Sample records for mic values obtained

  1. A New Algorithm to Optimize Maximal Information Coefficient

    PubMed Central

    Luo, Feng; Yuan, Zheming

    2016-01-01

    The maximal information coefficient (MIC) captures dependences between paired variables, including both functional and non-functional relationships. In this paper, we develop a new method, ChiMIC, to calculate the MIC values. The ChiMIC algorithm uses the chi-square test to terminate grid optimization and then removes the restriction of maximal grid size limitation of original ApproxMaxMI algorithm. Computational experiments show that ChiMIC algorithm can maintain same MIC values for noiseless functional relationships, but gives much smaller MIC values for independent variables. For noise functional relationship, the ChiMIC algorithm can reach the optimal partition much faster. Furthermore, the MCN values based on MIC calculated by ChiMIC can capture the complexity of functional relationships in a better way, and the statistical powers of MIC calculated by ChiMIC are higher than those calculated by ApproxMaxMI. Moreover, the computational costs of ChiMIC are much less than those of ApproxMaxMI. We apply the MIC values tofeature selection and obtain better classification accuracy using features selected by the MIC values from ChiMIC. PMID:27333001

  2. Effects of various media on the activity of NXL103 (formerly XRP 2868), a new oral streptogramin, against Haemophilus influenzae.

    PubMed

    Pankuch, Glenn A; Hoellman, Dianne; Bryskier, André; Lowther, John; Appelbaum, Peter C

    2006-11-01

    The activity of NXL103 against 108 strains of Haemophilus influenzae was tested using Haemophilus test media (HTM) obtained from various sources. With the exception of those obtained with stored HTM, MICs did not differ significantly, with MIC(50) and MIC(90) values of 0.5 and 0.5 to 1 microg/ml, respectively, in each medium.

  3. Effects of Various Media on the Activity of NXL103 (Formerly XRP 2868), a New Oral Streptogramin, against Haemophilus influenzae

    PubMed Central

    Pankuch, Glenn A.; Hoellman, Dianne; Bryskier, André; Lowther, John; Appelbaum, Peter C.

    2006-01-01

    The activity of NXL103 against 108 strains of Haemophilus influenzae was tested using Haemophilus test media (HTM) obtained from various sources. With the exception of those obtained with stored HTM, MICs did not differ significantly, with MIC50 and MIC90 values of 0.5 and 0.5 to 1 μg/ml, respectively, in each medium. PMID:17065630

  4. Assessment of Minimum Inhibitory Concentrations of Telavancin by Revised Broth Microdilution Method in Phase 3 Hospital-Acquired Pneumonia/Ventilator-Associated Pneumonia Clinical Isolates.

    PubMed

    Smart, Jennifer I; Corey, Gordon Ralph; Stryjewski, Martin E; Wang, Whedy; Barriere, Steven L

    2016-12-01

    The broth microdilution method (BMD) for testing telavancin minimum inhibitory concentrations (MICs) was revised (rBMD) in 2014 to improve the accuracy, precision, and reproducibility of the testing method. The aim of this study was to determine the effect of the revised method on telavancin MIC values for Staphylococcus aureus (S. aureus) clinical isolates obtained from hospital-acquired pneumonia (HAP) patients. Isolates from patients who participated in the phase 3 Assessment of Telavancin for Treatment of HAP Studies were retested using the rBMD method. Retesting of 647 isolates produced a range of telavancin MIC values from 0.015 µg/mL to 0.12 µg/mL with MIC 50/90 values of 0.06/0.06 µg/mL for the total pool of samples. For methicillin-resistant S. aureus (MRSA), MIC 50/90 values were 0.06/0.12 µg/mL. These values are up to 4-fold lower than MIC 50/90 values obtained using the original method. These results were used in part to justify lowering the telavancin breakpoints. All tested isolates remained susceptible to telavancin at the revised susceptibility breakpoint of ≤0.12 µg/mL. Overall, the clinical cure rate for microbiologically evaluable telavancin-treated patients was 78% for S. aureus, 76% for patients with MRSA, and 79% for patients with isolates with reduced susceptibility to vancomycin (MIC ≥1 µg/mL). Results from the rBMD method support the in vitro potency of telavancin against S. aureus. ATTAIN (NCT00107952 and NCT00124020). Theravance Biopharma Antibiotics, Inc.

  5. Pharmacokinetic-pharmacodynamic integration and modelling of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2013-06-01

    The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of oxytetracycline were investigated, when administered both alone and in the presence of carprofen, in healthy calves. The study comprised a four treatment, four sequences, and four period cross-over design and used a tissue cage model, which permitted the collection of serum, inflamed tissue cage fluid (exudate) and non-inflamed tissue cage fluid (transudate). There were no clinically relevant differences in the PK profile of oxytetracycline when administered alone and when administered with carprofen. PK-PD integration was undertaken for a pathogenic strain of Mannheimia haemolytic (A1 76/1), by correlating in vitro minimum inhibitory concentration (MIC) and time-kill data with in vivo PK data obtained in the cross-over study. Based on in vitro susceptibility in cation adjusted Mueller Hinton Broth (CAMHB) and in vivo determined PK variables, ratios of maximum concentration (Cmax) and area under curve (AUC) to MIC and time for which concentration exceeded MIC (T>MIC) were determined. The CAMHB MIC data satisfied integrated PK/PD relationships predicted to achieve efficacy for approximately 48 h after dosing; mean values for serum were 5.13 (Cmax/MIC), 49.3 h (T>MIC) and 126.6 h (AUC(96h)/MIC). Similar findings were obtained when oxytetracycline was administered in the presence of carprofen, with PK-PD indices based on MIC determined in CAMHB. However, PK-PD integration of data, based on oxytetracycline MICs determined in the biological fluids, serum, exudate and transudate, suggest that it possesses, at most, limited direct killing activity against the M. haemolytica strain A1 76/1; mean values for serum were 0.277 (Cmax/MIC), 0 h (T>MIC) and 6.84 h (AUC(96h)/MIC). The data suggest that the beneficial therapeutic effects of oxytetracycline may depend, at least in part, on actions other than direct inhibition of bacterial growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes.

    PubMed

    Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A; Klein, Günter; Kehrenberg, Corinna

    2015-01-01

    Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1-2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes blaBOR-1 (n = 147), blaOXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes.

  7. Antimicrobial Susceptibility of Bordetella bronchiseptica Isolates from Swine and Companion Animals and Detection of Resistance Genes

    PubMed Central

    Prüller, Sandra; Rensch, Ulrike; Meemken, Diana; Kaspar, Heike; Kopp, Peter A.; Klein, Günter; Kehrenberg, Corinna

    2015-01-01

    Bordetella bronchiseptica causes infections of the respiratory tract in swine and other mammals and is a precursor for secondary infections with Pasteurella multocida. Treatment of B. bronchiseptica infections is conducted primarily with antimicrobial agents. Therefore it is essential to get an overview of the susceptibility status of these bacteria. The aim of this study was to comparatively analyse broth microdilution susceptibility testing according to CLSI recommendations with an incubation time of 16 to 20 hours and a longer incubation time of 24 hours, as recently proposed to obtain more homogenous MICs. Susceptibility testing against a panel of 22 antimicrobial agents and two fixed combinations was performed with 107 porcine isolates from different farms and regions in Germany and 43 isolates obtained from companion animals in Germany and other European countries. Isolates with increased MICs were investigated by PCR assays for the presence of resistance genes. For ampicillin, all 107 porcine isolates were classified as resistant, whereas only a single isolate was resistant to florfenicol. All isolates obtained from companion animals showed elevated MICs for β-lactam antibiotics and demonstrated an overall low susceptibility to cephalosporines. Extension of the incubation time resulted in 1–2 dilution steps higher MIC50 values of porcine isolates for seven antimicrobial agents tested, while isolates from companion animals exhibited twofold higher MIC50/90 values only for tetracycline and cefotaxime. For three antimicrobial agents, lower MIC50 and MIC90 values were detected for both, porcine and companion animal isolates. Among the 150 isolates tested, the resistance genes bla BOR-1 (n = 147), bla OXA-2, (n = 4), strA and strB (n = 17), sul1 (n = 10), sul2 (n = 73), dfrA7 (n = 3) and tet(A) (n = 8) were detected and a plasmid localisation was identified for several of the resistance genes. PMID:26275219

  8. [Evaluation of in vitro antimicrobial activity of cefazolin alone and in combination with cefmetazole or flomoxef using agar dilution method and disk diffusion method].

    PubMed

    Matsuo, K; Uete, T

    1992-10-01

    Antimicrobial activities of cefazolin (CEZ) against 251 strains of various clinical isolates obtained during 1989 and 1990 were determined using the Mueller-Hinton agar dilution method at an inoculum level 10(6) CFU/ml. The reliability of the disk susceptility test was also studied using Mueller-Hinton agar and various disks at inoculum levels of 10(3-4) CFU/cm2 in estimating approximate values of MICs. In addition, antimicrobial activities of CEZ and cefmetazole (CMZ) or flomoxef (FMOX) in combination were investigated against methicillin-sensitive and -resistant Staphylococcus aureus (MSSA and MRSA) using the checkerboard agar dilution MIC method and the disk diffusion test either with the disks contained CEZ, CMZ, and FMOX alone, or CEZ, and CMZ or FMOX in combination. In this study, the MICs of CEZ against S. aureus were distributed with the 3 peak values at 0.39 microgram/ml, 3.13 micrograms/ml and > 100 micrograms/ml. MICs against MSSA were 0.39 microgram/ml to 0.78 microgram/ml, whereas those against MRSA were greater than 0.78 microgram/ml. MICs against majority of strains of Enterococcus faecalis were 25 micrograms/ml. Over 90% of strains of Escherichia coli and Klebsiella pneumoniae were inhibited at the level of 3.13 micrograms/ml. About 60% of isolates of indole negative Proteus spp. were inhibited at the levels of less than 3.13 micrograms/ml and 100% at 6.25 micrograms/ml, but MICs against indole positive Proteus spp., Serratia spp. and Pseudomonas aeruginosa were over 100 micrograms/ml. The antimicrobial activities of CEZ against these clinical isolates were not significantly different compared to those reported about 15-20 years ago, except for S. aureus. Highly resistant strains of S. aureus to CEZ were more prevalent in this study. The inhibitory zones obtained with the disk test were compared with MICs. The results of CEZ disk susceptibility test with 30 micrograms disk (Showa) or 10 micrograms disk (prepared in this laboratory) were well correlated with MICs (r = -0.837 and -0.814, respectively), showing the reliavility of the disk method in estimating approximate values of MICs. In the 4 category classification system currently used in Japan, break points in MIC values proposed are () MIC < or = 3 micrograms/ml, (++) > 3-15 micrograms/ml, (+) > 15-60 micrograms/ml, (-) > 60 micrograms/ml. The results obtained with 30 micrograms disks showed false positive in 7.7% and false negative in 6.8% of the samples. The disk results with E. faecalis showed a higher ratio of false positive results.(ABSTRACT TRUNCATED AT 400 WORDS)

  9. [Antimycoplasmal activities of ofloxacin and commonly used antimicrobial agents on Mycoplasma gallisepticum].

    PubMed

    Takahashi, I; Yoshida, T

    1989-05-01

    In vitro activities of ofloxacin (OFLX), a new quinolone derivative, against 29 strains of Mycoplasma gallisepticum was compared with those of 4 commonly used antimicrobial agents, doxycycline (DOXY), tylosin (TS), spectinomycin (SPCM) and thiamphenicol (TP). Antimycoplasmal activities of the drugs were evaluated on the MIC (final MIC) and MPC (minimum mycoplasmacidal concentration) values which were determined by a broth dilution procedure. The following results were obtained. 1. The MIC90s of OFLX and DOXY were both 0.20 micrograms/ml. The MICs of TS were distributed through a wide range (less than or equal to 0.006 - 0.78 micrograms/ml), and its MIC90 was 0.78 micrograms/ml. Of 29 M. gallisepticum strains, 27.6% were recognized as TS-resistant. The MIC90 values of SPCM and TP were 1.56 micrograms/ml and 3.13 micrograms/ml, respectively. The MIC90 of OFLX was equal to that of DOXY and 4- to 16-fold smaller than the values of the other 3 antibiotics. 2. The MPC of OFLX was the lowest among the antibiotics tested, its MPC90 value was 0.39 micrograms/ml and was followed by DOXY (1.56 micrograms/ml). The MPCs of TS were distributed in a wide range (0.012 - 3.13 micrograms/ml), and its MPC90 was 3.13 micrograms/ml. The MPC90 values of SPCM and TP were both 6.25 micrograms/ml. Therefore, the mycoplasmacidal activity of OFLX evaluated with MPC90 values was 4- to 16-fold greater than those of the other 4 antibiotics.

  10. Evaluation of graphical and statistical representation of analytical signals of spectrophotometric methods

    NASA Astrophysics Data System (ADS)

    Lotfy, Hayam Mahmoud; Fayez, Yasmin Mohammed; Tawakkol, Shereen Mostafa; Fahmy, Nesma Mahmoud; Shehata, Mostafa Abd El-Atty

    2017-09-01

    Simultaneous determination of miconazole (MIC), mometasone furaoate (MF), and gentamicin (GEN) in their pharmaceutical combination. Gentamicin determination is based on derivatization with of o-phthalaldehyde reagent (OPA) without any interference of other cited drugs, while the spectra of MIC and MF are resolved using both successive and progressive resolution techniques. The first derivative spectrum of MF is measured using constant multiplication or spectrum subtraction, while its recovered zero order spectrum is obtained using derivative transformation. Beside the application of constant value method. Zero order spectrum of MIC is obtained by derivative transformation after getting its first derivative spectrum by derivative subtraction method. The novel method namely, differential amplitude modulation is used to get the concentration of MF and MIC, while the novel graphical method namely, concentration value is used to get the concentration of MIC, MF, and GEN. Accuracy and precision testing of the developed methods show good results. Specificity of the methods is ensured and is successfully applied for the analysis of pharmaceutical formulation of the three drugs in combination. ICH guidelines are used for validation of the proposed methods. Statistical data are calculated, and the results are satisfactory revealing no significant difference regarding accuracy and precision.

  11. In vitro assessment of the antimicrobial susceptibility of caprine isolates of Mycoplasma mycoides subsp. capri.

    PubMed

    Paterna, A; Tatay-Dualde, J; Amores, J; Prats-van der Ham, M; Sánchez, A; de la Fe, C; Contreras, A; Corrales, J C; Gómez-Martín, Á

    2016-08-01

    The minimum inhibitory concentration (MIC) and minimum mycoplasmacidal concentration (MMC) of 17 antimicrobials against 41 Spanish caprine isolates of Mycoplasma mycoides subsp. capri (Mmc) obtained from different specimens (milk, external auricular canal and semen) were determined using a liquid microdilution method. For half of the isolates, the MIC was also estimated for seven of the antimicrobials using an epsilometric test (ET), in order to compare both methods and assess the validity of ET. Mutations in genes gyrA, gyrB, parC and parE conferring fluoroquinolone resistance, which have been recently described in Mmc, were investigated using PCR. The anatomical origin of the isolate had no effect on its antimicrobial susceptibility. Moxifloxacin and doxycycline had the lowest MIC values. The rest of the fluoroquinolones studied (except norfloxacin), together with tylosin and clindamycin, also had low MIC values, although the MMC obtained for clindamycin was higher than for the other antimicrobials. For all the aminoglycosides, spiramycin and erythromycin, a notable level of resistance was observed. The ET was in close agreement with broth microdilution at low MICs, but not at intermediate or high MICs. The analysis of the genomic sequences revealed the presence of an amino acid substitution in codon 83 of the gene gyrA, which has not been described previously in Mmc. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Preliminary antifungal activity assay of selected chlorine-containing derivatives of xanthone and phenoxyethyl amines.

    PubMed

    Klesiewicz, Karolina; Żelaszczyk, Dorota; Trojanowska, Danuta; Bogusz, Bożena; Małek, Marianna; Waszkielewicz, Anna; Szkaradek, Natalia; Karczewska, Elżbieta; Marona, Henryk; Budak, Alicja

    2018-06-20

    The aim of this study was to preliminary evaluate antifungal activity diverse group of chlorine-containing xanthone and phenoxyethyl amine derivatives - and to select most promising compounds for further studies. The antifungal efficacy of 16 compounds was tested with qualitative and quantitative methods against both reference and clinical strains of dermatophytes, moulds and yeasts. The disc-diffusion method has demonstrated that from 16 tested compounds, 7 possess good antifungal activity against dermatophytes and/or moulds while none of them has shown good efficacy against yeasts or bacterial strains. The most active compounds (2, 4, 10, 11, 12, 15, 16) were tested quantitatively by broth dilution method to obtain MIC values. The MIC values against dermatophytes ranged from 8 to 64 μg/mL. Compound 2 was the most active one against dermatophytes (MIC 50 and MIC 90 were 8 μg/mL). The MIC values for moulds ranged from 16 to 256 μg/mL. Compound 4 was the most active one against moulds, with MIC 50 and MIC 90 values amounting to 32 μg/mL. Among the tested compounds, compound 4 (derivative of xanthone) was the most active one and expressed good antifungal efficacy against clinical strains of dermatophytes and moulds. However, another xanthone derivative (compound 2) was the most active and selective against dermatophytes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Antibacterial activities of the methanol extract, fractions and compounds from Elaeophorbia drupifera (Thonn.) Stapf. (Euphorbiaceae).

    PubMed

    Voukeng, Igor K; Nganou, Blaise K; Sandjo, Louis P; Celik, Ilhami; Beng, Veronique P; Tane, Pierre; Kuete, Victor

    2017-01-07

    Elaeophorbia drupifera (Thonn.) Stapf. (Euphorbiaceae) is used in Cameroonian folk medicine to treat several ailments including bacterial-related diseases such as skin infections. In this study, the methanol extract from the leaves (EDL), fractions (EDLa-d), sub-fractions EDLc1-7 and EDLc31-35 as well as isolated compounds were tested for their antimicrobial activities against a panel of Gram-negative and Gram-positive bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; column chromatography was used for the fractionation and purification of the leaves extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Phytochemical investigation lead to the isolation of a mixture (1:3) of stigmasterol and β-sitosterol (1 + 2), euphol (3), sitosterol-O-β- D -xylopyranoside (4), 3,3',4'-tri-O-methylellagic acid (5), a mixture (1:1) of afzelin and quercetin-3-O-β- D -xylopyranoside (6 + 7), 3,3',4'-tri-O-methylellagic acid 4-O-β- D -glucopyranoside (8), ellagic acid-4-O-β-xylopyranoside-3,3',4'-trimethyl ether (9) from EDLc. Crude extract and fractions displayed selective activities with MIC values ranged from 32 to 1024 μg/mL for EDL against 84.9% of the 33 tested bacteria, 93.9% for EDLc, 69.7% for EDLb, 33.4% for EDLa and 0.03% for EDLd. MIC values ranged from 16 to 1024 μg/mL were obtained with EDLc3 and EDLc4 on all tested bacteria meanwhile other sub-fractions displayed selective activities. MIC value of 32 μg/mL was obtained with fractions EDLa against Escherichia coli AG100, EDLc against Enterobacer aerogenes ATCC13048 and EA298. For sub-fractions obtained from EDLc, the lowest MIC value of 16 μg/mL was recorded with EDLc3 against Staphylococcus aureus MRSA11. A corresponding value of 8 μg/mL against Providencia stuartii NAE16 was recorded with EDLc33 obtained from further fractionation of EDLc3. EDLc3 had MIC values below 100 μg/mL against all tested bacteria. Compound 5 as well as the mixture (1:1) of 6 and 7 inhibited the growth of all the tested bacteria with MICs ranged from 64 to 256 μg/mL. Elaeophorbia drupifera is a potential source of phytomedicine to tackle MDR bacteria. Sub-fraction EDLc3 was more active than all isolated compounds and deserves further investigations to develop natural drug to combat Gram-negative, Gram-positive bacteria and otherwise MDR phenotypes.

  14. Short communication: In vitro antimicrobial susceptibility of Mycoplasma agalactiae strains isolated from dairy goats.

    PubMed

    Paterna, A; Sánchez, A; Gómez-Martín, A; Corrales, J C; De la Fe, C; Contreras, A; Amores, J

    2013-01-01

    This study examined the susceptibility to several antimicrobials of 28 isolates of Mycoplasma agalactiae obtained from goats in a region (southeastern Spain) where contagious agalactia is endemic. For each isolate, the minimum inhibitory concentration (MIC) against 12 antimicrobials of the quinolone, macrolide, aminoglycoside, and tetracycline families was determined. The antimicrobials with the lowest MIC were enrofloxacin, ciprofloxacin, tylosin, and doxycycline, all with MIC90 (concentration at which growth of 90% of the isolates is inhibited) <1 µg/mL. Norfloxacin (a quinolone) showed a wide MIC range (0.1-12.8 µg/mL), suggesting a resistance mechanism toward this antimicrobial that was not elicited by enrofloxacin or ciprofloxacin (the other quinolones tested). Erythromycin showed the highest MIC90 such that its use against Mycoplasma agalactiae is not recommended. Finally, Mycoplasma agalactiae isolates obtained from goat herds with clinical symptoms of contagious agalactia featured higher MIC90 and MIC50 (concentration at which growth of 50% of the isolates is inhibited) values for many of the antimicrobials compared with isolates from asymptomatic animals. The relationship between the extensive use of antimicrobials in herds with clinical contagious agalactia and variations in MIC requires further study. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Antibacterial activities of the methanol extracts, fractions and compounds from Fagara tessmannii.

    PubMed

    Tankeo, Simplice B; Damen, Francois; Awouafack, Maurice D; Mpetga, James; Tane, Pierre; Eloff, Jacobus N; Kuete, Victor

    2015-07-01

    Fagara tessmannii is a shrub of the African rainforests used to treat bacterial infections, cancers, swellings and inflammation. In the present study, the methanol extract from the leaves (FTL), bark (FTB), and roots (FTR) of this plant as well as fractions (FTR1-5) and compounds isolated from FTR namely β-sitosterol-3-O-β-d-glucopyranoside (1), nitidine chloride (2) and buesgenine (3), were tested for their antimicrobial activities against a panel of Gram-negative bacteria including multidrug resistant (MDR) phenotypes. The broth microdilution method was used to determine the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the above samples; Column chromatography was used for the fractionation and purification of the roots extract whilst the chemical structures of compounds were determined using spectroscopic techniques. Results of the MIC determinations indicated that the crude extracts from the roots as well as fraction FTRa4 were active on all the 26 tested bacterial strains. MIC values below 100µg/mL were obtained with roots, leaves and bark extract respectively against 30.8%, 15.4% and 11.5% tested bacteria. The lowest MIC value below of 8µg/mL was obtained with extract from the roots against Escherichia coli MC100 strain. The lowest MIC value of 4µg/mL was also obtained with compound 3 against E. coli AG102 and Klebsiella pneumoniae ATCC11296 CONCLUSIONS: The present study demonstrates that F. tessmannii is a potential source of antimicrobial drugs to fight against MDR bacteria. Benzophenanthrine alkaloids 2 and 3 are the main antibacterial consituents of the roots of the plant. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Essential oils against foodborne pathogens and spoilage bacteria in minced meat.

    PubMed

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella; Fernandes, Ary

    2009-01-01

    The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC(90%) values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC(90%) values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC(90%) assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms.

  17. Essential Oils Against Foodborne Pathogens and Spoilage Bacteria in Minced Meat

    PubMed Central

    Barbosa, Lidiane Nunes; Rall, Vera Lucia Mores; Fernandes, Ana Angélica Henrique; Ushimaru, Priscila Ikeda; da Silva Probst, Isabella

    2009-01-01

    Abstract The antimicrobial activity of essential oils of oregano, thyme, basil, marjoram, lemongrass, ginger, and clove was investigated in vitro by agar dilution method and minimal inhibitory concentration (MIC) determination against Gram-positive (Staphylococcus aureus and Listeria monocytogenes) and Gram-negative strains (Escherichia coli and Salmonella Enteritidis). MIC90% values were tested against bacterial strains inoculated experimentally in irradiated minced meat and against natural microbiota (aerobic or facultative, mesophilic, and psychrotrophic bacteria) found in minced meat samples. MIC90% values ranged from 0.05%v/v (lemongrass oil) to 0.46%v/v (marjoram oil) to Gram-positive bacteria and from 0.10%v/v (clove oil) to 0.56%v/v (ginger oil) to Gram-negative strains. However, the MIC90% assessed on minced meat inoculated experimentally with foodborne pathogen strains and against natural microbiota of meat did not show the same effectiveness, and 1.3 and 1.0 were the highest log CFU/g reduction values obtained against tested microorganisms. PMID:19580445

  18. [Bacteriological and clinical studies on flomoxef in the pediatric field].

    PubMed

    Sunakawa, K; Ishizuka, Y; Kawai, N; Saito, N; Iwata, S; Sato, Y; Akita, H; Kusano, S; Aoki, T

    1987-08-01

    Bacteriological and clinical studies on flomoxef (FMOX, 6315-S) were performed and the results obtained are summarized below. 1. The MIC values of FMOX against 307 clinically isolated strains of Staphylococcus aureus were 0.024 to 100 micrograms/ml with a peak MIC of 0.39 microgram/ml, and the MIC90 value was 1.56 micrograms/ml. The MIC90 against methicillin resistant S. aureus (MRSA) was 25 micrograms/ml. 2. FMOX was administered to 15 children with pediatric bacterial infections, and the effectiveness was rated excellent or good in all cases. 3. In bacteriological evaluation, 7 of 11 strains identified prior to the treatment were eliminated (63.6%). 4. As side effects, diarrhea or soft stool was found in 3 cases and eruption in 1 case. As abnormal laboratory values, eosinophilia and thrombocytosis were found in 1 case each. 5. On the intestinal bacterial flora, FMOX had a marked influence just as did other Group 4 and 5 cephems antibiotics. 6. FMOX interfered little with the coagulation system or platelet aggregation.

  19. Pharmacokinetics of Levofloxacin in Multidrug- and Extensively Drug-Resistant Tuberculosis Patients

    PubMed Central

    van't Boveneind-Vrubleuskaya, Natasha; Seuruk, Tatiana; van Hateren, Kai; van der Laan, Tridia; Kosterink, Jos G. W.; van der Werf, Tjip S.; van Soolingen, Dick; van den Hof, Susan; Skrahina, Alena

    2017-01-01

    ABSTRACT Pharmacodynamics are especially important in the treatment of multidrug- and extensively drug-resistant tuberculosis (M/XDR-TB). The free area under the concentration time curve in relation to MIC (fAUC/MIC) is the most relevant pharmacokinetic (PK)-pharmacodynamic (PD) parameter for predicting the efficacy of levofloxacin (LFX). The objective of our study was to assess LFX PK variability in M/XDR-TB patients and its potential consequence for fAUC/MIC ratios. Patients with pulmonary M/XDR-TB received LFX as part of the treatment regimen at a dose of 15 mg/kg administered once daily. Blood samples obtained at steady state before and 1, 2, 3, 4, 7, and 12 h after drug administration were measured by validated liquid chromatography-tandem mass spectrometry. The MIC values of LFX were determined by the agar dilution method on Middlebrook 7H10 and the MGIT960 system. Twenty patients with a mean age of 31 years (interquartile range [IQR] = 27 to 35 years) were enrolled in this study. The median AUC0–24 was 98.8 mg/h/liter (IQR = 84.8 to 159.6 mg/h/liter). The MIC median value for LFX was 0.5 mg/liter with a range of 0.25 to 2.0 mg/liter, and the median fAUC0–24/MIC ratio was 109.5 (IQR = 48.5 to 399.4). In 4 of the 20 patients, the value was below the target value of ≥100. When MICs of 0.25, 0.5, 1.0, and 2.0 mg/liter were applicable, 19, 18, 3, and no patients, respectively, had an fAUC/MIC ratio that exceeded 100. We observed a large variability in AUC. An fAUC0–24/MIC of ≥100 was only observed when the MIC values for LFX were 0.25 to 0.5 mg/liter. Dosages exceeding 15 mg/kg should be considered for target attainment if exposures are assumed to be safe. (This study has been registered at ClinicalTrials.gov under registration no. NCT02169141.) PMID:28507117

  20. Susceptibility and PK/PD relationships of Staphylococcus aureus strains from ovine and caprine with clinical mastitis against five veterinary fluoroquinolones.

    PubMed

    Serrano-Rodríguez, J M; Cárceles-García, C; Cárceles-Rodríguez, C M; Gabarda, M L; Serrano-Caballero, J M; Fernández-Varón, E

    2017-04-15

    Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) of veterinary fluoroquinolones as enrofloxacin, its metabolite ciprofloxacin, danofloxacin, difloxacin and marbofloxacin against Staphylococcus aureus strains (n=24) isolated from milk of sheep and goats affected by clinical mastitis were evaluated. The authors have used the MIC and MPC, as well as the pharmacokinetic-pharmacodynamic relationships in plasma and milk. MIC values were significantly different between drugs, unlike MPC values. Lower MIC values were obtained for danofloxacin and difloxacin, middle and higher values for enrofloxacin, ciprofloxacin and marbofloxacin. However, differences in MPC values were not found between drugs. At conventional doses, the AUC 24 /MIC and AUC 24 /MPC ratios were close to 30-80 hours and 5-30 hours, with exception of danofloxacin, in plasma and milk. The time inside the mutant selection window (T MSW ) was close to 3-6 hours for enrofloxacin, ciprofloxacin and marbofloxacin, near to 8 hours for danofloxacin and 12-22 hours for difloxacin. From these data, the mutant selection window could be higher for danofloxacin and difloxacin compared with the other fluoroquinolones tested. The authors concluded that enrofloxacin and marbofloxacin, at conventional doses, could prevent the selection of bacterial subpopulations of S aureus , unlike danofloxacin and difloxacin, where higher doses could be used. British Veterinary Association.

  1. Structural requirements for the antifungal activities of natural drimane sesquiterpenes and analogues, supported by conformational and electronic studies.

    PubMed

    Derita, Marcos; Montenegro, Iván; Garibotto, Francisco; Enriz, Ricardo D; Fritis, Mauricio Cuellar; Zacchino, Susana A

    2013-02-05

    Seventeen drimanes including polygodial (1), isopolygodial (2), drimenol (3) and confertifolin (4) obtained from natural sources and the semi-synthetic derivatives 5-17 obtained from 1-3, were evaluated in vitro for antifungal properties against a unique panel of fungi with standardized procedures by using two end-points, MIC(100) and MIC(50). A SAR analysis of the whole series, supported by conformational and electronic studies, allowed us to show that the Δ7,8 -double bond would be one of the key structural features related to the antifungal activity. The MEPs obtained for active compounds exhibit a clear negative minimum value (deep red zone) in the vicinity of the Δ7,8 -double bond, which is not present in the inactive ones. Apart of this negative zone, a positive region (deep blue) appears in 1, which is not observed either in its epimer 2 nor in the rest of the active compounds. The LogP of active compounds varies between 2.33 and 3.84, but differences in MICs are not correlated with concomitant variations in LogP values.

  2. Comparative Pharmacodynamics of Telavancin and Vancomycin in the Neutropenic Murine Thigh and Lung Infection Models against Staphylococcus aureus

    PubMed Central

    Lepak, Alexander J.; Zhao, Miao

    2017-01-01

    ABSTRACT The pharmacodynamics of telavancin and vancomycin were compared using neutropenic murine thigh and lung infection models. Four Staphylococcus aureus strains were included. The telavancin MIC ranged from 0.06 to 0.25 mg/liter, and the vancomycin MIC ranged from 1 to 4 mg/liter. The plasma pharmacokinetics of escalating doses (1.25, 5, 20, and 80 mg/kg of body weight) of telavancin and vancomycin were linear over the dose range. Epithelial lining fluid (ELF) pharmacokinetics for each drug revealed that penetration into the ELF mirrored the percentage of the free fraction (the fraction not protein bound) in plasma for each drug. Telavancin (0.3125 to 80 mg/kg/6 h) and vancomycin (0.3125 to 1,280 mg/kg/6 h) were administered by the subcutaneous route in treatment studies. Dose-dependent bactericidal activity against all four strains was observed in both models. A sigmoid maximum-effect model was used to determine the area under the concentration-time curve (AUC)/MIC exposure associated with net stasis and 1-log10 kill relative to the burden at the start of therapy. The 24-h plasma free drug AUC (fAUC)/MIC values associated with stasis and 1-log kill were remarkably congruent. Net stasis for telavancin was noted at fAUC/MIC values of 83 and 40.4 in the thigh and lung, respectively, and 1-log kill was noted at fAUC/MIC values of 215 and 76.4, respectively. For vancomycin, the fAUC/MIC values for stasis were 77.9 and 45.3, respectively, and those for 1-log kill were 282 and 113, respectively. The 24-h ELF total drug AUC/MIC targets in the lung model were very similar to the 24-h plasma free drug AUC/MIC targets for each drug. Integration of human pharmacokinetic data for telavancin, the results of the MIC distribution studies, and the pharmacodynamic targets identified in this study suggests that the current dosing regimen of telavancin is optimized to obtain drug exposures sufficient to treat S. aureus infections. PMID:28416551

  3. Vancomycin tolerance in enterococci.

    PubMed

    Saribas, Suat; Bagdatli, Yasar

    2004-11-01

    Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.

  4. Biological activity of the essential oils from Cinnamodendron dinisii and Siparuna guianensis

    PubMed Central

    Andrade, Milene Aparecida; Cardoso, Maria das Graças; Gomes, Marcos de Souza; de Azeredo, Camila Maria Oliveira; Batista, Luís Roberto; Soares, Maurilio José; Rodrigues, Leonardo Milani Avelar; Figueiredo, Ana Cristina S.

    2015-01-01

    This study had analyzed the antibacterial, antifungal and trypanocidal activity of the essential oils from Cinnamodendron dinisii Schwacke (Canellaceae) and Siparuna guianensis Aublet (Siparunaceae). The essential oils were obtained from fresh leaves by hydrodistillation, using a modified Clevenger apparatus. Chemical analysis by gas-liquid chromatography coupled to mass spectrometry (GC-MS) showed that these essential oils are rich in monoterpene and sesquiterpene hydrocarbons. Activity against the pathogenic bacteria Escherichia coli , Listeria monocytogenes , Pseudomonas aeruginosa , Salmonella choleraesuis and Staphylococcus aureus was evaluated with the agar cavity diffusion method, while activity on the filamentous fungi Aspergillus flavus , Aspergillus niger , Aspergillus carbonarius and Penicillium commune was evaluated by the disk diffusion technique. Trypanocidal activity was tested against Trypanosoma cruzi epimastigotes, using the Tetrazolium salt (MTT) colorimetric assay. Both essential oils exhibited low inhibitory effect towards bacteria, showing high MIC values (125–500 μg mL −1 ), with Gram positive bacteria being more susceptible. Better inhibitory effect was obtained for the evaluated fungi, with lower MIC values (7.81–250 μg mL −1 ), being A. flavus the most susceptible species. Both essential oils presented low trypanocidal activity, with IC 50 /24 h values of 209.30 μg mL −1 for S. guianensis and 282.93 μg mL −1 for C. dinisii . Thus, the high values observed for the MIC of evaluated bacteria and for IC 50 /24 h of T. cruzi , suggest that the essential oils have a low inhibitory activity against these microorganisms. In addition, the low MIC values observed for the tested fungi species indicate good inhibitory activity on these microorganisms’s growth. PMID:26221107

  5. Antimicrobial Susceptibility of Flavobacterium psychrophilum from Chilean Salmon Farms and Their Epidemiological Cut-Off Values Using Agar Dilution and Disk Diffusion Methods.

    PubMed

    Miranda, Claudio D; Smith, Peter; Rojas, Rodrigo; Contreras-Lynch, Sergio; Vega, J M Alonso

    2016-01-01

    Flavobacterium psychrophilum is the most important bacterial pathogen for freshwater farmed salmonids in Chile. The aims of this study were to determine the susceptibility to antimicrobials used in fish farming of Chilean isolates and to calculate their epidemiological cut-off (CO WT ) values. A number of 125 Chilean isolates of F. psychrophilum were isolated from reared salmonids presenting clinical symptoms indicative of flavobacteriosis and their identities were confirmed by 16S rRNA polymerase chain reaction. Susceptibility to antibacterials was tested on diluted Mueller-Hinton by using an agar dilution MIC method and a disk diffusion method. The CO WT values calculated by Normalized Resistance Interpretation (NRI) analysis allow isolates to be categorized either as wild-type fully susceptible (WT) or as manifesting reduced susceptibility (NWT). When MIC data was used, NRI analysis calculated a CO WT of ≤0.125, ≤2, and ≤0.5 μg mL -1 for amoxicillin, florfenicol, and oxytetracycline, respectively. For the quinolones, the CO WT were ≤1, ≤0.5, and ≤0.125 μg mL -1 for oxolinic acid, flumequine, and enrofloxacin, respectively. The disk diffusion data sets obtained in this work were extremely diverse and were spread over a wide range. For the quinolones there was a close agreement between the frequencies of NWT isolates calculated using MIC and disk data. For oxolinic acid, flumequine, and enrofloxacin the frequencies were 45, 39, and 38% using MIC data, and 42, 41, and 44%, when disk data were used. There was less agreement with the other antimicrobials, because NWT frequencies obtained using MIC and disk data, respectively, were 24 and 10% for amoxicillin, 8 and 2% for florfenicol, and 70 and 64% for oxytetracycline. Considering that the MIC data was more precise than the disk diffusion data, MIC determination would be the preferred method for susceptibility testing for this species and the NWT frequencies derived from the MIC data sets should be considered as the more authoritative. Despite the high frequency of isolates showing full susceptibility to florfenicol, the significant frequencies of isolates exhibiting reduced susceptibility to oxytetracycline and quinolones may result in treatment failures when these agents are used.

  6. Plasma-based determination of inorganic contaminants in waste of electric and electronic equipment after microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Mello, Paola A.; Diehl, Lisarb O.; Oliveira, Jussiane S. S.; Muller, Edson I.; Mesko, Marcia F.; Flores, Erico M. M.

    2015-03-01

    A systematic study was performed for the determination of inorganic contaminants in polymeric waste from electrical and electronic equipment (EEE) for achieving an efficient digestion to minimize interferences in determination using plasma-based techniques. The determination of As, Br, Cd, Co, Cr, Cu, Ni, Pb, Sb, and Zn by inductively coupled plasma mass spectrometry (ICP-MS) and also by inductively coupled plasma optical emission spectrometry (ICP OES) was carried out after digestion using microwave-induced combustion (MIC). Arsenic and Hg were determined by flow-injection chemical vapor generation inductively coupled plasma mass spectrometry (FI-CVG-ICP-MS). Dynamic reaction cell inductively coupled plasma mass spectrometry (DRC-ICP-MS) with ammonia was also used for Cr determination. The suitability of MIC for digestion of sample masses up to 400 mg was demonstrated using microcrystalline cellulose as aid for combustion of polymers from waste of EEEs that usually contain flame retardants that impair the combustion. The composition and concentration of acid solutions (HNO3 or HNO3 plus HCl) were evaluated for metals and metalloids and NH4OH solutions were investigated for Br absorption. Accuracy was evaluated by comparison of results with those obtained using high pressure microwave-assisted wet digestion (HP-MAWD) and also by the analysis of certified reference material (CRM) of polymer (EC680k-low-density polyethylene). Bromine determination was only feasible using digestion by MIC once losses were observed when HP-MAWD was used. Lower limits of detection were obtained for all analytes using MIC (from 0.005 μg g- 1 for Co by ICP-MS up to 3.120 μg g-1 for Sb by ICP OES) in comparison to HP-MAWD due to the higher sample mass that can be digested (400 mg) and the use of diluted absorbing solutions. The combination of HNO3 and HCl for digestion showed to be crucial for quantitative recovery of some elements, as Cr and Sb. In addition, suitable agreement of Cr to CRM value was only obtained by mixing NH4Cl to samples before combustion. No statistical difference (95% confidence level) was observed between the results obtained for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, and Zn by MIC and HP-MAWD methods. Agreement with certified values was better than 96% using MIC for all inorganic contaminants. Particularly for Br, MIC was the method of choice for digestion due to the possibility of using diluted alkaline solutions for analyte absorption. Based on the obtained results, MIC can be considered as a suitable method for digestion of polymers from waste of EEEs for further plasma based determination of inorganic contaminants.

  7. Antimicrobial activity of juniper berry essential oil (Juniperus communis L., Cupressaceae).

    PubMed

    Pepeljnjak, Stjepan; Kosalec, Ivan; Kalodera, Zdenka; Blazević, Nikola

    2005-12-01

    Juniper essential oil (Juniperi aetheroleum) was obtained from the juniper berry, and the GC/MS analysis showed that the main compounds in the oil were alpha-pinene (29.17%) and beta-pinene (17.84%), sabinene (13.55%), limonene (5.52%), and mircene (0.33%). Juniper essential oil was evaluated for the antimicrobial activity against sixteen bacterial species, seven yeast-like fungi, three yeast and four dermatophyte strains. Juniper essential oil showed similar bactericidal activities against Gram-positive and Gram-negative bacterial species, with MIC values between 8 and 70% (V/V), as well as a strong fungicidal activity against yeasts, yeast-like fungi and dermatophytes, with MIC values below 10% (V/V). The strongest fungicidal activity was recorded against Candida spp. (MIC from 0.78 to 2%, V/V) and dermatophytes (from 0.39 to 2%, V/V).

  8. Short communication: In vitro antimicrobial susceptibility of Mycoplasma bovis isolates identified in milk from dairy cattle in Belgium, Germany, and Italy.

    PubMed

    Barberio, A; Flaminio, B; De Vliegher, S; Supré, K; Kromker, V; Garbarino, C; Arrigoni, N; Zanardi, G; Bertocchi, L; Gobbo, F; Catania, S; Moroni, P

    2016-08-01

    The objective of this study was to assess the in vitro antimicrobial susceptibility of 73 isolates of Mycoplasma bovis isolated from milk of dairy cattle herds of Belgium, Germany, and Italy. Minimal inhibitory concentration (MIC) values were determined by the microbroth dilution method for the following antimicrobials: erythromycin, spiramycin, tilmicosin, tylosin, lincomycin, enrofloxacin, doxycycline, oxytetracycline, florfenicol, and tiamulin. Macrolides, florfenicol, oxytetracycline, and enrofloxacin, were chosen because they represent antimicrobials families commonly used in several countries for treatment of M. bovis, and their MIC values in cattle population are reported in several studies, allowing a comparison with previous data. Doxycycline and tiamulin were selected to assess the susceptibility of M. bovis to new antimicrobials, because they are not registered in the European Union for the treatment of dairy cattle. Among the agents of the different antimicrobial classes, the macrolides showed the highest concentration to inhibit 90% of isolates (MIC90), all above the highest concentration tested: >8μg/mL for erythromycin, >16μg/mL for spiramycin, and >32μg/mL for tilmicosin and tylosin. Also the MIC90 of lincomycin was above the highest concentration tested (>32μg/mL), but the distribution of the MIC values was almost perfectly bimodal: 41 isolates had a MIC ≤0.5μg/mL and 30 isolates >32μg/mL. Oxytetracycline had a 2-fold higher concentration to inhibit 50% of isolates (2 vs. 0.5μg/mL) and 1-fold higher MIC90 (4 vs. 2μg/mL) than doxycycline. Enrofloxacin and florfenicol had both a MIC90 of 2μg/mL, whereas tiamulin had a MIC90 of 0.5μg/mL. Significant differences on the MIC values were found among the 3 countries for several antimicrobials: compared with Germany, Belgium and Italy showed significantly higher MIC for lincomycin, spiramycin, and tylosin, and lower for oxytetracycline and florfenicol. The Belgian isolates showed the lowest MIC for enrofloxacin compared with Germany and Italy. The MIC results obtained in our study suggest the presence of a high level of resistance of M. bovis isolates originating from milk to macrolides in all countries involved in this study. On the contrary, a low level of resistance was found against the antimicrobials that are not used in cattle, such as tiamulin and doxycycline, highlighting a possible link between antimicrobial treatments and development of resistance in the studied M. bovis population. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  9. Effect of citral and carvacrol on the susceptibility of Listeria monocytogenes and Listeria innocua to antibiotics.

    PubMed

    Zanini, S F; Silva-Angulo, A B; Rosenthal, A; Rodrigo, D; Martínez, A

    2014-05-01

    The aim of this study was to evaluate the antibiotic susceptibility of Listeria innocua (L. innocua) and Listeria monocytogenes (L. monocytogenes) cells in the presence of citral and carvacrol at sublethal concentrations in an agar medium. The presence of terpenes in the L. monocytogenes and L. innocua culture medium provided a reduction in the minimal inhibitory concentration (MIC) of all the antibiotics tested. These effects were dependent on the concentration of terpenes present in the culture medium. The combination of citral and carvacrol potentiated antibiotic activity by reducing the MIC values of bacitracin and colistin from 32.0 and 128.0 μg ml⁻¹ to 1.0 and 2.0 μg ml⁻¹, respectively. Thus, both Listeria species became more susceptible to these drugs. In this way, the colistin and bacitracin resistance of L. monocytogenes and L. innocua was reversed in the presence of terpenes. Results obtained in this study show that the phytochemicals citral and carvacrol potentiate antibiotic activity, reducing the MIC values of cultured L. monocytogenes and L. innocua. Phytochemicals citral and carvacrol potentiate antibiotic activity of erythromycin, bacitracin and colistin by reducing the MIC values of cultured Listeria monocytogenes and Listeria innocua. This effect in reducing the MIC values of the antibiotics tested in both micro-organisms was increased when natural antimicrobials were combined. This finding indicated that the combination among terpenes and antibiotic may contribute in reducing the required dosage of antibiotics due to the possible effect of terpenes on permeation barrier of the micro-organism cell membrane. © 2014 The Society for Applied Microbiology.

  10. Evaluation of anti-microbial activity of spore powder of Ganoderma lucidum on clinical isolates of Prevotella intermedia: A pilot study.

    PubMed

    Nayak, Ranganath N; Dixitraj, P T; Nayak, Aarati; Bhat, Kishore

    2015-09-01

    This study aimed at evaluating the anti-microbial activity of spore powder of Ganoderma lucidum on Prevotella intermedia isolated from subgingival plaque from chronic periodontitis patients. Written informed consent was obtained from each subject enrolled in the study. The Institutional Ethics Committee granted the ethical clearance for the study. This study included 20 patients diagnosed with chronic periodontitis. Pooled subgingival plaque samples were collected using sterile curettes from the deepest sites of periodontal pockets. The collected samples were then transported in 1 mL of reduced transport fluid. The organisms were cultured and confirmed. These organisms were then used for minimum inhibitory concentration (MIC) procedure. Mean of the MIC value obtained was calculated. Thirteen out of the 20 clinical samples were tested that showed sensitivity at various concentrations. Five samples showed sensitivity at all concentrations. Twelve samples showed sensitivity at 8 mcg/ml. Eleven samples showed sensitivity at 4 mcg/ml, 8 samples showed sensitivity at 2 mcg/ml, and 5 samples showed sensitivity even at 1 mcg/ml. Mean MIC value of G. lucidum spore powder for P. intermedia obtained was 3.62 mcg/ml. G. lucidum with its multipotential bioactivity could be used as an anti-microbial, in conjunction with conventional therapy in periodontal disease.

  11. Susceptibility profile and epidemiological cut-off values of Cryptococcus neoformans species complex from Argentina.

    PubMed

    Córdoba, Susana; Isla, Maria G; Szusz, Wanda; Vivot, Walter; Altamirano, Rodrigo; Davel, Graciela

    2016-06-01

    Epidemiological cut-off values (ECVs) based on minimal inhibitory concentration (MIC) distribution have been recently proposed for some antifungal drug/Cryptococcus neoformans combinations. However, these ECVs vary according to the species studied, being serotypes and the geographical origin of strains, variables to be considered. The aims were to define the wild-type (WT) population of the C. neoformans species complex (C. neoformans) isolated from patients living in Argentina, and to propose ECVs for six antifungal drugs. A total of 707 unique C. neoformans isolates obtained from HIV patients suffering cryptococcal meningitis were studied. The MIC of amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole and posaconazole was determined according to the EDef 7.2 (EUCAST) reference document. The MIC distribution, MIC50 , MIC90 and ECV for each of these drugs were calculated. The highest ECV, which included ≥95% of the WT population modelled, was observed for flucytosine and fluconazole (32 μg ml(-1) each). For amphotericin B, itraconazole, voriconazole and posaconazole, the ECVs were: 0.5, 0.5, 0.5 and 0.06 μg ml(-1) respectively. The ECVs determined in this study may aid in identifying the C. neoformans strains circulating in Argentina with decreased susceptibility to the antifungal drugs tested. © 2016 Blackwell Verlag GmbH.

  12. In Vitro Evaluation of the Type of Interaction Obtained by the Combination of Terbinafine and Itraconazole, Voriconazole, or Amphotericin B against Dematiaceous Molds▿

    PubMed Central

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Schreiber, Angélica Zaninelli

    2011-01-01

    In vitro associations using the checkerboard microdilution method indicated lower MIC ranges and MIC median values for each drug (terbinafine, itraconazole, voriconazole, and amphotericin B) in association than those obtained for each single drug. Fractional inhibitory concentration index (FIC) results showed 100% synergism in the association of terbinafine with voriconazole, 96.5% in the association of terbinafine with amphotericin B, and 75.9% in the association of terbinafine with itraconazole. Drug combinations may be useful for treatment of dematiaceous mold infections as an alternative treatment to enhance the effectiveness of each drug. PMID:21690288

  13. In vitro antifungal activity of topical and systemic antifungal drugs against Malassezia species.

    PubMed

    Carrillo-Muñoz, Alfonso Javier; Rojas, Florencia; Tur-Tur, Cristina; de Los Ángeles Sosa, María; Diez, Gustavo Ortiz; Espada, Carmen Martín; Payá, María Jesús; Giusiano, Gustavo

    2013-09-01

    The strict nutritional requirements of Malassezia species make it difficult to test the antifungal susceptibility. Treatments of the chronic and recurrent infections associated with Malassezia spp. are usually ineffective. The objective of this study was to obtain in vitro susceptibility profile of 76 clinical isolates of Malassezia species against 16 antifungal drugs used for topical or systemic treatment. Isolates were identified by restriction fragment length polymorphism. Minimal inhibitory concentrations (MIC) were obtained by a modified microdilution method based on the Clinical Laboratory Standards Institute reference document M27-A3. The modifications allowed a good growth of all tested species. High in vitro antifungal activity of most tested drugs was observed, especially triazole derivatives, except for fluconazole which presented the highest MICs and widest range of concentrations. Ketoconazole and itraconazole demonstrated a great activity. Higher MICs values were obtained with Malassezia furfur indicating a low susceptibility to most of the antifungal agents tested. Malassezia sympodialis and Malassezia pachydermatis were found to be more-susceptible species than M. furfur, Malassezia globosa, Malassezia slooffiae and Malassezia restricta. Topical substances were also active but provide higher MICs than the compounds for systemic use. The differences observed in the antifungals activity and interspecies variability demonstrated the importance to studying the susceptibility profile of each species to obtain reliable information for defining an effective treatment regimen. © 2013 Blackwell Verlag GmbH.

  14. In vitro activity of ceftazidime/avibactam against Gram-negative pathogens isolated from pneumonia in hospitalised patients, including ventilated patients.

    PubMed

    Flamm, Robert K; Nichols, Wright W; Sader, Helio S; Farrell, David J; Jones, Ronald N

    2016-03-01

    The activities of the novel β-lactam/non-β-lactam β-lactamase inhibitor combination ceftazidime/avibactam and comparators were evaluated against isolates from pneumonia in hospitalised patients including ventilated patients (PHP, pneumonia not designated as VABP; VABP, pneumonia in ventilated patients). Isolates were from the European-Mediterranean region (EuM), China and the USA collected in the SENTRY Antimicrobial Surveillance Program between 2009 and 2011 inclusive. A total of 2393 organisms from PHP were from the EuM, 888 from China and 3213 from the USA; from VABP patients there were 918, 97 and 692 organisms collected, respectively. Among Enterobacteriaceae from PHP, ceftazidime/avibactam MIC90 values against Escherichia coli ranged from 0.25-0.5mg/L and Klebsiella spp. MIC90 values were 0.5mg/L in each region. Among VABP isolates, MIC90 values for ceftazidime/avibactam against E. coli were 0.25mg/L; for Klebsiella spp. from VABP patients, MIC90 values were similar to those obtained against PHP isolates. The MIC of ceftazidime/avibactam was ≤8mg/L against 92-96% of Pseudomonas aeruginosa isolated from PHP patients. Isolates of P. aeruginosa from VABP patients were of lower susceptibility to all antibacterial agents (e.g. depending on region, meropenem susceptibilities were 51.2-69.4% in contrast to 68.3-76.7% among PHP patients). However, ceftazidime/avibactam inhibited 79.2-95.4% of VABP isolates at an MIC of ≤8mg/L. Acinetobacter spp. were resistant to many agents and only rates of susceptibility to colistin were >90% across all regions both for PHP and VABP isolates. Ceftazidime/avibactam was generally active against a high proportion of isolates resistant to ceftazidime from PHP and VAPB patients. Copyright © 2016 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. Susceptibility patterns for amoxicillin/clavulanate tests mimicking the licensed formulations and pharmacokinetic relationships: do the MIC obtained with 2:1 ratio testing accurately reflect activity against beta-lactamase-producing strains of Haemophilus influenzae and Moraxella catarrhalis?

    PubMed

    Pottumarthy, Sudha; Sader, Helio S; Fritsche, Thomas R; Jones, Ronald N

    2005-11-01

    Amoxicillin/clavulanate has recently undergone formulation changes (XR and ES-600) that represent 14:1 and 16:1 ratios of amoxicillin/clavulanate. These ratios greatly differ from the 2:1 ratio used in initial formulations and in vitro susceptibility testing. The objective of this study was to determine if the reference method using a 2:1 ratio accurately reflects the susceptibility to the various clinically used amoxicillin/clavulanate formulations and their respective serum concentration ratios. A collection of 330 Haemophilus influenzae strains (300 beta-lactamase-positive and 30 beta-lactamase-negative) and 40 Moraxella catarrhalis strains (30 beta-lactamase-positive and 10 beta-lactamase-negative) were tested by the broth microdilution method against eight amoxicillin/clavulanate combinations (4:1, 5:1, 7:1, 9:1, 14:1, and 16:1 ratios; 0.5 and 2 microg/mL fixed clavulanate concentrations) and the minimum inhibitory concentration (MIC) results were compared with those obtained with the reference 2:1 ratio testing. For the beta-lactamase-negative strains of both genera, there was no demonstrable change in the MIC values obtained for all ratios analyzed (2:1 to 16:1). For the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, at ratios >or=4:1 there was a shift in the central tendency of the MIC scatterplot compared with the results of testing 2:1 ratio. As a result, there was a 2-fold dilution increase in the MIC(50) and MIC(90) values, most evident for H. influenzae and BRO-1-producing M. catarrhalis strains. For beta-lactamase-positive strains of H. influenzae, the shift resulted in a change in the interpretive result for 3 isolates (1.0%) from susceptible using the reference method (2:1 ratio) to resistant (8/4 microg/mL; very major error) at the 16:1 ratio. In addition, the number of isolates with MIC values at or 1 dilution lower than the breakpoint (4/2 microg/mL) increased from 5% at 2:1 ratio to 32-33% for ratios 14:1 and 16:1. Our results indicate that, for the beta-lactamase-positive strains of H. influenzae and M. catarrhalis, the results of the amoxicillin/clavulanate reference 2:1 ratio testing do not accurately represent all the currently licensed formulations. Pharmacokinetic/pharmacodynamic (PK/PD) target attainment might be compromised when higher amoxicillin/clavulanate ratios are used clinically. With a better understanding of PK/PD parameters, reevaluation of the amoxicillin/clavulanate in vitro susceptibility testing should be considered by the standardizing authorities to reflect the licensed formulations and accurately predict clinical outcomes.

  16. In vitro activity of echinocandins against 562 clinical yeast isolates from a Romanian multicentre study.

    PubMed

    Mares, Mihai; Minea, Bogdan; Nastasa, Valentin; Rosca, Irina; Bostanaru, Andra-Cristina; Marincu, Iosif; Toma, Vasilica; Cristea, Violeta Corina; Murariu, Carmen; Pinteala, Mariana

    2018-06-01

    The study presents the echinocandin susceptibility profile of a multi-centre collection of pathogenic yeast isolates from Romanian tertiary hospitals. The 562 isolates were identified using ID32C strips, MALDI-TOF MS and DNA sequencing. Minimal inhibitory concentrations (MICs) of caspofungin (CAS), micafungin (MCA), and anidulafungin (ANI) were assessed and interpreted according to EUCAST guidelines. Minimal fungicidal concentrations (MFC) were determined by plating content from the clear MIC wells. The activity was considered fungicidal at MFC/MIC ≤ 4. The three echinocandins had strongly correlated MICs and high percentages of MIC essential agreement. Most often, MCA had the lowest MICs, followed by CAS and ANI. Against C. parapsilosis and C. kefyr, CAS had the lowest MIC values. The MIC50 values were between 0.03 and 0.25 mg/l, except C. parapsilosis. The MIC90 values were usually one dilution higher. MFCs and MICs were weakly correlated. ANI and MCA had the lowest MFC values. The MFC50 values were between 0.06 and 0.5 mg/l, except C. parapsilosis, C. guilliermondii, and C. dubliniensis. The MFC90 values were usually two dilutions higher. Based on EUCAST breakpoints, 47 isolates (8.4%) were resistant to at least one echinocandin, most often ANI. Most resistant isolates were of C. albicans, C. glabrata, and C. krusei. There were 17 isolates (3%) resistant to echinocandins and fluconazole and most belonged to the same three species. MCA and ANI had the highest rates of fungicidal activity. The high rates of echinocandin resistance and significant multidrug resistance make prophylaxis and empiric therapy difficult.

  17. An investigation of vancomycin minimum inhibitory concentration creep among methicillin-resistant Staphylococcus aureus strains isolated from pediatric patients and healthy children in Northern Taiwan.

    PubMed

    Chang, Chia-Ning; Lo, Wen-Tsung; Chan, Ming-Chin; Yu, Ching-Mei; Wang, Chih-Chien

    2017-06-01

    The phenomenon of vancomycin minimum inhibitory concentration (MIC) creep is an increasingly serious problem in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infections. In this study, we investigated the vancomycin and daptomycin MIC values of MRSA strains isolated from pediatric patients and MRSA colonized healthy children. Then, we assessed whether there was evidence of clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. We collected clinical MRSA isolates from pediatric patients and from healthy children colonized with MRSA during 2008-2012 at a tertiary medical center in northern Taiwan and obtained vancomycin and daptomycin MIC values using the Etest method. Pulse-field gel electrophoresis (PFGE) and staphylococcal cassette chromosome (SCCmec) typing were used to assess clonal dissemination for strains with an MIC to vancomycin of ≥ 1.5 μg/mL. A total 195 MRSA strains were included in this study; 87 were isolated patients with a clinical MRSA infection, and the other 108 strains from nasally colonized healthy children. Vancomycin MIC≥1.5 μg/mL was seen in more clinical isolates (60/87, 69%) than colonized isolates (32/108, 29.6%), p < 0.001. The PFGE typing of both strains revealed multiple pulsotypes. Vancomycin MIC creeps existed in both clinical MRSA isolates and colonized MRSA strains. Great diversity of PFGE typing was in both strains collected. There was no association between the clinical and colonized MRSA isolates with vancomycin MIC creep. Copyright © 2016. Published by Elsevier B.V.

  18. In vitro combined effect of co-amoxiclav concentrations achievable in serum after a 2000/125 mg oral dose, and polymorphonuclear neutrophils against strains of Streptococcus pneumoniae exhibiting decreased susceptibility to amoxicillin.

    PubMed

    Amores, Raquel; Alou, Luis; Giménez, María José; Sevillano, David; Gómez-Lus, María Luisa; Aguilar, Lorenzo; Prieto, José

    2004-07-01

    The in vitro effect that the presence of components of non-specific immunity (serum plus polymorphonuclear neutrophils) has on the bactericidal activity of co-amoxiclav was explored against Streptococcus pneumoniae strains exhibiting an amoxicillin MIC > or =4 mg/L. Eight penicillin-resistant clinical isolates non-susceptible to co-amoxiclav with MICs of 4 (two strains), 8 (four strains) and 16 mg/L (two strains) were used. Values of MBC were identical to MIC values in all cases. Time-kill curves were performed with co-amoxiclav concentrations achievable in serum after a single oral dose administration of the new 2000/125 mg sustained-release formulation. Results were expressed as percentage of reduction of initial inocula after 3 h incubation. Control curves showed growth with no reduction of initial inocula. Against strains with MIC of 4 and 8 mg/L, the results obtained with the antibiotic alone or with the presence of factors of non-specific immunity were similar, with a weak combined effect due to the intrinsic activity of co-amoxiclav (reductions of initial inocula ranging from 70 to 99.16%). Against strains with MIC of 16 mg/L, the addition of PMN in the presence of serum increased the reduction of bacterial load provided by the aminopenicillin, even at sub-inhibitory concentrations (25.8% versus 51.1% at 0.5 x MIC concentration--8/0.5 mg/L). This combined activity against strains with an amoxicillin MIC of 16 mg/L which decreased the bacterial load may be important in preventing bacterial proliferation within the host and the transmission of resistant clones to others.

