discovery indicated roles in transcription, cell proliferation and apoptosis, and significant involvement in several relevant pathways, such as axon guidance, Wnt/β-catenin, ERK/MAPK, transforming growth factor β (TGF-β), p53 and leukocyte extravasation. Comparison of predicted miRNA target genes and our previous messenger RNA microarray data resulted in a list of 12 genes, including CAST, CFTR, FGFR2, and LIF that could serve as a panel of genes important for endometrial receptivity. In conclusion, we suggest that a subset of miRNAs and their target genes may play important roles in endometrial receptivity. PMID:22902743

  18. The plasma miR-125a, miR-361 and miR-133a are promising novel biomarkers for Late-Onset Hypogonadism

    PubMed Central

    Chen, Yao-ping; Wang, Ju; Zhao, Kai; Shang, Xue-jun; Wu, Hui-qin; Qing, Xing-rong; Fang, Fang; Zhang, Yan; Shang, Jin; Li, Hong-gang; Zhang, Hui-ping; Guan, Huang-tao; Zhou, Yuan-zhong; Gu, Yi-qun; Wu, Wei-xiong; Xiong, Cheng-liang

    2016-01-01

    Circulating miRNAs have been shown to serve as diagnostic/prognostic biomarkers in cancers and other diseases. However, the role of plasma miRNAs in Late-onset hypogonadism (LOH) diagnosis is still unknown. Using Illumina HiSeq2000 sequencing at discovery phase, and then two-step validated by reverse transcriptase polymerase chain reaction (RT-PCR) assays in verification phases. We verified that the expression levels of miR-125a-5p, miR-361-5p and miR-133a-3p were significantly altered in LOH group compared to the control group. The area under the receiver operating characteristic (ROC) curve (AUC) is 0.682, 0.698 and 0.765, respectively. The combination of three miRNAs showed a larger AUC (0.835) that was more efficient for the diagnosis of LOH. Among three miRNAs, miR-133a-3p had the best diagnostic value for LOH with 68.2% sensitivity and 77.3% specificity. Regression analyses show that miR-133a-3p level was negatively associated with the ageing males’ symptoms (AMS) scale. However, miR-361-5p level was positively associated with serum testosterone concentrations. In summary, plasma miRNAs are differentially expressed between LOH and healthy controls. We validated three miRNAs that could act as novel biomarkers for diagnosis of LOH. These miRNAs may be involved in the development of LOH. However, further large and functional studies are warranted to confirm our findings. PMID:27000524

  19. BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles

    PubMed Central

    2013-01-01

    Background Popular miRNA target prediction techniques use sequence features to determine the functional miRNA target sites. These techniques commonly ignore the cellular conditions in which miRNAs interact with their targets in vivo. Gene expression data are rich resources that can complement sequence features to take into account the context dependency of miRNAs. Results We introduce BayMiR, a new computational method, that predicts the functionality of potential miRNA target sites using the activity level of the miRNAs inferred from genome-wide mRNA expression profiles. We also found that mRNA expression variation can be used as another predictor of functional miRNA targets. We benchmarked BayMiR, the expression variation, Cometa, and the TargetScan “context scores” on two tasks: predicting independently validated miRNA targets and predicting the decrease in mRNA abundance in miRNA overexpression assays. BayMiR performed better than all other methods in both benchmarks and, surprisingly, the variation index performed better than Cometa and some individual determinants of the TargetScan context scores. Furthermore, BayMiR predicted miRNA target sets are more consistently annotated with GO and KEGG terms than similar sized random subsets of genes with conserved miRNA seed regions. BayMiR gives higher scores to target sites residing near the poly(A) tail which strongly favors mRNA degradation using poly(A) shortening. Our work also suggests that modeling multiplicative interactions among miRNAs is important to predict endogenous mRNA targets. Conclusions We develop a new computational method for predicting the target mRNAs of miRNAs. BayMiR applies a large number of mRNA expression profiles and successfully identifies the mRNA targets and miRNA activities without using miRNA expression data. The BayMiR package is publicly available and can be readily applied to any mRNA expression data sets. PMID:24001276

  20. miR-217 and CAGE form feedback loop and regulates the response to anti-cancer drugs through EGFR and HER2

    PubMed Central

    Han, Minho; Lee, Hansoo; Lee, Yun Sil; Choe, Jongseon; Kim, Young Myeong; Jeoung, Dooil

    2016-01-01

    MicroRNA array analysis revealed that miR-217 expression was decreased in anti-cancer drug-resistant Malme3MR cancer cells. CAGE, a cancer/testis antigen, was predicted as a target of miR-217. Luciferase activity and ChIP assays revealed a negative feedback relationship between CAGE and miR-217. miR-217 and CAGE oppositely regulated the response to anti-cancer drugs such as taxol, gefitinib and trastuzumab, an inhibitor of HER2. miR-217 negatively regulated the tumorigenic, metastatic, angiogenic, migration and invasion potential of cancer cells. The xenograft of Malme3MR cells showed an increased expression of pEGFRY845. CAGE and miR-217 inhibitor regulated the expression of pEGFRY845. CAGE showed interactions with EGFR and HER2 and regulated the in vivo sensitivity to trastuzumab. The down-regulation of EGFR or HER2 enhanced the sensitivity to anti-cancer drugs. CAGE showed direct regulation of HER2 and was necessary for the interaction between EGFR and HER2 in Malme3MR cells. miR-217 inhibitor induced interactions of CAGE with EGFR and HER2 in Malme3M cells. The inhibition of EGFR by CAGE-binding GTGKT peptide enhanced the sensitivity to gefitinib and trastuzumab and prevented interactions of EGFR with CAGE and HER2. Our results show that miR-217-CAGE feedback loop serves as a target for overcoming resistance to various anti-cancer drugs, including EGFR and HER2 inhibitors. PMID:26863629

  1. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    PubMed

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  2. Dynamics of the F(-) + CH3I → HF + CH2I(-) Proton Transfer Reaction.

    PubMed

    Zhang, Jiaxu; Xie, Jing; Hase, William L

    2015-12-17

    Direct chemical dynamics simulations, at collision energies Erel of 0.32 and 1.53 eV, were performed to obtain an atomistic understanding of the F(-) + CH3I reaction dynamics. There is only the F(-) + CH3I → CH3F + I(-) bimolecular nucleophilic substitution SN2 product channel at 0.32 eV. Increasing Erel to 1.53 eV opens the endothermic F(-) + CH3I → HF + CH2I(-) proton transfer reaction, which is less competitive than the SN2 reaction. The simulations reveal proton transfer occurs by two direct atomic-level mechanisms, rebound and stripping, and indirect mechanisms, involving formation of the F(-)···HCH2I complex and the roundabout. For the indirect trajectories all of the CH2I(-) is formed with zero-point energy (ZPE), while for the direct trajectories 50% form CH2I(-) without ZPE. Without a ZPE constraint for CH2I(-), the reaction cross sections for the rebound, stripping, and indirect mechanisms are 0.2 ± 0.1, 1.2 ± 0.4, and 0.7 ± 0.2 Å(2), respectively. Discarding trajectories that do not form CH2I(-) with ZPE reduces the rebound and stripping cross sections to 0.1 ± 0.1 and 0.7 ± 0.5 Å(2). The HF product is formed rotationally and vibrationally unexcited. The average value of J is 2.6 and with histogram binning n = 0. CH2I(-) is formed rotationally excited. The partitioning between CH2I(-) vibration and HF + CH2I(-) relative translation energy depends on the treatment of CH2I(-) ZPE. Without a CH2I(-) ZPE constraint the energy partitioning is primarily to relative translation with little CH2I(-) vibration. With a ZPE constraint, energy partitioning to CH2I(-) rotation, CH2I(-) vibration, and relative translation are statistically the same. The overall F(-) + CH3I rate constant at Erel of both 0.32 and 1.53 eV is in good agreement with experiment and negligibly affected by the treatment of CH2I(-) ZPE, since the SN2 reaction is the major contributor to the total reaction rate constant. The potential energy surface and reaction dynamics for F

  3. A miRNA-tRNA mix-up: tRNA origin of proposed miRNA.

    PubMed

    Schopman, Nick C T; Heynen, Stephan; Haasnoot, Joost; Berkhout, Ben

    2010-01-01

    The rapid release of new data from DNA genome sequencing projects has led to a variety of misannotations in public databases. Our results suggest that next generation sequencing approaches are particularly prone to such misannotations. Two related miRNA candidates did recently enter the miRBase database, miR-1274b and miR-1274a, but they share identical 18-nucleotide stretches with tRNA (Lys3) and tRNA (Lys5) , respectively. The possibility that the small RNA fragments that led to the description of these two miRNAs originated from the two tRNAs was examined. The ratio of the miR-1274b:miR-1274a fragments does closely resemble the known tRNA lys3:lys5 ratio in the cell. Furthermore, the proposed miRNA hairpins have a very low prediction score and the proposed miRNA genes are in fact endogenous retroviral elements. We searched for other miRNA-mimics in the human genome and found more examples of tRNA-miRNA mimicry. We propose that the corresponding miRNAs should be validated in more detail, as the small RNA fragments that led to their description are likely derived from tRNA processing. PMID:20818168

  4. A Toolbox for Herpesvirus miRNA Research: Construction of a Complete Set of KSHV miRNA Deletion Mutants.

    PubMed

    Jain, Vaibhav; Plaisance-Bonstaff, Karlie; Sangani, Rajnikumar; Lanier, Curtis; Dolce, Alexander; Hu, Jianhong; Brulois, Kevin; Haecker, Irina; Turner, Peter; Renne, Rolf; Krueger, Brian

    2016-02-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) encodes 12 viral microRNAs (miRNAs) that are expressed during latency. Research into KSHV miRNA function has suffered from a lack of genetic systems to study viral miRNA mutations in the context of the viral genome. We used the Escherichia coli Red recombination system together with a new bacmid background, BAC16, to create mutants for all known KSHV miRNAs. The specific miRNA deletions or mutations and the integrity of the bacmids have been strictly quality controlled using PCR, restriction digestion, and sequencing. In addition, stable viral producer cell lines based on iSLK cells have been created for wildtype KSHV, for 12 individual miRNA knock-out mutants (ΔmiR-K12-1 through -12), and for mutants deleted for 10 of 12 (ΔmiR-cluster) or all 12 miRNAs (ΔmiR-all). NGS, in combination with SureSelect technology, was employed to sequence the entire latent genome within all producer cell lines. qPCR assays were used to verify the expression of the remaining viral miRNAs in a subset of mutants. Induction of the lytic cycle leads to efficient production of progeny viruses that have been used to infect endothelial cells. Wt BAC16 and miR mutant iSLK producer cell lines are now available to the research community. PMID:26907327

  5. Human miR-1271 is a miR-96 paralog with distinct non-conserved brain expression pattern

    PubMed Central

    Jensen, Kevin P.; Covault, Jonathan

    2011-01-01

    Recent deep-sequencing efforts have identified many novel non-conserved small RNAs that are expressed at low levels in certain mammalian cells. Whether these small RNAs are important for mammalian physiology is debatable, therefore we explored the function of one such RNA, human miR-1271. This small RNA is similar in sequence to miR-96, a highly conserved microRNA that when mutated causes hearing loss in humans and mice. Although the miR-1271 and miR-96 sequences differ slightly, our in vitro assays indicate that they have an identical regulatory activity. We have identified brain-expressed mRNAs from genes including, GPHN, RGS2, HOMER1 and KCC2, which share the same miR-96 and miR-1271 regulatory elements. Interestingly, human miR-1271 is expressed abundantly in brain tissue, where miR-96 is not highly expressed. The rodent miR-1271 precursor contains several sequence differences in the precursor stem, which appear to reduce the efficiency of microRNA processing. Our data indicate that although miR-1271 and miR-96 function identically in vitro, they function to some extent uniquely in vivo. Given the expression patterns and nature of the target genes, miR-1271 may have a significant, although non-conserved, role in regulating aspects of neural development or function in humans. PMID:20864449

  6. PEI-complexed LNA antiseeds as miRNA inhibitors

    PubMed Central

    Thomas, Maren; Lange-Grünweller, Kerstin; Dayyoub, Eyas; Bakowsky, Udo; Weirauch, Ulrike; Aigner, Achim; Hartmann, Roland K.; Grünweller, Arnold

    2012-01-01

    Antisense inhibition of oncogenic or other disease-related miRNAs and miRNA families in vivo may provide novel therapeutic strategies. However, this approach relies on the development of potent miRNA inhibitors and their efficient delivery into cells. Here, we introduce short seed-directed LNA oligonucleotides (12- or 14-mer antiseeds) with a phosphodiester backbone (PO) for efficient miRNA inhibition. We have analyzed such LNA (PO) antiseeds using a let-7a-controlled luciferase reporter assay and identified them as active miRNA inhibitors in vitro. Moreover, LNA (PO) 14-mer antiseeds against ongogenic miR-17–5p and miR-20a derepress endogenous p21 expression more persistently than corresponding miRNA hairpin inhibitors, which are often used to inhibit miRNA function. Further analysis of the antiseed-mediated derepression of p21 in luciferase reporter constructs - containing the 3′-UTR of p21 and harboring two binding sites for miRNAs of the miR-106b family - provided evidence that the LNA antiseeds inhibit miRNA families while hairpin inhibitors act in a miRNA-specific manner. The derepression caused by LNA antiseeds is specific, as demonstrated via seed mutagenesis of the miR-106b target sites. Importantly, we show functional delivery of LNA (PO) 14-mer antiseeds into cells upon complexation with polyethylenimine (PEI F25-LMW), which leads to the formation of polymeric nanoparticles. In contrast, attempts to deliver a functional seed-directed tiny LNA 8-mer with a phosphorothioate backbone (PS) by formulation with PEI F25-LMW remained unsuccessful. In conclusion, LNA (PO) 14-mer antiseeds are attractive miRNA inhibitors, and their PEI-based delivery may represent a promising new strategy for therapeutic applications. PMID:22894918

  7. Maternal Plasma miRNAs Expression in Preeclamptic Pregnancies

    PubMed Central

    Li, Hailing; Ge, Qinyu; Guo, Li; Lu, Zuhong

    2013-01-01

    Objective. Preeclampsia (PE) is a pregnancy-specific syndrome and one of the leading causes of maternal and fetal morbidity and mortality. The pathophysiological mechanisms of PE remain poorly known. Recently, circulating miRNAs are considered as potential useful noninvasive biomarkers. The aim of this study was to identify differentially expressed plasma miRNAs in preeclamptic pregnancies compared with normal pregnancies. Methods. Maternal plasma miRNA expression profiles were detected by SOLiD sequencing. Differential expressions between mPE/sPE and control group were found. Next, four differentially expressed plasma miRNAs were chosen to validate their expression in other large scale samples by real-time PCR. Results. In terms of sequencing results, we identified that 51 miRNAs were differentially expressed. Four differentially expressed plasma miRNAs (miR-141, miR-144, miR-221, and miR-29a) were selected to validate the sequencing results. RT-PCR data confirmed the reliability of sequencing results. The further statistical analysis showed that maternal plasma miR-141 and miR-29a are significantly overexpressed in mPE (P < 0.05). Maternal plasma miR-144 is significantly underexpressed in mPE and sPE (P < 0.05). Conclusions. Results showed that there were differentially expressed maternal plasma miRNAs in patients with preeclampsia. These plasma miRNAs might be used as notable biomarkers for diagnosis of preeclampsia. PMID:24195082

  8. miRNA Isolation from FFPET Specimen: A Technical Comparison of miRNA and Total RNA Isolation Methods.

    PubMed

    Nagy, Zsófia Brigitta; Wichmann, Barnabás; Kalmár, Alexandra; Barták, Barbara Kinga; Tulassay, Zsolt; Molnár, Béla

    2016-07-01

    MiRNA remain stable for detection and PCR-based amplification in FFPE tissue samples. Several miRNA extraction kits are available, however miRNA fraction, as part of total RNA can be isolated using total RNA purification methods, as well. Our primary aim was to compare four different miRNA and total RNA isolation methods from FFPE tissues. Further purposes were to evaluate quantitatively and qualitatively the yield of the isolated miRNA. MiRNAs were isolated from normal colorectal cancer FFPE specimens from the same patients. Two miRNA isolation kits (High Pure miRNA Isolation Kit, miRCURY™ RNA Isolation Kit) and two total RNA isolation kits were compared (High Pure RNA Paraffin Kit, MagNA Pure 96 Cellular RNA LV Kit). Quantity and quality were determined, expression analysis was performed by real-time PCR using qPCR Human Panel I + II (Exiqon) method detecting 742 human miRNAs in parallel. The yield of total RNA was found to be higher than miRNA purification protocols (in CRC: Ex: 0203 ± 0021 μg; HPm: 1,45 ± 0,8 μg; HPp: 21,36 ± 4,98 μg; MP: 8,6 ± 5,1 μg). MiRNAs were detected in lower relative quantity of total RNA compared to the miRNA kits. Higher number of miRNAs could be detected by the miRNA isolation kits in comparison to the total RNA isolation methods. (Ex: 497 ± 16; HPm: 542 ± 11; HPp: 332 ± 36; MP: 295 ± 74). Colon specific miRNAs (miR-21-5p;-34-5p) give satisfying results by miRNA isolation kits. Although miRNA can be detected also after total RNA isolation methods, for reliable and reproducible miRNA expression profiling the use of miRNA isolation kits are more suitable.

  9. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer.

    PubMed

    Eyking, Annette; Reis, Henning; Frank, Magdalena; Gerken, Guido; Schmid, Kurt W; Cario, Elke

    2016-01-01

    Mucinous adenocarcinoma (MAC) represents a distinct histopathological entity of colorectal cancer (CRC), which is associated with disease progression and poor prognosis. Here, we found that expression levels of miR-205 and miR-373 were specifically upregulated only in patients with mucinous colon cancers, but not in CRC that lack mucinous components. To investigate the effects of miR-205 and miR-373 on intestinal epithelial cell (IEC) biology by gain- and loss-of-function experiments in a proof-of-concept approach, we chose previously established in-vitro human Caco-2-based models of differentiated, non-invasive (expressing TLR4 wild-type; termed Caco-2[WT]) versus undifferentiated, invasive (expressing TLR4 mutant D299G; termed Caco-2[D299G]) IEC. Enterocyte-like Caco-2[WT] showed low levels of miR-205 and miR-373 expression, while both miRNAs were significantly upregulated in colorectal carcinoma-like Caco-2[D299G], thus resembling the miRNA expression pattern of paired normal versus tumor samples from MAC patients. Using stable transfection, we generated miR-205- or miR-373-expressing and miR-205- or miR-373-inhibiting subclones of these IEC lines. We found that introduction of miR-205 into Caco-2[WT] led to expansion of mucus-secreting goblet cell-like cells, which was associated with induction of KLF4, MUC2 and TGFβ1 expression. Activation of miR-205 in Caco-2[WT] induced chemoresistance, while inhibition of miR-205 in Caco-2[D299G] promoted chemosensitivity. Caco-2[WT] overexpressing miR-373 showed mitotic abnormalities and underwent morphologic changes (loss of epithelial polarity, cytoskeletal reorganization, and junctional disruption) associated with epithelial-mesenchymal transition and progression to inflammation-associated colonic carcinoma, which correlated with induction of phosphorylated STAT3 and N-CADHERIN expression. Functionally, introduction of miR-373 into Caco-2[WT] mediated loss of cell-cell adhesion and increased proliferation and invasion

  10. MiR-205 and MiR-373 Are Associated with Aggressive Human Mucinous Colorectal Cancer

    PubMed Central

    Eyking, Annette; Reis, Henning; Frank, Magdalena; Gerken, Guido; Schmid, Kurt W.; Cario, Elke

    2016-01-01

    Mucinous adenocarcinoma (MAC) represents a distinct histopathological entity of colorectal cancer (CRC), which is associated with disease progression and poor prognosis. Here, we found that expression levels of miR-205 and miR-373 were specifically upregulated only in patients with mucinous colon cancers, but not in CRC that lack mucinous components. To investigate the effects of miR-205 and miR-373 on intestinal epithelial cell (IEC) biology by gain- and loss-of-function experiments in a proof-of-concept approach, we chose previously established in-vitro human Caco-2-based models of differentiated, non-invasive (expressing TLR4 wild-type; termed Caco-2[WT]) versus undifferentiated, invasive (expressing TLR4 mutant D299G; termed Caco-2[D299G]) IEC. Enterocyte-like Caco-2[WT] showed low levels of miR-205 and miR-373 expression, while both miRNAs were significantly upregulated in colorectal carcinoma-like Caco-2[D299G], thus resembling the miRNA expression pattern of paired normal versus tumor samples from MAC patients. Using stable transfection, we generated miR-205- or miR-373-expressing and miR-205- or miR-373-inhibiting subclones of these IEC lines. We found that introduction of miR-205 into Caco-2[WT] led to expansion of mucus-secreting goblet cell-like cells, which was associated with induction of KLF4, MUC2 and TGFβ1 expression. Activation of miR-205 in Caco-2[WT] induced chemoresistance, while inhibition of miR-205 in Caco-2[D299G] promoted chemosensitivity. Caco-2[WT] overexpressing miR-373 showed mitotic abnormalities and underwent morphologic changes (loss of epithelial polarity, cytoskeletal reorganization, and junctional disruption) associated with epithelial-mesenchymal transition and progression to inflammation-associated colonic carcinoma, which correlated with induction of phosphorylated STAT3 and N-CADHERIN expression. Functionally, introduction of miR-373 into Caco-2[WT] mediated loss of cell-cell adhesion and increased proliferation and invasion

  11. miRNA profiling along tumour progression in ovarian carcinoma

    PubMed Central

    Vaksman, Olga; Stavnes, Helene Tuft; Kærn, Janne; Trope, Claes G; Davidson, Ben; Reich, Reuven

    2011-01-01

    Abstract MicroRNAs (miRNAs) are small non-coding RNAs that exert a regulatory effect post-transcriptionally by binding target mRNAs and inhibiting gene translation. miRNA expression is deregulated in cancer. The aim of this study was to characterize the differences in miRNA expression pattern and the miRNA-regulating machinery between ovarian carcinoma (OC) cells in primary tumours versus effusions. Using miRNA array platforms, we analysed a set of 21 tumours (13 effusions, 8 primary carcinomas) and identified three sets of miRNAs, one that is highly expressed in both primary carcinomas and effusions, one overexpressed in primary carcinomas and one overexpressed in effusions. Levels of selected miRNAs were analysed using quantitative PCR in an independent set of 45 additional tumours (30 effusions, 15 primary carcinomas). Reduced miR-145 and miR-214 and elevated let-7f, miR-182, miR-210, miR-200c, miR-222 and miR-23a levels were found in effusions in both sets. In silico target prediction programs identified potential target genes for some of the differentially expressed miRNAs. Expression of zinc finger E-box binding homeobox (ZEB)1 and c-Myc, targets of miR-200c, as well as of p21 protein (Cdc42/Rac)-activated kinase (PAK)1 and phosphatase and tensin homologue deleted on chromosome 10 (PTEN), predicted targets of miR-222, were analysed. Inverse correlations between expression levels of the indicated miRNAs and of the predicted target genes were found. In addition, higher expression of the miRNA-processing molecules Ago1, Ago2 and Dicer was observed in effusions compared to primary carcinomas. In conclusion, our data are the first to document different miRNA expression and regulation profiles in primary and metastatic OC, suggesting a role for these molecules in tumour progression. PMID:20716115

  12. Predictive Value of Serum miR-10b, miR-29c, and miR-205 as Promising Biomarkers in Esophageal Squamous Cell Carcinoma Screening

    PubMed Central

    Xu, Hang; Yao, Yuanfei; Meng, Fanyu; Qian, Xu; Jiang, Xiaofeng; Li, Xiaoxi; Gao, Zhuo; Gao, Lu

    2015-01-01

    Abstract Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths worldwide. The high mortality of ESCC is mainly due to late diagnosis. Current detection methods have their own weakness, including high costs and invasive procedures. MicroRNA assays are shown to have great potential to be accurate and noninvasive methods for ESCC screening. In this study, we selected 3 microRNAs, miR-10b, miR-29c, and miR-205, to assess their diagnostic value in ESCC screening. Fifty ESCC patients and 50 healthy controls are recruited in our study. Blood samples are collected from the total 100 participants. MicroRNAs were extracted from serum and quantified by qRT-PCR, which their relative expressions were normalized by internal control, U6 snRNA. Statistical analyses were conducted to compare microRNAs level as well as other clinical characteristics between 2 groups. The levels of serum miR-29c and miR-205 were significantly downregulated in ESCC patients compared with healthy volunteers. In contrast, ESCC patients appeared to have a higher level of miR-10b than healthy controls. ROC curve analyses revealed that the AUC value for miR-10b, miR-29c, and miR-205 were 0.85 (95% CI: 0.79–0.93; sensitivity = 76%; specificity = 84%), 0.72 (95% CI: 0.62–0.82; sensitivity = 68%; specificity = 68%), and 0.72 (95% CI: 0.62–0.83; sensitivity = 70%; specificity = 64%), respectively, suggesting that miR-10b, miR-29c, and miR-205 have great potential to be noninvasive screening tools for ESCC detection. PMID:26554762

  13. Exosomal miRNAs as cancer biomarkers and therapeutic targets.

    PubMed

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  14. Microprocessor activity controls differential miRNA biogenesis In Vivo.

    PubMed

    Conrad, Thomas; Marsico, Annalisa; Gehre, Maja; Orom, Ulf Andersson

    2014-10-23

    In miRNA biogenesis, pri-miRNA transcripts are converted into pre-miRNA hairpins. The in vivo properties of this process remain enigmatic. Here, we determine in vivo transcriptome-wide pri-miRNA processing using next-generation sequencing of chromatin-associated pri-miRNAs. We identify a distinctive Microprocessor signature in the transcriptome profile from which efficiency of the endogenous processing event can be accurately quantified. This analysis reveals differential susceptibility to Microprocessor cleavage as a key regulatory step in miRNA biogenesis. Processing is highly variable among pri-miRNAs and a better predictor of miRNA abundance than primary transcription itself. Processing is also largely stable across three cell lines, suggesting a major contribution of sequence determinants. On the basis of differential processing efficiencies, we define functionality for short sequence features adjacent to the pre-miRNA hairpin. In conclusion, we identify Microprocessor as the main hub for diversified miRNA output and suggest a role for uncoupling miRNA biogenesis from host gene expression.

  15. miRNA control of tissue repair and regeneration.

    PubMed

    Sen, Chandan K; Ghatak, Subhadip

    2015-10-01

    Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.

  16. Exosomal miRNAs as cancer biomarkers and therapeutic targets

    PubMed Central

    Thind, Arron; Wilson, Clive

    2016-01-01

    Intercommunication between cancer cells and with their surrounding and distant environments is key to the survival, progression and metastasis of the tumour. Exosomes play a role in this communication process. MicroRNA (miRNA) expression is frequently dysregulated in tumour cells and can be reflected by distinct exosomal miRNA (ex-miRNA) profiles isolated from the bodily fluids of cancer patients. Here, the potential of ex-miRNA as a cancer biomarker and therapeutic target is critically analysed. Exosomes are a stable source of miRNA in bodily fluids but, despite a number of methods for exosome extraction and miRNA quantification, their suitability for diagnostics in a clinical setting is questionable. Furthermore, exosomally transferred miRNAs can alter the behaviour of recipient tumour and stromal cells to promote oncogenesis, highlighting a role in cell communication in cancer. However, our incomplete understanding of exosome biogenesis and miRNA loading mechanisms means that strategies to target exosomes or their transferred miRNAs are limited and not specific to tumour cells. Therefore, if ex-miRNA is to be employed in novel non-invasive diagnostic approaches and as a therapeutic target in cancer, two further advances are necessary: in methods to isolate and detect ex-miRNA, and a better understanding of their biogenesis and functions in tumour-cell communication. PMID:27440105

  17. miR-150 inhibits terminal erythroid proliferation and differentiation

    PubMed Central

    Sun, Zhiwei; Wang, Ye; Han, Xu; Zhao, Xielan; Peng, Yuanliang; Li, Yusheng; Peng, Minyuan; Song, Jianhui; Wu, Kunlu; Sun, Shumin; Zhou, Weihua; Qi, Biwei; Zhou, Chufan; Chen, Huiyong; An, Xiuli; Liu, Jing

    2015-01-01

    MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system. PMID:26543232

  18. Do miRNAs have a deep evolutionary history?

    PubMed

    Tarver, James E; Donoghue, Philip C J; Peterson, Kevin J

    2012-10-01

    The recent discovery of microRNAs (miRNAs) in unicellular eukaryotes, including miRNAs known previously only from animals or plants, implies that miRNAs have a deep evolutionary history among eukaryotes. This contrasts with the prevailing view that miRNAs evolved convergently in animals and plants. We re-evaluate the evidence and find that none of the 73 plant and animal miRNAs described from protists meet the required criteria for miRNA annotation and, by implication, animals and plants did not acquire any of their respective miRNA genes from the crown ancestor of eukaryotes. Furthermore, of the 159 novel miRNAs previously identified among the seven species of unicellular protists examined, only 28 from the algae Ectocarpus and Chlamydomonas, meet the criteria for miRNA annotation. Therefore, at present only five groups of eukaryotes are known to possess miRNAs, indicating that miRNAs have evolved independently within eukaryotes through exaptation of their shared inherited RNAi machinery.

  19. Determination of MiRNA Targets in Skeletal Muscle Cells

    PubMed Central

    Huang, Zhan-Peng; Espinoza-Lewis, Ramón; Wang, Da-Zhi

    2014-01-01

    MicroRNAs (miRNAs) are a class of small ∼22 nucleotide noncoding RNAs which regulate gene expression at the posttranscriptional level by either destabilizing and consequently degrading their targeted mRNAs or by repressing their translation. Emerging evidence has demonstrated that miRNAs are essential for normal mammalian development, homeostasis, and many other functions. In addition, deleterious changes in miRNA expression were associated with human diseases. Several muscle-specific miRNAs, including miR-1, miR-133, miR-206, and miR-208, have been shown to be important for normal myo-blast differentiation, proliferation, and muscle remodeling in response to stress. They have also been implicated in various cardiac and skeletal muscular diseases. miRNA-based gene therapies hold great potential for the treatment of cardiac and skeletal muscle diseases. Herein, we describe methods commonly applied to study the biological role of miRNAs, as well as techniques utilized to manipulate miRNA expression and to investigate their target regulation. PMID:22130855

  20. Exploration of miRNA families for hypotheses generation.

    PubMed

    Kamanu, Timothy K K; Radovanovic, Aleksandar; Archer, John A C; Bajic, Vladimir B

    2013-01-01

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  1. Oligoasthenoteratozoospermia and Infertility in Mice Deficient for miR-34b/c and miR-449 Loci

    PubMed Central

    Rasmussen, Kasper Dindler; Much, Christian; Azzi, Chiara; Perlas, Emerald; Morgan, Marcos; O'Carroll, Dónal

    2014-01-01

    Male fertility requires the continuous production of high quality motile spermatozoa in abundance. Alterations in all three metrics cause oligoasthenoteratozoospermia, the leading cause of human sub/infertility. Post-mitotic spermatogenesis inclusive of several meiotic stages and spermiogenesis (terminal spermatozoa differentiation) are transcriptionally inert, indicating the potential importance for the post-transcriptional microRNA (miRNA) gene-silencing pathway therein. We found the expression of miRNA generating enzyme Dicer within spermatogenesis peaks in meiosis with critical functions in spermatogenesis. In an expression screen we identified two miRNA loci of the miR-34 family (miR-34b/c and miR-449) that are specifically and highly expressed in post-mitotic male germ cells. A reduction in several miRNAs inclusive of miR-34b/c in spermatozoa has been causally associated with reduced fertility in humans. We found that deletion of both miR34b/c and miR-449 loci resulted in oligoasthenoteratozoospermia in mice. MiR-34bc/449-deficiency impairs both meiosis and the final stages of spermatozoa maturation. Analysis of miR-34bc−/−;449−/− pachytene spermatocytes revealed a small cohort of genes deregulated that were highly enriched for miR-34 family target genes. Our results identify the miR-34 family as the first functionally important miRNAs for spermatogenesis whose deregulation is causal to oligoasthenoteratozoospermia and infertility. PMID:25329700

  2. Mitochondria: one of the destinations of miRNAs.

    PubMed

    Sripada, Lakshmi; Tomar, Dhanendra; Singh, Rajesh

    2012-11-01

    The cellular processes are controlled by a narrow range of mRNA and proteins levels, where small RNAs (sRNAs) known as miRNAs play a critical role. The spatial and temporal regulation of miRNA processing components and mature miRNA is emerging. The recent studies suggest that mitochondria are one of the destinations of pre as well as mature miRNAs. The role of mitochondria extends beyond energy metabolism to many other cellular processes like metabolism, cell death and inflammation. The new found destination of miRNAs suggest the role of mitochondria in monitoring site specific regulations of proteins as well as the function of mitochondria. The studies in this direction will decipher the novel role of mitochondria-associated miRNAs in different cellular processes. This review is focussed on the recent studies demonstrating the presence of miRNAs in mitochondria and its possible significance in different cellular and physiological conditions.

  3. CH-TRU Waste Content Codes

    SciTech Connect

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. Role of miRNA-9 in Brain Development

    PubMed Central

    Radhakrishnan, Balachandar; Alwin Prem Anand, A.

    2016-01-01

    MicroRNAs (miRNAs) are a class of small regulatory RNAs involved in gene regulation. The regulation is effected by either translational inhibition or transcriptional silencing. In vertebrates, the importance of miRNA in development was discovered from mice and zebrafish dicer knockouts. The miRNA-9 (miR-9) is one of the most highly expressed miRNAs in the early and adult vertebrate brain. It has diverse functions within the developing vertebrate brain. In this article, the role of miR-9 in the developing forebrain (telencephalon and diencephalon), midbrain, hindbrain, and spinal cord of vertebrate species is highlighted. In the forebrain, miR-9 is necessary for the proper development of dorsoventral telencephalon by targeting marker genes expressed in the telencephalon. It regulates proliferation in telencephalon by regulating Foxg1, Pax6, Gsh2, and Meis2 genes. The feedback loop regulation between miR-9 and Nr2e1/Tlx helps in neuronal migration and differentiation. Targeting Foxp1 and Foxp2, and Map1b by miR-9 regulates the radial migration of neurons and axonal development. In the organizers, miR-9 is inversely regulated by hairy1 and Fgf8 to maintain zona limitans interthalamica and midbrain–hindbrain boundary (MHB). It maintains the MHB by inhibiting Fgf signaling genes and is involved in the neurogenesis of the midbrain–hindbrain by regulating Her genes. In the hindbrain, miR-9 modulates progenitor proliferation and differentiation by regulating Her genes and Elav3. In the spinal cord, miR-9 modulates the regulation of Foxp1 and Onecut1 for motor neuron development. In the forebrain, midbrain, and hindbrain, miR-9 is necessary for proper neuronal progenitor maintenance, neurogenesis, and differentiation. In vertebrate brain development, miR-9 is involved in regulating several region-specific genes in a spatiotemporal pattern. PMID:27721656

  5. Healing in the Sámi North.

    PubMed

    Sexton, Randall; Stabbursvik, Ellen Anne Buljo

    2010-12-01

    There is a special emphasis today on integrating traditional healing within health services. However, most areas in which there is a system of traditional healing have undergone colonization and a number of pressures suppressing tradition for hundreds of years. The question arises as to how one can understand today's tradition in light of earlier traditions. This article is based on material collected in Sámi areas of Finnmark and Nord-Troms Norway; it compares local healing traditions with what is known of earlier shamanic traditions in the area. The study is based on 27 interviews among healers and their patients. The findings suggest that although local healing traditions among the Sámi in northern Norway have undergone major transformations during the last several hundred years, they may be considered an extension of a long-standing tradition with deep roots in the region. Of special interest are also the new forms tradition may take in today's changing global society.

  6. miR-199a and miR-497 Are Associated with Better Overall Survival due to Increased Chemosensitivity in Diffuse Large B-Cell Lymphoma Patients.

    PubMed

    Troppan, Katharina; Wenzl, Kerstin; Pichler, Martin; Pursche, Beata; Schwarzenbacher, Daniela; Feichtinger, Julia; Thallinger, Gerhard G; Beham-Schmid, Christine; Neumeister, Peter; Deutsch, Alexander

    2015-08-05

    Micro-RNAs (miRNAs) are short non-coding single-stranded RNA molecules regulating gene expression at the post-transcriptional level. miRNAs are involved in cell development, differentiation, apoptosis, and proliferation. miRNAs can either function as tumor suppressor genes or oncogenes in various important pathways. The expression of specific miRNAs has been identified to correlate with tumor prognosis. For miRNA expression analysis real-time PCR on 81 samples was performed, including 63 diffuse large B-cell lymphoma (DLBCL, 15 of germinal center B-cell like subtype, 17 non germinal center B-cell, 23 transformed, and eight unclassified) and 18 controls, including nine peripheral B-cells, 5 germinal-center B-cells, four lymphadenitis samples, and 4 lymphoma cell lines (RI-1, SUDHL4, Karpas, U2932). Expression levels of a panel of 11 miRNAs that have been previously involved in other types of cancer (miR-15b_2, miR-16_1*, miR-16_2, miR-16_2*, miR-27a, miR-27a*, miR-98-1, miR-103a, miR-185, miR-199a, and miR-497) were measured and correlated with clinical data. Furthermore, cell lines, lacking miR-199a and miR-497 expression, were electroporated with the two respective miRNAs and treated with standard immunochemotherapy routinely used in patients with DLBCL, followed by functional analyses including cell count and apoptosis assays. Seven miRNAs (miR-16_1*, miR-16_2*, miR-27a, miR-103, miR-185, miR-199, and miR-497) were statistically significantly up-regulated in DLBCL compared to normal germinal cells. However, high expression of miR-497 or miR-199a was associated with better overall survival (p = 0.042 and p = 0.007). Overexpression of miR-199a and miR-497 led to a statistically significant decrease in viable cells in a dose-dependent fashion after exposure to rituximab and various chemotherapeutics relevant in multi-agent lymphoma therapy. Our data indicate that elevated miR-199a and miR-497 levels are associated with improved survival in aggressive lymphoma

  7. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs

    PubMed Central

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or ‘miRNA sponges’ that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge. PMID:26424084

  8. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs.