  19. [Comparative evaluation of the sensitivity of Acinetobacter to colistin, using the prediffusion and minimum inhibitory concentration methods: detection of heteroresistant isolates].

    PubMed

    Herrera, Melina E; Mobilia, Liliana N; Posse, Graciela R

    2011-01-01

    The objective of this study is to perform a comparative evaluation of the prediffusion and minimum inhibitory concentration (MIC) methods for the detection of sensitivity to colistin, and to detect Acinetobacter baumanii-calcoaceticus complex (ABC) heteroresistant isolates to colistin. We studied 75 isolates of ABC recovered from clinically significant samples obtained from various centers. Sensitivity to colistin was determined by prediffusion as well as by MIC. All the isolates were sensitive to colistin, with MIC = 2µg/ml. The results were analyzed by dispersion graph and linear regression analysis, revealing that the prediffusion method did not correlate with the MIC values for isolates sensitive to colistin (r² = 0.2017). Detection of heteroresistance to colistin was determined by plaque efficiency of all the isolates with the same initial MICs of 2, 1, and 0.5 µg/ml, which resulted in 14 of them with a greater than 8-fold increase in the MIC in some cases. When the sensitivity of these resistant colonies was determined by prediffusion, the resulting dispersion graph and linear regression analysis yielded an r² = 0.604, which revealed a correlation between the methodologies used.

  20. Olive leaf extract activity against Candida albicans and C. dubliniensis - the in vitro viability study.

    PubMed

    Zorić, Nataša; Kopjar, Nevenka; Kraljić, Klara; Oršolić, Nada; Tomić, Siniša; Kosalec, Ivan

    2016-09-01

    Olive leaf extract is characterized by a high content of polyphenols (oleuropein, hydroxytyrosol and their derivatives), which is associated with its therapeutic properties. The objective of the present research was to evaluate the antifungal activity of olive leaf extract against Candida albicans ATCC 10231 and C. dubliniensis CBS 7987 strains. Minimum inhibitory concentrations (MIC) of the extract were determined by several in vitro assays. The extract showed a concentration depended effect on the viability of C. albicans with MIC value of 46.875 mg mL-1 and C. dubliniensis with MIC value 62.5 mg mL-1. Most sensitive methods for testing the antifungal effect of the extracts were the trypan blue exclusion method and fluorescent dye exclusion method while MIC could not be determined by the method according to the EUCAST recommendation suggesting that herbal preparations contain compounds that may interfere with this susceptibility testing. The fluorescent dye exclusion method was also used for the assessment of morphological changes in the nuclei of treated cells. According to the obtained results, olive leaf extract is less effective against the tested strains than hydroxytyrosol, an olive plant constituent tested in our previous study.

  1. Semisynthetic Phenol Derivatives Obtained from Natural Phenols: Antimicrobial Activity and Molecular Properties.

    PubMed

    Pinheiro, Patrícia Fontes; Menini, Luciana Alves Parreira; Bernardes, Patrícia Campos; Saraiva, Sérgio Henriques; Carneiro, José Walkimar Mesquita; Costa, Adilson Vidal; Arruda, Társila Rodrigues; Lage, Mateus Ribeiro; Gonçalves, Patrícia Martins; Bernardes, Carolina de Oliveira; Alvarenga, Elson Santiago; Menini, Luciano

    2018-01-10

    Semisynthetic phenol derivatives were obtained from the natural phenols: thymol, carvacrol, eugenol, and guaiacol through catalytic oxychlorination, Williamson synthesis, and aromatic Claisen rearrangement. The compounds characterization was carried out by 1 H NMR, 13 C NMR, and mass spectrometry. The natural phenols and their semisynthetic derivatives were tested for their antimicrobial activity against the bacteria: Staphylococcus aureus, Escherichia coli, Listeria innocua, Pseudomonas aeruginosa, Salmonella enterica Typhimurium, Salmonella enterica ssp. enterica, and Bacillus cereus. Minimum inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) values were determined using concentrations from 220 to 3.44 μg mL -1 . Most of the tested compounds presented MIC values ≤220 μg mL -1 for all the bacteria used in the assays. The molecular properties of the compounds were computed with the PM6 method. Through principle components analysis, the natural phenols and their semisynthetic derivatives with higher antimicrobial potential were grouped.

  2. Antibacterial activity study of Attacus atlas cocoon against Staphylococcus aureus and Escherichia coli with diffusion and dilution method

    NASA Astrophysics Data System (ADS)

    Aminah; Nugraheni, E. R.; Yugatama, A.

    2018-03-01

    The aim of this study was to evaluate the antibacterial activity from Attacus atlas cocoon extract against Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus) with 3 diffferent solvents polar, semi-polar and non polar which was ethanol, ethyl acetate and chloroform, also to determine the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) of the extract. Cocoon was extracted with maceration method using 3 solvents with ratio of sample and solvent 1:10. Antibacterial activity of the Extracts obtained was evaluated with Agar disk diffusion method. The best result was then continued to determine the MIC and MBC of the extract using broth macro-dilution method. The results show that each of the extracts have antibacterial activity with broad spectrum against two different type of bacteria at concentration of 1 g/mL with different clear zone between these extracts. Clear zone from the biggest to the smallest against Escherichia coli was ethyl acetate (10.5 mm), chloroform (9 mm) and ethanol (8 mm). While against Staphylococcus aureus, was obtained by chloroform (12.5 mm), ethyl acetate (10.5 mm) and ethanol (7 mm). The MIC value of extracts can not be determine. The smallest MBC value against both bacteria was obtained by ethyl acetate with concentration of 3.125% b/v as a bactericidal.

  3. Pharmacokinetics (PK), Pharmacodynamics (PD), and PK-PD Integration of Danofloxacin in Sheep Biological Fluids

    PubMed Central

    Aliabadi, F. Shojaee; Landoni, M. F.; Lees, P.

    2003-01-01

    The fluoroquinolone antimicrobial drug danofloxacin was administered to sheep intravenously (i.v.) and intramuscularly (i.m.) at a dose of 1.25 mg/kg of body weight in a two-period crossover study. The pharmacokinetic properties of danofloxacin in serum, inflamed tissue cage fluid (exudate), and noninflamed tissue cage fluid (transudate) were established by using a tissue cage model. The in vitro and ex vivo activities of danofloxacin in serum, exudate, and transudate against a pathogenic strain of Mannheimia haemolytica were established. Integration of in vivo pharmacokinetic data with the in vitro MIC provided mean values for the area under the curve (AUC)/MIC for serum, exudate, and transudate of 60.5, 85.6, and 45.7 h, respectively, after i.v. dosing and 55.9, 77.9, and 49.1 h, respectively, after i.m. dosing. After i.m. dosing, the maximum concentration/MIC ratios for serum, exudate, and transudate were 10.8, 3.0, and 1.6, respectively. The ex vivo growth inhibition data after i.m. dosing were fitted to the inhibitory sigmoid Emax equation to provide the values of AUC/MIC required to produce bacteriostasis, bactericidal activity, and elimination of bacteria. The respective values for serum were 17.8, 20.2, and 28.7 h, and slightly higher values were obtained for transudate and exudate. It is proposed that use of these data might provide a novel approach to the rational design of dosage schedules. PMID:12543670

  4. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species.

    PubMed

    Salgueiro, L R; Cavaleiro, C; Pinto, E; Pina-Vaz, C; Rodrigues, A G; Palmeira, A; Tavares, C; Costa-de-Oliveira, S; Gonçalves, M J; Martinez-de-Oliveira, J

    2003-09-01

    The composition and the antifungal activity of the essential oil of Origanum virens on Candida species were studied. The essential oil was obtained from the aerial parts of the plant by hydrodistillation and analyzed by GC and GC-MS. The oil was characterized by its high content of carvacrol (68.1 %) and its biogenetic precursors, gamma-terpinene (9.9 %) and p-cymene (4.5 %). The minimal inhibitory concentration (MIC) and the minimal lethal concentration (MLC) were used to evaluate the antifungal activity against Candida strains (7 clinical isolates and 3 ATCC type strains). The inhibition of germ tube formation and flow cytometry, using the fluorescent probe propidium iodide (PI), were used to evaluate their mechanisms of action. MIC and MLC values were similar for most tested strains, ranging from 0.16 to 0.32 microL/mL. Concentrations lower than MIC values strongly prevent germ tube formation. The fungicidal effect is primarily due to an extensive lesion of the membrane.

  5. Process Analysis of Variables for Standardization of Antifungal Susceptibility Testing of Nonfermentative Yeasts ▿

    PubMed Central

    Zaragoza, Oscar; Mesa-Arango, Ana C.; Gómez-López, Alicia; Bernal-Martínez, Leticia; Rodríguez-Tudela, Juan Luis; Cuenca-Estrella, Manuel

    2011-01-01

    Nonfermentative yeasts, such as Cryptococcus spp., have emerged as fungal pathogens during the last few years. However, standard methods to measure their antifungal susceptibility (antifungal susceptibility testing [AST]) are not completely reliable due to the impaired growth of these yeasts in standard media. In this work, we have compared the growth kinetics and the antifungal susceptibilities of representative species of nonfermentative yeasts such as Cryptococcus neoformans, Cryptococcus gattii, Cryptococcus albidus, Rhodotorula spp., Yarrowia lipolytica, Geotrichum spp., and Trichosporon spp. The effect of the growth medium (RPMI medium versus yeast nitrogen base [YNB]), glucose concentration (0.2% versus 2%), nitrogen source (ammonium sulfate), temperature (30°C versus 35°C), shaking, and inoculum size (103, 104, and 105 cells) were analyzed. The growth rate, lag phase, and maximum optical density were obtained from each growth experiment, and after multivariate analysis, YNB-based media demonstrated a significant improvement in the growth of yeasts. Shaking, an inoculum size of 105 CFU/ml, and incubation at 30°C also improved the growth kinetics of organisms. Supplementation with ammonium sulfate and with 2% glucose did not have any effect on growth. We also tested the antifungal susceptibilities of all the isolates by the reference methods of the CLSI and EUCAST, the EUCAST method with shaking, YNB under static conditions, and YNB with shaking. MIC values obtained under different conditions showed high percentages of agreement and significant correlation coefficient values between them. MIC value determinations according to CLSI and EUCAST standards were rather complicated, since more than half of isolates tested showed a limited growth index, hampering endpoint determinations. We conclude that AST conditions including YNB as an assay medium, agitation of the plates, reading after 48 h of incubation, an inoculum size of 105 CFU/ml, and incubation at 30°C made MIC determinations easier without an overestimation of MIC values. PMID:21245438

  6. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2002-02-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, monobactams, and carbapenems. Changes in CZOP susceptibility for the bacteria were also evaluated with the bacterial resistance ratio calculated with the breakpoint MIC. Twenty-five species (3,362 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of Moraxella (Branhamella) catarrhalis (n = 136), Haemophilus influenzae (n = 289), Escherichia coli (n = 276), Klebsiella pneumoniae (n = 192), Klebsiella oxytoca (n = 157), Enterobacter cloacae (n = 189), Enterobacter aerogenes (n = 93), Serratia marcescens (n = 172), Serratia liquefaciens (n = 24), Citrobacter freundii (n = 177), Citrobacter koseri (n = 70), Proteus mirabilis (n = 113), Proteus vulgaris (n = 89), Morganella morganii (n = 116), Providencia spp. (n = 41), Pseudomonas aeruginosa (n = 290), Pseudomonas fluorescens (n = 56), Pseudomonas putida (n = 63), Acinetobacter baumannii (n = 146), Acinetobacter lwoffii (n = 34), Burkholderia cepacia (n = 101), Stenotrophomonas maltophilia (n = 169), Bacteroides fragilis group (n = 196), and Prevotella/Porphyromonas (n = 173). An antibacterial activity of CZOP against E. coli, K. pneumoniae, K. oxytoca, and S. marcescens was potent and consistent with or more preferable than the study results obtained until the new drug application approval. MIC90 of CZOP against M.(B.) catarrhalis, C. koseri, and P. aeruginosa was not considerably changed and consistent with the study results obtained until the new drug application approval. MIC90 of CZOP against E. cloacae, E. aerogenes, and P. mirabilis increased year by year. The increase in MIC90 of CZOP against E. aerogenes and P. mirabilis, however, was not considered to be an obvious decline in susceptibility. In contract, the susceptibility of E. cloacae to CZOP was suspected to be decreasing because this species showed 20.6% resistance to CZOP. MIC90 of CZOP against C. freundii was variably changed or not one-sidedly, but was higher than the values obtained until the new drug application approval. Additionally, MIC90 of CZOP against H. influenzae was stable during 5 years except being higher in 1999, and, as a whole, was a little higher than the values obtained until the new drug application approval. An antibacterial activity of CZOP against P. fluorescens, P. putida, B. cepacia, S. maltophilia, B. fragilis group, and Prevotella/Porphyromonas was weak like the other cephems. Changes in MIC90 of CZOP against the other bacteria were 2 tubes or more through 5-year study period, but did not tend towards a unilateral direction as meaning a decline in susceptibility.

  7. Comparison of antifungal activities of various essential oils on the Phytophthora drechsleri, the causal agent of fruit decay

    PubMed Central

    Mohammadi, Ali; Hashemi, Maryam; Hosseini, Seyed Masoud

    2015-01-01

    Background and Objectives: The efficacy of Mentha piperita L, Zataria multiflora Boiss and Thymus vulgaris L essential oils (EOs) was evaluated for controlling the growth of Phytophthora drechsleri, the causative agent of damage to many crops that is consumed directly by humans. Materials and Methods: The EOs used in this study was purchased from Magnolia Co, Iran. The pour plate method in petri dishes containing Potato Dextrose Agar (PDA) was used to evaluate the antifungal properties of EOs. The minimal inhibitory concentrations (MIC), minimum fungicidal concentration (MFC) as well as mycelial growth inhibition (MGI) were measured. The IC50 value (the concentration inhibited 50% of the mycelium growth) was calculated by probit analysis. Results and Conclusion: The fungal growth was significantly reduced by increasing concentrations of tested EOs. The complete reduction was obtained with Shirazi thyme at all concentrations, whereas the complete reduction for peppermint and thyme was observed at 0.4% and 0.8% (v/v) concentrations, respectively. Meanwhile, the minimum inhibition was observed when 0.1% peppermint (MGI values of 9.37%) was used. The IC50, MIC and MFC values of Shirazi thyme was 0.053, 0.1% and 0.2%, respectively. Similarly, MIC and MFC values of peppermint and thyme were recorded 0.4% and 0.8%, respectively. The results obtained from this study may contribute to the development of new antifungal agents to protect the crops from this pathogenic fungus and many agricultural plant pathogens causing drastic crop losses. PMID:26644871

  8. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe.

    PubMed

    Kreizinger, Zsuzsa; Grózner, Dénes; Sulyok, Kinga M; Nilsson, Kristin; Hrivnák, Veronika; Benčina, Dušan; Gyuranecz, Miklós

    2017-11-17

    Mycoplasma synoviae causes infectious synovitis and respiratory diseases in chickens and turkeys and may lead to egg shell apex abnormalities in chickens; hence possesses high economic impact on the poultry industry. Control of the disease consists of eradication, vaccination or medication. The aim of the present study was to determine the in vitro susceptibility to 14 different antibiotics and an antibiotic combination of M. synoviae strains originating from Hungary and other countries of Central and Eastern Europe. Minimal inhibitory concentration (MIC) values of a total of 41 M. synoviae strains were determined by the microbroth dilution method. The strains were collected between 2002 and 2016 and originated from Hungary (n = 26), Austria (n = 3), the Czech Republic (n = 3), Slovenia (n = 3), Ukraine (n = 3), Russia (n = 2) and Serbia (n = 1). Tetracyclines (with MIC 50 values of 0.078 μg/ml, ≤0.25 μg/ml and 0.5 μg/ml for doxycycline, oxytetracycline and chlortetracycline, respectively), macrolides (with MIC 50 values of ≤0.25 μg/ml for tylvalosin, tylosin and tilmicosin), pleuromutilins (with MIC 50 values of 0.078 μg/ml and ≤0.039 μg/ml for tiamulin and valnemulin) and the combination of lincomycin and spectinomycin (MIC 50 1 μg/ml (0.333/0.667 μg/ml)) were found to be the most effective antibiotic agents against M. synoviae in vitro. High MIC values were detected in numerous strains for fluoroquinolones (with MIC 50 values of 1.25 μg/ml and 2.5 μg/ml for enrofloxacin and difloxacin), neomycin (MIC 50 32 μg/ml), spectinomycin (MIC 50 2 μg/ml), lincomycin (MIC 50 0.5 μg/ml) and florfenicol (MIC 50 4 μg/ml). Nevertheless, strains with elevated MIC values were detected for most of the applied antibiotics. In the medical control of M. synoviae infections the preliminary in vitro antibiotic susceptibility testing and the careful evaluation of the data are crucial. Based on the in vitro examinations doxycycline, oxytetracycline, tylvalosin, tylosin and pleuromutilins could be recommended for the therapy of M. synoviae infections in the region.

  9. Antimicrobial Susceptibility of Udder Pathogens Isolated from Dairy Herds in the West Littoral Region of Uruguay

    PubMed Central

    2002-01-01

    A total of 522 strains belonging to streptococci, enterococci and staphylococci isolated from sub-clinical and clinical cases of bovine mastitis from the west littoral region of Uruguay were analysed for their susceptibility to several antimicrobial agents. The susceptibility patterns were studied by agar disk diffusion methods (ADDM) and broth micro-dilution to determine the minimum inhibitory concentration (MIC). The concentration that inhibits 90% (MIC90) of the analysed strains reported in micrograms per millilitre, for Staphylococcus aureus were > 8, 8, ≤ 0.5, ≤ 4, ≤ 1, ≤ 0.5, > 64, ≤ 0.25, 0.5, ≤ 1 and ≤ 1 to penicillin, ampicillin, oxacillin, cephalotin, gentamicin, erythromycin, oxitetracycline, enrofloxacin, trimethoprim/sulfamethoxazole, neomycin, and clindamycin, respectively. Coagulase-negative staphylococci (CNS) had different values for penicillin (4) and ampicillin (2), while the other antimicrobial agents had the same MIC90 values as reported for S. aureus. The MIC90 values for streptococci were 0.12, 0.25, ≤ 4, 16, ≤ 0.25, 0.5, 0.25 for penicillin, ampicillin, cephalotin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, whereas MIC90 for enterococci were 4, 4, 4, ≤ 0.5, 2, > 8 for penicillin, ampicillin, gentamicin, erythromycin, oxytetracycline and trimethoprim-sulfamethoxazole, respectively. Of 336 strains of S. aureus, 160 (47.6%) were resistant to penicillin. For 41 CNS strains, 10 (27%) presented penicillin-resistance. All the streptococcal strains were susceptible to penicillin, while 3 (7%) of the 43 enteroccocal strains were resistant. Non significant statistical differences were found between the results obtained by ADDM and broth micro-dilution for classifying bacterial isolates as susceptible or resistant according to the National Committee of Clinical Laboratory Standards. PMID:12071114

  10. The antibacterial properties of Malaysian tualang honey against wound and enteric microorganisms in comparison to manuka honey

    PubMed Central

    Tan, Hern Tze; Rahman, Rosliza Abdul; Gan, Siew Hua; Halim, Ahmad Sukari; Hassan, Siti Asma'; Sulaiman, Siti Amrah; BS, Kirnpal-Kaur

    2009-01-01

    Background Antibiotic resistance of bacteria is on the rise, thus the discovery of alternative therapeutic agents is urgently needed. Honey possesses therapeutic potential, including wound healing properties and antimicrobial activity. Although the antimicrobial activity of honey has been effectively established against an extensive spectrum of microorganisms, it differs depending on the type of honey. To date, no extensive studies of the antibacterial properties of tualang (Koompassia excelsa) honey on wound and enteric microorganisms have been conducted. The objectives of this study were to conduct such studies and to compare the antibacterial activity of tualang honey with that of manuka honey. Methods Using a broth dilution method, the antibacterial activity of tualang honey against 13 wound and enteric microorganisms was determined; manuka honey was used as the control. Different concentrations of honey [6.25-25% (w/v)] were tested against each type of microorganism. Briefly, two-fold dilutions of honey solutions were tested to determine the minimum inhibitory concentration (MIC) against each type of microorganism, followed by more assays within a narrower dilution range to obtain more precise MIC values. MICs were determined by both visual inspection and spectrophotometric assay at 620 nm. Minimum bactericidal concentration (MBC) also was determined by culturing on blood agar plates. Results By visual inspection, the MICs of tualang honey ranged from 8.75% to 25% compared to manuka honey (8.75-20%). Spectrophotometric readings of at least 95% inhibition yielded MIC values ranging between 10% and 25% for both types of honey. The lowest MBC for tualang honey was 20%, whereas that for manuka honey was 11.25% for the microorganisms tested. The lowest MIC value (8.75%) for both types of honey was against Stenotrophomonas maltophilia. Tualang honey had a lower MIC (11.25%) against Acinetobacter baumannii compared to manuka honey (12.5%). Conclusion Tualang honey exhibited variable activities against different microorganisms, but they were within the same range as those for manuka honey. This result suggests that tualang honey could potentially be used as an alternative therapeutic agent against certain microorganisms, particularly A. baumannii and S. maltophilia. PMID:19754926

  11. Correlation of MIC value and disk inhibition zone diameters in clinical Legionella pneumophila serogroup 1 isolates.

    PubMed

    Bruin, Jacob P; Diederen, Bram M W; Ijzerman, Ed P F; Den Boer, Jeroen W; Mouton, Johan W

    2013-07-01

    Routine use of disk diffusion tests for detecting antibiotic resistance in Legionella pneumophila has not been described. The goal of this study was to determine the correlation of MIC values and inhibition zone diameter (MDcorr) in clinical L. pneumophila isolates. Inhibition zone diameter of 183 L. pneumophila clinical isolates were determined for ten antimicrobials. Disk diffusion results were correlated with MICs as determined earlier with E-tests. Overall the correlation of MIC values and inhibition zone diameters (MDcorr) of the tested antimicrobials is good, and all antimicrobials showed a WT distribution. Of the tested fluoroquinolones levofloxacin showed the best MDcorr. All macrolides showed a wide MIC distribution and good MDcorr. The MDcorr for cefotaxim, doxycycline and tigecycline was good, while for rifampicin and moxifloxacin, they were not. Overall good correlation between MIC value and disk inhibition zone were found for the fluoroquinolones, macrolides and cefotaxim. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Activity of Ceftazidime-Avibactam against Fluoroquinolone-Resistant Enterobacteriaceae and Pseudomonas aeruginosa

    PubMed Central

    Pitart, C.; Marco, F.; Keating, T. A.; Nichols, W. W.

    2015-01-01

    Ceftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200 Enterobacteriaceae and 25 Pseudomonas aeruginosa strains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistant Enterobacteriaceae strains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBL Escherichia coli (MIC90 of 0.25 mg/liter), ESBL Klebsiella pneumoniae (MIC90 of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90 of 1 mg/liter), non-ESBL E. coli (MIC90 of ≤0.125 mg/liter), non-ESBL K. pneumoniae (MIC90 of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90 of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistant P. aeruginosa strains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90 of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtained in vitro from two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90 values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains of Enterobacteriaceae and P. aeruginosa were ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affect Enterobacteriaceae and P. aeruginosa susceptibility to ceftazidime-avibactam; that is, there is no cross-resistance. PMID:25753646

  13. Role of Phragmites australis (common reed) for heavy metals phytoremediation of estuarine sediments.

    PubMed

    Cicero-Fernández, Diego; Peña-Fernández, Manuel; Expósito-Camargo, Jose A; Antizar-Ladislao, Blanca

    2016-01-01

    The ability of Phragmites australis to take up heavy metals (Co, Ni, Mo, Cd, Pb, Cr, Cu, Fe, Mn, Zn, and Hg) and other trace elements (As, Se, Ba), from estuarine sediments was investigated using a pilot plant experimental approach. Bioaccumulation (BCF) and translocation factors (TF) were calculated in vegetative and senescence periods for two populations of P. australis, from contaminated (MIC) and non-contaminated (GAL) estuarine sediments, respectively, both growing in estuarine contaminated sediment (RIA) from ría del Carmen y Boo, Santander Bay, Spain. The highest BCF values were obtained for Ni (0.43), Ba (0.43) Mo (0.36), Cr (0.35), and Cd (0.31) for plants collected from site GAL following the senescence period. The highest BCF values recorded for plants collected from MIC following the senescence period were for Mo (0.22) and Cu (0.22). Following senescence, plants collected from GAL and MIC presented TF>1 for Ni, Mo, Se, and Zn, and in addition plants collected from MIC presented TF>1 for Ba, Cr, and Mn. A substantial increase of Micedo's rhizosphere, six times higher than Galizano's rhizosphere, suggested adaptation to contaminated sediment. The evaluated communities of P. australis demonstrated their suitability for phytoremediation of heavy metals contaminated estuarine sediments.

  14. In vitro antimicrobial and antimycobacterial activity and HPLC-DAD screening of phenolics from Chenopodium ambrosioides L.

    PubMed

    Jesus, Roberta S; Piana, Mariana; Freitas, Robson B; Brum, Thiele F; Alves, Camilla F S; Belke, Bianca V; Mossmann, Natália Jank; Cruz, Ritiel C; Santos, Roberto C V; Dalmolin, Tanise V; Bianchini, Bianca V; Campos, Marli M A; Bauermann, Liliane de Freitas

    The main objective of this study was to demonstrate the antimicrobial potential of the crude extract and fractions of Chenopodium ambrosioides L., popularly known as Santa-Maria herb, against microorganisms of clinical interest by the microdilution technique, and also to show the chromatographic profile of the phenolic compounds in the species. The Phytochemical screening revealed the presence of cardiotonic, anthraquinone, alkaloids, tannins and flavonoids. The analysis by HPLC-DAD revealed the presence of rutin in the crude extract (12.5±0.20mg/g), ethyl acetate (16.5±0.37mg/g) and n-butanol (8.85±0.11mg/g), whereas quercetin and chrysin were quantified in chloroform fraction (1.95±0.04 and 1.04±0.01mg/g), respectively. The most promising results were obtained with the ethyl acetate fraction, which inhibited a greater number of microorganisms and presented the lowest values of MIC against Staphylococcus aureus and Enterococcus faecalis (MIC=0.42mg/mL), Pseudomonas aeruginosa (MIC=34.37mg/mL), Paenibacillus apiarus (MIC=4.29mg/mL) and Paenibacillus thiaminolyticus (MIC=4.29mg/mL). Considering mycobacterial inhibition, the best results were obtained by chloroform fraction against M. tuberculosis, M. smegmatis, and M. avium (MIC ranging from 156.25 to 625μg/mL). This study proves, in part, that the popular use of C. ambrosioides L. can be an effective and sustainable alternative for the prevention and treatment of diseases caused by various infectious agents. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  15. Effectiveness of tilmicosin against Paenibacillus larvae, the causal agent of American Foulbrood disease of honeybees.

    PubMed

    Reynaldi, Francisco J; Albo, Graciela N; Alippi, Adriana M

    2008-11-25

    American Foulbrood (AFB) of honeybees (Apis mellifera L.), caused by the Gram-positive bacterium Paenibacillus larvae is one of the most serious diseases affecting the larval and pupal stages of honeybees (A. mellifera L.). The aim of the present work was to asses the response of 23 strains of P. larvae from diverse geographical origins to tilmicosin, a macrolide antibiotic developed for exclusive use in veterinary medicine, by means of the minimal inhibitory concentration (MIC) and the agar diffusion test (ADT). All the strains tested were highly susceptible to tilmicosin with MIC values ranging between 0.0625 and 0.5 microg ml(-1), and with MIC(50) and MIC(90) values of 0.250 microg ml(-1). The ADT tests results for 23 P. larvae strains tested showed that all were susceptible to tilmicosin with inhibition zones around 15 microg tilmicosin disks ranging between 21 and 50mm in diameter. Oral acute toxicity of tilmicosin was evaluated and the LD(50) values obtained demonstrated that it was virtually non-toxic for adult bees and also resulted non-toxic for larvae when compared with the normal brood mortality. Dosage of 1000 mg a.i. of tilmicosin applied in a 55 g candy resulted in a total suppression of AFB clinical signs in honeybee colonies 60 days after initial treatment. To our knowledge, this is the first report of the effectiveness of tilmicosin against P. larvae both in vitro and in vivo.

  16. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia.

    PubMed

    Holmes, Natasha E; Turnidge, John D; Munckhof, Wendy J; Robinson, J Owen; Korman, Tony M; O'Sullivan, Matthew V N; Anderson, Tara L; Roberts, Sally A; Warren, Sanchia J C; Gao, Wei; Howden, Benjamin P; Johnson, Paul D R

    2013-04-01

    A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥ 400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a "real-world" context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥ 400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥ 400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods.

  17. Vancomycin AUC/MIC Ratio and 30-Day Mortality in Patients with Staphylococcus aureus Bacteremia

    PubMed Central

    Turnidge, John D.; Munckhof, Wendy J.; Robinson, J. Owen; Korman, Tony M.; O'Sullivan, Matthew V. N.; Anderson, Tara L.; Roberts, Sally A.; Warren, Sanchia J. C.; Gao, Wei; Howden, Benjamin P.; Johnson, Paul D. R.

    2013-01-01

    A ratio of the vancomycin area under the concentration-time curve to the MIC (AUC/MIC) of ≥400 has been associated with clinical success when treating Staphylococcus aureus pneumonia, and this target was recommended by recently published vancomycin therapeutic monitoring consensus guidelines for treating all serious S. aureus infections. Here, vancomycin serum trough levels and vancomycin AUC/MIC were evaluated in a “real-world” context by following a cohort of 182 patients with S. aureus bacteremia (SAB) and analyzing these parameters within the critical first 96 h of vancomycin therapy. The median vancomycin trough level at this time point was 19.5 mg/liter. There was a significant difference in vancomycin AUC/MIC when using broth microdilution (BMD) compared with Etest MIC (medians of 436.1 and 271.5, respectively; P < 0.001). Obtaining the recommended vancomycin target AUC/MIC of ≥400 using BMD was not associated with lower 30-day all-cause or attributable mortality from SAB (P = 0.132 and P = 0.273, respectively). However, an alternative vancomycin AUC/MIC of >373, derived using classification and regression tree analysis, was associated with reduced mortality (P = 0.043) and remained significant in a multivariable model. This study demonstrated that we obtained vancomycin trough levels in the target therapeutic range early during the course of therapy and that obtaining a higher vancomycin AUC/MIC (in this case, >373) within 96 h was associated with reduced mortality. The MIC test method has a significant impact on vancomycin AUC/MIC estimation. Clinicians should be aware that the current target AUC/MIC of ≥400 was derived using the reference BMD method, so adjustments to this target need to be made when calculating AUC/MIC ratio using other MIC testing methods. PMID:23335735

  18. Outcomes with daptomycin in the treatment of Staphylococcus aureus infections with a range of vancomycin MICs

    PubMed Central

    Crompton, Jason A.; North, Donald S.; Yoon, MinJung; Steenbergen, Judith N.; Lamp, Kenneth C.; Forrest, Graeme N.

    2010-01-01

    Objectives Recent recommendations by the Infectious Diseases Society of America for the treatment of Staphylococcus aureus suggest the use of alternative agents when vancomycin MIC values are ≥2 mg/L. This study examines the outcome of patients treated with daptomycin for S. aureus infections with documented vancomycin MICs. Patients and methods All patients with skin, bacteraemia and endocarditis infections due to S. aureus with vancomycin MIC values in CORE 2005–08, a retrospective, multicentre, observational registry, were studied. The outcome (cure, improved, failure or non-evaluable) was the investigator assessment at the end of daptomycin therapy. Success was defined as cure or improved. Results Five hundred and forty-seven clinically evaluable patients were identified with discrete vancomycin MIC values [MIC <2 mg/L: 451 (82%); MIC ≥2 mg/L: 96 (18%)]. The vancomycin MIC groups were well matched for patient characteristics, types of infections, first-line daptomycin use (19%) and prior vancomycin use (58%). Clinical success was reported in 94% of patients. No differences were detected in the daptomycin success rate by the vancomycin MIC group overall or by the infection type. A multivariate logistic regression also failed to identify vancomycin MIC as a predictor of daptomycin failure. Adverse event (AE) rates were not different when analysed by MIC group; both groups had ∼17% of patients with one AE. Conclusions In this diverse population, daptomycin was associated with similar outcomes for patients, regardless of whether the vancomycin MIC was categorized as <2 or ≥2 mg/L. Further studies are warranted. PMID:20554570

  19. Potential of tara (Caesalpinia spinosa) gallotannins and hydrolysates as natural antibacterial compounds.

    PubMed

    Aguilar-Galvez, Ana; Noratto, Giuliana; Chambi, Flor; Debaste, Frédéric; Campos, David

    2014-08-01

    Gallotannins obtained from tara pod extracts (EE) and from the products of acid hydrolysis for 4 and 9h (HE-4 and HE-9) were characterised for their composition, antioxidant activity, antimicrobial activity (AA) and minimum inhibitory concentration (MIC). Results of AA and MIC showed that EE exerted the highest inhibitory activity against Staphylococcus aureus, followed by Pseudomonas fluorescens; and among these bacteria, the antibacterial potency was enhanced after EE hydrolysis only against S. aureus. The lowest minimum inhibitory concentration (MIC) value (0.13mg gallic acid equivalent (GAE)/ml) was exerted by HE-4 against S. aureus. These results indicate that tara gallotannins have the potential to inhibit pathogenic bacteria with potential application in foods as antimicrobials and their AA can be enhanced by acid hydrolysis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Susceptibility of Malassezia pachydermatis to aminoglycosides.

    PubMed

    Silva, Freddy Alejandro; Conde-Felipe, Magnolia; Rosario, Inmaculada; Ferrer, Otilia; Real, Fernando; Déniz, Soraya; Acosta, Félix; Padilla, Daniel; Acosta-Hernández, Begoña

    2017-12-01

    Previous studies have evaluated the action of gentamicin against Malassezia pachydermatis. The aim of this study was to evaluate in vitro susceptibility of M. pachydermatis to the aminoglycosides- gentamicin, tobramycin, netilmicin and framycetin. The minimum inhibitory concentration (MIC) of gentamicin was determined following methods M27-A3 microdilution and Etest ® . The Etest ® was used to determine the minimum inhibitory concentration (MIC) of the tobramycin and netilmicin. The Kirby-Bauer test was used to determine the antibiotic susceptibility to the framycetin. The MIC50 and MIC90 were 8.12 μg/mL and 32.5 μg/mL by microdilution method for gentamicin. The MIC50, determined by the Etest ® , was 8 μg/mL for gentamicin and netilmicin and 64 μg/mL for tobramycin. The MIC90 was 16 and 32 μg/mL for gentamicin and netilmicin respectively. The MIC90 was outside of the detectable limits for tobramycin. To framycetin, 28 strains (40%) of the 70 M. pachydermatis isolates tested showed a diameter of 22 mm, 22 strains (31.42%) showed a diameter of 20 mm, 16 strains showed a diameter of ≤ 18 mm, and only 5.71% of the isolates showed a diameter of ≥ 22 mm. This study provides evidence of high in vitro activity of the aminoglycosides-gentamicin, tobramycin, netilmicin and framycetin against M. pachydermatis. For gentamicin Etest ® showed similar values of MIC50 y MIC90 that the obtained by microdilution method. We considered Etest ® method could be a good method for these calculations with aminoglycosides. © 2017 Blackwell Verlag GmbH.

  1. IN VITRO EFFICACY OF EXTRACTS FROM PLANTS USED BY SMALL-HOLDER FARMERS IN THE TREATMENT OF DERMATOPHILOSIS IN CATTLE.

    PubMed

    Ndhlovu, Daud N; Masika, Patrick J

    2017-01-01

    Bovine dermatophilosis, an important skin disease of cattle caused by Dermatophilus congolensis , negatively impacts the livelihoods of small-holder farmers in Zimbabwe. This impact is through, morbidity, loss of draught animal power, costs incurred to manage the disease, losses associated with devalued damaged hides and the resultant culling of some of the affected cattle. Due to the inaccessibility of conventional drugs to manage bovine dermatophilosis, farmers have been reported to use local medicinal plants to manage the disease. The aim of the study was to evaluate the in vitro antimicrobial activities of three plants that small-holder farmers in Zimbabwe used to manage bovine dermatophilosis. Dried plant materials were ground into powder and extracted individually using, water, 80 % acetone and 80 % methanol. The antimicrobial properties of the plants were evaluated against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and one Gram-positive (Staphylococcus aureus) reference bacterial strains. They were further evaluated against a field isolate of Dermatophilus congolensis . The assays used were the disc diffusion, minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC). Acetone and methanol extracts had superior inhibitory activities than did those of water. Pterocarpus angolensis DC extracts had better inhibitory properties with absolute MIC values of 0.156 - 5 mg/ml, Cissus Quadrangularis L had MIC values in the range 0.156 - 5 mg/ml while that of Catunaregam spinosa Thunb, Terveng was 0.156 - 10 mg/ml. Dermatophilus congolensis was more sensitive to Pterocarpus angolensis DC average MIC = 0.63 mg/ml than to Cissus quadrangularis L average MIC = 1.25 mg/ml and Catunaregam. spinosa Thunb, Terveng average MIC = 2.08 mg/ml. These results suggest the potential antibacterial activities of extracts of the three plants and hence farmers are, in a way, justified in using the plants. Better results (lower MIC) could be obtained by extracting and evaluating pure active compounds of the plants.

  2. A ten-year (2000-2009) study of antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex--Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni--in the United States and Canada.

    PubMed

    Portis, Ellen; Lindeman, Cynthia; Johansen, Lacie; Stoltman, Gillian

    2012-09-01

    Bovine isolates of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni, collected from 2000 to 2009, were tested for in vitro susceptibility to ceftiofur, penicillin, danofloxacin, enrofloxacin, florfenicol, tetracycline, tilmicosin, and tulathromycin. Ceftiofur remained very active against all isolates. Penicillin retained good activity against P. multocida and H. somni isolates with no appreciable changes in susceptibility or minimal inhibitory concentration (MIC) distributions with time. While there was no obvious trend, the percent of M. haemolytica that were susceptible to penicillin ranged from 40.9% to 66.7%. Danofloxacin MIC(50) and MIC(90) values for M. haemolytica and P. multocida did not change beyond a single dilution over the 6 years it was included in the testing panel. The MIC(90) for H. somni increased beyond 1 dilution. Enrofloxacin MIC(50) values for the 3 pathogens also did not change over time, unlike the MIC(90) values, which increased by at least 4-doubling dilutions. Ninety percent or more of M. haemolytica and H. somni isolates were susceptible to florfenicol, while susceptibility among P. multocida was 79% or greater. Less than 50% of the isolates tested as susceptible to tetracycline in many of the years. All 3 organisms showed declines in tilmicosin and tulathromycin MIC(50) and MIC(90) values over the years in which they were tested.

  3. Bactericidal activity of amoxicillin against non-susceptible Streptococcus pneumoniae in an in vitro pharmacodynamic model simulating the concentrations obtained with the 2000/125 mg sustained-release co-amoxiclav formulation.

    PubMed

    Sevillano, David; Calvo, Almudena; Giménez, María-José; Alou, Luis; Aguilar, Lorenzo; Valero, Eva; Carcas, Antonio; Prieto, José

    2004-12-01

    To investigate the bactericidal activity against Streptococcus pneumoniae of simulated amoxicillin serum concentrations obtained in humans after 2000/125 mg sustained-release (SR) and 875/125 mg co-amoxiclav administered twice and three times a day, respectively. An in vitro computerized pharmacodynamic simulation was carried out and colony counts were determined over 24 h. Ten strains non-susceptible to amoxicillin (four of them exhibiting an MIC of 4 mg/L, five strains with an MIC of 8 mg/L and one strain with an MIC of 16 mg/L) were used. With amoxicillin 2000 mg, an initial inoculum reduction >99.99% was obtained for strains with an MIC of 4 mg/L, > or =99% for strains with an MIC of 8 mg/L and 70.6% for the strain with an MIC of 16 mg/L at 24 h sampling time. At this sampling time, no reduction of initial inocula was obtained with amoxicillin 875 mg/8 h for two of the four strains with an MIC of 4 mg/L, three of the five strains with an MIC of 8 mg/L or for the strain with an MIC of 16 mg/L. The new co-amoxiclav 2000/125 mg SR formulation appears to offer advantages versus previous formulations with respect to bactericidal activity against current amoxicillin non-susceptible strains.

  4. Bluetooth gas sensing module combined with smartphones for air quality monitoring.

    PubMed

    Suárez, José Ignacio; Arroyo, Patricia; Lozano, Jesús; Herrero, José Luis; Padilla, Manuel

    2018-08-01

    This study addresses the development of a miniaturized (60 × 60 mm) Wireless Sensing Module (WSM) for environmental application and air quality detection. The proposed prototype has six sensors: one for humidity, one for ambient temperature (SHT21 from Sensirion), and four for gas detection (MiCS-4514, MiCS-5526 and MiCS-5914 from SGX Sensortech). The core of the system is based on a high performance 8-bit microcontroller, model PIC18F46K80, from Microchip. The obtained data values were transmitted to the Smartphone through a Bluetooth communication module and a home-developed Android app. The discrimination capability of the module is tested with 10 volatile organic compounds (acetone, acetic acid, benzene, ethanol, ethyl acetate, ethylbenzene, formaldehyde, toluene, xylene, and dimethylacetamide) and the effect of humidity and drift of the sensors is also studied. Results show that 88.33% and 92.22% success rates in classification stage are obtained using Multilayer Perceptron with BackPropagation Learning algorithm and Radial-Basis based Neural Networks, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Stability of Non-Neutral Plasma Cylinder Consisting of Magnetized Cold Electrons and of Small Density Fraction of Ions Born at Rest: Non-Local Analysis

    NASA Astrophysics Data System (ADS)

    Yeliseyev, Y. N.

    2009-03-01

    The non-local stability problem of the plasma cylinder, filled with "cold" magnetized rigidly rotating electrons, and a small density fraction of ions, is solved. The ions are supposed to be born at rest by ionization of background gas. The study is based on the kinetic description of ions. The equilibrium distribution function, taking into account the peculiarity of ions birth, is used. The radial electric field is caused by space charge of non-neutral plasma. The dispersion equation for plasma eigen frequencies is obtained analytically. It is valid within the total admissible range of values of electric and magnetic fields. Normalized eigen frequencies ω'/Ωi are calculated for the basic azimuth mode m = 1 (ω' = ω-mωi+, ω+ = (-ωci+Ωi)/2, Ωi = (ωci2-4eEr/mir)1/2 is called the "modified" ion cyclotron (MIC) frequency), for the density fraction of ions of atomic nitrogen f = Ni/ne = 0,01 and are presented in graphic form versus parameter 2ωpe2/ωce2. The spectra of oscillations ω'/Ωi consist of the family of electron Trivel-piece—Gould (TG) modes and of the families of MIC modes. The frequencies of MIC modes are located in a small vicinity of harmonics of the MIC frequency Ωi above and below the harmonic. The TG modes in non-neutral plasma fall in the region of MIC frequencies Ωi and interact strongly with MIC modes. The slow TG modes become unstable near the crossings with non-negative harmonics of MIC frequencies. The instabilities have a resonant character. The lowest radial TG mode has a maximum growth rate at crossing with a zero harmonic of Ωi ((Im ω'/Ωi)max≈0,074). The growth rates of MIC modes are much lower ((Im ω'/Ωi)max≲0,002). Their instability has a threshold character. The instabilities of TG and MIC modes take place mainly at the values of parameter 2ωpe2/ωce2, corresponding to strong radial electric fields (ωci2≪|eEr/mir|), in which the ions are unmagnetized. The oscillations of small amplitude are seen on some frequency dependencies of MIC modes. They are similar to oscillations on dispersion curves of electron waves in metals and are caused by the similarity between the ion equilibrium distribution function and the degenerate Fermi—Dirac one. The results obtained give the solution to the stability problem discussed by R.H. Levy, J.D. Daugherty and O. Buneman [Phys. Fl. 12, 2616-2629 (1969)] for a special case of plasma bounding directly with metal casing and possessing the volumetric eigen modes only.

  6. [Confirming the Utility of RAISUS Antifungal Susceptibility Testing by New-Software].

    PubMed

    Ono, Tomoko; Suematsu, Hiroyuki; Sawamura, Haruki; Yamagishi, Yuka; Mikamo, Hiroshige

    2017-08-15

    Clinical and Laboratory Standards Institute (CLSI) methods for susceptibility tests of yeast are used in Japan. On the other hand, the methods have some disadvantage; 1) reading at 24 and 48 h, 2) using unclear scale, approximately 50% inhibition, to determine MICs, 3) calculating trailing growth and paradoxical effects. These makes it difficult to test the susuceptibility for yeasts. Old software of RAISUS, Ver. 6.0 series, resolved problem 1) and 2) but did not resolve problem 3). Recently, new software of RAISUS, Ver. 7.0 series, resolved problem 3). We confirmed that using the new software made it clear whether all these issue were settled or not. Eighty-four Candida isolated from Aichi Medical University was used in this study. We compared the MICs obtained by using RAISUS antifungal susceptibility testing of yeasts RSMY1, RSMY1, with those obtained by using ASTY. The concordance rates (±four-fold of MICs) between the MICs obtained by using ASTY and RSMY1 with the new software were more than 90%, except for miconazole (MCZ). The rate of MCZ was low, but MICs obtained by using CLSI methods and Yeast-like Fungus DP 'EIKEN' methods, E-DP, showed equivalent MICs of RSMY1 using the new software. The frequency of skip effects on RSMY1 using the new software markedly decreased relative to RSMY1 using the old software. In case of showing trailing growth, the new software of RAISUS made it possible to choice the correct MICs and to put up the sign of trailing growth on the result screen. New software of RAISUS enhances its usability and the accuracy of MICs. Using automatic instrument to determine MICs is useful to obtain objective results easily.

  7. In vitro activity of origanum vulgare essential oil against candida species

    PubMed Central

    Cleff, Marlete Brum; Meinerz, Ana Raquel; Xavier, Melissa; Schuch, Luiz Filipe; Schuch, Luiz Filipe; Araújo Meireles, Mário Carlos; Alves Rodrigues, Maria Regina; de Mello, João Roberto Braga

    2010-01-01

    The aim of this study was to evaluate the in vitro activity of the essential oil extracted from Origanum vulgare against sixteen Candida species isolates. Standard strains tested comprised C. albicans (ATCC strains 44858, 4053, 18804 and 3691), C. parapsilosis (ATCC 22019), C. krusei (ATCC 34135), C. lusitaniae (ATCC 34449) and C. dubliniensis (ATCC MY646). Six Candida albicans isolates from the vaginal mucous membrane of female dogs, one isolate from the cutaneous tegument of a dog and one isolate of a capuchin monkey were tested in parallel. A broth microdilution technique (CLSI) was used, and the inoculum concentration was adjusted to 5 x 106 CFU mL-1. The essential oil was obtained by hydrodistillation in a Clevenger apparatus and analyzed by gas chromatography. Susceptibility was expressed as Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC). All isolates tested in vitro were sensitive to O. vulgare essential oil. The chromatographic analysis revealed that the main compounds present in the essential oil were 4-terpineol (47.95%), carvacrol (9.42%), thymol (8.42%) and □-terpineol (7.57%). C. albicans isolates obtained from animal mucous membranes exhibited MIC and MFC values of 2.72 μL mL-1 and 5 μL mL-1, respectively. MIC and MFC values for C. albicans standard strains were 2.97 μL mL-1 and 3.54 μL mL-1, respectively. The MIC and MFC for non-albicans species were 2.10 μL mL-1 and 2.97 μL mL-1, respectively. The antifungal activity of O. vulgare essential oil against Candida spp. observed in vitro suggests its administration may represent an alternative treatment for candidiasis. PMID:24031471

  8. Comparison of Neisseria gonorrhoeae MICs obtained by Etest and agar dilution for ceftriaxone, cefpodoxime, cefixime and azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-12-01

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs.

  9. Susceptibility to antimicrobial agents among bovine mastitis pathogens isolated from North American dairy cattle, 2002-2010.

    PubMed

    Lindeman, Cynthia J; Portis, Ellen; Johansen, Lacie; Mullins, Lisa M; Stoltman, Gillian A

    2013-09-01

    Approximately 8,000 isolates of Streptococcus agalactiae, Streptococcus dysgalactiae, Streptococcus uberis, Staphylococcus aureus, and Escherichia coli, isolated by 25 veterinary laboratories across North America between 2002 and 2010, were tested for in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs. The minimal inhibitory concentrations (MICs) of the beta-lactam drugs remained low against most of the Gram-positive strains tested, and no substantial changes in the MIC distributions were seen over time. Of the beta-lactam antimicrobial agents tested, only ceftiofur showed good in vitro activity against E. coli. The MICs of the macrolides and lincosamides also remained low against Gram-positive mastitis pathogens. While the MIC values given by 50% of isolates (MIC50) for erythromycin and pirlimycin and the streptococci were all low (≤0.5 µg/ml), the MIC values given by 90% of isolates (MIC90) were higher and more variable, but with no apparent increase over time. Staphylococcus aureus showed little change in erythromycin susceptibility over time, but there may be a small, numerical increase in pirlimycin MIC50 and MIC90 values. Overall, the results suggest that mastitis pathogens in the United States and Canada have not shown any substantial changes in the in vitro susceptibility to beta-lactam, macrolide, and lincosamide drugs tested over the 9 years of the study.

  10. Evaluation of Antimicrobial Activity of the Methanol Extracts from 8 Traditional Medicinal Plants

    PubMed Central

    Kang, Chang-Geun; Hah, Dae-Sik; Kim, Chung-Hui; Kim, Young-Hwan; Kim, Euikyung

    2011-01-01

    The methanol extract of 12 medicinal plants were evaluated for its antibacterial activity against Gram-positive (5 strains) and Gram-negative bacteria (10 strains) by assay for minimum inhibitory concentration (MIC) and minimum bacterial concentration (MBC) . The antibacterial activity was determined by an agar dilution method (according to the guidelines of Clinical and Laboratory Standard Institute) . All the compounds (12 extracts) of the 8 medicinal plants (leaf or root) were active against both Gram-negative and Gram-positive bacteria. Gram-negative showed a more potent action than Gram positive bacteria. The MIC concentrations were various ranged from 0.6 μg/ml to 5000 μg/ml. The lowest MIC (0.6 μg/ml) and MBC (1.22 μg/ml) values were obtained with extract on 4 and 3 of the 15 microorganisms tested, respectively. PMID:24278548

  11. Antimicrobial susceptibility pattern of Brachyspira intermedia isolates from European layers.

    PubMed

    Verlinden, Marc; Boyen, Filip; Pasmans, Frank; Garmyn, An; Haesebrouck, Freddy; Martel, An

    2011-09-01

    A broth microdilution method was used to determine the antimicrobial susceptibility of 20 Brachyspira intermedia isolates obtained from different layer flocks in Belgium and The Netherlands between 2008 and 2010. The antimicrobial agents used were tylosin, tilmicosin, tiamulin, valnemulin, doxycycline, and lincomycin. The minimal inhibitory concentration (MIC) distribution patterns of tylosin, tilmicosin, lincomycin, and doxycycline were bimodal, demonstrating acquired resistance against doxycycline in three strains, against the macrolides in two strains, and against lincomycin in one strain. The MICs of tiamulin and valnemulin showed a monomodal distribution, but with tailing toward the higher MIC values, possibly suggesting low-level acquired resistance in six isolates. Sequencing revealed a G1058C mutation in the 16S rRNA gene in all doxycycline-resistant strains. The strain resistant to tylosin, tilmicosin, and lincomycin had an A2058T mutation in the 23S rRNA gene.

  12. Investigation of local anesthetic and antimycobacterial activity of Ottonia martiana Miq. (Piperaceae).

    PubMed

    Cunico, Miriam M; Trebien, Herbert A; Galetti, Fábio C; Miguel, Obdulio G; Miguel, Marilis D; Auer, Celso G; Silva, Célio L; de Souza, Ana Olívia

    2015-01-01

    Ottonia martiana is a plant popularly known in Brazil by the use for toothache. Ethanolic extract (EE), hexane fraction (HF), dichloromethane fraction (DF) and piperovatine obtained from O. martiana were assayed in vitro and in vivo. The acute toxicity of EE was determined, and LD50 values of 164.5 and 65.0 mg/kg by the oral and intraperitoneal routes, respectively, indicated a high toxicity for EE in vivo, explaining its popular use by topical administration only. A local anesthetic-like effect of EE and its fractions was observed in experimental models using pain induction, and such effect involved an analgesic action. The antimycobacterial activity of EE, HF, DF and piperovatine was evaluated against Mycobacterium tuberculosis H37Rv ATCC 27924. EE, HF, DF, and piperovatine showed a potential antimycobacterial effect with MICs of 16.0, 62.0, 62.0 and 8.0 μg/mL, respectively. Piperovatine was more effective than the EE or the other fractions. The selectivity index (SI=IC50/MIC) values calculated for EE, HF, DF and piperovatine based on the MICs and the cytotoxicity against J774 macrophages (IC50 by MTT assay) revealed values of 6.43, 2.34, 1.5 and 9.66, respectively.

  13. Evaluation of usage of essential oils instead of spices in meat ball formulation for controlling Salmonella spp.

    PubMed

    Ozdikmenli, Seda; Demirel Zorba, Nukhet N

    2016-03-01

    The purpose of this study was to show the efficacy of essential oils (EOs) in meat balls instead of spices because of their high antimicrobial effect and to evaluate the antimicrobial effect of Origanum onites and Ocimum basilicum EOs against Salmonella Typhimurium in minced beef (20% fat) stored at 4 ℃ for seven days. This is the first study about use of O. basilicum EO in minced beef against bacterial pathogens. Both EOs inhibit microorganisms in in vitro antibacterial tests. Minimum inhibitory concentration (MIC) values of EOs were determined. The lowest MIC values were obtained with O. onites EO 0.6 µl/ml against S. Typhimurium strains. The MIC values of O. basilicum EO 0.25 µl/ml against microorganisms. Both EOs showed a significant decrease in microorganisms inoculated in minced beef at end of storage. The concentration of the both EOs at 20 µg/mg and 10 µg/mg showed stronger antimicrobial activity against bacterial cocktail of S. Typhimurium in beef; however, the higher concentrations caused alterations in the organoleptic properties of meatballs. The results of the present study indicate that O. onites and O. basilicum EOs may be used in combination with each other and different food preservation systems in meat ball formulation. © The Author(s) 2015.

  14. In vitro sensitivity of Hungarian Actinobaculum suis strains to selected antimicrobials.

    PubMed

    Biksi, I; Major, Andrea; Fodor, L; Szenci, O; Vetési, F

    2003-01-01

    In vitro antimicrobial sensitivity of 12 Hungarian isolates and the type strain ATCC 33144 of Actinobaculum suis to different antimicrobial compounds was determined both by the agar dilution and by the disc diffusion method. By agar dilution, MIC50 values in the range of 0.05-3.125 micrograms/ml were determined for penicillin, ampicillin, ceftiofur, doxycycline, tylosin, pleuromutilins, chloramphenicol, florfenicol, enrofloxacin and lincomycin. The MIC50 value of oxytetracycline and spectinomycin was 6.25 and 12.5 micrograms/ml, respectively. For ofloxacin, flumequine, neomycin, streptomycin, gentamicin, nalidixic acid, nitrofurantoin and sulphamethoxazole + trimethoprim MIC50 values were in the range of 25-100 micrograms/ml. With the disc diffusion method, all strains were sensitive to penicillin, cephalosporins examined, chloramphenicol and florfenicol, tetracyclines examined, pleuromutilins, lincomycin and tylosin. Variable sensitivity was observed for fluoroquinolones (flumequine, enrofloxacin, ofloxacin), most of the strains were susceptible to marbofloxacin. Almost all strains were resistant to aminoglycosides but most of them were sensitive to spectinomycin. A strong correlation was determined for disc diffusion and MIC results (Spearman's rho 0.789, p < 0001). MIC values of the type strain and MIC50 values of other tested strains did not differ significantly. Few strains showed a partially distinct resistance pattern for erythromycin, lincomycin and ampicillin in both methods.

  15. The Associate Program on Ethnobiology, Socio-Economic Value Assessment and Community Based Conservation

    DTIC Science & Technology

    2000-10-01

    resistant isolates of Trichomonas vaginalis and a Tritrichomonas foetus isolate. Of these, five had MIC values of < 0.1 mg/ml including an extract...significance was the low IC50 values obtained for the T. foetus extracts (SU-1461, 1464). Further studies will examine secondary extracts of the...nitroimidazole resistance in Tritrichomonas foetus . Anitmicrob. Agents Chemother. 13:1-13. 22 13. Urbina, J.A., Lazardi, K., Marchan, E., Visbal, G., Aguirre

  16. Chemical composition and anti-biofilm activity of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil.

    PubMed

    Ceylan, Ozgur; Ugur, Aysel

    2015-06-01

    In this study, antimicrobial and antibiofilm activities and the chemical composition of Thymus sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil was evaluated. The essential oil was obtained by hydro-distillation and analyzed by gas chromatography-mass spectrometry. Fourteen compounds were characterized, having as major components thymol (38.31%) and carvacrol (37.95%). Minimum inhibitory concentrations (MICs) of oil and the major components were calculated by serial dilution method, and anti-biofilm effects by microplate biofilm assay against five Gram positive (Staphylococcus aureus MU 38, MU 40, MU 46, MU 47, Stahylococcus epidermidis MU 30) and five Gram negative (Pseudomonas aeruginosa MU 187, MU 188, MU 189, Pseudomonas fluorescens MU 180, MU 181) bacteria. It was found that MICs for essential oil, thymol and carvacrol were between 5 and 50 µl/ml, 0.125-0.5 µg/ml and 0.125-05 µl/ml, respectively. The results showed that doses of MIC produced a greater anti-biofilm influence than 0.5, 0.25 and 0.125 MIC. In the presence of essential oil (MIC), the mean biofilm formation value was equal to 67 ± 5.5% for P. aeruginosa MU 188, and essential oil (MIC) inhibition exceeds 60% for P. aeruginosa biofilms. The results also showed that carvacrol (MIC) was able to induce an inhibition 72.9 ± 4.1% for S.aureus (MU 40) biofilm. In addition, thymol (MIC) showed 68.6 ± 5.3% reduction in biofilm formation of P. fluorescens MU 181. This study demonstrated the antimicrobial and antibiofilm activity of T. sipyleus BOISS. subsp. sipyleus BOISS. var. davisianus RONNIGER essential oil and points out the exceptional efficiency of thymol and carvacrol, which could represent candidates in the treatment of Pseudomonas and Staphylococcus biofilms.

  17. In Vitro Activities of Amphotericin B, Terbinafine, and Azole Drugs against Clinical and Environmental Isolates of Aspergillus terreus Sensu Stricto

    PubMed Central

    Fernández, Mariana S.; Rojas, Florencia D.; Cattana, María E.; Sosa, María de los Ángeles; Iovannitti, Cristina A.; Giusiano, Gustavo E.

    2015-01-01

    The antifungal susceptibilities of 40 clinical and environmental isolates of A. terreus sensu stricto to amphotericin B, terbinafine, itraconazole, and voriconazole were determined in accordance with CLSI document M38-A2. All isolates had itraconazole and voriconazole MICs lower than epidemiologic cutoff values, and 5% of the isolates had amphotericin B MICs higher than epidemiologic cutoff values. Terbinafine showed the lowest MICs. No significant differences were found when MICs of clinical and environmental isolates were compared. PMID:25824228

  18. In vitro activity of tylvalosin against Spanish field strains of Mycoplasma hyopneumoniae.

    PubMed

    Tavío, M M; Poveda, C; Assunção, P; Ramírez, A S; Poveda, J B

    2014-11-29

    Mycoplasma hyopneumoniae is involved in the porcine enzootic pneumonia and respiratory disease complex; therefore, the search for new treatment options that contribute to the control of this organism is relevant. The minimal inhibitory concentrations (MICs) and minimal bactericidal concentrations of tylvalosin and 19 other antimicrobial agents against 20 Spanish field isolates of M. hyopneumoniae were determined using the broth microdilution method, with the type strain (J) as a control strain. Tylvalosin had MIC50 and MIC90 values of 0.016 and 0.06 µg/ml, respectively, and was the second-most effective of the assayed antibiotics, after valnemulin. Tiamulin, tylosin and lincomycin were also among the antibiotics with the lowest MIC50 and MIC90 values against the 20 field isolates (0.06-0.25 µg/ml). However, resistance to tylosin and spiramycin, which like tylvalosin, are 16-membered macrolides, was observed. The MIC50 and MIC90 values for ciprofloxacin and enrofloxacin ranged from 0.125 to 1 µg/ml; the corresponding values ranged from 2 to 4 µg/ml for oxytetracyline, which was the most active tetracycline. Furthermore, tylvalosin and valnemulin exhibited the highest bactericidal activities. In conclusion, the macrolide tylvalosin and the pleuromutilin valnemulin exhibited the highest in vitro antimicrobial activities against M. hyopneumoniae field isolates in comparison with the other tested antibiotics. British Veterinary Association.

  19. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance?

    PubMed

    Udy, Andrew A; Lipman, Jeffrey; Jarrett, Paul; Klein, Kerenaftali; Wallis, Steven C; Patel, Kashyap; Kirkpatrick, Carl M J; Kruger, Peter S; Paterson, David L; Roberts, Michael S; Roberts, Jason A

    2015-01-30

    The aim of this study was to explore the impact of augmented creatinine clearance and differing minimum inhibitory concentrations (MIC) on piperacillin pharmacokinetic/pharmacodynamic (PK/PD) target attainment (time above MIC (fT>MIC)) in critically ill patients with sepsis receiving intermittent dosing. To be eligible for enrolment, critically ill patients with sepsis had to be receiving piperacillin-tazobactam 4.5 g intravenously (IV) by intermittent infusion every 6 hours for presumed or confirmed nosocomial infection without significant renal impairment (defined by a plasma creatinine concentration greater than 171 μmol/L or the need for renal replacement therapy). Over a single dosing interval, blood samples were drawn to determine unbound plasma piperacillin concentrations. Renal function was assessed by measuring creatinine clearance (CLCR). A population PK model was constructed, and the probability of target attainment (PTA) for 50% and 100% fT>MIC was calculated for varying MIC and CLCR values. In total, 48 patients provided data. Increasing CLCR values were associated with lower trough plasma piperacillin concentrations (P < 0.01), such that with an MIC of 16 mg/L, 100% fT>MIC would be achieved in only one-third (n = 16) of patients. Mean piperacillin clearance was approximately 1.5-fold higher than in healthy volunteers and correlated with CLCR (r = 0.58, P < 0.01). A reduced PTA for all MIC values, when targeting either 50% or 100% fT>MIC, was noted with increasing CLCR measures. Standard intermittent piperacillin-tazobactam dosing is unlikely to achieve optimal piperacillin exposures in a significant proportion of critically ill patients with sepsis, owing to elevated drug clearance. These data suggest that CLCR can be employed as a useful tool to determine whether piperacillin PK/PD target attainment is likely with a range of MIC values.

  20. In vitro antifungal activity of silver nanoparticles against ocular pathogenic filamentous fungi.

    PubMed

    Xu, Yan; Gao, Chuanwen; Li, Xiaohua; He, Yi; Zhou, Lutan; Pang, Guangren; Sun, Shengtao

    2013-03-01

    Fungal keratitis is emerging as a major cause of vision loss in a developing country such as China because of higher incidence and the unavailability of effective antifungals. It is urgent to explore broad-spectrum antifungals to effectively suppress ocular fungal pathogens, and to develop new antifungal eye drops to combat this vision-threatening infection. The aim of this study is to investigate the antifungal activity of silver nanoparticles (nano-Ag) in comparison with that of natamycin against ocular pathogenic filamentous fungi in vitro. Susceptibility tests were performed against 216 strains of fungi isolated from patients with fungal keratitis from the Henan Eye Institute in China by broth dilution antifungal susceptibility test of filamentous fungi approved by the Clinical and Laboratory Standards Institute M38-A document. The isolates included 112 Fusarium isolates (82 Fusarium solani species complex, 20 Fusarium verticillioides species complex, and 10 Fusarium oxysporum species complex), 94 Aspergillus isolates (61 Aspergillus flavus species complex, 11 Aspergillus fumigatus species complex, 12 Aspergillus versicolor species complex, and 10 Aspergillus niger species complex), and 10 Alternaria alternata isolates. The minimum inhibitory concentration (MIC) range and mode, the MIC for 50% of the strains tested (MIC50 value), and the MIC90 value were provided for the isolates with the SPSS statistical package. MIC50 value of nano-Ag were 1, 0.5, and 0.5 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of nano-Ag were 1, 1, and 1 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC50 values of natamycin were 4, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. MIC90 values of natamycin were 8, 32, and 4 μg/mL for Fusarium spp., Aspergillus spp., and Al. alternata, respectively. Nano-Ag, relative to natamycin, exhibits potent in vitro activity against ocular pathogenic filamentous fungi.

  1. Characterization of resistance to tetracyclines and aminoglycosides of sheep mastitis pathogens: study of the effect of gene content on resistance.

    PubMed

    Lollai, S A; Ziccheddu, M; Duprè, I; Piras, D

    2016-10-01

    Mastitis causes economic losses and antimicrobials are frequently used for mastitis treatment. Antimicrobial resistance surveys are still rare in the ovine field and characterization of strains is important in order to acquire information about resistance and for optimization of therapy. Bacterial pathogens recovered in milk samples from mastitis-affected ewes were characterized for resistance to tetracyclines and aminoglycosides, members of which are frequently used antimicrobials in small ruminants. A total of 185 strains of staphylococci, streptococci, and enterococci, common mastitis pathogens, were tested for minimal inhibitory concentration (MIC) to tetracycline, doxycycline, minocycline, gentamicin, kanamycin, streptomycin, and for resistance genes by PCR. Effects of different tet genes arrangements on MICs were also investigated. Staphylococci expressed the lowest MIC for tetracycline and tet(K) was the most common gene recovered; tet(M) and tet(O) were also found. Gene content was shown to influence the tetracycline MIC values. Enterococci and streptococci showed higher MICs to tetracyclines and nonsusceptible strains always harboured at least one ribosomal protection gene (MIC above 8 μg ml(-1) ). Streptococci often harboured two or more tet determinants. As regards the resistance to aminoglycosides, staphylococci showed the lowest gentamicin and kanamycin median MIC along with streptomycin high level resistant (HLR) strains (MIC >1024 μg ml(-1) ) all harbouring str gene. The resistance determinant aac(6')-Ie-aph(2″)-Ia was present in few strains. Streptococci were basically nonsusceptible to aminoglycosides but neither HLR isolates nor resistance genes were detected. Enterococci revealed the highest MICs for gentamicin; two str harbouring isolates were shown to be HLR to streptomycin. Evidence was obtained for the circulation of antimicrobial-resistant strains and genes in sheep dairy farming. Tetracycline MIC of 64 μg ml(-1) and high-level resistance were detected for streptomycin (MIC >1024 μg ml(-1) ), so that effectiveness of common treatments may be at risk. © 2016 The Society for Applied Microbiology.

  2. Molecular resistance mechanisms of Mycoplasma agalactiae to macrolides and lincomycin.

    PubMed

    Prats-van der Ham, Miranda; Tatay-Dualde, Juan; de la Fe, Christian; Paterna, Ana; Sánchez, Antonio; Corrales, Juan Carlos; Contreras, Antonio; Gómez-Martín, Ángel

    2017-11-01

    The extensive use of antimicrobials for disease control has caused a remarkable decrease in antimicrobial susceptibility of different animal mycoplasma species, including Mycoplasma agalactiae (M. agalactiae), the main causative agent of contagious agalactia. However, the molecular mechanisms behind M. agalactiae resistance to macrolides and lincomycin have not yet been elucidated. The aim of the present study was to investigate the association between minimum inhibitory concentration (MIC) values of different antimicrobials and mutations in the 23S rRNA gene and ribosomal proteins L4 and L22, analysing both field isolates (n=50) and in vitro selected resistant mutants of M. agalactiae. The obtained MIC results of the studied field isolates demonstrate an increasing development of tylosin resistance in this bacterium, in comparison to previous studies. Interestingly, predicted amino acid changes in L22 (Ser89Leu and Gln90Lys/His) were the first variations observed when MICs of M. agalactiae started to increase (tylosin MIC ≥0.8μg/ml), whereas mutations at positions 2058 or 2059 of domain V of the 23S rRNA gene appeared from MIC values of 1.6μg/ml. These results were consistent in both field isolates and in vitro selected mutants of M. agalactiae. Thus, although in other mycoplasma species resistance to macrolides and lincosamides had been mainly related to mutations in the 23S rRNA gene, this work demonstrates the role of alterations in ribosomal protein L22 in decreased susceptibility of M. agalactiae. Moreover, these mutations can be used as molecular markers to set an interpretative breakpoint of antimicrobial resistance for M. agalactiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparison of Neisseria gonorrhoeae MICs Obtained by Etest and Agar Dilution for Ceftriaxone, Cefpodoxime, Cefixime and Azithromycin.

    PubMed

    Gose, Severin; Kong, Carol J; Lee, Yer; Samuel, Michael C; Bauer, Heidi M; Dixon, Paula; Soge, Olusegun O; Lei, John; Pandori, Mark

    2013-10-24

    We evaluated Neisseria gonorrhoeae Etest minimum inhibitory concentrations (MICs) relative to agar dilution MICs for 664 urethral isolates for ceftriaxone (CRO) and azithromycin (AZM), 351 isolates for cefpodoxime (CPD) and 315 isolates for cefixime (CFM). Etest accurately determined CPD, CFM and AZM MICs, but resulted in higher CRO MICs. © 2013. Published by Elsevier B.V. All rights reserved.

  4. Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary.

    PubMed

    Grózner, Dénes; Kreizinger, Zsuzsa; Sulyok, Kinga M; Rónai, Zsuzsanna; Hrivnák, Veronika; Turcsányi, Ibolya; Jánosi, Szilárd; Gyuranecz, Miklós

    2016-08-19

    Mycoplasma sp. 1220 can induce inflammation primarily in the genital and respiratory tracts of waterfowl, leading to serious economic losses. Adequate housing and appropriate antibiotic treatment are promoted in the control of the disease. The aim of the present study was to determine the in vitro susceptibility to thirteen different antibiotics and an antibiotic combination of thirty-eight M. sp. 1220 strains isolated from geese and a duck in several parts of Hungary, Central Europe between 2011 and 2015. High MIC50 values were observed in the cases of tilmicosin (>64 μg/ml), oxytetracycline (64 μg/ml), norfloxacin (>10 μg/ml) and difloxacin (10 μg/ml). The examined strains yielded the same MIC50 values with spectinomycin, tylosin and florfenicol (8 μg/ml), while enrofloxacin (MIC50 5 μg/ml), doxycycline (MIC50 5 μg/ml), lincomycin (MIC50 4 μg/ml) and lincomycin-spectinomycin (1:2) combination (MIC50 4 μg/ml) inhibited the growth of the bacteria with lower concentrations. Tylvalosin (MIC50 0.5 μg/ml) and two pleuromutilins (tiamulin MIC50 0.625 μg/ml; valnemulin MIC50 ≤ 0.039 μg/ml) were found to be the most effective drugs against M. sp. 1220. However, strains with elevated MIC values were detected for all applied antibiotics. Valnemulin, tiamulin and tylvalosin were found to be the most effective antibiotics in the study. Increasing resistance was observed in the cases of several antibiotics. The results highlight the importance of testing Mycoplasma species for antibiotic susceptibility before therapy.

  5. [Protein interaction site of Toxoplasma gondii microneme protein 6 and aldolase determined by site-directed mutagenesis].

    PubMed

    Zheng, Bin; Yin, Zhi-Kui; Zhan, Xi-Mei

    2014-06-01

    To identify the protein interaction site of Toxoplasma gondii microneme protein 6 (MIC6) and aldolase by using site-directed mutagenesis. Based on Toxoplasma gondii MIC6 gene sequence (GenBank Accession No. AF110270), the specific primers were designed. Tryptophan (W)-348 of MIC6 C terminus (MIC6C) was mutated to valine (V) via site-directed mutagenesis. MIC6C W/V gene was obtained from cDNA library by PCR amplification and subcloned into pGEX-4T-1. The mutant protein GST-MIC6C W/V was expressed in E. coli, induced by 0.8 mmol/L IPTG, and purified by affinity chromatography. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with T. gondii tachyzoites lysate, and bound proteins were eluted using sample buffer. Bound products were resolved by SDS-PAGE and Western blotting. Glutathione sepharose beads were incubated with GST-MIC6C W/V and GST-MIC6C, respectively, and then incubated with aldolase-His6. After incubation, the resin was washed and subjected to SDS-PAGE. The MIC6C W/N gene was obtained, and the recombinant plasmid MIC6C W/V/pGEX-4T-1 was successfully constructed. The mutant protein GST-MIC6C W/V was expressed and purified in vitro. SDS-PAGE analysis indicated that GST-MIC6C was co-precipitated with aldolase from T. gondii tachyzoites lysate or aldolase-His6, whereas GST-MIC6C W/V failed to precipitate aldolase from T. gondii tachyzoites lysate or aldolase-His6. Western blotting analysis using anti-aldolase antibody indicated that GST-MIC6C could pull-down aldolase from T. gondii tachyzoites lysate. Tryptophan (W348) was the interaction site of MIC6 and aldolase in T. gondii.

  6. [Antibiotic resistance analysis of Streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital from 2012 to 2014].

    PubMed

    Ge, L L; Han, Z Y; Liu, A H; Zhu, L; Meng, J H

    2017-02-02

    Objective: To investigate the antibiotic resistance status of Streptococcus pneumoniae isolates from hospitalized children in Shanxi Children's Hospital. Method: E-test and Kirby-Bauer methods were applied to determine drug sensitivity of the isolates collected from the body fluid specimens of hospitalized children in Shanxi Children's Hospital from January 2012 to December 2014. The antimicrobial sensitivity and minimum inhibitory concentration (MIC) of Streptococcus pneumoniae to the conventional antibiotics were analyzed, in order to compare the annual trends of non-invasive isolates, while the differentiation of sensitivity from specimens. The comparison of rates was performed by Chi-squared test and Fisher's exact test. Result: A total of 671 isolates of streptococcus pneumoniae were obtained, which could be divided as non-invasive isolates(607), invasive isolates from non-cerebrospinal fluid(non-CSF)(40) and invasive isolates from cerebrospinal fluid(CSF)(24). The antimicrobial sensitivity(isolates(%)) of the 671 isolates were respectively vancomycin 671(100.0%), linezolid 671(100.0%), levofloxacin 665(99.1%), penicillin 595(88.7%), ceftriaxone 516(76.9%), cefotaxime 512(76.3%), sulfamethoxazole-trimethoprin(SMZ-TMP) 103(15.4%), clindamycin 28(4.2%), tetracycline 26(3.9%), erythromycin 12(1.8%). From 2012 to 2014, the susceptibility rates of non-invasive isolates to penicillin every year were 95.0%(96/101), 97.3%(110/113), 87.3%(343/393), respectively, and there was significant difference among the three years(χ(2)=13.266, P <0.05), and the values of MIC(50, )MIC(90) and the maximum values of MIC(mg/L) of penicillin were 0.064, 2.000, 6.000 in 2012, which grew up to 1.000, 3.000, 16.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to ceftriaxone and cefotaxime during these three years, (χ(2)=1.172, 1.198, both P >0.05). On the other hand, the values of MIC(50, )MIC(90) and the maximum value of MIC(mg/L) of ceftriaxone and cefotaxime both increased from 0.500, 2.000, 8.000 in 2012 to 0.750, 4.000, 32.000 in 2014. There was no significant difference in the susceptibility rate of non-invasive isolates to the rest antibiotic. Based on the same examining standard of CSF, the antimicrobial sensitivity(isolates(%)) of the non-invasive isolates to ceftriaxone, cefotaxime, SMZ-TMP were respectively 281(46.3%), 278(45.8%), 78(12.9%), were significantly lower than the susceptibility rate of the invasive isolates from non-CSF (28(70%), 28(70%), 14(35%), χ(2)=8.453, 8.817, 15.094, all P <0.012 5), and lower than the invasive isolates from CSF (18(75%), 18(75%), χ(2)=7.631, 7.905, P <0.012 5; 11(45.8%), P =0.001). The sensitivity of the isolates to the rest antibiotics were similar( P >0.05). Conclusion: More than 95.0% strains of the streptococcus pneumoniae isolates from the hospitalized children in Shanxi Children's Hospital were sensitive to vancomycin, linezolid, levofloxacin, and the susceptibility rate of penicillin, ceftriaxone, cefotaxime were 88.7%, 76.9%, 76.3%. However, less than 20.0% of streptococcus pneumoniae were sensitive to erythromycin, clindamycin, SMZ-TMP and tetracycline. The susceptibility rate of penicillin of non-invasive Streptococcus pneumoniae declined by these years, and the differences to ceftriaxone and cefotaxime can be neglected, but the values of MIC(50, )MIC(90) and the maximum value of MIC of all were linearly rising. The susceptibility rate of antibiotics to ceftriaxone and cefotaxime of the non-invasive isolates was lower than the invasive isolates.

  7. In Vitro Activity of Twenty Commercially Available, Plant-Derived Essential Oils against Selected Dermatophyte Species.

    PubMed

    Nardoni, Simona; Giovanelli, Silvia; Pistelli, Luisa; Mugnaini, Linda; Profili, Greta; Pisseri, Francesca; Mancianti, Francesca

    2015-08-01

    The in vitro activity of twenty chemically defined essential oils (EOs) obtained from Boswellia sacra, Citrus bergamia, C. limon, C. medica, Cinnamomum zeylanicum, Eucalyptus globulus, Foeniculum vulgare, Helichrysum italicum, Illicium verum, Litsea cubeba, Mentha spicata, Myrtus communis, Ocimum basilicum, Origanum majorana, O. vulgare, Pelargonium graveolens, Rosmarinus officinalis, Santalum album, Satureja montana, and Thymus serpyllum was assayed against clinical animal isolates of Microsporum canis, Trichophyton mentagrophytes, T. erinacei, T. terrestre and Microsporum gypseum, main causative agents of zoonotic and/or environmental dermatophytoses in humans. Single main components present in high amounts in such EOs were also tested. Different dermatophyte species showed remarkable differences in sensitivity. In general, more effective EOs were T. serpyllum (MIC range 0.025%-0.25%), O. vulgare (MIC range 0.025%-0.5%) and L. cubeba (MIC range 0.025%-1.5%). F. vulgare showed a moderate efficacy against geophilic species such as M gypseum and T terrestre. Among single main components tested, neral was the most active (MIC and MFC values 5 0.25%). The results of the present study seem to be promising for an in vivo use of some assayed EOs.

  8. Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria.

    PubMed

    Cermak, Pavel; Olsovska, Jana; Mikyska, Alexandr; Dusek, Martin; Kadleckova, Zuzana; Vanicek, Jiri; Nyc, Otakar; Sigler, Karel; Bostikova, Vanda; Bostik, Pavel

    2017-11-01

    Anaerobic bacteria, such as Bacteroides fragilis or Clostridium perfringens, are part of indigenous human flora. However, Clostridium difficile represents also an important causative agent of nosocomial infectious antibiotic-associated diarrhoea. Treatment of C. difficile infection is problematic, making it imperative to search for new compounds with antimicrobial properties. Hops (Humulus lupulus L.) contain substances with antibacterial properties. We tested antimicrobial activity of purified hop constituents humulone, lupulone and xanthohumol against anaerobic bacteria. The antimicrobial activity was established against B. fragilis, C. perfringens and C. difficile strains according to standard testing protocols (CLSI, EUCAST), and the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were calculated. All C. difficile strains were toxigenic and clinically relevant, as they were isolated from patients with diarrhoea. Strongest antimicrobial effects were observed with xanthohumol showing MIC and MBC values of 15-107 μg/mL, which are close to those of conventional antibiotics in the strains of bacteria with increased resistance. Slightly higher MIC and MBC values were obtained with lupulone followed by higher values of humulone. Our study, thus, shows a potential of purified hop compounds, especially xanthohumol, as alternatives for treatment of infections caused by select anaerobic bacteria, namely nosocomial diarrhoea caused by resistant strains. © 2017 APMIS. Published by John Wiley & Sons Ltd.

  9. Intrapulmonary pharmacokinetics and pharmacodynamics of high-dose levofloxacin in healthy volunteer subjects.

    PubMed

    Conte, John E; Golden, Jeffrey A; McIver, Marina; Zurlinden, Elisabeth

    2006-08-01

    The objective of this study was to determine the plasma and intrapulmonary pharmacokinetic parameters of intravenously administered levofloxacin in healthy volunteers. Three doses of either 750 mg or 1000 mg levofloxacin were administered intravenously to 4 healthy adult subjects (750 mg) to 20 healthy adult subjects divided into five groups of 4 subjects (1000 mg). Standardised bronchoscopy and timed bronchoalveolar lavage (BAL) were performed following administration of the last dose. Blood was obtained for drug assay prior to drug administration and at the time of BAL. Levofloxacin was measured in plasma, BAL fluid and alveolar cells (ACs) using a sensitive and specific combined high-performance liquid chromatographic tandem mass spectrometric technique (HPLC/MS/MS). Plasma, epithelial lining fluid (ELF) and AC pharmacokinetics were derived using non-compartmental methods. The maximum plasma drug concentration to minimum inhibitory concentration ratio (C(max)/MIC(90)) and the area under the drug concentration curve to minimum inhibitory concentration ratio (AUC/MIC(90)) during the dosing interval were calculated for potential respiratory pathogens with MIC(90) values from 0.03 microg/mL to 2 microg/mL. In the 1000 mg dose group, the C(max) (mean+/-standard deviation (S.D.)), AUC(0-8h) and half-life were: for plasma, 9.2+/-1.9 microg/mL, 103.6 microg h/mL and 7.45 h; for ELF, 25.8+/-7.9 microg/mL, 279.1 microg h/mL and 8.10h; and for ACs, 51.8+/-26.2 microg/mL, 507.5 microg h/mL and 14.32 h. In the 750 mg dose group, the C(max) values in plasma, ELF and ACs were 5.7+/-0.4, 28.0+/-23.6 and 34.2+/-18.7 microg/mL, respectively. Levofloxacin concentrations were significantly higher in ELF and ACs than in plasma at all time points. For pathogens commonly associated with community-acquired pneumonia, C(max)/MIC(90) ratios in ELF ranged from 12.9 for Mycoplasma pneumoniae to 859 for Haemophilus influenzae, and AUC/MIC(90) ratios ranged from 139 to 9303, respectively. The C(max)/MIC(90) ratios in ACs ranged from 25.9 for M. pneumoniae to 1727 for H. influenzae, and AUC/MIC(90) ratios ranged from 254 to 16917, respectively. The C(max)/MIC(90) and AUC/MIC(90) ratios provide a pharmacokinetic rationale for once-daily administration of a 1000 mg dose of levofloxacin and are favourable for the treatment of community-acquired respiratory pathogens.

  10. Efficacy of simulated cefditoren versus amoxicillin-clavulanate free concentrations in countering intrastrain ftsI gene diffusion in Haemophilus influenzae.

    PubMed

    González, Natalia; Aguilar, Lorenzo; Sevillano, David; Giménez, Maria-Jose; Alou, Luis; Cafini, Fabio; Torrico, Martha; López, Ana-Maria; Coronel, Pilar; Prieto, Jose

    2011-06-01

    This study explores the effects of cefditoren (CDN) versus amoxicillin-clavulanic acid (AMC) on the evolution (within a single strain) of total and recombined populations derived from intrastrain ftsI gene diffusion in β-lactamase-positive (BL⁺) and β-lactamase-negative (BL⁻) Haemophilus influenzae. DNA from β-lactamase-negative, ampicillin-resistant (BLNAR) isolates (DNA(BLNAR)) and from β-lactamase-positive, amoxicillin-clavulanate-resistant (BLPACR) (DNA(BLPACR)) isolates was extracted and added to a 10⁷-CFU/ml suspension of one BL⁺ strain (CDN MIC, 0.007 μg/ml; AMC MIC, 1 μg/ml) or one BL⁻ strain (CDN MIC, 0.015 μg/ml; AMC MIC, 0.5 μg/ml) in Haemophilus Test Medium (HTM). The mixture was incubated for 3 h and was then inoculated into a two-compartment computerized device simulating free concentrations of CDN (400 mg twice a day [b.i.d.]) or AMC (875 and 125 mg three times a day [t.i.d.]) in serum over 24 h. Controls were antibiotic-free simulations. Colony counts were performed; the total population and the recombined population were differentiated; and postsimulation MICs were determined. At time zero, the recombined population was 0.00095% of the total population. In controls, the BL⁻ and BL⁺ total populations and the BL⁻ recombined population increased (from ≈3 log₁₀ to 4.5 to 5 log₁₀), while the BL⁺ recombined population was maintained in simulations with DNA(BLPACR) and was decreased by ≈2 log₁₀ with DNA(BLNAR). CDN was bactericidal (percentage of the dosing interval for which experimental antibiotic concentrations exceeded the MIC [ft>MIC], >88%), and no recombined populations were detected from 4 h on. AMC was bactericidal against BL⁻ strains (ft>MIC, 74.0%) in DNA(BLNAR) and DNA(BLPACR) simulations, with a small final recombined population (MIC, 4 μg/ml; ft>MIC, 30.7%) in DNA(BLPACR) simulations. When AMC was used against the BL⁺ strain (in DNA(BLNAR) or DNA(BLPACR) simulations), the bacterial load was reduced ≈2 log₁₀ (ft>MIC, 44.3%), but 6.3% and 32% of the total population corresponded to a recombined population (MIC, 16 μg/ml; ft>MIC, 0%) in DNA(BLNAR) and DNA(BLPACR) simulations, respectively. AMC, but not CDN, unmasked BL⁺ recombined populations obtained by transformation. ft>MIC values higher than those classically considered for bacteriological response are needed to counter intrastrain ftsI gene diffusion by covering recombined populations.

  11. Susceptibility testing of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia and hyphae of dematiaceous molds.

    PubMed

    Biancalana, Fernanda Simas Corrêa; Lyra, Luzia; Moretti, Maria Luiza; Schreiber, Angélica Zaninelli

    2011-12-01

    Studies have demonstrated excellent in vivo efficacy of terbinafine combined with other antifungal agents against dematiaceous molds; however, there is a lack of in vitro studies. Most studies evaluated conidia inocula, but susceptibility testing of hyphae could mimic the fungal status in infected tissues and might reflect the therapeutic potential of the agent. We investigated the in vitro susceptibility of terbinafine alone and in combination with amphotericin B, itraconazole, or voriconazole against conidia by microdilution and dynamic measurement of hyphae growth of dematiaceous molds. The MIC values for hyphae were, until 3 dilutions, below the MIC obtained for conidia. The results indicated 100% synergistic interactions between terbinafine and azoles or amphotericin B in all tests, but lower MICs for hyphae. In conclusion, our findings allow us to say that the hyphal form of tested dematiaceous molds showed high susceptibility to all antifungal agents evaluated, alone and in combination with terbinafine. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. A fast and feasible method for Br and I determination in whole egg powder and its fractions by ICP-MS.

    PubMed

    Toralles, Isis Gonçalves; Coelho, Gilberto Silva; Costa, Vanize Cadeira; Cruz, Sandra Meinen; Flores, Erico Marlon Moraes; Mesko, Marcia Foster

    2017-04-15

    A method for Br and I determination in whole egg powder and its fractions (egg white and yolk) was developed by combining microwave-induced combustion (MIC) and inductively coupled plasma mass spectrometry (ICP-MS). Using the MIC method, 350mg of whole egg powder and its fractions were efficiently digested using 50mmolL -1 NH 4 OH as an absorbing solution. The limits of detection for Br and I using the MIC method followed by ICP-MS determination were 0.039 and 0.015μgg -1 , respectively. Using the proposed method, agreements with the reference values between 97 and 104% for Br and I were obtained by analysis of reference material NIST 8435. Finally, it was possible to observe that Br concentration (4.59-5.29μgg -1 ) was higher than I (0.150-2.28μgg -1 ) for all the evaluated samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Chemical composition and in vitro antibacterial activity of Pistacia terebinthus essential oils derived from wild populations in Kosovo.

    PubMed

    Pulaj, Bledar; Mustafa, Behxhet; Nelson, Kate; Quave, Cassandra L; Hajdari, Avni

    2016-05-26

    Plant material from different organs of Pistacia terebinthus L., (Anacardiaceae) were collected in Kosovo with aim to analyze the chemical variability of the essential oils among native populations and to test them for potential antibacterial activity against Staphylococcus aureus. Essential oils obtained from leaves, pedicels, fruits and galls were analyzed by GC-FID and GC/MS. Minimum inhibitory concentration (MIC) against three clinically relevant strains of S. aureus (NRS385, LAC and UAMS-1) were used to evaluate the antibacterial activity of essential oils. In total, 33 different compounds were identified. The main constituents were α-pinene (12.58-66.29 %), D-limonene (13.95-46.29 %), β-ocimene (0.03-40.49 %), β-pinene (2.63-20.47 %), sabinene (0.00-5.61 %) and (Z)-β-ocimene (0.00-44.85 %). Antibacterial testing of the essential oils against three clinical isolates of S. aureus revealed that seven of the eight samples had some activity at the concentration range tested (0.04-0.512 % v/v). The gall tissues from both sites produced the highest yield of essential oil (3.24 and 6 %), and both exhibited growth inhibitory activity against S. aureus. The most bioactive essential oils, which exhibited MIC90 values ranging from 0.032-0.128 % v/v, obtained from the fruits of the Ura e Shejtë collection site. Likewise, the leaf and pedicel essential oil from the same site was highly active with MIC90 values of 0.064-0.128 and 0.032-0.256 % v/v, respectively. Principle Component Analyses demonstrated that there is a variation in the chemical composition of essential oil depending on the plant organs from which essential oil are obtained and the geographical origin of the plant populations. The highest variability regarding the chemical composition of essential oil was found between oils obtained from different organs originating from the Prizren site. The MIC90 activity of Pistacia terebinthus was on par or superior compared with Tea Tree Oil control (0.128 % v/v), suggesting that essential oils from this species may have some potential for development as an antibacterial agent for S. aureus infections.

  14. Antimicrobial susceptibility and genetic characterization of Escherichia coli recovered from frozen game meat.

    PubMed

    Mateus-Vargas, Rafael H; Atanassova, Viktoria; Reich, Felix; Klein, Günter

    2017-05-01

    The increasing number of antimicrobial resistant Enterobacteriaceae both in veterinary and human medicine, the dissemination of these bacteria in several environments and their possible repercussions on human health is causing concern. Game meat is usually seen as free of antimicrobial resistant bacteria. The objective of this study was to evaluate the current antimicrobial susceptibility status in generic Escherichia coli isolated from packed frozen game meat from a game handling establishment in Germany. A total of 229 E. coli isolates were obtained from cuts of red deer, roe deer and wild boar. The susceptibility to 12 antimicrobial agents was evaluated by a broth microdilution method according to ISO 20776-1:2006. Minimal Inhibitory Concentration (MIC) values were compared to breakpoints and cut-off values published by the EUCAST. Isolates showing MICs above the reference values were further studied for associated resistance determinants and phylogrouping by PCR. Overall, 16 E. coli isolates (7.0%) showed resistance (microbiological or clinical) to at least one antimicrobial agent tested. Clinical resistance was recorded to ampicillin (5/229) and chloramphenicol (4/229), whereas the MIC of 9 isolates exceeded the epidemiological cut-off value for doxycycline. One of the ampicillin-resistant isolates showed resistance to the β-lactam antibiotic derivatives tested, cephalosporines and aztreonam. Three of 9 non-wild-type isolates for doxycycline were positive for tet (B) genes. The ß-lactam-resistant isolate was found to harbour bla CTX-M-1 gene. These data show a low prevalence of resistant E. coli in packed game meat compared to studies on conventional meat. Although isolates obtained in this study may also be originating from the processing environment and not necessarily from animals, based on our results, it is important to monitor the development of antimicrobial resistance in game animals and products in order to identify future threats for the consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS)

    NASA Astrophysics Data System (ADS)

    Audebert, M.; Clément, R.; Touze-Foltz, N.; Günther, T.; Moreau, S.; Duquennoi, C.

    2014-12-01

    Leachate recirculation is a key process in municipal waste landfills functioning as bioreactors. To quantify the water content and to assess the leachate injection system, in-situ methods are required to obtain spatially distributed information, usually electrical resistivity tomography (ERT). This geophysical method is based on the inversion process, which presents two major problems in terms of delimiting the infiltration area. First, it is difficult for ERT users to choose an appropriate inversion parameter set. Indeed, it might not be sufficient to interpret only the optimum model (i.e. the model with the chosen regularisation strength) because it is not necessarily the model which best represents the physical process studied. Second, it is difficult to delineate the infiltration front based on resistivity models because of the smoothness of the inversion results. This paper proposes a new methodology called MICS (multiple inversions and clustering strategy), which allows ERT users to improve the delimitation of the infiltration area in leachate injection monitoring. The MICS methodology is based on (i) a multiple inversion step by varying the inversion parameter values to take a wide range of resistivity models into account and (ii) a clustering strategy to improve the delineation of the infiltration front. In this paper, MICS was assessed on two types of data. First, a numerical assessment allows us to optimise and test MICS for different infiltration area sizes, contrasts and shapes. Second, MICS was applied to a field data set gathered during leachate recirculation on a bioreactor.

  16. Association Between In Vitro Susceptibility to Natamycin and Voriconazole and Clinical Outcomes in Fungal Keratitis

    PubMed Central

    Sun, Catherine Q.; Lalitha, Prajna; Prajna, N. Venkatesh; Karpagam, Rajarathinam; Geetha, Manoharan; O’Brien, Kieran S.; Oldenburg, Catherine E.; Ray, Kathryn J.; McLeod, Stephen D.; Acharya, Nisha R.; Lietman, Thomas M.

    2014-01-01

    Purpose To assess the association between minimum inhibitory concentration (MIC) and clinical outcomes in a fungal keratitis clinical trial. Design Experimental study using data from a randomized comparative trial. Participants Of the 323 patients enrolled in the trial, we were able to obtain MIC values from 221 patients with monocular fungal keratitis. Methods The Mycotic Ulcer Treatment Trial I (MUTT I) was a randomized, double-masked clinical trial comparing clinical outcomes of monotherapy with topical natamycin versus voriconazole for the treatment of fungal keratitis. Speciation and determination of MIC to natamycin and voriconazole were performed according to Clinical and Laboratory Standards Institute guidelines. The relationship between MIC and clinical outcome was assessed. Main Outcome Measures The primary outcome was 3-month best spectacle-corrected visual acuity. Secondary outcomes included 3-month infiltrate/scar size, corneal perforation and/or therapeutic penetrating keratoplasty (TPK), and time to re-epithelialization. Results A 2-fold increase in MIC was associated with a larger 3-month infiltrate/scar size (0.21 mm, 95% confidence interval [CI] 0.10–0.31, P <0.001) and increased odds of perforation (odds ratio [OR] 1.32, 95% CI 1.04–1.69, P=0.02). No correlation was found between MIC and 3-month visual acuity. For natamycin-treated cases, an association was found between higher natamycin MIC with larger 3-month infiltrate/scar size (0.29 mm, 95% CI 0.15–0.43, P<0.001) and increased perforations (OR 2.41, 95% CI 1.46–3.97, P<0.001). Among voriconazole-treated cases, the voriconazole MIC did not correlate with any of the measured outcomes in the study. Conclusion Decreased susceptibility to natamycin was associated with increased infiltrate/scar size and increased odds of perforation. There was no association between susceptibility to voriconazole and outcome. PMID:24746358

  17. Association between in vitro susceptibility to natamycin and voriconazole and clinical outcomes in fungal keratitis.

    PubMed

    Sun, Catherine Q; Lalitha, Prajna; Prajna, N Venkatesh; Karpagam, Rajarathinam; Geetha, Manoharan; O'Brien, Kieran S; Oldenburg, Catherine E; Ray, Kathryn J; McLeod, Stephen D; Acharya, Nisha R; Lietman, Thomas M

    2014-08-01

    To assess the association between minimum inhibitory concentration (MIC) and clinical outcomes in a fungal keratitis clinical trial. Experimental study using data from a randomized comparative trial. Of the 323 patients enrolled in the trial, we were able to obtain MIC values from 221 patients with monocular fungal keratitis. The Mycotic Ulcer Treatment Trial I was a randomized, double-masked clinical trial comparing clinical outcomes of monotherapy with topical natamycin versus voriconazole for the treatment of fungal keratitis. Speciation and determination of MIC to natamycin and voriconazole were performed according to Clinical and Laboratory Standards Institute guidelines. The relationship between MIC and clinical outcome was assessed. The primary outcome was 3-month best spectacle-corrected visual acuity. Secondary outcomes included 3-month infiltrate or scar size; corneal perforation and/or therapeutic penetrating keratoplasty; and time to re-epithelialization. A 2-fold increase in MIC was associated with a larger 3-month infiltrate or scar size (0.21 mm; 95% confidence interval [CI], 0.10-0.31; P < 0.001) and increased odds of perforation (odds ratio, 1.32; 95% CI, 1.04-1.69; P = 0.02). No correlation was found between MIC and 3-month visual acuity. For natamycin-treated cases, an association was found between higher natamycin MIC with larger 3-month infiltrate or scar size (0.29 mm; 95% CI, 0.15-0.43; P < 0.001) and increased perforations (odds ratio, 2.41; 95% CI, 1.46-3.97; P < 0.001). Among voriconazole-treated cases, the voriconazole MIC did not correlate with any of the measured outcomes in the study. Decreased susceptibility to natamycin was associated with increased infiltrate or scar size and increased odds of perforation. There was no association between susceptibility to voriconazole and outcome. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.

  18. Chemical composition and antibacterial activity of oils from Chrysicthys nigrodigitatus and Hepsetus odoe, two freshwater fishes from Yabassi, Cameroon.

    PubMed

    Simplice, Mouokeu Raymond; Macaire, Womeni Hilaire; Hervé, Njike Ngamga Fabrice; Fabrice, Tonfack Djikeng; Justin, Djopnang DJimbie; François, Tchoumbougnang; Jules-Roger, Kuiate

    2018-03-12

    Oils of fish origin are a very rich source of Omega - 3 and Omega - 6 fatty acids. They have been suggested to provide numerous health benefits for humans involving antimicrobial properties. Chrysichthys nigrodigitatus and Hepsetus odoe are two fishes well known in Cameroon. The chemical composition and the antibacterial activity of these fishes derived oils are unknown. The study was designed to valorise C. nigrodigitatus and H.s odoe oils activity against food poisoning bacteria. Oils were extracted by pressing and maceration methods. Their quality was assessed by analysing quality indexes including peroxides, acid, iodine, anisidine and thiobarbituric acid values. Chemical analysis was established by gas chromatography coupled to flame ionization detector. Antibacterial activity was evaluated by broth microdilution method. C. nigrodigitatus oil obtained by maceration exhibited highest acid (7.33 ± 0.00 mg KOH/g), anisidine (34.5 ± 1.84) and thiobarbituric acid (7.50 ± 0.30 μmol MDA/Kg) values compared to that obtained by pressing method (9.13 ± 0.64 and 6.72 ± 0.34 μmol MDA/Kg) respectively. H. odoe oil obtained by pressing method showed highest peroxide value (6.22 ± 1.31 meq O 2 /kg). Oil chemical analysis revealed long chain polyunsaturated fatty acids of the ω-3 family: linolenic acid (C18:3); eicosapentaenoic acid (C20:5) and docosahexaenoic acid (C22:6) and ω-6 family; arachidonic acid (C20:4). In addition, C. nigrodigitatus oil obtained by pressing and maceration methods showed Minimum Inhibitory Concentrations (MIC) values ranging from 32 to 64 mg/ml. H. odoe oil obtained by pressing method revealed MIC values ranging between 8 and 64 mg/ml. C. nigrodigitatus and H. odoe oils have activity against food poisoning bacteria, due to their chemical composition.

  19. [Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from animals to ofloxacin and commonly used antimicrobial agents].

    PubMed

    Takahashi, I; Yoshida, T; Higashide, Y; Sakano, T

    1990-01-01

    Susceptibilities of Escherichia coli, Salmonella and Staphylococcus aureus isolated from chickens, pigs and cattle to ofloxacin (OFLX) and commonly used antimicrobial agents were investigated. 1. E. coli (28 isolates) demonstrated the highest level of susceptibility of OFLX (MIC 0.10-0.39 micrograms/ml for all the isolates) among all the test drugs. Commonly used antimicrobial agents to which these isolates responded with relatively high susceptibilities (MIC50 0.78-6.25 micrograms/ml) included oxolinic acid (OXA), ampicillin (ABPC), kanamycin (KM) and chloramphenicol (CP) with their MIC50 values in the increasing order as above. Drugs to which these isolates responded with moderate to weak susceptibilities (MIC50 25 approximately greater than 800 micrograms/ml) were doxycycline (DOXY), streptomycin (SM), spectinomycin (SPCM) and sulfadimethoxine (SDMX) in the increasing order of MIC50. E. coli isolates with resistances to all the test drugs other than OFLX and OXA amounted to 7.1-57.1% of the isolates examined and 20 isolates (71.4%) in total. 2. Susceptibilities to OFLX and 4 existing pyridonecarboxylic acid derivatives of E. coli (48 samples) isolated recently from diarrheal pigs were compared. When evaluated in terms of MIC50, the values of OFLX and norfloxacin were both 0.10 micrograms/ml. The values increased by differences of 0.39-3.13 micrograms/ml in an order of OXA, pipemidic acid and nalidixic acid. 3. Salmonella (28 isolates) demonstrated the highest level of susceptibility to OFLX (MIC 0.20-0.39 micrograms/ml for all the isolates) among all the test drugs. The drugs to which these isolates responded with relatively high to moderate susceptibilities (MIC50 0.78-12.5 micrograms/ml) included ABPC, OXA, DOXY, KM, CP and SM with their MIC50 values increasing in this order. The drugs to which the isolates responded with low susceptibilities (MIC50 above 100 micrograms/ml) were SPCM and SDMX. Of all the 28 Salmonella isolates tested, 7.1-32.1% were resistant to all the test drugs other than OFLX and OXA. These resistant isolates amounted to a total of 12 isolates (42.9%). 4. S. aureus (28 isolates) were highly susceptible to OFLX (MIC50 and MIC90 were both 0.78 micrograms/ml). Commonly used antimicrobial agents to which the isolates responded with high to relatively high susceptibilities (MIC50 0.10-6.25 micrograms/ml) were, in the increasing order of MIC50: DOXY, ABPC, tylosin, tiamulin, KM, OXA and CP. Drugs with moderate to low bacterial susceptibilities (MIC50 12.5-100 microns/ml) were SD, SDMX and SPCM. Isolates resistant to all the test drugs except OFLX and SDMX amounted to 3.6-50% of the 28 isolates examined and they totalled 20 isolates (71.4%).(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Antibacterial activity of triterpene acids and semi-synthetic derivatives against oral pathogens

    PubMed

    Scalon Cunha, Luis C; Andrade e Silva, Márcio L; Cardoso Furtado, Niege A J; Vinhólis, Adriana H C; Martins, Carlos H; da Silva Filho, Ademar A; Cunha, Wilson R

    2007-01-01

    Triterpene acids (ursolic, oleanoic, gypsogenic, and sumaresinolic acids) isolated from Miconia species, along with a mixture of ursolic and oleanolic acids and a mixture of maslinic and 2-a-hydroxyursolic acids, as well as ursolic acid derivatives were evaluated against the following microorganisms: Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus salivarius, Streptococcus sobrinus, and Enterococcus faecalis, which are potentially responsible for the formation of dental caries in humans. The microdilution method was used for the determination of the minimum inhibitory concentration (MIC) during the evaluation of the antibacterial activity. All the isolated compounds, mixtures, and semi-synthetic derivatives displayed activity against all the tested bacteria, showing that they are promising antiplaque and anticaries agents. Ursolic and oleanolic acids displayed the most intense antibacterial effect, with MIC values ranging from 30 microg/mL to 80 microg/mL. The MIC values of ursolic acid derivatives, as well as those obtained for the mixture of ursolic and oleanolic acids showed that these compounds do not have higher antibacterial activity when compared with the activity observed with either ursolic acid or oleanolic acid alone. With regard to the structure-activity relationship of triterpene acids and derivatives, it is suggested that both hydroxy and carboxy groups present in the triterpenes are important for their antibacterial activity against oral pathogens.

  1. Antibacterial and antibiotic potentiating activities of tropical marine sponge extracts.

    PubMed

    Beesoo, Rima; Bhagooli, Ranjeet; Neergheen-Bhujun, Vidushi S; Li, Wen-Wu; Kagansky, Alexander; Bahorun, Theeshan

    2017-06-01

    Increasing prevalence of antibiotic resistance has led research to focus on discovering new antimicrobial agents derived from the marine biome. Although ample studies have investigated sponges for their bioactive metabolites with promising prospects in drug discovery, the potentiating effects of sponge extracts on antibiotics still remains to be expounded. The present study aimed to investigate the antibacterial capacity of seven tropical sponges collected from Mauritian waters and their modulatory effect in association with three conventional antibiotics namely chloramphenicol, ampicillin and tetracycline. Disc diffusion assay was used to determine the inhibition zone diameter (IZD) of the sponge total crude extracts (CE), hexane (HF), ethyl acetate (EAF) and aqueous (AF) fractions against nine standard bacterial isolates whereas broth microdilution method was used to determine their minimum inhibitory concentrations (MICs), minimum bactericidal concentrations (MBCs) and antibiotic potentiating activity of the most active sponge extract. MIC values of the sponge extracts ranged from 0.039 to 1.25mg/mL. Extracts from Neopetrosia exigua rich in beta-sitosterol and cholesterol displayed the widest activity spectrum against the 9 tested bacterial isolates whilst the best antibacterial profile was observed by its EAF particularly against Staphylococcus aureus and Bacillus cereus with MIC and MBC values of 0.039mg/mL and 0.078mg/mL, respectively. The greatest antibiotic potentiating effect was obtained with the EAF of N. exigua (MIC/2) and ampicillin combination against S. aureus. These findings suggest that the antibacterial properties of the tested marine sponge extracts may provide an alternative and complementary strategy to manage bacterial infections. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Susceptibility of vancomycin-resistant and -sensitive Enterococcus faecium obtained from Danish hospitals to benzalkonium chloride, chlorhexidine and hydrogen peroxide biocides.

    PubMed

    Alotaibi, Sulaiman M I; Ayibiekea, Alafate; Pedersen, Annemette Frøling; Jakobsen, Lotte; Pinholt, Mette; Gumpert, Heidi; Hammerum, Anette M; Westh, Henrik; Ingmer, Hanne

    2017-12-01

    In Danish hospitals, the number of infections caused by vancomycin-resistant Enterococcus faecium (VRE faecium) has dramatically increased in recent years. Hospital disinfectants are essential in eliminating pathogenic microorganisms, and reduced susceptibility may contribute to hospital-associated infections. We have addressed whether clinical VRE faecium display decreased biocide susceptibility when compared to vancomycin-sensitive Enterococcus faecium (VSE faecium) isolates. In total 12 VSE faecium and 37 VRE faecium isolates obtained from Danish hospitals over an extended time period were tested for susceptibility towards three commonly applied biocides, namely benzalkonium chloride, chlorhexidine and hydrogen peroxide. For benzalkonium chloride, 89 % of VRE faecium strains had a minimal inhibitory concentration (MIC) of 8 mg l -1 , whereas for VSE faecium, only 25 % of the strains had an MIC of 8 mg l -1 . For chlorhexidine, the MIC of 95 % of VRE faecium strains was 4 mg l -1 or higher, while only 33 % of VSE faecium strains displayed MIC values at the same level. In contrast, both VRE and VSE faecium displayed equal susceptibility to hydrogen peroxide, but a higher minimal bactericidal concentration (MBC) was found for the former. The efflux activity was also assessed, and this was generally higher for the VRE faecium strains compared to VSE faecium. VRE faecium from Danish hospitals demonstrated decreased susceptibility towards benzalkonium chloride and chlorhexidine compared to VSE faecium, where the use of chlorhexidine is particularly heavy in the hospital environment. These findings suggest that biocide tolerance may characterize VRE faecium isolated in Danish hospitals.

  3. CHEMICAL CHARACTERIZATION AND EVALUATION OF ANTIBACTERIAL, ANTIFUNGAL, ANTIMYCOBACTERIAL, AND CYTOTOXIC ACTIVITIES OF Talinum paniculatum

    PubMed Central

    REIS, Luis F.C. DOS; CERDEIRA, Cláudio D.; PAULA, Bruno F. DE; da SILVA, Jeferson J.; COELHO, Luiz F.L.; SILVA, Marcelo A.; MARQUES, Vanessa B.B.; CHAVASCO, Jorge K.; ALVES-DA-SILVA, Geraldo

    2015-01-01

    SUMMARY In this study, the bioactivity of Talinum paniculatum was evaluated, a plant widely used in folk medicine. The extract from the T. paniculatum leaves (LE) was obtained by percolation with ethanol-water and then subjecting it to liquid-liquid partitions, yielding hexane (HX), ethyl acetate (EtOAc), butanol (BuOH), and aqueous (Aq) fractions. Screening for antimicrobial activity of the LE and its fractions was evaluated in vitro through broth microdilution method, against thirteen pathogenic and non-pathogenic microorganisms, and the antimycobacterial activity was performed through agar diffusion assay. The cytotoxic concentrations (CC90) for LE, HX, and EtOAc were obtained on BHK-21 cells by using MTT reduction assay. The LE showed activity against Serratia marcescens and Staphylococcus aureus, with Minimum Inhibitory Concentration (MIC) values of 250 and 500 µg/mL, respectively. Furthermore, HX demonstrated outstanding activity against Micrococcus luteusand Candida albicans with a MIC of 31.2 µg/mL in both cases. The MIC for EtOAc also was 31.2 µg/mL against Escherichia coli. Conversely, BuOH and Aq were inactive against all tested microorganisms and LE proved inactive against Mycobacterium tuberculosis and Mycobacterium bovis as well. Campesterol, stigmasterol, and sitosterol were the proposed structures as main compounds present in the EF and HX/EtOAc fractions, evidenced by mass spectrometry. Therefore, LE, HX, and EtOAc from T. paniculatum showed potential as possible sources of antimicrobial compounds, mainly HX, for presenting low toxicity on BHK-21 cells with excellent Selectivity Index (SI = CC90/MIC) of 17.72 against C. albicans. PMID:26603226

  4. In vitro bactericidal activity of aminoglycosides, including the next-generation drug plazomicin, against Brucella spp.

    USDA-ARS?s Scientific Manuscript database

    Plazomicin is a next-generation aminoglycoside with a potentially improved safety profile compared to other aminoglycosides. This study assessed plazomicin MICs and MBCs in four Brucella spp. reference strains. Like other aminoglycosides and aminocyclitols, plazomicin MBC values equaled MIC values ...

  5. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach.

    PubMed

    Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T; Lees, Peter

    2017-01-01

    VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) - the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index ( f AUC/MIC or f T > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting.

  6. En Route towards European Clinical Breakpoints for Veterinary Antimicrobial Susceptibility Testing: A Position Paper Explaining the VetCAST Approach

    PubMed Central

    Toutain, Pierre-Louis; Bousquet-Mélou, Alain; Damborg, Peter; Ferran, Aude A.; Mevius, Dik; Pelligand, Ludovic; Veldman, Kees T.; Lees, Peter

    2017-01-01

    VetCAST is the EUCAST sub-committee for Veterinary Antimicrobial Susceptibility Testing. Its remit is to define clinical breakpoints (CBPs) for antimicrobial drugs (AMDs) used in veterinary medicine in Europe. This position paper outlines the procedures and reviews scientific options to solve challenges for the determination of specific CBPs for animal species, drug substances and disease conditions. VetCAST will adopt EUCAST approaches: the initial step will be data assessment; then procedures for decisions on the CBP; and finally the release of recommendations for CBP implementation. The principal challenges anticipated by VetCAST are those associated with the differing modalities of AMD administration, including mass medication, specific long-acting product formulations or local administration. Specific challenges comprise mastitis treatment in dairy cattle, the range of species and within species breed considerations and several other variable factors not relevant to human medicine. Each CBP will be based on consideration of: (i) an epidemiological cut-off value (ECOFF) – the highest MIC that defines the upper end of the wild-type MIC distribution; (ii) a PK/PD breakpoint obtained from pre-clinical pharmacokinetic data [this PK/PD break-point is the highest possible MIC for which a given percentage of animals in the target population achieves a critical value for the selected PK/PD index (fAUC/MIC or fT > MIC)] and (iii) when possible, a clinical cut-off, that is the relationship between MIC and clinical cure. For the latter, VetCAST acknowledges the paucity of such data in veterinary medicine. When a CBP cannot be established, VetCAST will recommend use of ECOFF as surrogate. For decision steps, VetCAST will follow EUCAST procedures involving transparency, consensus and independence. VetCAST will ensure freely available dissemination of information, concerning standards, guidelines, ECOFF, PK/PD breakpoints, CBPs and other relevant information for AST implementation. Finally, after establishing a CBP, VetCAST will promulgate expert comments and/or recommendations associated with CBPs to facilitate their sound implementation in a clinical setting. PMID:29326661

  7. ABT492 and levofloxacin: comparison of their pharmacodynamics and their abilities to prevent the selection of resistant Staphylococcus aureus in an in vitro dynamic model.

    PubMed

    Firsov, Alexander A; Vostrov, Sergey N; Lubenko, Irene Yu; Arzamastsev, Alexander P; Portnoy, Yury A; Zinner, Stephen H

    2004-07-01

    To compare the kinetics of killing/regrowth of differentially susceptible clinical isolates of Staphylococcus aureus exposed to ABT492 and levofloxacin and to explore their relative abilities to prevent the selection of resistant mutants. Three clinical isolates of S. aureus--including two ciprofloxacin-susceptible S. aureus, 201 and 480--and a ciprofloxacin-resistant S. aureus 866, were exposed to clinically achievable ratios of area under the curve (AUC) to MIC in a dynamic model that simulated human pharmacokinetics of ABT492 (400 mg) and levofloxacin (500 mg) as a single dose. In addition, S. aureus 201 was exposed to single and multiple doses of ABT492 and levofloxacin (both once daily for 3 days) over wide ranges of 24 h AUC/MIC (AUC24/MIC) including clinically achievable AUC24/MIC ratios. With each isolate, ABT492 at clinically achievable AUC/MICs produced greater anti-staphylococcal effects than levofloxacin. Areas between the control growth and the time--kill curves (ABBC in single dose simulations and the sum of ABBCs determined after the first, second and third dosing in multiple dose simulations--ABBC(1+2+3)) were higher with ABT492 than levofloxacin. Moreover, at comparable AUC/MICs and AUC24/MICs, the maximal reductions in the starting inoculum of ABT492-exposed S. aureus were more pronounced than with levofloxacin. Loss in susceptibility of S. aureus 201 exposed to ABT492 or levofloxacin depended on the simulated AUC24/MIC. Although the maximal increase in MIC (MICfinal) related to its initial value (MICinitial) was seen at a higher AUC24/MIC ratio of ABT492 (120 h) than levofloxacin (50 h), similar AUC24/MICs (240 and 200 h, respectively) were protective against the selection of resistant S. aureus. These threshold values are readily achievable with 400 mg ABT492 (AUC24/MIC 870 h) but not with 500 mg levofloxacin (AUC24/MIC 70 h). Overall, these findings predict greater efficacy of clinically achievable AUC/MIC (or AUC24/MIC) of ABT492 both in terms of the anti-staphylococcal effect and prevention of the selection of resistant mutants.

  8. Reevaluation of interpretive criteria for Haemophilus influenzae by using meropenem (10-microgram), imipenem (10-microgram), and ampicillin (2- and 10-microgram) disks.

    PubMed Central

    Zerva, L; Biedenbach, D J; Jones, R N

    1996-01-01

    A collection of 300 Haemophilus influenzae clinical strains was used to assess in vitro susceptibility to carbapenems (meropenem, imipenem) by MIC and disk diffusion methods and to compare disk diffusion test results with two potencies of ampicillin disks (2 and 10 micrograms). The isolates included ampicillin-susceptible or- intermediate (167 strains), beta-lactamase-positive (117 strains), and beta-lactamase-negative ampicillin-resistant (BLNAR; 16 strains) organisms. Disk diffusion testing was performed with 10-micrograms meropenem disks from two manufacturers. Meropenem was highly active against H. influenzae strains (MIC50, 0.06 microgram/ml; MIC90, 0.25 microgram/ml; MIC50 and MIC90, MICs at which 50 and 90%, respectively, of strains are inhibited) and was 8- to 16-fold more potent than imipenem (MIC50, 1 microgram/ml; MIC90, 2 micrograms/ml). Five non-imipenem-susceptible strains were identified (MIC, 8 micrograms/ml), but the disk diffusion test indicated susceptibility (zone diameters, 18 to 21 mm). MIC values of meropenem, doxycycline, ceftazidime, and ceftriaxone for BLNAR strains were two- to fourfold greater than those for other strains. The performance of both meropenem disks was comparable and considered acceptable. A single susceptible interpretive zone diameter of > or = 17 mm (MIC, < = or 4 micrograms/ml) was proposed for meropenem. Testing with the 2-micrograms ampicillin disk was preferred because of an excellent correlation between MIC values and zone diameters (r = 0.94) and superior interpretive accuracy with the susceptible criteria at > or = 17 mm (MIC, < or = 1 microgram/ml) and the resistant criteria at < or = 13 mm (MIC, > or = 4 micrograms/ml). Among the BLNAR strains tested, 81.3% were miscategorized as susceptible or intermediate when the 10-micrograms ampicillin disk was used, while the 2-micrograms disk produced only minor interpretive errors (12.5%). Use of these criteria for testing H. influenzae against meropenem and ampicillin should maximize reference test and standardized disk diffusion test performance with the Haemophilus Test Medium. The imipenem disk diffusion test appears compromised and should be used with caution for detecting strains for which imipenem MICs are elevated. PMID:8818892

  9. Comparison of Spectrophotometric and Visual Readings of NCCLS Method and Evaluation of a Colorimetric Method Based on Reduction of a Soluble Tetrazolium Salt, 2,3-Bis {2-Methoxy-4-Nitro-5-[(Sulfenylamino) Carbonyl]-2H- Tetrazolium-Hydroxide}, for Antifungal Susceptibility Testing of Aspergillus Species

    PubMed Central

    Meletiadis, Joseph; Mouton, Johan W.; Meis, Jacques F. G. M.; Bouman, Bianca A.; Donnelly, Peter J.; Verweij, Paul E.