    PubMed

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or 'miRNA sponges' that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge.

  9. miRSponge: a manually curated database for experimentally supported miRNA sponges and ceRNAs.

    PubMed

    Wang, Peng; Zhi, Hui; Zhang, Yunpeng; Liu, Yue; Zhang, Jizhou; Gao, Yue; Guo, Maoni; Ning, Shangwei; Li, Xia

    2015-01-01

    In this study, we describe miRSponge, a manually curated database, which aims at providing an experimentally supported resource for microRNA (miRNA) sponges. Recent evidence suggests that miRNAs are themselves regulated by competing endogenous RNAs (ceRNAs) or 'miRNA sponges' that contain miRNA binding sites. These competitive molecules can sequester miRNAs to prevent them interacting with their natural targets to play critical roles in various biological and pathological processes. It has become increasingly important to develop a high quality database to record and store ceRNA data to support future studies. To this end, we have established the experimentally supported miRSponge database that contains data on 599 miRNA-sponge interactions and 463 ceRNA relationships from 11 species following manual curating from nearly 1200 published articles. Database classes include endogenously generated molecules including coding genes, pseudogenes, long non-coding RNAs and circular RNAs, along with exogenously introduced molecules including viral RNAs and artificial engineered sponges. Approximately 70% of the interactions were identified experimentally in disease states. miRSponge provides a user-friendly interface for convenient browsing, retrieval and downloading of dataset. A submission page is also included to allow researchers to submit newly validated miRNA sponge data. Database URL: http://www.bio-bigdata.net/miRSponge. PMID:26424084

  10. miRNet - dissecting miRNA-target interactions and functional associations through network-based visual analysis

    PubMed Central

    Fan, Yannan; Siklenka, Keith; Arora, Simran K.; Ribeiro, Paula; Kimmins, Sarah; Xia, Jianguo

    2016-01-01

    MicroRNAs (miRNAs) can regulate nearly all biological processes and their dysregulation is implicated in various complex diseases and pathological conditions. Recent years have seen a growing number of functional studies of miRNAs using high-throughput experimental technologies, which have produced a large amount of high-quality data regarding miRNA target genes and their interactions with small molecules, long non-coding RNAs, epigenetic modifiers, disease associations, etc. These rich sets of information have enabled the creation of comprehensive networks linking miRNAs with various biologically important entities to shed light on their collective functions and regulatory mechanisms. Here, we introduce miRNet, an easy-to-use web-based tool that offers statistical, visual and network-based approaches to help researchers understand miRNAs functions and regulatory mechanisms. The key features of miRNet include: (i) a comprehensive knowledge base integrating high-quality miRNA-target interaction data from 11 databases; (ii) support for differential expression analysis of data from microarray, RNA-seq and quantitative PCR; (iii) implementation of a flexible interface for data filtering, refinement and customization during network creation; (iv) a powerful fully featured network visualization system coupled with enrichment analysis. miRNet offers a comprehensive tool suite to enable statistical analysis and functional interpretation of various data generated from current miRNA studies. miRNet is freely available at http://www.mirnet.ca. PMID:27105848

  11. Identification and analysis of miRNAs and their targets in ginger using bioinformatics approach.

    PubMed

    Singh, Noopur; Srivastava, Swati; Sharma, Ashok

    2016-01-10

    MicroRNAs (miRNAs) are a large family of endogenous small RNAs derived from the non-protein coding genes. miRNA regulates the gene expression at the post-transcriptional level and plays an important role in plant development. Zingiber officinale is an important medicinal plant having numerous therapeutic properties. Its bioactive compound gingerol and essential oil posses important pharmacological and physiological activities. In this study, we used a homology search based computational approach for identifying miRNAs in Z. officinale. A total of 16 potential miRNA families (miR167, miR407, miR414, miR5015, miR5021, miR5644, miR5645, miR5656, miR5658, miR5664, miR827, miR838, miR847, miR854, miR862 and miR864) were predicted in ginger. Phylogenetic and conserved analyses were performed for predicted miRNAs. Thirteen miRNA families were found to regulate 300 target transcripts and play an important role in cell signaling, reproduction, metabolic process and stress. To understand the miRNA mediated gene regulatory control and to validate miRNA target predictions, a biological network was also constructed. Gene ontology and pathway analyses were also done. miR5015 was observed to regulate the biosynthesis of gingerol by inhibiting phenyl ammonia lyase (PAL), a precursor enzyme in the biosynthesis of gingerol. Our results revealed that most of the predicted miRNAs were involved in the regulation of rhizome development. miR5021, miR854 and miR838 were identified to regulate the rhizome development and the essential oil biosynthesis in ginger.

  12. A Biogenesis Step Upstream of Microprocessor Controls miR-17∼92 Expression.

    PubMed

    Du, Peng; Wang, Longfei; Sliz, Piotr; Gregory, Richard I

    2015-08-13

    The precise control of miR-17∼92 microRNA (miRNA) is essential for normal development, and overexpression of certain miRNAs from this cluster is oncogenic. Here, we find that the relative expression of the six miRNAs processed from the primary (pri-miR-17∼92) transcript is dynamically regulated during embryonic stem cell (ESC) differentiation. Pri-miR-17∼92 is processed to a biogenesis intermediate, termed "progenitor-miRNA" (pro-miRNA). Pro-miRNA is an efficient substrate for Microprocessor and is required to selectively license production of pre-miR-17, pre-miR-18a, pre-miR-19a, pre-miR-20a, and pre-miR-19b from this cluster. Two complementary cis-regulatory repression domains within pri-miR-17∼92 are required for the blockade of miRNA processing through the formation of an autoinhibitory RNA conformation. The endonuclease CPSF3 (CPSF73) and the spliceosome-associated ISY1 are responsible for pro-miRNA biogenesis and expression of all miRNAs within the cluster except miR-92. Thus, developmentally regulated pro-miRNA processing is a key step controlling miRNA expression and explains the posttranscriptional control of miR-17∼92 expression in development.

  13. Differential expression of miR-21 and miR-75 in esophageal carcinoma patients and its clinical implication

    PubMed Central

    Lv, Hongbo; He, Zhanao; Wang, Hongjiang; Du, Tongxin; Pang, Zuoliang

    2016-01-01

    In Xinjiang, China, esophageal carcinoma has a high incidence in Kazak and Uighur populations. MicroRNA (miR)-21 and miR-375 are related to esophageal carcinoma. This study thus investigated their potencials in early diagnosis and prognosis in Kazak and Uighur populations, to provide evidences for serum markers of esophageal cancer. A total of 126 Kazak or Uighur esophageal cancer patients were enrolled as the disease group, along with 86 local Han patients as disease control cohort, and 80 healthy Kazak or Uighur individuals. MiRNA expression was detected by in situ hybridization in tissues and by qRT-PCR in serum. ROC approach was used to evaluate the diagnostic value of miRNA on esophageal carcinoma. Cox analysis was performed to screen factors governing prognosis. MiR-21 level was significantly elevated in both tissue and serum samples of esophageal cancer patients, while miR-375 was down-regulated. Such difference was more potent in disease group compared to disease control group. MiR expression was correlated with infiltration depth, TNM stage, vascular invasion, and lymph node metastasis. Elevated expression of miR-21 reduced the sensitivity of radio-therapy, and increased recurrence frequency. The diagnostic value of single assay for miR-21 or miR-375 was lower than the combined assay (AUC=0.812 or 0.739 vs. 0.858). They also affected patient prognosis (OR=1.53 or 0.652). MiR-21 and miR-375 presented abnormal expression in Kazak or Uighur esophageal carcinoma patients and were independent factors affecting prognosis. The combined assay of miR-21 and miR-375 may help to make early diagnosis of esophageal cancer. PMID:27508050

  14. Genome-wide analysis reveals downregulation of miR-379/miR-656 cluster in human cancers

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are non-uniformly distributed in genomes and ~30% of the miRNAs in the human genome are clustered. In this study we have focused on the imprinted miRNA cluster miR-379/miR-656 on 14q32.31 (hereafter C14) to test their coordinated function. We have analyzed expression profile of >1000 human miRNAs in >1400 samples representing seven different human tissue types obtained from cancer patients along with matched and unmatched controls. Results We found 68% of the miRNAs in this cluster to be significantly downregulated in glioblastoma multiforme (GBM), 61% downregulated in kidney renal clear cell carcinoma (KIRC), 46% in breast invasive carcinoma (BRCA) and 14% in ovarian serous cystadenocarcinoma (OV). On a genome-wide scale C14 miRNAs accounted for 12-30% of the total downregulated miRNAs in different cancers. Pathway enrichment for the predicted targets of C14 miRNA was significant for cancer pathways, especially Glioma (p< 3.77x10-6, FDR<0.005). The observed downregulation was confirmed in GBM patients by real-time PCR, where 79% of C14 miRNAs (34/43) showed downregulation. In GBM samples, hypermethylation at C14 locus (p<0.003) and downregulation of MEF2, a crucial transcription factor for the cluster was observed which likely contribute to the observed downregulation of the entire miRNA cluster. Conclusion We provide compelling evidence that the entire C14 miRNA cluster is a tumor suppressor locus involved in multiple cancers, especially in GBM, and points toward a general mechanism of coordinated function for clustered miRNAs. Reviewers Reviewed by: Prof. Gregory J Goodall and Dr. Alexander Max Burroughs PMID:23618224

  15. MiRComb: An R Package to Analyse miRNA-mRNA Interactions. Examples across Five Digestive Cancers

    PubMed Central

    Vila-Casadesús, Maria

    2016-01-01

    MicroRNAs (miRNAs) are small RNAs that regulate the expression of target mRNAs by specific binding on the mRNA 3'UTR and promoting mRNA degradation in the majority of cases. It is often of interest to know the specific targets of a miRNA in order to study them in a particular disease context. In that sense, some databases have been designed to predict potential miRNA-mRNA interactions based on hybridization sequences. However, one of the main limitations is that these databases have too many false positives and do not take into account disease-specific interactions. We have developed an R package (miRComb) able to combine miRNA and mRNA expression data with hybridization information, in order to find potential miRNA-mRNA targets that are more reliable to occur in a specific physiological or disease context. This article summarizes the pipeline and the main outputs of this package by using as example TCGA data from five gastrointestinal cancers (colon cancer, rectal cancer, liver cancer, stomach cancer and esophageal cancer). The obtained results can be used to develop a huge number of testable hypotheses by other authors. Globally, we show that the miRComb package is a useful tool to deal with miRNA and mRNA expression data, that helps to filter the high amount of miRNA-mRNA interactions obtained from the pre-existing miRNA target prediction databases and it presents the results in a standardised way (pdf report). Moreover, an integrative analysis of the miRComb miRNA-mRNA interactions from the five digestive cancers is presented. Therefore, miRComb is a very useful tool to start understanding miRNA gene regulation in a specific context. The package can be downloaded in http://mircomb.sourceforge.net. PMID:26967326

  16. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae.

    PubMed

    Smith, Lisa M; Burbano, Hernán A; Wang, Xi; Fitz, Joffrey; Wang, George; Ural-Blimke, Yonca; Weigel, Detlef

    2015-02-01

    MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences. PMID:25557441

  17. miR156 and miR390 regulate tasiRNA accumulation and developmental timing in Physcomitrella patens.

    PubMed

    Cho, Sung Hyun; Coruh, Ceyda; Axtell, Michael J

    2012-12-01

    microRNA156 (miR156) affects developmental timing in flowering plants. miR156 and its target relationships with members of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) gene family appear universally conserved in land plants, but the specific functions of miR156 outside of flowering plants are unknown. We find that miR156 promotes a developmental change from young filamentous protonemata to leafy gametophores in the moss Physcomitrella patens, opposite to its role as an inhibitor of development in flowering plants. P. patens miR156 also influences accumulation of trans-acting small interfering RNAs (tasiRNAs) dependent upon a second ancient microRNA, miR390. Both miR156 and miR390 directly target a single major tasiRNA primary transcript. Inhibition of miR156 function causes increased miR390-triggered tasiRNA accumulation and decreased accumulation of tasiRNA targets. Overexpression of miR390 also caused a slower formation of gametophores, elevated miR390-triggered tasiRNA accumulation, and reduced level of tasiRNA targets. We conclude that a gene regulatory network controlled by miR156, miR390, and their targets controls developmental change in P. patens. The broad outlines and regulatory logic of this network are conserved in flowering plants, albeit with some modifications. Partially conserved small RNA networks thus influence developmental timing in plants with radically different body plans.

  18. Involvement of miR-605 and miR-34a in the DNA Damage Response Promotes Apoptosis Induction

    PubMed Central

    Zhou, Chun-Hong; Zhang, Xiao-Peng; Liu, Feng; Wang, Wei

    2014-01-01

    MicroRNAs are key regulators of gene expression at the posttranscriptional level. In this study, we focus on miR-605 and miR-34a, which are direct transcriptional targets of p53 and in turn enhance its tumor suppressor function by acting upstream and downstream of it, respectively. miR-605 promotes p53 activation by repressing the expression of mdm2, while miR-34a promotes p53-dependent apoptosis by suppressing the expression of antiapoptotic genes such as bcl-2. What roles they play in the p53-mediated DNA damage response is less well understood. Here, we develop a four-module model of the p53 network to investigate the effect of miR-605 and miR-34a on the cell-fate decision after ionizing radiation. Results of numerical simulation indicate that the cell fate is closely associated with network dynamics. The concentration of p53 undergoes few pulses in response to repairable DNA damage, or it first oscillates and then switches to high plateau levels after irreparable damage. The amplitude of p53 pulses rises to various extents depending on miR-605 expression, and miR-605 accelerates the switching behavior of p53 levels to induce apoptosis. In parallel, miR-34a promotes apoptosis by enhancing the accumulation of free p53AIP1, a key proapoptotic protein. Thus, both miR-605 and miR-34a can mediate cellular outcomes and the timing of apoptosis. Moreover, miR-605 and PTEN complement each other in elevating p53 levels to trigger apoptosis. Taken together, miR-605 and miR-34a cooperate to endow the network with a fail-safe mechanism for apoptosis induction. This computational study also enriches our understanding of the action modes of p53-targeted microRNAs. PMID:24739178

  19. Early anthropogenic CH4 emissions and the variation of CH4 and 13CH4 over the last millennium

    NASA Astrophysics Data System (ADS)

    Houweling, S.; van der Werf, G. R.; Klein Goldewijk, K.; RöCkmann, T.; Aben, I.

    2008-03-01

    This study presents a new hypothesis to explain the observed variation of CH4 and δ13C-CH4 over the last millennium. It was originally proposed that the observed minimum of δ13C-CH4 prior to the start of industrialization is caused by a large shift in biomass burning emissions between 1400 and 1700 A.D. According to our new hypothesis, however, the δ13C-CH4 minimum is the first sign of the global rise of anthropogenic CH4 emissions. The main idea is that emissions of isotopically depleted CH4, from, for example, rice cultivation, domestic ruminants, and waste treatment started increasing earlier than the isotopically enriched emissions from fossil fuel, which started with the start of industrialization. However, because the observed increase of atmospheric methane only started around 1750 A.D., these preindustrial anthropogenic emissions must have been accompanied by a net reduction of natural CH4 sources during the Little Ice Age (LIA) compensating for the increase of anthropogenic emissions during that period. Results of transient box model simulations for the last millennium show that under the new hypothesis a close agreement can be obtained between model and measurements. Prior to 1400 A.D., low emissions from anthropogenic biomass burning require a sizable contribution of methane emissions from vegetation to explain the observed high level of δ13C-CH4. During the Little Ice Age, a larger than expected reduction of natural sources is needed, which calls for further verification using a more sophisticated modeling approach and additional constraints from ice core measurements.

  20. Chen 10-marker miRNA signature for non-small cell lung cancer — EDRN Public Portal

    Cancer.gov

    A panel of 10 serum miRNAs has been identified that were found to have significantly different expression levels in non-small cell lung cancer (NSCLC) serum samples compared with the control serum samples. This panel of miRNAs was able to distinguish NSCLC cases from controls with high sensitivity and specificity. The ten miRNAs are: miR-20a, miR-24, miR-25, miR-145, miR-152, miR-199a-5p, miR-221, miR-222, miR-223, miR-320.

  1. Submillimeterwave spectrum of CH 2PH and equilibrium structures of CH 2PH and CH 2NH

    NASA Astrophysics Data System (ADS)

    Margulès, L.; Demaison, J.; Sreeja, P. B.; Guillemin, J.-C.

    2006-08-01

    The rotational spectrum of phosphaethene (CH 2PH) was reinvestigated. One hundred and nineteen new lines were measured in the submillimeter range from 500 to 650 GHz. The determination of the centrifugal distortion constants is significantly improved. As the molecule is close to symmetric prolate top, both reduction A and S were compared. The equilibrium structure has been derived from experimental ground state rotational constants and ab initio rovibrational interaction parameters. This semi-experimental structure is in excellent agreement with the ab initio structure calculated at the CCSD(T) level of theory using a basis set of quintuple-zeta quality and a core correlation correction. The structure of CH 2PH was compared to that of CH 2NH which was also determined for this goal. It is found that the semi-experimental structure of CH 2NH is less accurate than the ab initio structure. It is also found that the methylene group is much more asymmetric in CH 2NH than in CH 2PH.

  2. Semirna: searching for plant miRNAs using target sequences.

    PubMed

    Muñoz-Mérida, Antonio; Perkins, James R; Viguera, Enrique; Thode, Guillermo; Bejarano, Eduardo R; Pérez-Pulido, Antonio J

    2012-04-01

    Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers. We present semirna, a new tool for predicting miRNAs in plant genomes, available as a Web server. This tool takes a putative target sequence such as a messenger RNA (mRNA) as input, and allows users to search for miRNAs that target this sequence. It can also be used to determine whether small RNA sequences from massive sequencing analysis represent true miRNAs and to search for miRNAs in new genomes using homology. Semirna has shown a high level of accuracy using various test sets, and gives users the ability to search for miRNAs with several different adjustable parameters. Semirna, a user-friendly and intuitive Web server for predicting miRNA sequences, can be reached at http://www.bioinfocabd.upo.es/semirna/ . It is useful for researchers searching for miRNAs involved in particular pathways, as well as those searching for miRNAs in newly sequenced genomes.

  3. Comparative analysis of known miRNAs across platyhelminths.

    PubMed

    Jin, Xiaoliang; Lu, Lixia; Su, Hailong; Lou, Zhongzi; Wang, Fang; Zheng, Yadong; Xu, Guo-Tong

    2013-08-01

    MicroRNAs (miRNAs) are a subtype of small regulatory RNAs that are involved in numerous biological processes through small RNA-induced silencing networks. In an attempt to explore the phylogeny of miRNAs across five platyhelminths, we integrated annotated miRNAs and their full genomes. We identified conserved miRNA clusters and, in particular, miR-71/2 was conserved from planarian to parasitic flatworms and was expanded in free-living Schmidtea mediterranea. Analysis of 22 miRNA loci provided compelling evidence that most known miRNAs are conserved across platyhelminths. Meanwhile, we also observed alterations of known protein-coding genes flanking miRNA(s), such as transcriptional direction conversion and locus relocation, in around ~ 41% of 22 known miRNA loci. Compared with Echinococcus multilocularis, the majority of these events occurred in evolution-distant Hymenolepis microstoma, Schistosoma japonicum or/and S. mediterranea. These results imply rearrangement events occurred near the known miRNA loci.

  4. Identification of the human mature B cell miRNome

    PubMed Central

    Basso, Katia; Sumazin, Pavel; Morozov, Pavel; Schneider, Christof; Maute, Roy L.; Kitagawa, Yukiko; Mandelbaum, Jonathan; Haddad, Joseph; Chen, Chang-Zheng; Califano, Andrea; Dalla-Favera, Riccardo

    2009-01-01

    The full set of microRNAs (miRNAs) in the human genome is not known. Because presently known miRNAs have been identified by virtue of their abundant expression in a few cell types, many tissue-specific miRNAs remain unrevealed. To understand the role of miRNAs in B-cell function and lymphomagenesis, we generated short-RNA libraries from normal human B cells at different stages of development (naïve, germinal-center, memory) and from a Burkitt lymphoma cell-line. A combination of cloning and computational analysis identified 178 miRNAs (miRNome) expressed in normal and/or transformed B-cell libraries. Most notably, the B-cell miRNome included 75 miRNAs which to our knowledge have not been previously reported and of which 66 have been validated by RNA blot and/or RT-PCR analyses. Numerous miRNAs were expressed in a stage- or transformation-specific fashion in B cells, suggesting specific functional or pathologic roles. These results provide a resource for studying the role of miRNAs in B-cell development, immune function, and lymphomagenesis. PMID:19446474

  5. Semirna: searching for plant miRNAs using target sequences.

    PubMed

    Muñoz-Mérida, Antonio; Perkins, James R; Viguera, Enrique; Thode, Guillermo; Bejarano, Eduardo R; Pérez-Pulido, Antonio J

    2012-04-01

    Many plant genomes are already known, and new ones are being sequenced every year. The next step for researchers is to identify all of the functional elements in these genomes, including the important class of functional elements known as microRNAs (miRNAs), which are involved in posttranscriptional regulatory pathways. However, computational tools for predicting new plant miRNAs are limited, and there is a particular need for tools that can be used easily by laboratory researchers. We present semirna, a new tool for predicting miRNAs in plant genomes, available as a Web server. This tool takes a putative target sequence such as a messenger RNA (mRNA) as input, and allows users to search for miRNAs that target this sequence. It can also be used to determine whether small RNA sequences from massive sequencing analysis represent true miRNAs and to search for miRNAs in new genomes using homology. Semirna has shown a high level of accuracy using various test sets, and gives users the ability to search for miRNAs with several different adjustable parameters. Semirna, a user-friendly and intuitive Web server for predicting miRNA sequences, can be reached at http://www.bioinfocabd.upo.es/semirna/ . It is useful for researchers searching for miRNAs involved in particular pathways, as well as those searching for miRNAs in newly sequenced genomes. PMID:22433074

  6. Formulation of New Algorithmics for miRNAs

    PubMed Central

    Fujii, Yoichi Robertus

    2008-01-01

    microRNAs (miRNAs) are a class of small RNAs, 21-25 nucleotides (nts) long with single-stranded RNA. miRNA targets the sequences of messenger RNA (mRNA) through incomplete base-pairing of the target sequence. The incomplete pairing of miRNA to mRNA triggers either translational repression or epigenetically mediated transcriptional gene silencing (TGS). miRNA and RNA silencing in mammalian cells may participate in natural ecological interactions and miRNA itself should contain the original information that is required to control viral proliferation, according to the hypothesis of RNA waves. While the hypothesis involves so-called resident and genomic miRNA as the genetic information, resident miRNAs may evolve and jump into other RNAs, and then become genomic miRNAs. Thus, the inheritable character may be acquired by both types of miRNAs. It is reasonable to believe that preparations of new algorithmics models for the flow of miRNAs may provide an opportunity to overcome the acquired immunodeficiency syndrome (AIDS) pandemic. PMID:19440463

  7. miR-375 and miR-30d in the effect of chromium-containing Chinese medicine moderating glucose metabolism.

    PubMed

    Zhang, Qian; Xiao, Xinhua; Li, Ming; Li, Wenhui; Yu, Miao; Zhang, Huabing; Ping, Fan; Wang, Zhixin; Zheng, Jia; Xiang, HongDing

    2014-01-01

    In China, TianMai Xiaoke tablet (TM) is used to treat type 2 diabetes. However, the exact mechanism of TM is not clear. This study is to investigate the effect of TM on glucose metabolism in diabetic rats and to identify whether TM takes a direct action through microRNAs on islet. Rats were divided into control group, diabetic group, low dose of TM group (TML), and high dose of TM group (TMH). Pancreas samples were analyzed using microRNA array and Q-PCR. Eight-week treatment with TM significantly decreased fasting blood glucose. The blood glucose was significantly reduced in TM-treated groups before and after oral glucose administration. Fasting insulin and HOMA-IR were suppressed in TM-treated groups. miR-448, let-7b, miR-540, miR-296, miR-880, miR-200a, miR-500, miR-10b, miR-336, miR-30d, miR-208, let-7e, miR-142-5p, miR-874, miR-375, miR-879, miR-501, and miR-188 were upregulated, while miR-301b, miR-134, and miR-652 were downregulated in TMH group. Through target gene analysis and real-time PCR verification, we found that these miRNAs, especially miR-375 and miR-30d, can stimulate insulin secretion in islet. Our data suggest that TM can improve blood glucose in diabetic rats which involved increasing the expression of miR-375 and miR-30d to activate insulin synthesis in islet. PMID:24812635

  8. Vibrational spectra of cis and trans but-2-enes: assignments, isolated CH stretching frequencies and CH bond lengths

    NASA Astrophysics Data System (ADS)

    McKean, D. C.; Mackenzie, M. W.; Morrisson, A. R.; Lavalley, J. C.; Janin, A.; Fawcett, V.; Edwards, H. G. M.

    Infrared and Raman spectra have been obtained from 11 isotopomers of cis and trans but-2-enes in various phases ( c- and t-CH 3CHCHCH 3, CH 3CHCDCH 3, CD 3CHCHCD 3, CD 3CHCDCD 3, CD 3CDCDCD 3; c-CH 3CDCDCH 3). Nearly all the fundamentals are securely assigned. Isolated CH stretching frequencies ν isCH are observed or deduced from the spectra and used to predict CH bond lengths and dissociation energies. The olefinic CH and methyl CH s bonds are stronger in the cis compound than those in the trans, in keeping with substituent effects previously observed in propene, and with molecular mechanics predictions. Comparison of ν isCH values with local mode fifth overtone spectra for cis-CH 3CHCHCH 3 indicates that the part of the latter associated with the CH a bond cannot be readily interpreted.

  9. Patterns of miRNA expression in Arctic charr development.

    PubMed

    Kapralova, Kalina H; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S; Jónsson, Zophonías O

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  10. Patterns of MiRNA Expression in Arctic Charr Development

    PubMed Central

    Kapralova, Kalina H.; Franzdóttir, Sigrídur Rut; Jónsson, Hákon; Snorrason, Sigurður S.; Jónsson, Zophonías O.

    2014-01-01

    Micro-RNAs (miRNAs) are now recognized as a major class of developmental regulators. Sequences of many miRNAs are highly conserved, yet they often exhibit temporal and spatial heterogeneity in expression among species and have been proposed as an important reservoir for adaptive evolution and divergence. With this in mind we studied miRNA expression during embryonic development of offspring from two contrasting morphs of the highly polymorphic salmonid Arctic charr (Salvelinus alpinus), a small benthic morph from Lake Thingvallavatn (SB) and an aquaculture stock (AC). These morphs differ extensively in morphology and adult body size. We established offspring groups of the two morphs and sampled at several time points during development. Four time points (3 embryonic and one just before first feeding) were selected for high-throughput small-RNA sequencing. We identified a total of 326 conserved and 427 novel miRNA candidates in Arctic charr, of which 51 conserved and 6 novel miRNA candidates were differentially expressed among developmental stages. Furthermore, 53 known and 19 novel miRNAs showed significantly different levels of expression in the two contrasting morphs. Hierarchical clustering of the 53 conserved miRNAs revealed that the expression differences are confined to the embryonic stages, where miRNAs such as sal-miR-130, 30, 451, 133, 26 and 199a were highly expressed in AC, whereas sal-miR-146, 183, 206 and 196a were highly expressed in SB embryos. The majority of these miRNAs have previously been found to be involved in key developmental processes in other species such as development of brain and sensory epithelia, skeletogenesis and myogenesis. Four of the novel miRNA candidates were only detected in either AC or SB. miRNA candidates identified in this study will be combined with available mRNA expression data to identify potential targets and involvement in developmental regulation. PMID:25170615

  11. Staged miRNA re-regulation patterns during reprogramming

    PubMed Central

    2013-01-01

    Background MiRNAs often operate in feedback loops with transcription factors and represent a key mechanism for fine-tuning gene expression. In transcription factor-induced reprogramming, miRNAs play a critical role; however, detailed analyses of miRNA expression changes during reprogramming at the level of deep sequencing have not been previously reported. Results We use four factor reprogramming to induce pluripotent stem cells from mouse fibroblasts and isolate FACS-sorted Thy1- and SSEA1+ intermediates and Oct4-GFP+ induced pluripotent stem cells (iPSCs). Small RNAs from these cells, and two partial-iPSC lines, another iPSC line, and mouse embryonic stem cells (mES cells) were deep sequenced. A comprehensive resetting of the miRNA profile occurs during reprogramming; however, analysis of miRNA co-expression patterns yields only a few patterns of change. Dlk1-Dio3 region miRNAs dominate the large pool of miRNAs experiencing small but significant fold changes early in reprogramming. Overexpression of Dlk1-Dio3 miRNAs early in reprogramming reduces reprogramming efficiency, suggesting the observed downregulation of these miRNAs may contribute to reprogramming. As reprogramming progresses, fewer miRNAs show changes in expression, but those changes are generally of greater magnitude. Conclusions The broad resetting of the miRNA profile during reprogramming that we observe is due to small changes in gene expression in many miRNAs early in the process, and large changes in only a few miRNAs late in reprogramming. This corresponds with a previously observed transition from a stochastic to a more deterministic signal. PMID:24380417

  12. Distribution of miRNA expression across human tissues.

    PubMed

    Ludwig, Nicole; Leidinger, Petra; Becker, Kurt; Backes, Christina; Fehlmann, Tobias; Pallasch, Christian; Rheinheimer, Steffi; Meder, Benjamin; Stähler, Cord; Meese, Eckart; Keller, Andreas

    2016-05-01

    We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10(-8)) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).

  13. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop.

    PubMed

    Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar; Kar, Swayamsiddha; Parbin, Sabnam; Pradhan, Nibedita; Patra, Samir Kumar

    2016-08-15

    MicroRNAs (miRNA) are small non-coding RNAs which targets most protein-coding transcripts (mRNA) and destroy them. Thus miRNA controls the abundance of those specific proteins and impact on developmental, physiological and pathological processes. Dysregulation of miRNA function thus may lead to various clinicopathological complications, including breast cancer. Silencing of miR-152 gene due to promoter DNA methylation alter the expression pattern of several other genes. E-cadherin (CDH1) forms the core of adherent junctions between surrounding epithelial cells, link with actin cytoskeleton and affects cell signaling. CDH1 gene is down regulated by promoter DNA methylation during cancer progression. In this investigation, we attempt to elucidate the correlation of miR-152 and CDH1 function, as it is well known that the loss of CDH1 function is one of the major reasons for cancer metastasis and aggressiveness of spreading. For the first time we have shown that loss of CDH1 expression is directly proportional to the loss of miR-152 function in breast cancer cells. mRNA and protein expression profile of DNMT1 implicate that miR-152 targets DNMT1 mRNA and inhibits its protein expression. Tracing the molecular marks on DNA and histone 3 for understanding the mechanism of gene regulation by ChIP analyses leads to a paradoxical result that shows DNA methylation adjacent to active histone marking (enrichment of H3K4me3) silence miR-152 gene. Further experiments revealed that DNMT1 plays crucial role for regulation of miR-152 gene. When DNMT1 protein function is blocked miR-152 expression prevails and destroys the mRNA of DNMT1; this molecular regulatory mechanism is creating a cyclic feedback loop, which is now focused as DNMT1/miR-152 switch for on/off of DNMT1 target genes. We discovered modulation of CDH1 gene expression by DNMT1/miR-152 switches. We have demonstrated further that DNMT1 down regulation mediated upregulation of CDH1 (hereafter, DNMT1/CDH1 loop) in

  14. DNA methylation and not H3K4 trimethylation dictates the expression status of miR-152 gene which inhibits migration of breast cancer cells via DNMT1/CDH1 loop.

    PubMed

    Sengupta, Dipta; Deb, Moonmoon; Rath, Sandip Kumar; Kar, Swayamsiddha; Parbin, Sabnam; Pradhan, Nibedita; Patra, Samir Kumar

    2016-08-15

    MicroRNAs (miRNA) are small non-coding RNAs which targets most protein-coding transcripts (mRNA) and destroy them. Thus miRNA controls the abundance of those specific proteins and impact on developmental, physiological and pathological processes. Dysregulation of miRNA function thus may lead to various clinicopathological complications, including breast cancer. Silencing of miR-152 gene due to promoter DNA methylation alter the expression pattern of several other genes. E-cadherin (CDH1) forms the core of adherent junctions between surrounding epithelial cells, link with actin cytoskeleton and affects cell signaling. CDH1 gene is down regulated by promoter DNA methylation during cancer progression. In this investigation, we attempt to elucidate the correlation of miR-152 and CDH1 function, as it is well known that the loss of CDH1 function is one of the major reasons for cancer metastasis and aggressiveness of spreading. For the first time we have shown that loss of CDH1 expression is directly proportional to the loss of miR-152 function in breast cancer cells. mRNA and protein expression profile of DNMT1 implicate that miR-152 targets DNMT1 mRNA and inhibits its protein expression. Tracing the molecular marks on DNA and histone 3 for understanding the mechanism of gene regulation by ChIP analyses leads to a paradoxical result that shows DNA methylation adjacent to active histone marking (enrichment of H3K4me3) silence miR-152 gene. Further experiments revealed that DNMT1 plays crucial role for regulation of miR-152 gene. When DNMT1 protein function is blocked miR-152 expression prevails and destroys the mRNA of DNMT1; this molecular regulatory mechanism is creating a cyclic feedback loop, which is now focused as DNMT1/miR-152 switch for on/off of DNMT1 target genes. We discovered modulation of CDH1 gene expression by DNMT1/miR-152 switches. We have demonstrated further that DNMT1 down regulation mediated upregulation of CDH1 (hereafter, DNMT1/CDH1 loop) in

  15. The Roles of miR-26, miR-29, and miR-203 in the Silencing of the Epigenetic Machinery during Melanocyte Transformation.

    PubMed

    Gasque Schoof, Cláudia Regina; Izzotti, Alberto; Jasiulionis, Miriam Galvonas; Vasques, Luciana Dos Reis

    2015-01-01

    The epigenetic marks located throughout the genome exhibit great variation between normal and transformed cancer cells. While normal cells contain hypomethylated CpG islands near gene promoters and hypermethylated repetitive DNA, the opposite pattern is observed in cancer cells. Recently, it has been reported that alteration in the microenvironment of melanocyte cells, such as substrate adhesion blockade, results in the selection of anoikis-resistant cells, which have tumorigenic characteristics. Melanoma cells obtained through this model show an altered epigenetic pattern, which represents one of the first events during the melanocytes malignant transformation. Because microRNAs are involved in controlling components of the epigenetic machinery, the aim of this work was to evaluate the potential association between the expression of miR-203, miR-26, and miR-29 family members and the genes Dnmt3a, Dnmt3b, Mecp2, and Ezh2 during cells transformation. Our results show that microRNAs and their validated or predicted targets are inversely expressed, indicating that these molecules are involved in epigenetic reprogramming. We also show that miR-203 downregulates Dnmt3b in mouse melanocyte cells. In addition, treatment with 5-aza-CdR promotes the expression of miR-26 and miR-29 in a nonmetastatic melanoma cell line. Considering the occurrence of CpG islands near the miR-26 and miR-29 promoters, these data suggest that they might be epigenetically regulated in cancer.

  16. Genome-wide analysis for discovery of new rice miRNA reveals natural antisense miRNA (nat-miRNAs)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small RNAs (21-24nt) are involved in gene regulation through translation inhibition, mRNA cleavage, or directing chromatin modifications. In rice, currently ~240 miRNAs have been annotated. We sequenced more than four million small RNAs from rice and identified another 24 miRNA genes. Among these, w...

  17. Secondary kinetics of methanol decomposition : theoretical rate coefficients for {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3}.

    SciTech Connect

    Jasper, A. W.; Klippenstein, S. J.; Harding, L. B.; Chemistry

    2007-09-06

    Direct variable reaction coordinate transition state theory (VRC-TST) rate coefficients are reported for the {sup 3}CH{sub 2} + OH, {sup 3}CH{sub 2} + {sup 3}CH{sub 2}, and {sup 3}CH{sub 2} + CH{sub 3} barrierless association reactions. The predicted rate coefficient for the {sup 3}CH{sub 2} + OH reaction ({approx} 1.2 x 10{sup -10} cm{sup 3} molecule{sup -1} s{sup -1} for 300-2500 K) is 4-5 times larger than previous estimates, indicating that this reaction may be an important sink for OH in many combustion systems. The predicted rate coefficients for the {sup 3}CH{sub 2} + CH{sub 3} and {sup 3}CH{sub 2} + {sup 3}CH{sub 2} reactions are found to be in good agreement with the range of available experimental measurements. Product branching in the self-reaction of methylene is discussed, and the C{sub 2}H{sub 2} + 2H and C{sub 2}H{sub 2} + H{sub 2} products are predicted in a ratio of 4:1. The effect of the present set of rate coefficients on modeling the secondary kinetics of methanol decomposition is briefly considered. Finally, the present set of rate coefficients, along with previous VRC-TST determinations of the rate coefficients for the self-reactions of CH{sub 3} and OH and for the CH{sub 3} + OH reaction, are used to test the geometric mean rule for the CH{sub 3}, {sup 3}CH{sub 2}, and OH fragments. The geometric mean rule is found to predict the cross-combination rate coefficients for the {sup 3}CH{sub 2} + OH and {sup 3}CH{sub 2} + CH{sub 3} reactions to better than 20%, with a larger (up to 50%) error for the CH{sub 3} + OH reaction.

  18. Photodissociation of CH2. I - Potential energy surfaces of the dissociation into CH and H

    NASA Technical Reports Server (NTRS)

    Bearda, Robert A.; Van Hemert, Marc C.; Van Dishoeck, Ewine F.

    1992-01-01

    The possible photodissociation pathways of the CH2 radical are studied using ab initio multireference configuration-interaction methods, and accurate photodissociation cross sections and branching ratios for the production of CH + H and C + H2 are obtained. Potential energy surfaces were calculated using the Wuppertal-Bonn self-consistent field plus a multireference single and double-excitation configuration interaction package of programs. Two-dimensional potential energy surfaces of the ten lowest triplet states correlating with the seven lowest states of CH were calculated as functions of bond angle and one C-H bond distance, keeping the other C-H bond distance fixed at the equilibrium CH2 value.