    2001-01-01

    The susceptibilities of 25 clinical isolates of various Aspergillus species (Aspergillus fumigatus, A. flavus, A. terreus, A. ustus, and A. nidulans) to itraconazole (ITC) and amphotericin B (AMB) were determined using the standard proposed by NCCLS for antifungal susceptibility testing of filamentous fungi, a modification of this method using spectrophotometric readings, and a colorimetric method using the tetrazolium salt 2,3-bis {2-methoxy-4-nitro-5-[(sulfenylamino) carbonyl]-2H-tetrazolium-hydroxide} (XTT). Five MIC end points for ITC (MIC-0, no visible growth or ≤5% the growth control value [GC]; MIC-1, slight growth or 6 to 25% the GC; MIC-2, prominent reduction in growth or 26 to 50% the GC; MIC-3, slight reduction in growth or 51 to 75% the GC; and MIC-4, no reduction in growth or 76 to 100% the GC) and one for AMB (MIC-0) were determined visually by four observers and spectrophotometrically. The intraexperimental (between the observers) and interexperimental (between the experiments) levels of agreement of the NCCLS and XTT methods exceeded 95% for MIC-0 of AMB and MIC-0 and MIC-1 of ITC. The MIC-2 of ITC showed lower reproducibility, although spectrophotometric reading and/or incubation for 48 h increased the interexperimental reproducibility from 85 to >93%. Between visual and spectrophotometric readings, high levels of agreement were found for AMB (≈97%) and MIC-1 (≈92%) and MIC-2 (≈88%) of ITC. Poor agreement was found for MIC-0 of ITC (51% after 24 h), since the spectrophotometric readings resulted in higher MIC-0 values than the visual readings. The agreement was increased to 98% by shifting the threshold level of MIC-0 from 5 to 10% relative optical density and by establishing an optical density of greater than 0.1 for the GC as the validation criterion. No statistically significant differences were found between the NCCLS method and the XTT method, with the levels of agreement exceeding 97% for MIC-0 of AMB and 83% for MIC-0, MIC-1, and MIC-2 of ITC. The XTT method and spectrophotometric readings can increase the sensitivity and the precision, respectively, of in vitro susceptibility testing of Aspergillus species. PMID:11724829

  10. Antimicrobial activity of traditional medicinal plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia.

    PubMed

    Lulekal, E; Rondevaldova, J; Bernaskova, E; Cepkova, J; Asfaw, Z; Kelbessa, E; Kokoska, L; Van Damme, P

    2014-05-01

    Traditional medicinal plants have long been used in Ethiopia to treat human and livestock ailments. Despite a well-documented rich tradition of medicinal plant use in the country, their direct antimicrobial effects are still poorly known. To investigate the antimicrobial activity of 19 medicinal plant species that were selected based on the ethnobotanical information on their traditional use to treat infectious diseases in Ankober District. About 23 different ethanol extracts of plants obtained by maceration of various parts of 19 medicinal plant species were studied for potential antimicrobial activity using a broth microdilution method against Bacillus cereus, Bacteroides fragilis, Candida albicans, Clostridium perfringens, Enterococcus faecalis, Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa, Salmonella enteritidis, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus pyogenes. Plant extracts from Embelia schimperi Vatke (Myrsinaceae) showed the strongest antibacterial activity with a minimum inhibitory concentration (MIC) value of 64 µg/ml against B. cereus, L. monocytogenes, and S. pyogenes. Growth inhibitory activities were also observed for extracts of Ocimum lamiifolium Hochst. (Lamiaceae) against S. pyogenes, and those of Rubus steudneri Schweinf. (Rosaceae) against S. epidermidis at an MIC value of 128 µg/ml. Generally, 74% of ethanol extracts (17 extracts) showed antimicrobial activity against one or more of the microbial strains tested at an MIC value of 512 µg/ml or below. Results confirm the antimicrobial role of traditional medicinal plants of Ankober and warrant further investigations on promising medicinal plant species so as to isolate and characterise chemicals responsible for the observed strong antimicrobial activities.

  11. Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses.

    PubMed

    Gantzhorn, Mette Rørbæk; Pedersen, Karl; Olsen, John Elmerdahl; Thomsen, Line Elnif

    2014-07-02

    Salmonella sp. continues to be one of the most important foodborne pathogens. Control measures in terms of cleaning and disinfection on food production plants are very important for limiting the risk of contaminated food products to reach the consumer. In the last decade concern has arisen that bacteria exposed to disinfectants can develop resistance toward disinfectants and can have a higher risk of developing antibiotic resistance. The objectives of this study were to examine the prevalence of biocide resistant Salmonella sp. in Danish pig slaughterhouses, to evaluate if there was a correlation between susceptibilities to biocides and antibiotics, and to examine if cleaning and disinfection select isolates with changed susceptibility toward biocides or antibiotics. Salmonella sp. was isolated from the environment in Danish pig slaughterhouses before and after cleaning and disinfection. The susceptibility toward three different biocides, triclosan and two commercial disinfection products: Desinfect Maxi, a quaternary ammonium compound, and Incimaxx DES, an acetic compound, was determined. We found no resistance toward the biocides tested, but we did find that isolates obtained after cleaning had higher minimum inhibitory concentration (MIC) values toward one of the disinfectants (Incimaxx DES) compared to isolates obtained before cleaning and disinfection. This could indicate selection of strains that are more tolerant, due to the cleaning and disinfection. Furthermore, we found that there was a weak statistical correlation between MICs toward the biocides and some antibiotics, but no difference in log(MIC)s toward antibiotics between isolates obtained before and after cleaning, nor did we find any difference in the number of resistances of isolates obtained before and after cleaning and disinfection. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Cytotoxic and antibacterial angucycline- and prodigiosin-analogues from the deep-sea derived Streptomyces sp. SCSIO 11594.

    PubMed

    Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua

    2015-03-16

    Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1-3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL.

  13. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Antifungal Monoterpene Derivatives from the Plant Endophytic Fungus Pestalotiopsis foedan.

    PubMed

    Xu, Dan; Zhang, Bing-Yang; Yang, Xiao-Long

    2016-10-01

    A new monoterpene lactone, (1R,4R,5R,8S)-8-hydroxy-4,8-dimethyl-2-oxabicyclo[3.3.1]nonan-3-one (1), along with one related known compound, (2R)-2-[(1R)-4-methylcyclohex-3-en-1-yl]propanoic acid (2), were isolated from the liquid culture of the plant endophytic fungus Pestalotiopsis foedan obtained from the branch of Bruguiera sexangula. The structure and absolute configuration of 1 were determined on the basis of extensive analysis of NMR spectra combined with computational methods via calculation of the optical rotation (OR) and 13 C-NMR. Both compounds exhibited strong antifungal activities against Botrytis cinerea and Phytophthora nicotianae with MIC values of 3.1 and 6.3 μg/ml, respectively, which are comparable to those of the known antifungal drug ketoconazole. Compound 2 also showed modest antifungal activity against Candida albicans with a MIC value of 50 μg/ml. © 2016 Wiley-VHCA AG, Zürich.

  15. In vitro antibacterial and antifungal activities of Rhus tripartitum used as antidiarrhoeal in Tunisian folk medicine.

    PubMed

    Abbassi, Feten; Hani, Khaled

    2012-01-01

    Rhus tripartitum (African sumac) is a plant commonly used in Tunisian traditional medicine to treat diarrhoea and dysentery. In this study, we have demonstrated that R. tripartitum extracts exhibited a significant broad spectrum activity against one or more of the test microorganisms with a zone size ranging from 8 to 28 mm in diameter. These diameters are much higher than those obtained with standard antibiotics. The chloroformic extracts were found to be effective against bacterial and fungal strains tested, with MIC values ranging between 0.07 and 0.62 mg mL(-1) against Staphylococcus aureus and Candida albicans. However, ethyl-acetate/methanol fractions showed a selective activity only against bacterial microorganisms with low MIC values between 0.07 and 0.15 mg mL(-1). The overall results suggested that the traditional use of R. tripartitum for the treatment of diarrhoea tract infections was attributed to the presence of antibacterial agents.

  16. Antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils and their combination against food-borne pathogens and spoilage bacteria in ready-to-eat vegetables.

    PubMed

    Iseppi, Ramona; Sabia, Carla; de Niederhäusern, Simona; Pellati, Federica; Benvenuti, Stefania; Tardugno, Roberta; Bondi, Moreno; Messi, Patrizia

    2018-06-06

    The antibacterial activity of Rosmarinus officinalis L. and Thymus vulgaris L. essential oils (EOs), and their combination against food-borne and spoilage bacteria (Listeria monocytogenes, Salmonella enteritidis, Yersinia enterocolitica, Escherichia coli and Pseudomonas spp.) was determined. The EOs inhibitory effect was evaluated both in vitro by using the disk diffusion assay and the minimum inhibitory concentration (MIC) determination, and on food by using an artificially contaminated ready-to-eat (RTE) vegetables. The results showed that the lowest MIC values were obtained with R. officinalis and T. vulgaris EOs against E. coli (4 and 8 μL/mL, respectively). The incorporation of the EOs alone or their combination in RTE vegetables reduced the viable counts of all the tested strains. Lastly, in the on food study we simulated the worst hygienic conditions, obtaining results that can be considered a warranty of safety.

  17. Corneal Optical Quality Following Sub 1.8 mm Micro-Incision Cataract Surgery vs. 2.2 mm Mini-Incision Coaxial Phacoemulsification

    PubMed Central

    Alió, Jorge L.; Elkady, Bassam; Ortiz, Dolores

    2010-01-01

    Purpose: To study and compare the effects of the micro-incision cataract surgery (MICS-sub 1.8 mm) and miniincision coaxial phacoemulsification (2.2 mm) on the optical quality of the cornea characterized in terms of corneal aberrations. Materials and Methods: Fifty eyes underwent MICS and 50 mini-incision phacoemulsification, by the same surgeon. Both types of cataract surgery were performed using low ultrasound power and through a clear corneal incision, placed on the steepest corneal meridian ranging from 1.6 to 1.8 in MICS (Group I) and from 2.12 to 2.3 mm in mini-incision coaxial phacoemulsification (Group II). Seidel and Zernike aberration coefficients and RMS values were obtained for a 6-mm pupil preoperatively and one month after surgery. Results: The corneal astigmatism did not show statistically significant changes in either of the two groups: (MICS: –0.73 ± 0.63, –0.65 ± 0.53 D, P = 0.25), (mini-incision phacoemulsification; –1.21 ± 1.52, –1.00 ± 1.19 D, P = 0.12). The total RMS remained unchanged after MICS (1.77 ± 1.7, 1.65 ± 1.3 μm, P = 0.18) and mini-incision phacoemulsification (2.00 ± 1.87, 2.09 ± 1.8 μm, P = 0.41). Statistically significant changes were found for coma (P = 0.004) and higher-order aberrations (P < 0.001), showing MICS significantly less changes in cornea. Conclusions: Both MICS and mini-incision phacoemulsification do not degrade the optical quality of the cornea. Both surgeries do not induce a modification of the corneal astigmatism, even in the axis. It seems that 2 mm is the limit around which no optical changes are induced by cataract surgery in the human cornea. PMID:20543945

  18. [Molecular epidemiology and antifungal susceptibility of Candida species isolated from urine samples of patients in intensive care unit].

    PubMed

    Yüksekkaya, Serife; Fındık, Duygu; Arslan, Uğur

    2011-01-01

    The aims of this study were to analyse the amphotericin B and fluconazole susceptibility and molecular epidemiology of Candida strains (Candida albicans, Candida tropicalis and Candida glabrata) isolated from the urine samples of patients hospitalized in the intensive care unit. Identification of the isolates was done according to microscopic morphology (chlamydospor, blastospor, pseudohyphae and true hyphae) on cornmeal agar, germ tube formation and carbohydrate assimilation patterns (API ID 32C bioMérieux, France). Antifungal susceptibilities of the isolates were determined by in vitro broth microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). To investigate the clonal relationship of the isolates, randomly amplified polymorphic DNA (RAPD) analysis was performed by using Cnd3 primer. Of the 56 Candida isolates minimum inhibitory concentration (MIC) ranges, MIC50 and MIC90 values for amphotericin B were 0.125-1 µg/ml, 0.125 and 0.5 µg/ml for C.albicans, 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.tropicalis and 0.125-1 µg/ml, 0.25 and 1 µg/ml for C.glabrata, respectively. Fluconazole MIC ranges, MIC50 and MIC90 values were 0.25-4 µg/ml, 0.25 and 0.5 µg/ml for C.albicans, 0.25-16 µg/ml, 0.5 and 1 µg/ml for C.tropicalis and 0.5-64 µg/ml, 8 and 16 µg/ml for C.glabrata, respectively. For amphotericin B, none of the isolates had high MIC values (MIC > 1 µg/ml). While one of the C.glabrata isolates was resistant to fluconazole (MIC ≥ 64 µg/ml), one C.tropicalis and two C.glabrata isolates were dose-dependent susceptible (MIC: 16-32 µg/ml). The results of RAPD analysis indicated an exogenous spread from two clones for C.albicans, one clone for C.glabrata and one clone for C.tropicalis. This study underlines the importance of molecular epidemiological analysis of clinical samples together with hospital environmental samples in terms of Candida spp. To determine the exogenous origin for the related strains and to prevent nosocomial Candida infections.

  19. Activity of nadifloxacin (OPC-7251) and seven other antimicrobial agents against aerobic and anaerobic Gram-positive bacteria isolated from bacterial skin infections.

    PubMed

    Nenoff, P; Haustein, U-F; Hittel, N

    2004-10-01

    The in vitro activity of nadifloxacin (OPC-7251), a novel topical fluoroquinolone, was assessed and compared with those of ofloxacin, oxacillin, flucloxacillin, cefotiam, erythromycin, clindamycin, and gentamicin against 144 Gram-positive bacteria: 28 Staphylococcus aureus, 10 Streptococcus spp., 68 coagulase-negative staphylococci (CNS), 36 Propionibacterium acnes, and 2 Propionibacterium granulosum strains. All strains originated from bacterial-infected skin disease and were isolated from patients with impetigo, secondary infected wounds, folliculitis and sycosis vulgaris, and impetiginized dermatitis. In vitro susceptibility of all clinical isolates was tested by agar dilution procedure and minimum inhibitory concentrations (MICs) were determined. Nadifloxacin was active against all aerobic and anaerobic isolates. MIC(90) (MIC at which 90% of the isolates are inhibited) was 0.1 microg/ml for S. aureus, 0.78 microg/ml for both Streptococcus spp. and CNS, and 0.39 microg/ml for Propionibacterium spp. On the other hand, resistant strains with MICs exceeding 12.5 mug/ml were found in tests with the other antibiotics. For both CNS and Propionibacterium acnes, MIC(90) values > or =100 microg/ml were demonstrated for erythromycin. Ofloxacin, cefotiam, erythromycin, clindamycin and gentamicin exhibited MIC(90) values < or =1 microg/ml for some bacterial species tested. Both oxacillin and flucloxacillin were active against all investigated bacterial species with MIC(90) values < or =1 microg/ml. In summary, nadifloxacin, a topical fluoroquinolone, was found to be highly active against aerobic and anaerobic bacteria isolated from patients with infected skin disease, and seems to be a new alternative for topical antibiotic treatment in bacterial skin infections.

  20. Chemical characterization and antifungal activity of Origanum vulgare, Thymus vulgaris essential oils and carvacrol against Malassezia furfur.

    PubMed

    Vinciguerra, Vittorio; Rojas, Florencia; Tedesco, Viviana; Giusiano, Gustavo; Angiolella, Letizia

    2018-05-04

    The composition of the essential oils (EOs) of O. vulgare L. EO and T. vulgaris EO, were analyzed by GC and GC-MS. Antifungal activities of the EOs and its main component, carvacrol, were evaluated against 27 clinical isolates of Malassezia furfur. Minimum inhibitory concentrations (MICs) were measured according to the broth microdilution protocols by Clinical and Laboratory Standards Institute (CLSI) modified for Malassezia spp. EOs and carvacrol showed low MIC values ranged 450-900 μg/ml against M. furfur. No differences in EOs antifungal activity were observed in sensitive to resistant fluconazole isolates. The antifungal activity obtained showed O. vulgare EO, T. vulgaris EO and carvacrol, their compound, as potential antimicrobial agents against M. furfur, yeast associated with human mycoses.

  1. Phenolic content and in vitro antifungal activity of unripe grape extracts from agro-industrial wastes.

    PubMed

    Simonetti, Giovanna; D'Auria, Felicia Diodata; Mulinacci, Nadia; Milella, Rosa Anna; Antonacci, Donato; Innocenti, Marzia; Pasqua, Gabriella

    2017-12-07

    The antifungal activity of unripe grape extracts from agro-industrial wastes has been evaluated against several strains of Candida spp. and dermatophytes. All the extracts tested showed antifungal activity. The geometric mean MIC ranged from 53.58 to 214.31 μg/mL for Candida spp. and from 43.54 to 133.02 μg/mL for dermatophytes. The chemical analyses have been carried out using Liquid Chromatograph equipped with a DAD and MS detectors. Flavan-3-ols were the main metabolites within all samples ranged from 3.3 to 6.8 mg/g fresh weight. For Candida spp. highest negative significant correlation has been found between MICs and polymeric flavan-3-ols (r = -0.842; p < 0.001) and for dermatophytes between MICs and caffeoyl derivatives (r = -0.962; p < 0.01). The results indicate that total extracts obtained from unripe grapes, a large source of waste material derived from the wine industry, could be used as a cheap source of value-added products.

  2. Commercial broth microdilution panel validation and reproducibility trials for NVP PDF-713 (LBM 415), a novel inhibitor of bacterial peptide deformylase.

    PubMed

    Fritsche, T R; Moet, G J; Jones, R N

    2004-09-01

    NVP PDF-713 (LBM 415) is a peptide deformylase inhibitor being progressed into clinical trials. Dry-form broth microdilution panels of NVP PDF-713 were compared to reference MIC panels of 552 recent clinical isolates. Most (99.2%) dry-form MIC results were within +/- 1 log(2) dilution of the reference panel MICs. Of the bacteria tested, Streptococcus pneumoniae and Haemophilus influenzae showed a bias towards higher and lower MICs, respectively. Same-day and between-day reproducibility tests showed that 98.9% and 96.7% of MIC values, respectively, were within +/- 1 log(2) dilution step, thereby demonstrating a high degree of reliability of the dry-form MIC product for clinical studies.

  3. Cytotoxicity and antimicrobial activity of the methanol extract and compounds from Polygonum limbatum.

    PubMed

    Dzoyem, Jean P; Nkuete, Antoine H L; Kuete, Victor; Tala, Michel F; Wabo, Hippolyte K; Guru, Santosh K; Rajput, Vikrant S; Sharma, Akash; Tane, Pierre; Khan, Inshad A; Saxena, Anil K; Laatsch, Hartmut; Tan, Ning-Hua

    2012-05-01

    The present study was designed to investigate the antimicrobial activity and the cytotoxicity of the methanol extract (PLA) as well as fractions (PLA1-4) and compounds [cardamomin (1), (±)-polygohomoisoflavanone (2), (S)-(-)-pinostrobin (3), 2',4'-dihydroxy-3',6'-dimethoxychalcone (4), (2S)-(-)-5-hydroxy-6,7-dimethoxyflavanone (5), and (2S)-(-)-5,7-dimethoxyflavanone (6)] obtained from leaves of Polygonum limbatum. The microbroth dilution was used to determine the minimal inhibitory concentration (MIC) of the samples against 11 microbial strains including Candida albicans, C. krusei, C. tropicalis, Aspergillus fumigatus, Pseudomonas aeruginosa, Escherichia coli, vancomycin-resistant Enterococcus faecalis (VRE), Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), S.epidermidis, and Mycobacterium tuberculosis H37Rv. The sulphorhodamine B cell growth inhibition assay was used to assess the cytotoxicity of the above samples on lung A549 adenocarcinoma, breast carcinoma MCF-7, prostate carcinoma PC-3, cervical carcinoma HeLa, and the acute monocytic leukemia cell line THP-1. The results of the MIC determination indicated that, apart from fraction PLA3, all other fractions as well as PLA and compound 3 were selectively active. MIC values were noted on 100 % of the 11 tested microorganisms for fraction PLA3, 72.7 % for PLA, fraction PLA2, and compound 4, 63.6 % for PLA1, and 54.5 % for fraction PLA4. The results of the cytotoxicity assay revealed that, except for A459 cells, more than 50 % inhibition of the proliferation was obtained with each of the tested samples on at least one of the four other cell lines. IC₅₀ values below 4 µg/mL were obtained with 1 and 4 on THP-1 cells. The overall results of the present study provided baseline information for the possible use of Polygonum limbatum as well as some of the isolated compounds for the control of cancer diseases and mostly leukemia. Georg Thieme Verlag KG Stuttgart · New York.

  4. Activity of Delafloxacin When Tested Against Bacterial Surveillance Isolates Collected in the US and Europe During 2014–2016 as Part of a Global Surveillance Program

    PubMed Central

    Flamm, Robert K; Shortridge, Dee; Huband, Michael D; McCurdy, Sandra; Pfaller, Michael A

    2017-01-01

    Abstract Background Delafloxacin (DLX) is an investigational anionic fluoroquinolone with an NDA that is under US FDA review to treat acute bacterial skin and skin structure infections and is undergoing Phase 3 studies to treat community-acquired bacterial pneumonia. Methods A total of 36,683 Gram-positive (GP) and -negative (GN) bacteria isolated during 2014–2016 were selected from medical centers in the US and Europe. Susceptibility testing (S) was performed by frozen-form broth microdilution methods for DLX and comparators. Results DLX was very active against Staphylococcus aureus (SA, n = 9,355; MIC50/90, 0.008/0.5 mg/L) while the levofloxacin (LEV) MIC50/90 was 0.25/>4 mg/L (67.9%S). The MIC50/90 for methicillin-resistant SA (MRSA) was 0.12/1 mg/L. For MRSA, all isolates were S to vancomycin and daptomycin (DAP), linezolid and tigecycline (TGC) S was ≥99.9%. Decreased rates of S were noted for LEV (29.8%), clindamycin (72.9%), and erythromycin (17.3/17.8%; CLSI/EUCAST). Minocycline (MIC50/90, 0.12/0.25 mg/L), ceftaroline (MIC50/90, 0.25/0.5 mg/L), DAP (MIC50/90, 0.5/0.5 mg/L), and DLX (MIC50/90, 0.015/0.5 mg/L) were the most active agents tested against coagulase-negative staphylococci. Against Streptococcus pneumoniae (SPN), the MIC50/90 for DLX (0.015/0.03 mg/L) and TGC (0.03/0.06 mg/L) were the lowest among the agents tested. The DLX MIC50/90 values did not vary among the penicillin-S, -intermediate, and -R subgroups of SPN. The MIC50/90 values for DLX against S. pyogenes and S. agalactiae were 0.015/0.03 mg/L. DLX was highly active against Haemophilus influenzae. The DLX MIC50/90 (≤0.001/0.004 mg/L) was the same for β-lactamase positive and negative H. influenzae. Against Enterobacteriaceae, 76.0% of DLX MIC values were ≤1 mg/L. Susceptibility to LEV was 80.8%, and S to ceftriaxone, ceftazidime (CAZ), and cefepime ranged from 78.5–86.3%. A total of 72.6% of Pseudomonas aeruginosa isolates exhibited DLX MIC values ≤1 mg/L, while LEV S was 73.2% and CAZ was 81.6%. The MIC50/90 for both DLX and LEV were 0.5/>4 mg/L, respectively. Conclusion DLX was active against a broad range of GP and GN bacteria, including MRSA and multidrug-resistant SPN. DLX merits further study as therapy in infections in which these organisms may occur. Disclosures R. K. Flamm, Melinta Therapeutics: Research Contractor, Research grant D. Shortridge, Melinta Therapeutics: Research Contractor, Research grant M. D. Huband, Melinta Therapeutics: Research Contractor, Research grant S. McCurdy, Melinta Therapeutics: Employee, Salary M. A. Pfaller, Melinta Therapeutics: Research Contractor, Research grant

  5. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus

    PubMed Central

    Djenane, Djamel

    2015-01-01

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange (Citrus sinensis L.), lemon (Citrus limonum L.) and bergamot (Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus (S. aureus) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25–0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus (S. pilchardus) experimentally inoculated with S. aureus at a level of 3.5 log10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines. PMID:28231199

  6. Chemical Profile, Antibacterial and Antioxidant Activity of Algerian Citrus Essential Oils and Their Application in Sardina pilchardus.

    PubMed

    Djenane, Djamel

    2015-06-05

    Stored fish are frequently contaminated by foodborne pathogens. Lipid oxidation and microbial growth during storage are also important factors in the shelf-life of fresh fish. In order to ensure the safety of fish items, there is a need for control measures which are effective through natural inhibitory antimicrobials. It is also necessary to determine the efficacy of these products for fish protection against oxidative damage, to avoid deleterious changes and loss of commercial and nutritional value. Some synthetic chemicals used as preservatives have been reported to cause harmful effects to the environment and the consumers. The present investigation reports on the extraction by hydrodistillation and the chemical composition of three citrus peel essential oils (EOs): orange ( Citrus sinensis L.), lemon ( Citrus limonum L.) and bergamot ( Citrus aurantium L.) from Algeria. Yields for EOs were between 0.50% and 0.70%. The chemical composition of these EOs was determined by gas chromatography coupled with mass spectrometry (GC/MS). The results showed that the studied oils are made up mainly of limonene (77.37%) for orange essential oil (EO); linalyl acetate (37.28%), linalool (23.36%), for bergamot EO; and finally limonene (51.39%), β-pinene (17.04%) and γ-terpinene (13.46%) for lemon EO. The in vitro antimicrobial activity of the EOs was evaluated against Staphylococcus aureus ( S . aureus ) using the agar diffusion technique. Results revealed that lemon EO had more antibacterial effects than that from other EOs. Minimal inhibitory concentrations (MICs) showed a range of 0.25-0.40 μL/mL. Lemon and bergamot citrus peel EOs were added at 1 × MIC and 4 × MIC values to Sardina pilchardus ( S . pilchardus ) experimentally inoculated with S. aureus at a level of 3.5 log 10 CFU/g and stored at 8 ± 1 °C. The results obtained revealed that the 4 × MIC value of bergamot reduced completely the growth of S. aureus from day 2 until the end of storage. The presence of EOs significantly extended lipid stability. Samples treated with bergamot EO displayed greater antioxidant activity than lemon EO. In fact, the oxidation rate is inversely proportional to the concentration of EO. At 1 × MIC and 4 × MIC values of bergamot EO, the levels of malonaldehyde compared to the control samples were 1.66 and 1.28 mg malonaldehyde/kg at the end of storage, corresponding to inhibition percentages of 42.76% and 55.87%, respectively. These results suggest the possibility that citrus EOs could be used as a way of combating the growth of common causes of food poisoning and used as potent natural preservatives to contribute to the reduction of lipid oxidation in sardines.

  7. Automated reading of MIC microdilution trays containing fluorogenic enzyme substrates with the Sensititre Autoreader.

    PubMed Central

    Staneck, J L; Allen, S D; Harris, E E; Tilton, R C

    1985-01-01

    The Sensititre Autoreader is a microcomputer-driven instrument capable of automatically reading antimicrobial susceptibility microdilution trays. The instrument measures the fluorescence liberated by bacterial enzymatic activity on fluorogenic substrates as an indicator of growth in each well. A mathematical algorithm converts the fluorescent signals from an antimicrobial dilution series to an MIC endpoint. A three-center study evaluated the performance of the Autoreader in comparison with MIC determined visually in a duplicate set of control plates lacking fluorogenic substrate. Among 828 isolates of gram-negative bacilli tested against 17 antimicrobial agents, Autoreader 18-h MIC were within +/- 1 twofold dilution of control MIC values (agreement) in 95.3% of instances. In 3.5% of the instances, Autoreader values occurred +/- 2 half-step dilutions from control values (minor discrepancy), and in only 1.2% of instances did Autoreader values deviate from control values by greater than +/- 2 dilution steps (major discrepancy). Agreement, minor discrepancies, and major discrepancies were noted among 148 gram-positive cocci tested against 11 antimicrobial agents in 93.5, 4.8, and 1.7% of the instances, respectively. Over half of the major discrepancies noted with gram-negative bacilli occurred with Proteus mirabilis-beta-lactam combinations, a problem that was resolved when a lower initial inoculum was used. Inter-and intralaboratory reproducibility was excellent. Standard Sensititre susceptibility trays may be instrument read at 18 h reproducibly and accurately with only slight modification of conventional procedures to include fluorogenic enzyme substrates in the incubation broth. PMID:4031033

  8. In vitro antifungal activity of isavuconazole against 345 mucorales isolates collected at study centers in eight countries.

    PubMed

    Verweij, P E; González, G M; Wiedrhold, N P; Lass-Flörl, C; Warn, P; Heep, M; Ghannoum, M A; Guinea, J

    2009-06-01

    Although mucormycoses (formerly zygomycoses) are relatively uncommon, they are associated with high mortality and treatment options are limited. Isavuconazole is a novel, water soluble, broad-spectrum azole in clinical development for the treatment of invasive aspergillosis and candidiasis. The objective of this report was to collate data on the in vitro activity of isavuconazole against a collection of 345 diverse mucorales isolates, collected and tested at eight study centers in europe, mexico and North America. Each study center undertook minimum inhibitory concentration (MIC) susceptibility testing of their isolates, according to EUCAST or CLSI guidelines. Across all study centers, isavuconazole exhibited MIC(50 )values of 1-4 mg/l and MIC(90 )values of 4-16 mg/l against the five genera. There were also marked differences in MIC distributions, which could be ascribed to differences in inoculum and/or endpoint. EUCAST guidelines appeared to generate modal MICs 2-fold higher than CLSI. These results confirm that isavuconazole possesses at least partial antifungal activity against mucorales.

  9. Isolation and identification of antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds.

    PubMed

    Mohammed, Muthanna J; Al-Bayati, Firas A

    2009-06-01

    The aerial parts of Thymus kotschyanus Boiss. and Hohen. (Lamiaceae) and flower buds of Dianthus caryophyllus L. (Caryophyllaceae) have been traditionally implemented in the treatment of wounds, throat and gum infections and gastro-intestinal disorder by the indigenous people of northern Iraq, although the compounds responsible for the medicinal properties have not been identified. In this study, antibacterial compounds from both plants were isolated and characterized, and the biological activity of each compound was assessed individually and combined. Compounds were isolated and characterized from the extracted essential oils of both plants using different spectral techniques: TLC, FTIR spectra and HPLC. The minimum inhibitory concentrations MIC values for the compounds were assessed individually and combined based on a microdilution and the checkerboard method in 96 multi-well microtiter plates. Two known compounds were isolated from the essential oils of both plants and were identified as thymol and eugenol. The isolated compounds were investigated for their single and combined antibacterial activities against seven selected pathogenic bacteria; Staphylococcus aureus, Bacillus cereus, Listeria monocytogenes, Proteus mirabilis, Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. Thymol MIC values ranged from 15.6 to 250.0 microg/ml and B. cereus was found to be the most sensitive pathogen with a MIC value of 15.6 microg/ml. Eugenol achieved stronger MIC values against most tested pathogens and the best MIC value (15.6 microg/ml) was observed against B. cereus, L. monocytogenes and K. pneumoniae whereas, S. aureus, P. mirabilis and E. coli were inhibited with a MIC value of 31.2 microg/ml. Combination results had antibacterial enhancement against most pathogens and the best synergistic result was seen against P. mirabilis and E. coli. The isolation of two antibacterial compounds from Thymus kotschyanus aerial parts and Dianthus caryophyllus flower buds validates the use of these species in the treatment of throat and gum infections, wound-healing and gastro-intestinal disorder.

  10. Antifungal activity, mode of action and anti-biofilm effects of Laurus nobilis Linnaeus essential oil against Candida spp.

    PubMed

    Peixoto, Larissa Rangel; Rosalen, Pedro Luiz; Ferreira, Gabriela Lacet Silva; Freires, Irlan Almeida; de Carvalho, Fabíola Galbiatti; Castellano, Lúcio Roberto; de Castro, Ricardo Dias

    2017-01-01

    The present study demonstrated the antifungal potential of the chemically characterized essential oil (EO) of Laurus nobilis L. (bay laurel) against Candida spp. biofilm adhesion and formation, and further established its mode of action on C. albicans. L. nobilis EO was obtained and tested for its minimum inhibitory and fungicidal concentrations (MIC/MFC) against Candida spp., as well as for interaction with cell wall biosynthesis and membrane ionic permeability. Then we evaluated its effects on the adhesion, formation, and reduction of 48hC. albicans biofilms. The EO phytochemical profile was determined by gas chromatography coupled to mass spectrometry (GC/MS). The MIC and MFC values of the EO ranged from (250 to 500) μg/mL. The MIC values increased in the presence of sorbitol (osmotic protector) and ergosterol, which indicates that the EO may affect cell wall biosynthesis and membrane ionic permeability, respectively. At 2 MIC the EO disrupted initial adhesion of C. albicans biofilms (p<0.05) and affected biofilm formation with no difference compared to nystatin (p>0.05). When applied for 1min, every 8h, for 24h and 48h, the EO reduced the amount of C. albicans mature biofilm with no difference in relation to nystatin (p>0.05). The phytochemical analysis identified isoeugenol as the major compound (53.49%) in the sample. L. nobilis EO has antifungal activity probably due to monoterpenes and sesquiterpenes in its composition. This EO may affect cell wall biosynthesis and membrane permeability, and showed deleterious effects against C. albicans biofilms. Copyright © 2016. Published by Elsevier Ltd.

  11. Interpretation of positive results of a methacholine inhalation challenge and 1 week of inhaled bronchodilator use in diagnosing and treating cough-variant asthma.

    PubMed

    Irwin, R S; French, C T; Smyrnios, N A; Curley, F J

    1997-09-22

    In diagnosing cough due to asthma, methacholine chloride inhalation challenge (MIC) interpreted in a traditional fashion has been shown to have positive predictive values from 60% to 82%. To determine whether any features of positive results of an MIC or the results of a 1-week trial of inhaled beta-agonist therapy were helpful in predicting when the cough was due to asthma. The study design was a prospective, randomized, double-blind, placebo-controlled, crossover format performed in adult, nonsmoking subjects, who were referred for diagnosis and treatment of chronic cough. The subjects had no other respiratory complaints or medical conditions for which they were taking medications, the results of baseline spirometry and chest roentgenograms were normal, and the results of MIC were positive. After obtaining baseline data, including MICs on 2 separate days, objective cough counting, and self-assessment of cough severity using a visual analog scale, subjects were randomized to receive 2 inhalations (1.3 mg) of metaproterenol sulfate or placebo by metered dose inhaler attached to a spacer device every 4 hours while awake. At 1 week, data identical to baseline were collected, and subjects received the other metered dose inhaler for 7 days. At 1 week, data identical to baseline were collected. After completion of the protocol, subjects were followed up in the clinic to observe the final response of the cough to specific therapy. Based on the disappearance of the cough with specific therapy, the cough was due to asthma in 9 of 15 subjects and nonasthma in 6 of 15 subjects. Baseline data were similar between groups. With respect to MICs, there were no significant differences between groups in the cumulative dose of methacholine that provoked a 20% decrease in forced expiratory volume in 1 second from the postsaline baseline value (PD20 values), slopes of dose-response curves, and maximal-response plateaus. Cough severity significantly improved after 1 week of metaproterenol use compared with the severity of the cough at baseline (P = .03) and with placebo (P = .02) only in subjects with asthma. No matter how the results are analyzed, positive MIC results, without observing response to therapy, are only consistent with asthma as the cause of the cough. The results are only diagnostic of asthma when they are followed by a favorable response to asthma therapy. After 1 week of inhaled beta-agonist, only the cough due to cough-variant asthma is significantly better.

  12. Simulated comparison of the pharmacodynamics of ciprofloxacin and levofloxacin against Pseudomonas aeruginosa using pharmacokinetic data from healthy volunteers and 2002 minimum inhibitory concentration data.

    PubMed

    Burgess, David S; Hall, Ronald G

    2007-07-01

    Until the 2002 approval of levofloxacin 750 mg QD, ciprofloxacin was the fluoroquinolone of choice against Pseudomonas aeruginosa infections. This study evaluated the AUC:MIC ratios for ciprofloxacin 400 mg BID and TID and levofloxacin 750 mg QD, all administered intravenously, against P. aeruginosa using a Monte Carlo simulation. Pharmacokinetic data for ciprofloxacin and levofloxacin and 2002 MIC distributions against P. aeruginosa were obtained from studies in healthy volunteers published in the peer-reviewed literature. Pharmacokinetic studies of each agent were identified by separate MEDLINE searches combining the MeSH heading pharmacokinetics with the generic name of the antimicrobial. Only human studies published in English between 1990 and 2001 were included. Included studies also had to meet 3 minimum criteria: evaluation of clinically relevant dosing regimens, use of rigorous study methods, and provision of mean (SD) values for the pharmacokinetic parameters of interest. When multiple studies met these criteria, a single study was selected for each antimicrobial regimen. Pharmacodynamic analysis was performed using a Monte Carlo simulation of 10,000 patients by integrating the pharmacokinetic parameters, their variability, and 2002 MIC distributions for each antimicrobial regimen. The probability of target attainment was determined for each regimen for an AUC:MIC ratio from 0 to 300. A > or =90% probability of target attainment was considered satisfactory. For ciprofloxacin 400 mg TID and levofloxacin 750 mg QD, the AUC:MIC ratio at the corresponding 2002 Clinical Laboratory Standards Institute break points of 1 and 2 microg/mL were 33 and 34, respectively. The probabilities of target attainment for a free AUC:MIC ratio >90 (equivalent to a total AUC:MIC ratio > or =125) were 47% for ciprofloxacin 400 mg BID, 54% for ciprofloxacin 400 mg TID, and 48% for levofloxacin 750 mg QD. When pharmacokinetic data from healthy volunteers and 2002 MIC data were used, none of the simulated fluoroquinolone regimens achieved a high likelihood of target attainment against P. aeruginosa.

  13. Acorenone B: AChE and BChE Inhibitor as a Major Compound of the Essential Oil Distilled from the Ecuadorian Species Niphogeton dissecta (Benth.) J.F. Macbr.

    PubMed

    Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio

    2017-10-31

    This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(-)-β-pinene was 86.9:13.1, while the one of (+)/(-)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC 50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC 50 values of 40.8 μg/mL and 10.9 μg/mL, respectively.

  14. Acorenone B: AChE and BChE Inhibitor as a Major Compound of the Essential Oil Distilled from the Ecuadorian Species Niphogeton dissecta (Benth.) J.F. Macbr

    PubMed Central

    Calva, James; Bec, Nicole; Gilardoni, Gianluca; Larroque, Christian; Cartuche, Luis; Bicchi, Carlo; Montesinos, José Vinicio

    2017-01-01

    This study investigated the chemical composition, physical proprieties, biological activity, and enantiomeric analysis of the essential oil from the aerial parts of Niphogeton dissecta (culantrillo del cerro) from Ecuador, obtained by steam distillation. The qualitative and quantitative analysis of the essential oil was realized by gas chromatographic and spectroscopic techniques (GC-MS and GC-FID). Acorenone B was identified by GC-MS and NMR experiments. The enantiomeric distribution of some constituents has been assessed by enantio-GC through the use of a chiral cyclodextrin-based capillary column. We identified 41 components that accounted for 96.46% of the total analyzed, the major components were acorenone B (41.01%) and (E)-β-ocimene (29.64%). The enantiomeric ratio of (+)/(−)-β-pinene was 86.9:13.1, while the one of (+)/(−)-sabinene was 80.9:19.1. The essential oil showed a weak inhibitory activity, expressed as Minimal Inhibitory Concentration (MIC), against Enterococcus faecalis (MIC 10 mg/mL) and Staphylococcus aureus (MIC 5 mg/mL). Furthermore, it inhibited butyrylcholinesterase with an IC50 value of 11.5 μg/mL. Pure acorenone B showed inhibitory activity against both acetylcholinesterase and butyrylcholinesterase, with IC50 values of 40.8 μg/mL and 10.9 μg/mL, respectively. PMID:29088082

  15. Antifungal activity of the clove essential oil from Syzygium aromaticum on Candida, Aspergillus and dermatophyte species.

    PubMed

    Pinto, Eugénia; Vale-Silva, Luís; Cavaleiro, Carlos; Salgueiro, Lígia

    2009-11-01

    The composition and antifungal activity of clove essential oil (EO), obtained from Syzygium aromaticum, were studied. Clove oil was obtained commercially and analysed by GC and GC-MS. The EO analysed showed a high content of eugenol (85.3 %). MICs, determined according to Clinical and Laboratory Standards Institute protocols, and minimum fungicidal concentration were used to evaluate the antifungal activity of the clove oil and its main component, eugenol, against Candida, Aspergillus and dermatophyte clinical and American Type Culture Collection strains. The EO and eugenol showed inhibitory activity against all the tested strains. To clarify its mechanism of action on yeasts and filamentous fungi, flow cytometric and inhibition of ergosterol synthesis studies were performed. Propidium iodide rapidly penetrated the majority of the yeast cells when the cells were treated with concentrations just over the MICs, meaning that the fungicidal effect resulted from an extensive lesion of the cell membrane. Clove oil and eugenol also caused a considerable reduction in the quantity of ergosterol, a specific fungal cell membrane component. Germ tube formation by Candida albicans was completely or almost completely inhibited by oil and eugenol concentrations below the MIC values. The present study indicates that clove oil and eugenol have considerable antifungal activity against clinically relevant fungi, including fluconazole-resistant strains, deserving further investigation for clinical application in the treatment of fungal infections.

  16. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010.

    PubMed

    Pringle, Märit; Landén, Annica; Unnerstad, Helle Ericsson; Molander, Benedicta; Bengtsson, Björn

    2012-09-21

    The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae tested by broth dilution based on MIC distributions and the current knowledge on mechanisms of resistance in this species. There are few studies on antimicrobial resistance mechanisms and MIC distributions in B. pilosicoli but to some extent the cutoff values proposed for B. hyodysenteriae may be applicable also for monitoring of antimicrobial susceptibility in B. pilosicoli.

  17. Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010

    PubMed Central

    2012-01-01

    Background The anaerobic spirochetes Brachyspira hyodysenteriae and Brachyspira pilosicoli cause diarrheal diseases in pigs. Their fastidious nature has hampered standardization of methods for antimicrobial susceptibility testing. For monitoring of antimicrobial susceptibility wild type cutoff values are needed to define where the wild type distribution of MICs ends and no approved cutoffs are available for Brachyspira spp. In this study antimicrobial susceptibility data for both species (in total 906 isolates) were compiled and analyzed and wild type cut off values for B. hyodysenteriae proposed. Methods The MICs of tiamulin, valnemulin, tylosin, tylvalosin, doxycycline and lincomycin were determined by broth dilution in brain heart infusion broth supplemented with 10% fetal calf serum. Results The compiled MICs from the broth dilution tests of the B. hyodysenteriae type strain, B78T (ATCC® 27164T), showed that the method yields reproducible results. In an international perspective the frequencies of isolates with decreased antimicrobial susceptibility were low among both B. hyodysenteriae and B. pilosicoli. However, in B. pilosicoli a constant level of 10-15% isolates with tiamulin MICs >4 μg/ml was detected between 2002 and 2010 and in B. hyodysenteriae a gradual increase in tiamulin MICs was seen between 1990 and 2003 although this increase has ceased during the last years. The wild type cutoff values proposed for B. hyodysenteriae are: tiamulin >0.25 μg/ml, valnemulin >0.125 μg/ml, tylosin >16 μg/ml, tylvalosin >1 μg/ml, lincomycin >1 μg/ml and doxycycline >0.5 μg/ml. Conclusions The broth dilution method used in this study has over the years generated tightly grouped MIC populations for the field isolates and reproducible results for the control strain B78T and is therefore a suitable antimicrobial susceptibility test method for monitoring of Brachyspira spp. Here we propose wild type cutoff values for six antimicrobial agents for B. hyodysenteriae tested by broth dilution based on MIC distributions and the current knowledge on mechanisms of resistance in this species. There are few studies on antimicrobial resistance mechanisms and MIC distributions in B. pilosicoli but to some extent the cutoff values proposed for B. hyodysenteriae may be applicable also for monitoring of antimicrobial susceptibility in B. pilosicoli. PMID:22998753

  18. Drug Development and Conservation of Biodiversity in West and Central Africa

    DTIC Science & Technology

    2001-05-01

    sensitive and -resistant isolates of Trichomonas vaginalis and 18 were tested against the veterinary parasite Tritrichomonas foetus . Of those tested vs...T. vaginalis, three had MIC values of 0.3-0.6 mg/ml and two extracts tested vs. T. foetus had MIC values of 0.3-0.6 mg/ml. These studies are

  19. Monitoring of antimicrobial susceptibility of Streptococcus suis in the Netherlands, 2013-2015.

    PubMed

    van Hout, Jobke; Heuvelink, Annet; Gonggrijp, Maaike

    2016-10-15

    The objective of the present study was to analyse the in vitro antimicrobial susceptibility of Streptococcus suis isolates from post-mortem samples from pigs in the Netherlands. S. suis isolates originated from diagnostic submissions of pigs sent to the Pathology Department of GD Animal Health, from April 2013 till June 2015. Minimal inhibitory concentrations (MICs) of in total 15 antimicrobials were assessed by broth microdilution following CLSI recommendations. MIC 50 and MIC 90 values were determined and MICs were interpreted as susceptible, intermediate and resistant using CLSI veterinary breakpoints (when available). Emergence of resistance among S. suis (n=1163) derived from clinical submissions of pigs appeared to be limited. Resistance to ampicillin, ceftiofur, clindamycin, enrofloxacin, florfenicol, penicillin, trimethoprim/sulfamethoxazole and tetracycline was 0.3%, 0.5%, 48.1%, 0.6%, 0.1%, 0.5%, 3.0%, and 78.4%, respectively. Cross-resistance between penicillin and ampicillin appeared to be incomplete. MIC values of erythromycin, clindamycin, neomycin, penicillin and tilmicosin for isolates originating from grower/finisher pigs were significantly more often lower than the MIC values of isolates from suckling/weaned piglets. It has to be kept in mind that these results represent only part of the Dutch pig population and it can be discussed whether this is a representative sample. Interpretation of the MIC results of (clinically relevant) antimicrobials tested for treatment of S. suis infection is strongly hampered by the lack of CLSI-defined veterinary clinical breakpoints that are animal species- and body site-specific. Therefore, and to conduct a clinically reliable monitoring of antimicrobial susceptibility of veterinary pathogens, more species- and organ-specific veterinary breakpoints are urgently needed. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Technical note: Antimicrobial susceptibility of Portuguese isolates of Staphylococcus aureus and Staphylococcus epidermidis in subclinical bovine mastitis.

    PubMed

    Nunes, S F; Bexiga, R; Cavaco, L M; Vilela, C L

    2007-07-01

    To evaluate the antimicrobial resistance traits of staphylococci responsible for subclinical bovine mastitis in Portugal, the minimum inhibitory concentrations (MIC) of 7 antimicrobial agents, frequently administered for mastitis treatment, were determined for 30 Staphylococcus aureus and 31 Staphylococcus epidermidis field isolates. Beta-lactamase production was detected through the use of nitrocefin-impregnated discs. The MIC that inhibited 90% of the isolates tested (MIC90) of penicillin, oxacillin, cefazolin, gentamicin, sulfamethoxazole/trimethoprim, oxytetracycline, and enrofloxacin were, respectively, 4, 0.5, 1, 1, 0.25, 0.25, and 0.06 microg/mL for Staph. aureus and > or = 64, 8, 1, 32, > or = 64, > or = 64, and 0.06 microg/mL for Staph. epidermidis. All Staph. aureus isolates showed susceptibility to oxacillin, cefazolin, gentamicin, sulphamethoxazole/trimethoprim, and enrofloxacin. Beta-lactamase production was detected in 20 of these isolates (66.7%), all of which were resistant to penicillin. Of the 31 Staph. epidermidis tested, 24 (77.4%) were beta-lactamase positive. All isolates were susceptible to both cefazolin and enrofloxacin. Nine Staph. epidermidis isolates were resistant to oxacillin, with MIC values ranging from 4 to 8 microg/mL. The MIC values of 5 antimicrobial agents tested were higher than those reported in other countries. Enrofloxacin was the only exception, showing lower MIC values compared with other reports. Overall, the antimicrobial agents tested in our study, with the exception of penicillin, were active against the 61 isolates studied.

  1. Antibacterial activity of selected Malaysian honey

    PubMed Central

    2013-01-01

    Background Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Methods Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. Results The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Conclusions Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey. PMID:23758747

  2. Antibacterial activity of selected Malaysian honey.

    PubMed

    Zainol, Mohd Izwan; Mohd Yusoff, Kamaruddin; Mohd Yusof, Mohd Yasim

    2013-06-10

    Antibacterial activity of honey is mainly dependent on a combination of its peroxide activity and non-peroxide components. This study aims to investigate antibacterial activity of five varieties of Malaysian honey (three monofloral; acacia, gelam and pineapple, and two polyfloral; kelulut and tualang) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, and Pseudomonas aeruginosa. Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) were performed for semi-quantitative evaluation. Agar well diffusion assay was used to investigate peroxide and non-peroxide activities of honey. The results showed that gelam honey possessed lowest MIC value against S. aureus with 5% (w/v) MIC and MBC of 6.25% (w/v). Highest MIC values were shown by pineapple honey against E. coli and P. aeruginosa as well as acacia honey against E. coli with 25% (w/v) MIC and 50% (w/v) MBC values. Agar inhibition assay showed kelulut honey to possess highest total antibacterial activity against S. aureus with 26.49 equivalent phenol concentrations (EPC) and non-peroxide activity of 25.74 EPC. Lowest antibacterial activity was observed in acacia honey against E. coli with total activity of 7.85 EPC and non-peroxide activity of 7.59 EPC. There were no significant differences (p > 0.05) between the total antibacterial activities and non-peroxide activities of Malaysian honey. The intraspecific correlation between MIC and EPC of E. coli (r = -0.8559) was high while that between MIC and EPC of P. aeruginosa was observed to be moderate (r = -0.6469). S. aureus recorded a smaller correlation towards the opposite direction (r = 0.5045). In contrast, B.cereus showed a very low intraspecific correlation between MIC and EPC (r = -0.1482). Malaysian honey, namely gelam, kelulut and tualang, have high antibacterial potency derived from total and non-peroxide activities, which implies that both peroxide and other constituents are mutually important as contributing factors to the antibacterial property of honey.

  3. Assessment of formulas for calculating critical concentration by the agar diffusion method.

    PubMed Central

    Drugeon, H B; Juvin, M E; Caillon, J; Courtieu, A L

    1987-01-01

    The critical concentration of antibiotic was calculated by using the agar diffusion method with disks containing different charges of antibiotic. It is currently possible to use different calculation formulas (based on Fick's law) devised by Cooper and Woodman (the best known) and by Vesterdal. The results obtained with the formulas were compared with the MIC results (obtained by the agar dilution method). A total of 91 strains and two cephalosporins (cefotaxime and ceftriaxone) were studied. The formula of Cooper and Woodman led to critical concentrations that were higher than the MIC, but concentrations obtained with the Vesterdal formula were closer to the MIC. The critical concentration was independent of method parameters (dilution, for example). PMID:3619419

  4. Comparative antipneumococcal activities of sulopenem and other drugs.

    PubMed

    Kosowska-Shick, Klaudia; Ednie, Lois M; McGhee, Pamela; Appelbaum, Peter C

    2009-06-01

    For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC(50)s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC(90)s were 0.016, 0.25, and 0.5 microg/ml, respectively. The MIC(50)s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 microg/ml, respectively, and the MIC(90)s were 0.03, 1.0, and 8.0 microg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ss-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC(50)s and MIC(90)s of 1.0 and 2.0 microg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2x MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs.

  5. Comparative Antipneumococcal Activities of Sulopenem and Other Drugs▿

    PubMed Central

    Kosowska-Shick, Klaudia; Ednie, Lois M.; McGhee, Pamela; Appelbaum, Peter C.

    2009-01-01

    For 297 penicillin-susceptible, -intermediate, and -resistant pneumococcal strains, the sulopenem MIC50s were 0.008, 0.06, and 0.25, respectively, and the sulopenem MIC90s were 0.016, 0.25, and 0.5 μg/ml, respectively. The MIC50s of amoxicillin for the corresponding strains were 0.03, 0.25, and 2.0 μg/ml, respectively, and the MIC90s were 0.03, 1.0, and 8.0 μg/ml, respectively. The combination of amoxicillin and clavulanate gave MICs similar to those obtained with amoxicillin alone. The sulopenem MICs were similar to those of imipenem and meropenem. The MICs of ß-lactams increased with those of penicillin G, and among the quinolones tested, moxifloxacin had the lowest MICs. Additionally, 45 strains of drug-resistant type 19A pneumococci were tested by agar dilution and gave sulopenem MIC50s and MIC90s of 1.0 and 2.0 μg/ml, respectively. Both sulopenem and amoxicillin (with and without clavulanate) were bactericidal against all 12 strains tested at 2× MIC after 24 h. Thirty-one strains from 10 countries with various penicillin, amoxicillin, and carbapenems MICs, including those with the highest sulopenem MICs, were selected for sequencing analysis of the pbp1a, pbp2x, and pbp2b regions encoding the transpeptidase active site and MurM. We did not find any correlations between specific penicillin-binding protein-MurM patterns and changes in the MICs. PMID:19307366

  6. Antistaphylococcal activity of CG400549, a new experimental FabI inhibitor, compared with that of other agents.

    PubMed

    Bogdanovich, Tatiana; Clark, Catherine; Kosowska-Shick, Klaudia; Dewasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C

    2007-11-01

    Among 203 strains of Staphylococcus aureus, the MICs of CG400549 were 0.06 to 1.0 microg/ml, with MIC(50) and MIC(90) values of 0.25 microg/ml each. All strains were susceptible to linezolid and quinupristin-dalfopristin (MICs, 0.25 to 2.0 microg/ml). The daptomycin MICs were 0.25 to 2.0 microg/ml for methicillin-susceptible and 0.25 to 4.0 microg/ml against methicillin-resistant strains (including vancomycin-intermediate strains). Single-passage selection testing showed low resistance frequencies with CG400549, but multistep analysis showed that CG400549 yielded resistant mutants after 14 to 17 days in all strains tested.

  7. Antibacterial Activity and Mechanism of Action of Black Pepper Essential Oil on Meat-Borne Escherichia coli

    PubMed Central

    Zhang, Jing; Ye, Ke-Ping; Zhang, Xin; Pan, Dao-Dong; Sun, Yang-Ying; Cao, Jin-Xuan

    2017-01-01

    The aim of this study was to investigate the antibacterial activity of black pepper essential oil (BPEO) on Escherichia coli, further evaluate the potential mechanism of action. Results showed that the minimum inhibition concentration (MIC) of BPEO was 1.0 μL/mL. The diameter of inhibition zone values were with range from 17.12 to 26.13 mm. 2 × MIC treatments had lower membrane potential and shorter kill-time than 1 × MIC, while control had the highest values. E. coli treated with BPEO became deformed, pitted, shriveled, adhesive, and broken. 2 × MIC exhibited the greatest electric conductivity at 1, 3, 5, 7, 9, 11, and 13 h, leaked DNA materials at 4, 8, 12, 16, 20, 24, and 28 h, proteins at 4, 6, 8, 10, 12, 14, and 16 h, potassium ion at 0, 0.5, 1, 1.5, and 2 h, phosphate ion at 0.5, 1, 1.5, and 2 h and ATP (P < 0.05); 1 × MIC had higher values than control. BPEO led to the leakage, disorder and death by breaking cell membrane. This study suggested that the BPEO has potential as the natural antibacterial agent in meat industry. PMID:28101081

  8. [Determination of sensitivity of biofilm-positive forms of microorganisms to antibiotics].

    PubMed

    Holá, Veronika; Růzicka, Filip; Tejkalová, Renata; Votava, Miroslav

    2004-10-01

    Nosocomial infections caused by biofilm-positive microorganisms are a serious therapeutic problem. In the biofilm, microorganisms are protected against adverse effects of the external environment, including the action of antibiotics. It is well known that the values of minimum inhibitory concentrations (MIC) determined for planktonic forms do not correspond to the actual concentrations of antibiotics necessary for the eradication of bacteria in a biofilm. The purpose of the study was to propose a method of determining minimum biofilm inhibitory concentrations (MBIC) and minimum biofilm eradication concentrations (MBEC) and to compare these values with MIC values. Biofilm-positive strains of Staphylococcus epidermidis were cultured so as to form a biofilm layer on polystyrene pegs. The biofilm on the pegs was then exposed to the action of antibiotics and after 18 hours we determined the minimum biofilm inhibitory concentration (MBIC). The evaluation of minimum biofilm eradication concentrations was done colorimetrically from the metabolic activity of surviving cells. MBIC and MBEC values were many times higher than MIC values. We selected such a duration of the biofilms cultivation on the pegs of the plate, which ensured that the number of bacterial cells corresponded to standard MIC assessment. The MBEC values established in our study indicate that the currently used concentrations of tested antibiotics cannot be used in monotherapy for an efficacious eradication of a biofilm. The MBEC determination is a far more laborious and time-consuming method than the determination of MIC, but the use of plates with pegs facilitates the handling of biofilms. The advantage of our method is the possibility of standardization of the size of the inoculum and thus of the whole MBEC assessment.

  9. Implementing Electric Potential Difference as a New Practical Parameter for Rapid and Specific Measurement of Minimum Inhibitory Concentration of Antibiotics.

    PubMed

    Mobasheri, Nasrin; Karimi, Mehrdad; Hamedi, Javad

    2018-06-05

    New methods to determine antimicrobial susceptibility of bacterial pathogens especially the minimum inhibitory concentration (MIC) of antibiotics have great importance in pharmaceutical industry and treatment procedures. In the present study, the MIC of several antibiotics was determined against some pathogenic bacteria using macrodilution test. In order to accelerate and increase the efficiency of culture-based method to determine antimicrobial susceptibility, the possible relationship between the changes in some physico-chemical parameters including conductivity, electrical potential difference (EPD), pH and total number of test strains was investigated during the logarithmic phase of bacterial growth in presence of antibiotics. The correlation between changes in these physico-chemical parameters and growth of bacteria was statistically evaluated using linear and non-linear regression models. Finally, the calculated MIC values in new proposed method were compared with the MIC derived from macrodilution test. The results represent significant association between the changes in EPD and pH values and growth of the tested bacteria during the exponential phase of bacterial growth. It has been assumed that the proliferation of bacteria can cause the significant changes in EPD values. The MIC values in both conventional and new method were consistent to each other. In conclusion, cost and time effective antimicrobial susceptibility test can be developed based on monitoring the changes in EPD values. The new proposed strategy also can be used in high throughput screening of biocompounds for their antimicrobial activity in a relatively shorter time (6-8 h) in comparison with the conventional methods.

  10. A New MIC1-MAG1 Recombinant Chimeric Antigen Can Be Used Instead of the Toxoplasma gondii Lysate Antigen in Serodiagnosis of Human Toxoplasmosis

    PubMed Central

    Holec-Gąsior, Lucyna; Ferra, Bartłomiej; Drapała, Dorota; Lautenbach, Dariusz

    2012-01-01

    This study presents an evaluation of the MIC1 (microneme protein 1)-MAG1 (matrix antigen 1) Toxoplasma gondii recombinant chimeric antigen for the serodiagnosis of human toxoplasmosis for the first time. The recombinant MIC1-MAG1 antigen was obtained as a fusion protein containing His tags at the N- and C-terminal ends using an Escherichia coli expression system. After purification by metal affinity chromatography, the chimeric protein was tested for usefulness in an enzyme-linked immunosorbent assay (ELISA) for the detection of anti-T. gondii immunoglobulin G (IgG). One hundred ten sera from patients at different stages of infection and 40 sera from seronegative patients were examined. The results obtained for the MIC1-MAG1 chimeric antigen were compared with those of IgG ELISAs using a Toxoplasma lysate antigen (TLA), a combination of recombinant antigens (rMIC1ex2-rMAG1) and single recombinant proteins (rMIC1ex2 and rMAG1). The sensitivity of the IgG ELISA calculated from all of the positive serum samples was similar for the MIC1-MAG1 chimeric antigen (90.8%) and the TLA (91.8%), whereas the sensitivities of the other antigenic samples used were definitely lower, at 69.1% for the mixture of antigens, 75.5% for the rMIC1ex2, and 60% for rMAG1. This study demonstrates that the MIC1-MAG1 recombinant chimeric antigen can be used instead of the TLA in the serodiagnosis of human toxoplasmosis. PMID:22116686

  11. Toxicity tests, antioxidant activity, and antimicrobial activity of chitosan

    NASA Astrophysics Data System (ADS)

    Kurniasih, M.; Purwati; Dewi, R. S.

    2018-04-01

    Chitosan is a naturally occurring cationic biopolymer, obtained by alkaline deacetylation of chitin. This research aims to investigate the toxicity, antioxidant activity and antibacterial activity of chitosan from shrimp chitin. In this study, chitin extracted from shrimp waste material. Chitin is then deacetylation with 60% NaOH so that chitosan produced. Degrees of deacetylation, molecular weight, toxicity test, antioxidant activity and antimicrobial activity of chitosan then evaluated. Toxicity test using Brine Shrimp Lethality Test. The antioxidant analysis was performed using DPPH method (2, 2-diphenyl-1-picrylhydrazyl) and FTC method (ferric thiocyanate) in which the radical formed will reduce Ferro to Ferri resulting in a complex with thiocyanate. To determine the antibacterial activity of Staphylococcus aureus, antifungal in Candida albicans and Aspergillus niger by measuring antimicrobial effects and minimum inhibitory concentrations (MIC). Based on the result of research, the value of degrees of deacetylation, molecular weight, and LC50 values of chitosan synthesis was 94,32, 1052.93 g/mol and 1364.41 ppm, respectively. In general, the antioxidative activities increased as the concentration of chitosan increased. MIC value of chitosan against S. aureus, C. albicans, and A. niger was 10 ppm, 15.6 ppm, and 5 ppm, respectively.