  19. Low-Temperature Hydrocarbon Photochemistry: CH3 + CH3 Recombination in Giant Planet Atmospheres

    NASA Technical Reports Server (NTRS)

    Smith, Gregory P.; Huestis, David L.

    2002-01-01

    Planetary emissions of the methyl radical CH3 were observed for the first time in 1998 on Saturn and Neptune by the ISO (Infrared Space Observatory) mission satellite. CH3 is produced by VUV photolysis of CH4 and is the key photochemical intermediate leading complex organic molecules on the giant planets and moons. The CH3 emissions from Saturn were unexpectedly weak. A suggested remedy is to increase the rate of the recombination reaction CH3 + CH3 + H2 --> C2H6 + H2 at 140 K to a value at least 10 times that measured at room temperature in rare gases, but within the range of disagreeing theoretical expressions at low temperature. We are performing laboratory experiments at low temperature and very low pressure. The experiments are supported by RRKM theoretical modeling that is calibrated using the extensive combustion literature.

  20. Aberrant Expression of Breast Development-Related MicroRNAs, miR-22, miR-132, and miR-212, in Breast Tumor Tissues

    PubMed Central

    Damavandi, Zahra; Torkashvand, Safoora; Vasei, Mohammad; Soltani, Bahram M.; Tavallaei, Mahmood

    2016-01-01

    Purpose MicroRNAs (miRNAs) are a major class of small endogenous RNA molecules that posttranscriptionally regulate the expression of most genes in the human genome. miRNAs are often located in chromosomal fragile sites, which are suscept-ible to amplification or deletion. Chromosomal deletions are frequent events in breast cancer cells. Deletion and loss of heterozygosity at 17p13.3 have been reported in 49% of breast cancers. The aim of the current study was to evaluate potential expression alterations of miR-22, miR-132, and miR-212, which are located on the 17p13.3 locus and are required for mammary gland development. Methods A matched case-control study was conducted, which included 36 pairs of tumor and matched nontumor surgical specimens from patients diagnosed with breast invasive ductal carcinoma. Formalin-fixed paraffin-embedded samples from archival collections at the pathology department of Shariati Hospital were prepared for RNA extraction using the xylene-ethanol method before total RNA was isolated with TRIzol Reagent. Specific primers were designed for cDNA synthesis and miRNA amplification. The expression of miRNAs was then evaluated by real-time polymerase chain reaction (RT-PCR). Results According to our RT-PCR data, the miR-212/miR-132 family was downregulated in breast cancer (0.328-fold, p<0.001), and this reduced expression was the most prominent in high-grade tumors. In contrast, miR-22 exhibited a significant upregulation in breast tumor samples (2.183-fold, p=0.040). Conclusion Consistent with the frequent deletion of the 17p13.3 locus in breast tumor cells, our gene expression data demonstrated a significant downregulation of miR-212 and miR-132 in breast cancer tissues. In contrast, we observed a significant upregulation of miR-22 in breast tumor samples. The latter conflicting result may have been due to the upregulation of miR-22 in stromal/cancer-associated fibroblasts, rather than in the tumor cells. PMID:27382390

  1. MiPS (Mi Prostate Score Urine test) — EDRN Public Portal

    Cancer.gov

    The MiPS assay is a multiplex analysis of T2-ERG gene fusion, PCA3, and serum PSA (KLK3). It is commercially available through the University of Michigan MLabs. The MiPS assay tests for the presence of two prostate cancer biomarkers: a piece of RNA made from the PCA3 gene, found to be overactive in 95 percent of all prostate cancers, and another RNA marker that is found only when TMPRSS2 and ERG abnormally fuse. TMPRSS2:ERG, or T2-ERG, is a strong indicator of prostate cancer.

  2. ChIPModule: systematic discovery of transcription factors and their cofactors from ChIP-seq data.

    PubMed

    Ding, Jun; Cai, Xiaohui; Wang, Ying; Hu, Haiyan; Li, Xiaoman

    2013-01-01

    We have developed a novel approach called ChIPModule to systematically discover transcription factors and their cofactors from ChIP-seq data. Given a ChIP-seq dataset and the binding patterns of a large number of transcription factors, ChIPModule can efficiently identify groups of transcription factors, whose binding sites significantly co-occur in the ChIP-seq peak regions. By testing ChIPModule on simulated data and experimental data, we have shown that ChIPModule identifies known cofactors of transcription factors, and predicts new cofactors that are supported by literature. ChIPModule provides a useful tool for studying gene transcriptional regulation.

  3. Functions of miR-146a and miR-222 in Tumor-associated Macrophages in Breast Cancer

    PubMed Central

    Li, Yanshuang; Zhao, Lianmei; Shi, Bianhua; Ma, Sisi; Xu, Zhenbiao; Ge, Yehua; Liu, Yanxin; Zheng, Dexian; Shi, Juan

    2015-01-01

    Tumor-associated macrophages (TAMs) play critical roles in promoting tumor progression and invasion. However, the molecular mechanisms underlying TAM regulation remain to be further investigated and may make significant contributions to cancer treatment. Mammalian microRNAs (miRNAs) have recently been identified as important regulators of gene expression that function by repressing specific target genes mainly at the post-transcriptional level. However, systematic studies of the functions and mechanisms of miRNAs in TAMs in tumor tissues are rare. In this study, miR-146a and miR-222 were shown to be significantly decreased in TAMs associated with the up-regulated NF-κB p50 subunit. miR-146a promoted the expression of some M2 macrophage phenotype molecules, and miR-146a antagomir transfected RAW264.7 monocyte-macrophage cells inhibited 4T1 tumor growth in vivo. Meanwhile, overexpression of miR-222 inhibited TAM chemotaxis, and miR-222 in TAMs inhibited 4T1 tumor growth by targeting CXCL12 and inhibiting CXCR4. These data revealed that miRNAs influence breast tumor growth by promoting the M2 type polarization or regulating the recruitment of TAMs. These observations suggest that endogenous miRNAs may exert an important role in controlling the polarization and function of TAMs in breast cancer. PMID:26689540

  4. Rate Constants for the Reactions of OH with CH(sub 3)Cl, CH(sub 2) C1(sub 2), CHC1(sub 3)and CH(sub 3)Br

    NASA Technical Reports Server (NTRS)

    Hsu, H-J.; DeMore, W.

    1994-01-01

    Rate constants for the reactions of OH with CH3C1, CH2Cl2, CHCl3 and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2)and for CH2Cl2, HFC-161 (CH3CH2F).

  5. Ternary chalcogenides <mi mathvariant='normal'>Cmi> mathvariant='normal'>smi>2<mi mathvariant='normal'>Zmi> mathvariant='normal'>nmi>3<mi mathvariant='normal'>Smi> mathvariant='normal'>emi>4 and <mi mathvariant='normal'>Cmi> mathvariant='normal'>smi>2<mi mathvariant='normal'>Zmi> mathvariant='normal'>nmi>3<mi mathvariant='normal'>Tmi> mathvariant='normal'>emi>4 : Potential <mi>p> -type transparent conducting materials

    SciTech Connect

    Shi, Hongliang; Saparov, Bayrammurad; Singh, David J.; Sefat, Athena S.; Du, Mao-Hua

    2014-11-11

    Here we report prediction of two new ternary chalcogenides that can potentially be used as p-type transparent conductors along with experimental synthesis and initial characterization of these previously unknown compounds, Cs2Zn3Ch4 (Ch = Se, Te). In particular, the structures are predicted based on density functional calculations and confirmed by experiments. Phase diagrams, electronic structure, optical properties, and defect properties of Cs2Zn3Se4 and Cs2Zn3Te4 are calculated to assess the viability of these materials as p-type TCMs. Cs2Zn3Se4 and Cs2Zn3Te4, which are stable under ambient air, display large optical band gaps (calculated to be 3.61 and 2.83 eV, respectively) and have small hole effective masses (0.5-0.77 me) that compare favorably with other proposed p-type TCMs. Defect calculations show that undoped Cs2Zn3Se4 and Cs2Zn3Te4 are p-type materials. However, the free hole concentration may be limited by low-energy native donor defects, e.g., Zn interstitials. Lastly, non-equilibrium growth techniques should be useful for suppressing the formation of native donor defects, thereby increasing the hole concentration.

  6. miRNA Inhibition in Tissue Engineering and Regenerative Medicine

    PubMed Central

    Beavers, Kelsey R.; Nelson, Christopher E.; Duvall, Craig L.

    2014-01-01

    MicroRNA (miRNA) are noncoding RNA that provide an endogenous negative feedback mechanism for translation of messenger RNA (mRNA) into protein. Single miRNAs can regulate hundreds of mRNAs, enabling miRNAs to orchestrate robust biological responses by simultaneously impacting multiple gene networks. MiRNAs can act as master regulators of normal and pathological tissue development, homeostasis, and repair, which has recently motivated expanding efforts toward development of technologies for therapeutically modulating miRNA activity for regenerative medicine and tissue engineering applications. This review highlights the tools currently available for miRNA inhibition and their recent therapeutic applications for improving tissue repair. PMID:25553957

  7. Genome-wide miRNA seeds prediction in Archaea.

    PubMed

    Wang, Shengqin; Xu, Yuming; Lu, Zuhong

    2014-01-01

    Growing evidence indicates that miRNA genes exist in the archaeal genome, though the functional role of such noncoding RNA remains unclear. Here, we integrated the phylogenetic information of available archaeal genomes to predict miRNA seeds (typically defined as the 2-8 nucleotides of mature miRNAs) on the genomic scale. Finally, we found 2649 candidate seeds with significant conservation signal. Eleven of 29 unique seeds from previous study support our result (P value <0.01), which demonstrates that the pipeline is suitable to predict experimentally detectable miRNA seeds. The statistical significance of the overlap between the detected archaeal seeds and known eukaryotic seeds shows that the miRNA may evolve before the divergence of these two domains of cellular life. In addition, miRNA targets are enriched for genes involved in transcriptional regulation, which is consistent with the situation in eukaryote. Our research will enhance the regulatory network analysis in Archaea.

  8. miRNAs: biological and clinical determinants in epilepsy

    PubMed Central

    Alsharafi, Walid A.; Xiao, Bo; Abuhamed, Mutasem M.; Luo, Zhaohui

    2015-01-01

    Recently, microRNAs (miRNAs) are reported to be crucial modulators in the pathogenesis and potential treatment of epilepsies. To date, several miRNAs have been demonstrated to be significantly expressed in the epileptic tissues and strongly associated with the development of epilepsy. Specifically, miRNAs regulate synaptic strength, inflammation, neuronal and glial function, ion channels, and apoptosis. Furthermore, peripheral blood miRNAs can also be utilized as diagnostic biomarkers to assess disease risk and treatment responses. Here, we will summarize the recent available literature regarding the role of miRNAs in the pathogenesis and treatment of epilepsy. Moreover, we will provide brief insight into the potential of miRNA as diagnostic biomarkers for early diagnosis and prognosis of epilepsy. PMID:26528124

  9. Photoinduced reactions of chloroacetone in solid Ar: Identification of CH2dbnd COClCH3

    NASA Astrophysics Data System (ADS)

    Tanaka, Nobuaki; Urashima, Yoshitaka; Nishikiori, Hiromasa

    2014-10-01

    The UV light-induced reactions of chloroacetone in a cryogenic Ar matrix were investigated using infrared spectroscopy. The photoinduced isomerisations of gauche-chloroacetone to syn-chloroacetone and hypochlorous acid 1-methylethenyl ester were confirmed by comparing the experimental and calculated spectra. In addition, the photolysis products were found to be CH2dbnd Cdbnd O and a cyclopropanone⋯HCl complex. The cyclopropanone⋯HCl complex was further decomposed into CH2dbnd CH2, CO and HCl. The hypochlorous acid 1-methylethenyl ester was further isomerized to 2-chloro-2-methyloxirane. The initial growth rate of the bands from group C was smaller than those of the bands from groups A and B, indicating that the bands from group C belong to one of the secondary products. After prolonged irradiation the bands from group C were clearly discernible, as shown in Figure 1b. The photodissociation of cyclopropanone was studied experimentally [25] and theoretically [26-28]. Thomas and Rodriguez found that CH2dbnd CH2 and CO were the only volatile products resulted upon excitation at a selected wavelength between 292 and 365 nm [25]. The MCSCF calculation showed that photodecarbonylation was initiated predominantly from the lowest excited state, taking the bent-in-plane path, and the ground state CH2dbnd CH2 and CO were produced via the biradical intermediate [26]. Cui et al. found the two conical intersections between the S1 and S0 states of cyclopropanone using the state-averaged CASSCF method; one leads to an α-bond fission and the other to two α-bond fissions [27,28]. In the present experiments, a cyclopropanone⋯HCl complex was formed. Therefore, during the photolysis, CH2dbnd CH2, CO and HCl would be formed. The characteristic bands belonging to group C were assigned by comparing the observed wavenumbers with those of the three possible monomers. The band at 2139 cm-1 was attributed to CO. The band at 2745 cm-1 was assigned to the stretching

  10. Association of miR-146a, miR-149, miR-196a2, and miR-499 Polymorphisms with Ossification of the Posterior Longitudinal Ligament of the Cervical Spine

    PubMed Central

    Jeon, Young Joo; Kumar, Hemant; Sohn, Seil; Min, Hyoung Sik; Lee, Jang Bo; Kuh, Sung Uk; Kim, Keung Nyun; Kim, Jung Oh; Kim, Ok Joon; Ropper, Alexander E.; Kim, Nam Keun; Han, In Bo

    2016-01-01

    Background Ossification of the posterior longitudinal ligament (OPLL) of the spine is considered a multifactorial and polygenic disease. We aimed to investigate the association between four single nucleotide polymorphisms (SNPs) of pre-miRNAs [miR-146aC>G (rs2910164), miR-149T>C (rs2292832), miR-196a2T>C (rs11614913), and miR-499A>G (rs3746444)] and the risk of cervical OPLL in the Korean population. Methods The genotypic frequencies of these four SNPs were analyzed in 207 OPLL patients and 200 controls by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay. Findings For four SNPs in pre-miRNAs, no significant differences were found between OPLL patients and controls. However, subgroup analysis based on OPLL subgroup (continuous: continuous type plus mixed type, segmental: segmental and localized type) showed that miR-499GG genotype was associated with an increased risk of segmental type OPLL (adjusted odds ratio = 4.314 with 95% confidence interval: 1.109–16.78). In addition, some allele combinations (C-T-T-G, G-T-T-A, and G-T-C-G of miR-146a/-149/-196a2/-499) and combined genotypes (miR-149TC/miR-196a2TT) were associated with increased OPLL risk, whereas the G-T-T-G and G-C-C-G allele combinations were associated with decreased OPLL risk. Conclusion The results indicate that GG genotype of miR-499 is associated with significantly higher risks of OPLL in the segmental OPLL group. The miR-146a/-149/-196a2/-499 allele combinations may be a genetic risk factor for cervical OPLL in the Korean population. PMID:27454313

  11. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population.

    PubMed

    Hashemi, Mohammad; Moradi, Nazanin; Ziaee, Seyed Amir Mohsen; Narouie, Behzad; Soltani, Mohammad Hosein; Rezaei, Maryam; Shahkar, Ghazaleh; Taheri, Mohsen

    2016-05-01

    MicroRNAs (miRNAs) play an important role in regulating gene expression at the post-transcriptional level and are involved in numerous physiological processes. Accumulating evidence suggests that single-nucleotide polymorphisms (SNPs) in human miRNA genes may affect miRNA biogenesis pathway and influence the susceptibility to several diseases such as cancer. The present study aimed to evaluate the impact of miR-499 rs3746444, miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms on prostate cancer (PCa) risk in a sample of Iranian population. This case-control study was done on 169 patients with pathologically confirmed PCa and 182 benign prostatic hyperplasia (BPH). The genotyping assays were done using T-ARMS-PCR or PCR-RFLP methods. The findings indicated that CC genotype of miR-499 rs3746444 polymorphism increased the risk of PCa (OR = 1.76, 95% CI = 1.12-2.79, P = 0.019) compared to TT genotype. No statistically significant association was found between miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms and PCa risk. In summary, the findings indicated that miR-499 rs3746444 polymorphism increased the risk of PCa in an Iranian population. Further studies with larger sample sizes and different ethnicities are necessary to verify the findings of the present study.

  12. Altered Expressions of miR-1238-3p, miR-494, miR-6069, and miR-139-3p in the Formation of Chronic Brucellosis

    PubMed Central

    Budak, Ferah; Bal, Salih Haldun; Tezcan, Gulcin; Akalın, Halis; Goral, Guher

    2016-01-01

    Brucellosis is a zoonotic disease that is still endemic in developing countries. Despite early diagnosis and treatment of patients, chronic infections are seen in 10–30% of patients. In this study, we aimed to investigate the immunological factors that play roles in the transition of brucellosis from acute infection into chronic infection. Here, more than 2000 miRNAs were screened in peripheral blood mononuclear cells (PBMCs) of patients with acute or chronic brucellosis and healthy controls by using miRNA array, and the results of the miRNA array were validated through qRT-PCR. Findings were evaluated using GeneSpring GX (Agilent) 13.0 software and KEGG pathway analysis. Four miRNAs were expressed in the chronic group but were not expressed in acute and control groups. Among these miRNAs, the expression level of miR-1238-3p was increased while miR-494, miR-6069, and miR-139-3p were decreased (p < 0.05, fold change > 2). These miRNAs have the potential to be markers for chronic cases. The differentially expressed miRNAs and their predicted target genes involved in endocytosis, regulation of actin cytoskeleton, MAPK signaling pathway, and cytokine-cytokine receptor interaction and its chemokine signaling pathway indicate their potential roles in chronic brucellosis and its progression. It is the first study of miRNA expression analysis of human PBMC to clarify the mechanism of inveteracy in brucellosis. PMID:27722176

  13. Expression of the dermatomyositis autoantigen Mi-2 in regenerating muscle

    PubMed Central

    Mammen, Andrew L.; Casciola-Rosen, Livia A.; Hall, John C.; Christopher-Stine, Lisa; Corse, Andrea M.; Rosen, Antony

    2010-01-01

    Objective Autoantibodies against the chromatin remodeler Mi-2 are found in a distinct subset of patients with dermatomyositis (DM). Previous quantitative immunoblotting experiments demonstrated that Mi-2 protein is up-regulated in DM muscle. We undertook this study to define the population of cells expressing high levels of Mi-2 in DM muscle and to explore the regulation and functional role of Mi-2 during muscle regeneration. Methods We analyzed the expression of Mi-2 in human muscle biopsy specimens using immunofluorescence. Then, we used cardiotoxin (CTX) to induce muscle injury and repair in the mouse; Mi-2 expression during muscle regeneration was studied in this model by immunofluorescence and immunoblotting analysis. Finally, we utilized a cell culture system of muscle differentiation to artificially modulate Mi-2 levels during myoblast proliferation and differentiation. Results In DM muscle, increased Mi-2 expression is preferentially found in myofibers within fascicles affected by perifascicular atrophy, particularly in the centralized nuclei of small perifascicular muscle fibers expressing markers of regeneration. In the mouse, Mi-2 is dramatically and persistently up-regulated during muscle regeneration in vivo. Premature silencing of Mi-2 with RNAi in vitro resulted in accelerated myoblast differentiation. Conclusions Mi-2 expression is markedly up-regulated during muscle regeneration in the mouse model. It is also up-regulated in DM myofibers expressing markers of regeneration. In vitro studies suggest that this protein may play a role in modulating the kinetics of myoblast differentiation. We propose that high levels of Mi-2 expression in DM muscle biopsies reflect the presence of incompletely differentiated muscle cells. PMID:19950298

  14. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population.

    PubMed

    Hashemi, Mohammad; Moradi, Nazanin; Ziaee, Seyed Amir Mohsen; Narouie, Behzad; Soltani, Mohammad Hosein; Rezaei, Maryam; Shahkar, Ghazaleh; Taheri, Mohsen

    2016-05-01

    MicroRNAs (miRNAs) play an important role in regulating gene expression at the post-transcriptional level and are involved in numerous physiological processes. Accumulating evidence suggests that single-nucleotide polymorphisms (SNPs) in human miRNA genes may affect miRNA biogenesis pathway and influence the susceptibility to several diseases such as cancer. The present study aimed to evaluate the impact of miR-499 rs3746444, miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms on prostate cancer (PCa) risk in a sample of Iranian population. This case-control study was done on 169 patients with pathologically confirmed PCa and 182 benign prostatic hyperplasia (BPH). The genotyping assays were done using T-ARMS-PCR or PCR-RFLP methods. The findings indicated that CC genotype of miR-499 rs3746444 polymorphism increased the risk of PCa (OR = 1.76, 95% CI = 1.12-2.79, P = 0.019) compared to TT genotype. No statistically significant association was found between miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms and PCa risk. In summary, the findings indicated that miR-499 rs3746444 polymorphism increased the risk of PCa in an Iranian population. Further studies with larger sample sizes and different ethnicities are necessary to verify the findings of the present study. PMID:27222754

  15. Association between single nucleotide polymorphism in miR-499, miR-196a2, miR-146a and miR-149 and prostate cancer risk in a sample of Iranian population

    PubMed Central

    Hashemi, Mohammad; Moradi, Nazanin; Ziaee, Seyed Amir Mohsen; Narouie, Behzad; Soltani, Mohammad Hosein; Rezaei, Maryam; Shahkar, Ghazaleh; Taheri, Mohsen

    2016-01-01

    MicroRNAs (miRNAs) play an important role in regulating gene expression at the post-transcriptional level and are involved in numerous physiological processes. Accumulating evidence suggests that single-nucleotide polymorphisms (SNPs) in human miRNA genes may affect miRNA biogenesis pathway and influence the susceptibility to several diseases such as cancer. The present study aimed to evaluate the impact of miR-499 rs3746444, miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms on prostate cancer (PCa) risk in a sample of Iranian population. This case-control study was done on 169 patients with pathologically confirmed PCa and 182 benign prostatic hyperplasia (BPH). The genotyping assays were done using T-ARMS-PCR or PCR-RFLP methods. The findings indicated that CC genotype of miR-499 rs3746444 polymorphism increased the risk of PCa (OR = 1.76, 95% CI = 1.12–2.79, P = 0.019) compared to TT genotype. No statistically significant association was found between miR-196a2 rs11614913, miR-149 rs2292832, and miR-146a rs2910164 polymorphisms and PCa risk. In summary, the findings indicated that miR-499 rs3746444 polymorphism increased the risk of PCa in an Iranian population. Further studies with larger sample sizes and different ethnicities are necessary to verify the findings of the present study. PMID:27222754

  16. Circulating miR-150 and miR-342 in plasma are novel potential biomarkers for acute myeloid leukemia

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are small (19-22-nt) single-stranded noncoding RNA molecules whose deregulation of expression can contribute to human disease including the multistep processes of carcinogenesis in human. Circulating miRNAs are emerging biomarkers in many diseases and cancers such as type 2 diabetes, pulmonary disease, colorectal cancer, and gastric cancer among others; however, defining a plasma miRNA signature in acute myeloblastic leukemia (AML) that could serve as a biomarker for diagnosis or in the follow-up has not been done yet. Methods TaqMan miRNA microarray was performed to identify deregulated miRNAs in the plasma of AML patients. Quantitative real-time RT-PCR was used to validate the results. Receiver-operator characteristic (ROC) curve analysis was conducted to evaluate the diagnostic accuracy of the highly and significantly identified deregulated miRNA(s) as potential candidate biomarker(s). Results The plasma expression level of let-7d, miR-150, miR-339, and miR-342 was down-regulated whilst that of let-7b, and miR-523 was up-regulated in the AML group at diagnosis compared to healthy controls. ROC curve analyses revealed an AUC (the areas under the ROC curve) of 0.835 (95% CI: 0.7119– 0.9581; P<0.0001) and 0.8125 (95% CI: 0.6796–0.9454; P=0.0005) for miR-150, and miR-342 respectively. Combined ROC analyses using these 2 miRNAs revealed an elevated AUC of 0.86 (95% CI: 0.7819–0.94; P<0.0001) indicating the additive effect in the diagnostic value of these 2 miRNAs. QRT-PCR results showed that the expression level of these two miRs in complete remission AML patients resembled that of healthy controls. Conclusions Our findings indicated that plasma miR-150 and miR-342 are novel important promising biomarkers in the diagnosis of AML. These novel and promising markers warrant validation in larger prospective studies. PMID:23391324

  17. Methylation of miRNA genes and oncogenesis.

    PubMed

    Loginov, V I; Rykov, S V; Fridman, M V; Braga, E A

    2015-02-01

    Interaction between microRNA (miRNA) and messenger RNA of target genes at the posttranscriptional level provides fine-tuned dynamic regulation of cell signaling pathways. Each miRNA can be involved in regulating hundreds of protein-coding genes, and, conversely, a number of different miRNAs usually target a structural gene. Epigenetic gene inactivation associated with methylation of promoter CpG-islands is common to both protein-coding genes and miRNA genes. Here, data on functions of miRNAs in development of tumor-cell phenotype are reviewed. Genomic organization of promoter CpG-islands of the miRNA genes located in inter- and intragenic areas is discussed. The literature and our own results on frequency of CpG-island methylation in miRNA genes from tumors are summarized, and data regarding a link between such modification and changed activity of miRNA genes and, consequently, protein-coding target genes are presented. Moreover, the impact of miRNA gene methylation on key oncogenetic processes as well as affected signaling pathways is discussed.

  18. MicroRNA miR-125b causes leukemia.

    PubMed

    Bousquet, Marina; Harris, Marian H; Zhou, Beiyan; Lodish, Harvey F

    2010-12-14

    MicroRNA miR-125b has been implicated in several kinds of leukemia. The chromosomal translocation t(2;11)(p21;q23) found in patients with myelodysplasia and acute myeloid leukemia leads to an overexpression of miR-125b of up to 90-fold normal. Moreover, miR-125b is also up-regulated in patients with B-cell acute lymphoblastic leukemia carrying the t(11;14)(q24;q32) translocation. To decipher the presumed oncogenic mechanism of miR-125b, we used transplantation experiments in mice. All mice transplanted with fetal liver cells ectopically expressing miR-125b showed an increase in white blood cell count, in particular in neutrophils and monocytes, associated with a macrocytic anemia. Among these mice, half died of B-cell acute lymphoblastic leukemia, T-cell acute lymphoblastic leukemia, or a myeloproliferative neoplasm, suggesting an important role for miR-125b in early hematopoiesis. Furthermore, coexpression of miR-125b and the BCR-ABL fusion gene in transplanted cells accelerated the development of leukemia in mice, compared with control mice expressing only BCR-ABL, suggesting that miR-125b confers a proliferative advantage to the leukemic cells. Thus, we show that overexpression of miR-125b is sufficient both to shorten the latency of BCR-ABL-induced leukemia and to independently induce leukemia in a mouse model.

  19. A Novel Putative miRNA Target Enhancer Signal

    PubMed Central

    Schmidt, Thorsten; Mewes, Hans-Werner; Stümpflen, Volker

    2009-01-01

    It is known that miRNA target sites are very short and the effect of miRNA-target site interaction alone appears as being unspecific. Recent experiments suggest further context signals involved in miRNA target site recognition and regulation. Here, we present a novel GC-rich RNA motif downstream of experimentally supported miRNA target sites in human mRNAs with no similarity to previously reported functional motifs. We demonstrate that the novel motif can be found in at least one third of all transcripts regulated by miRNAs. Furthermore, we show that motif occurrence and the frequency of miRNA target sites as well as the stability of their duplex structures correlate. The finding, that the novel motif is significantly associated with miRNA target sites, suggests a functional role of the motif in miRNA target site biology. Beyond, the novel motif has the impact to improve prediction of miRNA target sites significantly. PMID:19649282

  20. miRNA expression atlas in male rat

    PubMed Central

    Minami, Keiichi; Uehara, Takeki; Morikawa, Yuji; Omura, Ko; Kanki, Masayuki; Horinouchi, Akira; Ono, Atsushi; Yamada, Hiroshi; Ohno, Yasuo; Urushidani, Tetsuro

    2014-01-01

    MicroRNAs (miRNAs) are small (~22 nucleotide) noncoding RNAs that play pivotal roles in regulation of gene expression. The value of miRNAs as circulating biomarkers is now broadly recognized; such tissue-specific biomarkers can be used to monitor tissue injury and several pathophysiological conditions in organs. In addition, miRNA profiles of normal organs and tissues are important for obtaining a better understanding of the source of modulated miRNAs in blood and how those modulations reflect various physiological and toxicological conditions. This work was aimed at creating an miRNA atlas in rats, as part of a collaborative effort with the Toxicogenomics Informatics Project in Japan (TGP2). We analyzed genome-wide miRNA profiles of 55 different organs and tissues obtained from normal male rats using miRNA arrays. The work presented herein represents a comprehensive dataset derived from normal samples profiled in a single study. Here we present the whole dataset with miRNA profiles of multiple organs, as well as precise information on experimental procedures and organ-specific miRNAs identified in this dataset. PMID:25977763

  1. Magnetocrystalline anisotropy in <mi>UMn>2<mi>Ge>2 and related Mn-based actinide ferromagnets

    SciTech Connect

    Parker, David S.; Ghimire, Nirmal; Singleton, John; Thompson, J. D.; Bauer, Eric D.; Baumbach, Ryan; Mandrus, David; Li, Ling; Singh, David J.

    2015-05-04

    We present magnetization isotherms in pulsed magnetic fields up to 62 Tesla, supported by first principles calculations, demonstrating a huge uniaxial magnetocrystalline anisotropy energy - approximately 20 MJ/m3 - in <mi>UMn>2<mi>Ge>2. This large anisotropy results from the extremely strong spin-orbit coupling affecting the uranium 5 f electrons, which in the calculations exhibit a substantial orbital moment exceeding 2 μB. Finally, we also find from theoretical calculations that a number of isostructural Mn-actinide compounds are expected to have similarly large anisotropy.

  2. miRNA-124 in Immune System and Immune Disorders

    PubMed Central

    Qin, Zhen; Wang, Peng-Yuan; Su, Ding-Feng; Liu, Xia

    2016-01-01

    In recent years, miR-124 has emerged as a critical modulator of immunity and inflammation. Here, we summarize studies on the function and mechanism of miR-124 in the immune system and immunity-related diseases. They indicated that miR-124 exerts a crucial role in the development of immune system, regulation of immune responses, and inflammatory disorders. It is evident that miR-124 may serve as an informative diagnostic biomarker and therapeutic target in the future. PMID:27757114

  3. Upgrades to the Fermilab NuMI beamline

    SciTech Connect

    Martens, Michael A.; Childress, Sam; Grossman, Nancy; Hurh, Patrick; Hylen, James; Marchionni, Alberto; McCluskey, Elaine; Moore, Craig Damon; Reilly, Robert; Tariq, Salman; Wehmann, Alan; /Fermilab

    2007-06-01

    The NuMI beamline at Fermilab has been delivering high-intensity muon neutrino beams to the MINOS experiment since the spring of 2005. A total of 3.4 x 10{sup 20} protons has been delivered to the NuMI target and a maximum beam power of 320 kW has been achieved. An upgrade of the NuMI facility increasing the beam power capability to 700 kW is planned as part of the NOvA experiment. The plans for this upgrade are presented and the possibility of upgrading the NuMI beamline to handle 1.2 MW is considered.

  4. [Correlation between the levels of miR-21, miR-34c, miR-140 and miR-375 in the sperm from in vitro fertilization patients and the embryo quality].

    PubMed

    Jiang, Wen; Liu, Nenghui

    2015-08-01

    目的:通过检测不同胚胎质量的体外受精(in vitro fertilization,IVF)患者精子miRNA-21,miRNA-34c,miRNA-140,miRNA-375的表达情况,探讨精子来源的miRNAs与胚胎质量的相关性。方法:选择2012年9月至12月在中南大学湘雅医院生殖医学中心行IVF治疗原发不育的男性患者44例,收集 IVF取卵当日剩余新鲜精液标本,采用实时荧光定量PCR测定精子miRNAs(miRNA-21,miRNA-34c,miRNA-140,miRNA-375)的表达水平。观察胚胎情况后分组,第3天胚胎评分的平均值<8分为实验组,≥8分为对照组。比较实验组和对照组患者一般情况及实验室资料,分析精子miRNAs表达水平与胚胎质量的相关性。结果:实验组精子miRNA-21,miRNA-34c,miRNA-140,miRNA-375表达水平低于对照组(P<0.01)。实验组与对照组的获卵数、减数分裂II期(metaphase II,MII)卵子数、双原核(dual pronuclear,2PN)受精数、卵裂数、受精率差异无统计学意义(P>0.05);实验组卵裂率低于对照组(P<0.05)。精子miRNA-21,miRNA-34c,miRNA-140,miRNA-375表达水平与第2,3天胚胎碎片率呈负相关,与第3天胚胎卵裂球数呈正相关,与胚胎评分呈正相关。结论:精子miRNA-21,miRNA-34c,miRNA-140,miRNA-375的表达水平上升可能影响卵裂期胚胎质量,对胚胎发育可能起一定的积极作用。.

  5. Hsa-miR-137, hsa-miR-520e and hsa-miR-590-3p perform crucial roles in Lynch syndrome

    PubMed Central

    Zhou, Changyu; Li, Jiayu; Li, Jiarui; Wan, Yingchun; Li, Tao; Ma, Piyong; Wang, Yingjian; Sang, Haiyan

    2016-01-01

    The aim of the present study was to identify the differentially expressed microRNAs (DEMs) between Lynch syndrome (LS) and the normal colonic (N-C) control samples, predict the target genes (TGs) and analyze the potential functions of the DEMs and TGs. The miRNA expression dataset GSE30454, which included data of 13 LS and 20 N-C tissue samples, was downloaded from the Gene Expression Omnibus. The classical t-test in Linear Models for Microarray Data package was used for DEM identification. TG prediction was performed using 5 databases. The regulatory network of the DEMs and their TGs was constructed using Cytoscape. Functional and pathway enrichment analysis was performed. The transcription factors (TFs), tumor-associated genes (TAG) and tumor suppressor genes (TSGs) were then identified. Three key DEMs hsa-miR-137, hsa-miR-520e, and hsa-miR-590-3p were identified. Hsa-miR-520e and hsa-miR-137 had 4 common TGs, including SNF related kinase, metal-regulatory transcription factor 1 (MTF1), round spermatid basic protein 1 and YTH N6-methyladenosine RNA binding protein 3; hsa-miR-590-3p and hsa-miR-137 had 14 common TGs, including NCK adaptor protein 1 (NCK1), EPH receptor A7, and stress-associated endoplasmic reticulum protein 1; hsa-miR-590-3p and hsa-miR-520e had 12 common TGs, including Krüppel-like factor (KLF) 13, twinfilin actin binding protein 1, and nuclear factor I B. Through the functional and pathway enrichments analysis, MTF1 was involved in regulation of gene expression and metabolic processes, and sequence-specific DNA binding TF activity. KLF13 was involved in regulation of gene expression and regulation of cellular metabolic processes. NCK1 was enriched in the axon guidance pathway. In addition, the functional and pathway enrichment analysis showed certain TGs, such as hypoxia-inducible factor 1α, AKT serine/threonine kinase 2, and rapamycin-insensitive companion of mammalian target of rapamycin, participated in the mTOR signaling pathway. The 3 key

  6. Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP

    PubMed Central

    2014-01-01

    Background Hepatitis B virus X protein (HBx) plays crucial roles in hepatocarcinogenesis. However, the underlying mechanism remains elusive. We have reported that HBx is able to up-regulate survivin in hepatocellular carcinoma tissues. The oncopreotein hepatitis B X-interacting protein (HBXIP), a target of miR-520b, is involved in the development of cancer. In this study, we focus on the investigation of hepatocarcinogenesis mediated by HBx. Methods The expression of HBx and survivin was examined in the liver tissues of HBx-Tg mice. The effect of HBx/survivin on the growth of LO2-X-S cells was determined by colony formation and transplantation in nude mice. The effect of HBx/survivin on promoter of miR-520b was determined by Western blot analysis, luciferase reporter gene assay, co-immunoprecipitation (co-IP) and chromatin immunoprecipitation (ChIP), respectively. The expression of HBx, survivin and HBXIP was detected by immunohistochemistry and real-time PCR in clinical HCC tissues, respectively. The DNA demethylation of HBXIP promoter was examined. The functional influence of miR-520b and HBXIP on proliferation of hepatoma cells was analyzed by MTT, colony formation, EdU and transplantation in nude mice in vitro and in vivo. Results In this study, we provided evidence that HBx up-regulated survivin in the liver cancer tissues of HBx-Tg mice aged 18 M. The engineered LO2 cell lines with survivin and/or HBx were successfully established, termed LO2-X-S. MiR-520b was down-regulated in LO2-X-S cells and clinical HCC tissues. Our data revealed that HBx survivin-dependently down-regulated miR-520b through interacting with Sp1 in the cells. HBXIP was highly expressed in LO2-X-S cells, liver cancer tissues of HBx-Tg mice aged 18 M and clinical HCC tissues (75.17%, 112/149). The expression level of HBXIP was positively associated with those of HBx or survivin in clinical HCC tissues. In addition, we showed that HBx survivin-dependently up-regulated HBXIP through

  7. [The role of miRNA in endometrial cancer in the context of miRNA 205].

    PubMed

    Wilczyński, Miłosz; Danielska, Justyna; Dzieniecka, Monika; Malinowski, Andrzej

    2015-11-01

    MiRNAs are small, non-coding molecules of ribonucleic acids of approximately 22 bp length, which serve as regulators of gene expression and protein translation due to interference with messenger RNA (mRNA). MiRNAs, which take part in the regulation of cell cycle and apoptosis, may be associated with carcinogenesis. Aberrant expression of miRNAs in endometrial cancer might contribute to the endometrial cancer initiation or progression, as well as metastasis formation, and may influence cancer invasiveness. Specific-miRNAs expressed in endometrial cancer tissues may serve as diagnostic markers of the disease, prognostic biomarkers, or play an important part in oncological therapy We aimed to describe the role of miRNAs in endometrial cancer with special consideration of miRNA 205. PMID:26817318

  8. MiRNA in atopic dermatitis

    PubMed Central

    Rudnicka, Lidia; Samochocki, Zbigniew

    2016-01-01

    MicroRNAs are relatively new molecules that have been widely studied in recent years as to determine their exact function in the human body. It is suggested that microRNAs control approx. 30% of all genes, making them one of the largest groups that control the expression of proteins. Various functions of miRNAs have already been described. In skin diseases, there are more and more studies describing an altered expression of microRNAs in the skin or serum. Relatively little is known about the function of these molecules in atopic dermatitis, which prompted us to gather current reports on this subject. PMID:27512348

  9. Targeting oncomiRNAs and mimicking tumor suppressor miRNAs: New trends in the development of miRNA therapeutic strategies in oncology (Review)

    PubMed Central

    GAMBARI, ROBERTO; BROGNARA, ELEONORA; SPANDIDOS, DEMETRIOS A.; FABBRI, ENRICA

    2016-01-01

    MicroRNA (miRNA or miR) therapeutics in cancer are based on targeting or mimicking miRNAs involved in cancer onset, progression, angiogenesis, epithelial-mesenchymal transition and metastasis. Several studies conclusively have demonstrated that miRNAs are deeply involved in tumor onset and progression, either behaving as tumor-promoting miRNAs (oncomiRNAs and metastamiRNAs) or as tumor suppressor miRNAs. This review focuses on the most promising examples potentially leading to the development of anticancer, miRNA-based therapeutic protocols. The inhibition of miRNA activity can be readily achieved by the use of miRNA inhibitors and oligomers, including RNA, DNA and DNA analogues (miRNA antisense therapy), small molecule inhibitors, miRNA sponges or through miRNA masking. On the contrary, the enhancement of miRNA function (miRNA replacement therapy) can be achieved by the use of modified miRNA mimetics, such as plasmid or lentiviral vectors carrying miRNA sequences. Combination strategies have been recently developed based on the observation that i) the combined administration of different antagomiR molecules induces greater antitumor effects and ii) some anti-miR molecules can sensitize drug-resistant tumor cell lines to therapeutic drugs. In this review, we discuss two additional issues: i) the combination of miRNA replacement therapy with drug administration and ii) the combination of antagomiR and miRNA replacement therapy. One of the solid results emerging from different independent studies is that miRNA replacement therapy can enhance the antitumor effects of the antitumor drugs. The second important conclusion of the reviewed studies is that the combination of anti-miRNA and miRNA replacement strategies may lead to excellent results, in terms of antitumor effects. PMID:27175518

  10. Radiative forcing calculations for CH{sub 3}Cl and CH{sub 3}Br

    SciTech Connect

    Grossman, A.S.; Grant, K.E.; Blass, W.E.; Wuebbles, D.J.

    1997-06-01

    Methyl chloride, CH{sub 3}Cl, and methyl bromide, CH{sub 3}Br, are particularly important in the global atmosphere as major natural sources of chlorine and bromine to the stratosphere. The production of these gases is dominated by natural sources, but smaller, important anthropogenic sources, such as agricultural fumigation and/or biomass burning, also exist. As absorbers of infrared radiation these gases are of interest for their potential effect on the tropospheric energy balance as well as for chemical interactions. In this study we estimate the radiative forcing and Global Warming Potentials (GWPs) of CH{sub 3}Cl and CH{sub 3}Br. Our calculations use an infrared radiative transfer model based on the correlated k-distribution algorithm for band absorption. Radiative forcing values of 0.0047W/m{sup 2} per part per billion by volume (ppbv) for CH{sub 3}Cl in the troposphere and 0.0049W/m{sup 2} per ppbv for CH{sub 3}Br in the troposphere were obtained. On a per molecule basis the radiative forcing values are about 2{percent} of the forcing of CFC-11 and about 270 times the forcing of CO{sub 2}. GWPs for these gases are about 8 for CH{sub 3}Cl and about 4 for CH{sub 3}Br (100 year time integration, CO{sub 2}=1). These results indicate that while CH{sub 3}Cl and CH{sub 3}Br have direct GWPs similar to that of CH{sub 4}, the current emission rates are too low to contribute meaningfully to atmospheric greenhouse heating effects.{copyright} 1997 American Geophysical Union

  11. miRLAB: An R Based Dry Lab for Exploring miRNA-mRNA Regulatory Relationships

    PubMed Central

    Le, Thuc Duy; Zhang, Junpeng; Liu, Lin; Liu, Huawen; Li, Jiuyong

    2015-01-01

    microRNAs (miRNAs) are important gene regulators at post-transcriptional level, and inferring miRNA-mRNA regulatory relationships is a crucial problem. Consequently, several computational methods of predicting miRNA targets have been proposed using expression data with or without sequence based miRNA target information. A typical procedure for applying and evaluating such a method is i) collecting matched miRNA and mRNA expression profiles in a specific condition, e.g. a cancer dataset from The Cancer Genome Atlas (TCGA), ii) applying the new computational method to the selected dataset, iii) validating the predictions against knowledge from literature and third-party databases, and comparing the performance of the method with some existing methods. This procedure is time consuming given the time elapsed when collecting and processing data, repeating the work from existing methods, searching for knowledge from literature and third-party databases to validate the results, and comparing the results from different methods. The time consuming procedure prevents researchers from quickly testing new computational models, analysing new datasets, and selecting suitable methods for assisting with the experiment design. Here, we present an R package, miRLAB, for automating the procedure of inferring and validating miRNA-mRNA regulatory relationships. The package provides a complete set of pipelines for testing new methods and analysing new datasets. miRLAB includes a pipeline to obtain matched miRNA and mRNA expression datasets directly from TCGA, 12 benchmark computational methods for inferring miRNA-mRNA regulatory relationships, the functions for validating the predictions using experimentally validated miRNA target data and miRNA perturbation data, and the tools for comparing the results from different computational methods. PMID:26716983

  12. Transcription factor NRF2 regulates miR-1 and miR-206 to drive tumorigenesis

    PubMed Central

    Singh, Anju; Happel, Christine; Manna, Soumen K.; Acquaah-Mensah, George; Carrerero, Julian; Kumar, Sarvesh; Nasipuri, Poonam; Krausz, Kristopher W.; Wakabayashi, Nobunao; Dewi, Ruby; Boros, Laszlo G.; Gonzalez, Frank J.; Gabrielson, Edward; Wong, Kwok K.; Girnun, Geoffrey; Biswal, Shyam

    2013-01-01

    The mechanisms by which deregulated nuclear factor erythroid-2–related factor 2 (NRF2) and kelch-like ECH-associated protein 1 (KEAP1) signaling promote cellular proliferation and tumorigenesis are poorly understood. Using an integrated genomics and 13C-based targeted tracer fate association (TTFA) study, we found that NRF2 regulates miR-1 and miR-206 to direct carbon flux toward the pentose phosphate pathway (PPP) and the tricarboxylic acid (TCA) cycle, reprogramming glucose metabolism. Sustained activation of NRF2 signaling in cancer cells attenuated miR-1 and miR-206 expression, leading to enhanced expression of PPP genes. Conversely, overexpression of miR-1 and miR-206 decreased the expression of metabolic genes and dramatically impaired NADPH production, ribose synthesis, and in vivo tumor growth in mice. Loss of NRF2 decreased the expression of the redox-sensitive histone deacetylase, HDAC4, resulting in increased expression of miR-1 and miR-206, and not only inhibiting PPP expression and activity but functioning as a regulatory feedback loop that repressed HDAC4 expression. In primary tumor samples, the expression of miR-1 and miR-206 was inversely correlated with PPP gene expression, and increased expression of NRF2-dependent genes was associated with poor prognosis. Our results demonstrate that microRNA-dependent (miRNA-dependent) regulation of the PPP via NRF2 and HDAC4 represents a novel link between miRNA regulation, glucose metabolism, and ROS homeostasis in cancer cells. PMID:23921124

  13. Inference of Target Gene Regulation via miRNAs during Cell Senescence by Using the MiRaGE Server.

    PubMed

    Taguchi, Y-H

    2012-08-01

    miRNAs have recently been shown to play a key role in cell senescence, by downregulating target genes. Thus, inference of those miRNAs that critically downregulate target genes is important. However, inference of target gene regulation by miRNAs is difficult and is often achieved simply by investigating significant upregulation during cell senescence. Here, we inferred the regulation of target genes by miRNAs, using the recently developed MiRaGE server, together with the change in miRNA expression during fibroblast IMR90 cell senescence. We revealed that the simultaneous consideration of 2 criteria, the up(down)regulation and the down(up) regulatiion of target genes, yields more feasible miRNA, i.e., those that are most frequently reported to be down/upregulated and/or to possess biological backgrounds that induce cell senescence. Thus, when analyzing miRNAs that critically contribute to cell senescence, it is important to consider the level of target gene regulation, simultaneously with the change in miRNA expression. PMID:23185711

  14. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    PubMed Central

    Gong, Husile

    2016-01-01

    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse.

  15. CID-miRNA: A web server for prediction of novel miRNA precursors in human genome

    SciTech Connect

    Tyagi, Sonika; Vaz, Candida; Gupta, Vipin; Bhatia, Rohit; Maheshwari, Sachin; Srinivasan, Ashwin; Bhattacharya, Alok

    2008-08-08

    microRNAs (miRNA) are a class of non-protein coding functional RNAs that are thought to regulate expression of target genes by direct interaction with mRNAs. miRNAs have been identified through both experimental and computational methods in a variety of eukaryotic organisms. Though these approaches have been partially successful, there is a need to develop more tools for detection of these RNAs as they are also thought to be present in abundance in many genomes. In this report we describe a tool and a web server, named CID-miRNA, for identification of miRNA precursors in a given DNA sequence, utilising secondary structure-based filtering systems and an algorithm based on stochastic context free grammar trained on human miRNAs. CID-miRNA analyses a given sequence using a web interface, for presence of putative miRNA precursors and the generated output lists all the potential regions that can form miRNA-like structures. It can also scan large genomic sequences for the presence of potential miRNA precursors in its stand-alone form. The web server can be accessed at (http://mirna.jnu.ac.in/cidmirna/)

  16. A defect in inducible beta-galactosidase of B lymphocytes in the osteopetrotic (mi/mi) mouse.

    PubMed Central

    Yamamoto, N; Naraparaju, V R

    1996-01-01

    Macrophages were activated by administration of an inflammatory lipid metabolite, lysophosphatidylcholine (lyso-Pc), to wild type mice but not murine (microphthalmic) osteopetrotic (mi/mi) mutant mice. In vitro treatment of wild type mouse peritoneal cells with lyso-Pc efficiently activated macrophages whereas lyso-Pc-treatment of mi mutant mouse peritoneal cells resulted in no activation of macrophages. Generation of macrophage activating factor requires a precursor protein, serum vitamin D binding protein (DBP), and participation of lyso-Pc-inducible beta-galactosidase of B lymphocytes. Lyso-Pc-inducible beta-galactosidase of B lymphocytes was found to be defective in mi mutant mice. PMID:8881764

  17. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors.

    PubMed

    Voorhoeve, P Mathijs; le Sage, Carlos; Schrier, Mariette; Gillis, Ad J M; Stoop, Hans; Nagel, Remco; Liu, Ying-Poi; van Duijse, Josyanne; Drost, Jarno; Griekspoor, Alexander; Zlotorynski, Eitan; Yabuta, Norikazu; De Vita, Gabriella; Nojima, Hiroshi; Looijenga, Leendert H J; Agami, Reuven

    2006-03-24

    Endogenous small RNAs (miRNAs) regulate gene expression by mechanisms conserved across metazoans. While the number of verified human miRNAs is still expanding, only few have been functionally annotated. To perform genetic screens for novel functions of miRNAs, we developed a library of vectors expressing the majority of cloned human miRNAs and created corresponding DNA barcode arrays. In a screen for miRNAs that cooperate with oncogenes in cellular transformation, we identified miR-372 and miR-373, each permitting proliferation and tumorigenesis of primary human cells that harbor both oncogenic RAS and active wild-type p53. These miRNAs neutralize p53-mediated CDK inhibition, possibly through direct inhibition of the expression of the tumor-suppressor LATS2. We provide evidence that these miRNAs are potential novel oncogenes participating in the development of human testicular germ cell tumors by numbing the p53 pathway, thus allowing tumorigenic growth in the presence of wild-type p53.

  18. Analyzing the miRNA-Gene Networks to Mine the Important miRNAs under Skin of Human and Mouse

    PubMed Central

    Gong, Husile

    2016-01-01

    Genetic networks provide new mechanistic insights into the diversity of species morphology. In this study, we have integrated the MGI, GEO, and miRNA database to analyze the genetic regulatory networks under morphology difference of integument of humans and mice. We found that the gene expression network in the skin is highly divergent between human and mouse. The GO term of secretion was highly enriched, and this category was specific in human compared to mouse. These secretion genes might be involved in eccrine system evolution in human. In addition, total 62,637 miRNA binding target sites were predicted in human integument genes (IGs), while 26,280 miRNA binding target sites were predicted in mouse IGs. The interactions between miRNAs and IGs in human are more complex than those in mouse. Furthermore, hsa-miR-548, mmu-miR-466, and mmu-miR-467 have an enormous number of targets on IGs, which both have the role of inhibition of host immunity response. The pattern of distribution on the chromosome of these three miRNAs families is very different. The interaction of miRNA/IGs has added the new dimension in traditional gene regulation networks of skin. Our results are generating new insights into the gene networks basis of skin difference between human and mouse. PMID:27689084

  19. Circulating miR-22, miR-24 and miR-34a as novel predictive biomarkers to pemetrexed-based chemotherapy in advanced non-small cell lung cancer.

    PubMed

    Franchina, Tindara; Amodeo, Valeria; Bronte, Giuseppe; Savio, Giuseppina; Ricciardi, Giuseppina R R; Picciotto, Maria; Russo, Antonio; Giordano, Antonio; Adamo, Vincenzo

    2014-01-01

    Pemetrexed has been widely used in patients with advanced non-small cell lung cancer (NSCLC). The clinical relevance of polymorphisms of folate pathway genes for pemetrexed metabolism have not been fully elucidated yet. The aim of this study was to evaluate the expression levels of circulating miR-22, miR-24, and miR-34a, possibly involved in folate pathway, in NSCLC patients treated with pemetrexed compared with healthy controls and to investigate their impact on patient clinical outcomes. A total of 22 consecutive patients with advanced NSCLC, treated with pemetrexed-based chemotherapy and 27 age and sex matched healthy controls were included in this preliminary analysis. miR-22, miR-24, and miR-34a targets were identified by TargetScan 6.2 algorithm, validating the involvement of these microRNAs in folate pathway. MicroRNAs were isolated from whole blood and extracted with miRNAeasy Mini Kit (Qiagen). miRNA profiling was performed using Real-Time PCR. SPSS 17 was used to data analysis. miR-22, miR-24, and miR-34a were found upregulated (P<0.05) in NSCLC patients versus healthy controls. Higher expression levels were recorded for miR-34a. Nevertheless, significantly higher miR-22 expression was observed in patients developing progressive disease (P=0.03). No significant associations with clinical outcome were recorded for miR-24 and miR-34a. Albeit preliminary, these data support the involvement of miR-22, miR-24, and miR-34a in advanced NSCLC. The correlation between high expression of miR-22 in whole blood and the lack of response in pemetrexed treated NSCLC patients indicates that miR-22 could represent a novel predictive biomarker for pemetrexed-based treatment.

  20. The Associations of Single Nucleotide Polymorphisms in miR196a2, miR-499, and miR-608 With Breast Cancer Susceptibility

    PubMed Central

    Dai, Zhi-Ming; Kang, Hua-Feng; Zhang, Wang-Gang; Li, Hong-Bao; Zhang, Shu-Qun; Ma, Xiao-Bin; Lin, Shuai; Wang, Meng; Feng, Yan-Jing; Liu, Kang; Liu, Xing-Han; Xu, Peng; Dai, Zhi-Jun

    2016-01-01

    Abstract MicroRNAs (miRNAs) play an important role as regulators of tumor suppressors and oncogenes in cancer-related processes. Single nucleotide polymorphisms (SNPs) in miRNAs have been shown to be relevant to various different cancers, including breast cancer (BC). The aim of this study was to estimate the associations between miRNA-related gene polymorphisms (miR-196a2, miR-499, and miR-608) and the risk of BC in a Chinese population. Gene polymorphisms were analyzed in 1143 subjects (controls = 583; BC = 560). The 3 SNPs were genotyped using the Sequenom Mass-ARRAY platform. The associations between the SNP frequencies and BC were assessed by computing odds ratios (ORs) and 95% confidence intervals (95% CIs), as well as by applying Chi-square tests. The miR-196a2 (rs11614913) T allele was associated with a decreased risk of BC based on results from dominant (OR = 0.67, 95% CI = 0.52–0.86), recessive (OR = 0.65, 95% CI = 0.48–0.86), and allele models (OR = 0.73, 95% CI = 0.62–0.86). In contrast, the miR-499 (rs3746444) AG/GG genotypes were associated with an increased risk of BC (OR = 1.45, 95% CI = 1.10–1.91), and miR-608 (rs4919510) was not significantly associated with BC risk. Our study suggested that the polymorphisms of rs11614913 and rs3746444 may be associated with BC risk in Chinese individuals. PMID:26886638

  1. Measurement of the Single Top Quark Production Cross Section and |<mi>Vmi><mi>tb>| in Events with One Charged Lepton, Large Missing Transverse Energy, and Jets at CDF

    SciTech Connect

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d’Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D’Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D’Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hirschbuehl, D.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W. -M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.

    2014-12-31

    We report a measurement of single top quark production in proton-antiproton collisions at a center-of-mass energy of mi>smi>=1.96 mi>TeVmi> using a data set corresponding to 7.5 mi>fbmi>-1 of integrated luminosity collected by the Collider Detector at Fermilab. We select events consistent with the single top quark decay process mi>t>mi>Wmi>b>mi>νmi>b> by requiring the presence of an electron or muon, a large imbalance of transverse momentum indicating the presence of a neutrino, and two or three jets including at least one originating from a bottom quark. An artificial neural network is used to discriminate the signal from backgrounds. We measure a single top quark production cross section of 3.04-0.53+0.57 mi>pb> and set a lower limit on the magnitude of the coupling between the top quark and bottom quark |

  2. Healing in the Sámi North

    PubMed Central

    Stabbursvik, Ellen Anne Buljo

    2010-01-01

    There is a special emphasis today on integrating traditional healing within health services. However, most areas in which there is a system of traditional healing have undergone colonization and a number of pressures suppressing tradition for hundreds of years. The question arises as to how one can understand today’s tradition in light of earlier traditions. This article is based on material collected in Sámi areas of Finnmark and Nord-Troms Norway; it compares local healing traditions with what is known of earlier shamanic traditions in the area. The study is based on 27 interviews among healers and their patients. The findings suggest that although local healing traditions among the Sámi in northern Norway have undergone major transformations during the last several hundred years, they may be considered an extension of a long-standing tradition with deep roots in the region. Of special interest are also the new forms tradition may take in today’s changing global society. PMID:20862528

  3. Kaposi's Sarcoma-Associated Herpesvirus Encodes a Mimic of Cellular miR-23

    PubMed Central

    Manzano, Mark; Shamulailatpam, Priscilla; Raja, Archana N.

    2013-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) expresses ∼20 viral microRNAs (miRNAs) in latently infected cells. We have previously shown that two of these miRNAs function as mimics of the cellular miRNAs miR-155 and miR-142-3p. Two additional KSHV miRNAs, miR-K3+1 and miR-K3, share perfect and offset 5′ homology with cellular miR-23, respectively. Here, we report a single nucleotide polymorphism that causes miR-K3+1 expression in a subset of KSHV-infected primary effusion lymphoma cell lines as a consequence of altered processing of the primary transcript by the Microprocessor complex. We confirm that miR-K3+1 regulates miR-23 targets, which is expected because these miRNAs share the entire seed region (nucleotides 2 to 8). Surprisingly, we found that miR-K3 also regulates miR-23 targets, despite offset seed sequences. In addition, the offset homology of miR-K3 to miR-23 likely allows this viral miRNA to expand its target repertoire beyond the targets of miR-23. Because miR-23 is highly expressed in endothelial cells but expressed at only low levels in B cells, we hypothesize that miR-K3 may function to introduce miR-23-like activities into KSHV-infected B cells. Together, our data demonstrate that KSHV has evolved at least three distinct viral miRNAs to tap into evolutionarily conserved cellular miRNA-regulatory networks. Furthermore, our data allow fundamental insights into the generation and functional impact of miRNA 5′ end variation. PMID:23986579

  4. Expression of miR-31, miR-125b-5p, and miR-326 in the adipogenic differentiation process of adipose-derived stem cells.

    PubMed

    Tang, Yan-Feng; Zhang, Yong; Li, Xiao-Yu; Li, Cai; Tian, Weidong; Liu, Lei

    2009-08-01

    MicroRNAs (miRNAs) are small single-stranded RNAs of 19-22 nucleotides (nt) and are important posttranscriptional regulation of genes. A link between miRNA function and cancer was researched by the miRNAs microarray technology recently. However, during adipogenic differentiation of ADSCs process, this technology was less used to study adipogenic differentiation mechanism of ADSCs. In this study, miRNA microarray technology was used to examine the expression of miRNA that were differences between induced group and noninduced group of ADSC adipogenic differentiation. Real-time quantitative PCR (real-time qPCR) was used to quantify the miRNA expression. The TargetScan 5.0 software was used to find their target genes. Our results showed that the expression of rno-miR-31, rno-miR-125b-5p, and rno-miR-326 were downregulation in the adipogenic differentiation process. By the statistic analysis, this study showed that the expression of rno-miR-31 and rno-miR-326 were significantly deregulation. In addition, the target genes of rno-miR-31 and rno-miR-326 were correlated with the adipogenic differentiation. Our study suggested that the expression of rno-miR-31 and rno-miR-326 were involved in the adipogenic differentiation process.

  5. miR-124 and miR-506 inhibit colorectal cancer progression by targeting DNMT3B and DNMT1

    PubMed Central

    Chen, Zhiheng; Liu, Shaojun; Tian, Li; Wu, Minghao; Ai, Feiyan; Tang, Wuliang; Zhao, Lian; Ding, Juan; Zhang, Liyang; Tang, Anliu

    2015-01-01

    miR-124 and miR-506 are reportedly down-regulated and associated with tumor progression in many cancers, but little is known about their intrinsic regulatory mechanisms in colorectal cancer (CRC). In this study, we found that the miR-124 and miR-506 levels were significantly lower in human CRC tissues than in controls, as indicated by qRT-PCR and in situ hybridization histochemistry. We also found that the overexpression of miR-124 or miR-506 inhibited tumor cell progression and increased sensitivity to chemotherapy in vitro. Increased miR-124 or miR-506 expression also inhibited tumor cell proliferation and invasion in vivo. Luciferase reporter assays and western blotting were used to determine the association between miR-124, miR-506 and their target genes, DNMTs. We further identified that miR-124 and miR-506 directly targeted DNMT3B and indirectly targeted DNMT1. The overexpression of miR-124 and miR-506 reduced global DNA methylation and restored the expression of E-cadherin, MGMT and P16. In conclusion, our data showed that miR-124 and miR-506 inhibit progression and increase sensitivity to chemotherapy by targeting DNMT3B and DNMT1 in CRC. These findings may provide novel avenues for the development of targeted therapies. PMID:26497367

  6. Comparison of a healthy miRNome with melanoma patient miRNomes: are microRNAs suitable serum biomarkers for cancer?

    PubMed Central

    Margue, Christiane; Beaume, Nicolas; Walters, Casandra; Schneider, Jochen G.; Nashan, Dorothée; Behrmann, Iris; Kreis, Stephanie

    2015-01-01

    MiRNAs are increasingly recognized as biomarkers for the diagnosis of cancers where they are profiled from tumor tissue (intracellular miRNAs) or serum/plasma samples (extracellular miRNAs). To improve detection of reliable biomarkers from blood samples, we first compiled a healthy reference miRNome and established a well-controlled analysis pipeline allowing for standardized quantification of circulating miRNAs. Using whole miRNome and custom qPCR arrays, miRNA expression profiles were analyzed in 126 serum, whole blood and tissue samples of healthy volunteers and melanoma patients and in primary melanocyte and keratinocyte cell lines. We found characteristic signatures with excellent prognostic scores only in late stage but not in early stage melanoma patients. Upon comparison of melanoma tissue miRNomes with matching serum samples, several miRNAs were identified to be exclusively tissue-derived (miR-30b-5p, miR-374a-5p and others) while others had higher expression levels in serum (miR-3201 and miR-122-5p). Here we have compiled a healthy and widely applicable miRNome from serum samples and we provide strong evidence that levels of cell-free miRNAs only change significantly at later stages of melanoma progression, which has serious implications for miRNA biomarker studies in cancer. PMID:25883223

  7. Efficient transformation and artificial miRNA gene silencing in Lemna minor.

    PubMed

    Cantó-Pastor, A; Mollá-Morales, A; Ernst, E; Dahl, W; Zhai, J; Yan, Y; Meyers, B C; Shanklin, J; Martienssen, R

    2015-01-01

    Despite rapid doubling time, simple architecture and ease of metabolic labelling, a lack of genetic tools in the Lemnaceae (duckweed) has impeded the full implementation of this organism as a model for biological research. Here, we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via Agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a magnesium chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic L. minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae.

  8. Efficient transformation and artificial miRNA gene silencing in Lemna minor.

    PubMed

    Cantó-Pastor, A; Mollá-Morales, A; Ernst, E; Dahl, W; Zhai, J; Yan, Y; Meyers, B C; Shanklin, J; Martienssen, R

    2015-01-01

    Despite rapid doubling time, simple architecture and ease of metabolic labelling, a lack of genetic tools in the Lemnaceae (duckweed) has impeded the full implementation of this organism as a model for biological research. Here, we present technologies to facilitate high-throughput genetic studies in duckweed. We developed a fast and efficient method for producing Lemna minor stable transgenic fronds via Agrobacterium-mediated transformation and regeneration from tissue culture. Additionally, we engineered an artificial microRNA (amiRNA) gene silencing system. We identified a Lemna gibba endogenous miR166 precursor and used it as a backbone to produce amiRNAs. As a proof of concept we induced the silencing of CH42, a magnesium chelatase subunit, using our amiRNA platform. Expression of CH42 in transgenic L. minor fronds was significantly reduced, which resulted in reduction of chlorophyll pigmentation. The techniques presented here will enable tackling future challenges in the biology and biotechnology of Lemnaceae. PMID:24989135

  9. Atmospheric methyl iodide /CH3I/

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Khalil, M. A. K.; Gunawardena, R.; Hoyt, S. D.

    1982-01-01

    It is found that atmospheric concentrations of CH3I are not greater than about 3 pptv over most of the earth's surface and drop to less than half this value above the boundary layer, suggesting that the compound is not likely to play such important roles, on a global scale, as the destruction of tropospheric O3 and free radicals and the increasing of the NO2/NO ratio and hydroxyl radical densities. It is hypothesized that a large portion of the global CH3I comes from oceanic regions of high biomass productivity, where the compound may play a key role in local atmospheric chemistry. Attention is given to CH3I measurement uncertainties with regard to global distribution, sources, and sinks.

  10. Mutual induction of transcription factor PPARγ and microRNAs miR-145 and miR-329.

    PubMed

    Dharap, Ashutosh; Pokrzywa, Courtney; Murali, Shruthi; Kaimal, Balarama; Vemuganti, Raghu

    2015-10-01

    MicroRNAs (miRNAs) are small non-coding RNAs that are known to control mRNA translation. Most miRNAs are transcribed from specific genes with well-defined promoters located throughout the genome. The mechanisms that control miRNA expression under normal and pathological conditions are not yet understood clearly. Peroxisome proliferator-activated receptor (PPAR) γ is a ligand-activated transcription factor that is extensively distributed in the CNS. PPARγ activation induces neuroprotection by modulating genes that contain peroxisome proliferator response elements (PPREs) in their promoters. We presently evaluated if PPARγ modulates miRNA expression. When adult rats were treated with PPARγ agonist rosiglitazone, expression of 28 miRNAs altered significantly (12 up- and 16 down-regulated; 3-119 fold) in the cerebral cortex compared to vehicle-treated controls. In silico analysis showed 1-5 PPREs in the putative promoter regions (within 1 Kb upstream of the transcription start site) of these miRNA genes. Cotransfection with a PPARγ constitutively expressing vector significantly induced the miR-145 and miR-329 promoter vectors (each have four PPREs), which was curtailed by point mutations of PPREs in their promoters. Interestingly, the PPARγ promoter has binding sites for both these miRNAs and transfection with miR-329 mimic and miR-145 mimic induced the PPARγ expression. Thus, these studies show a cyclical induction of miRNAs and PPARγ, indicating that the pleiotropic beneficial effects of PPARγ agonists might be modulated in part by miRNAs and their down-stream mRNAs. We proposed that promoters of many microRNAs contain the binding sites for the transcription factor PPARγ. Activation of PPARγ modulates the expression of these microRNAs. Two such PPARγ-responsive microRNAs (miR-145 and miR-329) bind to PPARγ promoter to induce its expression. This indicates the presence of a feedback loop by which transcription factors and microRNAs can modulate each other.

  11. Serum miRNA-499 and miRNA-210: A potential role in early diagnosis of acute coronary syndrome.

    PubMed

    Shalaby, Sally M; El-Shal, Amal S; Shoukry, Amira; Khedr, Mohamad H; Abdelraheim, Nader

    2016-08-01

    In clinical practice, there is still a need for novel biomarkers, which can reliably rule in or rule out acute coronary syndrome (ACS) immediately on admission. This is of particular interest in patients with unstable angina (UA) and non-ST-segment elevation myocardial infarction (NSTEMI) in whom diagnostic uncertainty is high. The aim of the present study is to evaluate the potential role of miRNA-499 and miRNA-210 as novel molecular biomarkers for early diagnosis of UA and NSTEMI suspected patients presented at the emergency unit. A total of 110 patients presenting to the intensive care unit (ICU) within 24 h of onset of chest pain suggestive of ACS were enrolled in the study. They included 37 UA, 48 NSTEMI and 25 noncardiac chest pain (NCCP) patients. Immediately at enrollment, blood samples were taken for estimation of serum miRNA-499 and miRNA-210 expression levels by real time PCR. miRNA-499 and miRNA-210 expression levels were significantly increased in UA and NSTEMI patients compared with NCCP patients (P < 0.001). Receiver operating characteristic (ROC) curve analysis revealed that the area under curve (AUC) of miR-499 for the diagnosis of UA and NSTEMI was 0.98 and 0.97, respectively; while the AUC of miRNA-210 was 0.84 and 0.90, respectively. The important finding of our study was that the AUC of miRNA-499 for the diagnosis of ACS patients with symptoms onset <3 h was 0.89, while the AUC of miRNA-210 was 0.86. Interestingly, combining miRNA-499 and miRNA-210 significantly improved the diagnostic value by increasing the AUC to 0.96, P < 0.001. In conclusion, serum miRNA-499 and miRNA-210 are associated with UA and NSTEMI and with those presenting within 3 h of symptom onset. Both miRNAs might be potentially novel biomarkers for accelerating the diagnosis of ACS patients in emergency unit. © 2016 IUBMB Life, 68(8):673-682, 2016. PMID:27346801

  12. Operation of the NuMI beam monitoring system

    SciTech Connect

    Zwaska, Robert M.; Indurthy, Dharma; Keisler, Ryan; Kopp, Sacha; Mendoza, Steven; Pavlovich, Zarko; Proga, Marek; Bishai, Mary; Diwan, Milind; Viren, Brett; Harris, Deborah A.; Marchionni, Alberto; Morfin, Jorge; McDonald, Jeffrey; Naples, Donna; Northacker, David; Erwin, Albert; Ping, Huican; Velissaris, Cristos; /Texas U. /Brookhaven /Fermilab /Pittsburgh U. /Wisconsin U., Madison

    2006-06-01

    The NuMI (Neutrinos at the Main Injector) facility produces an intense neutrino beam for experiments. The NuMI Beam Monitoring system is four arrays of ion chambers that measure the intensity and distribution of the remnant hadron and tertiary muon beams produced in association with the neutrinos. The ion chambers operate in an environment of high particle fluxes and high radiation.

  13. Regulating cancer stem cells the miR way.

    PubMed

    Peter, Marcus E

    2010-01-01

    A recent study in Nature Cell Biology, Wellner et al. (2009) identifies ZEB1, a known promoter of tumor invasion, as a negative regulator of miRNA clusters that target stem cell factors. These findings provide new insight into the network of transcription factors and miRNAs that regulate cancer stem cells.

  14. 11. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., AMORY Onehalf mi. S ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. RAILROAD BRIDGE MISSISSIPPI, MONROE CO., AMORY One-half mi. S of MS. 6, 1.5 mi. NW of Amory. Aerial view, close-up, from SE of St. Louis and San Francisco RR bridge. David Kaminsky, Architectural Photography, photographer, August 1978. - Bridges of the Upper Tombigbee River Valley, Columbus, Lowndes County, MS

  15. Co-expressed miRNAs in gastric adenocarcinoma.

    PubMed

    Yepes, Sally; López, Rocío; Andrade, Rafael E; Rodriguez-Urrego, Paula A; López-Kleine, Liliana; Torres, Maria Mercedes

    2016-08-01

    Co-expression networks may provide insights into the patterns of molecular interactions that underlie cellular processes. To obtain a better understanding of miRNA expression patterns in gastric adenocarcinoma and to provide markers that can be associated with histopathological findings, we performed weighted gene correlation network analysis (WGCNA) and compare it with a supervised analysis. Integrative analysis of target predictions and miRNA expression profiles in gastric cancer samples was also performed. WGCNA identified a module of co-expressed miRNAs that were associated with histological traits and tumor condition. Hub genes were identified based on statistical analysis and network centrality. The miRNAs 100, let-7c, 125b and 99a stood out for their association with the diffuse histological subtype. The 181 miRNA family and miRNA 21 highlighted for their association with the tumoral phenotype. The integrated analysis of miRNA and gene expression profiles showed the let-7 miRNA family playing a central role in the regulatory relationships. PMID:27422560

  16. Evidence for a cytoplasmic microprocessor of pri-miRNAs.

    PubMed

    Shapiro, Jillian S; Langlois, Ryan A; Pham, Alissa M; Tenoever, Benjamin R

    2012-07-01

    microRNAs (miRNAs) represent a class of noncoding RNAs that fine-tune gene expression through post-transcriptional silencing. While miRNA biogenesis occurs in a stepwise fashion, initiated by the nuclear microprocessor, rare noncanonical miRNAs have also been identified. Here we characterize the molecular components and unique attributes associated with the processing of virus-derived cytoplasmic primary miRNAs (c-pri-miRNAs). RNA in situ hybridization and inhibition of cellular division demonstrated a complete lack of nuclear involvement in c-pri-miRNA cleavage while genetic studies revealed that maturation still relied on the canonical nuclear RNase III enzyme, Drosha. The involvement of Drosha was mediated by a dramatic relocalization to the cytoplasm following virus infection. Deep sequencing analyses revealed that the cytoplasmic localization of Drosha does not impact the endogenous miRNA landscape during infection, despite allowing for robust synthesis of virus-derived miRNAs in the cytoplasm. Taken together, this research describes a unique function for Drosha in the processing of highly structured cytoplasmic RNAs in the context of virus infection.

  17. MiSIS (Michigan Student Information System) Activities Manual.

    ERIC Educational Resources Information Center

    1979

    The Michigan Student Information System (MiSIS) is the student flow component of the Michigan Community College Occupational Education Evaluation System (MCCOEES), a comprehensive state-wide system for evaluating occupational education. The Michigan Student Information System (MiSIS) Activities Manual was designed to help college-level personnel…

  18. Viral miRNAs: tools for immune evasion.

    PubMed

    Boss, Isaac W; Renne, Rolf

    2010-08-01

    MicroRNAs (miRNAs) are noncoding RNA molecules approximately 22 nucleotides in length that post-transcriptionally regulate gene expression by complementary binding to target mRNAs. MiRNAs have been identified in a diverse range of both metazoan and plant species. Functionally, miRNAs modulate multiple cellular processes including development, hematopoiesis, immunity, and oncogenesis. More recently, DNA viruses were found to encode and express miRNAs during host infection. Although the functions of most viral miRNAs are not well understood, early analysis of target genes pointed to immune modulation suggesting that viral miRNAs are a component of the immune evasion repertoire, which facilitates viral persistence. In addition to directly targeting immune functions, viral encoded miRNAs contribute to immune evasion by targeting proapoptotic genes, and in the case of herpesviruses, by controlling viral latency. Here we summarize the recently discovered targets of viral miRNAs and discuss the complex nature of this novel emerging regulatory mechanism.

  19. MI as a Predictor of Students' Performance in Reading Competency

    ERIC Educational Resources Information Center

    Hajhashemi, Karim

    2012-01-01

    The purpose of this study was to examine whether performance in MI could predict the performance in reading competency. The other objectives were to identify the components of MI which are correlated with the reading test scores, and to determine the relationship between the multiple intelligences and reading proficiency. A descriptive and ex post…

  20. Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.).

    PubMed

    Jovanović, Živko; Stanisavljević, Nemanja; Mikić, Aleksandar; Radović, Svetlana; Maksimović, Vesna

    2014-10-01

    MicroRNAs (miRNAs), recently recognized as important regulator of gene expression at posttranscriptional level, have been found to be involved in plant stress responses. The observation that some miRNAs are up- or down regulated by stress implies that they could play vital roles in plant resistance to abiotic and biotic stress. We investigated the effect of water stress treatment during 10 days on expression of conserved miRNAs-miR398a/b and miR408 in pea plants. This time frame reflects the changes as close as possible to the changes where water stress causes visible effects under field condition. It was observed that dehydration strongly down regulates the expression of both miR398a/b and miR408 in pea roots and shoots. The down-regulation of miR398a/b and the up-regulation of potential target genes - copper superoxide dismutase, CSD1, highlight the involvement of this miRNA in pea stress response. To the contrary, the mRNA level of cytochrome c oxidase subunit 5 (COX5b) did not change in roots and shoots of water-stressed plants, compared to control (well) hydrated plants. This suggests that COX5b is not the target of miR398, or that its expression is regulated by some other mechanism. P1B-ATPase expression increased during water deficit only in the shoots of pea; in the roots there were no changes in expression. Our results help to understand the possible role of investigated miRNAs and their contribution to pea capacity to cope with water deficit.