  12. Failure of Quality Control Measures To Prevent Reporting of False Resistance to Imipenem, Resulting in a Pseudo-Outbreak of Imipenem-Resistant Pseudomonas aeruginosa

    PubMed Central

    Carmeli, Yehuda; Eichelberger, Karen; Soja, Don; Dakos, Joanna; Venkataraman, Lata; DeGirolami, Paola; Samore, Matthew

    1998-01-01

    False results showing an outbreak of Pseudomonas aeruginosa with resistance to imipenem were traced to a defective lot of microdilution MIC testing panels. These panels contained two- to threefold lower concentrations of imipenem than expected and resulted in artifactual two- to fourfold increases in MICs of imipenem. The quality-control MIC results for Pseudomonas aeruginosa ATCC 27853 were 4 μg/ml, the highest value within the range recommended by the National Committee for Clinical Laboratory Standards. We recommend that this value be considered out of the quality-control range. PMID:9466787

  13. Differential drug susceptibility patterns of Mycobacterium chimaera and other members of the Mycobacterium avium-intracellulare complex.

    PubMed

    Maurer, Florian P; Pohle, Philipp; Kernbach, Margrit; Sievert, Daniela; Hillemann, Doris; Rupp, Jan; Hombach, Michael; Kranzer, Katharina

    2018-06-12

    To determine MIC distributions for Mycobacterium chimaera, Mycobacterium intracellulare, Mycobacterium colombiense and Mycobacterium avium, and to derive tentative epidemiological cutoff (ECOFF) values. 683 bacterial isolates (M. chimaera, n = 203; M. intracellulare; n = 77; M. colombiense, n = 68; M. avium, n = 335) from 627 patients were tested by broth microdilution according to CLSI protocol M24-A2 on Sensititre RAPMYCOI plates. MICs were interpreted based on CLSI breakpoints for clarithromycin, and tentative breakpoints for amikacin, moxifloxacin and linezolid. Tentative ECOFFs were determined by visual approximation and the ECOFFinder algorithm. Modal MIC, MIC 50 and MIC 90 values were within ± one dilution step from the respective aggregated dataset for 47 / 48 (97.9 %), 48 / 48 (100 %), and 48 / 48 (100 %) species-drug combinations. Clarithromycin wild-type populations were mostly classified as susceptible (MIC 90 = 4 to 8 mg / l; S ≤ 8 mg/l). Rifabutin MICs were lower than those of rifampicin. Tentative moxifloxacin, linezolid and amikacin breakpoints split wild-type populations. No ECOFFs could be set for rifampicin, ethambutol, ciprofloxacin, isoniazid, trimethoprim/sulfamethoxazole and doxycycline due to truncation of MIC distributions. Agreement between the visually determined and the modelled 97.5 % ECOFFs was 90.9 %. All 99.0 % ECOFFs were one titer step higher than by visual approximation. Drug susceptibility patterns of M. chimaera are comparable to those of closely related species. Except for clarithromycin, breakpoints for MAIC should be reevaluated. Statistical determination of the 99.0 % ECOFF may be superior to visual approximation. Copyright © 2018. Published by Elsevier Ltd.

  14. Cytotoxic and Antibacterial Angucycline- and Prodigiosin- Analogues from the Deep-Sea Derived Streptomyces sp. SCSIO 11594

    PubMed Central

    Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua

    2015-01-01

    Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1–3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL. PMID:25786061

  15. Antibacterial Activity of Pharbitin, Isolated from the Seeds of Pharbitis nil, against Various Plant Pathogenic Bacteria.

    PubMed

    Nguyen, Hoa Thi; Yu, Nan Hee; Park, Ae Ran; Park, Hae Woong; Kim, In Seon; Kim, Jin-Cheol

    2017-10-28

    This study aimed to isolate and characterize antibacterial metabolites from Pharbitis nil seeds and investigate their antibacterial activity against various plant pathogenic bacteria. The methanol extract of P. nil seeds showed the strongest activity against Xanthomonas arboricola pv. pruni (Xap) with a minimum inhibition concentration (MIC) value of 250 μg/ml. Among the three solvent layers obtained from the methanol extract of P. nil seeds, only the butanol layer displayed the activity with an MIC value of 125 μg/ml against Xap. An antibacterial fraction was obtained from P. nil seeds by repeated column chromatography and identified as pharbitin, a crude resin glycoside, by instrumental analysis. The antibacterial activity of pharbitin was tested in vitro against 14 phytopathogenic bacteria, and it was found to inhibit Ralstonia solanacearum and four Xanthomonas species. The minimum inhibitory concentration values against the five bacteria were 125-500 μg/ml for the n-butanol layer and 31.25-125 μg/ml for pharbitin. In a detached peach leaf assay, it effectively suppressed the development of bacterial leaf spot, with a control value of 87.5% at 500 μg/ml. In addition, pharbitin strongly reduced the development of bacterial wilt on tomato seedlings by 97.4% at 250 μg/ml, 7 days after inoculation. These findings suggest that the crude extract of P. nil seeds can be used as an alternative biopesticide for the control of plant diseases caused by R. solanacearum and Xanthomonas spp. This is the first report on the antibacterial activity of pharbitin against phytopathogenic bacteria.

  16. In Vitro Antibacterial and Antibiofilm Activities of Chlorogenic Acid against Clinical Isolates of Stenotrophomonas maltophilia including the Trimethoprim/Sulfamethoxazole Resistant Strain

    PubMed Central

    Karunanidhi, Arunkumar; Thomas, Renjan; van Belkum, Alex; Neela, Vasanthakumari

    2013-01-01

    The in vitro antibacterial and antibiofilm activity of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia was investigated through disk diffusion, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), time-kill and biofilm assays. A total of 9 clinical S. maltophilia isolates including one isolate resistant to trimethoprim/sulfamethoxazole (TMP/SMX) were tested. The inhibition zone sizes for the isolates ranged from 17 to 29 mm, while the MIC and MBC values ranged from 8 to 16 μg mL−1 and 16 to 32 μg mL−1. Chlorogenic acid appeared to be strongly bactericidal at 4x MIC, with a 2-log reduction in viable bacteria at 10 h. In vitro antibiofilm testing showed a 4-fold reduction in biofilm viability at 4x MIC compared to 1x MIC values (0.085 < 0.397 A 490 nm) of chlorogenic acid. The data from this study support the notion that the chlorogenic acid has promising in vitro antibacterial and antibiofilm activities against S. maltophilia. PMID:23509719

  17. Comparative Performance Analysis of Intel Xeon Phi, GPU, and CPU: A Case Study from Microscopy Image Analysis

    PubMed Central

    Teodoro, George; Kurc, Tahsin; Kong, Jun; Cooper, Lee; Saltz, Joel

    2014-01-01

    We study and characterize the performance of operations in an important class of applications on GPUs and Many Integrated Core (MIC) architectures. Our work is motivated by applications that analyze low-dimensional spatial datasets captured by high resolution sensors, such as image datasets obtained from whole slide tissue specimens using microscopy scanners. Common operations in these applications involve the detection and extraction of objects (object segmentation), the computation of features of each extracted object (feature computation), and characterization of objects based on these features (object classification). In this work, we have identify the data access and computation patterns of operations in the object segmentation and feature computation categories. We systematically implement and evaluate the performance of these operations on modern CPUs, GPUs, and MIC systems for a microscopy image analysis application. Our results show that the performance on a MIC of operations that perform regular data access is comparable or sometimes better than that on a GPU. On the other hand, GPUs are significantly more efficient than MICs for operations that access data irregularly. This is a result of the low performance of MICs when it comes to random data access. We also have examined the coordinated use of MICs and CPUs. Our experiments show that using a performance aware task strategy for scheduling application operations improves performance about 1.29× over a first-come-first-served strategy. This allows applications to obtain high performance efficiency on CPU-MIC systems - the example application attained an efficiency of 84% on 192 nodes (3072 CPU cores and 192 MICs). PMID:25419088

  18. Habituation of enterotoxigenic Staphylococcus aureus to Origanum vulgare L. essential oil does not induce direct-tolerance and cross-tolerance to salts and organic acids

    PubMed Central

    Tavares, Adassa Gama; do Monte, Daniel Farias Marinho; Albuquerque, Allan dos Reis; Sampaio, Fábio Correia; Magnani, Marciane; de Siqueira, José Pinto; de Souza, Evandro Leite

    2015-01-01

    Enterotoxigenic Staphylococcus aureus strains that were isolated from foods were investigated for their ability to develop direct-tolerance and cross-tolerance to sodium chloride (NaCl), potassium chloride (KCl), lactic acid (LA) and acetic acid (AA) after habituation in sublethal amounts (1/2 of the minimum inhibitory concentration - 1/2 MIC and 1/4 of the minimum inhibitory concentration - 1/4 MIC) of Origanum vulgare L. essential oil (OVEO). The habituation of S. aureus to 1/2 MIC and 1/4 MIC of OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by modulation of MIC values. Otherwise, exposing the strains to OVEO at sublethal concentrations maintained or increased the sensitivity of the cells to the tested stressing agents because the MIC values of OVEO, NaCl, KCl, LA and AA against the cells that were previously habituated to OVEO remained the same or decreased when compared with non-habituated cells. These data indicate that OVEO does not have an inductive effect on the acquisition of direct-tolerance or cross-tolerance in the tested enterotoxigenic strains of S. aureus to antimicrobial agents that are typically used in food preservation. PMID:26413067

  19. In vitro activity of cefditoren: antimicrobial efficacy against major respiratory pathogens from Asian countries.

    PubMed

    Lee, Mi Young; Ko, Kwan Soo; Oh, Won Sup; Park, Sulhee; Lee, Ji-Young; Baek, Jin Yang; Suh, Ji-Yoeun; Peck, Kyong Ran; Lee, Nam Yong; Song, Jae-Hoon

    2006-07-01

    In this study we evaluated the in vitro activities of cefditoren and 14 other comparator agents against 1025 isolates of major respiratory tract pathogens including Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, Klebsiella pneumoniae and Staphylococcus aureus. Bacterial isolates were collected from 11 Asian countries. The majority of S. pneumoniae isolates (98.8%) were susceptible to cefditoren. The MIC(50) and MIC(90) values (minimum inhibitory concentrations for 50% and 90% of the organisms, respectively) of S. pneumoniae were

  20. [A study for testing the antifungal susceptibility of yeast by the Japanese Society for Medical Mycology (JSMM) method. The proposal of the modified JSMM method 2009].

    PubMed

    Nishiyama, Yayoi; Abe, Michiko; Ikeda, Reiko; Uno, Jun; Oguri, Toyoko; Shibuya, Kazutoshi; Maesaki, Shigefumi; Mohri, Shinobu; Yamada, Tsuyoshi; Ishibashi, Hiroko; Hasumi, Yayoi; Abe, Shigeru

    2010-01-01

    The Japanese Society for Medical Mycology (JSMM) method used for testing the antifungal susceptibility of yeast, the MIC end point for azole antifungal agents, is currently set at IC(80). It was recently shown, however that there is an inconsistency in the MIC value between the JSMM method and the CLSI M27-A2 (CLSI) method, in which the end- point was to read as IC(50). To resolve this discrepancy and reassess the JSMM method, the MIC for three azoles, fluconazole, itraconazole and voriconazole were compared to 5 strains of each of the following Candida species: C. albicans, C. glabrata, C. tropicalis, C. parapsilosis and C. krusei, for a total of 25 comparisons, using the JSMM method, a modified JSMM method, and the CLSI method. The results showed that when the MIC end- point criterion of the JSMM method was changed from IC(80) to IC(50) (the modified JSMM method) , the MIC value was consistent and compatible with the CLSI method. Finally, it should be emphasized that the JSMM method, using a spectrophotometer for MIC measurement, was superior in both stability and reproducibility, as compared to the CLSI method in which growth was assessed by visual observation.

  1. [In vitro testing of yeast resistance to antimycotic substances].

    PubMed

    Potel, J; Arndt, K

    1982-01-01

    Investigations have been carried out in order to clarify the antibiotic susceptibility determination of yeasts. 291 yeast strains of different species were tested for sensitivity to 7 antimycotics: amphotericin B, flucytosin, nystatin, pimaricin, clotrimazol, econazol and miconazol. Additionally to the evaluation of inhibition zone diameters and MIC-values the influence of pH was examined. 1. The dependence of inhibition zone diameters upon pH-values varies due to the antimycotic tested. For standardizing purposes the pH 6.0 is proposed; moreover, further experimental parameters, such as nutrient composition, agar depth, cell density, incubation time and -temperature, have to be normed. 2. The relation between inhibition zone size and logarythmic MIC does not fit a linear regression analysis when all species are considered together. Therefore regression functions have to be calculated selecting the individual species. In case of the antimycotics amphotericin B, nystatin and pimaricin the low scattering of the MIC-values does not allow regression analysis. 3. A quantitative susceptibility determination of yeasts--particularly to the fungistatical substances with systemic applicability, flucytosin and miconazol, -- is advocated by the results of the MIC-tests.

  2. Effective concentration-based serum pharmacodynamics for antifungal azoles in a murine model of disseminated Candida albicans infection.

    PubMed

    Maki, Katsuyuki; Kaneko, Shuji

    2013-12-01

    An assessment of the effective in vivo concentrations of antifungal drugs is important in determining their pharmacodynamics, and therefore, their optimal dosage regimen. Here we establish the effective in vivo concentration-based pharmacodynamics of three azole antifungal drugs (fluconazole, itraconazole, and ketoconazole) in a murine model of disseminated Candida albicans infection. A key feature of this study was the use of a measure of mycelial (m) growth rather than of yeast growth, and pooled mouse sera rather than synthetic media as a growth medium, for determining the minimum inhibitory concentrations (MICs) of azoles for C. albicans (denoted serum mMICs). The serum mMIC assay was then used to measure antifungal concentrations and effects as serum antifungal titers in the serum of treated mice. Both serum mMIC and sub-mMIC values reflected the effective in vivo serum concentrations. Supra-mMIC and mMIC effects exhibited equivalent efficacies and were concentration-independent, while the sub-mMIC effect was concentration-dependent. Following administration of the minimum drug dosage that inhibited an increase in mouse kidney fungal burden, the duration periods of these effects were similar for all drugs tested. The average duration of either the mMIC effect including the supra-mMIC effect, the sub-mMIC effect, or the post-antifungal effect (PAFE) were 6.9, 6.5 and 10.6 h, respectively. Our study suggests that the area under the curve for serum drug concentration versus time, between the serum mMIC and the sub-mMIC, and exposure time above the serum sub-mMIC after the mMIC effect, are major pharmacodynamic parameters. These findings have important implications for effective concentration-based pharmacodynamics of fungal infections treated with azoles.

  3. Antistaphylococcal Activity of CG400549, a New Experimental FabI Inhibitor, Compared with That of Other Agents▿

    PubMed Central

    Bogdanovich, Tatiana; Clark, Catherine; Kosowska-Shick, Klaudia; Dewasse, Bonifacio; McGhee, Pamela; Appelbaum, Peter C.

    2007-01-01

    Among 203 strains of Staphylococcus aureus, the MICs of CG400549 were 0.06 to 1.0 μg/ml, with MIC50 and MIC90 values of 0.25 μg/ml each. All strains were susceptible to linezolid and quinupristin-dalfopristin (MICs, 0.25 to 2.0 μg/ml). The daptomycin MICs were 0.25 to 2.0 μg/ml for methicillin-susceptible and 0.25 to 4.0 μg/ml against methicillin-resistant strains (including vancomycin-intermediate strains). Single-passage selection testing showed low resistance frequencies with CG400549, but multistep analysis showed that CG400549 yielded resistant mutants after 14 to 17 days in all strains tested. PMID:17875997

  4. Chemical composition of Argentinean propolis collected in extreme regions and its relation with antimicrobial and antioxidant activities.

    PubMed

    Vera, Nancy; Solorzano, Eliana; Ordoñez, Roxana; Maldonado, Luis; Bedascarrasbure, Enrique; Isla, María I

    2011-06-01

    This paper reveals, for the first time, the functional properties of propolis from an extreme region of Argentine (El Rincón, Province of Catamarca, Argentina), as well as the isolation and identification of bioactive compounds. The antioxidant activity was determined by the ABTS method and beta-carotene bleaching. The antibacterial activity was determined on methicillin resistant Staphylococcus aureus (MRSA) by the microdilution method and bioautographic assays. Twelve compounds were isolated and identified by NMR spectroscopy. The main bioactive compounds were 2',4'-dihydroxy-3'-methoxychalcone (3), 2',4'-dihydroxychalcone (9), 2',4',4-trihydroxy-6'- methoxychalcone (8), 5-hydroxy-4',7-dimethoxyflavone (4), 4',5-dihydroxy-3,7,8-trimethoxyflavone (10) and 7-hydroxy- 5,8-dimethoxyflavone (11). All compounds were active against clinical isolates (MIC50 10 microg/mL) and displayed antioxidant activity (SC50 values of 20 microg/mL). The MIC and SC50 values of the isolated compounds were lower than those obtained with crude propolis extracts, chloroform sub-extracts and isolated fractions.

  5. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens

    PubMed Central

    Vučić, Dragana M.; Petković, Miroslav R.; Rodić-Grabovac, Branka B.; Stefanović, Olgica D.; Vasić, Sava M.; Čomić, Ljiljana R.

    2014-01-01

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract. PMID:25428676

  6. In vitro activity of heather [Calluna vulgaris (L.) Hull] extracts on selected urinary tract pathogens.

    PubMed

    Vučić, Dragana M; Petković, Miroslav R; Rodić-Grabovac, Branka B; Stefanović, Olgica D; Vasić, Sava M; Comić, Ljiljana R

    2014-11-15

    Calluna vulgaris L. Hull (Ericaceae) has been used for treatment of urinary tract infections in traditional medicine. In this study we analyzed in vitro antibacterial activity of the plant extracts on different strains of Escherichia coli, Enterococcus faecalis and Proteus vulgaris, as well as the concentrations of total phenols and flavonoids in the extracts. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined. The concentrations of total phenols were examined by using Folin-Ciocalteu reagent and ranged between 67.55 to 142.46 mg GAE/g. The concentrations of flavonoids in extracts were determined using spectrophotometric method with aluminum chloride and the values ranged from 42.11 to 63.68 mg RUE/g. The aqueous extract of C. vulgaris showed a significant antibacterial activity. The values of MIC were in the range from 2.5 mg/ml to 20 mg/ml for this extract. Proteus vulgaris strains were found to be the most sensitive. The results obtained suggest that all tested extracts of C. vulgaris inhibit the growth of human pathogens, especially the aqueous extract.

  7. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS

    PubMed Central

    S, Xego; L, Kambizi; F, Nchu

    2017-01-01

    Background: Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti-F. oxysporum activity and secondary metabolite profile of S. aethiopicus. Materials and Methods: Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti-F. oxysporum activity and secondary metabolites were analyzed. Results: The results showed that there were significant differences (P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4-.The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum. The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. Conclusion: The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes. PMID:28480420

  8. EFFECTS OF DIFFERENT HYDROPONIC SUBSTRATE COMBINATIONS AND WATERING REGIMES ON PHYSIOLOGICAL AND ANTI-FUNGAL PROPERTIES OF SIPHONOCHILUS AETHIOPICUS.

    PubMed

    S, Xego; L, Kambizi; F, Nchu

    2017-01-01

    Production of medicinal plants in controlled environments, particularly hydroponic technology, provides opportunities for high quality biomass accumulation and optimizes production of secondary metabolites. Applying special watering regimes in combination with efficient soil draining is an encouraging new tool for the production of pharmaceutical relevant plants. The purpose of this paper was to evaluate the effect of substrate combinations and watering regimes on nutrient uptake, anti- F. oxysporum activity and secondary metabolite profile of S. aethiopicus . Coir was used as the main component for the preparation of media in different combinations; TI (Coir + vermiculite + perlite + bark), T2 (Coir + bark), T3 (Coir + perlite) and T4 (Coir + vermiculite). Plants in different treatments were grown under two watering regimes: 3 and 5-days watering intervals. At 9 weeks post treatment, plants were harvested, oven dried and tissue nutrient content, anti- F. oxysporum activity and secondary metabolites were analyzed. The results showed that there were significant differences ( P < 0.05) on the uptake of P, K, N, Mg, Fe, Cu, B and NH4 - .The highest mean values for most nutrients were obtained in treatments under 3-days interval. Acetone extracts of S. aethiopicus under 5-days interval were the most bioactive against F. oxysporum . The MIC values obtained are relatively lower for the rhizomes, ranging from 0.078 - 0.3125 mg/ml compared to the higher MIC values (0.375 - 0.75 mg/ml) obtained in the leaves. LC-MS analysis of acetone extracts revealed the presence of phytochemicals such as caffeic acid, quercetin, p-hydroxybenzoic acid, rutin, kaempferol, epicatechin, naringenin, hesperetin and protocatechuic acid. The antimicrobial activity and/or the phytochemical profile of the crude extracts were affected by watering regimes.

  9. Could essential oils of green and black pepper be used as food preservatives?

    PubMed

    Nikolić, Miloš; Stojković, Dejan; Glamočlija, Jasmina; Ćirić, Ana; Marković, Tatjana; Smiljković, Marija; Soković, Marina

    2015-10-01

    Black and green pepper essential oils were used in this study in order to determine the chemical composition, in vitro antimicrobial activity against food spoilage microorganisms and in situ oils effect on food microorganism, after incorporation in chicken soup, by suggested methodology for calculation of Growth inhibition concentrations (GIC50). Chemical analysis revealed a total of 34 components. The major constituent of black pepper oil was trans-caryophyllene (30.33 %), followed by limonene (12.12 %), while β-pinene (24.42 %), δ(3)-carene (19.72 %), limonene (18.73 %) and α-pinene (10.39 %) were dominant compounds in green pepper oil. Antimicrobial activity was determined by microdilution technique and minimal inhibitory (MIC) and minimal bactericidal/fungicidal concentrations (MBC/MFC) were determined. Green pepper oil showed stronger antibacterial and antifungal activity (MIC 0.50-1.87; MBC 0.63-2.5 mg/ml; MIC 0.07-0.16; MFC 0.13-1.25 mg/ml) against black pepper oil (MIC 0.07-3.75; MBC 0.60-10.00 mg/ml; MIC 0.63-5.00; MFC 1.25-10.00 mg/ml. Oils successfully inhibited the growth of S. aureus in chicken soup in a dose dependent manner. GIC50 values were calculated after 24, 48 and 72 h and were in range of 0.156-0.689 mg/ml. The 50 % inhibitory concentrations (IC50) of EOs were 36.84 and 38.77 mg/ml with in 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay respectively. The obtained results revealed that black and green pepper volatiles are efficient in controlling the growth of known food-spoilage microorganisms.

  10. Levofloxacin Pharmacokinetics and Pharmacodynamics in Patients with Severe Burn Injury

    PubMed Central

    Kiser, Tyree H.; Hoody, Dorie W.; Obritsch, Marilee D.; Wegzyn, Colleen O.; Bauling, Paulus C.; Fish, Douglas N.

    2006-01-01

    Levofloxacin pharmacokinetics were studied in 11 patients with severe burn injuries. Patients (values are means ± standard deviations; age, 41 ± 17 years; weight, 81 ± 12 kg; creatinine clearance, 114 ± 40 ml/min) received intravenous levofloxacin at 750 mg (n = 10 patients) or 500 mg (n = one patient) once daily. Blood samples were collected on day 1 of levofloxacin therapy; eight patients were studied again on days 4 to 6. The pharmacodynamic probability of target attainment (PTA) was evaluated by Monte Carlo simulation. Mean systemic clearance, half-life, and area under the concentration-time curve over 24 h after levofloxacin at 750 mg were 9.0 ± 3.2 liters/h, 7.8 ± 1.6 h, and 93 ± 31 mg · h/liter, respectively. There were no differences in pharmacokinetic parameters between day 1 and day 4; however, large intrapatient and interpatient variability was observed. Levofloxacin pharmacokinetics in burned patients were similar to those reported in other critically ill populations. Levofloxacin at 750 mg achieved >90% PTA for gram-negative and gram-positive pathogens with MICs of ≤0.5 μg/ml and MICs of ≤1 μg/ml, respectively. However, satisfactory PTA was not obtained with less-susceptible gram-negative organisms with MICs of 1 μg/ml or any organism with a MIC of ≥2 μg/ml. The results of this study indicate that levofloxacin should be administered at 750 mg/day for treatment of systemic infections in severely burned patients. However, even 750 mg/day may be inadequate for gram-negative organisms with MICs of 1 to 2 μg/ml even though they are defined as susceptible. Alternative antibiotics or treatment strategies should be considered for infections due to these pathogens. PMID:16723549

  11. Levofloxacin pharmacokinetics and pharmacodynamics in patients with severe burn injury.

    PubMed

    Kiser, Tyree H; Hoody, Dorie W; Obritsch, Marilee D; Wegzyn, Colleen O; Bauling, Paulus C; Fish, Douglas N

    2006-06-01

    Levofloxacin pharmacokinetics were studied in 11 patients with severe burn injuries. Patients (values are means +/- standard deviations; age, 41 +/- 17 years; weight, 81 +/- 12 kg; creatinine clearance, 114 +/- 40 ml/min) received intravenous levofloxacin at 750 mg (n = 10 patients) or 500 mg (n = one patient) once daily. Blood samples were collected on day 1 of levofloxacin therapy; eight patients were studied again on days 4 to 6. The pharmacodynamic probability of target attainment (PTA) was evaluated by Monte Carlo simulation. Mean systemic clearance, half-life, and area under the concentration-time curve over 24 h after levofloxacin at 750 mg were 9.0 +/- 3.2 liters/h, 7.8 +/- 1.6 h, and 93 +/- 31 mg . h/liter, respectively. There were no differences in pharmacokinetic parameters between day 1 and day 4; however, large intrapatient and interpatient variability was observed. Levofloxacin pharmacokinetics in burned patients were similar to those reported in other critically ill populations. Levofloxacin at 750 mg achieved >90% PTA for gram-negative and gram-positive pathogens with MICs of < or =0.5 microg/ml and MICs of < or =1 microg/ml, respectively. However, satisfactory PTA was not obtained with less-susceptible gram-negative organisms with MICs of 1 microg/ml or any organism with a MIC of > or =2 microg/ml. The results of this study indicate that levofloxacin should be administered at 750 mg/day for treatment of systemic infections in severely burned patients. However, even 750 mg/day may be inadequate for gram-negative organisms with MICs of 1 to 2 microg/ml even though they are defined as susceptible. Alternative antibiotics or treatment strategies should be considered for infections due to these pathogens.

  12. Cefotaxime and Amoxicillin-Clavulanate Synergism against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Murine Model of Urinary Tract Infection

    PubMed Central

    Rossi, B.; Soubirou, J. F.; Chau, F.; Massias, L.; Dion, S.; Lepeule, R.; Fantin, B.

    2015-01-01

    We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains—CFT073-RR and its transconjugant, CFT073-RR Tc blaCTX-M-15—harboring a blaCTX-M-15 plasmid and a blaOXA-1 plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc blaCTX-M-15, respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc blaCTX-M-15 to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc blaCTX-M-15. In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. PMID:26525800

  13. Cefotaxime and Amoxicillin-Clavulanate Synergism against Extended-Spectrum-β-Lactamase-Producing Escherichia coli in a Murine Model of Urinary Tract Infection.

    PubMed

    Rossi, B; Soubirou, J F; Chau, F; Massias, L; Dion, S; Lepeule, R; Fantin, B; Lefort, A

    2016-01-01

    We investigated the efficacies of cefotaxime (CTX) and amoxicillin (AMX)-clavulanate (CLA) (AMC) against extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli in vitro and in a murine model of urinary tract infection (UTI). MICs, the checkerboard dilution method, and time-kill curves were used to explore the in vitro synergism between cefotaxime and amoxicillin-clavulanate against two isogenic E. coli strains-CFT073-RR and its transconjugant, CFT073-RR Tc bla(CTX-M-15)-harboring a bla(CTX-M-15) plasmid and a bla(OXA-1) plasmid. For in vivo experiments, mice were separately infected with each strain and treated with cefotaxime, amoxicillin, and clavulanate, alone or in combination, or imipenem, using therapeutic regimens reproducing time of free-drug concentrations above the MIC (fT≥MIC) values close to that obtained in humans. MICs of amoxicillin, cefotaxime, and imipenem were 4/>1,024, 0.125/1,024, and 0.5/0.5 mg/liter, for CFT073-RR and CFT073-RR Tc bla(CTX-M-15), respectively. The addition of 2 mg/liter of clavulanate (CLA) restored the susceptibility of CFT073-RR Tc bla(CTX-M-15) to CTX (MICs of the CTX-CLA combination, 0.125 mg/liter). The checkerboard dilution method and time-kill curves confirmed an in vitro synergy between amoxicillin-clavulanate and cefotaxime against CFT073-RR Tc bla(CTX-M-15). In vivo, this antibiotic combination was similarly active against both strains and as effective as imipenem. In conclusion, the cefotaxime and amoxicillin-clavulanate combination appear to be an effective, easy, and already available alternative to carbapenems for the treatment of UTI due to CTX-M-producing E. coli strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Monomeric and gemini surfactants as antimicrobial agents - influence on environmental and reference strains.

    PubMed

    Koziróg, Anna; Brycki, Bogumił

    2015-01-01

    Quaternary ammonium salts (QAS) belong to surfactant commonly used both, in the household and in different branches of industry, primarily in the process of cleaning and disinfection. They have several positive features inter alia effectively limiting the development of microorganisms on many surfaces. In the present work, two compounds were used as biocides: hexamethylene-1,6-bis-(N,N-dimethyl-N-dodecylammonium bromide) that belongs to the gemini surfactant (GS), and its single analogue - dodecyl(trimethyl)ammonium bromide (DTAB). Two fold dilution method was used to determine the minimum concentration of compounds (MIC) which inhibit the growth of bacteria: Staphylococcus aureus (ATCC 6538 and an environmental strain), Pseudomonas aeruginosa (ATCC 85327 and an environmental strain), and yeast Candida albicans (ATCC 11509 and an environmental strain). The viability of cells in liquid cultures with addition of these substances at ¼ MIC, ½ MIC and MIC concentrations were also determined. The obtained results show that DTAB inhibits the growth of bacteria at the concentration of 0.126-1.010 µM/ml, and gemini surfactant is active at 0.036-0.029 µM/ml. Therefore, GS is active at more than 17-70-fold lower concentrations than its monomeric analogue. Strains isolated from natural environment are less sensitive upon testing biocides than the references strains. Both compounds at the MIC value reduced the number of cells of all strains. The use of too low concentration of biocides can limit the growth of microorganisms, but often only for a short period of time in case of special environmental strains. Later on, they can adapt to adverse environmental conditions and begin to evolve defence mechanisms.

  15. [Mutant prevention concentrations of antibacterial agents to ocular pathogenic bacteria].

    PubMed

    Liang, Qing-Feng; Wang, Zhi-Qun; Li, Ran; Luo, Shi-Yun; Deng, Shi-Jing; Sun, Xu-Guang

    2009-01-01

    To establish a method to measure mutant prevention concentration (MPC) in vitro, and to measure MPC of antibacterial agents for ocular bacteria caused keratitis. It was an experimental study. Forty strains of ocular bacteria were separated from cornea in Beijing Institute of Ophthalmology, which included 8 strains of Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, Pseudomonas aeruginosa and Klebsiella pneumoniae respectively. The minimal inhibitory concentration (MIC) of the levofloxacin (LVF), ofloxacin (OFL), ciprofloxacin (CIP), norfloxacin (NFL), tobramycin (TOB) and chloromycetin (CHL) were determined by agar dilution method from National Committee of Clinical Laboratory Standard (NCCLS). The MPC were measured by accumulate-bacterial methods with bacterial population inoculated more than 1.2 x 10(10) colony forming units per milliliter with Mueller-Hinton broth and tryptic soy agar plate. With the software of SPSS 11.0, the datum such as the range of MIC, MPC, MIC90 and MPC90 were calculated, and the selection index (MPC90/ MI90) and mutant selection window (MSW) were obtained. The MI90 of LVF and TOB (4 mg/L) to Staphylococcus aureus strains were the lowest. CIP showed the lowest MIC90 (0.25 mg/L) to Pseudomonas aeruginosa among six kinds of antibacterial agents. The MIC90 of LVF to Staphylococcus epidermidis (256 mg/L), Streptococcus pneumoniae (1 mg/L) and Klebsiella pneumoniae (0.25 mg/L) were lower than other antibacterial agents. The MPC90, MSW and the MPC90/MIC90 of levofloxacin showed lower values compared with other antibacterial medicines. From all the datum, the MIC90 of CHL was the highest and the activity was the weakest. Although the activity of LVF was higher to every kind of bacteria, CIP had the highest activity antibacterial to Pseudomonas aeruginosa. The capacity of CHL and TOB was weaker than Quinolones for restricting resistant mutants on ocular bacteria. LVF had the strongest capacity for restricting resistant mutants among Quinolones. LVF has better antibacterial effects and stronger capacity for restricting the selection of resistant mutants on ocular bacteria than other antibacterial agents.

  16. Activity of a long-acting echinocandin, CD101, determined using CLSI and EUCAST reference methods, against Candida and Aspergillus spp., including echinocandin- and azole-resistant isolates.

    PubMed

    Pfaller, Michael A; Messer, Shawn A; Rhomberg, Paul R; Jones, Ronald N; Castanheira, Mariana

    2016-10-01

    The objective of this study was to evaluate the in vitro activity of CD101, a novel echinocandin with a long serum elimination half-life, and comparator (anidulafungin and caspofungin) antifungal agents against a collection of Candida and Aspergillus spp. isolates. CD101 and comparator agents were tested against 106 Candida spp. and 67 Aspergillus spp. isolates, including 27 isolates of Candida harbouring fks hotspot mutations and 12 itraconazole non-WT Aspergillus, using CLSI and EUCAST reference susceptibility broth microdilution (BMD) methods. Against WT and fks mutant Candida albicans, Candida glabrata and Candida tropicalis, the activity of CD101 [MIC90 = 0.06, 0.12 and 0.03 mg/L, respectively (CLSI method values)] was comparable to that of anidulafungin (MIC90 = 0.03, 0.12 and 0.03 mg/L, respectively) and caspofungin (MIC90 = 0.12, 0.25 and 0.12 mg/L, respectively). WT Candida krusei isolates were very susceptible to CD101 (MIC = 0.06 mg/L). CD101 activity (MIC50/90 = 1/2 mg/L) was comparable to that of anidulafungin (MIC50/90 = 2/2 mg/L) against Candida parapsilosis. CD101 (MIC mode = 0.06 mg/L for C. glabrata) was 2- to 4-fold more active against fks hotspot mutants than caspofungin (MIC mode = 0.5 mg/L). CD101 was active against Aspergillus fumigatus, Aspergillus terreus, Aspergillus niger and Aspergillus flavus (MEC90 range = ≤0.008-0.03 mg/L). The essential agreement between CLSI and EUCAST methods for CD101 was 92.0%-100.0% among Candida spp. and 95.0%-100.0% among Aspergillus spp. The activity of CD101 is comparable to that of other members of the echinocandin class for the prevention and treatment of serious fungal infections. Similar results for CD101 activity versus Candida and Aspergillus spp. may be obtained with either CLSI or EUCAST BMD methods. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  17. [Estimation of activity of pharmakopeal disinfectants and antiseptics against Gram-negative and Gram-positive bacteria isolated from clinical specimens, drugs and environment].

    PubMed

    Grzybowska, Wanda; Młynarczyk, Grazyna; Młynarczyk, Andrzej; Bocian, Ewa; Luczak, Mirosław; Tyski, Stefan

    2007-01-01

    The MIC of nine different disinfectants and antiseptics were determined for the Gram-negative and Gram-positive bacteria. Strains originated from clinical specimens, drugs and environment. A sensitivity was determined against chlorhexidinum digluconate (Gram-negative: 0,625-80 mg/L, Gram-positive: 0,3-10 mg/L), benzalconium chloride (Gram-negative: 2,5-1280 mg/L, Gram-positive: 1,25-20 mg/L), salicilic acid (Gram-negative and Gram-positive: 400-1600 mg/L), benzoic acid (Gram-negative: 800-1600 mg/L, Gram-positive: 400-1 600 mg/L), boric acid (Gram-negative: 800-12 800 mg/L, Gram-positive: 1 600-6400 mg/L), chloramine B (Gram-negative: 1600-6400 mg/L, Gram-positive:800- 6400 mg/L), jodine (Gram-negative: 200-1600 mg/L, Gram-positive: 200-1600 mg/L), etacridine lactate (Gram-negative: 40 do > 20480 mg/L, Gram-positive: 40-1280 mg/L) and resorcine (Gram-negative: 1600-6400 mg/L, Gram-positive: 800-6400 mg/L). Diversified values of MIC for different strains were obtained, especially in the case of benzalconium chloride, etacridine lactate, chlorhexidinum digluconate, boric acid and iodine. Strains isolated from environment were usually more susceptible to examined compounds than clinical strains. The biggest diversification of sensitivity was observed among strains originated from drugs where besides sensitive appeared strains characterizing by very high MIC values of some substances, eg. boric acid.

  18. Synthesis, Antibacterial Evaluation and QSAR of α-Substituted-N4-Acetamides of Ciprofloxacin and Norfloxacin

    PubMed Central

    Qandil, Amjad M.; Al-Zoubi, Lorca O.; Al-Bakri, Amal G.; Amawi, Haneen A.; Al-Balas, Qosay A.; Alkatheri, Abdulmalik M.; Albekairy, Abdulkareem M.

    2014-01-01

    Twenty six α-substituted N4-acetamide derivatives of ciprofloxacin (CIPRO) and norfloxacin (NOR) were synthesized and assayed for antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Bacillus subtilis. The derivatives were primarily more active against Gram-positive bacteria. The CIPRO derivatives, CD-7 (Ar = 3-chlorophenyl), CD-9 (Ar = 2-pyrimidyl) and CD-10 (α-phenyl, Ar = 2-pyrimidyl), exhibited lower MIC values, 0.4–0.9 μM, against Staphylococcus aureus than CIPRO, while only compound CD-10 exhibited better activity, 0.1 μM, against Bacillus subtilis than CIPRO. In addition, compounds CD-5 (Ar = 2-methoxyphenyl), CD-6 (α-phenyl, Ar = 2-methoxyphenyl), CD-7 (Ar = 3-Chlorophenyl), CD-8 (α-phenyl, Ar = 3-chlorophenyl) and CD-9 (Ar = 2-pyrimidyl) showed MIC values below 1.0 μM against this strain. The NOR derivatives showed lower activity than NOR itself against Staphylococcus aureus, although ND-6 (α-phenyl, Ar = 2-methoxyphenyl) and ND-7 (Ar = 3-chlorophenyl) showed MIC values less than 2 μM. Two NOR derivatives, ND-7 and ND-6, exhibited MIC values of 0.7 and 0.6, respectively, which were comparable to that of NOR against Bacillus subtilis, while compounds ND-8 (α-phenyl, Ar = 3-chlorophenyl) and ND-10 (α-phenyl, Ar = 2-pyrimidyl) exhibited MIC values less than 1.0 μM against the same strain. QSAR revealed that while polarity is the major contributing factor in the potency against Staphylococcus aureus, it is balanced by lipophilicity and electron density around the acetamide group. On the other hand, electron density around the introduced acetamide group is the major determining factor in the activity against Bacillus subtilis, with a lesser and variable effect for lipophilicity. PMID:27025747

  19. [In vitro susceptibilities of causative organisms isolated from patients with primary respiratory tract infections to BRL 25000 (clavulanic acid/amoxicillin)].

    PubMed

    Deguchi, K; Fukayama, S; Nishimura, Y; Yokota, N; Tanaka, S; Oda, S; Matsumoto, Y; Ikegami, R; Sato, K; Fukumoto, T

    1985-10-01

    The in vitro susceptibilities of various causative organisms recently isolated from patients with primary respiratory tract infections to BRL 25000 (a formulation of amoxicillin, 2 parts, and potassium clavulanate, 1 part), amoxicillin (AMPC), cefaclor (CCL), cephalexin (CEX), cefadroxil (CDX) and cefroxadine (CXD) were determined. beta-Lactamase producing strains were detected by nitrocefin chromogenic method and PCG acidometric method. The frequency of isolation of beta-lactamase production in strains of S. aureus, H. influenzae, B. catarrhalis and K. pneumoniae was 92%, 18%, 36% and 98%, respectively. Against S. aureus strains with MIC values to AMPC of less than or equal to 100 micrograms/ml and CEX of less than or equal to 25 micrograms/ml BRL 25000 showed MIC values in the range 0.39-6.25 micrograms/ml with inocula of 10(6) CFU/ml, while BRL 25000 required 12.5-100 micrograms/ml of concentrations for inhibition of the strains with MIC values to AMPC of greater than 100 micrograms/ml and CEX of greater than or equal to 25 micrograms/ml. Against S. pyogenes and S. pneumoniae BRL 25000 showed MIC values in the range less than 0.024-0.10 micrograms/ml with inocula of 10(6) CFU/ml, which is much more active than CCL, CEX, CDX and CXD and slight less active than AMPC. Against H. influenzae and B. catarrhalis BRL 25000 showed MIC values in the range 0.20-6.25 micrograms/ml with inocula of 10(6) CFU/ml, which showed most potent activity among the agents tested. The activity of BRL 25000 against K. pneumoniae was approximately equal to that of CCL and superior to that of AMPC, CEX, CDX and CXD.

  20. Pharmacodynamics of Ceftolozane plus Tazobactam Studied in an In Vitro Pharmacokinetic Model of Infection.

    PubMed

    MacGowan, Alasdair P; Noel, Alan R; Tomaselli, Sharon G; Nicholls, Donna; Bowker, Karen E

    2016-01-01

    Ceftolozane plus tazobactam is an antipseudomonal cephalosporin combined with tazobactam, an established beta-lactamase inhibitor, and has in vitro potency against a range of clinically important β-lactamase-producing bacteria, including most extended-spectrum-β-lactamase (ESBL)-positive Enterobacteriaceae. The pharmacodynamics of β-lactam-β-lactamase inhibitor combinations presents a number of theoretical and practical challenges, including modeling different half-lives of the compounds. In this study, we studied the pharmacodynamics of ceftolozane plus tazobactam against Escherichia coli and Pseudomonas aeruginosa using an in vitro pharmacokinetic model of infection. Five strains of E. coli, including three clinical strains plus two CTX-M-15 (one high and one moderate) producers, and five strains of P. aeruginosa, including two with OprD overexpression and AmpC β-lactamases, were employed. Ceftolozane MICs (E. coli, 0.12 to 0.25 mg/liter, and P. aeruginosa, 0.38 to 8 mg/liter) were determined in the presence of 4 mg/liter tazobactam. Dose ranging of ceftolozane (percentage of time in which the free-drug concentration exceeds the MIC [fT>MIC], 0 to 100%) plus tazobactam (human pharmacokinetics) was simulated every 8 hours, with half-lives (t1/2) of 2.5 and 1 h, respectively. Ceftolozane and tazobactam concentrations were confirmed by high-performance liquid chromatography (HPLC). The ceftolozane-plus-tazobactam fT>MIC values at 24 h for a static effect and a 1-log and 2-log drop in initial inoculum for E. coli were 27.8% ± 5.6%, 33.0% ± 5.6%, and 39.6% ± 8.5%, respectively. CTX-M-15 production did not affect the 24-h fT>MIC for E. coli strains. The ceftolozane-plus-tazobactam fT>MIC values for a 24-h static effect and a 1-log and 2-log drop for P. aeruginosa were 24.9% ± 3.0%, 26.6% ± 3.9%, and 31.2% ± 3.6%. Despite a wide range of absolute MICs, the killing remained predictable as long as the MICs were normalized to the corresponding fT>MIC. Emergence of resistance on 4× MIC plates and 8× MIC plates occurred maximally at an fT>MIC of 10 to 30% and increased as time of exposure increased. The fT>MIC for a static effect for ceftolozane plus tazobactam is less than that observed with other cephalosporins against E. coli and P. aeruginosa and is more similar to the fT>MIC reported for carbapenems. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. Relationship between the clinical efficacy and AUC/MIC of intravenous ciprofloxacin in Japanese patients with intraabdominal infections.

    PubMed

    Ohki, Emiko; Yamagishi, Yuka; Mikamo, Hiroshige

    2013-10-01

    The efficacy of fluoroquinolones (FQs) correlates with the pharmacokinetic/pharmacodynamic (PK-PD) parameter, AUC/MIC. To our knowledge, however, no prospective studies have reported the relationship between FQ efficacy and PK-PD parameters in intraabdominal infection; therefore, we prospectively investigated the relationship between the efficacy of intravenous ciprofloxacin (CPFX IV) and PK-PD parameters. The study included 16 patients diagnosed with peritonitis between 2006 and 2008: 14 patients infected with a single organism and 2 patients infected with more than one organism. Each patient was treated with CPFX IV (300 mg twice daily). The response rate was 56% (9 responders and 7 non-responders). Non-responders were infected with Escherichia coli, Pseudomonas aeruginosa, and Bacteroides fragilis (6 patients were infected with a single organism and 1 with more than one organism). Plasma drug concentrations were measured 1 h and 2 or 4 h after administration of CPFX IV. AUC for 24 h (AUC(0-24))/MIC values was calculated. The range of AUC(0-24)/MIC values in responders [95.3-3628.4 (geometric mean, 521.6)] was significantly different from that in non-responders [7.0-45.2 (geometric mean, 16.5)] (p = 0.001). The target AUC/MIC value of CPFX IV would be considered to be 45-95 in patients with peritonitis.

  2. Determination of minimum inhibitory concentrations of itraconazole, terbinafine and ketoconazole against dermatophyte species by broth microdilution method.

    PubMed

    Bhatia, V K; Sharma, P C

    2015-01-01

    Various antifungal agents both topical and systemic have been introduced into clinical practice for effectively treating dermatophytic conditions. Dermatophytosis is the infection of keratinised tissues caused by fungal species of genera Trichophyton, Epidermophyton and Microsporum, commonly known as dermatophytes affecting 20-25% of the world's population. The present study aims at determining the susceptibility patterns of dermatophyte species recovered from superficial mycoses of human patients in Himachal Pradesh to antifungal agents; itraconazole, terbinafine and ketoconazole. The study also aims at determining the minimum inhibitory concentrations (MICs) of these agents following the recommended protocol of Clinical and Laboratory Standards Institute (CLSI) (M38-A2). A total of 53 isolates of dermatophytes (T. mentagrophyte-34 in no., T. rubrum-18 and M. gypseum-1) recovered from the superficial mycoses were examined. Broth microdilution method M38-A2 approved protocol of CLSI (2008) for filamentous fungi was followed for determining the susceptibility of dermatophyte species. T. mentagrophyte isolates were found more susceptible to both itraconazole and ketoconazole as compared to terbinafine (MIC50: 0.125 µg/ml for itraconazole, 0.0625 µg/ml for ketoconazole and 0.5 µg/ml for terbinafine). Three isolates of T. mentagrophytes (VBS-5, VBSo-3 and VBSo-73) and one isolate of T. rubrum (VBPo-9) had higher MIC values of itraconazole (1 µg/ml). Similarly, the higher MIC values of ketoconazole were observed in case of only three isolates of T. mentagrophyte (VBSo-30 = 2 µg/ml; VBSo-44, VBM-2 = 1 µg/ml). The comparative analysis of the three antifungal drugs based on t-test revealed that 'itraconazole and terbinafine' and 'terbinafine and ketoconazole' were found independent based on the P < 0.005 in case of T. mentagrophyte isolates. In case of T. rubrum, the similarity existed between MIC values of 'itraconazole and ketoconazole' and 'terbinafine and ketoconazole'. The MIC values observed in the present study based on standard protocol M38-A2 of CLSI 2008 might serve as reference for further studies covering large number of isolates from different geographic regions of the state. Such studies might reflect on the acquisition of drug resistance among isolates of dermatophyte species based on MIC values.

  3. [Emerging pathogen: Candida kefyr (Kluvyeromyces marxianus)].

    PubMed

    Çuhadar, Tuğba; Kalkancı, Ayşe

    2017-10-01

    In the central microbiology laboratory of Gazi University Hospital Candida kefyr was isolated from different clinical samples as 5.3% in 2016 and in 2017 this rate increased to 9.3% which was nearly two-fold and this has drawn our attention. The aim of this study was to evaluate the special characteristics, antifungal susceptibility and virulence properties of C.keyfr species. Germ tube, corn meal-tween 80 agar morphology and carbohydrate assimilation profiles on ID32C yeast identification system were used for the diagnosis of Candida species. In this study, DNA sequencing was performed using ITS1 and ITS4 primers amplifying fungal gene between 5.8S and 18S regions of rRNA. Antifungal susceptibility was performed using M27A microdilution method recommended by Clinical and Laboratory Standards Institute (CLSI). Minimum inhibitory concentration (MIC) values for amphotericin B, fluconazole, voriconazole and itraconazole were determined. MIC distribution, MIC50 and MIC90 values and geometric mean (GM) were detected. The existence of virulence factors caseinase, secreted aspartyl proteinase, esterase and phospholipase were investigated in vitro. A total of 865 Candida species were isolated from different clinical samples in the central microbiology laboratory of Gazi University Hospital in 2016. Among them, 46 (5.3%) were C.kefyr. In the first four months of 2017, 30 (9.3%) C.kefyr were identified among 320 Candida isolates. Ten isolates which have shown atypical morphology on corn meal agar were selected. Among these 10 isolates, nine of them were identified as C.kefyr by using ID32C system and DNA sequencing method. Amphotericin B MIC value was 2 µg/ml for one isolate, and fluconazole MIC value was 8 µg/ml for another isolate among 46 isolates. Among the 30 isolates of the year 2017, one of them presented MIC value for fluconazole as 8 µg/ml. No marked antifungal resistance was detected in our isolate group. Caseinase was positive in one C.kefyr isolate, and phospholipase were positive in eight of nine isolates. As a result, the reason of increase in the incidence of this Candida species, which does not show significant resistance and presents mostly phospholipase activity as a virulence factor, should be investigated in more detail.

  4. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains.

    PubMed

    Fratini, Filippo; Mancini, Simone; Turchi, Barbara; Friscia, Elisabetta; Pistelli, Luisa; Giusti, Giulia; Cerri, Domenico

    2017-01-01

    Origanum vulgare (oregano) and Leptospermum scoparium (manuka) were traditionally employed as natural remedies for infected wounds and skin injuries where Staphylococcus aureus is mainly involved. The first aim of this study was to investigate oregano and manuka essential oils (EOs) chemical compositions and evaluate their antibacterial activity (MIC, Minimum Inhibitory Concentration) against fourteen S. aureus wild strains. The second aim was to evaluate the antibacterial activities of oregano and manuka EOs mixed in different combination (FIC, Fractional Inhibitory Concentration) with an improved chequerboard technique. This allowed to avoid the usual uncertainty in the determination of MIC and FIC values and to obtain a more precise interpretation of FIC indexes (FICIs). Moreover, FICIs were discussed on the basis of a novel interpretation method to evaluate the synergistic/antagonistic effect of EOs mixtures. The most representative compounds in oregano EO were Carvacrol (65.93%), p-Cymene (9.33%) and γ-Terpinene (5.25%), while in manuka EO were Leptospermone (31.65%), cis-Calamenene (15.93%) and Flavesone (6.92%). EOs presented MIC values ranging from 1:2048 to 1:4096 v/v and FIC values ranging from 0.125 to 1. According to our interpretation, a synergistic effect (34.68%), a commutative effect (15.32%) and an indifferent effect (50.00%) and no antagonistic effect were observed. Conversely, according to two previously proposed FICI interpretation models, 1.80% synergistic effect could be observed and, respectively, 98.20% indifferent effect or 48.20% additive effect and 50.00% indifferent effect. As practical results, oregano and manuka EOs may be an effective alternative to chemotherapic drugs in staphylococcal infections and useful tools to enhance food security. Copyright © 2016 Elsevier GmbH. All rights reserved.

  5. Carvacrol Codrugs: A New Approach in the Antimicrobial Plan

    PubMed Central

    Fornasari, Erika; Di Stefano, Antonio; Cerasa, Laura Serafina; Marinelli, Lisa; Turkez, Hasan; Di Campli, Emanuela; Di Bartolomeo, Soraya; Robuffo, Iole; Cellini, Luigina

    2015-01-01

    Objective The increasing prevalence of antibiotic-resistant bacterial infections led to identify alternative strategies for a novel therapeutic approach. In this study, we synthesized ten carvacrol codrugs – obtained linking the carvacrol hydroxyl group to the carboxyl moiety of sulphur-containing amino acids via an ester bond – to develop novel compounds with improved antimicrobial and antibiofilm activities and reduced toxicity respect to carvacrol alone. Method All carvacrol codrugs were screened against a representative panel of Gram positive (S. aureus and S. epidermidis), Gram negative (E. coli and P. aeruginosa) bacterial strains and C. albicans, using broth microdilution assays. Findings Results showed that carvacrol codrug 4 possesses the most notable enhancement in the anti-bacterial activity displaying MIC and MBC values equal to 2.5 mg/mL for all bacterial strains, except for P. aeruginosa ATCC 9027 (MIC and MBC values equal to 5 mg/mL and 10 mg/mL, respectively). All carvacrol codrugs 1-10 revealed good antifungal activity against C. albicans ATCC 10231. The cytotoxicity assay showed that the novel carvacrol codrugs did not produce human blood hemolysis at their MIC values except for codrugs 8 and 9. In particular, deepened experiments performed on carvacrol codrug 4 showed an interesting antimicrobial effect on the mature biofilm produced by E. coli ATCC 8739, respect to the carvacrol alone. The antimicrobial effects of carvacrol codrug 4 were also analyzed by TEM evidencing morphological modifications in S. aureus, E. coli, and C. albicans. Conclusion The current study presents an insight into the use of codrug strategy for developing carvacrol derivatives with antibacterial and antibiofilm potentials, and reduced cytotoxicity. PMID:25859852

  6. Antimicrobial susceptibilities and molecular typing of neisseria gonorrhoeae isolates at a medical centre in Taiwan, 2001-2013 with an emphasis on high rate of azithromycin resistance among the isolates.

    PubMed

    Liu, Yen-Hung; Huang, Yu-Tsung; Liao, Chun-Hsing; Hsueh, Po-Ren

    2018-05-01

    A high prevalence of gonococcal resistance to various antimicrobials and Neisseria gonorrhoeae isolates exhibiting resistance to extended-spectrum cephalosporins have been reported in the past few decades. A total of 226 N. gonorrhoeae isolates obtained from the National Taiwan University Hospital from 2001 to 2013 were evaluated. The minimum inhibitory concentrations (MICs) of the isolates to antimicrobials were determined by the agar dilution method and interpreted using the 2017 clinical breakpoints or epidemiological cut-off values recommended by the Clinical and Laboratory Standards Institute (CLSI) and European Committee on Antimicrobial Susceptibility Testing (EUCAST). The genetic relatedness of these isolates was determined by multilocus sequence typing. None of the isolates was resistant to ceftriaxone and cefotaxime, and the resistance rates to cefixime, spectinomycin, cefpodoxime, ciprofloxacin, and penicillin were 0.4%, 0.4%, 13.3%, 91.6%, and 87.6%, respectively. The rate of isolates resistant to azithromycin was 14.6% (EUCAST criteria), which is higher than in previous surveillance studies. A total of 57 sequence types (ST) were identified, and ST1901, ST7365, and ST1927 prevailed. Isolates of ST8143 emerged after 2011. ST1901 isolates had relatively higher MIC values for ceftriaxone and azithromycin than those of the other STs. In conclusion, ceftriaxone remains an effective drug of choice for gonorrhoeal management in Taiwan. High rates of azithromycin resistance among N. gonorrhoeae isolates were found. The circulating ST1901 strains with high MIC values for ceftriaxone and azithromycin and the emerging ST8143 strains were alarming. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  7. Traditional medicine in Sakarya province (Turkey) and antimicrobial activities of selected species.

    PubMed

    Uzun, Ergin; Sariyar, Günay; Adsersen, Anne; Karakoc, Berna; Otük, Gülten; Oktayoglu, Ercan; Pirildar, Sevda

    2004-12-01

    Traditional medicine in North-West of Turkey (Sakarya province) were studied during a 2 months field study by interviewing local informants from several villages. Plant species used to treat infections were tested for antimicrobial activity. Information was collected for 46 plant species from 30 families and for 5 animal species. Twenty four of the plant species were cultivated. Most used families were Asteraceae, Cucurbitaceae, Lamiaceae and Rosaceae and the most used plants were Artemisia absinthium, Equisetum telmateia, Lavandula stoechas, Melissa officinalis, Tussilago farfara and Urtica dioica. A total of 139 medicinal uses were obtained. Plants are used mainly for infectious diseases (18%), for neurological and psychological disorders (13.7%), cardiovascular disorders (13%), skin disorders (12.2%) and respiratory disorders (10.1%). Extracts were tested in vitro for antimicrobial activity against Staphylococcus aureus ATCC 65538, Staphylococcus epidermidis ATCC 12228, Escherichia coli ATCC 8739, Klebsiella pneumonia ATCC 4352, Pseudomonas aeruginosa ATCC 1539, Salmonella typhi, Shigella flexneri, Proteus mirabilis and Candida albicans ATCC 10231, using microbroth dilution technique according to National Committee for Clinical Laboratory Standards (NCCLS). This research showed that Arum maculatum, Datura stramonium, Geranium asphodeloides and Equisetum telmateia petroleum ether extracts had MIC values of 39.1 microg/ml, 78.1 microg/ml, 78.1 microg/ml and 39.1 microg/ml, respectively against Staphylococcus epidermidis. Datura stramonium petroleum ether extract had a MIC value of 39.1 microg/ml against Escherichia coli and Trachystemon orientalis ethanol extract had a MIC value of 39.1 microg/ml against Escherichia coli. The antimicrobial activity of Arum maculatum, Equisetum telmateia, Geranium asphodeloides, Plantago intermedia, Senecio vulgaris and Trachystemon orientalis has been reported here for the first time.

  8. [Evaluation for anaerobic culture system: Anoxomat Mart II].

    PubMed

    Kikuchi, Yuji; Sasaki, Hiromi; Furuhata, Yukie; Tazawa, Yoko; Horiuchi, Hajime; Okada, Jun

    2007-01-01

    Anoxomat Mart II (Mart Microbiology BV, Lichtenvooorde, Netherlands, Central Scientific Commerce Inc., Tokyo, Japan) is an anaerobic jar apparatus which uses a vacuum pump in combination with catalyst as gas replacement procedure to remove all traces of oxygen. As we had a chance to use Anoxomat Mart II, we compared it with other two anaerobic culture methods; namely AnaeroPack anaero (Mitsubishi Gas Chemical Co., Tokyo, Japan) which employs anaerobic jar method, and Concept400 (RUSKINN TECHNOLOGY LTD, England; Central Scientific Commerce INc., Tokyo, Japan) which uses anaerobic chamber method. We used 10 different species of anaerobic bacteria obtained from ATCC. One strain each of 10 species was cultured and examined for measurement of the sensitibity of an anaerobic indicator, th number of bacteria after 48 hour culture, the diameter of colonies, and MIC value. As a result, the time to reach the anaerobic condition was around 30 minutes by the Mart II against around 60 minutes by the AnaeroPack anaero. There was no difference concerning the number of bacteria after 48 hour culture among three methods. But anaerobic bacteria cultured by Mart II tended to make bigger colonies compared to other two methods in the 5 strains out of 9, except for one strain in which the diameter of colonies could not be measured. On the other hand, the comparison of MIC value showed good correlation in 11 antibiotics out of 12 among three methods. The MIC value of 11 antibiotics fitted within 1-fold difference, and 2-fold difference was observed in only one antibiotic. Mart II is so small that it does cheep consumables. From these reasons, we concluded that Mart II can be one of the useful anerobic culture methods.

  9. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae).

    PubMed

    Awouafack, Maurice D; McGaw, Lyndy J; Gottfried, Sebastian; Mbouangouere, Roukayatou; Tane, Pierre; Spiteller, Michael; Eloff, Jacobus N

    2013-10-29

    The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. The isolated compounds generally had a much lower activity than expected based on the activity of the fractions from which they were isolated. This may be the result of synergism between different compounds in the complex extracts or fractions. The results support the traditional use of E. robustum to treat infections. The crude extract had a good activity and low preparation cost, and may be useful in topical applications to combat microbial infections.

  10. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method.

    PubMed

    Leong, Cheryl; Buttafuoco, Antonino; Glatz, Martin; Bosshard, Philipp P

    2017-06-01

    Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC 90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. Copyright © 2017 American Society for Microbiology.