  1. Plasma miR-601 and miR-760 Are Novel Biomarkers for the Early Detection of Colorectal Cancer

    PubMed Central

    Wang, Qifeng; Huang, Zhaohui; Ni, Shujuan; Xiao, Xiuying; Xu, Qinghua; Wang, Lisha; Huang, Dan; Tan, Cong; Sheng, Weiqi; Du, Xiang

    2012-01-01

    Background Colorectal cancer (CRC) is a major cause of death worldwide. Sensitive, non-invasive diagnostic screen methods are urgently needed to improve its survival rates. Stable circulating microRNA offers unique opportunities for the early diagnosis of several diseases, including cancers. Our aim has been to find new plasma miRNAs that can be used as biomarkers for the detection of CRC. Methodology/Principal Findings According to the results of miRNA profiling performed on pooling plasma samples form 10 CRC patients or 10 healthy controls, a panel of miRNAs (hsa-miR-10a, -19a, -22*, -24, -92a, 125a-5p, -141, -150, -188-3p, -192, -210, -221, -224*, -376a, -425*, -495, -572, -601, -720, -760 and hsa-let-7a, -7e) were deregulated in CRC plasma with fold changes >5. After large scale validation by qRT-PCR performed on another 191 independent individuals (90 CRC, 43 advanced adenoma and 58 healthy participants), we found that the levels of plasma miR-601 and miR-760 were significantly decreased in colorectal neoplasia (carcinomas and advanced adenomas) compared with healthy controls. ROC curve analysis showed that plasma miR-601 and miR-760 were of significant diagnostic value for advanced neoplasia. These two miRNAs together yield an AUC of 0.792 with 83.3% sensitivity and 69.1% specificity for separating CRC from normal controls, and yield an AUC of 0.683 with 72.1% sensitivity and 62.1% specificity in discriminating advanced adenomas from normal controls. Conclusions/Significance Plasma miR-601 and miR-760 can potentially serve as promising non-invasive biomarkers for the early detection of CRC. PMID:22970209

  2. Identification of lung cancer miRNA-miRNA co-regulation networks through a progressive data refining approach.

    PubMed

    Song, Renhua; Catchpoole, Daniel R; Kennedy, Paul J; Li, Jinyan

    2015-09-01

    Co-regulations of miRNAs have been much less studied than the research on regulations between miRNAs and their target genes, although these two problems are equally important for understanding the entire mechanisms of complex post-transcriptional regulations. The difficulty to construct a miRNA-miRNA co-regulation network lies in how to determine reliable miRNA pairs from various resources of data related to the same disease such as expression levels, gene ontology (GO) databases, and protein-protein interactions. Here we take a novel integrative approach to the discovery of miRNA-miRNA co-regulation networks. This approach can progressively refine the various types of data and the computational analysis results. Applied to three lung cancer miRNA expression data sets of different subtypes, our method has identified a miRNA-miRNA co-regulation network and co-regulating functional modules common to lung cancer. An example of these functional modules consists of genes SMAD2, ACVR1B, ACVR2A and ACVR2B. This module is synergistically regulated by let-7a/b/c/f, is enriched in the same GO category, and has a close proximity in the protein interaction network. We also find that the co-regulation network is scale free and that lung cancer related miRNAs have more synergism in the network. According to our literature survey and database validation, many of these results are biologically meaningful for understanding the mechanism of the complex post-transcriptional regulations in lung cancer.

  3. Polysome arrest restricts miRNA turnover by preventing exosomal export of miRNA in growth-retarded mammalian cells.

    PubMed

    Ghosh, Souvik; Bose, Mainak; Ray, Anirban; Bhattacharyya, Suvendra N

    2015-03-15

    MicroRNAs (miRNAs) are tiny posttranscriptional regulators of gene expression in metazoan cells, where activity and abundance of miRNAs are tightly controlled. Regulated turnover of these regulatory RNAs is important to optimize cellular response to external stimuli. We report that the stability of mature miRNAs increases inversely with cell proliferation, and the increased number of microribonucleoproteins (miRNPs) in growth-restricted mammalian cells are in turn associated with polysomes. This heightened association of miRNA with polysomes also elicits reduced degradation of target mRNAs and impaired extracellular export of miRNA via exosomes. Overall polysome sequestration contributes to an increase of cellular miRNA levels but without an increase in miRNA activity. Therefore miRNA activity and turnover can be controlled by subcellular distribution of miRNPs that may get differentially regulated as a function of cell growth in mammalian cells.

  4. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis

    PubMed Central

    2011-01-01

    Background SOX2 is a key gene implicated in maintaining the stemness of embryonic and adult stem cells. SOX2 appears to re-activate in several human cancers including glioblastoma multiforme (GBM), however, the detailed response program of SOX2 in GBM has not yet been defined. Results We show that knockdown of the SOX2 gene in LN229 GBM cells reduces cell proliferation and colony formation. We then comprehensively characterize the SOX2 response program by an integrated analysis using several advanced genomic technologies including ChIP-seq, microarray profiling, and microRNA sequencing. Using ChIP-seq technology, we identified 4883 SOX2 binding regions in the GBM cancer genome. SOX2 binding regions contain the consensus sequence wwTGnwTw that occurred 3931 instances in 2312 SOX2 binding regions. Microarray analysis identified 489 genes whose expression altered in response to SOX2 knockdown. Interesting findings include that SOX2 regulates the expression of SOX family proteins SOX1 and SOX18, and that SOX2 down regulates BEX1 (brain expressed X-linked 1) and BEX2 (brain expressed X-linked 2), two genes with tumor suppressor activity in GBM. Using next generation sequencing, we identified 105 precursor microRNAs (corresponding to 95 mature miRNAs) regulated by SOX2, including down regulation of miR-143, -145, -253-5p and miR-452. We also show that miR-145 and SOX2 form a double negative feedback loop in GBM cells, potentially creating a bistable system in GBM cells. Conclusions We present an integrated dataset of ChIP-seq, expression microarrays and microRNA sequencing representing the SOX2 response program in LN229 GBM cells. The insights gained from our integrated analysis further our understanding of the potential actions of SOX2 in carcinogenesis and serves as a useful resource for the research community. PMID:21211035

  5. The ChArMEx database

    NASA Astrophysics Data System (ADS)

    Ferré, Hélène; Belmahfoud, Nizar; Boichard, Jean-Luc; Brissebrat, Guillaume; Cloché, Sophie; Descloitres, Jacques; Fleury, Laurence; Focsa, Loredana; Henriot, Nicolas; Mière, Arnaud; Ramage, Karim; Vermeulen, Anne; Boulanger, Damien

    2015-04-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The project includes long term monitoring of environmental parameters , intensive field campaigns, use of satellite data and modelling studies. Therefore ChARMEx scientists produce and need to access a wide diversity of data. In this context, the objective of the database task is to organize data management, distribution system and services, such as facilitating the exchange of information and stimulating the collaboration between researchers within the ChArMEx community, and beyond. The database relies on a strong collaboration between ICARE, IPSL and OMP data centers and has been set up in the framework of the Mediterranean Integrated Studies at Regional And Locals Scales (MISTRALS) program data portal. ChArMEx data, either produced or used by the project, are documented and accessible through the database website: http://mistrals.sedoo.fr/ChArMEx. The website offers the usual but user-friendly functionalities: data catalog, user registration procedure, search tool to select and access data... The metadata (data description) are standardized, and comply with international standards (ISO 19115-19139; INSPIRE European Directive; Global Change Master Directory Thesaurus). A Digital Object Identifier (DOI) assignement procedure allows to automatically register the datasets, in order to make them easier to access, cite, reuse and verify. At present, the ChArMEx database contains about 120 datasets, including more than 80 in situ datasets (2012, 2013 and 2014 summer campaigns, background monitoring station of Ersa...), 25 model output sets (dust model intercomparison, MEDCORDEX scenarios...), a high resolution emission inventory over the Mediterranean... Many in situ datasets

  6. Modulation of Host miRNAs by Intracellular Bacterial Pathogens

    PubMed Central

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  7. Diverse functions of miR-373 in cancer.

    PubMed

    Wei, Furong; Cao, Chuanhua; Xu, Xiaoqun; Wang, Junfu

    2015-05-20

    MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression post-transcriptionally. They are involved in almost all cellular processes, and many have been described as potential oncogenes or tumor suppressors. MicroRNA-373 (miR-373), which was first identified as a human embryonic stem cell (ESC)-specific miRNA, is suggested to be implicated in the regulation of cell proliferation, apoptosis, senescence, migration and invasion, as well as DNA damage repair following hypoxia stress. Deregulation of miR-373 has been demonstrated in a number of cancers, whether it acts as an oncogene or a tumor suppressor, however, seems to be context dependent. In this review, we focus on the diverse functions of miR-373 and its implication in cancers.

  8. miR-137: a new player in schizophrenia.

    PubMed

    Yin, Jingwen; Lin, Juda; Luo, Xudong; Chen, Yanyan; Li, Zheng; Ma, Guoda; Li, Keshen

    2014-02-21

    Schizophrenia is a complex genetic disease and characterized by affective, cognitive, neuromorphological, and molecular abnormalities that may have a neurodevelopmental origin. MicroRNAs (miRNAs) are critical to neurodevelopment and adult neuronal processes by modulating the activity of multiple genes within biological networks. MiR-137 as a brain-enriched microRNA, plays important roles in regulating embryonic neural stem cells (NSCs) fate determination, neuronal proliferation and differentiation, and synaptic maturation. Its dysregulation causes changes in the gene expression regulation network of the nervous system, thus inducing mental disorders. Recently, miR-137 has been confirmed as a gene related to schizophrenia susceptibility. In the following review, we summarize the expression pattern, epigenetic regulation and functions of miR-137. A more complete picture of the miR-137, which is dysregulated in psychiatric illness, may improve our understanding of the molecular mechanisms underlying schizophrenia.

  9. miR-200 Regulates Endometrial Development During Early Pregnancy.

    PubMed

    Jimenez, Patricia T; Mainigi, Monica A; Word, R Ann; Kraus, W Lee; Mendelson, Carole R

    2016-09-01

    For successful embryo implantation, endometrial stromal cells must undergo functional and morphological changes, referred to as decidualization. However, the molecular mechanisms that regulate implantation and decidualization are not well defined. Here we demonstrate that the estradiol- and progesterone-regulated microRNA (miR)-200 family was markedly down-regulated in mouse endometrial stromal cells prior to implantation, whereas zinc finger E-box binding homeobox-1 and -2 and other known and predicted targets were up-regulated. Conversely, miR-200 was up-regulated during in vitro decidualization of human endometrial stromal cells. Knockdown of miR-200 negatively affected decidualization and prevented the mesenchymal-epithelial transition-like changes that accompanied decidual differentiation. Notably, superovulation of mice and humans altered miR-200 expression. Our findings suggest that hormonal alterations that accompany superovulation may negatively impact endometrial development and decidualization by causing aberrant miR-200 expression. PMID:27533790

  10. Modulation of Host miRNAs by Intracellular Bacterial Pathogens.

    PubMed

    Das, Kishore; Garnica, Omar; Dhandayuthapani, Subramanian

    2016-01-01

    MicroRNAs (miRNAs) are short non-coding RNAs that regulate the expression of protein coding genes of viruses and eukaryotes at the post-transcriptional level. The eukaryotic genes regulated by miRNAs include those whose products are critical for biological processes such as cell proliferation, metabolic pathways, immune response, and development. It is now increasingly recognized that modulation of miRNAs associated with biological processes is one of the strategies adopted by bacterial pathogens to survive inside host cells. In this review, we present an overview of the recent findings on alterations of miRNAs in the host cells by facultative intracellular bacterial pathogens. In addition, we discuss how the altered miRNAs help in the survival of these pathogens in the intracellular environment. PMID:27536558

  11. Growth inhibitory effects of miR-221 and miR-222 in non-small cell lung cancer cells

    PubMed Central

    Yamashita, Ryo; Sato, Mitsuo; Kakumu, Tomohiko; Hase, Tetsunari; Yogo, Naoyuki; Maruyama, Eiichi; Sekido, Yoshitaka; Kondo, Masashi; Hasegawa, Yoshinori

    2015-01-01

    Both pro- and anti-oncogenic roles of miR-221 and miR-222 microRNAs are reported in several types of human cancers. A previous study suggested their oncogenic role in invasiveness in lung cancer, albeit only one cell line (H460) was used. To further evaluate involvement of miR-221 and miR-222 in lung cancer, we investigated the effects of miR-221 and miR-222 overexpression on six lung cancer cell lines, including H460, as well as one immortalized normal human bronchial epithelial cell line, HBEC4. miR-221 and miR-222 induced epithelial-to-mesenchymal transition (EMT)-like changes in a minority of HBEC4 cells but, unexpectedly, both the microRNAs rather suppressed their invasiveness. Consistent with the prior report, miR-221 and miR-222 promoted growth in H460; however, miR-221 suppressed growth in four other cell lines with no effects in one, and miR-222 suppressed growth in three cell lines but promoted growth in two. These are the first results to show tumor-suppressive effects of miR-221 and miR-222 in lung cancer cells, and we focused on clarifying the mechanisms. Cell cycle and apoptosis analyses revealed that growth suppression by miR-221 and miR-222 occurred through intra-S-phase arrest and/or apoptosis. Finally, lung cancer cell lines transfected with miR-221 or miR-222 became more sensitive to the S-phase targeting drugs, possibly due to an increased S-phase population. In conclusion, our data are the first to show tumor-suppressive effects of miR-221 and miR-222 on lung cancer, warranting testing their potential as therapeutics for the disease. PMID:25641933

  12. Nuclear Hyperfine Structure in the Donor – Acceptor Complexes (CH3)3N-BF3 and (CH)33N-B(CH3)3

    EPA Science Inventory

    The donor-acceptor complexes (CH3)3N-BF3 and (CH3)3N-B(CH3)3 have been reinvestigated at high resolution by rotational spectroscopy in a supersonic jet. Nuclear hyperfine structure resulting from both nitrogen and boron has been resolved and quadrupole coupling constants have bee...

  13. Role for DNA methylation in the regulation of miR-200c and miR-141 expression in normal and cancer cells

    SciTech Connect

    Vrba, Lukas; Jensen, Taylor J.; Garbe, James C.; Heimark, Ronald L.; Cress, Anne E.; Dickinson, Sally; Stampfer, Martha R.; Futscher, Bernard W.

    2009-12-23

    BACKGROUND: The microRNA-200 family participates in the maintenance of an epithelial phenotype and loss of its expression can result in epithelial to mesenchymal transition (EMT). Furthermore, the loss of expression of miR-200 family members is linked to an aggressive cancer phenotype. Regulation of the miR-200 family expression in normal and cancer cells is not fully understood. METHODOLOGY/ PRINCIPAL FINDINGS: Epigenetic mechanisms participate in the control of miR-200c and miR-141 expression in both normal and cancer cells. A CpG island near the predicted mir-200c/mir-141 transcription start site shows a striking correlation between miR-200c and miR-141 expression and DNA methylation in both normal and cancer cells, as determined by MassARRAY technology. The CpG island is unmethylated in human miR-200/miR-141 expressing epithelial cells and in miR-200c/miR-141 positive tumor cells. The CpG island is heavily methylated in human miR-200c/miR-141 negative fibroblasts and miR-200c/miR-141 negative tumor cells. Mouse cells show a similar inverse correlation between DNA methylation and miR-200c expression. Enrichment of permissive histone modifications, H3 acetylation and H3K4 trimethylation, is seen in normal miR-200c/miR-141-positive epithelial cells, as determined by chromatin immunoprecipitation coupled to real-time PCR. In contrast, repressive H3K9 dimethylation marks are present in normal miR-200c/miR-141-negative fibroblasts and miR-200c/miR-141 negative cancer cells and the permissive histone modifications are absent. The epigenetic modifier drug, 5-aza-2'-deoxycytidine, reactivates miR-200c/miR-141 expression showing that epigenetic mechanisms play a functional role in their transcriptional control. CONCLUSIONS/ SIGNIFICANCE: We report that DNA methylation plays a role in the normal cell type-specific expression of miR-200c and miR-141 and this role appears evolutionarily conserved, since similar results were obtained in mouse. Aberrant DNA methylation of the

  14. Therapeutic Implications of Activation of the Host Gene (Dleu2) Promoter for miR-15a/16-1 in Chronic Lymphocytic Leukemia (CLL)

    PubMed Central

    Kasar, S; Underbayev, C; Yuan, Y; Hanlon, M; Aly, S; Chang, V; Batish, M; Gavrilova, T; Badiane, F; Degheidy, H; Marti, G; Raveche, E

    2014-01-01

    Genetic lesions and other regulatory events lead to silencing of the 13q14 locus in a majority of chronic lymphocytic leukemia (CLL) patients. This locus encodes a pair of critical pro-apoptotic microRNAs, miR-15a/16-1. Decreased levels of miR-15a/16-1 are critical for the increased survival exhibited by CLL cells. Similarly, in a de novo murine model of CLL, the NZB strain, germline-encoded regulation of the syntenic region resulted in decreased miR-15a/16-1. In this paper we have identified additional molecular mechanisms regulating miR-15a/16-1 levels and shown that the transcription factor BSAP (B cell Specific Activator Protein) directly interacts with Dleu2, the host gene containing the mir-15a/16-1 loci and via negative regulation of the Dleu2 promoter results in repression of mir-15a/16 expression. CLL patient B cell expression levels of BSAP were increased compared to control sources of B cells. With the use of siRNA mediated repression, the levels of BSAP were decreased in vitro in the NZB derived malignant B1 cell line, LNC, and in ex vivo CLL patient PBMC. BSAP knockdown led to an increase in the expression of miR-15a/16-1 and an increase in apoptosis and a cell cycle arrest in both the cell line and patient PBMC. Moreover, using Dleu2 promoter analysis by chromatin immunoprecipitation (ChIP) assay we have shown that BSAP directly interacts with the Dleu2 promoter. Derepression of the Dleu2 promoter via inhibition of histone deacetylation combined with BSAP knockdown increased miR-15a/16 expression and increased malignant B cell death. In summary, therapy targeting enhanced host gene Dleu2 transcription may augment CLL therapy. PMID:23995789

  15. Epigenetic regulation of miR-21 in colorectal cancer

    PubMed Central

    Ferraro, Angelo; Kontos, Christos K; Boni, Themis; Bantounas, Ioannis; Siakouli, Dimitra; Kosmidou, Vivian; Vlassi, Margarita; Spyridakis, Yannis; Tsipras, Iraklis; Zografos, George; Pintzas, Alexander

    2014-01-01

    Previous studies have uncovered several transcription factors that determine biological alterations in tumor cells to execute the invasion-metastasis cascade, including the epithelial-mesenchymal transition (EMT). We sought to investigate the role of miR-21 in colorectal cancer regulation. For this purpose, miR-21 expression was quantified in a panel of colorectal cancer cell lines and clinical specimens. High expression was found in cell lines with EMT properties and in the vast majority of human tumor specimens. We demonstrate in a cell-specific manner the occupancy of MIR-21 gene promoter by AP-1 and ETS1 transcription factors and, for the first time, the pattern of histone posttranslational modifications necessary for miR-21 overexpression. We also show that Integrin-β4 (ITGβ4), exclusively expressed in polarized epithelial cells, is a novel miR-21 target gene and plays a role in the regulation of EMT, since it is remarkably de-repressed after transient miR-21 silencing and downregulated after miR-21 overexpression. miR-21-dependent change of ITGβ4 expression significantly affects cell migration properties of colon cancer cells. Finally, in a subgroup of tumor specimens, ROC curve analysis performed on quantitative PCR data sets for miR-21, ITGβ4, and PDCD4 shows that the combination of high miR-21 with low ITGβ4 and PDCD4 expression is able to predict presence of metastasis. In conclusion, miR-21 is a key player in oncogenic EMT, its overexpression is controlled by the cooperation of genetic and epigenetic alterations, and its levels, along with ITGβ4 and PDCD4 expression, could be exploited as a prognostic tool for CRC metastasis. PMID:24149370

  16. Circulating miRNA Biomarkers for Alzheimer's Disease

    PubMed Central

    Kumar, Pavan; Dezso, Zoltan; MacKenzie, Crystal; Oestreicher, Judy; Agoulnik, Sergei; Byrne, Michael; Bernier, Francois; Yanagimachi, Mamoru; Aoshima, Ken; Oda, Yoshiya

    2013-01-01

    A minimally invasive diagnostic assay for early detection of Alzheimer's disease (AD) is required to select optimal patient groups in clinical trials, monitor disease progression and response to treatment, and to better plan patient clinical care. Blood is an attractive source for biomarkers due to minimal discomfort to the patient, encouraging greater compliance in clinical trials and frequent testing. MiRNAs belong to the class of non-coding regulatory RNA molecules of ∼22 nt length and are now recognized to regulate ∼60% of all known genes through post-transcriptional gene silencing (RNAi). They have potential as useful biomarkers for clinical use because of their stability and ease of detection in many tissues, especially blood. Circulating profiles of miRNAs have been shown to discriminate different tumor types, indicate staging and progression of the disease and to be useful as prognostic markers. Recently their role in neurodegenerative diseases, both as diagnostic biomarkers as well as explaining basic disease etiology has come into focus. Here we report the discovery and validation of a unique circulating 7-miRNA signature (hsa-let-7d-5p, hsa-let-7g-5p, hsa-miR-15b-5p, hsa-miR-142-3p, hsa-miR-191-5p, hsa-miR-301a-3p and hsa-miR-545-3p) in plasma, which could distinguish AD patients from normal controls (NC) with >95% accuracy (AUC of 0.953). There was a >2 fold difference for all signature miRNAs between the AD and NC samples, with p-values<0.05. Pathway analysis, taking into account enriched target mRNAs for these signature miRNAs was also carried out, suggesting that the disturbance of multiple enzymatic pathways including lipid metabolism could play a role in AD etiology. PMID:23922807

  17. miRNAs in mtDNA-less cell mitochondria

    PubMed Central

    Dasgupta, N; Peng, Y; Tan, Z; Ciraolo, G; Wang, D; Li, R

    2015-01-01

    The novel regulation mechanism in mtDNA-less cells was investigated. Very low mtDNA copy in mtDNA-less 206 ρ° cells was identified. But no 13 mitochondria-specific proteins were translated in 206 ρ° cells. Their mitochondrial respiration complexes V, III and II were 86.5, 29.4 and 49.6% of 143B cells, respectively. Complexes I and IV completely lack in 206 ρ° cells. Non-mitochondrial respiration to generate ATP in 206 ρ° cells was discovered. The expression levels of some mitochondrial RNAs including 12S rRNA, COX1, COX2, COX3, ND4 and ND5 were low. However, ND1, ND3 and Cyto b were not expressed in 206 ρ° cells. Unequal transcription of mitochondrial RNAs indicated the post-transcriptional cleavage and processing mechanisms in the regulation of mitochondrial gene expression in 206 ρ° cells. MicroRNAs (miRNAs) may modulate these mitochondrial RNA expression in these cells. RNA-induced silencing complex indeed within 206 ρ° cell mitochondria indicated miRNAs in 206 ρ° cell mitochondria. miRNA profile in mtDNA-less 206 ρ° cells was studied by next-generation sequencing of small RNAs. Several mitochondria-enriched miRNAs such as miR-181c-5p and miR-146a-5p were identified in 206 ρ° cell mitochondria. miR-181c-5p and miR-146a-5p had 23 and 19 potential targets on mitochondrial RNAs respectively, and these two miRNAs had multiple targets on mitochondria-associated messenger RNAs encoded by nuclear genes. These data provided the first direct evidence that miRNAs were imported into mitochondria and regulated mitochondrial RNA expressions. PMID:27551440

  18. OCDB: a database collecting genes, miRNAs and drugs for obsessive-compulsive disorder

    PubMed Central

    Privitera, Anna P.; Distefano, Rosario; Wefer, Hugo A.; Ferro, Alfredo; Pulvirenti, Alfredo; Giugno, Rosalba

    2015-01-01

    Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive and unwilling thoughts (obsessions) giving rise to anxiety. The patients feel obliged to perform a behavior (compulsions) induced by the obsessions. The World Health Organization ranks OCD as one of the 10 most disabling medical conditions. In the class of Anxiety Disorders, OCD is a pathology that shows an hereditary component. Consequently, an online resource collecting and integrating scientific discoveries and genetic evidence about OCD would be helpful to improve the current knowledge on this disorder. We have developed a manually curated database, OCD Database (OCDB), collecting the relations between candidate genes in OCD, microRNAs (miRNAs) involved in the pathophysiology of OCD and drugs used in its treatments. We have screened articles from PubMed and MEDLINE. For each gene, the bibliographic references with a brief description of the gene and the experimental conditions are shown. The database also lists the polymorphisms within genes and its chromosomal regions. OCDB data is enriched with both validated and predicted miRNA-target and drug-target information. The transcription factors regulations, which are also included, are taken from David and TransmiR. Moreover, a scoring function ranks the relevance of data in the OCDB context. The database is also integrated with the main online resources (PubMed, Entrez-gene, HGNC, dbSNP, DrugBank, miRBase, PubChem, Kegg, Disease-ontology and ChEBI). The web interface has been developed using phpMyAdmin and Bootstrap software. This allows (i) to browse data by category and (ii) to navigate in the database by searching genes, miRNAs, drugs, SNPs, regions, drug targets and articles. The data can be exported in textual format as well as the whole database in.sql or tabular format. OCDB is an essential resource to support genome-wide analysis, genetic and pharmacological studies. It also facilitates the evaluation of genetic data

  19. OCDB: a database collecting genes, miRNAs and drugs for obsessive-compulsive disorder.

    PubMed

    Privitera, Anna P; Distefano, Rosario; Wefer, Hugo A; Ferro, Alfredo; Pulvirenti, Alfredo; Giugno, Rosalba

    2015-01-01

    Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive and unwilling thoughts (obsessions) giving rise to anxiety. The patients feel obliged to perform a behavior (compulsions) induced by the obsessions. The World Health Organization ranks OCD as one of the 10 most disabling medical conditions. In the class of Anxiety Disorders, OCD is a pathology that shows an hereditary component. Consequently, an online resource collecting and integrating scientific discoveries and genetic evidence about OCD would be helpful to improve the current knowledge on this disorder. We have developed a manually curated database, OCD Database (OCDB), collecting the relations between candidate genes in OCD, microRNAs (miRNAs) involved in the pathophysiology of OCD and drugs used in its treatments. We have screened articles from PubMed and MEDLINE. For each gene, the bibliographic references with a brief description of the gene and the experimental conditions are shown. The database also lists the polymorphisms within genes and its chromosomal regions. OCDB data is enriched with both validated and predicted miRNA-target and drug-target information. The transcription factors regulations, which are also included, are taken from David and TransmiR. Moreover, a scoring function ranks the relevance of data in the OCDB context. The database is also integrated with the main online resources (PubMed, Entrez-gene, HGNC, dbSNP, DrugBank, miRBase, PubChem, Kegg, Disease-ontology and ChEBI). The web interface has been developed using phpMyAdmin and Bootstrap software. This allows (i) to browse data by category and (ii) to navigate in the database by searching genes, miRNAs, drugs, SNPs, regions, drug targets and articles. The data can be exported in textual format as well as the whole database in.sql or tabular format. OCDB is an essential resource to support genome-wide analysis, genetic and pharmacological studies. It also facilitates the evaluation of genetic data

  20. OCDB: a database collecting genes, miRNAs and drugs for obsessive-compulsive disorder.

    PubMed

    Privitera, Anna P; Distefano, Rosario; Wefer, Hugo A; Ferro, Alfredo; Pulvirenti, Alfredo; Giugno, Rosalba

    2015-01-01

    Obsessive-compulsive disorder (OCD) is a psychiatric condition characterized by intrusive and unwilling thoughts (obsessions) giving rise to anxiety. The patients feel obliged to perform a behavior (compulsions) induced by the obsessions. The World Health Organization ranks OCD as one of the 10 most disabling medical conditions. In the class of Anxiety Disorders, OCD is a pathology that shows an hereditary component. Consequently, an online resource collecting and integrating scientific discoveries and genetic evidence about OCD would be helpful to improve the current knowledge on this disorder. We have developed a manually curated database, OCD Database (OCDB), collecting the relations between candidate genes in OCD, microRNAs (miRNAs) involved in the pathophysiology of OCD and drugs used in its treatments. We have screened articles from PubMed and MEDLINE. For each gene, the bibliographic references with a brief description of the gene and the experimental conditions are shown. The database also lists the polymorphisms within genes and its chromosomal regions. OCDB data is enriched with both validated and predicted miRNA-target and drug-target information. The transcription factors regulations, which are also included, are taken from David and TransmiR. Moreover, a scoring function ranks the relevance of data in the OCDB context. The database is also integrated with the main online resources (PubMed, Entrez-gene, HGNC, dbSNP, DrugBank, miRBase, PubChem, Kegg, Disease-ontology and ChEBI). The web interface has been developed using phpMyAdmin and Bootstrap software. This allows (i) to browse data by category and (ii) to navigate in the database by searching genes, miRNAs, drugs, SNPs, regions, drug targets and articles. The data can be exported in textual format as well as the whole database in.sql or tabular format. OCDB is an essential resource to support genome-wide analysis, genetic and pharmacological studies. It also facilitates the evaluation of genetic data

  1. miRVaS: a tool to predict the impact of genetic variants on miRNAs

    PubMed Central

    Cammaerts, Sophia; Strazisar, Mojca; Dierckx, Jenne; Del Favero, Jurgen; De Rijk, Peter

    2016-01-01

    Genetic variants in or near miRNA genes can have profound effects on miRNA expression and targeting. As user-friendly software for the impact prediction of miRNA variants on a large scale is still lacking, we created a tool called miRVaS. miRVaS automates this prediction by annotating the location of the variant relative to functional regions within the miRNA hairpin (seed, mature, loop, hairpin arm, flanks) and by annotating all predicted structural changes within the miRNA due to the variant. In addition, the tool defines the most important region that is predicted to have structural changes and calculates a conservation score that is indicative of the reliability of the structure prediction. The output is presented in a tab-separated file, which enables fast screening, and in an html file, which allows visual comparison between wild-type and variant structures. All separate images are provided for downstream use. Finally, we tested two different approaches on a small test set of published functionally validated genetic variants for their capacity to predict the impact of variants on miRNA expression. PMID:26384425

  2. 75 FR 16067 - Designation for the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-31

    ... Register (74 FR 45803), GIPSA requested applications for designation to provide official services in the... Grain Inspection, Packers and Stockyards Administration Designation for the Champaign, IL; Emmett, MI; Davenport, IA; Enid, OK; Keokuk, IA; Marshall, MI; and Omaha, NE Areas AGENCY: Grain Inspection, Packers...

  3. Plasma miR-19b and miR-183 as Potential Biomarkers of Lung Cancer

    PubMed Central

    Skvortsova, Tatyana E.; Ponomaryova, Anastasia A.; Rykova, Elena Yu; Cherdyntseva, Nadezhda V.; Polovnikov, Evgeny S.; Pashkovskaya, Oksana A.; Pokushalov, Evgeny A.; Vlassov, Valentin V.; Laktionov, Pavel P.

    2016-01-01

    Lung cancer is a complex disease that often manifests at the point when treatment is not effective. Introduction of blood-based complementary diagnostics using molecular markers may enhance early detection of this disease and help reduce the burden of lung cancer. Here we evaluated the diagnostic potential of seven plasma miRNA biomarkers (miR-21, -19b, -126, -25, -205, -183, -125b) by quantitative reverse transcription PCR. Influence clinical and demographical characteristics, including age, tumor stage and cancer subtype on miRNA levels was investigated. Four miRNAs were significantly dysregulated (miR-19b, -21, -25, -183) in lung cancer patients. Combination of miR-19b and miR-183 provided detection of lung cancer with 94.7% sensitivity and 95.2% specificity (AUC = 0.990). Thus, miRNAs have shown the potential to discriminate histological subtypes of lung cancer and reliably distinguish lung cancer patients from healthy individuals. PMID:27768748

  4. Regulation of serum response factor by miRNA-200 and miRNA-9 modulates oligodendrocyte progenitor cell differentiation

    PubMed Central

    Buller, Benjamin; Chopp, Michael; Ueno, Yuji; Zhang, Li; Zhang, Rui Lan; Morris, Daniel; Zhang, Yi; Zhang, Zheng Gang

    2012-01-01

    Serum response factor (SRF) is a transcription factor that transactivates actin associated genes, and has been implicated in oligodendrocyte (OL) differentiation. To date, it has not been investigated in cerebral ischemia. We investigated the dynamics of SRF expression after stroke in vivo and the role of SRF in oligodendrocyte differentiation in vitro. Using immunohistochemistry, we found that SRF was upregulated in OLs and OL precursor cells (OPCs) after stroke. Moreover, upregulation of SRF was concurrent with downregulation of the microRNAs (miRNAs) miR-9 and the miR-200 family in the ischemic white matter region, the corpus callosum. Inhibition of SRF activation by CCG-1423, a specific inhibitor of SRF function, blocked OPCs from differentiating into OLs. Over-expression of miR-9 and miR-200 in cultured OPCs suppressed SRF expression and inhibited OPC differentiation. Moreover, co-expression of miR-9 and miR-200 attenuated activity of a luciferase reporter assay containing the Srf 3′ untranslated region (UTR). Collectively, this study is the first to show that stroke upregulates SRF expression in OPCs and OLs, and that SRF levels are mediated by miRNAs and regulate OPC differentiation. PMID:22907787

  5. Phytoalexins, miRNAs and breast cancer: a review of phytochemical mediated miRNA regulation in breast cancer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A specific class of endogenous, non-coding RNAs, classified as microRNAs (miRNAs), has been identified. It has been found that miRNAs are associated with many biological processes and disease states, including all stages of cancer from initiation to tumor promotion and progression. These studies d...

  6. MiR-15a and miR-16-1 cluster functions in human leukemia

    PubMed Central

    Calin, George A.; Cimmino, Amelia; Fabbri, Muller; Ferracin, Manuela; Wojcik, Sylwia E.; Shimizu, Masayoshi; Taccioli, Cristian; Zanesi, Nicola; Garzon, Ramiro; Aqeilan, Rami I.; Alder, Hansjuerg; Volinia, Stefano; Rassenti, Laura; Liu, Xiuping; Liu, Chang-gong; Kipps, Thomas J.; Negrini, Massimo; Croce, Carlo M.

    2008-01-01

    MicroRNAs (miRNAs) are short noncoding RNAs regulating gene expression that play roles in human diseases, including cancer. Each miRNA is predicted to regulate hundreds of transcripts, but only few have experimental validation. In chronic lymphocytic leukemia (CLL), the most common adult human leukemia, miR-15a and miR-16-1 are lost or down-regulated in the majority of cases. After our previous work indicating a tumor suppressor function of miR-15a/16-1 by targeting the BCL2 oncogene, here, we produced a high-throughput profiling of genes modulated by miR-15a/16-1 in a leukemic cell line model (MEG-01) and in primary CLL samples. By combining experimental and bioinformatics data, we identified a miR-15a/16-1-gene signature in leukemic cells. Among the components of the miR-15a/16-1 signature, we observed a statistically significant enrichment in AU-rich elements (AREs). By examining the Gene Ontology (GO) database, a significant enrichment in cancer genes (such as MCL1, BCL2, ETS1, or JUN) that directly or indirectly affect apoptosis and cell cycle was found. PMID:18362358

  7. An update of miRNASNP database for better SNP selection by GWAS data, miRNA expression and online tools.

    PubMed

    Gong, Jing; Liu, Chunjie; Liu, Wei; Wu, Yuliang; Ma, Zhaowu; Chen, Hu; Guo, An-Yuan

    2015-01-01

    MicroRNAs (miRNAs) are key regulators of gene expression involved in a broad range of biological processes. MiRNASNP aims to provide single nucleotide polymorphisms (SNPs) in miRNAs and genes that may impact miRNA biogenesis and/or miRNA target binding. Advanced miRNA research provided abundant data about miRNA expression, validated targets and related phenotypic variants. In miRNASNP v2.0, we have updated our previous database with several new data and features, including: (i) expression level and expression correlation of miRNAs and target genes in different tissues, (ii) linking SNPs to the results of genome-wide association studies, (iii) integrating experimentally validated miRNA:mRNA interactions, (iv) adding multiple filters to prioritize functional SNPs. In addition, as a supplement of the database, we have set up three flexible online tools to analyse the influence of novel variants on miRNA:mRNA binding. A new nice web interface was designed for miRNASNP v2.0 allowing users to browse, search and download. We aim to maintain the miRNASNP as a solid resource for function, genetics and disease studies of miRNA-related SNPs. Database URL: http://bioinfo.life. hust.edu.cn/miRNASNP2/

  8. Integrated Analysis Reveals together miR-182, miR-200c and miR-221 Can Help in the Diagnosis of Prostate Cancer

    PubMed Central

    Qin, Xia; Chen, Panyu; Zou, Yi ming; Hu, Yanling

    2015-01-01

    Research has shown that microRNAs are promising biomarkers that can be used to promote a more accurate diagnosis of cancer. In this study, we developed an integrated multi-step selection process to analyze available high-throughput datasets to obtain information on microRNAs as cancer biomarkers. Applying this approach to the microRNA expression profiles of prostate cancer and the datasets in The Cancer Genome Atlas Data Portal, we identified miRNA-182, miRNA-200c and miRNA-221 as possible biomarkers for prostate cancer. The associations between the expressions of these three microRNAs with clinical parameters as well as their diagnostic capability were studied. Several online databases were used to predict the target genes of these three microRNAs, and the results were confirmed by significant statistical correlations. Comparing with the other 18 types of cancers listed in The Cancer Genome Atlas Data Portal, we found that the combination of both miRNA-182 and miRNA-200c being up-regulated and miRNA-221 being down-regulated only happens in prostate cancer. This provides a unique biological characteristic for prostate cancer that can potentially be used for diagnosis based on tissue testing. In addition, our study also revealed that these three microRNAs are associated with the pathological status of prostate cancer. PMID:26484677

  9. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b.