  11. Antifungal Susceptibility Testing of Malassezia spp. with an Optimized Colorimetric Broth Microdilution Method

    PubMed Central

    Leong, Cheryl; Buttafuoco, Antonino

    2017-01-01

    ABSTRACT Malassezia is a genus of lipid-dependent yeasts. It is associated with common skin diseases such as pityriasis versicolor and atopic dermatitis and can cause systemic infections in immunocompromised individuals. Owing to the slow growth and lipid requirements of these fastidious yeasts, convenient and reliable antifungal drug susceptibility testing assays for Malassezia spp. are not widely available. Therefore, we optimized a broth microdilution assay for the testing of Malassezia that is based on the CLSI and EUCAST assays for Candida and other yeasts. The addition of ingredients such as lipids and esculin provided a broth medium formulation that enabled the growth of all Malassezia spp. and could be read, with the colorimetric indicator resazurin, by visual and fluorescence readings. We tested the susceptibility of 52 strains of 13 Malassezia species to 11 commonly used antifungals. MIC values determined by visual readings were in good agreement with MIC values determined by fluorescence readings. The lowest MICs were found for the azoles itraconazole, posaconazole, and voriconazole, with MIC90 values of 0.03 to 1.0 μg/ml, 0.06 to 0.5 μg/ml, and 0.03 to 2.0 μg/ml, respectively. All Malassezia spp. were resistant to echinocandins and griseofulvin. Some Malassezia spp. also showed high MIC values for ketoconazole, which is the most widely recommended topical antifungal to treat Malassezia skin infections. In summary, our assay enables the fast and reliable susceptibility testing of Malassezia spp. with a large panel of different antifungals. PMID:28381607

  12. Resistance to echinocandin-class antifungal drugs

    PubMed Central

    Perlin, David S.

    2009-01-01

    Invasive fungal infections cause morbidity and mortality in severely ill patients, and limited drug classes restrict treatment choices. The echinocandins drugs are the first new class of antifungal compounds that target the fungal cell wall by blocking β-1,3-D-glucan synthase. Elevated MIC values with occasional treatment failure have been reported for strains of Candida. Yet, an uncertain correlation exists between clinical failure and elevated MIC values for the echinocandin drugs. Fungi display several adaptive physiological mechanisms that result in elevated MIC values. However, resistance to echinocandin drugs among clinical isolates is associated with amino acid substitutions in two “hot-spot” regions of Fks1, the major subunit of glucan synthase. The mutations, yielding highly elevated MIC values, are genetically dominant and confer cross-resistance to all echinocandin drugs. Prominent Fks1 mutations decrease the sensitivity of glucan synthase for drug by one thousand-fold or more, and strains harboring such mutations may require a concomitant increase in drug to reduce fungal organ burdens in animal infection models. The Fks1-mediated resistance mechanism is conserved in a wide variety of Candida spp. and can account for intrinsic reduced susceptibility of certain species. Fks1 mutations confer resistance in both yeasts and moulds suggesting that this mechanism is pervasive in the fungal kingdom. PMID:17569573

  13. Structure-activity modelling of essential oils, their components, and key molecular parameters and descriptors.

    PubMed

    Owen, Lucy; Laird, Katie; Wilson, Philippe B

    2018-04-01

    Many essential oil components are known to possess broad spectrum antimicrobial activity, including against antibiotic resistant bacteria. These compounds may be a useful source of new and novel antimicrobials. However, there is limited research on the structure-activity relationship (SAR) of essential oil compounds, which is important for target identification and lead optimization. This study aimed to elucidate SARs of essential oil components from experimental and literature sources. Minimum Inhibitory Concentrations (MICs) of essential oil components were determined against Escherichia coli and Staphylococcus aureus using a microdilution method and then compared to those in published in literature. Of 12 essential oil components tested, carvacrol and cuminaldehyde were most potent with MICs of 1.98 and 2.10 mM, respectively. The activity of 21 compounds obtained from the literature, MICs ranged from 0.004 mM for limonene to 36.18 mM for α-terpineol. A 3D qualitative SAR model was generated from MICs using FORGE software by consideration of electrostatic and steric parameters. An r 2 value of 0.807 for training and cross-validation sets was achieved with the model developed. Ligand efficiency was found to correlate well to the observed activity (r 2  = 0.792), while strongly negative electrostatic regions were present in potent molecules. These descriptors may be useful for target identification of essential oils or their major components in antimicrobial/drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan.

    PubMed

    Miyashita, Naoyuki; Kobayashi, Intetsu; Higa, Futoshi; Aoki, Yosuke; Kikuchi, Toshiaki; Seki, Masafumi; Tateda, Kazuhiro; Maki, Nobuko; Uchino, Kazuhiro; Ogasawara, Kazuhiko; Kurachi, Satoe; Ishikawa, Tatsuya; Ishimura, Yoshito; Kanesaka, Izumo; Kiyota, Hiroshi; Watanabe, Akira

    2018-05-01

    The activities of various antibiotics against 58 clinical isolates of Legionella species were evaluated using two methods, extracellular activity (minimum inhibitory concentration [MIC]) and intracellular activity. Susceptibility testing was performed using BSYEα agar. The minimum extracellular concentration inhibiting intracellular multiplication (MIEC) was determined using a human monocyte-derived cell line, THP-1. The most potent drugs in terms of MICs against clinical isolates were levofloxacin, garenoxacin, and rifampicin with MIC 90 values of 0.015 μg/ml. The activities of ciprofloxacin, pazufloxacin, moxifloxacin, clarithromycin, and azithromycin were slightly higher than those of levofloxacin, garenoxacin, and rifampicin with an MIC 90 of 0.03-0.06 μg/ml. Minocycline showed the highest activity, with an MIC 90 of 1 μg/ml. No resistance against the antibiotics tested was detected. No difference was detected in the MIC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The MIECs of ciprofloxacin, pazufloxacin, levofloxacin, moxifloxacin, garenoxacin, clarithromycin, and azithromycin were almost the same as their MICs, with MIEC 90 values of 0.015-0.06 μg/ml, although the MIEC of minocycline was relatively lower and that of rifampicin was higher than their respective MICs. No difference was detected in the MIEC distributions of the antibiotics tested between L. pneumophila serogroup 1 and L. pneumophila non-serogroup 1. The ratios of MIEC:MIC for rifampicin (8) and pazufloxacin (2) were higher than those for levofloxacin (1), ciprofloxacin (1), moxifloxacin (1), garenoxacin (1), clarithromycin (1), and azithromycin (1). Our study showed that quinolones and macrolides had potent antimicrobial activity against both extracellular and intracellular Legionella species. The present data suggested the possible efficacy of these drugs in treatment of Legionella infections. Copyright © 2018 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  15. Antipneumococcal activity of ceftobiprole, a novel broad-spectrum cephalosporin.

    PubMed

    Kosowska, Klaudia; Hoellman, Dianne B; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C

    2005-05-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC(50) and MIC(90) values (microg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1x and 2x the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2x the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2x the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole.

  16. Antipneumococcal Activity of Ceftobiprole, a Novel Broad-Spectrum Cephalosporin

    PubMed Central

    Kosowska, Klaudia; Hoellman, Dianne B.; Lin, Gengrong; Clark, Catherine; Credito, Kim; McGhee, Pamela; Dewasse, Bonifacio; Bozdogan, Bülent; Shapiro, Stuart; Appelbaum, Peter C.

    2005-01-01

    Ceftobiprole (previously known as BAL9141), an anti-methicillin-resistant Staphylococcus aureus cephalosporin, was very highly active against a panel of 299 drug-susceptible and -resistant pneumococci, with MIC50 and MIC90 values (μg/ml) of 0.016 and 0.016 (penicillin susceptible), 0.06 and 0.5 (penicillin intermediate), and 0.5 and 1.0 (penicillin resistant). Ceftobiprole, imipenem, and ertapenem had lower MICs against all pneumococcal strains than amoxicillin, cefepime, ceftriaxone, cefotaxime, cefuroxime, or cefdinir. Macrolide and penicillin G MICs generally varied in parallel, whereas fluoroquinolone MICs did not correlate with penicillin or macrolide susceptibility or resistance. All strains were susceptible to linezolid, quinupristin-dalfopristin, daptomycin, vancomycin, and teicoplanin. Time-kill analyses showed that at 1× and 2× the MIC, ceftobiprole was bactericidal against 10/12 and 11/12 strains, respectively. Levofloxacin, moxifloxacin, vancomycin, and teicoplanin were each bactericidal against 10 to 12 strains at 2× the MIC. Azithromycin and clarithromycin were slowly bactericidal, and telithromycin was bactericidal against only 5/12 strains at 2× the MIC. Linezolid was mainly bacteriostatic, whereas quinupristin-dalfopristin and daptomycin showed marked killing at early time periods. Prolonged serial passage in the presence of subinhibitory concentrations of ceftobiprole failed to yield mutants with high MICs towards this cephalosporin, and single-passage selection showed very low frequencies of spontaneous mutants with breakthrough MICs towards ceftobiprole. PMID:15855516

  17. Anti-Candida activity of geraniol involves disruption of cell membrane integrity and function.

    PubMed

    Sharma, Y; Khan, L A; Manzoor, N

    2016-09-01

    Candidiasis is a major problem in immunocompromised patients. Candida, an opportunistic fungal pathogen, is a major health concern today as conventional drugs are highly toxic with undesirable side effects. Their fungistatic nature is responsible for drug resistance in continuously evolving strains. Geraniol, an acyclic monoterpene alcohol, is a component of several plant essential oils. In the present study, an attempt has been made to understand the antifungal activity of geraniol at the cell membrane level in three Candida species. With an MIC of 30-130μg/mL, this natural compound was fungicidal at concentrations 2×MIC. There was complete suppression of fungal growth at MIC values (growth curves) and encouragingly geraniol is non-toxic even at the concentrations approaching 5×MIC (hemolysis assay). Exposed cells showed altered morphology, wherein the cells appeared either broken or shrivelled up (SEM studies). Significant reduction was seen in ergosterol levels at sub-MIC and glucose-induced H(+) efflux at concentrations>MIC values. Our results suggest that geraniol disrupts cell membrane integrity by interfering with ergosterol biosynthesis and inhibiting the very crucial PM-ATPase. It may hence be used in the management and treatment of both superficial and invasive candidiasis but further studies are required to elaborate its mode of action. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Interpretive criteria of antimicrobial disk susceptibility tests with flomoxef.

    PubMed

    Grimm, H

    1991-01-01

    320 recently isolated pathogens, 20 strains from each of 16 species, were investigated using Mueller-Hinton agar and DIN as well as NCCLS standards. The geometric mean of the agar dilution MICs of flomoxef were 0.44 mg/l for Staphylococcus aureus, 0.05 mg/l (Klebsiella oxytoca) to 12.6 mg/l (Enterobacter spp.) for enterobacteriaceae, 33.1 mg/l for Acinetobacter anitratus, 64 mg/l for Enterococcus faecalis, and more than 256 mg/l for Pseudomonas aeruginosa. For disk susceptibility testing of flomoxef a 30 micrograms disk loading and the following interpretation of inhibition zones using the DIN method were recommended: resistant-up to 22 mm (corresponding to MICs of 8 mg/l or more), moderately susceptible-23 to 29 mm (corresponding to MICs from 1 to 4 mg/l), and susceptible-30 mm or more (corresponding to MICs of 0.5 mg/l or less). The respective values for the NCCLS method using the American high MIC breakpoints are: resistant--up to 14 mm (corresponding to MICs of 32 mg/l or more), moderately susceptible--15 to 17 mm (corresponding to MICs of 16 mg/l), and susceptible--18 mm or more (corresponding to MICs of 8 mg/l or less).

  19. Antibacterial activity of BMS-180680, a new catechol-containing monobactam.

    PubMed Central

    Fung-Tomc, J; Bush, K; Minassian, B; Kolek, B; Flamm, R; Gradelski, E; Bonner, D

    1997-01-01

    The in vitro activities of a new catechol-containing monobactam, BMS-180680 (SQ 84,100), were compared to those of aztreonam, ceftazidime, imipenem, piperacillin-tazobactam, ciprofloxacin, amikacin, and trimethoprim-sulfamethoxazole. BMS-180680 was often the most active compound against many species of the family Enterobacteriaceae, with MICs at which 90% of the isolates were inhibited (MIC90s) of < or = 0.5 microg/ml for Escherichia coli, Klebsiella spp., Citrobacter diversus, Enterobacter aerogenes, Serratia marcescens, Proteus spp., and Providencia spp. BMS-180680 had moderate activities (MIC90s of 2 to 8 microg/ml) against Citrobacter freundii, Morganella morganii, Shigella spp., and non-E. aerogenes Enterobacter spp. BMS-180680 was the only antibiotic evaluated that was active against >90% of the Pseudomonas aeruginosa (MIC90, 0.25 microg/ml), Burkholderia cepacia, and Stenotrophomonas maltophilia (MIC90s, 1 microg/ml) strains tested. BMS-180680 was inactive against most strains of Pseudomonas fluorescens, Pseudomonas stutzeri, Pseudomonas diminuta, and Burkholderia pickettii. BMS-180680 was moderately active (MIC90s of 4 to 8 microg/ml) against Alcaligenes spp. and Acinetobacter lwoffii and less active (MIC90, 16 microg/ml) against Acinetobacter calcoaceticus-Acinetobacter baumanii complex. BMS-180680 lacked activity against gram-positive bacteria and anaerobic bacteria. Both tonB and cir fiu double mutants of E. coli had greatly decreased susceptibility to BMS-180680. Of the TEM, PSE, and chromosomal-encoded beta-lactamases tested, only the K1 enzyme hydrolyzed BMS-180680 to any measurable extent. Like aztreonam, BMS-180680 bound preferentially to penicillin-binding protein 3. The MICs of BMS-180680 were not influenced by the presence of hematin or 5% sheep blood in the test medium or with incubation in an atmosphere containing 5% CO2. BMS-180680 MICs obtained under strict anaerobic conditions were significantly higher than those obtained in ambient air. PMID:9145861

  20. Antifungal activity of geraniol and citronellol, two monoterpenes alcohols, against Trichophyton rubrum involves inhibition of ergosterol biosynthesis.

    PubMed

    Pereira, Fillipe de Oliveira; Mendes, Juliana Moura; Lima, Igara Oliveira; Mota, Kelly Samara de Lira; Oliveira, Wylly Araújo de; Lima, Edeltrudes de Oliveira

    2015-02-01

    Trichophyton rubrum is the most common fungus causing chronic dermatophytosis in humans. Antifungal activity of promising agents is of great interest. Geraniol and citronellol are monoterpenes with antimicrobial properties. This study aimed to investigate the inhibitory effects and possible mechanism of antifungal activity of geraniol and citronellol against strains of T. rubrum. The minimum inhibitory concentration (MIC) of each drug against 14 strains was determined by broth microdilution. The effects of the drugs on dry mycelial weight, conidial germination, infectivity on human nail fragments, and morphogenesis of T. rubrum were analyzed. The effects on the cell wall (test with sorbitol) and cell membrane (release of intracellular material and ergosterol biosynthesis) were investigated. MIC values of geraniol ranged between 16 and 256 µg/mL while citronellol showed MIC values from 8 to 1024 µg/mL. The drugs (MIC and 2 × MIC) inhibited the mycelial growth, conidia germination, and fungal growth on nail fragments. The drugs (half of MIC) induced the formation of wide, short, and crooked hyphae in T. rubrum morphology. With sorbitol, geraniol MIC was increased by 64-fold and citronellol by 32-fold. The drugs caused leakage of intracellular material and inhibited ergosterol biosynthesis. The results suggest that the drugs damage cell wall and cell membrane of T. rubrum through a mechanism that seems to involve the inhibition of the ergosterol biosynthesis. This study confirms that geraniol and citronellol can be regarded as potential drugs for controlling T. rubrum growth, with great potential against agents of dermatophytosis.

  1. Activities of potential therapeutic and prophylactic antibiotics against blood culture isolates of viridans group streptococci from neutropenic patients receiving ciprofloxacin.

    PubMed Central

    McWhinney, P H; Patel, S; Whiley, R A; Hardie, J M; Gillespie, S H; Kibbler, C C

    1993-01-01

    All 47 sequential blood culture isolates of viridans group streptococci obtained from febrile neutropenic patients receiving quinolone prophylaxis were susceptible to vancomycin, teicoplanin, and imipenem. Resistance to benzylpenicillin (MIC for 50% of isolates [MIC50], 0.125 microgram/ml) and ceftazidime (MIC50, 4 micrograms/ml) was common. Most isolates were susceptible to amoxicillin, co-amoxiclav (amoxicillin-clavulanic acid at a 2:1 ratio by weight), azlocillin, clarithromycin, and erythromycin, with azithromycin showing comparable activity. The MIC90 of sparfloxacin was 1 microgram/ml; those for ciprofloxacin and ofloxacin were > 16 and 16 micrograms/ml, respectively. PMID:8285642

  2. In Vitro Antimicrobial Susceptibility Testing of Helicobacter felis, H. bizzozeronii, and H. salomonis

    PubMed Central

    Van den Bulck, K.; Decostere, A.; Gruntar, I.; Baele, M.; Krt, B.; Ducatelle, R.; Haesebrouck, F.

    2005-01-01

    The susceptibilities of Helicobacter felis (15 strains), H. bizzozeronii (7 strains), and H. salomonis (3 strains) to 10 antimicrobial agents were investigated by determination of the MIC using the agar dilution method. No consistent differences were noticed between the different Helicobacter species, which were all highly susceptible to ampicillin, clarithromycin, tetracycline, tylosin, enrofloxacin, gentamicin, and neomycin, as demonstrated by low MICs. Higher MICs were obtained for lincomycin (up to 8 μg/ml) and spectinomycin (up to 4 μg/ml). Two H. felis strains showed a MIC of 16 μg/ml for metronidazole, suggesting acquired resistance to this antimicrobial agent. PMID:15980383

  3. Human Target Attainment Probabilities for Delafloxacin against Escherichia coli and Pseudomonas aeruginosa

    PubMed Central

    Hoover, Randall; Marra, Andrea; Duffy, Erin; Cammarata, Sue K

    2017-01-01

    Abstract Background Delafloxacin (DLX) is a broad-spectrum fluoroquinolone antibiotic under FDA review for the treatment of ABSSSI. Previous studies determined DLX bacterial stasis and 1-log10 bacterial reduction free AUC0-24 / MIC (fAUC0-24/MIC) targets for Escherichia coli (EC) and Pseudomonas aeruginosa (PA) in a mouse thigh infection model. The resulting PK/PD targets were used to predict DLX target attainment probabilities (TAP) in humans. Methods Monte Carlo simulations were used to estimate TAP with DLX 300 mg IV, q12hr. Human DLX plasma pharmacokinetics were determined in patients with ABSSSI in a Phase 3 clinical trial. Individual AUC values were analyzed and determined to be log-normally distributed. The parameters of the AUC distribution were used to simulate random values for fAUC24, which then were combined with random MIC values based on 2014–2015 US distributions of skin and soft tissue isolates of EC (n = 108) and PA (n = 40), to calculate PK/PD TAPs. Results DLX fAUC0-24/MIC targets for bacterial stasis and 1-log10 bacterial reduction for EC were 14.5 and 26.2, and for PA were 3.81 and 5.02, respectively. The Monte Carlo simulations for EC predicted TAPs of 98.7% for stasis at an MIC of 0.25 μg/mL, and 99.3% for 1-log10 bacterial reduction at an MIC of 0.12 μg/mL. The simulations for PA predicted TAPs of 97.3% for stasis and 86.5% for 1-log10 bacterial reduction at an MIC of 1 μg/mL. E. coli MIC (ug/mL) Target 0.008 0.015 0.03 0.06 0.12 0.25 0.5 1 Stasis 100 100 100 100 100 97.8 50.4 2.0 1-Log Kill 100 100 100 100 99.3 60.4 5.8 0.0 P. aeruginosa MIC (ug/mL) Target 0.03 0.06 0.12 0.25 0.5 1 2 4 5 Stasis 100 100 100 100 100 97.3 45.9 1.7 0.5 1-Log Kill 100 100 100 100 100 86.5 17.8 0.3 0.1 Conclusion DLX 300 mg IV, q12hr, should achieve fAUC24/MIC ratios that are adequate to treat ABSSSI caused by most contemporary isolates of EC and PA. For EC, isolates with DLX MICs ≤0.25 μg/mL comprised 73% of all isolates. For PA, isolates with DLX MICs ≤1 μg/mL comprised 88% of all isolates. Similar results would be expected for TAP with oral DLX 450 mg, q12hr. Disclosures R. Hoover, Melinta Therapeutics: Consultant, Consulting fee; A. Marra, Melinta Therapeutics: Employee, Salary; E. Duffy, Melinta Therapeutics: Employee, Salary; S. K. Cammarata, Melinta Therapeutics: Employee, Salary

  4. Slime production and proteinase activity of Candida species isolated from blood samples and the comparison of these activities with minimum inhibitory concentration values of antifungal agents.

    PubMed

    Ozkan, Semiha; Kaynak, Fatma; Kalkanci, Ayse; Abbasoglu, Ufuk; Kustimur, Semra

    2005-05-01

    Slime and proteinase activity of 54 strains consisting of 19 Candida parapsilosis and 35 C. albicans strains isolated from blood samples were investigated in this study. Ketoconazole, amphothericin B, and fluconazole susceptibility of Candida species were compared with slime production and proteinase activity of these species. For both Candida species, no correlation was detected between the slime activity and minimum inhibitory concentration (MIC) values of the three antifungal agents. For both Candida species no correlation was detected between the proteinase activity and the MIC values of amphothericin B, and fluconazole however, statistically significant difference, was determined between the proteinase activity and MIC values of ketoconazole (p = 0.007). Slime production was determined by using modified Christensen macrotube method and proteinase activity was measured by the method of Staib. Antifungal susceptibility was determined through the guidelines of National Committee for Laboratory Standards (NCCLS M27-A).

  5. Synthesis and Bioactivity Evaluation of N-Arylsulfonylindole Analogs Bearing a Rhodanine Moiety as Antibacterial Agents.

    PubMed

    Song, Ming-Xia; Li, Song-Hui; Peng, Jiao-Yang; Guo, Ting-Ting; Xu, Wen-Hui; Xiong, Shao-Feng; Deng, Xian-Qing

    2017-06-14

    Due to the rapidly growing bacterial resistance to antibiotics and the scarcity of novel agents under development, bacterial infections are still a pressing global problem, making new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, urgently needed. In this paper, seven series of N -arylsulfonylindole analogs 5 - 11 bearing rhodanine moieties were synthesized, characterized, and evaluated for antibacterial activity. According to the in vitro antimicrobial results, half of the synthesized compounds showed potent inhibition against four Gram-positive bacteria, with MIC values in the range of 0.5-8 µg/mL. For multidrug-resistant strains, compounds 6a and 6c were the most potent, with MIC values of 0.5 µg/mL, having comparable activity to gatifloxacin, moxiflocaxin and norfloxacin and being 128-fold more potent than oxacillin (MIC = 64 µg/mL) and 64-fold more active than penicillin (MIC = 32 µg/mL) against Staphylococcus aureus ATCC 43300 .

  6. The activity of silver nanoparticles against microalgae of the Prototheca genus.

    PubMed

    Jagielski, Tomasz; Bakuła, Zofia; Pleń, Małgorzata; Kamiński, Michał; Nowakowska, Julita; Bielecki, Jacek; Wolska, Krystyna I; Grudniak, Anna M

    2018-05-01

    To investigate the in vitro activity of silver NPs (AgNPs) against pathogenic microalgae of the Prototheca genus. The antialgal potential of AgNPs against Prototheca species of both clinical and environmental origin was assessed from minimum inhibitory (algistatic) and algicidal concentrations. The in vitro cytotoxicity of AgNPs against bovine mammary epithelial cell line was evaluated by means of the standard MTT assay. AgNPs showed a strong killing activity toward Prototheca algae, as the minimal algicidal concentration (MAC) values matched perfectly the corresponding minimum inhibitory concentration (MIC) values for all species (MAC = MIC, 1-4 mg/l), except P. stagnora (MIC > 8 mg/l). The concentrations inhibitory to pathogenic Prototheca spp. (MIC, 1-4 mg/l) were below the concentrations at which any toxicity in epithelial cells could be observed (CC 20 > 6 mg/l). The study emphasizes the potential of AgNPs as a new therapeutic tool for the management of Prototheca infections.

  7. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study.

    PubMed

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease.

  8. Epidemiological Cutoff Values for Fluconazole, Itraconazole, Posaconazole, and Voriconazole for Six Candida Species as Determined by the Colorimetric Sensititre YeastOne Method

    PubMed Central

    Pemán, Javier; Iñiguez, Carmen; Hervás, David; Lopez-Hontangas, Jose L.; Pina-Vaz, Cidalia; Camarena, Juan J.; Campos-Herrero, Isolina; García-García, Inmaculada; García-Tapia, Ana M.; Guna, Remedios; Merino, Paloma; Pérez del Molino, Luisa; Rubio, Carmen; Suárez, Anabel

    2013-01-01

    In the absence of clinical breakpoints (CBP), epidemiological cutoff values (ECVs) are useful to separate wild-type (WT) isolates (without mechanisms of resistance) from non-WT isolates (those that can harbor some resistance mechanisms), which is the goal of susceptibility tests. Sensititre YeastOne (SYO) is a widely used method to determine susceptibility of Candida spp. to antifungal agents. The CLSI CBP have been established, but not for the SYO method. The ECVs for four azoles, obtained using MIC distributions determined by the SYO method, were calculated via five methods (three statistical methods and based on the MIC50 and modal MIC). Respectively, the median ECVs (in mg/liter) of the five methods for fluconazole, itraconazole, posaconazole, and voriconazole (in parentheses: the percentage of isolates inhibited by MICs equal to or less than the ECVs; the number of isolates tested) were as follows: 2 (94.4%; 944), 0.5 (96.7%; 942), 0.25 (97.6%; 673), and 0.06 (96.7%; 849) for Candida albicans; 4 (86.1%; 642), 0.5 (99.4%; 642), 0.12 (93.9%; 392), and 0.06 (86.9%; 559) for C. parapsilosis; 8 (94.9%; 175), 1 (93.7%; 175), 2 (93.6%; 125), and 0.25 (90.4%; 167) for C. tropicalis; 128 (98.6%; 212), 4 (95.8%; 212), 4 (96.0%; 173), and 2 (98.5; 205) for C. glabrata; 256 (100%; 53), 1 (98.1%; 53), 1 (100%; 33), and 1 (97.9%; 48) for C. krusei; 4 (89.2%; 93), 0.5 (100%; 93), 0.25 (100%; 33), and 0.06 (87.7%; 73) for C. orthopsilosis. All methods included ≥94% of isolates and yielded similar ECVs (within 1 dilution). These ECVs would be suitable for monitoring emergence of isolates with reduced susceptibility by using the SYO method. PMID:23761155

  9. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species

    PubMed Central

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-01-01

    Background: The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. Objective: The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. Methods: The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. Results: According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). Conclusion: As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm. PMID:27517903

  10. Essential Oil of Cymbopogon nardus (L.) Rendle: A Strategy to Combat Fungal Infections Caused by Candida Species.

    PubMed

    De Toledo, Luciani Gaspar; Ramos, Matheus Aparecido Dos Santos; Spósito, Larissa; Castilho, Elza Maria; Pavan, Fernando Rogério; Lopes, Érica De Oliveira; Zocolo, Guilherme Julião; Silva, Francisca Aliny Nunes; Soares, Tigressa Helena; Dos Santos, André Gonzaga; Bauab, Taís Maria; De Almeida, Margarete Teresa Gottardo

    2016-08-09

    The incidence of fungal infections, especially those caused by Candida yeasts, has increased over the last two decades. However, the indicated therapy for fungal control has limitations. Hence, medicinal plants have emerged as an alternative in the search for new antifungal agents as they present compounds, such as essential oils, with important biological effects. Published data demonstrate important pharmacological properties of the essential oil of Cymbopogon nardus (L.) Rendle; these include anti-tumor, anti-nociceptive, and antibacterial activities, and so an investigation of this compound against pathogenic fungi is interesting. The aim of this study was to evaluate the chemical composition and biological potential of essential oil (EO) obtained from the leaves of C. nardus focusing on its antifungal profile against Candida species. The EO was obtained by hydrodistillation and analyzed by gas chromatography-mass spectrometry (GC-MS). Testing of the antifungal potential against standard and clinical strains was performed by determining the minimal inhibitory concentration (MIC), time-kill, inhibition of Candida albicans hyphae growth, and inhibition of mature biofilms. Additionally, the cytotoxicity was investigated by the IC50 against HepG-2 (hepatic) and MRC-5 (fibroblast) cell lines. According to the chemical analysis, the main compounds of the EO were the oxygen-containing monoterpenes: citronellal, geranial, geraniol, citronellol, and neral. The results showed important antifungal potential for all strains tested with MIC values ranging from 250 to 1000 μg/mL, except for two clinical isolates of C. tropicalis (MIC > 1000 μg/mL). The time-kill assay showed that the EO inhibited the growth of the yeast and inhibited hyphal formation of C. albicans strains at concentrations ranging from 15.8 to 1000 μg/mL. Inhibition of mature biofilms of strains of C. albicans, C. krusei and C. parapsilosis occurred at a concentration of 10× MIC. The values of the IC50 for the EO were 96.6 μg/mL (HepG-2) and 33.1 μg/mL (MRC-5). As a major virulence mechanism is attributed to these types of infections, the EO is a promising compound to inhibit Candida species, especially considering its action against biofilm.

  11. Pharmacodynamic activity of ceftobiprole compared with vancomycin versus methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate Staphylococcus aureus (VISA) and vancomycin-resistant Staphylococcus aureus (VRSA) using an in vitro model.

    PubMed

    Zhanel, George G; Voth, Dylan; Nichol, Kim; Karlowsky, James A; Noreddin, Ayman M; Hoban, Daryl J

    2009-08-01

    This study compared the pharmacodynamics of ceftobiprole and vancomycin against methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) using an in vitro model. Two methicillin-susceptible S. aureus (MSSA), two community-associated (CA)-MRSA, one healthcare-associated (HA)-MRSA, three VISA and two VRSA were studied. The pharmacodynamic model was inoculated with a concentration of 1 x 10(6) cfu/mL and ceftobiprole dosed every 8 h (at 0, 8 and 16 h) to simulate the fC(max) and t(1/2) obtained after 500 mg intravenous (iv) every 8 h dosing (fC(max,) 30 mg/L; t(1/2,) 3.5 h). Vancomycin was dosed every 12 h (at 0 and 12 h) to simulate fC(max) and t(1/2) obtained after 1 g iv every 12 h dosing (fC(max), 20 mg/L; t(1/2), 8 h). Samples were collected over 24 h to assess viable growth. Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin fAUC(24)/MIC of 340 (vancomycin MIC, 1 mg/L for MSSA and MRSA) resulted in a 1.8-2.6 log(10) reduction in colony count at 24 h. Vancomycin fAUC(24)/MIC of 85-170 (vancomycin MIC, 2-4 mg/L for VISA) resulted in a 0.4-0.7 log(10) reduction at 24 h. Vancomycin fAUC(24)/MIC of 5.3 (vancomycin MIC, 64 mg/L for VRSA) resulted in a limited effect. Ceftobiprole T > MIC of > or =100% (ceftobiprole MICs, < or =2 mg/L) was bactericidal (> or =3 log(10) killing) against MSSA, CA-MRSA, HA-MRSA, VISA and VRSA at 16 and 24 h. Vancomycin was bacteriostatic against MSSA, MRSA and VISA, while demonstrating no activity against VRSA.

  12. Antimicrobial activity of tigecycline against recent isolates of respiratory pathogens from Asian countries.

    PubMed

    Ko, Kwan Soo; Song, Jae-Hoon; Lee, Mi Young; Park, Sulhee; Kwon, Ki Tae; Heo, Sang Taek; Ryu, Seong Yeol; Oh, Won Sup; Peck, Kyong Ran; Lee, Nam Yong

    2006-08-01

    In vitro activities of tigecycline were compared with 15 other comparator agents against recent clinical isolates of respiratory pathogens (623 Streptococcus pneumoniae, 105 Staphylococcus aureus, 92 Klebsiella pneumoniae, and 84 Haemophilus influenzae isolates) collected from 11 Asian countries. All isolates of S. pneumoniae from Asian countries were susceptible to tigecycline regardless of penicillin susceptibility with MIC90 of

  13. Antimicrobial compounds from Alpinia conchigera.

    PubMed

    Aziz, Ahmad Nazif; Ibrahim, Halijah; Rosmy Syamsir, Devi; Mohtar, Mastura; Vejayan, Jaya; Awang, Khalijah

    2013-02-13

    The rhizome of Alpinia conchigerahas been used as a condiment in the northern states of Peninsular Malaysia and occasionally in folk medicine in the east coast to treat fungal infections. In some states of Peninsular Malaysia, the rhizomes are consumed as a post-partum medicine and the young shoots are prepared into a vegetable dish. This study aimed to investigate the chemical constituents of the pseudostems and rhizomes of Malaysian Alpinia conchigera and to evaluate the antimicrobial activity of the dichloromethane (DCM) extracts of the pseudostems, rhizomes and the isolated compounds against three selected fungi and five strains of Staphylococcus aureus. The dried and ground pseudostems (0.8kg) and rhizomes (1.0kg) were successively extracted in Soxhlet extractor using n-hexane, dichloromethane (DCM) and methanol. The n-hexane and DCM extracts of the pseudostem and rhizome were subjected to isolation and purification using column chromatography on silica gel using a stepwise gradient system (n-hexane to methanol). Briefly, a serial two fold dilutions of the test materials dissolved in DMSO were prepared prior to addition of 100μl overnight microbial suspension (108 cfu/ml) followed by incubation at 37°C (bacteria) or 26°C (dermatophytes and candida) for 24h. The highest concentration of DMSO remaining after dilution (5%, v/v) caused no inhibition to bacterial/candida/dermatophytes' growth. Antibiotic cycloheximide was used as reference for anticandidal and antidermatophyte comparison while oxacilin was used as reference for antibacterial testing. DMSO served as negative control. Turbidity was taken as indication of growth, thus the lowest concentration which remains clear after macroscopic evaluation was taken as the minimum inhibitory concentration (MIC). The isolation of n-hexane and DCM extracts of the rhizomes and pseudostems of Alpinia conchigera via column chromatography yielded two triterpenes isolated as a mixture of stigmasterol and β-sitosterol: caryophyllene oxide, chavicol acetate 1, p-hydroxy cinnamaldehyde 2, 1'S-1'-acetoxychavicol acetate 3, trans-p-coumaryl diacetate 4, 1'S-1'-acetoxyeugenol acetate 5, 1'-hydroxychavicol acetate 6, p-hydroxycinnamyl acetate 7 and 4-hydroxybenzaldehyde. The DCM extract of the rhizome of Alpinia conchigera indicated potent antifungal activity against Candida albicans, Microsporum canis and Trycophyton rubrum with MIC values of 625μg/ml, 156μg/ml and 156μg/ml, respectively. It also showed significant inhibitory activity with MIC values between 17.88 and 35.75μg/ml against the mutant Staphylococci isolates MSSA, MRSA and Sa7. Amongst the isolated compounds, the lowest inhibition observed were of 1'S-1'-acetoxyeugenol against the dermatophytes (MIC 313μg/ml) followed by trans-p-coumaryl diacetate against both dermatophytes and candida (MIC 625μg/ml). The compound p-hydroxycinnamyl acetate strongly inhibited Staphylococcusaureus strain VISA (MIC 39μg/ml) followed by trans-p-coumaryl diacetate and 1'-hydroxychavicol acetate with MIC value of 156μg/ml. In conclusion, the observed antibacterial, anticandidal and antidermatophyte activity of the extracts and compounds obtained from the rhizome confirm the traditional use of Alpinia cochigera rhizome in the treatment of skin infection. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  14. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis

    PubMed Central

    Boikov, Dina A.; James, Kenneth D.; Bartizal, Ken; Sobel, Jack D.

    2017-01-01

    Background: The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. Objectives: To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. Methods: MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans (n = 60), Candida glabrata (n = 21), Candida parapsilosis (n = 14) and Candida tropicalis (n = 13). Results: Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. Conclusions: CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. PMID:28158577

  15. In vitro activity of the novel echinocandin CD101 at pH 7 and 4 against Candida spp. isolates from patients with vulvovaginal candidiasis.

    PubMed

    Boikov, Dina A; Locke, Jeffrey B; James, Kenneth D; Bartizal, Ken; Sobel, Jack D

    2017-05-01

    The novel echinocandin CD101 has stability properties amenable to topical formulation for use in the treatment of acute vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC). CD101 has demonstrated potent antifungal activity at pH 7, but assessment of its activity at the physiological pH of the vaginal environment is needed. To evaluate the antifungal activity of CD101 against clinical VVC isolates of Candida spp., including azole-resistant strains, at pH 4. MIC values of CD101 and comparators (fluconazole, itraconazole, micafungin, caspofungin and anidulafungin) were assessed via broth microdilution. MIC assays were conducted at pH 7 and 4 after 24 and 48 h against a 108 VVC isolate panel of Candida spp., including Candida albicans ( n  =   60), Candida glabrata ( n  =   21), Candida parapsilosis ( n  =   14) and Candida tropicalis ( n  =   13). Overall, MIC values of all drugs were slightly higher at pH 4 versus 7 and at 48 versus 24 h of incubation. CD101 MIC values typically exhibited ∼4-fold shifts at pH 4 and were not affected by azole susceptibility. C. parapsilosis susceptibility was the least affected at pH 4 and did not increase for most drugs. CD101 had potent activity against all Candida isolates tested, including azole-resistant strains. Although there was some reduction in activity at pH 4 versus 7, the resulting MIC values were still well below the intravaginal CD101 drug concentrations anticipated to be present following topical administration. These results support continued development of topical CD101 for the treatment of VVC/RVVC. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.

  16. Meta-Analysis

    PubMed Central

    Kale-Pradhan, Pramodini B.; Mariani, Nicholas P.; Wilhelm, Sheila M.; Johnson, Leonard B.

    2015-01-01

    Background: Vancomycin is used to treat serious infections caused by methicillin-resistant Staphylococcus aureus (MRSA). It is unclear whether MRSA isolates with minimum inhibitory concentration (MIC) 1.5 to 2 µg/mL are successfully treated with vancomycin. Objective: Evaluate vancomycin failure rates in MRSA bacteremia with an MIC <1.5 versus ≥1.5 µg/mL, and MIC ≤1 versus ≥2 µg/mL. Methods: A literature search was conducted using MESH terms vancomycin, MRSA, bacteremia, MIC, treatment and vancomycin failure to identify human studies published in English. All studies of patients with MRSA bacteremia treated with vancomycin were included if they evaluated vancomycin failures, defined as mortality, and reported associated MICs determined by E-test. Study sample size, vancomycin failure rates, and corresponding MIC values were extracted and analyzed using RevMan 5.2.5. Results: Thirteen studies including 2955 patients met all criteria. Twelve studies including 2861 patients evaluated outcomes using an MIC cutoff of 1.5 µg/mL. A total of 413 of 1186 (34.8%) patients with an MIC <1.5 and 531 of 1675 (31.7%) patients with an MIC of ≥1.5 µg/mL experienced treatment failure (odds ratio = 0.72, 95% confidence interval = 0.49-1.04, P = .08). Six studies evaluated 728 patients using the cutoffs of ≤1 and ≥2 µg/mL. A total of 384 patients had isolates with MIC ≤1 µg/mL, 344 had an MIC ≥2 µg/mL. Therapeutic failure occurred in 87 and 102 patients, respectively (odds ratio = 0.61, 95% confidence interval = 0.34-1.10, P = .10). As heterogeneity between the studies was high, a random-effects model was used. Conclusion: Vancomycin MIC may not be an optimal sole indicator of vancomycin treatment failure in MRSA bacteremia.

  17. Susceptibility to antimicrobial agents of Streptococcus suis capsular type 2 strains isolated from pigs.

    PubMed

    Seol, B; Kelneric, Z; Hajsig, D; Madic, J; Naglic, T

    1996-03-01

    The minimal inhibitory concentrations (MICs) for thirty-three epidemiologicaly unrelated clinical isolates of Streptococcus suis capsular type 2 were determined in relation to ampicillin, ampicillin-sulbactam, amoxicillin, clavulanate-amoxicillin, penicillin G, cephalexin, gentamicin, streptomycin, erythromycin, tylosin and doxycycline, using the microtitre broth dilution procedure described by the U.S. National Committee for Clinical Laboratory Standards (NCCLS). Gentamicin was the most active compound tested, with an MIC for 90% of the strains tested (MIC(90)) of 0.4 mg/L. Overall, 70% of strains were resistant to doxycycline (MIC(90) > or = 100.0 mg/L), followed by penicillin G (51% of strains) (MIC(90) + or = 100.0 mg/L). Resistance to amoxicillin and ampicillin was 36.4% (MIC(90) 12.5 mg/L) and 33.3% (MIC(90) 50.0 mg/L), respectively. 15.2% of S. suis strains were resistant to streptomycin, tylosin and cephalexin with MIC90 values of 25.0 mg/L, 12.5 mg/L and 25.0 mg/L, respectively. A combination of ampicillin and sulbactam (MIC(90) 6.3 mg/L) and a combination of amoxicillin and clavulanate (MIC(90) 3.1 mg/L) as well as erythromycin (1.6 mg/L) were of the same efficacy, with a total of 9.1% resistant S. suis strains. This high percentage of resistance to doxycycline and penicillin G precludes the use of these antibiotics as empiric therapy of swine diseases.

  18. Comparison of chemical composition and antibacterial activity of Nigella sativa seed essential oils obtained by different extraction methods.

    PubMed

    Kokoska, L; Havlik, J; Valterova, I; Sovova, H; Sajfrtova, M; Jankovska, I

    2008-12-01

    Nigella sativa L. seed essential oils obtained by hydrodistillation (HD), dry steam distillation (SD), steam distillation of crude oils obtained by solvent extraction (SE-SD), and supercritical fluid extraction (SFE-SD) were tested for their antibacterial activities, using the broth microdilution method and subsequently analyzed by gas chromatography and gas chromatography-mass spectrometry. The results showed that the essential oils tested differed markedly in their chemical compositions and antimicrobial activities. The oils obtained by HD and SD were dominated by p-cymene, whereas the major constituent identified in both volatile fractions obtained by SD of extracted oils was thymoquinone (ranging between 0.36 and 0.38 g/ml, whereas in oils obtained by HD and SD, it constituted only 0.03 and 0.05 g/ml, respectively). Both oils distilled directly from seeds showed lower antimicrobial activity (MICs > or = 256 and 32 microg/ml for HD and SD, respectively) than those obtained by SE-SD and SFE-SD (MICs > or = 4 microg/ml). All oil samples were significantly more active against gram-positive than against gram-negative bacteria. Thymoquinone exhibited potent growth-inhibiting activity against gram-positive bacteria, with MICs ranging from 8 to 64 microg/ml.

  19. Selection of tmRNA Inhibitors as Antibacterial and Plasmid Elimination Agents

    DTIC Science & Technology

    2010-01-01

    pathogenic bacteria (Table 1). MIC values  μM were obtained for M. tuberculosis, A. baumannii, B. pertussis, B. cepacia, S . marcescens , S . pneumonia...A. baumannii wound infections 125 - 62.5 125 - 62.5 125 - 62.5 125 - 62.5 S . marcescens wound infections 125 - 62.5 125 - 62.5 125 - 62.5 125...SUBTITLE 13-07-2010 13. SUPPLEMENTARY NOTES The views, opinions and/or findings contained in this report are those of the author( s ) and should not contrued

  20. Comparative Study of Betacyanin Profile and Antimicrobial Activity of Red Pitahaya (Hylocereus polyrhizus) and Red Spinach (Amaranthus dubius).

    PubMed

    Yong, Yi Yi; Dykes, Gary; Lee, Sui Mae; Choo, Wee Sim

    2017-03-01

    Betacyanins are reddish to violet pigments that can be found in red pitahaya (Hylocereus polyrhizus) and red spinach (Amaranthus dubius). This study investigated the impact of sub-fractionation (solvent partitioning) on betacyanin content in both plants. Characterization of betacyanins and evaluation of their antimicrobial activities were also carried out. Betanin was found in both plants. In addition, isobetanin, phyllocactin and hylocerenin were found in red pitahaya whereas amaranthine and decarboxy-amaranthine were found in red spinach. Sub-fractionated red pitahaya and red spinach had 23.5 and 121.5 % more betacyanin content, respectively, than those without sub-fractionation. Sub-fractionation increased the betanin and decarboxy-amaranthine content in red pitahaya and red spinach, respectively. The betacyanin fraction from red spinach (minimum inhibitory concentration [MIC] values: 0.78-3.13 mg/mL) demonstrated a better antimicrobial activity profile than that of red pitahaya (MIC values: 3.13-6.25 mg/mL) against nine Gram-positive bacterial strains. Similarly, the red spinach fraction (MIC values: 1.56-3.13 mg/mL) was more active than the red pitahaya fraction (MIC values: 3.13-6.25 mg/mL) against five Gram-negative bacterial strains. This could be because of a higher amount of betacyanin, particularly amaranthine in the red spinach.

  1. Potency of marbofloxacin for pig pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida: Comparison of growth media.

    PubMed

    Dorey, L; Hobson, S; Lees, P

    2017-04-01

    Pharmacodynamic properties of marbofloxacin were established for six isolates each of the pig respiratory tract pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Three in vitro indices of potency were determined; Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Mutant Prevention Concentration (MPC). For MIC determination Clinical Laboratory Standards Institute guidelines were modified in three respects: (1) comparison was made between two growth media, an artificial broth and pig serum; (2) a high inoculum count was used to simulate heavy clinical bacteriological loads; and (3) five overlapping sets of two-fold dilutions were used to improve accuracy of determinations. Similar methods were used for MBC and MPC estimations. MIC and MPC serum:broth ratios for A. pleuropneumoniae were 0.79:1 and 0.99:1, respectively, and corresponding values for P. multocida were 1.12:1 and 1.32:1. Serum protein binding of marbofloxacin was 49%, so that fraction unbound (fu) serum MIC values were significantly lower than those predicted by correction for protein binding; fu serum:broth MIC ratios were 0.40:1 (A. pleuropneumoniae) and 0.50:1 (P. multocida). For broth, MPC:MIC ratios were 13.7:1 (A. pleuropneumoniae) and 14.2:1 (P. multocida). Corresponding ratios for serum were similar, 17.2:1 and 18.8:1, respectively. It is suggested that, for dose prediction purposes, serum data might be preferable to potency indices measured in broths. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Antimicrobial susceptibility pattern of clinical isolates of Burkholderia pseudomallei in Bangladesh.

    PubMed

    Dutta, Subarna; Haq, Sabah; Hasan, Mohammad Rokibul; Haq, Jalaluddin Ashraful

    2017-07-20

    Melioidosis an infectious disease, caused by a Gram negative bacterium called Burkholderia pseudomallei, is endemic in Bangladesh. This organism is sensitive to limited number of antimicrobial agents and need prolonged treatment. There is no comprehensive data on the antimicrobial susceptibility profile of B. pseudomallei isolated in Bangladesh over last several years. The present study aimed to determine the antimicrobial susceptibility pattern of B. pseudomallei isolated in a tertiary care hospital of Dhaka city from 2009 to 2015. All B. pseudomallei isolated from melioidosis patients over a period of 7 years (2009-2015) in the Department of Microbiology of a 725-bed tertiary care referral hospital in Dhaka city, Bangladesh were included in the study. B. pseudomallei was identified by Gram stain, culture, specific biochemical tests, serology and PCR using specific primers constructed from 16s rRNA region of B. pseudomallei. Antimicrobial susceptibility to specific agents was determined by disk diffusion and minimum inhibitory concentration methods. A total of 20 isolates of B. pseudomallei which were isolated from patients coming from different geographic locations of Bangladesh were included in the study. All the isolates were uniformly sensitive (100%) to ceftazidime, imipenem, piperacillin-tazobactam, amoxicillin-clavulanic acid and tetracycline by both disk diffusion and MIC methods. Two strains were resistant to trimethoprim-sulfamethoxazole by disk diffusion method but were sensitive by MIC method. The MIC 50 and MIC 90 values of the above antimicrobial agents were almost similar. All the isolates were resistant to amikacin by both MIC and disk diffusion methods. The results of the study suggest that B. pseudomallei prevalent in Bangladesh were still susceptible to all recommended antimicrobial agents used for the treatment of melioidosis. However, regular monitoring is needed to detect any emergence of resistance and shifting of MIC 50 and MIC 90 values.

  3. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections.

    PubMed

    Juréen, P; Angeby, K; Sturegård, E; Chryssanthou, E; Giske, C G; Werngren, J; Nordvall, M; Johansson, A; Kahlmeter, G; Hoffner, S; Schön, T

    2010-05-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed +/-1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis.

  4. Wild-Type MIC Distributions for Aminoglycoside and Cyclic Polypeptide Antibiotics Used for Treatment of Mycobacterium tuberculosis Infections▿

    PubMed Central

    Juréen, P.; Ängeby, K.; Sturegård, E.; Chryssanthou, E.; Giske, C. G.; Werngren, J.; Nordvall, M.; Johansson, A.; Kahlmeter, G.; Hoffner, S.; Schön, T.

    2010-01-01

    The aminoglycosides and cyclic polypeptides are essential drugs in the treatment of multidrug-resistant tuberculosis, underscoring the need for accurate and reproducible drug susceptibility testing (DST). The epidemiological cutoff value (ECOFF) separating wild-type susceptible strains from non-wild-type strains is an important but rarely used tool for indicating susceptibility breakpoints against Mycobacterium tuberculosis. In this study, we established wild-type MIC distributions on Middlebrook 7H10 medium for amikacin, kanamycin, streptomycin, capreomycin, and viomycin using 90 consecutive clinical isolates and 21 resistant strains. Overall, the MIC variation between and within runs did not exceed ±1 MIC dilution step, and validation of MIC values in Bactec 960 MGIT demonstrated good agreement. Tentative ECOFFs defining the wild type were established for all investigated drugs, including amikacin and viomycin, which currently lack susceptibility breakpoints for 7H10. Five out of seven amikacin- and kanamycin-resistant isolates were classified as susceptible to capreomycin according to the current critical concentration (10 mg/liter) but were non-wild type according to the ECOFF (4 mg/liter), suggesting that the critical concentration may be too high. All amikacin- and kanamycin-resistant isolates were clearly below the ECOFF for viomycin, and two of them were below the ECOFF for streptomycin, indicating that these two drugs may be considered for treatment of amikacin-resistant strains. Pharmacodynamic indices (peak serum concentration [Cmax]/MIC) were more favorable for amikacin and viomycin compared to kanamycin and capreomycin. In conclusion, our data emphasize the importance of establishing wild-type MIC distributions for improving the quality of drug susceptibility testing against Mycobacterium tuberculosis. PMID:20237102

  5. Pharmacodynamics of oxytetracycline administered alone and in combination with carprofen in calves.

    PubMed

    Brentnall, C; Cheng, Z; McKellar, Q A; Lees, P

    2012-09-15

    The pharmacodynamics (PD) of oxytetracycline was investigated against a strain of Mannheimia haemolytica. In vitro measurements, comprising minimum inhibitory concentration (MIC), minimum bactericidal concentration and time-kill curves, were conducted in five matrices; Mueller Hinton Broth (MHB), cation-adjusted MHB (CAMHB) and calf serum, exudate and transudate. MICs were much higher in the biological fluids than in MHB and CAMHB. Ratios of MIC were, serum: CAMHB 19 : 1; exudate:CAMHB 16.1; transudate:CAMHB 14 : 1. Ex vivo data, generated in the tissue cage model of inflammation, demonstrated that oxytetracycline, administered to calves intramuscularly at a dose rate of 20 mg/kg, did not inhibit the growth of M haemolytica in serum, exudate and transudate, even at peak concentration. However, using in vitro susceptibility in CAMHB and in vivo-determined pharmacokinetic (PK) variables, average and minimum oxytetracycline concentrations relative to MIC (C(av)/MIC and C(min)/MIC) predicted achievement of efficacy for approximately 48 hours after dosing. Similar C(av)/MIC and C(min)/MIC data were obtained when oxytetracycline was administered in the presence of carprofen. PK-PD integration of data for oxytetracycline, based on MICs determined in the three biological fluids, suggests that it possesses, at most, limited direct killing activity against M haemolytica. These data raise questions concerning the mechanism(s) of action of oxytetracycline, when administered at clinically recommended dose rates.

  6. Efficacy of taurolidine against periodontopathic species--an in vitro study.

    PubMed

    Eick, Sigrun; Radakovic, Sabrina; Pfister, Wolfgang; Nietzsche, Sandor; Sculean, Anton

    2012-06-01

    The antimicrobial effect of taurolidine was tested against periodontopathic species in comparison to chlorhexidine digluconate in the presence or absence of serum. Minimal inhibitory concentrations (MIC), microbiocidal concentrations (MBC), as well as killing were determined against 32 different microbial strains including 3 Porphyromonas gingivalis, 3 Aggregatibacter actinomycetemcomitans, and 15 potentially superinfecting species with and without 25% v/v human serum. The MIC(50) of taurolidine against the tested microbial strains was 0.025% and the MIC(90) 0.05%. The respective values for the MBCs were 0.05% and 0.1%. Addition of 25% serum (heat-inactivated) did not change the MIC and MBC values of taurolidine. In contrast, MICs and MBCs of chlorhexidine (CHX) increased by two steps after addition of serum. Taurolidine killed microorganisms in a concentration and time-dependent manner, the killing rate of 1.6% taurolidine was 99.08% ± 2.27% in mean after 2 h. Again, killing activity of taurolidine was not affected if serum was added, whereas addition of inactivated serum clearly reduced the killing rate of all selected bacterial strains by CHX. Therefore, taurolidine possesses antimicrobial properties which are not reduced in the presence of serum as a main component in gingival crevicular fluid and wound fluid. Taurolidine may have potential as an antimicrobial agent in non-surgical and surgical periodontal treatment.

  7. Late Pleistocene Sea level on the New Jersey Margin: Implications to eustasy and deep-sea temperature

    USGS Publications Warehouse

    Wright, J.D.; Sheridan, R.E.; Miller, K.G.; Uptegrove, J.; Cramer, B.S.; Browning, J.V.

    2009-01-01

    We assembled and dated a late Pleistocene sea-level record based on sequence stratigraphy from the New Jersey margin and compared it with published records from fossil uplifted coral reefs in New Guinea, Barbados, and Araki Island, as well as a composite sea-level estimate from scaling of Red Sea isotopic values. Radiocarbon dates, amino acid racemization data, and superposition constrain the ages of large (20-80??m) sea-level falls from New Jersey that correlate with Marine Isotope Chrons (MIC) 2, 3b, 4, 5b, and 6 (the past 130??kyr). The sea-level records for MIC 1, 2, 4, 5e, and 6 are similar to those reported from New Guinea, Barbados, Araki, and the Red Sea; some differences exist among records for MIC 3. Our record consistently provides the shallowest sea level estimates for MIC3 (??? 25-60??m below present); it agrees most closely with the New Guinea record of Chappell (2002; ??? 35-70??m), but contrasts with deeper estimates provided by Araki (??? 85-95??m) and the Red Sea (50-90??m). Comparison of eustatic estimates with benthic foraminiferal ??18O records shows that the deep sea cooled ??? 2.5????C between MIC 5e and 5d (??? 120-110??ka) and that near freezing conditions persisted until Termination 1a (14-15??ka). Sea-level variations between MIC 5b and 2 (ca. 90-20??ka) follow a well-accepted 0.1???/10??m linear variation predicted by ice-growth effects on foraminiferal ??18O values. The pattern of deep-sea cooling follows a previously established hysteresis loop between two stable modes of operation. Cold, near freezing deep-water conditions characterize most of the past 130??kyr punctuated only by two warm intervals (the Holocene/MIC 1 and MIC 5e). We link these variations to changes in Northern Component Water (NCW). ?? 2009 Elsevier B.V. All rights reserved.

  8. Role of renal function in risk assessment of target non-attainment after standard dosing of meropenem in critically ill patients: a prospective observational study.

    PubMed

    Ehmann, Lisa; Zoller, Michael; Minichmayr, Iris K; Scharf, Christina; Maier, Barbara; Schmitt, Maximilian V; Hartung, Niklas; Huisinga, Wilhelm; Vogeser, Michael; Frey, Lorenz; Zander, Johannes; Kloft, Charlotte

    2017-10-21

    Severe bacterial infections remain a major challenge in intensive care units because of their high prevalence and mortality. Adequate antibiotic exposure has been associated with clinical success in critically ill patients. The objective of this study was to investigate the target attainment of standard meropenem dosing in a heterogeneous critically ill population, to quantify the impact of the full renal function spectrum on meropenem exposure and target attainment, and ultimately to translate the findings into a tool for practical application. A prospective observational single-centre study was performed with critically ill patients with severe infections receiving standard dosing of meropenem. Serial blood samples were drawn over 4 study days to determine meropenem serum concentrations. Renal function was assessed by creatinine clearance according to the Cockcroft and Gault equation (CLCR CG ). Variability in meropenem serum concentrations was quantified at the middle and end of each monitored dosing interval. The attainment of two pharmacokinetic/pharmacodynamic targets (100%T >MIC , 50%T >4×MIC ) was evaluated for minimum inhibitory concentration (MIC) values of 2 mg/L and 8 mg/L and standard meropenem dosing (1000 mg, 30-minute infusion, every 8 h). Furthermore, we assessed the impact of CLCR CG on meropenem concentrations and target attainment and developed a tool for risk assessment of target non-attainment. Large inter- and intra-patient variability in meropenem concentrations was observed in the critically ill population (n = 48). Attainment of the target 100%T >MIC was merely 48.4% and 20.6%, given MIC values of 2 mg/L and 8 mg/L, respectively, and similar for the target 50%T >4×MIC . A hyperbolic relationship between CLCR CG (25-255 ml/minute) and meropenem serum concentrations at the end of the dosing interval (C 8h ) was derived. For infections with pathogens of MIC 2 mg/L, mild renal impairment up to augmented renal function was identified as a risk factor for target non-attainment (for MIC 8 mg/L, additionally, moderate renal impairment). The investigated standard meropenem dosing regimen appeared to result in insufficient meropenem exposure in a considerable fraction of critically ill patients. An easy- and free-to-use tool (the MeroRisk Calculator) for assessing the risk of target non-attainment for a given renal function and MIC value was developed. Clinicaltrials.gov, NCT01793012 . Registered on 24 January 2013.

  9. In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts.

    PubMed

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong; Lee, Yang Won

    2017-06-01

    A new shampoo with anti- Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa , the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida . C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis.

  10. [Sinusal penetration of amoxicillin-clavulanic acid. Formulation 1 g./125 mg., twice daily versus formulation 500 mg./125 mg., three times daily].

    PubMed

    Jehl, F; Klossek, J M; Peynegre, R; Serrano, E; Castillo, L; Bobin, S; Desprez, D; Renault, C; Neel, V; Rouffiac, E; Borie, C

    2002-10-19

    In order to meet the evolution of pneumococcus resistance to beta-lactam antibiotics, a new formulation of amoxicillin (AMX) and clavulanic acid (CA), with twice as much AMX (1 g/125 mg vs. 500 mg/125 mg) was developed for the treatment of acute pneumonia in patients at risk. This formulation can also be used in the treatment of acute maxillary sinusitis using a 1 g/125 mg regimen twice-daily. Compare the sinusal penetration of AMX and CA (1 g/125 mg twice-daily vs. 500 mg/125 mg three times a day) when administered at both regimens to demonstrate equivalent pharmacokinetic and pharmacodynamic behaviour of the former when compared to the latter. Concentrations of AMX and CA were measured in the anterior ethmoid, maxillary, posterior ethmoid sinus and in the middle nasa concha in 62 patients undergoing surgery for nasosinusal polyps. Patients randomised in two groups corresponding to 2 oral regimens, received either 1 g/125 mg twice a day or 500 mg/125 mg three times a day for 4 days. The last dose in both groups was administered 1 h 30, 3, 5 or 8 hrs prior to surgery. Serum samples were taken simultaneously to tissue samples. AMX and CA were measured by high performance liquid chromatography. Exogenous and above all endogenous blood contamination were taken into account with the hematocrit as well as blood and tissue haemoglobin concentrations. Comparisons of tissue concentrations were made for each sampling time, according to values obtained for a specific tissue with both doses on one hand, and on the other to values obtained with a specific dose in different tissues. The calculated pharmacodynamic parameters, which are considered to be predictive for bacteriological and clinical efficacy, result directly from tissue concentrations of AMX. tissue inhibitory quotients (IQtissue = Tissue concentration/MIC). time above MICs for serum and tissue concentrations (T > MIC). As regards AMX, whatever the dose, at 1 h 30 and at 3 hrs, tissue concentrations did not differ significantly whatever the tissue studied (from 1.1 to 2.5 micrograms/g). Conversely, at 5 and 8 hrs, they were greater than after the 1 g/125 mg regimen given twice-daily (0.06-0.7 vs. 0.7-1.8 micrograms/g). If we consider a given dose, the comparison between the various tissues showed identical concentrations in the four tissues studied at each sampling time, except in two cases with the dose of 500 mg/125 mg 3 times a day. T > MIC for serum and tissue showed higher values than those required for AMX/pneumococcus association (40-50%) with, nevertheless, greater tissue values for the 1 g/125 mg dose given twice-daily when MIC was of 1 microgram/ml (40-52% vs. 50-66%). The maximum tissue inhibitory quotients were also greater with the twice-daily 1 g/125 mg dose, when calculated with MIC 50 or 90 of S. Pneumoniae, H. influenzae, M. catarrhalis or S. pyogenes. As for CA, concentrations were equivalent for both doses at each sampling time and greater than those required in vitro during respectively 4 and 5 hours for beta-lactamases H. influenzae and M. catarrhalis. A least an equivalence between both dose regimens was observed, with occasionally a superiority of the twice-daily 1 g/125 mg dose, in terms of pharmacokinetics, tissue penetration and pharmacodynamics for both AMX and CA. This new regimen therefore appears more appropriate for the treatment of acute maxillary sinusitis in adults.

  11. In Vitro Activity of Plazomicin against Gram-Negative and Gram-Positive Isolates Collected from United States Hospitals and Comparative Activity of Aminoglycosides against Carbapenem-Resistant Enterobacteriaceae and Isolates Carrying Carbapenemase Genes.

    PubMed

    Castanheira, Mariana; Davis, Andrew P; Mendes, Rodrigo E; Serio, Alisa W; Krause, Kevin M; Flamm, Robert K

    2018-06-04

    Plazomicin and comparators agents were tested using the CLSI reference broth microdilution method against 4,825 clinical isolates collected during 2014 and 2015 in 70 United States hospitals as part of the ALERT (Antimicrobial Longitudinal Evaluation and Resistance Trends) program. Plazomicin (MIC 50/90 , 0.5/2 μg/ml) inhibited 99.2% of 4,362 Enterobacteriaceae at ≤4 μg/ml. Amikacin, gentamicin, and tobramycin inhibited 98.9%, 90.3%, and 90.3% of these isolates, respectively, applying CLSI breakpoints. The activity of plazomicin was similar among Enterobacteriaceae species with MIC 50 values ranging from 0.25 to 1 μg/ml, with exception of Proteus mirabilis and indole-positive Proteaee that displayed MIC 50 values of 2 μg/ml. Against 97 carbapenem-resistant Enterobacteriaceae (CRE) that included 87 isolates carrying bla KPC , plazomicin inhibited all but 1 isolate at ≤2 μg/ml (99.0% and 98.9%, respectively). Amikacin and gentamicin inhibited 64.9% and 56.7% of the CRE isolates at the respective CLSI breakpoints. Plazomicin inhibited 96.5/95.5% of the gentamicin-resistant, 96.9/96.5% of the tobramycin-resistant and 64.3/90.0% of the amikacin-resistant isolates using CLSI/EUCAST breakpoints. The activity of plazomicin against Pseudomonas aeruginosa (MIC 50/90 , 4/16 μg/ml) and Acinetobacter spp. (MIC 50/90 , 2/16 μg/ml) isolates was similar. Plazomicin was active against coagulase-negative staphylococci (MIC 50/90 , 0.12/0.5 μg/ml) and Staphylococcus aureus (MIC 50/90 , 0.5/0.5 μg/ml), but had limited activity against Enterococcus spp. (MIC 50/90 , 16/64 μg/ml) and Streptococcus pneumoniae (MIC 50/90 , 32/64 μg/ml). Plazomicin activity against the Enterobacteriaceae tested, including CRE and isolates carrying bla KPC from U.S. hospitals, support the development plan for plazomicin to treat serious infections caused by resistant Enterobacteriaceae in patients with limited treatment options. Copyright © 2018 American Society for Microbiology.

  12. Antimicrobial activity and cytotoxicity of the ethanol extract, fractions and eight compounds isolated from Eriosema robustum (Fabaceae)

    PubMed Central

    2013-01-01

    Background The aim of this study was to evaluate the antimicrobial activity and the cytotoxicity of the ethanol crude extract, fractions and isolated compounds from the twigs of Eriosema robustum, a plant used for the treatment of coughs and skin diseases. Methods Column chromatographic and spectroscopic techniques were used to isolate and identify eight compounds, robusflavones A (1) and B (2), orostachyscerebroside A (3), stigmasterol (4), 1-O-heptatriacontanoyl glycerol (5), eicosanoic acid (6), 3-O-β-D-glucopyranoside of sitosterol (7) and 6-prenylpinocembrin (8), from E. robustum. A two-fold serial microdilution method was used to determine the minimum inhibitory concentration (MIC) against fungi and bacteria, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to evaluate the cytotoxicity. Results Fraction B had significant antimicrobial activity against Aspergillus fumigatus and Cryptoccocus neoformans (MIC 0.08 mg/ml), whilst the crude extract and fraction A had moderate activity against A. fumigatus and Candida albicans (MIC 0.16 mg/ml). Fraction A however had excellent activity against Staphylococcus aureus (MIC 0.02 mg/ml), Enterococcus faecalis and Escherichia coli (MIC 0.04 mg/ml). The crude extract had significant activity against S. aureus, E. faecalis and E. coli. Fraction B had good activity against E. faecalis and E. coli (MIC 0.08 mg/ml). All the isolated compounds had a relatively weak antimicrobial activity. An MIC of 65 μg/ml was obtained with robusflavones A (1) and B (2) against C. albicans and A. fumigatus, orostachyscerebroside A (3) against A. fumigatus, and robusflavone B (2) against C. neoformans. Compound 8 had the best activity against bacteria (average MIC 55 μg/ml). The 3 fractions and isolated compounds had LC50 values between 13.20 to > 100 μg/ml against Vero cells yielding selectivity indices between 0.01 and 1.58. Conclusion The isolated compounds generally had a much lower activity than expected based on the activity of the fractions from which they were isolated. This may be the result of synergism between different compounds in the complex extracts or fractions. The results support the traditional use of E. robustum to treat infections. The crude extract had a good activity and low preparation cost, and may be useful in topical applications to combat microbial infections. PMID:24165199

  13. In Vitro Activity of Ertapenem versus Ceftriaxone against Neisseria gonorrhoeae Isolates with Highly Diverse Ceftriaxone MIC Values and Effects of Ceftriaxone Resistance Determinants: Ertapenem for Treatment of Gonorrhea?

    PubMed Central

    Golparian, Daniel; Limnios, Athena; Whiley, David; Ohnishi, Makoto; Lahra, Monica M.; Tapsall, John W.

    2012-01-01

    Clinical resistance to the currently recommended extended-spectrum cephalosporins (ESCs), the last remaining treatment options for gonorrhea, is being reported. Gonorrhea may become untreatable, and new treatment options are crucial. We investigated the in vitro activity of ertapenem, relative to ceftriaxone, against N. gonorrhoeae isolates and the effects of ESC resistance determinants on ertapenem. MICs were determined using agar dilution technique or Etest for international reference strains (n = 17) and clinical N. gonorrhoeae isolates (n = 257), which included the two extensively drug-resistant (XDR) strains H041 and F89 and additional isolates with high ESC MICs, clinical ESC resistance, and other types of clinical high-level and multidrug resistance (MDR). Genetic resistance determinants for ESCs (penA, mtrR, and penB) were sequenced. In general, the MICs of ertapenem (MIC50 = 0.032 μg/ml; MIC90 = 0.064 μg/ml) paralleled those of ceftriaxone (MIC50 = 0.032 μg/ml; MIC90 = 0.125 μg/ml). The ESC resistance determinants mainly increased the ertapenem MIC and ceftriaxone MIC at similar levels. However, the MIC ranges for ertapenem (0.002 to 0.125 μg/ml) and ceftriaxone (<0.002 to 4 μg/ml) differed, and the four (1.5%) ceftriaxone-resistant isolates (MIC = 0.5 to 4 μg/ml) had ertapenem MICs of 0.016 to 0.064 μg/ml. Accordingly, ertapenem had in vitro advantages over ceftriaxone for isolates with ceftriaxone resistance. These in vitro results suggest that ertapenem might be an effective treatment option for gonorrhea, particularly for the currently identified ESC-resistant cases and possibly in a dual antimicrobial therapy regimen. However, further knowledge regarding the genetic determinants (and their evolution) conferring resistance to both antimicrobials, and clear correlates between genetic and phenotypic laboratory parameters and clinical treatment outcomes, is essential. PMID:22547617

  14. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection.

    PubMed

    Zelenitsky, Sheryl A; Ariano, Robert E

    2010-08-01

    Given concerns regarding optimal therapy for serious Gram-negative infections, the goal was to characterize the pharmacodynamics of ciprofloxacin in the context of treating bloodstream infection. Data were collected from the medical records of 178 clinical cases. Blood isolates were retrieved and ciprofloxacin MICs were measured. Forty-two cases in which ciprofloxacin was initiated within 24 h of the positive blood culture were used in the pharmacodynamic analysis. Significant factors with regard to treatment failure were low ciprofloxacin AUC(24)/MIC (P < 0.0001), high MIC (P = 0.001), male sex (P = 0.002) and low AUC(24) (P = 0.01). AUC(24)/MIC (P = 0.012) and MIC (P = 0.019) were significant variables in multivariate analyses; however, only the former remained significant (P = 0.038) after excluding two cases with ciprofloxacin-resistant isolates. An AUC(24)/MIC breakpoint of 250 was most significant, with cure rates of 91.4% (32/35) and 28.6% (2/7) in patients with values above and below this threshold, respectively (P = 0.001). The risk of ciprofloxacin treatment failure was 27.8 times (95% confidence interval, 2.1-333) greater in those not achieving an AUC(24)/MIC >or=250 (P = 0.011). Monte Carlo simulation of 5000 study subjects predicted that 0.88 of the population would achieve an AUC(24)/MIC >or=250 with standard-dose ciprofloxacin (400 mg intravenously every 12 h). This study confirms the pharmacodynamic parameters of ciprofloxacin that are important for optimizing the treatment of serious infections, particularly the benefits of achieving an AUC(24)/MIC >or=250, rather than the conventional target of >or=125. It also shows the relevance of dose selection in optimizing target attainment, with important differences among pathogens, even those with MICs within the susceptible range.

  15. Comparative activity of pradofloxacin against anaerobic bacteria isolated from dogs and cats.

    PubMed

    Silley, Peter; Stephan, Bernd; Greife, Heinrich A; Pridmore, Andrew

    2007-11-01

    To compare the intrinsic activity of pradofloxacin, a new fluoroquinolone developed for use in veterinary medicine, with other fluoroquinolones, against anaerobic bacteria isolated from dogs and cats. One hundred and forty-one anaerobes were isolated from dogs and cats and comparative MICs of pradofloxacin, marbofloxacin, enrofloxacin, difloxacin and ibafloxacin were determined according to standardized agar dilution methodology. Pradofloxacin exerted the greatest antibacterial activity followed by marbofloxacin, enrofloxacin, difloxacin and ibafloxacin. Based on the distinctly lower MIC(50), MIC(90) and mode MIC values, pradofloxacin exhibited a higher in vitro activity than any of the comparator fluoroquinolones. Pradofloxacin, a novel third-generation fluoroquinolone, has broad-spectrum anti-anaerobe activity and offers utility as single-drug therapy for mixed aerobic/anaerobic infections.

  16. Susceptibility screening of hyphae-forming fungi with a new, easy, and fast inoculum preparation method.

    PubMed

    Schmalreck, Arno; Willinger, Birgit; Czaika, Viktor; Fegeler, Wolfgang; Becker, Karsten; Blum, Gerhard; Lass-Flörl, Cornelia

    2012-12-01

    In vitro susceptibility testing of clinically important fungi becomes more and more essential due to the rising number of fungal infections in patients with impaired immune system. Existing standardized microbroth dilution methods for in vitro testing of molds (CLSI, EUCAST) are not intended for routine testing. These methods are very time-consuming and dependent on sporulating of hyphomycetes. In this multicentre study, a new (independent of sporulation) inoculum preparation method (containing a mixture of vegetative cells, hyphae, and conidia) was evaluated. Minimal inhibitory concentrations (MIC) of amphotericin B, posaconazole, and voriconazole of 180 molds were determined with two different culture media (YST and RPMI 1640) according to the DIN (Deutsches Institut für Normung) microdilution assay. 24 and 48 h MIC of quality control strains, tested per each test run, prepared with the new inoculum method were in the range of DIN. YST and RPMI 1640 media showed similar MIC distributions for all molds tested. MIC readings at 48 versus 24 h yield 1 log(2) higher MIC values and more than 90 % of the MICs read at 24 and 48 h were within ± 2 log(2) dilution. MIC end point reading (log(2 MIC-RPMI 1640)-log(2 MIC-YST)) of both media demonstrated a tendency to slightly lower MICs with RPMI 1640 medium. This study reports the results of a new, time-saving, and easy-to-perform method for inoculum preparation for routine susceptibility testing that can be applied for all types of spore-/non-spore and hyphae-forming fungi.

  17. First Comprehensive Evaluation of the M.I.C. Evaluator Device Compared to Etest and CLSI Broth Microdilution for MIC Testing of Aerobic Gram-Positive and Gram-Negative Bacterial Species

    PubMed Central

    Turnbull, L.; Brosnikoff, C.; Cloke, J.

    2012-01-01

    The M.I.C. Evaluator strip (Thermo Fisher Scientific, Basingstoke, United Kingdom) uses a methodology similar to that of Etest. In this first assessment of the M.I.C. Evaluator device, 409 strains of aerobic Gram-positive bacteria (staphylococci, streptococci, and enterococci) and 325 strains of Enterobacteriaceae, Pseudomonas species, and Acinetobacter species were tested by M.I.C. Evaluator strip, Etest, and broth microdilution as a reference standard. The Gram-positive bacteria included staphylococci (methicillin-resistant Staphylococcus aureus, methicillin-susceptible S. aureus, and coagulase-negative staphylococci), Streptococcus pneumoniae, beta-hemolytic streptococci and viridians group strains, vancomycin-resistant enterococci, and other enterococci. The Gram-negative bacteria included 250 strains of 60 Enterobacteriaceae species plus 50 Pseudomonas and 25 Acinetobacter species. A total of 14 antimicrobial agents (depending on the species) were included. The same methodology and reading format were used for M.I.C. Evaluator strips and Etest. Broth microdilution methodology was performed according to CLSI document M07-A8. For the clinical strains, >95% of results were plus or minus one doubling dilution for all species. There were fewer than 5% minor errors, fewer than 3% major errors, and fewer than 1% very major errors. M.I.C. Evaluator strips and Etest often reported higher MICs than the reference broth microdilution method. The M.I.C. Evaluator strips provided results comparable to those of the predicate Etest device and are of value for the accurate testing of MICs for these important pathogens. PMID:22238441

  18. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections.

    PubMed

    Caetano da Silva, Sandro Donizete; Mendes de Souza, Maria Gorete; Oliveira Cardoso, Miguel Jorge; da Silva Moraes, Thais; Ambrósio, Sérgio Ricardo; Sola Veneziani, Rodrigo Cássio; Martins, Carlos Henrique G

    2014-12-01

    Endodontic infections have a polymicrobial nature, but anaerobic bacteria prevail among the infectious microbes. Considering that it is easy to eliminate planktonic bacteria, biofilm-forming bacteria still challenge clinicians during the fight against endodontic diseases. The chemical constituents of the oleoresin of Pinus elliottii, a plant belonging to the family Pinaceae, stand out in the search for biologically active compounds based on natural products with potential application in the treatment of endodontic infections. Indeed, plant oleoresins are an abundant natural source of diterpenes that display significant and well-defined biological activities as well as potential antimicrobial action. In this context, this study aimed to (1) evaluate the in vitro antibacterial activity of the oleoresin, fractions, and subfractions of P. elliottii as well as the action of dehydroabietic acid against 11 anaerobic bacteria that cause endodontic infection in both their planktonic and biofilm forms and (2) assess the in vitro antibiofilm activity of dehydroabietic acid against the same group of bacteria. The broth microdilution technique helped to determine the minimum inhibitory concentration (MIC) of the oleoresin and fractions. This same technique aided determination of the MIC values of nine subfractions of Fraction 1, the most active fraction. The MIC, minimum bactericidal concentration, and antibiofilm activity of dehydroabietic acid against the tested anaerobic bacteria were also examined. The oleoresin and fractions, especially fraction PE1, afforded promising MIC values, which ranged from 0.4 to 50 μg/mL. Concerning the nine evaluated subfractions, PE1.3 and PE1.4 furnished the most noteworthy MIC values, between 6.2 and 100 μg/mL. Dehydroabietic acid displayed antibacterial activity, with MIC values lying from 6.2 to 50 μg/mL, as well as bactericidal effect for all the investigated bacteria, except for Prevotella nigrescens. Assessment of the antibiofilm activity revealed significant results--MICB50 lay between 7.8 and 62.5 μg/mL, and dehydroabietic acid prevented all the evaluated bacteria from forming a biofilm. Hence, the chemical constituents of P. elliottii are promising biomolecules to develop novel therapeutic strategies to fight against endodontic infections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Tolerance response of multidrug-resistant Salmonella enterica strains to habituation to Origanum vulgare L. essential oil

    PubMed Central

    Monte, Daniel F. M.; Tavares, Adassa G.; Albuquerque, Allan R.; Sampaio, Fábio C.; Oliveira, Tereza C. R. M.; Franco, Octavio L.; Souza, Evandro L.; Magnani, Marciane

    2014-01-01

    Multidrug-resistant Salmonella enterica isolates from human outbreaks or from poultry origin were investigated for their ability to develop direct-tolerance or cross-tolerance to sodium chloride, potassium chloride, lactic acid, acetic acid, and ciprofloxacin after habituation in subinhibitory amounts ( of the minimum inhibitory concentration – (MIC) and of the minimum inhibitory concentration – MIC) of Origanum vulgare L. essential oil (OVEO) at different time intervals. The habituation of S. enterica to OVEO did not induce direct-tolerance or cross-tolerance in the tested strains, as assessed by the modulation of MIC values. However, cells habituated to OVEO maintained or increased susceptibility to the tested antimicrobials agents, with up to fourfold double dilution decrease from previously determined MIC values. This study reports for the first time the non-inductive effect of OVEO on the acquisition of direct-tolerance or cross-tolerance in multidrug-resistant S. enterica strains to antimicrobial agents that are largely used in food preservation, as well as to CIP, the therapeutic drug of salmonellosis. PMID:25566231

  20. Activities of two novel macrolides, GW 773546 and GW 708408, compared with those of telithromycin, erythromycin, azithromycin, and clarithromycin against Haemophilus influenzae.

    PubMed

    Kosowska, Klaudia; Credito, Kim; Pankuch, Glenn A; Hoellman, Dianne; Lin, Gengrong; Clark, Catherine; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R; Appelbaum, Peter C

    2004-11-01

    The MIC at which 50% of strains are inhibited (MIC(50)) and the MIC(90) of GW 773546, a novel macrolide, were 1.0 and 2.0 microg/ml, respectively, for 223 beta-lactamase-positive, beta-lactamase-negative, and beta-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC(50)s and MIC(90)s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 microg/ml, respectively, while the MIC(50) and MIC(90) of azithromycin were 1.0 and 2.0 microg/ml, respectively. The MIC(50) and MIC(90) of erythromycin were 4.0 and 8.0 microg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 microg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 x 10(-9) to 2.2 x 10(-6) with GW 773546, 1.5 x 10(-9) to 6.0 x 10(-4) with GW 708408, and 7.1 x 10(-9) to 3.8 x 10(-4) with telithromycin, whereas the frequencies were 1.3 x 10(-9) to 6.0 x 10(-4) with erythromycin and azithromycin and 2.0 x 10(-9) to 2.0 x 10(-3) with clarithromycin. Alterations in the L22 protein (which were predominant) and the L4 protein were present in mutants selected by the single-step selection process. The postantibiotic effects of GW 773546, GW 708408, and telithromycin for seven H. influenzae strains were 6.6 h (range, 5.2 to 8.8 h), 4.7 h (range, 2.6 to 6.9 h), and 6.4 h (range, 3.8 to 9.7 h), respectively. The results of in vitro studies obtained with both novel macrolides were similar to those obtained with telithromycin and better than those obtained with older macrolides.

  1. Activities of Two Novel Macrolides, GW 773546 and GW 708408, Compared with Those of Telithromycin, Erythromycin, Azithromycin, and Clarithromycin against Haemophilus influenzae

    PubMed Central

    Kosowska, Klaudia; Credito, Kim; Pankuch, Glenn A.; Hoellman, Dianne; Lin, Gengrong; Clark, Catherine; Dewasse, Bonifacio; McGhee, Pamela; Jacobs, Michael R.; Appelbaum, Peter C.

    2004-01-01

    The MIC at which 50% of strains are inhibited (MIC50) and the MIC90 of GW 773546, a novel macrolide, were 1.0 and 2.0 μg/ml, respectively, for 223 β-lactamase-positive, β-lactamase-negative, and β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains. The MIC50s and MIC90s of GW 708408, a second novel macrolide, and telithromycin, an established ketolide, were 2.0 and 4.0 μg/ml, respectively, while the MIC50 and MIC90 of azithromycin were 1.0 and 2.0 μg/ml, respectively. The MIC50 and MIC90 of erythromycin were 4.0 and 8.0 μg/ml, respectively; and those of clarithromycin were 4.0 and 16.0 μg/ml, respectively. All compounds except telithromycin were bactericidal (99.9% killing) against nine strains at two times the MIC after 24 h. Telithromycin was bactericidal against eight of the nine strains. In addition, both novel macrolides and telithromycin at two times the MIC showed 99% killing of all nine strains after 12 h and 90% killing of all strains after 6 h. After 24 h, all drugs were bactericidal against four to seven strains when they were tested at the MIC. Ten of 11 strains tested by multistep selection analysis yielded resistant clones after 14 to 43 passages with erythromycin. Azithromycin gave resistant clones of all strains after 20 to 50 passages, and clarithromycin gave resistant clones of 9 of 11 strains after 14 to 41 passages. By comparison, GW 708408 gave resistant clones of 9 of 11 strains after 14 to 44 passages, and GW 773546 gave resistant clones of 10 of 11 strains after 14 to 45 passages. Telithromycin gave resistant clones of 7 of 11 strains after 18 to 45 passages. Mutations mostly in the L22 and L4 ribosomal proteins and 23S rRNA were detected in resistant strains selected with all compounds, with alterations in the L22 protein predominating. Single-step resistance selection studies at the MIC yielded spontaneous resistant mutants at frequencies of 1.5 × 10−9 to 2.2 × 10−6 with GW 773546, 1.5 × 10−9 to 6.0 × 10−4 with GW 708408, and 7.1 × 10−9 to 3.8 × 10−4 with telithromycin, whereas the frequencies were 1.3 × 10−9 to 6.0 × 10−4 with erythromycin and azithromycin and 2.0 × 10−9 to 2.0 × 10−3 with clarithromycin. Alterations in the L22 protein (which were predominant) and the L4 protein were present in mutants selected by the single-step selection process. The postantibiotic effects of GW 773546, GW 708408, and telithromycin for seven H. influenzae strains were 6.6 h (range, 5.2 to 8.8 h), 4.7 h (range, 2.6 to 6.9 h), and 6.4 h (range, 3.8 to 9.7 h), respectively. The results of in vitro studies obtained with both novel macrolides were similar to those obtained with telithromycin and better than those obtained with older macrolides. PMID:15504829

  2. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    PubMed Central

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites. PMID:23360506

  3. Comparative Pharmacodynamics and Antimutant Potentials of Doripenem and Imipenem with Ciprofloxacin-Resistant Pseudomonas aeruginosa in an In Vitro Model

    PubMed Central

    Gilbert, Deborah; Greer, Kenneth; Portnoy, Yury A.; Zinner, Stephen H.

    2012-01-01

    To compare the antipseudomonal efficacy of doripenem and imipenem as well as their abilities to restrict the enrichment of resistant Pseudomonas aeruginosa, multiple-dosing regimens of each drug were simulated at comparable values of the cumulative percentages of a 24-h period that the drug concentration exceeds the MIC under steady-state pharmacokinetic conditions (T>MIC) and ratios of the 24-hour area under the curve (AUC24) to the MIC. Three clinical isolates of ciprofloxacin-resistant P. aeruginosa (MIC of doripenem, 1 μg/ml; MICs of imipenem, 1, 2, and 2 μg/ml) were exposed to thrice-daily doripenem or imipenem for 3 days at AUC24/MIC ratios of from 50 to 170 h (doripenem) and from 30 to 140 h (imipenem). The antimicrobial effects for susceptible and resistant subpopulations of bacteria were expressed by the areas between control growth and time-kill curves (IEs) and areas under the bacterial mutant concentration curves (AUBCMs), respectively. With each antibiotic, the IE and AUBCM versus log AUC24/MIC relationships were bacterial strain independent. At similar AUC24/MIC ratios, doripenem was slightly less efficient than imipenem against susceptible and resistant subpopulations of bacteria. However, doripenem appeared to be somewhat more efficient than imipenem at clinically achievable AUC24s related to the means of the MICs for the three studied strains and had higher antimutant potentials for two of the three strains. PMID:22203591

  4. In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms.

    PubMed

    Dosler, Sibel; Mataraci, Emel

    2013-11-01

    Antibiotic therapy for methicillin-resistant Staphylococcus aureus (MRSA) infections is becoming more difficult in hospitals and communities because of strong biofilm-forming properties and multidrug resistance. Biofilm-associated MRSA is not affected by therapeutically achievable concentrations of antibiotics. Therefore, we investigated the in vitro pharmacokinetic activities of antimicrobial cationic peptides (AMPs; indolicidin, cecropin [1-7]-melittin A [2-9] amide [CAMA], and nisin), either alone or in combination with antibiotics (daptomycin, linezolid, teicoplanin, ciprofloxacin, and azithromycin), against standard and 2 clinically obtained MRSA biofilms. The minimum inhibitory concentrations (MIC) and minimum biofilm-eradication concentrations (MBEC) were determined by microbroth dilution technique. The time-kill curve (TKC) method was used to determine the bactericidal activities of the AMPs alone and in combination with the antibiotics against standard and clinically obtained MRSA biofilms. The MIC values of the AMPs and antibiotics ranged between 2 to 16 and 0.25 to 512 mg/L, and their MBEC values were 640 and 512 to 5120 mg/L, respectively. The TKC studies demonstrated that synergistic interactions occurred most frequently when using nisin+daptomycin/ciprofloxacin, indolicidin+teicoplanin, and CAMA+ciprofloxacin combinations. No antagonism was observed with any combination. AMPs appear to be good candidates for the treatment of MRSA biofilms, as they act as both enhancers of anti-biofilm activities and help to prevent or delay the emergence of resistance when used either alone or in combination with antibiotics. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Establishing the validity of different susceptibility testing methods to evaluate the in vitro activity of amoxicillin-clavulanate against Escherichia coli.

    PubMed

    María, Díez-Aguilar; María-Isabel, Morosini; María-Carmen, Conejo; Álvaro, Pascual; Jorge, Calvo; Luis, Martínez-Martínez; Francesc, Marco; Jordi, Vila; Adriana, Ortega; Jesús, Oteo; Rafael, Cantón

    2016-04-01

    Amoxicillin-clavulanate MICs of 160 Escherichia coli isolates with characterized resistance mechanisms were obtained by 2 MIC gradient strip brands, 3 automated systems, and reference ISO microdilution method using EUCAST (fixed 2μg/mL clavulanate) and CLSI (2:1 ratio) criteria. Discrepancies, mainly obtained with gradient strips, lead to an essential agreement range of 76.2-92.5. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. High MICs for Vancomycin and Daptomycin and Complicated Catheter-Related Bloodstream Infections with Methicillin-Sensitive Staphylococcus aureus

    PubMed Central

    Viedma, Esther; Chaves, Fernando; Lalueza, Antonio; Fortún, Jesús; Loza, Elena; Pujol, Miquel; Ardanuy, Carmen; Morales, Isabel; de Cueto, Marina; Resino-Foz, Elena; Morales-Cartagena, Alejandra; Rico, Alicia; Romero, María P.; Orellana, María Ángeles; López-Medrano, Francisco; Fernández-Ruiz, Mario; Aguado, José María

    2016-01-01

    We investigated the prognostic role of high MICs for antistaphylococcal agents in patients with methicillin-sensitive Staphylococcus aureus catheter-related bloodstream infection (MSSA CRBSI). We prospectively reviewed 83 episodes from 5 centers in Spain during April 2011–June 2014 that had optimized clinical management and analyzed the relationship between E-test MICs for vancomycin, daptomycin, oxacillin, and linezolid and development of complicated bacteremia by using multivariate analysis. Complicated MSSA CRBSI occurred in 26 (31.3%) patients; MICs for vancomycin and daptomycin were higher in these patients (optimal cutoff values for predictive accuracy = 1.5 μg/mL and 0.5 μg/mL). High MICs for vancomycin (hazard ratio 2.4, 95% CI 1.2–5.5) and daptomycin (hazard ratio 2.4, 95% CI 1.1–5.9) were independent risk factors for development of complicated MSSA CRBSI. Our data suggest that patients with MSSA CRBSI caused by strains that have high MICs for vancomycin or daptomycin are at increased risk for complications. PMID:27192097

  7. Investigation of the antimicrobial activities of Snakin-Z, a new cationic peptide derived from Zizyphus jujuba fruits.

    PubMed

    Daneshmand, Fatemeh; Zare-Zardini, Hadi; Ebrahimi, Leila

    2013-01-01

    Snakin-Z is a novel antimicrobial peptide (AMP) that is identified from the fruit of Zizyphus jujuba. This peptide is composed of 31 amino acids which is determined with the sequence of CARLNCVPKGTSGNTETCPCYASLHSCRKYG and molecular weight of 3318.82 Da. Snakin-Z is not identical to any AMP in the peptide database. According to this study, Snakin-Z potentially has antimicrobial property against bacteria and fungi. Minimal inhibitory concentration (MIC) value of this peptide is suitable for antimicrobial activity. We assessed that Snakin-Z could affect Phomopsis azadirachtae with the MIC value of 7.65 μg/mL and vice versa Staphylococcus aureus with the MIC value of 28.8 μg/mL. Interestingly, human red blood cells also showed good tolerance to the Snakin-Z. On the basis of this study, Snakin-Z can be an appropriate candidate for therapeutic applications in the future due to its antimicrobial property.

  8. Determination of antibacterial activity of green coffee bean extract on periodontogenic bacteria like Porphyromonas gingivalis, Prevotella intermedia, Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans: An in vitro study

    PubMed Central

    Bharath, Nagaraj; Sowmya, Nagur Karibasappa; Mehta, Dhoom Singh

    2015-01-01

    Background: The aim of this study was to evaluate the antibacterial activity of pure green coffee bean extract on periodonto pathogenic bacteria Porphyromonas gingivalis (Pg), Prevotella intermedia (Pi), Fusobacterium nucleatum (Fn) and Aggregatibacter actinomycetemcomitans (Aa). Materials and Methods: Minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBC) were used to assess the antibacterial effect of pure green coffee bean extract against periodonto pathogenic bacteria by micro dilution method and culture method, respectively. Results: MIC values of Pg, Pi and Aa were 0.2 μg/ml whereas Fn showed sensitive at concentration of 3.125 μg/ml. MBC values mirrors the values same as that of MIC. Conclusion: Antimicrobial activity of pure green coffee bean extract against Pg, Pi, Fn and Aa suggests that it could be recommended as an adjunct to mechanical therapy in the management of periodontal disease. PMID:26097349

  9. In Vitro Structural and Functional Evaluation of Gold Nanoparticles Conjugated Antibiotics

    NASA Astrophysics Data System (ADS)

    Saha, Biswarup; Bhattacharya, Jaydeep; Mukherjee, Ananda; Ghosh, Anup Kumar; Santra, Chitta Ranjan; Dasgupta, Anjan K.; Karmakar, Parimal

    2007-12-01

    Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains, Escherichia coli DH5α, Micrococcus luteus and Staphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications.

  10. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts.

    PubMed

    Zampini, Iris C; Vattuone, Marta A; Isla, Maria I

    2005-12-01

    The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.

  11. Aeromonas Diversity and Antimicrobial Susceptibility in Freshwater-An Attempt to Set Generic Epidemiological Cut-Off Values.

    PubMed

    Baron, Sandrine; Granier, Sophie A; Larvor, Emeline; Jouy, Eric; Cineux, Maelan; Wilhelm, Amandine; Gassilloud, Benoit; Le Bouquin, Sophie; Kempf, Isabelle; Chauvin, Claire

    2017-01-01

    The importance of the role of environment in the dissemination of antimicrobial resistant bacteria is now well recognized. Thus, bacterial indicators to monitor the phenomena are required. The Aeromonas genus is autochthonous in the aquatic environment and easy to detect in any water type, such as freshwater, or wastewater. These microorganisms are also causing infections in humans and animals (including fish). Furthermore, as Aeromonas spp. is able to acquire antimicrobial resistance mechanisms, it is candidate for indicator bacteria to follow antimicrobial resistance dissemination in aquatic environments. Unfortunately, to date, interpretation criteria for Aeromonas spp. for antimicrobial susceptibility tests are scarce in the literature. No epidemiological cut-off values for Aeromonas are currently available at EUCAST to interpret Minimum Inhibitory Concentrations (MIC). The only interpretation criteria available are clinical breakpoints from CLSI that are adapted from Enterobacteriaceae . Based on the results of MIC distributions obtained for a collection of environmental isolates of Aeromonas , this study aimed at proposing tentative epidemiological cut-off values (CO WT ) for Aeromonas spp. assessing whether the genus is an acceptable level of definition. Thus, 233 isolates collected from 16 rivers were identified at species level using Maldi-Tof (Bruker). Eleven different species were identified, the most abundant were A. bestiarum ( n = 54), A. salmonicida ( n = 45), A. sobria ( n = 41), and A. eucrenophila ( n = 37). 96-well micro-plates containing different concentrations of 15 antimicrobials, namely cefotaxime, ceftazidime, chloramphenicol, colistin, enrofloxacin, erythromycin, florfenicol, flumequine, gentamicin, nalidixic acid, oxolinic acid, streptomycin, temocillin, tetracycline, and trimethoprim-sulfamethoxazole, were prepared. The broth micro-dilution method was used to determine the antimicrobial susceptibility of each isolate. The estimation of CO WT values was satisfactory obtained at genus level for all antimicrobials except cefotaxime and erythromycin. This first step is an invitation for other research teams to increase the amount of antimicrobial resistance data collected. Then, robustness of our proposed provisional generic epidemiological cut-off values could be assessed by testing antimicrobial susceptibility of various Aeromonas collections.

  12. Achievement of trifecta in minimally invasive partial nephrectomy correlates with functional preservation of operated kidney: a multi-institutional assessment using MAG3 renal scan.

    PubMed

    Zargar, Homayoun; Porpiglia, Francesco; Porter, James; Quarto, Giuseppe; Perdona, Sisto; Bertolo, Riccardo; Autorino, Riccardo; Kaouk, Jihad H

    2016-07-01

    To validate and compare the values of "MIC" and "trifecta" as predictors of operated kidney functional preservation in a multi-institutional cohort of patients undergoing minimally invasive PN. We retrospectively reviewed records of consecutive cases of minimally invasive PN performed for cT1 renal masses in 4 centers from 2009 to 2013. Inclusion criteria consisted of availability of a renal scan obtained within 2 weeks prior to surgery and follow-up renal scan 3-6 months after the surgery. The primary endpoint of the study was to compare the degree of ipsilateral renal function preservation assessed by MAG3 renal scan in relation to achievement of MIC and trifecta. Total of 351 patients met our inclusion criteria. The rates of trifecta achievement for cT1a and cT1b tumors were 78.9 and 60.6 %, respectively. The rate of MIC achievement for cT1a tumors and cT1b tumors was 60.3 and 31.7 %, respectively. On multivariable linear regression model, only the degree of tumor complexity assessed by R.E.N.A.L nephrometry score [coefficient B -1.8 (-2.7, -0.9); p < 0.0001] and the achievement of trifecta [coefficient B 6.1 (2.4,9.8); p = 0.014] or MIC (coefficient B 7.2 (3.8,0.6); p < 0.0001) were significant clinical factors predicting ipsilateral split function preservation. Achievement of both MIC and "trifecta" is associated with higher proportion of split renal function preservation for cT1 tumors after minimally invasive PN. Thus, these outcome measures can be regarded not only as markers of surgical quality, but also as reliable surrogates for predicting functional outcome in the operated kidney.

  13. Some Strychnos spinosa (Loganiaceae) leaf extracts and fractions have good antimicrobial activities and low cytotoxicities.

    PubMed

    Isa, Adamu Imam; Awouafack, Maurice Ducret; Dzoyem, Jean Paul; Aliyu, Mohammed; Magaji, Rabiu AbduSsalam; Ayo, Joseph Olusegun; Eloff, Jacobus Nicolaas

    2014-11-27

    Strychnos spinosa Lam. is a deciduous tree used in traditional medicine to treat infectious diseases. This study is designed to determine the antimicrobial, antioxidant and cytotoxic activities of extracts and fractions from leaves of S. spinosa. Extracts were obtained by maceration with acetone, methanol and dichloromethane/methanol (1/1) while fractions were prepared by liquid-liquid fractionation of the acetone extract. A broth serial microdilution method with tetrazolium violet as growth indicator was used to determine the minimum inhibitory concentration (MIC) against fungi, Gram-positive and Gram-negative bacteria. The antioxidant activity was determined using free-radical-scavenging assays, and the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay was used to determine cytotoxicity. Four extracts and five fractions had good to weak antimicrobial activity with MICs ranging from 0.04 to >1.25 mg/ml against both fungi and bacteria. The chloroform and ethyl acetate fractions had an MIC of 0.08 mg/ml against Aspergillus fumigatus. The n-butanol fraction had an MIC of 0.04 mg/ml against Cryptococcus neoformans. The hexane and chloroform fractions had an MIC of 0.08 mg/ml against Staphylococcus aureus. The antioxidant activities were much lower than that of the positive controls. Except for the alkaloid extract, all the extracts and fractions had free-radical-scavenging activity (IC50 ranging from 33.66 to 314.30 μg/ml). The cytotoxicity on Vero cells was reasonable to low with LC50 values ranging between 30.56 and 689.39 μg/ml. The acetone extract and the chloroform fraction had the highest antibacterial activity. By solvent-solvent fractionation it was possible to increase the activity against A. fumigatus and to decrease the cytotoxicity leading to a potentially useful product to protect animals against aspergillosis. Our results therefore support the use of S. spinosa leaves in traditional medicine to treat infectious diseases.

  14. Synthesis and antimicrobial activity of novel amphiphilic aromatic amino alcohols.

    PubMed

    de Almeida, Angelina M; Nascimento, Thiago; Ferreira, Bianca S; de Castro, Pedro P; Silva, Vânia L; Diniz, Claúdio G; Le Hyaric, Mireille

    2013-05-15

    We report in this work the preparation and in vitro antimicrobial evaluation of novel amphiphilic aromatic amino alcohols synthesized by reductive amination of 4-alkyloxybenzaldehyde with 2-amino-2-hydroxymethyl-propane-1,3-diol. The antibacterial activity was determined against four standard strains (Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa) and 21 clinical isolates of methicillin-resistant Staphylococcus aureus. The antifungal activity was evaluated against four yeast (Candida albicans, Candida tropicalis, Candida glabrata and Candida parapsilosis). The results obtained showed a strong positive correlation between the lipophilicity and the antibiotic activity of the tested compounds. The best activities were obtained against the Gram-positive bacteria (MIC=2-16μgml(-1)) for the five compounds bearing longer alkyl chains (4c-g; 8-14 carbons), which were also the most active against Candida (MIC=2-64μgml(-1)). Compound 4e exhibited the highest levels of inhibitory activity (MIC=2-16μgml(-1)) against clinical isolates of MRSA. A concentration of twice the MIC resulted in bactericidal activity of 4d against 19 of the 21 clinical isolates. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The synthesis and antistaphylococcal activity of 9, 13-disubstituted berberine derivatives.

    PubMed

    Wang, Jing; Yang, Teng; Chen, Huang; Xu, Yun-Nan; Yu, Li-Fang; Liu, Ting; Tang, Jie; Yi, Zhengfang; Yang, Cai-Guang; Xue, Wei; Yang, Fan

    2017-02-15

    A series of novel 9, 13-disubstituted berberine derivatives have been synthesized and evaluated for the antibacterial activities against Staphylococcus aureus, including Newman strain and multidrug-resistant strains (NRS-1, NRS-70, NRS-100, NRS-108, and NRS-271). Compound 20 shows the most potent activity against the growth of Newman strain, with a MIC value of 0.78 μg/mL, which is comparable with the positive control vancomycin. In addition, compound 20, 21, and 33 are highly antistaphylococcal active against five strains of multidrug-resistant S. aureus, with MIC values of 0.78-1.56 μg/mL. Of note, theses antibacterial active compounds have no obvious toxicity to the viability of human fibroblast (HAF) cells at the MIC concentration. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Extraction, separation and isolation of volatiles from Vitex agnus-castus L. (Verbenaceae) wild species of Sardinia, Italy, by supercritical CO2.

    PubMed

    Marongiu, Bruno; Piras, Alessandra; Porcedda, Silvia; Falconieri, Danilo; Goncalves, Maria J; Salgueiro, Ligia; Maxia, Andrea; Lai, Roberta

    2010-04-01

    Isolation of volatile concentrates from leaves, flowers and fruits of Vitex agnus-castus L. have been obtained by supercritical extraction with carbon dioxide. The composition of the volatile concentrates has been analysed by GC/MS. In all plant organs, the extracts are composed chiefly of alpha-pinene, sabinene, 1,8-cineole, alpha-terpinyl acetate, (E)-caryophyllene, (E)-beta-farnesene, bicyclogermacrene, spathulenol and manool. The main difference observed was in the content of sclarene, which was not present in the samples from flowers or fruits. To complete the investigation, a comparison with the hydrodistilled oil has been carried out. The minimal inhibitory concentration (MIC) and the minimal lethal concentration were used to evaluate the antifungal activity of the oils against dermatophyte strains (Trichophyton mentagrophytes, Microsporum canis, T. rubrum, M. gypseum and Epidermophyton floccosum). Antifungal activity of the leaf essential oil was the highest, with MIC values of 0.64 microL mL(-1) for most of the strains.

  17. Supercritical CO₂ extraction of volatile oils from Sardinian Foeniculum vulgare ssp. vulgare (Apiaceae): chemical composition and biological activity.

    PubMed

    Piras, Alessandra; Falconieri, Danilo; Porcedda, Silvia; Marongiu, Bruno; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2014-01-01

    This article reports the results on the composition and antifungal effect of volatile extracts obtained from the aerial parts of Sardinian wild fennel (Foeniculum vulgare Mill.), by supercritical fluid extraction (SFE) and by hydrodistillation (HD). The extracts were analysed by gas chromatography-mass spectrometry for qualitative composition and gas chromatography-flame ionisation detector to establish the percentage of constituents. The main components were fenchone (7.1% vs. 8.8%), estragole (34.9% vs. 42.6%) and (E)-anethole (24.6% vs. 43.4%) in the SFE and HD extract, respectively. Minimum inhibitory concentrations (MICs) were measured according to the reference Clinical and Laboratory Standards Institute (CLSI) broth macrodilution protocols. Minimum lethal concentrations were determined by subsequent subculturing of the same cell suspensions in solid medium. The essential oil was more active against Candida albicans, whereas the supercritical fluid extract possesses higher activity against Candida guillermondii and Cryptococcus neoformans, with MIC values of 0.32 μL/mL.

  18. Effects of refrigerating preinoculated Vitek cards on microbial physiology and antibiotic susceptibility

    NASA Technical Reports Server (NTRS)

    Skweres, Joyce A.; Bassinger, Virginia J.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    Reference cultures of 16 microorganisms obtained from the American Type Culture Collection and four clinical isolates were used in standardized solutions to inoculate 60 cards for each test strain. A set of three ID and three susceptibility cards was processed in the Vitek AutoMicrobic System (AMS) immediately after inoculation. The remaining cards were refrigerated at 4 C, and sets of six cards were removed and processed periodically for up to 17 days. The preinoculated AMS cards were evaluated for microorganism identification, percent probability of correct identification, length of time required for final result, individual substrate reactions, and antibiotic minimal inhibitory/concentration (MIC) values. Results indicate that 11 of the 20 microbes tested withstood refrigerated storage up to 17 days without detectable changes in delineating characteristics. MIC results appear variable, but certain antibiotics proved to be more stable than others. The results of these exploratory studies will be used to plan a microgravity experiment designed to study the effect of microgravity on microbial physiology and antibiotic sensitivity.

  19. Essential Oils Composition and Antimicrobial Activity of Six Conifers Harvested in Lebanon.

    PubMed

    Fahed, Layal; Khoury, Madona; Stien, Didier; Ouaini, Naïm; Eparvier, Véronique; El Beyrouthy, Marc

    2017-02-01

    The chemical composition and antimicrobial activity of the essential oils (EOs) of six conifers harvested in Lebanon, Abies cilicica, Cupressus sempervirens, Juniperus excelsa, Juniperus oxycedrus, Cedrus libani and Cupressus macrocarpa gold crest, were investigated. The EOs were obtained by hydrodistillation using a Clevenger-type apparatus and characterized by GC and GC/MS analyses. A principal components analysis based on Pearson correlation between essential oils chemical analyses was also conducted. The minimum inhibitory concentrations (MICs) of these essentials oils were determined against a range of bacteria and fungi responsible for cutaneous infections in human, using the broth microdilution technique. The EOs showed the most interesting bioactivity on the dermatophytes species (MIC values 32 - 64 μg/ml). Each of the major compounds of C. macrocarpa as well as an artificial reconstructed EO were tested on Trichophyton rubrum showing a contribution of the minor components to the overall activity. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  20. Evaluation of the efficacy of four weak acids as antifungal preservatives in low-acid intermediate moisture model food systems.

    PubMed

    Huang, Yang; Wilson, Mark; Chapman, Belinda; Hocking, Ailsa D

    2010-02-01

    The potential efficacy of four weak acids as preservatives in low-acid intermediate moisture foods was assessed using a glycerol based agar medium. The minimum inhibitory concentrations (MIC, % wt./wt.) of each acid was determined at two pH values (pH 5.0, pH 6.0) and two a(w) values (0.85, 0.90) for five food spoilage fungi, Eurotium herbariorum, Eurotium rubrum, Aspergillus niger, Aspergillus flavus and Penicillium roqueforti. Sorbic acid, a preservative commonly used to control fungal growth in low-acid intermediate moisture foods, was included as a reference. The MIC values of the four acids were lower at pH 5.0 than pH 6.0 at equivalent a(w) values, and lower at 0.85 a(w) than 0.90 a(w) at equivalent pH values. By comparison with the MIC values of sorbic acid, those of caprylic acid and dehydroacetic acid were generally lower, whereas those for caproic acid were generally higher. No general observation could be made in the case of capric acid. The antifungal activities of all five weak acids appeared related not only to the undissociated form, but also the dissociated form, of each acid.

  1. Combined Activity of Colloid Nanosilver and Zataria Multiflora Boiss Essential Oil-Mechanism of Action and Biofilm Removal Activity.

    PubMed

    Shirdel, Maryam; Tajik, Hossein; Moradi, Mehran

    2017-12-01

    Purpose: The aim of this study was to investigate antimicrobial and biofilm removal potential of Zataria multiflora essential oil (ZEO) and silver nanoparticle (SNP) alone and in combination on Staphylococcus aureus and Salmonella Typhimurium and evaluate the mechanism of action. Methods: The minimum inhibitory concentration (MIC), and optimal inhibitory combination (OIC) of ZEO and SNP were determined according to fractional inhibitory concentration (FIC) method. Biofilm removal potential and leakage pattern of 260-nm absorbing material from the bacterial cell during exposure to the compounds were also investigated. Results: MICs of SNP for both bacteria were the same as 25 μg/ mL. The MICs and MBCs values of ZEO were 2500 and 1250 μg/mL, respectively. The most effective OIC value for SNP and ZEO against Salm. Typhimurium and Staph. aureus were 12.5, 625 and 0.78, 1250 μg/ mL, respectively. ZEO and SNP at MIC and OIC concentrations represented a strong removal ability (>70%) on biofilm. Moreover, ZEO at MIC and OIC concentrations did a 6-log reduction of primary inoculated bacteria during 15 min contact time. The effect of ZEO on the loss of 260-nm material from the cell was faster than SNP during 15 and 60 min. Conclusion: Combination of ZEO and SNP had significant sanitizing activity on examined bacteria which may be suitable for disinfecting the surfaces.

  2. In vitro activity of five tetracyclines and some other antimicrobial agents against four porcine respiratory tract pathogens.

    PubMed

    Pijpers, A; Van Klingeren, B; Schoevers, E J; Verheijden, J H; Van Miert, A S

    1989-09-01

    The minimal inhibitory concentrations (MIC) of five tetracyclines and ten other antimicrobial agents were determined for four porcine bacterial respiratory tract pathogens by the agar dilution method. For the following oxytetracycline-susceptible strains, the MIC50 ranges of the tetracyclines were: P. multocida (n = 17) 0.25-0.5 micrograms/ml; B. bronchiseptica (n = 20) 0.25-1.0 micrograms/ml; H. pleuropneumoniae (n = 20) 0.25-0.5 micrograms/ml; S. suis Type 2 (n = 20) 0.06-0.25 micrograms/ml. For 19 oxytetracycline-resistant P. multocida strains the MIC50 of the tetracyclines varied from 64 micrograms/ml for oxytetracycline to 0.5 micrograms/ml for minocycline. Strikingly, minocycline showed no cross-resistance with oxytetracycline, tetracycline, chlortetracycline and doxycycline in P. multocida and in H. pleuropneumoniae. Moreover, in susceptible strains minocycline showed the highest in vitro activity followed by doxycycline. Low MIC50 values were observed for chloramphenicol, ampicillin, flumequine, ofloxacin and ciprofloxacin against P. multocida and H. pleuropneumoniae. B. bronchiseptica was moderately susceptible or resistant to these compounds. As expected tiamulin, lincomycin, tylosin and spiramycin were not active against H. pleuropneumoniae. Except for flumequine, the MIC50 values of nine antimicrobial agents were low for S. suis Type 2. Six strains of this species showed resistance to the macrolides and lincomycin.

  3. Chemical Composition and Antibacterial Activity of the Essential Oil of Vitex agnus-castus L. (Lamiaceae).

    PubMed

    Gonçalves, Regiane; Ayres, Vanessa F S; Carvalho, Carlos E; Souza, Maria G M; Guimarães, Anderson C; Corrêa, Geone M; Martins, Carlos H G; Takeara, Renata; Silva, Eliane O; Crotti, Antônio E M

    2017-01-01

    Abnormal multiplication of oral bacteria causes dental caries and dental plaque. These diseases continue to be major public health concerns worldwide, mainly in developing countries. In this study, the chemical composition and antimicrobial activity of the essential oil of Vitex agnus-castus leaves (VAC‒EO) collected in the North of Brazil against a representative panel of cariogenic bacteria were investigated. The antimicrobial activity of VAC-EO was evaluated in terms of its minimum inhibitory concentration (MIC) values by using the broth microdilution method in 96-well microplates. The chemical constituents of VAC-EO were identified by gas chromatography (GC‒FID) and gas chromatography‒mass spectrometry (GC‒MS). VAC‒EO displayed some activity against all the investigated oral pathogens; MIC values ranged from 15.6 to 200 μg/mL. VAC-EO had promising activity against Streptococcus mutans (MIC= 15.6 μg/mL), Lactobacillus casei (MIC= 15.6 μg/mL), and Streptococcus mitis (MIC= 31.2 μg/mL). The compounds 1,8-cineole (23.8%), (E)-β-farnesene (14.6%), (E)-caryophyllene (12.5%), sabinene (11.4%), and α-terpinyl acetate (7.7%) were the major chemical constituents of VAC‒EO. VAC-EO displays antimicrobial activity against cariogenic bacteria. The efficacy of VAC-EO against S. mutans is noteworthy and should be further investigated.

  4. Bioactivity of essential oils extracted from Cupressus macrocarpa branchlets and Corymbia citriodora leaves grown in Egypt.

    PubMed

    Salem, Mohamed Z M; Elansary, Hosam O; Ali, Hayssam M; El-Settawy, Ahmed A; Elshikh, Mohamed S; Abdel-Salam, Eslam M; Skalicka-Woźniak, Krystyna

    2018-01-22

    Cupressus macrocarpa Hartw and Corymbia citriodora (Hook.) K.D. Hill & L.A.S. Johnson, widely grown in many subtropical areas, are used for commercial purposes, such as in perfumery, cosmetics, and room fresheners. Their potential as a source of antimicrobial compounds may be useful in different applications. The chemical composition of essential oils (EOs) from C. macrocarpa branchlets and C. citriodora leaves was analyzed by using gas chromatography-mass spectrometry (GC/MS). Antibacterial and antifungal activities were assessed by the micro-dilution method to determine the minimum inhibitory concentrations (MICs), and minimum fungicidal concentrations (MFCs), and minimum bactericidal concentrations (MBCs). Further, the antioxidant capacity of the EOs was determined via 2,2'-diphenypicrylhydrazyl (DPPH) and β-carotene-linoleic acid assays. Terpinen-4-ol (23.7%), α-phellandrene (19.2%), α-citronellol (17.3%), and citronellal were the major constituents of EO from C. macrocarpa branchlets, and α-citronellal (56%), α-citronellol (14.7%), citronellol acetate (12.3%), isopulegol, and eucalyptol were the primary constituents of EO from C. citriodora leaves. Antibacterial activity with MIC values of EO from C. citriodora leaves was ranged from 0.06 mg/mL to 0.20 mg/mL, and MBC from 0.12 mg/mL against E. coli to 0.41 mg/mL. EO from C. macrocarpa branchlets showed less activity against bacterial strains. The MIC values against tested fungi of the EO from C. citriodora ranged from 0.11 to 0.52 mg/mL while for EO from C. macrocarpa from 0.29 to 3.21 mg/mL. The MIC and MFC values of EOs against P. funiculosum were lower than those obtained from Ketoconazole (KTZ) (0.20; 0.45; 0.29 and 0.53 mg/mL, respectively, vs 0.21 and 0.41 mg/mL. Antioxidant activity of the EO from C. citriodora was higher than that of the positive control but lower than that of the standard butylhydroxytoluene (BHT) (IC 50  = 5.1 ± 0.1 μg/mL). The results indicate that the EO from Egyptian trees such as C. citriodora leaves may possesses strong bactericidal and fungicidal activities and can be used as an agrochemical for controlling plant pathogens and in human disease management which will add crop additive value.

  5. The Antimicrobial Activity of Annona emarginata (Schltdl.) H. Rainer and Most Active Isolated Compounds against Clinically Important Bacteria.

    PubMed

    Dolab, Juan G; Lima, Beatriz; Spaczynska, Ewelina; Kos, Jiri; Cano, Natividad H; Feresin, Gabriela; Tapia, Alejandro; Garibotto, Francisco; Petenatti, Elisa; Olivella, Monica; Musiol, Robert; Jampilek, Josef; Enriz, Ricardo D

    2018-05-16

    Annona emarginata (Schltdl.) H. Rainer, commonly known as "arachichú", "araticú", "aratigú", and "yerba mora", is a plant that grows in Argentina. Infusions and decoctions are used in folk medicine as a gargle against throat pain and for calming toothache; another way to use the plant for these purposes is chewing its leaves. Extracts from bark, flowers, leaves, and fruits from A. emarginata were subjected to antibacterial assays against a panel of Gram (+) and Gram (-) pathogenic bacteria according to Clinical and Laboratory Standards Institute protocols. Extracts from the stem bark and leaves showed moderate activity against the bacteria tested with values between 250⁻1000 µg/mL. Regarding flower extracts, less polar extracts (hexane, dichloromethane) showed very strong antibacterial activity against methicillin-sensitive Staphylococcus aureus ATCC 25923 and methicillin-resistant S. aureus ATCC 43300 with values between 16⁻125 µg/mL. Additionally, hexane extract showed activity against Klebsiella pneumoniae (MIC = 250 µg/mL). The global methanolic extract of the fruits (MeOHGEF) was also active against the three strains mentioned above, with MICs values 250⁻500 µg/mL. Bioassay-guided fractionation of MeOHGEF led to the isolation of a new main compound-( R )-2-(4-methylcyclohex-3-en-1-yl)propan-2-yl ( E )-3-(4-hydroxyphenyl)acrylate ( 1 ). The structure and relative configurations have been determined by means of 1D and 2D NMR techniques, including COSY, HMQC, HMBC, and NOESY correlations. Compound 1 showed strong antimicrobial activity against all Gram (+) species tested (MICs = 3.12⁻6.25 µg/mL). In addition, the synthesis and antibacterial activity of some compounds structurally related to compound 1 (including four new compounds) are reported. A SAR study for these compounds was performed based on the results obtained by using molecular calculations.

  6. Inhibitory Activity of Avocado Seed Fatty Acid Derivatives (Acetogenins) Against Listeria Monocytogenes.

    PubMed

    Salinas-Salazar, Carmen; Hernández-Brenes, Carmen; Rodríguez-Sánchez, Dariana Graciela; Castillo, Elena Cristina; Navarro-Silva, Jesús Manuel; Pacheco, Adriana

    2017-01-01

    High standards regarding Listeria monocytogenes control and consumer demands for food products without synthetic additives represent a challenge to food industry. We determined the antilisterial properties of an enriched acetogenin extract (EAE) from avocado seed, compared it to two commercial antimicrobials (one enriched in avocado acetogenins), and tested purified molecules. Acetogenin composition in pulp and seed of Hass avocado was quantified. EAE were obtained by two sequential centrifuge partition chromatography separations and molecules purified by preparative chromatography and quantified by HPLC-MS-TOF and HPLC-PDA. Avocado seed extracts which are the following two: 1) EAE and 2) the commercially available antimicrobial Avosafe®, presented similar inhibition zones and chemical profiles. Minimum inhibitory concentration (MIC) values of extracts and two isolated acetogenins varied between 7.8 and 15.6 mg/L, were effective at 37 and 4 °C, and showed a bactericidal effect probably caused by increased membrane permeability and lytic effects, evidenced by flow cytometry at 10 and 100× MIC. Activity was comparable to Mirenat®. Most potent acetogenins were Persenone C (5) and A (6), and AcO-avocadenyne (1), the latter exclusively present in seed. Common features of bioactive molecules were the acetyl moiety and multiple unsaturations (2 to 3) in the aliphatic chain, some persenones also featured a trans-enone group. Seeds contained 1.6 times higher levels of acetogenins than pulp (5048.1 ± 575.5 and 3107.0 ± 207.2 mg/kg fresh weight, respectively), and total content in pulp was 199 to 398 times higher than MIC values. Therefore, acetogenin levels potentially consumed by humans are higher than inhibitory concentrations. Results document properties of avocado seed acetogenins as natural antilisterial food additives. © 2016 Institute of Food Technologists®.