    PubMed

    Vergani, Elisabetta; Di Guardo, Lorenza; Dugo, Matteo; Rigoletto, Sara; Tragni, Gabrina; Ruggeri, Roberta; Perrone, Federica; Tamborini, Elena; Gloghini, Annunziata; Arienti, Flavio; Vergani, Barbara; Deho, Paola; De Cecco, Loris; Vallacchi, Viviana; Frati, Paola; Shahaj, Eriomina; Villa, Antonello; Santinami, Mario; De Braud, Filippo; Rivoltini, Licia; Rodolfo, Monica

    2016-01-26

    In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels.Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma. PMID:26684239

  10. Overcoming melanoma resistance to vemurafenib by targeting CCL2-induced miR-34a, miR-100 and miR-125b

    PubMed Central

    Rigoletto, Sara; Tragni, Gabrina; Ruggeri, Roberta; Perrone, Federica; Tamborini, Elena; Gloghini, Annunziata; Arienti, Flavio; Vergani, Barbara; Deho, Paola; De Cecco, Loris; Vallacchi, Viviana; Frati, Paola; Shahaj, Eriomina; Villa, Antonello; Santinami, Mario; De Braud, Filippo; Rivoltini, Licia; Rodolfo, Monica

    2016-01-01

    In melanoma, the adaptative cell response to BRAF inhibitors includes altered patterns of cytokine production contributing to tumor progression and drug resistance. Among the factors produced by PLX4032-resistant melanoma cell lines, CCL2 was higher compared to the sensitive parental cell lines and increased upon drug treatment. CCL2 acted as an autocrine growth factor for melanoma cells, stimulating the proliferation and resistance to apoptosis. In patients, CCL2 is detected in melanoma cells in tumors and in plasma at levels that correlate with tumor burden and lactate dehydrogenase. Vemurafenib treatment increased the CCL2 levels in plasma, whereas the long-term clinical response was associated with low CCL2 levels. Increased CCL2 production was associated with miRNA deregulation in the resistant cells. miR-34a, miR-100 and miR-125b showed high expression in both resistant cells and in tumor biopsies that were obtained from treated patients, and they were involved in the control of cell proliferation and apoptosis. Inhibition of CCL2 and of the selected miRNAs restored both the cell apoptosis and the drug efficacy in resistant melanoma cells. Therefore, CCL2 and miRNAs are potential prognostic factors and attractive targets for counteracting treatment resistance in metastatic melanoma. PMID:26684239

  11. miR-93/miR-106b/miR-375-CIC-CRABP1: a novel regulatory axis in prostate cancer progression

    PubMed Central

    Choi, Nahyun; Park, Jongmin; Lee, Jeon-Soo; Yoe, Jeehyun; Park, Guk Yeol; Kim, Eunjeong; Jeon, Hyeongrin; Cho, Yong Mee; Roh, Tae-Young; Lee, Yoontae

    2015-01-01

    Capicua (CIC) has been implicated in pathogenesis of spinocerebellar ataxia type-1 (SCA1) neurodegenerative disease and some types of cancer; however, the role of CIC in prostate cancer remains unknown. Here we show that CIC suppresses prostate cancer progression. CIC expression was markedly decreased in human prostatic carcinoma. CIC overexpression suppressed prostate cancer cell proliferation, invasion, and migration, whereas CIC RNAi exerted opposite effects. We found that knock-down of CIC derepresses expression of ETV5 and CRABP1 in LNCaP and PC-3 cells, respectively, thereby promoting cell proliferation and invasion. We also discovered that miR-93, miR-106b, and miR-375, which are known to be frequently overexpressed in prostate cancer patients, cooperatively down-regulate CIC levels to promote cancer progression. Altogether, we suggest miR-93/miR-106b/miR-375-CIC-CRABP1 as a novel key regulatory axis in prostate cancer progression. PMID:26124181

  12. miRNA and miRNA target genes in copy number variations occurring in individuals with intellectual disability

    PubMed Central

    2013-01-01

    Background MicroRNAs (miRNAs) are a family of short, non-coding RNAs modulating expression of human protein coding genes (miRNA target genes). Their dysfunction is associated with many human diseases, including neurodevelopmental disorders. It has been recently shown that genomic copy number variations (CNVs) can cause aberrant expression of integral miRNAs and their target genes, and contribute to intellectual disability (ID). Results To better understand the CNV-miRNA relationship in ID, we investigated the prevalence and function of miRNAs and miRNA target genes in five groups of CNVs. Three groups of CNVs were from 213 probands with ID (24 de novo CNVs, 46 familial and 216 common CNVs), one group of CNVs was from a cohort of 32 cognitively normal subjects (67 CNVs) and one group of CNVs represented 40 ID related syndromic regions listed in DECIPHER (30 CNVs) which served as positive controls for CNVs causing or predisposing to ID. Our results show that 1). The number of miRNAs is significantly higher in de novo or DECIPHER CNVs than in familial or common CNV subgroups (P < 0.01). 2). miRNAs with brain related functions are more prevalent in de novo CNV groups compared to common CNV groups. 3). More miRNA target genes are found in de novo, familial and DECIPHER CNVs than in the common CNV subgroup (P < 0.05). 4). The MAPK signaling cascade is found to be enriched among the miRNA target genes from de novo and DECIPHER CNV subgroups. Conclusions Our findings reveal an increase in miRNA and miRNA target gene content in de novo versus common CNVs in subjects with ID. Their expression profile and participation in pathways support a possible role of miRNA copy number change in cognition and/or CNV-mediated developmental delay. Systematic analysis of expression/function of miRNAs in addition to coding genes integral to CNVs could uncover new causes of ID. PMID:23937676

  13. Common miR-590 Variant rs6971711 Present Only in African Americans Reduces miR-590 Biogenesis

    PubMed Central

    Steinberg, Steven; Kandasamy, Suresh K.; Afzal, Junaid; Mbiyangandu, Blaid; Liao, Susan E.; Guan, Yufan; Corona-Villalobos, Celia P.; Matkovich, Scot J.; Epstein, Neal; Tripodi, Dotti; Huo, Zhaoxia; Cutting, Garry; Abraham, Theodore P.; Abraham, M. Roselle

    2016-01-01

    MicroRNAs (miRNAs) are recognized as important regulators of cardiac development, hypertrophy and fibrosis. Recent studies have demonstrated that genetic variations which cause alterations in miRNA:target interactions can lead to disease. We hypothesized that genetic variations in miRNAs that regulate cardiac hypertrophy/fibrosis might be involved in generation of the cardiac phenotype in patients diagnosed with hypertrophic cardiomyopathy (HCM). To investigate this question, we Sanger sequenced 18 miRNA genes previously implicated in myocyte hypertrophy/fibrosis and apoptosis, using genomic DNA isolated from the leukocytes of 199 HCM patients. We identified a single nucleotide polymorphism (rs6971711, C57T SNP) at the 17th position of mature miR-590-3p (= 57th position of pre-miR-590) that is common in individuals of African ancestry. SNP frequency was higher in African American HCM patients (n = 55) than ethnically-matched controls (n = 100), but the difference was not statistically significant (8.2% vs. 6.5%; p = 0.5). Using a cell culture system, we discovered that presence of this SNP resulted in markedly lower levels of mature miR-590-5p (39 ± 16%, p<0.003) and miR-590-3p (20 ± 2%, p<0.003), when compared with wild-type (WT) miR-590, without affecting levels of pri-miR-590 and pre-miR-590. Consistent with this finding, the SNP resulted in reduced target suppression when compared to WT miR-590 (71% suppression by WT vs 60% suppression by SNP, p<0.03). Since miR-590 can regulate TGF-β, Activin A and Akt signaling, SNP-induced reduction in miR-590 biogenesis could influence cardiac phenotype by de-repression of these signaling pathways. Since the SNP is only present in African Americans, population studies in this patient population would be valuable to investigate effects of this SNP on myocyte function and cardiac physiology. PMID:27196440

  14. miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease.

    PubMed

    Auguet, Teresa; Aragonès, Gemma; Berlanga, Alba; Guiu-Jurado, Esther; Martí, Andreu; Martínez, Salomé; Sabench, Fàtima; Hernández, Mercé; Aguilar, Carmen; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2016-01-01

    Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese women with NAFLD. We measured miR122 and miR33a/b* expression in liver samples from 62 morbidly obese (MO), 30 moderately obese (ModO), and eight normal-weight controls. MiR122 and miR33a/b* expression was analyzed by qRT-PCR. Additionally, miR122 and miR33b* circulating levels were analyzed in 122 women. Hepatic miR33b* expression was increased in MO compared to ModO and controls, whereas miR122 expression was decreased in the MO group compared to ModO. In obese cohorts, miR33b* expression was increased in nonalcoholic steatohepatitis (NASH). Regarding circulating levels, MO patients with NASH showed higher miR122 levels than MO with simple steatosis (SS). These circulating levels are good predictors of histological features associated with disease severity. MO is associated with altered hepatic miRNA expression. In obese women, higher miR33b* liver expression is associated with NASH. Moreover, multiple correlations between miRNAs and the expression of genes related to lipid metabolism were found, that would suggest a miRNA-host gene circuit. Finally, miR122 circulating levels could be included in a panel of different biomarkers to improve accuracy in the non-invasive diagnosis of NASH. PMID:27669236

  15. The Poly-cistronic miR-23-27-24 Complexes Target Endothelial Cell Junctions: Differential Functional and Molecular Effects of miR-23a and miR-23b

    PubMed Central

    Li, Jia; Zhao, Yang; Lu, Ying; Ritchie, William; Grau, Georges; Vadas, Mathew A; Gamble, Jennifer R

    2016-01-01

    The regulation of function of endothelial cell–cell junctions is fundamental in sustaining vascular integrity. The polycistronic microRNA (miR) complexes containing miR-23a-27a-24-2, and 23b-27b-24-1 are predicted to target the majority of major endothelial junctional proteins. We focus on miR-23a and miR-23b, and investigate the functional effects of these miRs on junctions. While miR-23a and 23b only differ by 1 nucleotide (g19) outside the seed region and thus are predicted to have the same targets, they function differently with miR-23a inhibiting permeability and miR-23b inhibiting angiogenesis. Both miRs target the junctional attractive molecule (tight junction protein 2) ZO-2 and the repulsive molecule junctional adhesion molecule C (JAM-C), although the inhibition of JAM-C by miR-23a is more profound than by miR-23b. The difference in potency is attributable to differences at g19 since a mutation of the t17, the g19 binding site of miR-23b in the 3′UTR of JAM-C restores identity. We also show that the pattern of expression of miR-23a and miR-23b and their targets are different. Thus, the paralogues miR-23a and miR-23b can have profoundly different effects on endothelial cell function due at least partially to selective effects on target proteins and differences in expression patterns of the miRs. This work exposes a hitherto unappreciated complexity in therapeutically targeting miRs. PMID:27741223

  16. miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Auguet, Teresa; Aragonès, Gemma; Berlanga, Alba; Guiu-Jurado, Esther; Martí, Andreu; Martínez, Salomé; Sabench, Fàtima; Hernández, Mercé; Aguilar, Carmen; Sirvent, Joan Josep; del Castillo, Daniel; Richart, Cristóbal

    2016-01-01

    Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese women with NAFLD. We measured miR122 and miR33a/b* expression in liver samples from 62 morbidly obese (MO), 30 moderately obese (ModO), and eight normal-weight controls. MiR122 and miR33a/b* expression was analyzed by qRT-PCR. Additionally, miR122 and miR33b* circulating levels were analyzed in 122 women. Hepatic miR33b* expression was increased in MO compared to ModO and controls, whereas miR122 expression was decreased in the MO group compared to ModO. In obese cohorts, miR33b* expression was increased in nonalcoholic steatohepatitis (NASH). Regarding circulating levels, MO patients with NASH showed higher miR122 levels than MO with simple steatosis (SS). These circulating levels are good predictors of histological features associated with disease severity. MO is associated with altered hepatic miRNA expression. In obese women, higher miR33b* liver expression is associated with NASH. Moreover, multiple correlations between miRNAs and the expression of genes related to lipid metabolism were found, that would suggest a miRNA-host gene circuit. Finally, miR122 circulating levels could be included in a panel of different biomarkers to improve accuracy in the non-invasive diagnosis of NASH. PMID:27669236

  17. miR33a/miR33b* and miR122 as Possible Contributors to Hepatic Lipid Metabolism in Obese Women with Nonalcoholic Fatty Liver Disease.

    PubMed

    Auguet, Teresa; Aragonès, Gemma; Berlanga, Alba; Guiu-Jurado, Esther; Martí, Andreu; Martínez, Salomé; Sabench, Fàtima; Hernández, Mercé; Aguilar, Carmen; Sirvent, Joan Josep; Del Castillo, Daniel; Richart, Cristóbal

    2016-01-01

    Specific miRNA expression profiles have been shown to be associated with nonalcoholic fatty liver disease (NAFLD). We examined the correlation between the circulating levels and hepatic expression of miR122 and miR33a/b*, the key lipid metabolism-related gene expression and the clinicopathological factors of obese women with NAFLD. We measured miR122 and miR33a/b* expression in liver samples from 62 morbidly obese (MO), 30 moderately obese (ModO), and eight normal-weight controls. MiR122 and miR33a/b* expression was analyzed by qRT-PCR. Additionally, miR122 and miR33b* circulating levels were analyzed in 122 women. Hepatic miR33b* expression was increased in MO compared to ModO and controls, whereas miR122 expression was decreased in the MO group compared to ModO. In obese cohorts, miR33b* expression was increased in nonalcoholic steatohepatitis (NASH). Regarding circulating levels, MO patients with NASH showed higher miR122 levels than MO with simple steatosis (SS). These circulating levels are good predictors of histological features associated with disease severity. MO is associated with altered hepatic miRNA expression. In obese women, higher miR33b* liver expression is associated with NASH. Moreover, multiple correlations between miRNAs and the expression of genes related to lipid metabolism were found, that would suggest a miRNA-host gene circuit. Finally, miR122 circulating levels could be included in a panel of different biomarkers to improve accuracy in the non-invasive diagnosis of NASH.

  18. The Poly-cistronic miR-23-27-24 Complexes Target Endothelial Cell Junctions: Differential Functional and Molecular Effects of miR-23a and miR-23b

    PubMed Central

    Li, Jia; Zhao, Yang; Lu, Ying; Ritchie, William; Grau, Georges; Vadas, Mathew A; Gamble, Jennifer R

    2016-01-01

    The regulation of function of endothelial cell–cell junctions is fundamental in sustaining vascular integrity. The polycistronic microRNA (miR) complexes containing miR-23a-27a-24-2, and 23b-27b-24-1 are predicted to target the majority of major endothelial junctional proteins. We focus on miR-23a and miR-23b, and investigate the functional effects of these miRs on junctions. While miR-23a and 23b only differ by 1 nucleotide (g19) outside the seed region and thus are predicted to have the same targets, they function differently with miR-23a inhibiting permeability and miR-23b inhibiting angiogenesis. Both miRs target the junctional attractive molecule (tight junction protein 2) ZO-2 and the repulsive molecule junctional adhesion molecule C (JAM-C), although the inhibition of JAM-C by miR-23a is more profound than by miR-23b. The difference in potency is attributable to differences at g19 since a mutation of the t17, the g19 binding site of miR-23b in the 3′UTR of JAM-C restores identity. We also show that the pattern of expression of miR-23a and miR-23b and their targets are different. Thus, the paralogues miR-23a and miR-23b can have profoundly different effects on endothelial cell function due at least partially to selective effects on target proteins and differences in expression patterns of the miRs. This work exposes a hitherto unappreciated complexity in therapeutically targeting miRs.

  19. Spatial distribution of CH3 and CH2 radicals in a methane rf discharge

    NASA Astrophysics Data System (ADS)

    Sugai, H.; Kojima, H.; Ishida, A.; Toyoda, H.

    1990-06-01

    Spatial distributions of neutral radicals CH3 and CH2 in a capacitively coupled rf glow discharge of methane were measured by threshold ionization mass spectrometry. A strong asymmetry of the density profile was found for the CH2 radical in the high-pressure (˜100 mTorr) discharge. In addition, comprehensive measurements of electron energy distribution, ionic composition, and radical sticking coefficient were made to use as inputs to theoretical modeling of radicals in the methane plasma. The model predictions agree substantially with the measured radical distributions.

  20. CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems

    NASA Astrophysics Data System (ADS)

    Zenone, T.

    2012-04-01

    CO2 CH4 and N20 fluxes during land conversion in early bioenergy systems Terenzio Zenone1-2, Jiquan Chen1-2, Ilya Gelfand3-4, G. Philip Robertson3-4 1 Department of Environmental Sciences, University of Toledo, Toledo, OH USA 2 Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI USA 3 W.K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI USA 4Department of Crop and Soil Sciences, Michigan State University, East Lansing, MI USA Environmental sustainability of bioenergy crop cultivation represents an important challenge and is a topic of intensive scientific and political debate worldwide due to increasing societal needs for renewable energy. Despite the increasing knowledge related to potential bioenergy systems, the effect of land use change (LUC) on GHG fluxes during the conversion remains poorly understood but is likely to be substantial. In order to tackle this issue the Great lake Bioenergy Research Center (GLBRC) of the US Department of Energy (DOE) has established a field experiment and deployed a cluster of eddy-covariance towers to quantify the magnitude and changes of ecosystem carbon assimilation, loss, and balance during the conversion and establishment years in a permanent prairie and four types of candidate biofuel systems [Conservation Reserve Program (CRP) grassland, switchgrass, mixed-species restored prairie and corn]. Six sites were converted to soybean in 2009 before establishing the bioenergy systems in 2010 while one site was kept grassland as reference. Soil N2O and CH4 fluxes were measured biweekly with static chambers in four replicate locations in each fields, within the footprint of the eddy covariance tower using static chamber GHG flux protocols of the KBS LTER site. Our field observations, made between January 2009 through December 2010, showed that conversion of CRP to soybean induced net C emissions during the conversion year that ranging from 288 g C m-2, to 173 g C m-2 . while

  1. CH in stellar atmospheres: an extensive linelist

    NASA Astrophysics Data System (ADS)

    Masseron, T.; Plez, B.; Van Eck, S.; Colin, R.; Daoutidis, I.; Godefroid, M.; Coheur, P.-F.; Bernath, P.; Jorissen, A.; Christlieb, N.

    2014-11-01

    The advent of high-resolution spectrographs and detailed stellar atmosphere modelling has strengthened the need for accurate molecular data. Carbon-enhanced metal-poor (CEMP) stars spectra are interesting objects with which to study transitions from the CH molecule. We combine programs for spectral analysis of molecules and stellar-radiative transfer codes to build an extensive CH linelist, including predissociation broadening as well as newly identified levels. We show examples of strong predissociation CH lines in CEMP stars, and we stress the important role played by the CH features in the Bond-Neff feature depressing the spectra of barium stars by as much as 0.2 mag in the λ = 3000-5500 Å range. Because of the extreme thermodynamic conditions prevailing in stellar atmospheres (compared to the laboratory), molecular transitions with high energy levels can be observed. Stellar spectra can thus be used to constrain and improve molecular data. Full Table 14 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/571/A47

  2. Ab Initio Chemical Kinetics for the CH3 + O((3)P) Reaction and Related Isomerization-Decomposition of CH3O and CH2OH Radicals.

    PubMed

    Xu, Z F; Raghunath, P; Lin, M C

    2015-07-16

    The kinetics and mechanism of the CH3 + O reaction and related isomerization-decomposition of CH3O and CH2OH radicals have been studied by ab initio molecular orbital theory based on the CCSD(T)/aug-cc-pVTZ//CCSD/aug-cc-pVTZ, CCSD/aug-cc-pVDZ, and G2M//B3LYP/6-311+G(3df,2p) levels of theory. The predicted potential energy surface of the CH3 + O reaction shows that the CHO + H2 products can be directly generated from CH3O by the TS3 → LM1 → TS7 → LM2 → TS4 path, in which both LM1 and LM2 are very loose and TS7 is roaming-like. The result for the CH2O + H reaction shows that there are three low-energy barrier processes including CH2O + H → CHO + H2 via H-abstraction and CH2O + H → CH2OH and CH2O + H → CH3O by addition reactions. The predicted enthalpies of formation of the CH2OH and CH3O radicals at 0 K are in good agreement with available experimental data. Furthermore, the rate constants for the forward and some key reverse reactions have been predicted at 200-3000 K under various pressures. Based on the new reaction pathway for CH3 + O, the rate constants for the CH2O + H and CHO + H2 reactions were predicted with the microcanonical variational transition-state/Rice-Ramsperger-Kassel-Marcus (VTST/RRKM) theory. The predicted total and individual product branching ratios (i.e., CO versus CH2O) are in good agreement with experimental data. The rate constant for the hydrogen abstraction reaction of CH2O + H has been calculated by the canonical variational transition-state theory with quantum tunneling and small-curvature corrections to be k(CH2O + H → CHO + H2) = 2.28 × 10(-19) T(2.65) exp(-766.5/T) cm(3) molecule(-1) s(-1) for the 200-3000 K temperature range. The rate constants for the addition giving CH3O and CH2OH and the decomposition of the two radicals have been calculated by the microcanonical RRKM theory with the time-dependent master equation solution of the multiple quantum well system in the 200-3000 K temperature range at 1 Torr to

  3. TP53 regulates miRNA association with AGO2 to remodel the miRNA–mRNA interaction network

    PubMed Central

    Krell, Jonathan; Stebbing, Justin; Carissimi, Claudia; Dabrowska, Aleksandra F.; de Giorgio, Alexander; Frampton, Adam E.; Harding, Victoria; Fulci, Valerio; Macino, Giuseppe; Colombo, Teresa; Castellano, Leandro

    2016-01-01

    DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage–induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA–mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2–miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis. PMID:26701625

  4. TP53 regulates miRNA association with AGO2 to remodel the miRNA-mRNA interaction network.

    PubMed

    Krell, Jonathan; Stebbing, Justin; Carissimi, Claudia; Dabrowska, Aleksandra F; de Giorgio, Alexander; Frampton, Adam E; Harding, Victoria; Fulci, Valerio; Macino, Giuseppe; Colombo, Teresa; Castellano, Leandro

    2016-03-01

    DNA damage activates TP53-regulated surveillance mechanisms that are crucial in suppressing tumorigenesis. TP53 orchestrates these responses directly by transcriptionally modulating genes, including microRNAs (miRNAs), and by regulating miRNA biogenesis through interacting with the DROSHA complex. However, whether the association between miRNAs and AGO2 is regulated following DNA damage is not yet known. Here, we show that, following DNA damage, TP53 interacts with AGO2 to induce or reduce AGO2's association of a subset of miRNAs, including multiple let-7 family members. Furthermore, we show that specific mutations in TP53 decrease rather than increase the association of let-7 family miRNAs, reducing their activity without preventing TP53 from interacting with AGO2. This is consistent with the oncogenic properties of these mutants. Using AGO2 RIP-seq and PAR-CLIP-seq, we show that the DNA damage-induced increase in binding of let-7 family members to the RISC complex is functional. We unambiguously determine the global miRNA-mRNA interaction networks involved in the DNA damage response, validating them through the identification of miRNA-target chimeras formed by endogenous ligation reactions. We find that the target complementary region of the let-7 seed tends to have highly fixed positions and more variable ones. Additionally, we observe that miRNAs, whose cellular abundance or differential association with AGO2 is regulated by TP53, are involved in an intricate network of regulatory feedback and feedforward circuits. TP53-mediated regulation of AGO2-miRNA interaction represents a new mechanism of miRNA regulation in carcinogenesis. PMID:26701625

  5. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid.

  6. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro.

    PubMed

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  7. Peroxisome proliferator-activated receptor-γ agonist troglitazone suppresses transforming growth factor-β1 signalling through miR-92b upregulation-inhibited Axl expression in human keloid fibroblasts in vitro

    PubMed Central

    Zhu, Hua-Yu; Bai, Wen-Dong; Li, Jun; Tao, Ke; Wang, Hong-Tao; Yang, Xue-Kang; Liu, Jia-Qi; Wang, Yun-Chuan; He, Ting; Xie, Song-Tao; Hu, Da-Hai

    2016-01-01

    Keloid, a skin benign tumor, is characterized by overgrowth of fibroblasts and the excessive deposition of extracellular matrix in wounded skin. Peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist was recently evaluated to inhibit fibrosis. This study explored the underlying mechanisms. Fibroblasts isolated from 25 keloid patients (KFs) and fibroblasts isolated from healthy controls (NSFBs) were also subjected to treatment with PPAR-γ agonist troglitazone and antagonist GW9662 or for transfection with miR-92 mimics or inhibitor, Axl siRNA, and miR-92b or Axl promoter constructs, as well as being subjected to qRT-PCR, ELISA, Western blot, protein array, luciferase, and ChIP assays. The data demonstrated that TGF-β1 and Axl proteins were significantly elevated in samples from keloid patients, while troglitazone treatment significantly reduced levels of TGF-β1 and Axl mRNA and proteins in KFs. Moreover, knockdown of Axl expression reduced expression of TGF-β1 and its pathway genes (such as α-SMA and Snail). PPAR-γ regulation of Axl expression was through transcriptional activation of miR-92b. miR-92b expression downregulated Axl expression at both mRNA and protein levels, whereas GW9662 completely reversed the inhibitory effects of miR-92b mimics on Axl expression. Gene ontology analysis of miR-92b targeting genes showed that TGF-β and Axl were both potential targets of miR-92b, as confirmed by luciferase assay. These findings demonstrated that PPAR-γ-induced miR-92b expression inhibited Axl expression and in turn reduced expression of TGF-β1 and the downstream genes in KFs, suggesting that targeting of this novel gene pathway may be useful for therapeutic control of fibrosis or keloid. PMID:27648136

  8. Tissue Specific Effects of Dietary Carbohydrates and Obesity on ChREBPα and ChREBPβ Expression.

    PubMed

    Stamatikos, Alexis D; da Silva, Robin P; Lewis, Jamie T; Douglas, Donna N; Kneteman, Norman M; Jacobs, René L; Paton, Chad M

    2016-01-01

    Carbohydrate response element binding protein (ChREBP) regulates insulin-independent de novo lipogenesis. Recently, a novel ChREBPβ isoform was identified. The purpose of the current study was to define the effect of dietary carbohydrates (CHO) and obesity on the transcriptional activity of ChREBP isoforms and their respective target genes. Mice were subjected to fasting-refeeding of high-CHO diets. In all three CHO-refeeding groups, mice failed to induce ChREBPα, yet ChREBPβ increased 10- to 20-fold. High-fat fed mice increased hepatic ChREBPβ mRNA expression compared to chow-fed along with increased protein expression. To better assess the independent effect of fructose on ChREBPα/β activity, HepG2 cells were treated with fructose ± a fructose-1,6-bisphosphatase inhibitor to suppress gluconeogenesis. Fructose treatment in the absence of gluconeogenesis resulted in increased ChREBP activity. To confirm the existence of ChREBPβ in human tissue, primary hepatocytes were incubated with high-glucose and the expression of ChREBPα and -β was determined. As with the animal models, glucose induced ChREBPβ expression while ChREBPα was decreased. Taken together, ChREBPβ is more responsive to changes in dietary CHO availability than the -α isoform. Diet-induced obesity increases basal expression of ChREBPβ, which may increase the risk of developing hepatic steatosis, and fructose-induced activation is independent of gluconeogenesis.

  9. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products

    NASA Astrophysics Data System (ADS)

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J.; Lester, Marsha I.

    2016-07-01

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantly to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 107 s-1, which are slower than those obtained for syn-CH3CHOO or (CH3)2COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s-1 at 298 K.

  10. Direct observation of unimolecular decay of CH3CH2CHOO Criegee intermediates to OH radical products.

    PubMed

    Fang, Yi; Liu, Fang; Klippenstein, Stephen J; Lester, Marsha I

    2016-07-28

    The unimolecular decay of carbonyl oxide intermediates, known as Criegee intermediates, produced in alkene ozonolysis is a significant source of OH radicals in the troposphere. Here, the rate of appearance of OH radical products is examined directly in the time-domain for a prototypical alkyl-substituted Criegee intermediate, CH3CH2CHOO, following vibrational activation under collision-free conditions. Complementary statistical Rice-Ramsperger-Kassel-Marcus calculations of the microcanonical unimolecular decay rate for CH3CH2CHOO are also carried out at energies in the vicinity of the barrier for 1,4 hydrogen atom transfer that leads to OH products. Tunneling through the barrier, derived from high level electronic structure calculations, contributes significantly to the decay rate. Infrared transitions of CH3CH2CHOO are identified in the CH stretch overtone region, which are detected by ultraviolet laser-induced fluorescence of the resultant OH products. The features observed are attributed to CH vibrational excitations and conformational forms utilizing insights from theory. Both experiment and theory yield unimolecular decay rates for CH3CH2CHOO of ca. 10(7) s(-1), which are slower than those obtained for syn-CH3CHOO or (CH3)2COO reported previously [Fang et al., J. Chem. Phys. 144, 061102 (2016)] at similar energies. Master equation modeling is also utilized to predict the thermal decay rate of CH3CH2CHOO under atmospheric conditions, giving a rate of 279 s(-1) at 298 K. PMID:27475366

  11. Ozone Depletion Potential of CH3Br

    NASA Technical Reports Server (NTRS)

    Sander, Stanley P.; Ko, Malcolm K. W.; Sze, Nien Dak; Scott, Courtney; Rodriquez, Jose M.; Weisenstein, Debra K.

    1998-01-01

    The ozone depletion potential (ODP) of methyl bromide (CH3Br) can be determined by combining the model-calculated bromine efficiency factor (BEF) for CH3Br and its atmospheric lifetime. This paper examines how changes in several key kinetic data affect BEF. The key reactions highlighted in this study include the reaction of BrO + H02, the absorption cross section of HOBr, the absorption cross section and the photolysis products of BrON02, and the heterogeneous conversion of BrON02 to HOBR and HN03 on aerosol particles. By combining the calculated BEF with the latest estimate of 0.7 year for the atmospheric lifetime of CH3Br, the likely value of ODP for CH3Br is 0.39. The model-calculated concentration of HBr (approximately 0.3 pptv) in the lower stratosphere is substantially smaller than the reported measured value of about I pptv. Recent publications suggested models can reproduce the measured value if one assumes a yield for HBr from the reaction of BrO + OH or from the reaction of BrO + H02. Although the DeAlore et al. evaluation concluded any substantial yield of HBr from BrO + HO2 is unlikely, for completeness, we calculate the effects of these assumed yields on BEF for CH3Br. Our calculations show that the effects are minimal: practically no impact for an assumed 1.3% yield of HBr from BrO + OH and 10% smaller for an assumed 0.6% yield from BrO + H02.

  12. Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br

    NASA Technical Reports Server (NTRS)

    Hsu, K.-J.; Demore, W. B.

    1994-01-01

    Rate constants for the reactions of OH with CH3Cl, CH2Cl2, CHCl3, and CH3Br have been measured by a relative rate technique in which the reaction rate of each compound was compared to that of HFC-152a (CH3CHF2) and (for CH2Cl2) HFC-161 (CH3CH2F). Using absolute rate constants for HFC-152a and HFC-161, which we have determined relative to those for CH4, CH3CCl3, and C2H6, temperature dependent rate constants of both compounds were derived. The derived rate constant for CH3Br is in good agreement with recent absolute measurements. However, for the chloromethanes all the rate constants are lower at atmospheric temperatures than previously reported, especially for CH2Cl2 where the present rate constant is about a factor of 1.6 below the JPL 92-20 value. The new rate constant appears to resolve a discrepancy between the observed atmospheric concentrations and those calculated from the previous rate constant and estimated release rates.

  13. miRNA Expression Analyses in Prostate Cancer Clinical Tissues

    PubMed Central

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z. Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-01-01

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA). PMID:26382040

  14. miRNA and methylation: a multifaceted liaison.

    PubMed

    Chhabra, Ravindresh

    2015-01-19

    miRNAs and DNA methylation are both critical regulators of gene expression. Aberration in miRNA expression or DNA methylation is a causal factor for numerous pathological conditions. DNA methylation can inhibit the transcription of miRNAs, just like coding genes, by methylating the CpG islands in the promoter regions of miRNAs. Conversely, certain miRNAs can directly target DNA methyltransferases and bring about their inhibition, thereby affecting the whole genome methylation pattern. Recently, methylation patterns have also been revealed in mRNA. Surprisingly, the two most commonly studied methylation states in mRNA (m6A and m5C) are found to be enriched in 3'-UTRs (untranslated regions), the target site for the majority of miRNAs. Whereas m5C is reported to stabilise mRNA, m6A has a destabilising effect on mRNA. However, the effect of mRNA methylation on its interaction with miRNAs is largely unexplored. The review highlights the complex interplay between microRNA and methylation at DNA and mRNA level. PMID:25469751

  15. MicroRNAs (miRNAs) in neurodegenerative diseases.

    PubMed

    Nelson, Peter T; Wang, Wang-Xia; Rajeev, Bernard W

    2008-01-01

    Aging-related neurodegenerative diseases (NDs) are the culmination of many different genetic and environmental influences. Prior studies have shown that RNAs are pathologically altered during the inexorable course of some NDs. Recent evidence suggests that microRNAs (miRNAs) may be a contributing factor in neurodegeneration. miRNAs are brain-enriched, small ( approximately 22 nucleotides) non-coding RNAs that participate in mRNA translational regulation. Although discovered in the framework of worm development, miRNAs are now appreciated to play a dynamic role in many mammalian brain-related biochemical pathways, including neuroplasticity and stress responses. Research about miRNAs in the context of neurodegeneration is accumulating rapidly, and the goal of this review is to provide perspective for these new data that may be helpful to specialists in either field. An overview is provided about the normal functions for miRNAs, including some of the newer concepts related to the human brain. Recently published studies pertaining to the roles of miRNAs in NDs--including Alzheimer's disease, Parkinson's disease and triplet repeat disorders-are described. Finally, a discussion is included with theoretical syntheses and possible future directions in exploring the nexus between miRNA and ND research.

  16. miRNAs: Key Players in Neurodegenerative Disorders and Epilepsy.

    PubMed

    Karnati, Hanuma Kumar; Panigrahi, Manas Kumar; Gutti, Ravi Kumar; Greig, Nigel H; Tamargo, Ian A

    2015-01-01

    MicroRNAs (miRNAs) are endogenous, ∼22 nucleotide, non-coding RNA molecules that function as post-transcriptional regulators of gene expression. miRNA dysregulation has been observed in cancer and in neurodegenerative disorders such as Alzheimer's, Parkinson's, and Huntington's diseases, amyotrophic lateral sclerosis, and the neurological disorder, epilepsy. Neuronal degradation and death are important hallmarks of neurodegenerative disorders. Additionally, abnormalities in metabolism, synapsis and axonal transport have been associated with Alzheimer's disease, Parkinson's disease, and frontotemporal dementia. A number of recently published studies have demonstrated the importance of miRNAs in the nervous system and have contributed to the growing body of evidence on miRNA dysregulation in neurological disorders. Knowledge of the expressions and activities of such miRNAs may aid in the development of novel therapeutics. In this review, we discuss the significance of miRNA dysregulation in the development of neurodegenerative disorders and the use of miRNAs as targets for therapeutic intervention.

  17. miRNA Expression Analyses in Prostate Cancer Clinical Tissues.

    PubMed

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-01-01

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA). PMID:26382040

  18. miRNA Expression Analyses in Prostate Cancer Clinical Tissues.

    PubMed

    Bucay, Nathan; Shahryari, Varahram; Majid, Shahana; Yamamura, Soichiro; Mitsui, Yozo; Tabatabai, Z Laura; Greene, Kirsten; Deng, Guoren; Dahiya, Rajvir; Tanaka, Yuichiro; Saini, Sharanjot

    2015-09-08

    A critical challenge in prostate cancer (PCa) clinical management is posed by the inadequacy of currently used biomarkers for disease screening, diagnosis, prognosis and treatment. In recent years, microRNAs (miRNAs) have emerged as promising alternate biomarkers for prostate cancer diagnosis and prognosis. However, the development of miRNAs as effective biomarkers for prostate cancer heavily relies on their accurate detection in clinical tissues. miRNA analyses in prostate cancer clinical specimens is often challenging owing to tumor heterogeneity, sampling errors, stromal contamination etc. The goal of this article is to describe a simplified workflow for miRNA analyses in archived FFPE or fresh frozen prostate cancer clinical specimens using a combination of quantitative real-time PCR (RT-PCR) and in situ hybridization (ISH). Within this workflow, we optimize the existing methodologies for miRNA extraction from FFPE and frozen prostate tissues and expression analyses by Taqman-probe based miRNA RT-PCR. In addition, we describe an optimized method for ISH analyses formiRNA detection in prostate tissues using locked nucleic acid (LNA)- based probes. Our optimized miRNA ISH protocol can be applied to prostate cancer tissue slides or prostate cancer tissue microarrays (TMA).

  19. Milk miRNAs: simple nutrients or systemic functional regulators?

    PubMed

    Melnik, Bodo C; Kakulas, Foteini; Geddes, Donna T; Hartmann, Peter E; John, Swen Malte; Carrera-Bastos, Pedro; Cordain, Loren; Schmitz, Gerd

    2016-01-01

    Milk is rich in miRNAs that appear to play important roles in the postnatal development of all mammals. Currently, two competing hypotheses exist: the functional hypothesis, which proposes that milk miRNAs are transferred to the offspring and exert physiological regulatory functions, and the nutritional hypothesis, which suggests that these molecules do not reach the systemic circulation of the milk recipient, but merely provide nutrition without conferring active regulatory signals to the offspring. The functional hypothesis is based on indirect evidence and requires further investigation. The nutritional hypothesis is primarily based on three mouse models, which are inherently problematic: 1) miRNA-375 KO mice, 2) miRNA-200c/141 KO mice, and 3) transgenic mice presenting high levels of miRNA-30b in milk. This article presents circumstantial evidence that these mouse models may all be inappropriate to study the physiological traffic of milk miRNAs to the newborn mammal, and calls for new studies using more relevant mouse models or human milk to address the fate and role of milk miRNAs in the offspring and the adult consumer of cow's milk. PMID:27330539

  20. miRNA therapeutics in cardiovascular diseases: promises and problems

    PubMed Central

    Nouraee, Nazila; Mowla, Seyed J.

    2015-01-01

    microRNAs (miRNAs) are a novel class of non-coding RNAs which found their way into the clinic due to their fundamental roles in cellular processes such as differentiation, proliferation, and apoptosis. Recently, miRNAs have been known as micromodulators in cellular communications being involved in cell signaling and microenvironment remodeling. In this review, we will focus on the role of miRNAs in cardiovascular diseases (CVDs) and their reliability as diagnostic and therapeutic biomarkers in these conditions. CVDs comprise a variety of blood vessels and heart disorders with a high rate of morbidity and mortality worldwide. This necessitates introduction of novel molecular biomarkers for early detection, prevention, or treatment of these diseases. miRNAs, due to their stability, tissue-specific expression pattern and secretion to the corresponding body fluids, are attractive targets for cardiovascular-associated therapeutics. Explaining the challenges ahead of miRNA-based therapies, we will discuss the exosomes as delivery packages for miRNA drugs and promising novel strategies for the future of miRNA-based therapeutics. These approaches provide insights to the future of personalized medicine for the treatment of CVDs. PMID:26175755

  1. Expressional analysis of immune-related miRNAs in breast milk.

    PubMed

    Na, R S; E, G X; Sun, W; Sun, X W; Qiu, X Y; Chen, L P; Huang, Y F

    2015-09-25

    Immune-related miRNAs in breast milk are extracellular miRNAs that are related to immune organ development and regulation of the immune function in infants and young animals. The goal of this study was to compare the expression levels of five immune-related miRNAs in breast milk in black goats, humans, and dairy cattle. The miRNAs from milk were extracted and the expression levels were assessed using quantitive RT-PCR methods. MiR-146, miR-155, miR-181a, miR-223, and miR-150 were all detected in Dazu black goat milk, and these miRNAs were significantly more highly expressed in colostrum than in mature milk of goats (P < 0.01), except for miR-150. Further, all five miRNAs were expressed in human colostrum, but patterns differed from those in goats: miR-146 and miR-155 were highly expressed (P < 0.01) in human colostrum, whereas miR-223 was abundant in goat colostrum (P < 0.01). In addition, five miRNAs were significantly higher in bovine mature milk than in goat milk (P < 0.01). Taken together, these results confirm that immune-related miRNAs are rich in breast milk with different expression levels depending on the lactation phase and species.

  2. miR-92a family and their target genes in tumorigenesis and metastasis

    SciTech Connect

    Li, Molin; Guan, Xingfang; Sun, Yuqiang; Mi, Jun; Shu, Xiaohong; Liu, Fang; Li, Chuangang

    2014-04-15

    The miR-92a family, including miR-25, miR-92a-1, miR-92a-2 and miR-363, arises from three different paralog clusters miR-17-92, miR-106a-363, and miR-106b-25 that are highly conservative in the process of evolution, and it was thought as a group of microRNAs (miRNAs) correlated with endothelial cells. Aberrant expression of miR-92a family was detected in multiple cancers, and the disturbance of miR-92a family was related with tumorigenesis and tumor development. In this review, the progress on the relationship between miR-92a family and their target genes and malignant tumors will be summarized. - Highlights: • Aberrant expression of miR-92a, miR-25 and miR-363 can be observed in many kinds of malignant tumors. • The expression of miR-92a family is regulated by LOH, epigenetic alteration, transcriptional factors such as SP1, MYC, E2F, wild-type p53 etc. • Roles of miR-92a family in tumorigenesis and development: promoting cell proliferation, invasion and metastasis, inhibiting cell apoptosis.

  3. Submillimeter laboratory identification of CH{sup +} and CH{sub 2}D{sup +}

    SciTech Connect

    Amano, T.

    2015-01-22

    Laboratory identification of two basic and important interstellar molecular ions is presented. The J = 1 - 0 rotational transition of {sup 12}CH{sup +} together with those of {sup 13}CH{sup +} and {sup 12}CD{sup +} was observed in the laboratory. The newly obtained frequencies were found to be different from those reported previously. Various experimental evidences firmly support the new measurements. In addition, the Zeeman effect and the spin-rotation hyperfine interaction enforce the laboratory identification with no ambiguity. Rotational lines of CH{sub 2}D{sup +} were observed in the submillimeter-wave region. This laboratory observation is consistent with a recent tentative identification of CH{sub 2}D{sup +} toward Ori IRc2.

  4. An investigation into anti-proliferative effects of microRNAs encoded by the miR-106a-363 cluster on human carcinoma cells and keratinocytes using microarray profiling of miRNA transcriptomes.

    PubMed

    Khuu, Cuong; Jevnaker, Anne-Marthe; Bryne, Magne; Osmundsen, Harald

    2014-01-01

    Transfection of human oral squamous carcinoma cells (clone E10) with mimics for unexpressed miR-20b or miR-363-5p, encoded by the miR-106a-363 cluster (miR-20b, miR-106a, miR-363-3p, or miR-363-5p), caused 40-50% decrease in proliferation. Transfection with mimics for miR-18a or miR-92a, encoded by the miR-17-92 cluster (all members being expressed in E10 cells), had no effect on proliferation. In contrast, mimic for the sibling miRNA-19a yielded about 20% inhibition of proliferation. To investigate miRNA involvement profiling of miRNA transcriptomes were carried out using deoxyoligonucleotide microarrays. In transfectants for miR-19a, or miR-20b or miR-363-5p most differentially expressed miRNAs exhibited decreased expression, including some miRNAs encoded in paralogous miR-17-92-or miR-106b-25 cluster. Only in cells transfected with miR-19a mimic significantly increased expression of miR-20b observed-about 50-fold as judged by qRT-PCR. Further studies using qRT-PCR showed that transfection of E10 cells with mimic for miRNAs encoded by miR-17-92 - or miR-106a-363 - or the miR-106b-25 cluster confirmed selective effect on expression on sibling miRNAs. We conclude that high levels of miRNAs encoded by the miR-106a-363 cluster may contribute to inhibition of proliferation by decreasing expression of several sibling miRNAs encoded by miR-17-92 or by the miR-106b-25 cluster. The inhibition of proliferation observed in miR-19a-mimic transfectants is likely caused by the miR-19a-dependent increase in the levels of miR-20b and miR-106a. Bioinformatic analysis of differentially expressed miRNAs from miR-106a, miR-20b and miR-363-5p transfectants, but not miR-92a transfectants, yielded significant associations to "Cellular Growth and Proliferation" and "Cell Cycle." Western blotting results showed that levels of affected proteins to differ between transfectants, suggesting that different anti-proliferative mechanisms may operate in these transfectants. PMID:25202322

  5. miR-124 regulates fetal pulmonary epithelial cell maturation

    PubMed Central

    Wang, Yang; Huang, Chaoqun; Chintagari, Narendranath Reddy; Xi, Dong; Weng, Tingting

    2015-01-01

    MicroRNAs are a family of small noncoding RNAs that regulate the expression of their target proteins at the posttranscriptional level. Their functions cover almost every aspect of cell physiology. However, the roles of microRNAs in fetal lung development are not completely understood. The objective of this study is to investigate the regulation and molecular mechanisms of alveolar epithelial cell maturation during fetal lung development by miR-124. We discovered that miR-124 was downregulated during rat fetal lung development and predominantly expressed in the epithelial cells at late stage of the lung development. Overexpression of miR-124 with an adenovirus vector led to the inhibition of epithelial maturation in rat fetal lung organ cultures and fetal alveolar epithelial type II cells, as demonstrated by a decrease in the type II cell marker expression and an increase in glycogen content. We further demonstrated by luciferase reporter assays that miR-124 inhibited the NF-κB, cAMP/PKA, and MAPK/ERK pathways. In addition, nuclear factor I/B (NFIB), a critical protein in fetal lung maturation, was validated as a direct target of miR-124. Furthermore, miR-124 expression was induced by the Wnt/β-catenin signaling pathway through a direct interaction of LEF1 and the miR-124 promoter region. We concluded that miR-124 downregulation is critical to fetal lung epithelial maturation and miR-124 inhibits this maturation process at least partially through the inhibition of NFIB. PMID:26071557

  6. Reactivation of epigenetically silenced miR-512 and miR-373 sensitizes lung cancer cells to cisplatin and restricts tumor growth.

    PubMed

    Adi Harel, S; Bossel Ben-Moshe, N; Aylon, Y; Bublik, D R; Moskovits, N; Toperoff, G; Azaiza, D; Biagoni, F; Fuchs, G; Wilder, S; Hellman, A; Blandino, G; Domany, E; Oren, M

    2015-08-01

    MicroRNAs (miRs) regulate a variety of cellular processes, and their impaired expression is involved in cancer. Silencing of tumor-suppressive miRs in cancer can occur through epigenetic modifications, including DNA methylation and histone deacetylation. We performed comparative miR profiling on cultured lung cancer cells before and after treatment with 5'aza-deoxycytidine plus Trichostatin A to reverse DNA methylation and histone deacetylation, respectively. Several tens of miRs were strongly induced by such 'epigenetic therapy'. Two representatives, miR-512-5p (miR-512) and miR-373, were selected for further analysis. Both miRs were secreted in exosomes. Re-expression of both miRs augmented cisplatin-induced apoptosis and inhibited cell migration; miR-512 also reduced cell proliferation. TEAD4 mRNA was confirmed as a direct target of miR-512; likewise, miR-373 was found to target RelA and PIK3CA mRNA directly. Our results imply that miR-512 and miR-373 exert cell-autonomous and non-autonomous tumor-suppressive effects in lung cancer cells, where their re-expression may benefit epigenetic cancer therapy.

  7. Inhibition of the miR-155 target NIAM phenocopies the growth promoting effect of miR-155 in B-cell lymphoma.

    PubMed

    Slezak-Prochazka, Izabella; Kluiver, Joost; de Jong, Debora; Smigielska-Czepiel, Katarzyna; Kortman, Gertrud; Winkle, Melanie; Rutgers, Bea; Koerts, Jasper; Visser, Lydia; Diepstra, Arjan; Kroesen, Bart-Jan; van den Berg, Anke

    2016-01-19

    Several studies have indicated an important role for miR-155 in the pathogenesis of B-cell lymphoma. Highly elevated levels of miR-155 were indeed observed in most B-cell lymphomas with the exception of Burkitt lymphoma (BL). However, the molecular mechanisms that underlie the oncogenic role of miR-155 in B-cell lymphoma are not well understood. To identify the miR-155 targets relevant for B-cell lymphoma, we performed RNA immunoprecipitation of Argonaute 2 in Hodgkin lymphoma (HL) cells upon miR-155 inhibition and in BL cells upon ectopic expression of miR-155. We identified 54 miR-155-specific target genes in BL cells and confirmed miR-155 targeting of DET1, NIAM, TRIM32, HOMEZ, PSIP1 and JARID2. Five of these targets are also regulated by endogenous miR-155 in HL cells. Both overexpression of miR-155 and inhibition of expression of the novel miR-155 target gene NIAM increased proliferation of BL cells. In primary B-cell lymphoma NIAM-positive cases have significant lower levels of miR-155 as compared to NIAM-negative cases, suggesting that NIAM is also regulated by miR-155 in primary B-cell lymphoma. Thus, our data indicate an oncogenic role for miR-155 in B-cell lymphoma which involves targeting the tumor suppressor NIAM.

  8. Collisional narrowing in the optically pumped CH3OH and CH3F lasers

    NASA Technical Reports Server (NTRS)

    Lawandy, N. M.; Koepf, G. A.

    1982-01-01

    The gain linewidth of the optically pumped CH3F laser is observed to narrow and rebroaden with the addition of He. In addition, the same effect is observed in the CH3OH laser with the addition of the polyatomic buffer gases SF6 and CS2. These results offer conclusive evidence of the Dicke narrowing phenomena in these inverted pure rotational transitions. The effect is observed using a high harmonic mixing technique in a Schottky barrier diode.

  9. TES/Aura L2 Methane (CH4) Lite Nadir (TL2CH4LN)

    Atmospheric Science Data Center

    2015-08-31

    TES/Aura L2 Methane (CH4) Lite Nadir (TL2CH4LN) News:  TES News ... Level:  L2 Instrument:  TES/Aura L2 Methane Spatial Coverage:  5.3 km nadir Spatial ... OPeNDAP Access:  OPeNDAP Parameters:  Methane Order Data:  Reverb:   Order Data ...

  10. Outer-Shell Double Photoionization of CH4 and CH2Cl2 Molecules

    NASA Astrophysics Data System (ADS)

    Alcantara, K. F.; Gomes, A. H. A.; Sigaud, L.; Wolf, W.; Santos, A. C. F.

    In this work the roles of the shake-off and knockout processes in the double photoionization of the CH2Cl2 and CH4 molecules have been studied. The probabilities for both mechanisms accompanying valence-shell photoionization have been estimated as a function of incident photon energy using Samson's (1990) and Thomas's (1994) models, respectively. The experimental results are in qualitative accord with the models.

  11. The Three Paralogous MicroRNA Clusters in Development and Disease, miR-17-92, miR-106a-363, and miR-106b-25

    PubMed Central

    Sehic, Amer

    2016-01-01

    MicroRNAs (miRNAs) form a class of noncoding RNA genes whose products are small single-stranded RNAs that are involved in the regulation of translation and degradation of mRNAs. There is a fine balance between deregulation of normal developmental programs and tumor genesis. An increasing body of evidence suggests that altered expression of miRNAs is entailed in the pathogenesis of human cancers. Studies in mouse and human cells have identified the miR-17-92 cluster as a potential oncogene. The miR-17-92 cluster is often amplified or overexpressed in human cancers and has recently emerged as the prototypical oncogenic polycistron miRNA. The functional analysis of miR-17-92 is intricate by the existence of two paralogues: miR-106a-363 and miR-106b-25. During early evolution of vertebrates, it is likely that the three clusters commenced via a series of duplication and deletion occurrences. As miR-106a-363 and miR-106b-25 contain miRNAs that are very similar, and in some cases identical, to those encoded by miR-17-92, it is feasible that they regulate a similar set of genes and have overlapping functions. Further understanding of these three clusters and their functions will increase our knowledge about cancer progression. The present review discusses the characteristics and functions of these three miRNA clusters. PMID:27127675

  12. Functions of miRNAs during Mammalian Heart Development

    PubMed Central

    Yan, Shun; Jiao, Kai

    2016-01-01

    MicroRNAs (miRNAs) play essential roles during mammalian heart development and have emerged as attractive therapeutic targets for cardiovascular diseases. The mammalian embryonic heart is mainly derived from four major cell types during development. These include cardiomyocytes, endocardial cells, epicardial cells, and neural crest cells. Recent data have identified various miRNAs as critical regulators of the proper differentiation, proliferation, and survival of these cell types. In this review, we briefly introduce the contemporary understanding of mammalian cardiac development. We also focus on recent developments in the field of cardiac miRNAs and their functions during the development of different cell types. PMID:27213371

  13. MiR-182 and miR-203 induce mesenchymal to epithelial transition and self-sufficiency of growth signals via repressing SNAI2 in prostate cells.

    PubMed

    Qu, Yi; Li, Wen-Cheng; Hellem, Margrete Reime; Rostad, Kari; Popa, Mihaela; McCormack, Emmet; Oyan, Anne Margrete; Kalland, Karl-Henning; Ke, Xi-Song

    2013-08-01

    MicroRNAs play critical roles in tumorigenesis and metastasis. Here, we report the dual functions of miR-182 and miR-203 in our previously described prostate cell model. MiR-182 and miR-203 were completely repressed during epithelial to mesenchymal transition (EMT) from prostate epithelial EP156T cells to the progeny mesenchymal nontransformed EPT1 cells. Re-expression of miR-182 or miR-203 in EPT1 cells and prostate cancer PC3 cells induced mesenchymal to epithelial transition (MET) features. Simultaneously, miR-182 and miR-203 provided EPT1 cells with the ability to self-sufficiency of growth signals, a well-recognized oncogenic feature. Gene expression profiling showed high overlap of the genes affected by miR-182 and miR-203. SNAI2 was identified as a common target of miR-182 and miR-203. Knock-down of SNAI2 in EPT1 cells phenocopied re-expression of either miR-182 or miR-203 regarding both MET and self-sufficiency of growth signals. Strikingly, considerable overlaps of changed genes were found between the re-expression of miR-182/203 and knock-down of SNAI2. Finally, P-cadherin was identified as a direct target of SNAI2. We conclude that miR-182 and miR-203 induce MET features and growth factor independent growth via repressing SNAI2 in prostate cells. Our findings shed new light on the roles of miR-182/203 in cancer related processes.

  14. The miR27b-CCNG1-P53-miR-508-5p axis regulates multidrug resistance of gastric cancer

    PubMed Central

    Ren, Gui; Zhang, Zhiyong; Fan, Xing; Sun, Yi; Luo, Guanhong; Liang, Jie; Wu, Kaichun; Nie, Yongzhan; Fan, Daiming

    2016-01-01

    Multidrug resistance (MDR) correlates with treatment failure and poor prognosis among gastric cancer (GC) patients. In a previous study using high-throughput functional screening, we identified 11 microRNAs (miRNAs) that regulate MDR in GC and found that miR-508-5p reversed MDR by targeting ABCB1 and ZNRD1. However, the mechanism by which miR-508-5p was decreased in chemo-resistant GC cells was unclear. In this study, we found that ectopic miR-27b is sufficient to sensitize tumors to chemotherapy in vitro and in vivo. Moreover, miR-27b directly targets the 3′ untranslated regions (3′-UTRs) of CCNG1, a well-known negative regulator of P53 stability. Interestingly, miR-27b up-regulation leads to increased miR-508-5p expression, and this phenomenon is mediated by CCNG1 and P53. Further investigation indicated that miR-508-5p is directly regulated by P53. Thus, the miR-27b/CCNG1/P53/miR-508-5p axis plays important roles in GC-associated MDR. In addition, miR-27b and miR-508-5p expression was detected in GC tissues with different chemo-sensitivities, and we found that tissues in which miR-27b and miR-508-5p are up-regulated are more sensitive to chemotherapy. Together, these data suggest that the combination of miR-27b and miR-508-5p represents a potential marker of MDR. Restoring the miR-27b and miR-508-5p levels might contribute to MDR reversion in future clinical practice. PMID:26623719

  15. MiR-26a and miR-144 inhibit proliferation and metastasis of esophageal squamous cell cancer by inhibiting cyclooxygenase-2

    PubMed Central

    Shao, Ying; Li, Peng; Zhu, Sheng-Tao; Yue, Ji-Ping; Ji, Xiao-Jun; Ma, Dan; Wang, Li; Wang, Yong-Jun; Zong, Ye; Wu, Yong-Dong; Zhang, Shu-Tian

    2016-01-01

    The altered expression of miRNAs is involved in carcinogenesis of esophageal squamous cell carcinoma (ESCC), but whether miRNAs regulate COX-2 expression in ESCC is not clear. To this end, the expression levels of miR-26a and miR-144 in ESCC clinical tissues and cell lines were investigated by qRT-PCR. COX-2 and PEG2 were quantified by western blot and ELISA. Decrease in miR-26a and miR-144 expression in ESCC was found by a comparison between 30 pairs of ESCC tumor and adjacent normal tissues as well as in 11 ESCC cell lines (P < 0.001). Co-transfection of miR-26a and miR-144 in ESCC cell lines more significantly suppressed cell proliferation, migration, and invasion than did either miR-26a or miR-144 alone (all P < 0.001), as shown by assays of CCK8, migration and invasion and flow cytometry. The inhibitory effect of these two miRNAs in vivo was also verified in nude mice xenograft models. COX-2 was confirmed as a target of miR-26a and miR-144. In conclusion, miR-26a and miR-144 expression is downregulated in ESCC. Co-expression of miR-26a and miR-144 in ESCC cells resulted in inhibition of proliferation and metastasis in vitro and in vivo, suggesting that targeting COX-2 may be the mechanism of these two miRNAs. PMID:26959737

  16. miR-155 and miR-484 Are Associated with Time to Progression in Metastatic Renal Cell Carcinoma Treated with Sunitinib

    PubMed Central

    Merhautova, Jana; Kovarikova, Alena; Radova, Lenka; Svoboda, Marek; Vyzula, Rostislav; Demlova, Regina; Slaby, Ondrej

    2015-01-01

    Background. Sunitinib is a tyrosine kinase inhibitor used in the treatment of metastatic renal cell carcinoma. The main difficulty related to the treatment is the development of drug resistance followed by rapid progression of the disease. We analyzed tumor tissue of sunitinib treated patients in order to find miRNAs associated with therapeutic response. Methods. A total of 79 patients with metastatic renal cell carcinoma were included in our study. miRNA profiling in tumor tissue samples was performed by TaqMan Low Density Arrays and a group of selected miRNAs (miR-155, miR-374-5p, miR-324-3p, miR-484, miR-302c, and miR-888) was further validated by qRT-PCR. Normalized data were subjected to ROC and Kaplan-Meier analysis. Results. We reported decreased tissue levels of miR-155 and miR-484 as significantly associated with increased time to progression (miR-155: median TTP 5.8 versus 12.8 months, miR-484: median TTP 5.8 versus 8.9 months). Conclusion. miR-155 and miR-484 are potentially connected with sunitinib resistance and failure of the therapy. miR-155 is a known oncogene with direct influence on neovascularization. Biological role of miR-484 has to be clarified. Stratification of patients based on miRNA analysis would allow more personalized approach in therapy of metastatic renal cell carcinoma. PMID:26064968

  17. miR-4284 and miR-4484 as Putative Biomarkers for Diffuse Large B-Cell Lymphoma.

    PubMed

    Tamaddon, Gholamhossein; Geramizadeh, Bita; Karimi, Mohammad Hossein; Mowla, Seyed Javad; Abroun, Said

    2016-07-01

    Diffuse large B-cell lymphoma is the most common type of non-Hodgkin lymphoma. MicroRNAs (miRNAs) are endogenous small RNA, which can regulate gene expression at the post-transcriptional level. MiRNA profiling has shown a great potential as novel diagnostic and prognostic biomarkers. The present study was performed at the Nemazee Teaching Hospital (Shiraz, Iran) from 2011 to 2013. The aim of this study was to assess the deregulation of miRNAs profiles in DLBL against hyperplasic reactive lymph node as a normal. This could serve as a biomarker for DLBL. The miRCURY LNA™ microarray was used on the total RNA, which was extracted from formalin-fixed paraffin-embedded tissue of 24 de novo diffuse large B-cell lymphoma patients and 14 normal lymph nodes. The greatest changes were detected in miR-4284 and miR-4484 level in patient's lymphoma samples. These miRNAs can act as a diagnostic biomarker for DLBL. PMID:27365556

  18. Dietary lipids modulate the expression of miR-107, a miRNA that regulates the circadian system

    PubMed Central

    Daimiel-Ruiz, Lidia; Klett, Mercedes; Konstantinidou, Valentini; Micó, Victor; Aranda, Juan F; García, Belén; Martínez-Botas, Javier; Dávalos, Alberto; Fernández-Hernando, Carlos; Ordovás, Jose M

    2015-01-01

    Scope The increased prevalence of cardiovascular diseases has been hypothesized to be the result of an increased exposure to a host of atherogenic environmental factors, paramount among them being unhealthy dietary habits. Long-chain n-3 polyunsaturated fatty acids (PUFAs) have been shown to have cardio protective effects, partially due to their ability to regulate gene expression. In this regard, increasing attention has been devoted to the role of miRNAs as regulators of multiple metabolic pathways whose deregulation has been associated with CVD risk. In this work we investigated whether miRNA expression was regulated by docosahexanoic acid (DHA), conjugated linoleic acid (CLA) and cholesterol in Caco-2 cells. Results Among the modulated miRNAs, miR-107 was differentially expressed by all treatments and this modulation was independent of its hosting gene, PANK1, possibly through its own promoter, which contains binding sites for metabolically relevant transcription factors. Among the putative target genes of miR-107, we found some genes with key roles in circadian rhythm. Specifically, we demonstrated that binding of miR-107 to the CLOCK gene results in the deregulation of the circadian rhythm of the cells. Conclusions Since chronodisruption has been linked to metabolic disorders such as Type 2 Diabetes (T2D), atherosclerosis, obesity and Cardiovascular Disease (CVD), our findings suggests that miR-107 could represent a new approach for pharmacological treatment of these diseases. PMID:25522185

  19. Warming Early Mars With CH4

    NASA Astrophysics Data System (ADS)

    Justh, H. L.; Kasting, J. F.

    2002-12-01

    The nature of the ancient climate of Mars remains one of the fundamental unresolved problems in martian research. While the present environment is hostile to life, images from the Mariner, Viking and Mars Global Surveyor missions, have shown geologic features on the martian surface that seem to indicate an earlier period of hydrologic activity. The fact that ancient valley networks and degraded craters have been seen on the martian surface indicates that the early martian climate may have been more Earth-like, with a warmer surface temperature. The presence of liquid water would require a greenhouse effect much larger than needed at present, as the solar constant, S0, was 25% lower 3.8 billion years ago when the channels are thought to have formed (1,2). Previous calculations have shown that gaseous CO2 and H2O alone could not have warmed the martian surface to the temperature needed to account for the presence of liquid water (3). It has been hypothesized that a CO2-H2O atmosphere could keep early Mars warm if it was filled with CO2 ice clouds in the upper martian troposphere (4). Obtaining mean martian surface temperatures above 273 K would require nearly 100% cloud cover, a condition that is unrealistic for condensation clouds on early Mars. Any reduction in cloud cover makes it difficult to achieve warm martian surface temperatures except at high pressures and CO2 clouds could cool the martian surface if they were low and optically thick (5). CO2 and CH4 have been suggested as important greenhouse gases on the early Earth. Our research focuses on the effects of increased concentrations of atmospheric greenhouse gases on the surface temperature of early Mars, with emphasis on the reduced greenhouse gas, CH4. To investigate the possible warming effect of CH4, we modified a one-dimensional, radiative-convective climate model used in previous studies of the early martian climate (5). New cloud-free temperature profiles for various surface pressures and CH4 mixing

  20. miRGate: a curated database of human, mouse and rat miRNA-mRNA targets.

    PubMed

    Andrés-León, Eduardo; González Peña, Daniel; Gómez-López, Gonzalo; Pisano, David G

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding elements involved in the post-transcriptional down-regulation of gene expression through base pairing with messenger RNAs (mRNAs). Through this mechanism, several miRNA-mRNA pairs have been described as critical in the regulation of multiple cellular processes, including early embryonic development and pathological conditions. Many of these pairs (such as miR-15 b/BCL2 in apoptosis or BART-6/BCL6 in diffuse large B-cell lymphomas) were experimentally discovered and/or computationally predicted. Available tools for target prediction are usually based on sequence matching, thermodynamics and conservation, among other approaches. Nevertheless, the main issue on miRNA-mRNA pair prediction is the little overlapping results among different prediction methods, or even with experimentally validated pairs lists, despite the fact that all rely on similar principles. To circumvent this problem, we have developed miRGate, a database containing novel computational predicted miRNA-mRNA pairs that are calculated using well-established algorithms. In addition, it includes an updated and complete dataset of sequences for both miRNA and mRNAs 3'-Untranslated region from human (including human viruses), mouse and rat, as well as experimentally validated data from four well-known databases. The underlying methodology of miRGate has been successfully applied to independent datasets providing predictions that were convincingly validated by functional assays. miRGate is an open resource available at http://mirgate.bioinfo.cnio.es. For programmatic access, we have provided a representational state transfer web service application programming interface that allows accessing the database at http://mirgate.bioinfo.cnio.es/API/ Database URL: http://mirgate.bioinfo.cnio.es

  1. miRGate: a curated database of human, mouse and rat miRNA–mRNA targets

    PubMed Central

    Andrés-León, Eduardo; González Peña, Daniel; Gómez-López, Gonzalo; Pisano, David G.

    2015-01-01

    MicroRNAs (miRNAs) are small non-coding elements involved in the post-transcriptional down-regulation of gene expression through base pairing with messenger RNAs (mRNAs). Through this mechanism, several miRNA–mRNA pairs have been described as critical in the regulation of multiple cellular processes, including early embryonic development and pathological conditions. Many of these pairs (such as miR-15 b/BCL2 in apoptosis or BART-6/BCL6 in diffuse large B-cell lymphomas) were experimentally discovered and/or computationally predicted. Available tools for target prediction are usually based on sequence matching, thermodynamics and conservation, among other approaches. Nevertheless, the main issue on miRNA–mRNA pair prediction is the little overlapping results among different prediction methods, or even with experimentally validated pairs lists, despite the fact that all rely on similar principles. To circumvent this problem, we have developed miRGate, a database containing novel computational predicted miRNA–mRNA pairs that are calculated using well-established algorithms. In addition, it includes an updated and complete dataset of sequences for both miRNA and mRNAs 3′-Untranslated region from human (including human viruses), mouse and rat, as well as experimentally validated data from four well-known databases. The underlying methodology of miRGate has been successfully applied to independent datasets providing predictions that were convincingly validated by functional assays. miRGate is an open resource available at http://mirgate.bioinfo.cnio.es. For programmatic access, we have provided a representational state transfer web service application programming interface that allows accessing the database at http://mirgate.bioinfo.cnio.es/API/ Database URL: http://mirgate.bioinfo.cnio.es PMID:25858286

  2. Endothelial miR-17∼92 cluster negatively regulates arteriogenesis via miRNA-19 repression of WNT signaling

    PubMed Central

    Landskroner-Eiger, Shira; Qiu, Cong; Perrotta, Paola; Siragusa, Mauro; Lee, Monica Y.; Ulrich, Victoria; Luciano, Amelia K.; Zhuang, Zhen W.; Corti, Federico; Simons, Michael; Montgomery, Rusty L.; Wu, Dianqing; Yu, Jun; Sessa, William C.

    2015-01-01

    The contribution of endothelial-derived miR-17∼92 to ischemia-induced arteriogenesis has not been investigated in an in vivo model. In the present study, we demonstrate a critical role for the endothelial-derived miR-17∼92 cluster in shaping physiological and ischemia-triggered arteriogenesis. Endothelial-specific deletion of miR-17∼92 results in an increase in collateral density limbs and hearts and in ischemic limbs compared with control mice, and consequently improves blood flow recovery. Individual cluster components positively or negatively regulate endothelial cell (EC) functions in vitro, and, remarkably, ECs lacking the cluster spontaneously form cords in a manner rescued by miR-17a, -18a, and -19a. Using both in vitro and in vivo analyses, we identified FZD4 and LRP6 as targets of miR-19a/b. Both of these targets were up-regulated in 17∼92 KO ECs compared with control ECs, and both were shown to be targeted by miR-19 using luciferase assays. We demonstrate that miR-19a negatively regulates FZD4, its coreceptor LRP6, and WNT signaling, and that antagonism of miR-19a/b in aged mice improves blood flow recovery after ischemia and reduces repression of these targets. Collectively, these data provide insights into miRNA regulation of arterialization and highlight the importance of vascular WNT signaling in maintaining arterial blood flow. PMID:26417068

  3. miR-31 and miR-17-5p levels change during transformation of follicular lymphoma.

    PubMed

    Thompson, Mary Ann; Edmonds, Mick D; Liang, Shan; McClintock-Treep, Sara; Wang, Xuan; Li, Shaoying; Eischen, Christine M

    2016-04-01

    The 30% of patients whose indolent follicular lymphoma transforms to aggressive diffuse large B-cell lymphoma (DLBCL) have poor survival. Reliable predictors of follicular B-cell lymphoma transformation to DLBCL are lacking, and diagnosis of those that will progress is challenging. MicroRNA, which regulates gene expression, has critical functions in the growth and progression of many cancers and contributes to the pathogenesis of lymphoma. Using 5 paired samples from patients who presented with follicular lymphoma and progressed to DLBCL, we identified specific microRNA differentially expressed between the two. Specifically, miR-17-5p levels were low in follicular lymphoma and increased as the disease transformed. In contrast, miR-31 expression was high in follicular lymphoma and decreased as the lymphoma progressed. These results were confirmed in additional unpaired cases of low-grade follicular lymphoma (n = 13) and high-grade follicular lymphoma grade 3 or DLBCL (n = 17). Loss of miR-31 expression in DLBCL was not due to deletion of the locus. Changes in miR-17-5p and miR-31 were not correlated with immunophenotype, genetics, or status of the MYC oncogene. However, increased miR-17-5p expression did significantly correlate with increased expression of p53 protein, which is indicative of mutant TP53. Two pro-proliferative genes, E2F2 and PI3KC2A, were identified as direct messenger RNA targets of miR-31, suggesting that these may contribute to follicular lymphoma transformation. Our results indicate that changes in miR-31 and miR-17-5p reflect the transformation of follicular lymphoma to an aggressive large B-cell lymphoma and may, along with their targets, be viable markers for this process.

  4. Involvement of miR160/miR393 and their targets in cassava responses to anthracnose disease.

    PubMed

    Pinweha, Nattaya; Asvarak, Thipa; Viboonjun, Unchera; Narangajavana, Jarunya

    2015-02-01

    Cassava is a starchy root crop for food and industrial applications in many countries around the world. Among the factors that affect cassava production, diseases remain the major cause of yield loss. Cassava anthracnose disease is caused by the fungus Colletotrichum gloeosporioides. Severe anthracnose attacks can cause tip die-backs and stem cankers, which can affect the availability of planting materials especially in large-scale production systems. Recent studies indicate that plants over- or under-express certain microRNAs (miRNAs) to cope with various stresses. Understanding how a disease-resistant plant protects itself from pathogens should help to uncover the role of miRNAs in the plant immune system. In this study, the disease severity assay revealed different response to C. gloeosporioides infection in two cassava cultivars. Quantitative RT-PCR analysis uncovered the differential expression of the two miRNAs and their target genes in the two cassava cultivars that were subjected to fungal infection. The more resistant cultivar revealed the up-regulation of miR160 and miR393, and consequently led to low transcript levels in their targets, ARF10 and TIR1, respectively. The more susceptible cultivar exhibited the opposite pattern. The cis-regulatory elements relevant to defense and stress responsiveness, fungal elicitor responsiveness and hormonal responses were the most prevalent present in the miRNAs gene promoter regions. The possible dual role of these specific miRNAs and their target genes associated with cassava responses to C. gloeosporioides is discussed. This is the first study to address the molecular events by which miRNAs which might play a role in fungal-infected cassava. A better understanding of the functions of miRNAs target genes should greatly increase our knowledge of the mechanism underlying susceptibility and lead to new strategies to enhance disease tolerance in this economically important crop.

  5. MicroRNA fate upon targeting with anti-miRNA oligonucleotides as revealed by an improved Northern-blot-based method for miRNA detection

    PubMed Central

    Torres, Adrian G.; Fabani, Martin M.; Vigorito, Elena; Gait, Michael J.

    2011-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs involved in fine-tuning of gene regulation. Antisense oligonucleotides (ONs) are promising tools as anti-miRNA (anti-miR) agents toward therapeutic applications and to uncover miRNA function. Such anti-miR ONs include 2′-O-methyl (OMe), cationic peptide nucleic acids like K-PNA-K3, and locked nucleic acid (LNA)-based anti-miRs such as LNA/DNA or LNA/OMe. Northern blotting is a widely used and robust technique to detect miRNAs. However, miRNA quantification in the presence of anti-miR ONs has proved to be challenging, due to detection artifacts, which has led to poor understanding of miRNA fate upon anti-miR binding. Here we show that anti-miR ON bound to miR-122 can prevent the miRNA from being properly precipitated into the purified RNA fraction using the standard RNA extraction protocol (TRI-Reagent), yielding an RNA extract that does not reflect the real cellular levels of the miRNA. An increase in the numbers of equivalents of isopropanol during the precipitation step leads to full recovery of the targeted miRNA back into the purified RNA extract. Following our improved protocol, we demonstrate by Northern blotting, in conjunction with a PNA decoy strategy and use of high denaturing PAGE, that high-affinity anti-miRs (K-PNA-K3, LNA/DNA, and LNA/OMe) sequester miR-122 without causing miRNA degradation, while miR-122 targeting with a lower-affinity anti-miR (OMe) seems to promote degradation of the miRNA. The technical issues explored in this work will have relevance for other hybridization-based techniques for miRNA quantification in the presence of anti-miR ONs. PMID:21441346

  6. Implication of the miR-184 and miR-204 Competitive RNA Network in Control of Mouse Secondary Cataract

    PubMed Central

    Hoffmann, Andrea; Huang, Yusen; Suetsugu-Maki, Rinako; Ringelberg, Carol S; Tomlinson, Craig R; Rio-Tsonis, Katia Del; Tsonis, Panagiotis A

    2012-01-01

    The high recurrence rate of secondary cataract (SC) is caused by the intrinsic differentiation activity of residual lens epithelial cells after extra-capsular lens removal. The objective of this study was to identify changes in the microRNA (miRNA) expression profile during mouse SC formation and to selectively manipulate miRNA expression for potential therapeutic intervention. To model SC, mouse cataract surgery was performed and temporal changes in the miRNA expression pattern were determined by microarray analysis. To study the potential SC counterregulative effect of miRNAs, a lens capsular bag in vitro model was used. Within the first 3 wks after cataract surgery, microarray analysis demonstrated SC-associated expression pattern changes of 55 miRNAs. Of the identified miRNAs, miR-184 and miR-204 were chosen for further investigations. Manipulation of miRNA expression by the miR-184 inhibitor (anti-miR-184) and the precursor miRNA for miR-204 (pre-miR-204) attenuated SC-associated expansion and migration of lens epithelial cells and signs of epithelial to mesenchymal transition such as α-smooth muscle actin expression. In addition, pre-miR-204 attenuated SC-associated expression of the transcription factor Meis homeobox 2 (MEIS2). Examination of miRNA target binding sites for miR-184 and miR-204 revealed an extensive range of predicted target mRNA sequences that were also a target to a complex network of other SC-associated miRNAs with possible opposing functions. The identification of the SC-specific miRNA expression pattern together with the observed in vitro attenuation of SC by anti-miR-184 and pre-miR-204 suggest that miR-184 and miR-204 play a significant role in the control of SC formation in mice that is most likely regulated by a complex competitive RNA network. PMID:22270329

  7. Sequence-based analysis of 5'UTR and coding regions of CASP3 in terms of miRSNPs and SNPs in targetting miRNAs.

    PubMed

    Ergun, Sercan; Oztuzcu, Serdar

    2016-06-01

    Apoptosis is described as a mechanism of cell death occurring after adequate cellular harm. Deregulation of apoptosis occurs in many human conditions such as autoimmune disorders, ischemic damage, neurodegenerative diseases and different cancer types. Information relating miRNAs to cancer is increasing. miRNAs can affect development of cancer via many different pathways, including apoptosis. Polymorphisms in miRNA genes or miRNA target sites (miRSNPs) can change miRNA activity. Although polymorphisms in miRNA genes are very uncommon, SNPs in miRNA-binding sites of target genes are quite common. Many researches have revealed that SNPs in miRNA target sites improve or decrease the efficacy of the interaction between miRNAs and their target genes. Our aim was to specify miRSNPs on CASP3 gene (caspase-3) and SNPs in miRNA genes targeting 5'UTR and coding exons of CASP3, and evaluate the effect of these miRSNPs and SNPs of miRNA genes with respect to apoptosis. We detected 141 different miRNA binding sites (126 different miRNAs) and 7 different SNPs in binding sites of miRNA in 5'UTR and CDS of CASP3 gene. Intriguingly, miR-339-3p's binding site on CASP3 has a SNP (rs35372903, G/A) on CASP3 5'UTR and its genomic sequence has a SNP (rs565188493, G/A) at the same nucleotide with rs35372903. Also, miR-339-3p has two other SNPs (rs373011663, C/T rs72631820, A/G) of which the first is positioned at the binding site. Here, miRSNP (rs35372903) at CASP3 5'UTR and SNP (rs565188493) at miR-339-3p genomic sequence cross-matches at the same site of binding region. Besides, miR-339-3p targets many apoptosis related genes (ZNF346, TAOK2, PIM2, HIP1, BBC3, TNFRSF25, CLCF1, IHPK2, NOL3) although it had no apoptosis related interaction proven before. This means that miR-339-3p may also have a critical effect on apoptosis via different pathways other than caspase-3. Hence, we can deduce that this is the first study demonstrating a powerful association between miR-339-3p and apoptosis

  8. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease.

    PubMed

    Jia, Li-Hua; Liu, Yi-Ning

    2016-06-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder that is characterized by progressive memory loss and deteriorated higher cognitive functions. An economical, rapid and noninvasive biomarker for AD has not been identified. We aimed to investigate the diagnostic value of serum miR-223 and miR-519 in AD. The expressions of miR-223 and miR-519, with previously reported AD-associated miR-29 and miR-125b, were measured by quantitative reverse transcription polymerase chain reaction in the serum of 84 probable sporadic AD patients (age onset > 65 years) and 62 healthy control populations in China. Analyses were undertaken to assess the specificity and sensitivity of miRNAs to predict AD. In addition, the relationship between miRNAs and mini mental state examination (MMSE) scores in AD patients was also assessed. Serum miR-29, miR-125b and miR-223 were significantly decreased, but serum miR-519 was significantly increased in AD patients compared with healthy blood donors. In addition, serum miR-223 was strongly positively correlated with MMSE score in AD patients but serum miR-519 was not. Importantly, the receiver operating characteristic (ROC) result of serum miR-223 for prediction of AD was 0.786, higher than those of serum miR-29 (0.734) or miR-125b (0.726). The combination of serum miR-223 and miR-125b gave improved sensitivity/specificity for AD prediction (area under the ROC curve, 0.879) than either miRNA alone. Our preliminary findings indicate that serum miR-223 might be a potential biomarker for AD evaluation. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27027823

  9. Identification of Nutritional Stress-Responsive miRNAs in Phaseolus vulgaris

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs (miRNAs) are key regulators for Arabidopsis development and stress responses. A hybridization approach using miRNAs-macroarrays was used to identify miRNAs that respond to nutritional stress in Phaseolus vulgaris. miRNAs-macroarrays were prepared by printing nylon filters with DNA syntheti...

  10. [Web server for prediction of miRNAs and their precursors and binding sites].

    PubMed

    Vorozheykin, P S; Titov, I I

    2015-01-01

    A microRNA (miRNA) is a small noncoding RNA molecule about 22 nucleotides in length. The paper describes a web server for predicting miRNAs and their precursors and binding sites. The predictions are based on either sequence similarity to known miRNAs of 223 organisms or context-structural hidden Markov models. It has been shown that the proposed methods of prediction of human miRNAs and pre-miRNAs outperform the existing ones in accuracy. The average deviation of predicted 5'-ends of human miRNAs from actual positions is 3.13 nt in the case of predicting one pair of complementary miRNAs (miRNA-miRNA* duplex). A useful option for our application is the prediction of an additional miRNA pair. In this mode, the pairs closest to actual miRNA deviate by 1.61 nt on average. The proposed method also shows good performance in predicting mouse miRNAs. Binding sites for miRNAs are predicted by two known approaches based on complementarity and thermodynamic stability of the miRNA-mRNA duplex and on a new approach, which takes into account miRNAs competition for the site. The role of the secondary structure in miRNA processing is considered. The web server is available at http://wwwmgs.bionet.nsc.ru/mgs/programs/rnaanalys/. PMID:26510603

  11. "Language Immersion Tepee" as a Facilitator of Sámi Language Learning

    ERIC Educational Resources Information Center

    Keskitalo, Pigga; Määttä, Kaarina; Uusiautti, Satu

    2014-01-01

    Due to the history of assimilation, power relations, and their sociolinguistic situation, the Sámi languages are categorized as endangered. The position of the Sámi languages in Sámi education is reviewed, and language immersion as a teaching method and as a means of language maintenance is discussed. Sámi language learning is described through…

  12. N6-adenosine methylation in MiRNAs.

    PubMed

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  13. N6-Adenosine Methylation in MiRNAs

    PubMed Central

    Berulava, Tea; Rahmann, Sven; Rademacher, Katrin; Klein-Hitpass, Ludgar; Horsthemke, Bernhard

    2015-01-01

    Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A. By motif searches we have discovered consensus sequences discriminating between methylated and unmethylated miRNAs. The epigenetic modification of an epigenetic modifier as described here adds a new layer to the complexity of the posttranscriptional regulation of gene expression. PMID:25723394

  14. Impact of miRNAs on cardiovascular aging.

    PubMed

    Lee, Seahyoung; Choi, Eunhyun; Cha, Min-Ji; Park, Ae-Jun; Yoon, Cheesoon; Hwang, Ki-Chul

    2015-09-01

    Aging is a multidimensional process that leads to an increased risk of developing severe diseases, such as cancer and cardiovascular, neurodegenerative, and immunological diseases. Recently, small non-coding RNAs known as microRNAs (miRNAs) have been shown to regulate gene expression, which contributes to many physiological and pathophysiological processes in humans. Increasing evidence suggests that changes in miRNA expression profiles contribute to cellular senescence, aging and aging-related diseases. However, only a few miRNAs whose functions have been elucidated have been associated with aging and/or aging-related diseases. This article reviews the currently available findings regarding the roles of aging-related miRNAs, with a focus on cardiac and cardiovascular aging. PMID:26512249

  15. Electronic structure and the origin of the high ordering temperature in <mi>SrRu>2<mi mathvariant='normal'>Omi>6

    SciTech Connect

    Singh, David J.

    2015-06-16

    <mi>SrRu>2<mi mathvariant='normal'>Omi>6 is a layered honeycomb-lattice material with an extraordinarily high magnetic ordering temperature. We investigated this material using density functional calculations. We find that the energy scales for moment formation and ordering are similar and high. Additionally, we find that the magnetic anisotropy is high and favors moments oriented along the c axis. This provides an explanation for the exceptionally high ordering temperature. Finally, the compound is found to be semiconducting at the bare density functional level, even without magnetic order. Lastly, we discuss experimental consequences of this scenario for the high ordering temperature.

  16. Detection of low-frequency lambda-doublet transitions of the free 12CH and 13CH radicals

    PubMed Central

    McCarthy, M. C.; Mohamed, S.; Brown, J. M.; Thaddeus, P.

    2006-01-01

    By Fourier transform microwave spectroscopy, lambda-doubling transitions of 12CH and 13CH in the lowest rotational levels of the X2∏1/2 ground state have been directly detected, which has not been done previously. For both radicals, hyperfine-split lines have been measured to an accuracy of better than 1 ppm between 3 and 15 GHz, an improvement of at least 2 orders of magnitude over previous laboratory data. The measured frequencies have been combined with all previous data for CH and 13CH in the v = 0 level of the X2∏ electronic state to determine improved hyperfine parameters. The production of CH from various gases also has been studied and, with methanol, the yield of CH relative to OH. Astronomical studies of CH in higher rotational levels and 13CH can now be undertaken on the basis of the present work. PMID:16894169

  17. Research On The CH-47B Helicopter

    NASA Technical Reports Server (NTRS)

    Hilbert, Kathryn B.; Tucker, George E.; Chen, Robert T. N.; Fry, Emmett B.; Hindson, William S.

    1988-01-01

    Report describes equipment added to, and research capabilities of CH-47B helicopter. Programmable symbol generator provides display formats for variety of missions - those of vertical-takeoff-and-landing aircraft and helicopters. Powerful general-purpose flight computer in operation. Computer programmable in high-level languages and supports research more efficiently. Flight-control software developed to improve capability of helicopter to perform simulations in flight.

  18. [Redox Molecular Imaging Using ReMI].

    PubMed

    Hyodo, Fuminori; Ito, Shinji; Utsumi, Hideo

    2015-01-01

    Tissue redox status is one of the most important parameters to maintain homeostasis in the living body. Numerous redox reactions are involved in metabolic processes, such as energy production in the mitochondrial electron transfer system. A variety of intracellular molecules such as reactive oxygen species, glutathione, thioredoxins, NADPH, flavins, and ascorbic acid may contribute to the overall redox status in tissues. Breakdown of redox balance may lead to oxidative stress and can induce many pathological conditions such as cancer, neurological disorders, and aging. Therefore imaging of tissue redox status and monitoring antioxidant levels in living organisms can be useful in the diagnosis of disease states and assessment of treatment response. In vivo redox molecular imaging technology such as electron spin resonance imaging (ESRI), magnetic resonance imaging (MRI), and dynamic nuclear polarization (DNP)-MRI (redox molecular imaging; ReMI) is emerging as a viable redox status imaging modality. This review focuses on the application of magnetic resonance technologies using MRI or DNP-MRI and redox-sensitive contrast agents.

  19. Deregulation of miR-21 and miR-155 and their putative targets after silibinin treatment in T47D breast cancer cells

    PubMed Central

    Zadeh, Masoud Maleki; Ranji, Najmeh; Motamed, Nasrin

    2015-01-01

    Objective(s): MicroRNAs (miRNAs) are a class of short RNAs that control the biological processes including cell proliferation, apoptosis and development. Aberrant expression of miRNAs was determined in the different stages of tumor development and metastasis. To study the effect of silibinin on miRNAs expression, we evaluated quantitative expression of miR-21 and miR-155 as two oncomiRs and several potential targets in silibinin-treated T47D cells. Materials and Methods: The rate of proliferation and apoptosis was measured in silibinin-treated and untreated cells. The expression levels of miR-21 and miR-155 were evaluated in T47D cells treated with silibinin (100 µg/ml). Also, their putative targets were predicted in apoptotic pathways using multiple algorithms; as a confirmation, the transcription level of APAF-1, CASP-9 and BID was evaluated. Results: In silibinin-treated cells, death was occurred in a dose and time-dependent manner. miR-21 and miR-155 was downregulated in cells treated with silibinin (100 µg/ml). It is noticeable that the expression of their potential targets including CASP-9 and APAF-1 was increased in silibinin-treated cells after 48 hr. Conclusion: Our findings showed a correlation between the expression of miR-21 and miR-155 and apoptosis in silibinin treated T47D cells. It seems that miRNAs such as miR-21 and miR-155 were regulated by silibinin. Also, increase in the transcript level of APAF-1 and CASP-9 after downregulation of miR-21 and miR-155 might indicate that these genes were targeted by aforementioned miRNAs in T47D cells. PMID:26877850

  20. miRMOD: a tool for identification and analysis of 5' and 3' miRNA modifications in Next Generation Sequencing small RNA data.

    PubMed

    Kaushik, Abhinav; Saraf, Shradha; Mukherjee, Sunil K; Gupta, Dinesh

    2015-01-01

    In the past decade, the microRNAs (miRNAs) have emerged to be important regulators of gene expression across various species. Several studies have confirmed different types of post-transcriptional modifications at terminal ends of miRNAs. The reports indicate that miRNA modifications are conserved and functionally significant as it may affect miRNA stability and ability to bind mRNA targets, hence affecting target gene repression. Next Generation Sequencing (NGS) of the small RNA (sRNA) provides an efficient and reliable method to explore miRNA modifications. The need for dedicated software, especially for users with little knowledge of computers, to determine and analyze miRNA modifications in sRNA NGS data, motivated us to develop miRMOD. miRMOD is a user-friendly, Microsoft Windows and Graphical User Interface (GUI) based tool for identification and analysis of 5' and 3' miRNA modifications (non-templated nucleotide additions and trimming) in sRNA NGS data. In addition to identification of miRNA modifications, the tool also predicts and compares the targets of query and modified miRNAs. In order to compare binding affinities for the same target, miRMOD utilizes minimum free energies of the miRNA:target and modified-miRNA:target interactions. Comparisons of the binding energies may guide experimental exploration of miRNA post-transcriptional modifications. The tool is available as a stand-alone package to overcome large data transfer problems commonly faced in web-based high-throughput (HT) sequencing data analysis tools. miRMOD package is freely available at http://bioinfo.icgeb.res.in/miRMOD. PMID:26623179

  1. Distinct roles for miR-1 and miR-133a in the proliferation and differentiation of rhabdomyosarcoma cells.

    PubMed

    Rao, Prakash K; Missiaglia, Edoardo; Shields, Lauren; Hyde, Greg; Yuan, Bingbing; Shepherd, Christopher J; Shipley, Janet; Lodish, Harvey F

    2010-09-01

    Rhabdomyosarcoma is the most common soft tissue sarcoma in the pediatric population. As this tumor has an undifferentiated myogenic phenotype, agents that promote differentiation hold particular promise as part of a novel therapeutic approach to combat this type of cancer. In this report, we focus on the contribution of two microRNAs (miRNAs) in rhabdomyosarcomas. Levels of miR-1 and miR-133a are drastically reduced in representative cell lines from each major rhabdomyosarcoma subtype (embryonal and alveolar). Introduction of miR-1 and miR-133a into an embryonal rhabdomyosarcoma-derived cell line is cytostatic, thereby suggesting a tumor suppressor-like role for these myogenic miRNAs. Transcriptional profiling of cells after miR-1 and miR-133a expression reveals that miR-1 (but not miR-133a) exerts a strong promyogenic influence on these poorly differentiated tumor cells. We identify mRNAs that are down-regulated by these miRNAs and propose roles for miR-1 and miR-133a in repressing isoforms of genes that are normally not expressed in muscle. Finally, we show that mRNA targets of miR-1 and miR-133a are up-regulated in rhabdomyosarcomas, suggesting a causative role for these miRNAs in the development of rhabdomyosarcomas. More important, these results point to the promise of enhancing rhabdomyosarcoma therapy using miRNAs as agents that mediate cytostasis and promote muscle differentiation.

  2. miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats

    PubMed Central

    Xu, Xiao; Liu, Zhikun; Wang, Jianguo; Ling, Qi; Xie, Haiyang; Guo, Haijun; Wei, Xuyong; Zhou, Lin; Zheng, Shusen

    2016-01-01

    Partial hepatectomy (PH) promotes the reentry of quiescent hepatocytes into cell cycle for regrowth. miRNA profiles in livers with different mass deficits after PH have not been investigated and miRNAs implicated in liver regeneration remain unclear. We generated miRNA profiles from normal and remnant livers at 6, 12, 24, and 36 hours after 1/3 or 2/3PH using microarrays. Compared with normal livers, the proportion of altered miRNAs decreased with time after 1/3PH, but increased after 2/3PH. Most of altered miRNAs between 1/3 and 2/3PH exhibited similar up- or down-regulation, but lower expression magnitude for 1/3PH. Among differentially expressed miRNAs between 2/3PH with robust DNA replication and 1/3PH with a minimal replicative response, we identified miR-101a, miR-92a, miR-25, miR-93 and miR-106b as key regulators of cell cycle. In 2/3PH model, overexpression of miR-106b~25 cluster tended to accelerate liver regeneration, while inhibition of miR-106b~25 cluster markedly repressed regenerative response and delayed recovery of liver function. Mechanistically, RB1 and KAT2B with cell cycle arrest activity were identified as novel targets of miR-106b/93 and miR-25, respectively. Overall, we featured miRNA profiles and dynamics after 1/3 and 2/3PH, and identified miR-106b~25 cluster as being involved in timely cell cycle entry of hepatocytes after PH. PMID:27507706

  3. miRNA profiles in livers with different mass deficits after partial hepatectomy and miR-106b~25 cluster accelerating hepatocyte proliferation in rats.

    PubMed

    Xu, Xiao; Liu, Zhikun; Wang, Jianguo; Ling, Qi; Xie, Haiyang; Guo, Haijun; Wei, Xuyong; Zhou, Lin; Zheng, Shusen

    2016-01-01

    Partial hepatectomy (PH) promotes the reentry of quiescent hepatocytes into cell cycle for regrowth. miRNA profiles in livers with different mass deficits after PH have not been investigated and miRNAs implicated in liver regeneration remain unclear. We generated miRNA profiles from normal and remnant livers at 6, 12, 24, and 36 hours after 1/3 or 2/3PH using microarrays. Compared with normal livers, the proportion of altered miRNAs decreased with time after 1/3PH, but increased after 2/3PH. Most of altered miRNAs between 1/3 and 2/3PH exhibited similar up- or down-regulation, but lower expression magnitude for 1/3PH. Among differentially expressed miRNAs between 2/3PH with robust DNA replication and 1/3PH with a minimal replicative response, we identified miR-101a, miR-92a, miR-25, miR-93 and miR-106b as key regulators of cell cycle. In 2/3PH model, overexpression of miR-106b~25 cluster tended to accelerate liver regeneration, while inhibition of miR-106b~25 cluster markedly repressed regenerative response and delayed recovery of liver function. Mechanistically, RB1 and KAT2B with cell cycle arrest activity were identified as novel targets of miR-106b/93 and miR-25, respectively. Overall, we featured miRNA profiles and dynamics after 1/3 and 2/3PH, and identified miR-106b~25 cluster as being involved in timely cell cycle entry of hepatocytes after PH. PMID:27507706

  4. Targeting of Runx2 by miRNA-135 and miRNA-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease

    PubMed Central

    Taipaleenmäki, Hanna; Browne, Gillian; Akech, Jacqueline; Zustin, Jozef; van Wijnen, Andre J.; Stein, Janet L.; Hesse, Eric; Stein, Gary S.; Lian, Jane B.

    2015-01-01

    Progression of breast cancer to metastatic bone disease is linked to deregulated expression of the transcription factor Runx2. Therefore, our goal was to evaluate the potential for clinical use of Runx2-targeting microRNAs (miRNAs) to reduce tumor growth and bone metastatic burden. Expression analysis of a panel of miRNAs regulating Runx2 revealed a reciprocal relationship between the abundance of Runx2 protein and two miRNAs, miR-135 and miR-203. These miRNAs are highly expressed in normal breast epithelial cells where Runx2 is not detected, and absent in metastatic breast cancer cells and tissue biopsies that express Runx2. Reconstituting metastatic MDA-MB-231-Luc cells with miR-135 and miR-203 reduced the abundance of Runx2 and expression of the metastasis-promoting Runx2 target genes IL-11, MMP-13, and PTHrP. Additionally, tumor cell viability was decreased and migration suppressed in vitro. Orthotopic implantation of MDA-MB-231-luc cells delivered with miR-135 or miR-203, followed by an intratumoral administration of the synthetic miRNAs reduced the tumor growth and spontaneous metastasis to bone. Furthermore, intratibial injection of these miRNA-delivered cells impaired tumor growth in the bone environment and inhibited bone resorption. Importantly, reconstitution of Runx2 in MDA-MB-231-luc cells delivered with miR-135 and miR-203 reversed the inhibitory effect of the miRNAs on tumor growth and metastasis. Thus, we have identified that aberrant expression of Runx2 in aggressive tumor cells is related to the loss of specific Runx2-targeting miRNAs and that a clinically relevant replacement strategy by delivery of synthetic miRNAs is a candidate therapeutic approach to prevent metastatic bone disease by this route. PMID:25634212

  5. The Mi-9 Gene from Solanum arcanum Conferring Heat-Stable Resistance to Root-Knot Nematodes Is a Homolog of Mi-11[W][OA

    PubMed Central

    Jablonska, Barbara; Ammiraju, Jetty S.S.; Bhattarai, Kishor K.; Mantelin, Sophie; de Ilarduya, Oscar Martinez; Roberts, Philip A.; Kaloshian, Isgouhi

    2007-01-01

    Resistance conferred by the Mi-1 gene from Solanum peruvianum is effective and widely used for limiting root-knot nematode (Meloidogyne spp.) yield loss in tomato (Solanum lycopersicum), but the resistance is ineffective at soil temperatures above 28°C. Previously, we mapped the heat-stable resistance gene Mi-9 in Solanum arcanum accession LA2157 to the short arm of chromosome 6, in a genetic interval as Mi-1 and the Cladosporium fulvum resistance gene Cf2. We developed a fine map of the Mi-9 region by resistance and marker screening of an F2 population and derived F3 families from resistant LA2157 × susceptible LA392. Mi-1 intron 1 flanking primers were designed to amplify intron 1 and fingerprint Mi-1 homologs. Using these primers, we identified seven Mi-1 homologs in the mapping parents. Cf-2 and Mi-1 homologs were mapped on chromosome 6 using a subset of the F2. Cf-2 homologs did not segregate with Mi-9 resistance, but three Mi-1 homologs (RH1, RH2, and RH4) from LA2157 and one (SH1) from LA392 colocalized to the Mi-9 region. Reverse transcriptase-polymerase chain reaction analysis indicated that six Mi-1 homologs are expressed in LA2157 roots. We targeted transcripts of Mi-1 homologs for degradation with tobacco (Nicotiana tabacum) rattle virus (TRV)-based virus-induced gene silencing using Agrobacterium infiltration with a TRV-Mi construct. In most LA2157 plants infiltrated with the TRV-Mi construct, Mi-9-meditated heat-stable root-knot nematode resistance was compromised at 32°C, indicating that the heat-stable resistance is mediated by a homolog of Mi-1. PMID:17172289

  6. miR-107 and miR-25 simultaneously target LATS2 and regulate proliferation and invasion of gastric adenocarcinoma (GAC) cells

    SciTech Connect

    Zhang, Mingjun; Wang, Xiaolei; Li, Wanhu; Cui, Yongchun

    2015-05-08

    Although a series of oncogenes and tumor suppressors were identified in the pathological development of gastric adenocarcinoma (GAC), the underlying molecule mechanism were still not fully understood. The current study explored the expression profile of miR-107 and miR-25 in GAC patients and their downstream regulative network. qRT-PCR analysis was performed to quantify the expression of these two miRNAs in serum samples from both patients and healthy controls. Dual luciferase assay was conducted to verify their putative bindings with LATS2. MTT assay, cell cycle assay and transwell assay were performed to explore how miR-107 and miR-25 regulate proliferation and invasion of gastric cancer cells. Findings of this study demonstrated that total miR-107 or miR-25 expression might be overexpressed in gastric cancer patients and they can simultaneously and synchronically regulate LATS2 expression, thereby affecting gastric cancer cell growth and invasion. Therefore, the miR-25/miR-107-LATS2 axis might play an important role in proliferation and invasion of the gastric cancer cells. - Highlights: • Total miR-107 and miR-25 expression is significantly increased in GAC patients. • Both miR-107 and miR-25 can promote proliferation and invasion of GAC cells. • Both miR-107 and miR-25 can target LATS2 and regulate its expression. • miR-107 and miR-25 regulate proliferation and invasion of GAC cells though LATS2.

  7. Targeting of RUNX3 by miR-130a and miR-495 cooperatively increases cell proliferation and tumor angiogenesis in gastric cancer cells.

    PubMed

    Lee, Sun Hee; Jung, Yuk Dong; Choi, Young Sun; Lee, You Mie

    2015-10-20

    Mature microRNAs (miRNAs) are 21 to 23 nucleotide noncoding RNA molecules that can downregulate multiple gene expression by mRNA degradation or translational repression. miRNAs are considered to play important roles in cell proliferation, apoptosis, and differentiation during mammalian development. The Runt-related transcription factor 3 (RUNX3) expression and activity are frequently downregulated by various mechanisms in gastric cancer. We have reported that RUNX3 inactivation is crucial for early tumorigenesis. In this study, we investigated the role of miRNAs targeting RUNX3 in early tumorigenesis. miR-130a and miR-495 upregulated under hypoxic conditions that bind to the RUNX3 3'-untranslated region (3'-UTR) were identified in gastric cancer cells by using microarray analysis and bioinformatics programs. Combination of miR-130a and miR-495 inhibited RUNX3 expression at the protein level, but not at the mRNA level. miR-130a and miR-495 significantly inhibited the RUNX3-3'UTR-luciferase activity. Combination of miR-130a and miR-495 significantly decreased apoptosis determined by Annexin V-FITC/propidium iodide staining and flow cytometric analysis, and the expression of Bim in SNU484 gastric cancer cells. In addition, p21 and Bim, RUNX3 target genes, were completely downregulated by the combination of miR-130a and miR-495. Using matrigel plug assay, we found that antagomiRs specific for miR-130a and miR-495 significantly reduced angiogenesis in vivo. In conclusion, targeting miR-130a and miR-495 could be a potential therapeutics to recover RUNX3 expression under hypoxic conditions and in early tumorigenic progression. PMID:26375442

  8. miR-9 and miR-124 synergistically affect regulation of dendritic branching via the AKT/GSK3β pathway by targeting Rap2a

    PubMed Central

    Xue, Qian; Yu, Caiyong; Wang, Yan; Liu, Ling; Zhang, Kun; Fang, Chao; Liu, Fangfang; Bian, Ganlan; Song, Bing; Yang, Angang; Ju, Gong; Wang, Jian

    2016-01-01

    A single microRNA (miRNA) can regulate expression of multiple proteins, and expression of an individual protein may be controlled by numerous miRNAs. This regulatory pattern strongly suggests that synergistic effects of miRNAs play critical roles in regulating biological processes. miR-9 and miR-124, two of the most abundant miRNAs in the mammalian nervous system, have important functions in neuronal development. In this study, we identified the small GTP-binding protein Rap2a as a common target of both miR-9 and miR-124. miR-9 and miR-124 together, but neither miRNA alone, strongly suppressed Rap2a, thereby promoting neuronal differentiation of neural stem cells (NSCs) and dendritic branching of differentiated neurons. Rap2a also diminished the dendritic complexity of mature neurons by decreasing the levels of pAKT and pGSK3β. Our results reveal a novel pathway in which miR-9 and miR-124 synergistically repress expression of Rap2a to sustain homeostatic dendritic complexity during neuronal development and maturation. PMID:27221778

  9. Regulation signature of miR-143 and miR-26 in porcine Salmonella infection identified by binding site enrichment analysis.

    PubMed

    Yao, Min; Gao, Weihua; Tao, Hengxun; Yang, Jun; Liu, Guoping; Huang, Tinghua

    2016-04-01

    Salmonella infects many vertebrate species, and pigs colonized with Salmonella are typically Salmonella carriers. Transcriptomic analysis of the response to Salmonella infection in whole blood has been reported for the pig. The objective of this study is to identify the important miRNAs involved in Salmonella infection using binding site enrichment analysis. We predicted porcine microRNA (miRNA) binding sites in the 3' UTR of protein-coding genes for all miRNA families. Based on those predictions, we analyzed miRNA-binding sites for mRNAs expressed in peripheral blood to investigate the functional importance of miRNAs in Salmonella infection in pig. Enrichment analysis revealed that binding sites of five miRNAs (including miR-143, -9839, -26, -2483, and -4335) were significantly over represented for the differentially expressed gene sets. Real-time PCR results indicated that selected members of this miRNA group (miR-143, -26, and -4335) were differentially expressed in whole blood after Salmonella inoculation. The luciferase reporter assay showed that ATP6V1A and IL13RA1 were targets of miR-143 and that miR-26 regulates BINP3L and ARL6IP6. The results strongly suggest that miR-143 and miR-26 play important regulatory roles in the development of Salmonella infection in pig.

  10. The NuMI neutrino beam at Fermilab

    SciTech Connect

    Kopp, Sacha E.; /Texas U.

    2005-05-01

    The Neutrinos at the Main Injector (NuMI) facility at Fermilab began operations in late 2004. NuMI will deliver an intense {nu}{sub {mu}} beam of variable energy (2-20 GeV) directed into the Earth at 58 mrad for short ({approx}1km) and long ({approx}700-900 km) baseline experiments. Several aspects of the design and results from early commissioning runs are reviewed.

  11. Operation of the NuMI Beam Monitoring System

    SciTech Connect

    Zwaska, Robert M.; Indurthy, Dharma; Keisler, Ryan; Kopp, Sacha; Mendoza, Steven; Pavlovich, Zarko; Proga, Marek; Bishai, Mary; Diwan, Milind; Viren, Brett; Harris, Debbie; Marchionni, Alberto; Morfin, Jorge; McDonald, Jeffrey; Naples, Donna; Northacker, David; Erwin, Albert; Ping, Huican; Velissaris, Cristos

    2006-11-20

    The NuMI (Neutrinos at the Main Injector) facility produces an intense neutrino beam for experiments. The NuMI Beam Monitoring system consists of four arrays of ion chambers that measure the intensity and distribution of the remnant hadron and tertiary muon beams produced in association with the neutrinos. The ion chambers operate in an environment of high particle fluxes and high radiation.

  12. Exploring the miRNA Regulatory Network Using Evolutionary Correlations

    PubMed Central

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Post-transcriptional regulation by miRNAs is a widespread and highly conserved phenomenon in metazoans, with several hundreds to thousands of conserved binding sites for each miRNA, and up to two thirds of all genes under miRNA regulation. At the same time, the effect of miRNA regulation on mRNA and protein levels is usually quite modest and associated phenotypes are often weak or subtle. This has given rise to the notion that the highly interconnected miRNA regulatory network exerts its function less through any individual link and more via collective effects that lead to a functional interdependence of network links. We present a Bayesian framework to quantify conservation of miRNA target sites using vertebrate whole-genome alignments. The increased statistical power of our phylogenetic model allows detection of evolutionary correlation in the conservation patterns of site pairs. Such correlations could result from collective functions in the regulatory network. For instance, co-conservation of target site pairs supports a selective benefit of combinatorial regulation by multiple miRNAs. We find that some miRNA families are under pronounced co-targeting constraints, indicating a high connectivity in the regulatory network, while others appear to function in a more isolated way. By analyzing coordinated targeting of different curated gene sets, we observe distinct evolutionary signatures for protein complexes and signaling pathways that could reflect differences in control strategies. Our method is easily scalable to analyze upcoming larger data sets, and readily adaptable to detect high-level selective constraints between other genomic loci. We thus provide a proof-of-principle method to understand regulatory networks from an evolutionary perspective. PMID:25299225

  13. TGF-β1 regulating miR-205/miR-195 expression affects the TGF-β signal pathway by respectively targeting SMAD2/SMAD7.

    PubMed

    Duan, Yingjun; Chen, Qianxue

    2016-10-01

    Transforming growth factor-β (TGF-β) proteins are important cytokines in the occurrence and development of tumors. However, its neural functions in glioma are still not understood. In the present study, we evaluated the effects of TGF-β1 on glioma cell line U87. miR-205 and miR-195 were involved in TGF-β1 signaling pathway. Quantitative real-time PCR was used to detect miR-205 and miR-195 levels in human glioma tissue samples and U87 cells treated with different concentrations of TGF-β1. Enzyme-linked immunosorbent assay (ELISA) was performed to determine TGF-β1 in the glioma patients peripheral blood. In vitro, U87 cells were transfected with mimics or inhibitors of miR-205 and miR-195. SMAD proteins were assayed by western blotting. Luciferase assay and co-immunoprecipitation (Co-IP)were used to determine the relationships between miR-205 and SMAD2, miR-195 and SMAD7. Effects of miR-205 and miR-195 on glioma cell proliferation and invasion using colony forming and cell migration assays. It was shown that miR-205 was decreased in glioma tissue, but miR-195 and TGF-β1 was increased. In addition, TGF-β1 concentration was negatively correlated with miR-205 mRNA level, but positively correlated with miR-195 mRNA. In addition, miR-205 was downregulated and miR-195 was upregulated by TGF-β1 in a dose-dependent manner. miR-205 and miR-195 targeted and inhibited SMAD2 and SMAD7 expression, respectively, in U87. High expression of miR-205 but not miR-195 reduced SMAD2 and SMAD4 heteromer formation. In addition, it was also shown that miR-205 overexpression inhibited U87 proliferation and invasion efficiently. All the results suggested that miR-205 and miR-195 participated in the TGF-β1 signaling pathway and showed opposite effects in glioma. These findings contribute to the understanding of TGF-β1 function in glioma.

  14. TGF-β1 regulating miR-205/miR-195 expression affects the TGF-β signal pathway by respectively targeting SMAD2/SMAD7

    PubMed Central

    Duan, Yingjun; Chen, Qianxue

    2016-01-01

    Transforming growth factor-β (TGF-β) proteins are important cytokines in the occurrence and development of tumors. However, its neural functions in glioma are still not understood. In the present study, we evaluated the effects of TGF-β1 on glioma cell line U87. miR-205 and miR-195 were involved in TGF-β1 signaling pathway. Quantitative real-time PCR was used to detect miR-205 and miR-195 levels in human glioma tissue samples and U87 cells treated with different concentrations of TGF-β1. Enzyme-linked immunosorbent assay (ELISA) was performed to determine TGF-β1 in the glioma patients peripheral blood. In vitro, U87 cells were transfected with mimics or inhibitors of miR-205 and miR-195. SMAD proteins were assayed by western blotting. Luciferase assay and co-immunoprecipitation (Co-IP) were used to determine the relationships between miR-205 and SMAD2, miR-195 and SMAD7. Effects of miR-205 and miR-195 on glioma cell proliferation and invasion using colony forming and cell migration assays. It was shown that miR-205 was decreased in glioma tissue, but miR-195 and TGF-β1 was increased. In addition, TGF-β1 concentration was negatively correlated with miR-205 mRNA level, but positively correlated with miR-195 mRNA. In addition, miR-205 was downregulated and miR-195 was upregulated by TGF-β1 in a dose-dependent manner. miR-205 and miR-195 targeted and inhibited SMAD2 and SMAD7 expression, respectively, in U87. High expression of miR-205 but not miR-195 reduced SMAD2 and SMAD4 heteromer formation. In addition, it was also shown that miR-205 overexpression inhibited U87 proliferation and invasion efficiently. All the results suggested that miR-205 and miR-195 participated in the TGF-β1 signaling pathway and showed opposite effects in glioma. These findings contribute to the understanding of TGF-β1 function in glioma. PMID:27574009

  15. MiR-191 Regulates Primary Human Fibroblast Proliferation and Directly Targets Multiple Oncogenes.

    PubMed

    Polioudakis, Damon; Abell, Nathan S; Iyer, Vishwanath R

    2015-01-01

    miRNAs play a central role in numerous pathologies including multiple cancer types. miR-191 has predominantly been studied as an oncogene, but the role of miR-191 in the proliferation of primary cells is not well characterized, and the miR-191 targetome has not been experimentally profiled. Here we utilized RNA induced silencing complex immunoprecipitations as well as gene expression profiling to construct a genome wide miR-191 target profile. We show that miR-191 represses proliferation in primary human fibroblasts, identify multiple proto-oncogenes as novel miR-191 targets, including CDK9, NOTCH2, and RPS6KA3, and present evidence that miR-191 extensively mediates target expression through coding sequence (CDS) pairing. Our results provide a comprehensive genome wide miR-191 target profile, and demonstrate miR-191's regulation of primary human fibroblast proliferation.

  16. Evaluation of SNPs in miR-196-a2, miR-27a and miR-146a as risk factors of colorectal cancer

    PubMed Central

    Hezova, Renata; Kovarikova, Alena; Bienertova-Vasku, Julie; Sachlova, Milana; Redova, Martina; Vasku, Anna; Svoboda, Marek; Radova, Lenka; Kiss, Igor; Vyzula, Rostislav; Slaby, Ondrej

    2012-01-01

    AIM: To investigate whether selected single nucleotide polymorphisms (SNPs) in miR-196a2, miR-27a and miR-146a genes are associated with sporadic colorectal cancer (CRC). METHODS: In order to investigate the effect of these SNPs in CRC, we performed a case-control study of 197 cases of sporadic CRC and 212 cancer-free controls originating from the Central-European Caucasian population using TaqMan Real-Time polymerase chain reaction and allelic discrimination analysis. RESULTS: The genotype and allele frequencies of SNPs were compared between the cases and the controls. None of the performed analysis showed any statistically significant results. CONCLUSION: Our data suggest a lack of association between rs11614913, rs895819 and rs2910164 and colorectal cancer risk in the Central-European Caucasian population, a population with an extremely high incidence of sporadic colorectal cancer. PMID:22719192

  17. miR-126: A novel regulator in colon cancer

    PubMed Central

    HUANG, WEINA; LIN, JIE; ZHANG, HONGXUAN

    2016-01-01

    Colon cancer is one of the most common, lethal diseases worldwide. Tumor metastasis and chemotherapy resistance are the main reasons for its poor prognosis and high fatality rate. Tumor development is thought of as one of the most complex cellular events as it is a multi-step cascading process involving infinite proliferation, invasion and immigration. Recently, increasing studies have demonstrated that microRNA-126 (miR-126) has an important role in colon cancer. The expression of miR-126 decreased significantly in colon cancer, particularly in highly metastatic cell lines. miR-126 controls tumor cell growth, metastasis and survival via inactivation of the oncogene signaling pathway, indicating that miR-126 may serve as a therapeutic target for anticancer therapy. Potentially, miR-126 was also reported to be an ideal molecular target as a novel biomarker for liver metastasis from colorectal cancer due to its changeable expression level. In the present review, the current knowledge regarding regulatory function of miR-126 is summarized along with its underlying mechanisms in colon cancer. PMID:26893826

  18. MiRNA expression patterns predict survival in glioblastoma

    PubMed Central

    2011-01-01

    Background In order to define new prognostic subgroups in patients with glioblastoma a miRNA screen (> 1000 miRNAs) from paraffin tissues followed by a bio-mathemati