  7. Triterpenoids from Acacia ataxacantha DC: antimicrobial and antioxidant activities.

    PubMed

    Amoussa, Abdou Madjid O; Lagnika, Latifou; Bourjot, Mélanie; Vonthron-Senecheau, Cathérine; Sanni, Ambaliou

    2016-08-12

    Acacia ataxacantha is a medicinal specie used extensively in traditional medicine of Benin republic to treat infectious diseases. Our previous study showed interesting antibacterial and antifungal activities against six strains of bacteria and six strains of fungi. The aim of this study was to investigate the antimicrobial and antioxidant activities of compounds isolated from A. ataxacantha. Chromatographic and spectroscopic methods were used to isolate and identify three compounds (1-3) from the bark of A. ataxacantha. Phytochemical investigation of A. ataxacantha (Fabaceae) led to the isolation of three triterpenoids (1-3). The structure of isolated compounds was established by differents spectroscopic methods such as UV, (1)H NMR, (13)C NMR, 2D NMR and Mass. All isolated compounds were tested for antimicrobial activity using agar disc-diffusion and microdilution methods. The radical scavenging activity of isolated compounds was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH) method. Phytochemical investigation led to the isolation and identification of lupeol (1), betulinic acid (2) and betulinic acid-3-trans-caffeate (3). Moderate antimicrobial activity was obtained with compound 3 against methicillin-resitant Staphylococcus aureus, Enterococcus feacalis and Pseudomonas aeruginosa with MIC value of 25 μg/ml and Staphylococcus aureus (MIC of 50 μg/ml). Compounds 3 was more active against Staphylococcus epidermidis and Candida albicans with a MIC value of 12.5 μg/ml in boths cases. Compounds 3 had also interesting antioxidant activity with an IC50 of 3.57 μg/ml compared to quercetin (1.04 μg/ml). The overall results of this study provide evidence that the compound 3, isolated from A. ataxacantha, exhibit antimicrobial activity against Gram-positive and Gram-negative bacteria and yeast, especially against C. albicans.

  8. Multicenter, International Study of MIC/MEC Distributions for Definition of Epidemiological Cutoff Values for Sporothrix Species Identified by Molecular Methods

    PubMed Central

    Abreu, D. P. B.; Almeida-Paes, R.; Brilhante, R. S. N.; Chakrabarti, A.; Córdoba, S.; Gonzalez, G. M.; Guarro, J.; Johnson, E. M.; Kidd, S. E.; Pereira, S. A.; Rozental, S.; Szeszs, M. W.; Ballesté Alaniz, R.; Bonifaz, A.; Bonfietti, L. X.; Borba-Santos, L. P.; Capilla, J.; Colombo, A. L.; Dolande, M.; Isla, M. G.; Melhem, M. S. C.; Mesa-Arango, A. C.; Oliveira, M. M. E.; Panizo, M. M.; Pires de Camargo, Z.; Zancope-Oliveira, R. M.; Turnidge, J.

    2017-01-01

    ABSTRACT Clinical and Laboratory Standards Institute (CLSI) conditions for testing the susceptibilities of pathogenic Sporothrix species to antifungal agents are based on a collaborative study that evaluated five clinically relevant isolates of Sporothrix schenckii sensu lato and some antifungal agents. With the advent of molecular identification, there are two basic needs: to confirm the suitability of these testing conditions for all agents and Sporothrix species and to establish species-specific epidemiologic cutoff values (ECVs) or breakpoints (BPs) for the species. We collected available CLSI MICs/minimal effective concentrations (MECs) of amphotericin B, five triazoles, terbinafine, flucytosine, and caspofungin for 301 Sporothrix schenckii sensu stricto, 486 S. brasiliensis, 75 S. globosa, and 13 S. mexicana molecularly identified isolates. Data were obtained in 17 independent laboratories (Australia, Europe, India, South Africa, and South and North America) using conidial inoculum suspensions and 48 to 72 h of incubation at 35°C. Sufficient and suitable data (modal MICs within 2-fold concentrations) allowed the proposal of the following ECVs for S. schenckii and S. brasiliensis, respectively: amphotericin B, 4 and 4 μg/ml; itraconazole, 2 and 2 μg/ml; posaconazole, 2 and 2 μg/ml; and voriconazole, 64 and 32 μg/ml. Ketoconazole and terbinafine ECVs for S. brasiliensis were 2 and 0.12 μg/ml, respectively. Insufficient or unsuitable data precluded the calculation of ketoconazole and terbinafine (or any other antifungal agent) ECVs for S. schenckii, as well as ECVs for S. globosa and S. mexicana. These ECVs could aid the clinician in identifying potentially resistant isolates (non-wild type) less likely to respond to therapy. PMID:28739796

  9. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro.

    PubMed

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-03-06

    An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. The cytotoxicity (CC(50)) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4 degrees C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37 degrees C before the adsorption of untreated-virus. The CC(50) values were less than 100 microg/mL and the MIC values were 3.7 and 11.1 microg/mL. The CC(50)/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 microg/mL produced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at 100 microg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation.

  10. Larvicidal activity of Copaifera sp. (Leguminosae) oleoresin microcapsules against Aedes aegypti (Diptera: Culicidae) larvae.

    PubMed

    Kanis, Luiz Alberto; Prophiro, Josiane Somariva; Vieira, Edna da Silva; Nascimento, Mariane Pires do; Zepon, Karine Modolon; Kulkamp-Guerreiro, Irene Clemes; Silva, Onilda Santos da

    2012-03-01

    Studies have demonstrated the potential of Copaifera sp. oleoresin to control Aedes aegypti proliferation. However, the low water solubility is a factor that limits its applicability. Thus, the micro- or nanoencapsulation could be an alternative to allow its use in larval breeding places. The purpose of this study was to evaluate if achievable lethal concentrations could be obtained from Copaifera sp. oleoresin incorporated into polymers (synthetic or natural) and, mainly, if it can be sustained in the residual activity compared to the pure oil when tested against the A. aegypti larvae. Microcapsules were prepared by the process of emulsification/precipitation using the polymers of cellulose acetate (CA) and poly(ethylene-co-methyl acrylate) (PEMA), yielding four types of microcapsules: MicPEMA₁ and MicPEMA₂, and MicCA₁ and MicCA₂. When using only Copaifera sp. oleoresin, the larvicidal activity was observed at concentrations of LC₅₀ = 48 mg/L and LC₉₉ = 149 mg/L. For MicPEMA₁, the LC₅₀ and LC₉₉ were 78 and 389 mg/L, respectively. Using MicPEMA₂, the LC₅₀ was 120 mg/L and LC₉₉ > 500 mg/L. For microcapsules MicCA₁ and MicCA₂, the LC₅₀ and LC₉₉ were 42, 164, 140, and 398 mg/L, respectively. For a dose of 150 mg/L of pure oleoresin, the residual activity remained above 20% for 10 days, while the dose of 400 mg/L remained above 40% for 21 days. The MicPEMA₁ microcapsules showed a loss in residual activity up to the first day; however, it remained in activity above 40% for 17 days. The microcapsules of MicCA₁ showed similar LC₅₀ of pure oil with 150 mg/L.

  11. Antimicrobial Activity and Phytochemical Analysis of Organic Extracts from Cleome spinosa Jaqc.

    PubMed Central

    da Silva, Ana P. Sant'Anna; Nascimento da Silva, Luís C.; Martins da Fonseca, Caíque S.; de Araújo, Janete M.; Correia, Maria T. dos Santos; Cavalcanti, Marilene da Silva; Lima, Vera L. de Menezes

    2016-01-01

    Due to the use of Cleome spinosa Jacq. (Cleomaceae) in traditional medicine against inflammatory and infectious processes, this study evaluated the in vitro antimicrobial potential and phytochemical composition of extracts from its roots and leaves. From leaves (L) and roots (R) of C. spinosa different extracts were obtained (cyclohexane: ChL and ChR; chloroform: CL and CR; ethyl acetate: EAL and EAR, methanol: ML and MR). The antimicrobial activity was evaluated by the broth microdilution method to obtain the minimum inhibitory (MIC) and microbicidal (MMC) concentrations against 17 species, including bacteria and yeasts. Additionally, antimicrobial and combinatory effects with oxacillin were assessed against eight clinical isolates of Staphylococcus aureus. All C. spinosa extracts showed a broad spectrum of antimicrobial activity, as they have inhibited all tested bacteria and yeasts. This activity seems to be related to the phytochemicals (flavonoid, terpenoids and saponins) detected into the extracts of C. spinosa. ChL and CL extracts were the most actives, with MIC less than 1 mg/mL against S. aureus, Bacillus subtilis, and Micrococcus luteus. It is important to note that these concentrations are much lower than their 50% hemolysis concentration (HC50) values. Strong correlations were found between the average MIC against S. aureus and their phenolic (r = −0.89) and flavonoid content (r = −0.87), reinforcing the possible role of these metabolite classes on the antimicrobial activity of C. spinosa derived extracts. Moreover, CL and CR showed the best inhibitory activity against S. aureus clinical isolates, they also showed synergistic action with oxacillin against all these strains (at least at one combined proportion). These results encourage the identification of active substances which could be used as lead(s) molecules in the development of new antimicrobial drugs. PMID:27446005

  12. Distribution of macrolide resistance mechanisms in Bulgarian clinical isolates of Streptococcus pyogenes during the years of 2013-2016.

    PubMed

    Muhtarova, Adile A; Gergova, Raina T; Mitov, Ivan G

    2017-09-01

    Streptococcus pyogenes, or group A streptococcus (GAS), is the main etiological agent of bacterial tonsillopharyngitis and a common cause of a wide variety of other mild to severe infections. Objectives of the present study was to determine and evaluate the distribution of genetic mechanisms associated with certain phenotypes of macrolide resistance in Bulgarian GAS isolated during the years of 2013-2016. All GAS strains were screened for the macrolide resistance genes erm(A), erm(B) and mef(A), using multiplex polymerase chain reaction (PCR). The minimal inhibitory concentrations (MICs) of erythromycin, azithromycin, clarithromycin, clindamycin were determined by E-tests. Almost 23% of GAS isolates obtained in 2013-2014 and near 40% of them in 2015-2016 contained various elements of resistance. The predominant gene was mef(A), which encodes an efflux pump (M-phenotype), identified in 57.84% of the macrolide-resistant strains. The next frequently prevalent mechanism was a combination of mef(A) and erm(B) in 22.55%, which determined high-level inducible or constitutive resistance to macrolides, lincosamides and streptogramins (iMLSB or cMLSB). The highest MIC value (>256mg/L) was detected in association with erm(B) (p<0.05). The MIC range was observed to be much higher in the isolates with combinations of resistance genes vs. those with mef genes alone (p<0.05). The data about the distribution and prevalence of macrolide resistance mechanisms obtained in this study can help in the treatment of persistent and recurrent GAS infections and in the correct choice of empiric therapy. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  13. Anti-inflammatory, Antioxidant and Antimicrobial Activity Characterization and Toxicity Studies of Flowers of "Jarilla", a Medicinal Shrub from Argentina.

    PubMed

    Moreno, Alejandra; Nuño, Gabriela; Cuello, Soledad; Sayago, Jorge E; Alberto, María Rosa; Zampini, Catiana; Isla, María Inés

    2015-06-01

    Zuccagnia punctata Cav. (Fabaceae) is an Argentine medicinal aromatic shrub (jarilla pispito, puspus, lata and jarilla macho). The chalcones were identified as pigments responsible for the yellow color of the flowers. Hydroethanolic extracts were obtained both from fresh flowers and from flowers dried by lyophilization. The extracts were standardized by their phenolic and flavonoids content. Their fingerprints by HPLC-DAD indicated the presence of two chalcones as major compounds (2',4'-dihydroxychalcone and 2',4'-dihydroxy-3'-methoxychalcone). Both extracts showed the same total phenolic, non-flavonoid phenolic and flavonoid phenolic content and their phenolic profiles were similar. The polyphenolic extracts exhibited antioxidant (free radical scavenging and inhibitory activity on lipoperoxidation) and anti-inflammatory (inhibition of lipoxygenase and cyclooxygenase enzymes) activities. The flower extracts were active against six Candida species with MIC values between 60 and 120 μg GAE x mL(-1) and were also active on methicillin-resistant Staphylococcus aureus (MIC: 250 μg GAE x mL(-1)) and Enterococcus faecalis (MIC: 500 μg GAE x mL(-1)). The extracts were neither toxic (Artemia salina test) nor mutagenic (Ames test). Jarilla flowers could be considered as a new dietary supplement that could help to prevent pathologies associated with oxidative stress and the polyphenolic extract obtained from them could be considered as a standardized phytotherapeutic product with antimicrobial, antioxidant and anti-inflammatory activities. The aim of this work was to determine the pigments responsible for the yellow color of the flowers of Z. punctata and to evaluate the functional properties of the polyphenolic extract of the flowers. The toxicity (Artemia salina) and mutagenic activity (Ames test) of the extract were also evaluated.

  14. Susceptibility of Microsporum canis arthrospores to a mixture of chemically defined essential oils: a perspective for environmental decontamination.

    PubMed

    Nardoni, Simona; Tortorano, Annamaria; Mugnaini, Linda; Profili, Greta; Pistelli, Luisa; Giovanelli, Silvia; Pisseri, Francesca; Papini, Roberto; Mancianti, Francesca

    2015-01-01

    The zoophilic dermatophyte Microsporum canis has cats as natural reservoir, but it is able to infect a wide range of hosts, including humans, where different clinical features of the so-called ringworm dermatophytosis have been described. Human infections are increasingly been reported in Mediterranean countries. A reliable control program against M. canis infection in cats should include an antifungal treatment of both the infected animals and their living environment. In this article, a herbal mixture composed of chemically defined essential oils (EOs) of Litsea cubeba (1%), Illicium verum, Foeniculum vulgare, and Pelargonium graveolens (0.5% each) was formulated and its antifungal activity assessed against M. canis arthrospores which represent the infective environmental stage of M. canis. Single compounds present in higher amounts in the mixture were also separately tested in vitro. Litsea cubeba and P. graveolens EOs were most effective (minimum inhibitory concentration (MIC) 0.5%), followed by EOs of I. verum (MIC 2%) and F. vulgare (MIC 2.5%). Minimum fungicidal concentrations (MFC) values were 0.75% (L. cubeba), 1.5% (P. graveolens), 2.5% (I. verum) and 3% (F. vulgare). MIC and MFC values of the mixture were 0.25% and 0.5%, respectively. The daily spray of the mixture (200 μL) directly onto infected hairs inhibited fungal growth from the fourth day onwards. The compounds present in higher amounts exhibited variable antimycotic activity, with MIC values ranging from >10% (limonene) to 0.1% (geranial and neral). Thus, the mixture showed a good antifungal activity against arthrospores present in infected hairs. These results are promising for a further application of the mixture as an alternative tool or as an adjuvant in the environmental control of feline microsporosis.

  15. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species.

    PubMed

    Lackner, Michaela; de Hoog, G Sybren; Verweij, Paul E; Najafzadeh, Mohammad J; Curfs-Breuker, Ilse; Klaassen, Corné H; Meis, Jacques F

    2012-05-01

    Since the separation of Pseudallescheria boydii and P. apiosperma in 2010, limited data on species-specific susceptibility patterns of these and other species of Pseudallescheria and its anamorph Scedosporium have been reported. This study presents the antifungal susceptibility patterns of members affiliated with both entities. Clinical and environmental isolates (n = 332) from a wide range of sources and origins were identified down to species level and tested according to CLSI M38-A2 against eight antifungal compounds. Whereas P. apiosperma (geometric mean MIC/minimal effective concentration [MEC] values of 0.9, 2.4, 7.4, 16.2, 0.2, 0.8, 1.5, and 6.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) and P. boydii (geometric mean MIC/MEC values of 0.7, 1.3, 5.7, 13.8, 0.5, 1.4, 2.3, and 11.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) had similar susceptibility patterns, those for S. aurantiacum, S. prolificans, and S. dehoogii were different from each other. Voriconazole was the only drug with significant activity against S. aurantiacum isolates. The MIC distributions of all drugs except voriconazole did not show a normal distribution and often showed two subpopulations, making a species-based prediction of antifungal susceptibility difficult. Therefore, antifungal susceptibility testing of all clinical isolates remains essential for targeted antifungal therapy. Voriconazole was the only compound with low MIC values (MIC(90) of ≤ 2 μg/ml) for P. apiosperma and P. boydii. Micafungin and posaconazole showed moderate activity against the majority of Scedosporium strains.

  16. Species-Specific Antifungal Susceptibility Patterns of Scedosporium and Pseudallescheria Species

    PubMed Central

    Lackner, Michaela; de Hoog, G. Sybren; Verweij, Paul E.; Najafzadeh, Mohammad J.; Curfs-Breuker, Ilse; Klaassen, Corné H.

    2012-01-01

    Since the separation of Pseudallescheria boydii and P. apiosperma in 2010, limited data on species-specific susceptibility patterns of these and other species of Pseudallescheria and its anamorph Scedosporium have been reported. This study presents the antifungal susceptibility patterns of members affiliated with both entities. Clinical and environmental isolates (n = 332) from a wide range of sources and origins were identified down to species level and tested according to CLSI M38-A2 against eight antifungal compounds. Whereas P. apiosperma (geometric mean MIC/minimal effective concentration [MEC] values of 0.9, 2.4, 7.4, 16.2, 0.2, 0.8, 1.5, and 6.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) and P. boydii (geometric mean MIC/MEC values of 0.7, 1.3, 5.7, 13.8, 0.5, 1.4, 2.3, and 11.8 μg/ml for voriconazole, posaconazole, isavuconazole, itraconazole, micafungin, anidulafungin, caspofungin, and amphotericin B, respectively) had similar susceptibility patterns, those for S. aurantiacum, S. prolificans, and S. dehoogii were different from each other. Voriconazole was the only drug with significant activity against S. aurantiacum isolates. The MIC distributions of all drugs except voriconazole did not show a normal distribution and often showed two subpopulations, making a species-based prediction of antifungal susceptibility difficult. Therefore, antifungal susceptibility testing of all clinical isolates remains essential for targeted antifungal therapy. Voriconazole was the only compound with low MIC values (MIC90 of ≤2 μg/ml) for P. apiosperma and P. boydii. Micafungin and posaconazole showed moderate activity against the majority of Scedosporium strains. PMID:22290955

  17. Relationship between Fosfomycin Exposure and Amplification of Escherichia coli Subpopulations with Reduced Susceptibility in a Hollow-Fiber Infection Model.

    PubMed

    VanScoy, Brian; McCauley, Jennifer; Bhavnani, Sujata M; Ellis-Grosse, Evelyn J; Ambrose, Paul G

    2016-09-01

    Understanding the relationship between antibiotic exposure and amplification of bacterial subpopulations with reduced drug susceptibility over time is important for evaluating the adequacy of dosing regimens. We utilized a hollow-fiber infection model to identify the fosfomycin intravenous dosing regimens that prevented the amplification of Escherichia coli bacterial subpopulations with reduced fosfomycin susceptibility. The challenge isolate was E. coli ATCC 25922 (agar MIC with glucose-6-phosphate, 1 mg/liter; agar MIC without glucose-6-phosphate, 32 mg/liter). The fosfomycin dosing regimens studied were 1 to 12 g every 8 h for 10 days to approximate that planned for clinical use. The studies included a no-treatment control regimen. Two bacterial subpopulations were identified, one with reduced susceptibility with agar MIC values ranging from 32 to 128 mg/liter and the other resistant with agar MIC values of 256 to >1,024 mg/liter on plates containing 5× and 256× the baseline MIC value, respectively. An inverted-U-shaped function best described the relationship between the amplification of the two bacterial subpopulations and drug exposure. The lowest fosfomycin dosing regimen that did not amplify a bacterial subpopulation with reduced susceptibility was 4 g administered every 8 h. Nearly immediate amplification of bacterial subpopulations with reduced susceptibility was observed with fosfomycin dosing regimens consisting of 1 to 2 g every 8 h. These data will be useful to support the selection of fosfomycin dosing regimens that minimize the potential for on-therapy amplification of bacterial subpopulations with reduced susceptibility. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  18. Effect of Catechins, Green tea Extract and Methylxanthines in Combination with Gentamicin Against Staphylococcus aureus and Pseudomonas aeruginosa

    PubMed Central

    Fazly Bazzaz, Bibi Sedigheh; Sarabandi, Sahar; Khameneh, Bahman; Hosseinzadeh, Hossein

    2016-01-01

    Objectives: Bacterial resistant infections have become a global health challenge and threaten the society’s health. Thus, an urgent need exists to find ways to combat resistant pathogens. One promising approach to overcoming bacterial resistance is the use of herbal products. Green tea catechins, the major green tea polyphenols, show antimicrobial activity against resistant pathogens. The present study aimed to investigate the effect of catechins, green tea extract, and methylxanthines in combination with gentamicin against standard and clinical isolates of Staphylococcus aureus (S. aureus) and the standard strain of Pseudomonas aeruginosa (P. aeruginosa). Methods: The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) values of different agents against bacterial strains were determined. The interactions of green tea extract, epigallate catechin, epigallocatechin gallate, two types of methylxanthine, caffeine, and theophylline with gentamicin were studied in vitro by using a checkerboard method and calculating the fraction inhibitory concentration index (FICI). Results: The MICs of gentamicin against bacterial strains were in the range of 0.312 - 320 μg/mL. The MIC values of both types of catechins were 62.5 - 250 μg/ mL. Green tea extract showed insufficient antibacterial activity when used alone. Methylxanthines had no intrinsic inhibitory activity against any of the bacterial strains tested. When green tea extract and catechins were combined with gentamicin, the MIC values of gentamicin against the standard strains and a clinical isolate were reduced, and synergistic activities were observed (FICI < 1). A combination of caffeine with gentamicin did not alter the MIC values of gentamicin. Conclusion: The results of the present study revealed that green tea extract and catechins potentiated the antimicrobial action of gentamicin against some clinical isolates of S. aureus and standard P. aeruginosa strains. Therefore, combinations of gentamicin with these natural compounds might be a promising approach to combat microbial resistance. PMID:28097041

  19. [Identification of filamentous fungi isolated from clinical samples by two different methods and their susceptibility results].

    PubMed

    Direkel, Sahin; Otağ, Feza; Aslan, Gönül; Ulger, Mahmut; Emekdaş, Gürol

    2012-01-01

    Molds are widely distributed in nature. Aspergillus spp. represent the most frequently observed causative agents, however less frequent pathogens Fusarium, Scedosporium and Zygomycetes have also been considered the most important causes of morbidity and mortality in profoundly immunosuppressed hosts. The aims of this study were to identify filamentous fungi isolated from clinical specimens by conventional and molecular methods, and to detect their antifungal susceptibilities. A total of 6742 clinical specimens obtained from hospitalized patients at critical units of Mersin University Medical Faculty Hospital and sent to our laboratory between April 2008-January 2010 were included in the study. The isolates were identified by classical mycological methods and polymerase chain reaction-based DNA sequencing. Susceptibilities to fluconazole and voriconazole were tested by disk diffusion method and to fluconazole, voriconazole, amfoterisin B, caspofungin and posaconazole by E-test. Filamentous fungi were isolated from 71 (1.05%) samples (13 sputum, 4 wound, 4 peritoneal fluid, 3 extrenal ear discharge, 3 abscess and one of each cerebrospinal fluid, blood, tissue biopsy, nasal swab and conjunctival swab) which belonged to 32 patients (13 female, 19 male; age range 7 months-77 years, mean age: 46.6 years). Of the patients 62.3% presented one or more risk factors such as chronic renal failure (n= 8), chronic obstructive lung disease (n= 6), malignancy (n= 6), diabetes mellitus (n= 5) and peripheral vascular disease (n= 5). Of the isolates six were identified as Aspergillus niger, six as Aspergillus flavus, five as Aspergillus fumigatus, four as Aspergillus terreus, five as Fusarium spp., two as Bipolaris spp., and one of each as Acremonium spp., Aurebasidium spp., Mucor spp., and Scedosporium spp. By conventional methods. Three isolates exhibited different identities by DNA sequencing. All Aspergillus isolates were correctly identified at species level by both methods, Other fungi were identified at genus level by conventional methods and at species level by DNA sequencing. Fluconazole minimum inhibitory concentration (MIC) values were determined as > 256 mg/L in all strains, except Scedosporium; voriconazole MIC values were < 0.38 mg/L in all Aspergillus spp. Caspofungin MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and Bipolaris strains and ≤ 0.006-0.125 mg/L in all Aspergillus isolates, In three strains (Fusarium equiseti, Cylindrocarpon lichenicola and Rhizopus oryzae) posaconazole minimum inhibitory concentration (MIC) values were > 32 mg/L, however it was < 1.5 mg/L, for the other strains. Amphotericin B MIC values were > 32 mg/L for Fusarium, Scedosporium, Rhizopus and all A.terreus strains and < 2 mg/L for the others. E-test and disk diffusion test results were compatible with each other for all the antifungal agents tested. In conclusion, the identification of filamentous fungi such as Aspergillus and Fusarium spp. is easily and reliably achieved by conventional methods. Since the rate of invasive fungal infections is increasing currently, filamentous molds should be searched especially in the clinical specimens of immunocompromised patients for accurate and prompt diagnosis of such infections and to decrease the related mortality risk.

  20. Chemical and Antimicrobial Analyses of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood, an Endemic of the Western Balkan.

    PubMed

    Tadić, Vanja; Oliva, Alessandra; Božović, Mijat; Cipolla, Alessia; De Angelis, Massimiliano; Vullo, Vincenzo; Garzoli, Stefania; Ragno, Rino

    2017-08-23

    A comprehensive study on essential oil and different solvent extracts of Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood (Lamiaceae) from Montenegro is reported. The gas chromatography-mass spectrometry analysis of the essential oil revealed a total of 43 components with bicyclogermacrene (23.8%), germacrene D (8%), ( E )-caryophyllene (7.9%) and spathulenol (5.5%) as the major ones. Sesquiterpenoid group was found to be the most dominant one (64.8%), with 19.9% of the oxygenated forms. In the crude methanol extract of the investigated plant, obtained by Sohhlet exraction, the total phenol content was 14.7 ± 0.4 mg of GA/g, the total flavonoids were 0.29 ± 0.03% expressed as hyperoside percentage, whereas the total tannins content was 0.22 ± 0.04% expressed as pyrogallol percentage. For the antimicrobial activity determination, the following microorganisms have been used: methicillin-susceptible Staphylococcus aureus (MSSA (American Type Culture Collection (ATCC) 29213)) and methicillin-resistant S. aureus (MRSA (clinical strain)), Escherichia coli (ATCC 25922), carbapenem-susceptible Klebsiella pneumoniae (clinical strain), carbapenem-resistant K. pneumoniae (clinical strain) and Candida albicans (ATCC 14053). The essential oil showed high potency against MSSA and MRSA, both at high (~5 × 10⁵ CFU/mL) and low (~5 × 10³ CFU/mL) inoculum. With respect to MSSA, the minimal inhibitory concentration (MIC) value was 0.307 mg/mL, with bactericidal activity obtained at 0.615 mg/mL, while, in the case of MRSA, the MIC and minimal bactericidal concentration (MBC) values were 0.076 and 0.153 mg/mL, respectively. Regarding anti- Candida albicans activity, the MIC value was 2.46 mg/mL without reaching fungicidal activity. In addition to the observed essential oil efficacy, different solvent extracts were analyzed for their antimicrobial activity. Similarly to the essential oil, thehighest efficacy was observed against both MSSA and MRSA strains, at high and low inoculums, in the case of the 1,2-dichloroethane and methanol extracts. A potent fungicidal activity has been also found for the n -hexane and 1,2-dichloroethane extracts. It can be concluded that Sideritis romana L. subsp. purpurea (Tal. ex Benth.) Heywood provides a wide range of application in different fields such as phytochemistry, pharmacology, toxicology or pharmacognosy.

  1. Anti-Helicobacter pylori activity of bioactive components isolated from Hericium erinaceus.

    PubMed

    Liu, Jian-Hui; Li, Liang; Shang, Xiao-Dong; Zhang, Jun-Ling; Tan, Qi

    2016-05-13

    The fungus Hericium erinaceus (Bull.) Pers is used in Chinese traditional medicine to treat symptoms related to gastric ulcers. Different extracts from the fungus were assessed for anti-Helicobacter pylori activity to investigate the antibacterial activity of the ethanol extracts from H. erinaceus and verify the traditional indication of use. The fruiting bodies of H. erinaceus were concentrated with ethanol by HPD-100 macroporous resin and the whole extract was partitioned by petroleum ether and chloroform to afford fractions with using a silica gel column. Several pure compounds of petroleum ether extracts were obtained and analyzed using nuclear magnetic resonance (NMR). The activity of the extracts and fractions towards H. pylori was assessed by the microdilution assay and by the disk diffusion assay in vitro. From the most active fraction, two pure compounds were isolated and identified as the main components with anti-H. pylori activity from the fungus H. erinaceus. The cytotoxicity of these two compounds against the human erythroleu-kemia cell line K562 was also evaluated. The crude ethanol extracts from the fungus H. erinaceus were inhibitory to H. pylori. The petroleum ether extracts (PE1s, PE2s) and the chloroform extracts (TEs) demonstrated strong inhibition to H. pylori. The inhibition of H. pylori was observed through an agar dilution test with minimal inhibition concentration (MIC) values from 400μg/mL to 12.5µg/mL. Two pure compounds, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid were isolated from the petroleum ether fractions and identified using (1)H NMR and (13)C NMR spectra analysis. The MIC value for 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone was 12.5-50µg/mL and the MIC value for 2,5-bis(methoxycarbonyl)terephthalic acid was 6.25-25µg/mL. Both two compounds showed weak cytotoxicity against K562 with IC50<200mM. This study revealed that the extracts from petroleum ether contribute to the anti-H. pylori activity. The compounds obtained from petroleum ether extracts, 1-(5-chloro-2-hydroxyphenyl)-3-methyl-1-butanone and 2,5-bis(methoxycarbonyl)terephthalic acid, inhibit the growth of H. pylori. Copyright © 2016. Published by Elsevier Ireland Ltd.

  2. Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain.

    PubMed

    Lira-De León, Karla I; Ramírez-Mares, Marco V; Sánchez-López, Vladimir; Ramírez-Lepe, Mario; Salas-Coronado, Raúl; Santos-Sánchez, Norma F; Valadez-Blanco, Rogelio; Hernández-Carlos, Beatriz

    2014-01-01

    The antimicrobial activity of 12 plant extracts was tested against the phytopathogens Alternaria alternata and Fusarium solani. In addition, the compatibility of the extracts toward Bacillus liqueniformis, a biofertilizer and a non-target microorganism, was assessed. Plants tested belong to the Euphorbiaceae, Asteraceae, Crassulaceae, Rubiaceae, Convolvulaceae, Verbenaceae, Orchidaceae, Nyctaginaceae, Boraginaceae, and Tiliaceae families and were collected in the State of Oaxaca. The antifungal activity of the plant extracts (50-100 mg/mL) against A. alternata and F. solani, was determined by measuring the mycelium radial growth and obtaining the minimum inhibitory concentration (MIC) of fungal growth. In addition, with the aim of finding plant extracts which are compatible with a B. licheniformis biofertilizer strain and to test the non-toxic nature of the treatments, the toxicity of the extracts toward this strain was evaluated using the agar diffusion method. Azoxystrobin (12 μg) and chloramphenicol (30 μg) were used as positive controls for the pathogens and for the non-target bacteria, respectively. Plant extracts inhibited fungal growth in the ranges of 0.76-56.17% against F. solani and 2.02-69.07% against A. alternata. The extracts of Acalypha subviscida, Ipomoea murucoides, Tournefortia densiflora and Lantana achyranthifolia showed MIC values between 5.77-12.5 mg/mL for at least one of the fungal species. The best treatment, Adenophyllum aurantium, exhibited a maximum inhibition for both F. solani (56.17%, MIC = 7.78 mg/mL) and A. alternata (68.64% MIC = 7.78 mg/mL), and resulted innocuous toward B. licheniformis. Therefore, this plant has an outstanding potential for the agroecological control of fungal phytopathogens in industrial crops.

  3. Staphylococcal enterotoxin A gene-carrying Staphylococcus aureus isolated from foods and its control by crude alkaloid from papaya leaves.

    PubMed

    Handayani, Lita; Faridah, Didah Nur; Kusumaningrum, Harsi D

    2014-11-01

    Staphylococcus aureus is a known pathogen causing intoxication by producing enterotoxins in food. Staphylococcal enterotoxin A is one of the enterotoxins commonly implicated in staphylococcal food poisoning. The ability of crude alkaloid extract from papaya leaves to inhibit the growth of S. aureus and staphylococcal enterotoxin A synthesis was investigated. Staphylococcal enterotoxin A gene-carrying S. aureus was isolated from raw milk and ready-to-eat foods. Crude alkaloid was extracted from ground, dried papaya leaves using ultrasonic-assisted extraction, and a MIC of the alkaloid was determined by the broth macrodilution method. Furthermore, S. aureus isolate was exposed to the crude alkaloid extract at one- and twofold MIC, and the expression of sea was subsequently analyzed using a quantitative reverse transcription real-time PCR. Ten isolates of S. aureus were obtained, and nine of those isolates were sea carriers. The yield of crude alkaloid extract was 0.48 to 1.82% per dry weight of papaya leaves. A MIC of crude alkaloid to S. aureus was 0.25 mg/ml. After exposure to the alkaloid at 0.25 and 0.5 mg/ml for 2 h, a significant increase in cycle threshold values of sea was observed. The sea was expressed 29 and 41 times less when S. aureus was exposed to crude alkaloid at one- and twofold MIC, respectively. This study revealed that crude alkaloid of papaya leaves could control staphylococcal enterotoxin A gene-carrying S. aureus by suppressing the expression of sea, in addition to the ability to inhibit the growth of S. aureus. The expression of sea was successfully quantified.

  4. Effect of crude plant extracts from some Oaxacan flora on two deleterious fungal phytopathogens and extract compatibility with a biofertilizer strain

    PubMed Central

    Lira-De León, Karla I.; Ramírez-Mares, Marco V.; Sánchez-López, Vladimir; Ramírez-Lepe, Mario; Salas-Coronado, Raúl; Santos-Sánchez, Norma F.; Valadez-Blanco, Rogelio; Hernández-Carlos, Beatriz

    2014-01-01

    The antimicrobial activity of 12 plant extracts was tested against the phytopathogens Alternaria alternata and Fusarium solani. In addition, the compatibility of the extracts toward Bacillus liqueniformis, a biofertilizer and a non-target microorganism, was assessed. Plants tested belong to the Euphorbiaceae, Asteraceae, Crassulaceae, Rubiaceae, Convolvulaceae, Verbenaceae, Orchidaceae, Nyctaginaceae, Boraginaceae, and Tiliaceae families and were collected in the State of Oaxaca. The antifungal activity of the plant extracts (50–100 mg/mL) against A. alternata and F. solani, was determined by measuring the mycelium radial growth and obtaining the minimum inhibitory concentration (MIC) of fungal growth. In addition, with the aim of finding plant extracts which are compatible with a B. licheniformis biofertilizer strain and to test the non-toxic nature of the treatments, the toxicity of the extracts toward this strain was evaluated using the agar diffusion method. Azoxystrobin (12 μg) and chloramphenicol (30 μg) were used as positive controls for the pathogens and for the non-target bacteria, respectively. Plant extracts inhibited fungal growth in the ranges of 0.76–56.17% against F. solani and 2.02–69.07% against A. alternata. The extracts of Acalypha subviscida, Ipomoea murucoides, Tournefortia densiflora and Lantana achyranthifolia showed MIC values between 5.77–12.5 mg/mL for at least one of the fungal species. The best treatment, Adenophyllum aurantium, exhibited a maximum inhibition for both F. solani (56.17%, MIC = 7.78 mg/mL) and A. alternata (68.64% MIC = 7.78 mg/mL), and resulted innocuous toward B. licheniformis. Therefore, this plant has an outstanding potential for the agroecological control of fungal phytopathogens in industrial crops. PMID:25147544

  5. Reversal of fluconazole resistance induced by a synergistic effect with Acca sellowiana in Candida glabrata strains.

    PubMed

    R M Machado, Gabriella da; Pippi, Bruna; Dalla Lana, Daiane Flores; Amaral, Ana Paula S; Teixeira, Mário Lettieri; Souza, Kellen C B de; Fuentefria, Alexandre M

    2016-11-01

    The increased incidence of non-albicans Candida (NAC) resistant to fluconazole (FLZ) makes it necessary to use new therapeutic alternatives. Acca sellowiana (O.berg) Burret (Myrtaceae) is a guava with several proven biological activities. The interaction with fluconazole can be a feasible alternative to overcome this resistance. This study evaluates the in vitro antifungal activity of fractions obtained from the lyophilized aqueous extract of the leaves of A. sellowiana against resistant strains of NAC. The antifungal activity of the fractions was evaluated at 500 μg/mL by microdilution method. Checkerboard assay was performed to determine the effect of the combination of the F2 fraction and antifungal at concentrations: MIC/4, MIC/2, MIC, MIC × 2 and MIC × 4. Candida glabrata showed the lowest MIC values (500-3.90 μg/mL) and the F2 active fraction was the most effective. The association of F2 with FLZ showed a strong synergistic effect (FICI ≤ 0.5) against 100% of C. glabrata resistant isolates. Moreover, the F2 active fraction has demonstrated that probably acts in the cell wall of these yeasts. There was no observed acute dermal toxicity of lyophilized aqueous extract of leaves of A. sellowiana on pig ear skin cells. The interaction between substances present in the F2 active fraction is possibly responsible for the antifungal activity presented by this fraction. This study is unprecedented and suggests that the combination of F2 active fraction and FLZ might be used as an alternative treatment for mucocutaneus infections caused by C. glabrata resistant.

  6. Epidemiological cut-off values for Flavobacterium psychrophilum MIC data generated by a standard test protocol.

    PubMed

    Smith, P; Endris, R; Kronvall, G; Thomas, V; Verner-Jeffreys, D; Wilhelm, C; Dalsgaard, I

    2016-02-01

    Epidemiological cut-off values were developed for application to antibiotic susceptibility data for Flavobacterium psychrophilum generated by standard CLSI test protocols. The MIC values for ten antibiotic agents against Flavobacterium psychrophilum were determined in two laboratories. For five antibiotics, the data sets were of sufficient quality and quantity to allow the setting of valid epidemiological cut-off values. For these agents, the cut-off values, calculated by the application of the statistically based normalized resistance interpretation method, were ≤16 mg L(-1) for erythromycin, ≤2 mg L(-1) for florfenicol, ≤0.025 mg L(-1) for oxolinic acid (OXO), ≤0.125 mg L(-1) for oxytetracycline and ≤20 (1/19) mg L(-1) for trimethoprim/sulphamethoxazole. For ampicillin and amoxicillin, the majority of putative wild-type observations were 'off scale', and therefore, statistically valid cut-off values could not be calculated. For ormetoprim/sulphadimethoxine, the data were excessively diverse and a valid cut-off could not be determined. For flumequine, the putative wild-type data were extremely skewed, and for enrofloxacin, there was inadequate separation in the MIC values for putative wild-type and non-wild-type strains. It is argued that the adoption of OXO as a class representative for the quinolone group would be a valid method of determining susceptibilities to these agents. © 2014 John Wiley & Sons Ltd.

  7. In Vitro Activity of the Novel Lactone Ketolide Nafithromycin (WCK 4873) against Contemporary Clinical Bacteria from a Global Surveillance Program.

    PubMed

    Flamm, R K; Rhomberg, P R; Sader, H S

    2017-12-01

    Nafithromycin (WCK 4873), a novel antimicrobial agent of the lactone ketolide class, is currently in phase 2 development for treatment of community-acquired bacterial pneumonia (CABP). A total of 4,739 nonduplicate isolates were selected from a 2014 global surveillance program at medical institutions located in 43 countries within the United States, Europe, Latin America, and the Asia-Pacific region. Nafithromycin and comparator agents were used for susceptibility testing by reference broth microdilution methods. Nafithromycin was active against Staphylococcus aureus (MIC 50/90 , 0.06/>2 μg/ml), including erythromycin-resistant strains exhibiting an inducible clindamycin resistance phenotype (MIC 50/90 , 0.06/0.06 μg/ml) and telithromycin-susceptible strains (MIC 50/90 , 0.06/0.06 μg/ml), but it exhibited limited activity against most telithromycin-resistant and clindamycin-resistant isolates that were constitutively resistant to macrolides (MIC 50/90 , >2/>2 μg/ml). Nafithromycin was very active (MIC 50/90 , 0.015/0.06 μg/ml) against 1,911 Streptococcus pneumoniae strains, inhibiting all strains, with MIC values of ≤0.25 μg/ml. Telithromycin susceptibility was 99.9% for Streptococcus pneumoniae strains, and nafithromycin was up to 8-fold more potent than telithromycin. Overall, 37.9% of S. pneumoniae strains were resistant to erythromycin, and 19.7% were resistant to clindamycin. Nafithromycin was highly active against 606 Streptococcus pyogenes strains (MIC 50/90 , 0.015/0.015 μg/ml), inhibiting 100.0% of isolates at ≤0.5 μg/ml, and MIC 50/90 values (0.015/0.015 to 0.03 μg/ml) were similar for the 4 geographic regions. Nafithromycin and telithromycin demonstrated comparable in vitro activities against 1,002 Haemophilus influenzae isolates and 504 Moraxella catarrhalis isolates. Overall, nafithromycin showed potent in vitro activity against a broad range of contemporary (2014) global pathogens. These results support the continued clinical development of nafithromycin for treatment of CABP. Copyright © 2017 American Society for Microbiology.

  8. Head-to-Head Comparison of Inhibitory and Fungicidal Activities of Fluconazole, Itraconazole, Voriconazole, Posaconazole, and Isavuconazole against Clinical Isolates of Trichosporon asahii

    PubMed Central

    Hazirolan, Gulsen; Canton, Emilia; Sahin, Selma

    2013-01-01

    Treatment of disseminated Trichosporon infections still remains difficult. Amphotericin B frequently displays inadequate fungicidal activity and echinocandins have no meaningful antifungal effect against this genus. Triazoles are currently the drugs of choice for the treatment of Trichosporon infections. This study evaluates the inhibitory and fungicidal activities of five triazoles against 90 clinical isolates of Trichosporon asahii. MICs (μg/ml) were determined according to Clinical and Laboratory Standards Institute microdilution method M27-A3 at 24 and 48 h using two endpoints, MIC-2 and MIC-0 (the lowest concentrations that inhibited ∼50 and 100% of growth, respectively). Minimum fungicidal concentrations (MFCs; μg/ml) were determined by seeding 100 μl of all clear MIC wells (using an inoculum of 104 CFU/ml) onto Sabouraud dextrose agar. Time-kill curves were assayed against four clinical T. asahii isolates and the T. asahii ATCC 201110 strain. The MIC-2 (∼50% reduction in turbidity compared to the growth control well)/MIC-0 (complete inhibition of growth)/MFC values that inhibited 90% of isolates at 48 h were, respectively, 8/32/64 μg/ml for fluconazole, 1/2/8 μg/ml for itraconazole, 0.12/0.5/2 μg/ml for voriconazole, 0.5/2/4 μg/ml for posaconazole, and 0.25/1/4 μg/ml for isavuconazole. The MIC-0 endpoints yielded more consistent MIC results, which remained mostly unchanged when extending the incubation to 48 h (98 to 100% agreement with 24-h values) and are easier to interpret. Based on the time-kill experiments, none of the drugs reached the fungicidal endpoint (99.9% killing), killing activity being shown but at concentrations not reached in serum. Statistical analysis revealed that killing rates are dose and antifungal dependent. The lowest concentration at which killing activity begins was for voriconazole, and the highest was for fluconazole. These results suggest that azoles display fungistatic activity and lack fungicidal effect against T. asahii. By rank order, the most active triazole is voriconazole, followed by itraconazole ∼ posaconazole ∼ isavuconazole > fluconazole. PMID:23877683

  9. Potential Information Loss Due to Categorization of Minimum Inhibitory Concentration Frequency Distributions.

    PubMed

    Mazloom, Reza; Jaberi-Douraki, Majid; Comer, Jeffrey R; Volkova, Victoriya

    2018-01-01

    A bacterial isolate's susceptibility to antimicrobial is expressed as the lowest drug concentration inhibiting its visible growth, termed minimum inhibitory concentration (MIC). The susceptibilities of isolates from a host population at a particular time vary, with isolates with specific MICs present at different frequencies. Currently, for either clinical or monitoring purposes, an isolate is most often categorized as Susceptible, Intermediate, or Resistant to the antimicrobial by comparing its MIC to a breakpoint value. Such data categorizations are known in statistics to cause information loss compared to analyzing the underlying frequency distributions. The U.S. National Antimicrobial Resistance Monitoring System (NARMS) includes foodborne bacteria at the food animal processing and retail product points. The breakpoints used to interpret the MIC values for foodborne bacteria are those relevant to clinical treatments by the antimicrobials in humans in whom the isolates were to cause infection. However, conceptually different objectives arise when inference is sought concerning changes in susceptibility/resistance across isolates of a bacterial species in host populations among different sampling points or times. For the NARMS 1996-2013 data for animal processing and retail, we determined the fraction of comparisons of susceptibility/resistance to 44 antimicrobial drugs of twelve classes of a bacterial species in a given animal host or product population where there was a significant change in the MIC frequency distributions between consecutive years or the two sampling points, while the categorization-based analyses concluded no change. The categorization-based analyses missed significant changes in 54% of the year-to-year comparisons and in 71% of the slaughter-to-retail within-year comparisons. Hence, analyses using the breakpoint-based categorizations of the MIC data may miss significant developments in the resistance distributions between the sampling points or times. Methods considering the MIC frequency distributions in their entirety may be superior for epidemiological analyses of resistance dynamics in populations.

  10. Activity of semisynthetic penicillins and synergism with mecillinam against Bacteroides species.

    PubMed Central

    Trestman, I; Kaye, D; Levison, M E

    1979-01-01

    The minimal inhibitory concentrations (MIC) of six penicillins (ampicillin, carbenicillin, ticarcillin, piperacillin, mezlocillin, and Bay k 4999) against 29 clinical isolates of Bacteriodes spp. (including Bacteroides fragilis, Bacteroides thetaiotaomicron, and Bacteroides vulgatus) were determined by an agar dilution method. Bay k 4999 was most active, followed in descending order by ampicillin, piperacillin, mezlocillin, ticarcillin, and carbenicillin. Mecillinam, a 6 beta-amidino-penicillanic acid, inhibited no strains at 50 micrograms/ml, but when compared with ampicillin, a fourfold or greater increase in MIC for ampicillin (antagonism) was noted in 3 of 29 strains, with no effect on MIC for 26 strains, whereas when combined with carbenicillin, a fourfold or greater decrease in MIC for both antibiotics (synergism) was noted in 12 strains, 4 of which had an MIC of greater than or equal to 250 micrograms/ml for carbenicillin alone. These studies demonstrate the increased activity of some newer semisynthetic penicillins and the potential synergy obtained with mecillinam and carbenicillin against Bacteroides sp. PMID:228593

  11. Antioxidant capacity of pure compounds and complex mixtures evaluated by the ORAC-pyrogallol red assay in the presence of Triton X-100 micelles.

    PubMed

    Romero, Max; Rojano, Benjamin; Mella-Raipán, Jaime; Pessoa-Mahana, Carlos David; Lissi, Eduardo; López-Alarcón, Camilo

    2010-09-01

    The protective effect of different antioxidants and complex mixtures on the consumption of pyrogallol red (PGR) induced by peroxyl radicals was studied in the absence and presence of Triton X-100 micelles. The presence of micelles decreased significantly the protection of PGR afforded by lipophilic antioxidants (β-carotene, octyl gallate), while no effect of micelles was observed for hydrophilic antioxidants such as Trolox, caffeic acid, gallic acid, and ascorbic acid. In the presence of complex mixtures a clear effect of Triton X-100 micelles was also observed in the protection afforded by wines, tea infusions, and seed extracts of Eugenia jambolana and Myrciaria cauliflora. On the other hand, no effect of micelles was observed for orange juice and pulp fruit extracts. The ORAC (Oxygen Radical Absorbance Capacity) index was evaluated in the absence (ORAC-PGR) and presence of Triton X-100 micelles (ORAC-PGR(MIC)). Triton X-100 micelles affect ORAC-PGR values of antioxidants in a lipophilicity-dependent way. From the obtained results, we conclude that ORAC-PGR and ORAC-PGR(MIC) assays could be considered as an alternative to estimate the antioxidant ability (ORAC-PGR) and to infer the association to Triton X-100 micelles (ORAC-PGR/ORAC-PGR(MIC)) of pure antioxidants and their complex mixtures.

  12. The natural compound magnolol affects growth, biofilm formation, and ultrastructure of oral Candida isolates.

    PubMed

    Behbehani, Jawad; Shreaz, Sheikh; Irshad, Mohammad; Karched, Maribassapa

    2017-12-01

    The incidence of oral candidosis has increased in recent years due to the escalation in HIV-infection, cancer treatments, organ transplantation, and diabetes. In addition, corticosteroid use, dentures, and broad-spectrum antibiotic use have also contributed to the problem. Treatment of oral candidosis has continued to be problematic because of the potential toxicity of antifungals in clinical use, and, above all, development of drug resistance among patients. In this study, the antifungal effect of magnolol was investigated against 64 strains of Candida spp. (four standard and 60 oral isolates) through minimum inhibitory concentration (MIC) and growth curve assays. Insight into the mechanisms of the antifungal action has been gained through ultrastructural studies using confocal scanning laser microscopy (CSLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Molecular docking was done for predicting the interactions of magnolol with ergosterol at supramolecular level. The toxicity of magnolol on human erythrocytes was measured by in vitro hemolytic assay. MIC values of magnolol ranged from 16-64 μg/ml, respectively. All tested isolates showed a marked sensitivity towards magnolol in growth curve assays. Biofilm results suggested that magnolol showed strong anti-biofilm activity. The results obtained for four different Candida spp. demonstrated that MBIC values of magnolol showed the average biofilm inhibition by 69.5%, respectively. CLSM experiments showed that cells exposed to magnolol (MIC) exhibited cell membrane disruption. SEM analysis of magnolol treated cells resulted in deformed cells. TEM micrographs showed rupturing of the cell wall and plasma membrane, releasing the intracellular content, and swelling of the cell wall. Hemolytic activity of magnolol is 11.9% at its highest MIC compared to an activity level of 25.4% shown by amphotericin B (Amp B) at 1 μg/ml. Lipinski's parameters calculated for magnolol suggested its good oral bioavailability. Docking studies indicated that magnolol might be interacting with ergosterol in the fungal cell membranes. Together, the present study provides enough evidence for further work on magnolol so that better strategies could be employed to treat oral candidosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Antimicrobial Activities of European Propolis Collected from Various Geographic Origins Alone and in Combination with Antibiotics

    PubMed Central

    AL-Ani, Issam; Zimmermann, Stefan; Reichling, Jürgen

    2018-01-01

    Background: Propolis consists of a complex mixture of resinous substances collected by honeybees from different plant sources. The objective of this study was to investigate the chemical composition, biological activities, and synergistic properties with antibiotics of propolis samples collected from various geographic origins (Germany, Ireland, and Czech Republic). Methods: The chemical composition of the propolis was analyzed by Gas Liquid Chromatography-Mass Spectrometry (GLC-MS) and High-performance liquid chromatography (HPLC). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were evaluated by the standard broth microdilution method, while synergistic interactions were assessed by checkerboard dilution and time-kill curve assays. Results: HPLC and GLC-MS analyses revealed that ethanol extract of propolis (EEP) and water extracts of propolis (WEP) contained more than 100 different phytochemicals. The most abundant compounds were aromatic alcohols, aromatic acids, cinnamic acid and its esters, fatty acids, and flavanone (chrysin). Czech propolis showed the highest phenolic content (129.83 ± 5.9 mg CAE/g) followed by Irish propolis and German propolis. Furthermore, Irish propolis exhibited the highest value of total flavonoid content (2.86 ± 0.2 mg QE/g) and antioxidant activity (IC50 = 26.45 µg/mL). All propolis samples showed moderate antibacterial effect against Gram-positive microorganisms with MIC ranging from 0.08 mg/mL to 2.5 mg/mL. Moreover, EEP exhibited moderate activity against Gram-negative bacteria with MIC between 0.6 mg/mL to 5 mg/mL. In addition, EEP displayed moderate antifungal activity (MIC values between 0.6–2.5 mg/mL). The results obtained from time kill-kinetic assay and checkerboard dilution test of two-drug combinations between EEP and antibiotics such as vancomycin, oxacillin, and levofloxacin indicate mainly synergistic interactions against drug-resistant microbial pathogens including MRSA and VRE. Conclusions: The propolis extract synergistically enhanced the efficacy of antibiotics, especially those acting on cell wall synthesis (vancomycin and oxacillin) against drug-resistant microorganisms. PMID:29301368

  14. Postantibiotic effect and postantibiotic sub-minimum inhibitory concentration effect of valnemulin against Staphylococcus aureus isolates from swine and chickens.

    PubMed

    Zhao, D H; Yu, Y; Zhou, Y F; Shi, W; Deng, H; Liu, Y H

    2014-02-01

    The postantibiotic effect (PAE) and postantibiotic sub-minimum inhibitory concentration (MIC) effect (PA-SME) of valnemulin against Staphylococcus aureus were investigated in vitro using a spectrophotometric technique and classic viable count method. A standard curve was constructed by regression analysis of the number of colonies and the corresponding optical density (OD) at 630 nm of the inoculum. After exposure to valnemulin at different concentrations for an hour, the antibiotic was removed by centrifuging and washing. The PA-SMEs were measured after initial exposure to valnemulin at 4 × the MIC, and then, valnemulin was added to reach corresponding desired concentrations in the resuspended culture. Samples were collected hourly until the culture became turbid. The results were calculated by converting the OD values into the counts of bacteria in accordance with the curve. The MIC of valnemulin against eight strains was identically 0.125 μg ml(-1) . The mean PAEs were 2.12 h (1 × MIC) and 5.06 h (4 × MIC), and the mean PA-SMEs were 6.85 h (0.1 × MIC), 9.12 h (0.2 × MIC) and 10.8 h (0.3 × MIC). The results showed that the strains with identical MICs exhibited different PAEs and PA-SMEs. Valnemulin produced prolonged PAE and PA-SME periods for Staph. aureus, supporting a longer dosing interval while formulating a daily administration dosage. In this study, valnemulin demonstrated prolonged postantibiotic effects and postantibiotic sub-MIC effects on strains of Staphylococcus aureus. The strains with identical MICs of valnemulin exhibited different PAEs and PA-SMEs. Staphylococcus aureus isolated from different species has little impact on the postantibiotic effect of valnemulin. The result suggests a longer dosing interval while formulating a daily administration dosage, and it may play a valuable role of valnemulin in treating Staph. aureus infections in animals. © 2013 The Society for Applied Microbiology.

  15. Antibacterial Effects of Amoxicillin-Clavulanate against Streptococcus pneumoniae and Haemophilus influenzae Strains for Which MICs Are High, in an In Vitro Pharmacokinetic Model

    PubMed Central

    MacGowan, Alasdair P.; Noel, Alan R.; Rogers, Chris A.; Bowker, Karen E.

    2004-01-01

    The antibacterial effect of amoxicillin-clavulanate in two formulations, pharmacokinetically enhanced 16:1 amoxicillin-clavulanate twice a day (b.i.d.) and standard 7:1 amoxicillin-clavulanate b.i.d., were studied in an in vitro pharmacokinetic model of infection. Five strains of Streptococcus pneumoniae and two of Haemophilus influenzae, all associated with raised MICs (2 to 8 mg/liter), were used. The antibacterial effect was measured over 24 h by the area under the bacterial kill curve (AUBKC) and the log change in viable count at 24 h (Δ24). A high 108 CFU/ml and low 106 CFU/ml initial inocula were used. Employing the Δ24 effect measure, the time above MIC (T>MIC) 50% maximum effect (EC50) for S. pneumoniae was in the range 21 to 28% with an 80% maximal response of 41 to 51%, for the AUBKC measure, the value was 26 to 39%, irrespective of inoculum. For H. influenzae, the T>MIC EC50 was 28 to 37%, and the 80% maximum response was 32 to 48% for the Δ24 measure and 20 to 48% for AUBKC. The maximum response occurred at a T>MIC of 50 to 60% for both species and inocula. The S. pneumoniae data were analyzed by analysis of variance to assess the effect of inoculum, formulation, and MIC on antibacterial effect. Standard and enhanced formulations had different effects depending on MIC, with the standard formulation less effective at higher amoxicillin-clavulanate MICs. This is explained by the greater T>MICs of the enhanced formulation. Although resistant to amoxicillin-clavulanate by conventional breakpoints, S. pneumoniae and H. influenzae strains for which MICs are 2 or 4 mg/liter may well respond to therapy with pharmacokinetically enhanced formulation amoxicillin-clavulanate. PMID:15215115

  16. Antibacterial effects of amoxicillin-clavulanate against Streptococcus pneumoniae and Haemophilus influenzae strains for which MICs are high, in an in vitro pharmacokinetic model.

    PubMed

    MacGowan, Alasdair P; Noel, Alan R; Rogers, Chris A; Bowker, Karen E

    2004-07-01

    The antibacterial effect of amoxicillin-clavulanate in two formulations, pharmacokinetically enhanced 16:1 amoxicillin-clavulanate twice a day (b.i.d.) and standard 7:1 amoxicillin-clavulanate b.i.d., were studied in an in vitro pharmacokinetic model of infection. Five strains of Streptococcus pneumoniae and two of Haemophilus influenzae, all associated with raised MICs (2 to 8 mg/liter), were used. The antibacterial effect was measured over 24 h by the area under the bacterial kill curve (AUBKC) and the log change in viable count at 24 h (Delta24). A high 10(8) CFU/ml and low 10(6) CFU/ml initial inocula were used. Employing the Delta24 effect measure, the time above MIC (T>MIC) 50% maximum effect (EC(50)) for S. pneumoniae was in the range 21 to 28% with an 80% maximal response of 41 to 51%, for the AUBKC measure, the value was 26 to 39%, irrespective of inoculum. For H. influenzae, the T>MIC EC(50) was 28 to 37%, and the 80% maximum response was 32 to 48% for the Delta24 measure and 20 to 48% for AUBKC. The maximum response occurred at a T>MIC of 50 to 60% for both species and inocula. The S. pneumoniae data were analyzed by analysis of variance to assess the effect of inoculum, formulation, and MIC on antibacterial effect. Standard and enhanced formulations had different effects depending on MIC, with the standard formulation less effective at higher amoxicillin-clavulanate MICs. This is explained by the greater T>MICs of the enhanced formulation. Although resistant to amoxicillin-clavulanate by conventional breakpoints, S. pneumoniae and H. influenzae strains for which MICs are 2 or 4 mg/liter may well respond to therapy with pharmacokinetically enhanced formulation amoxicillin-clavulanate.

  17. Antifungal efficacy of thymol, carvacrol, eugenol and menthol as alternative agents to control the growth of food-relevant fungi.

    PubMed

    Abbaszadeh, S; Sharifzadeh, A; Shokri, H; Khosravi, A R; Abbaszadeh, A

    2014-06-01

    This work is an attempt to examine the antifungal activity of thymol, carvacrol, eugenol and menthol against 11 food-decaying fungi. The susceptibility test for the compounds was carried out in terms of minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) using microdilution method in 96 multi-well microtiter plates. Results indicated that all compounds were effective to varying extents against various fungal isolates, with the highest efficacy displayed by carvacrol (mean MIC value: 154.5 μg/mL) (P<0.05). The incorporation of increased concentrations of all compounds to the media led to progressive and significant reduction in growth for all fungi. The most potent inhibitory activity of thymol, carvacrol, eugenol and menthol was found for Cladosporium spp. (MIC: 100 μg/mL), Aspergillus spp. (MIC: 100 μg/mL), Cladosporium spp. (MIC: 350 μg/mL), and Aspergillus spp. and Cladosporium spp. (MIC: 125 μg/mL), respectively. Thus, the application of these herbal components could be considered as a good alternatives to inhibit fungal growth and to reduce the use of synthetic fungicides. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  18. Heparin-benzyl alcohol enhancement of biofilms formation and antifungal susceptibility of vaginal Candida species isolated from pregnant and nonpregnant Saudi women

    PubMed Central

    Al-akeel, Raid A; El-kersh, Talat A; Al-Sheikh, Yazeed A; Al-Ahmadey, Ziab Zakey

    2013-01-01

    Biofilm formation by Candida species is a major contribute to their pathogenic potential.The aim of this study was to determine in vitro effects of EDTA, cycloheximide, and heparin-benzyl alcohol preservative on C. albicans (126) and non-albicans (31)vaginal yeast isolates biofilm formations and their susceptibility against three antifungal Etest strips. Results of the crystal violet-assay, indicated that biofilms formation were most commonly observed [100%] for C. kefyr, C. utilis, C. famata, and Rhodotorula mucilaginosa, followed by C. glabrata [70%], C. tropicalis [50%], C. albicans [29%], Saccharomyces cerevisiae [0.0%]. EDTA (0.3mg/ml) significantly inhibited biofilm formation in both C. albicans and non-albicans isolates (P=0.0001) presumably due to chelation of necessary metal cations for the process-completion. In contrast, heparin (-benzyl alcohol preservative) stimulated biofilm formation in all tested isolates, but not at significant level (P=0.567). Conversely, cycloheximide significantly (P=0.0001) inhibited biofilm formation in all C. albicans strains(126) and its effect was even 3 fold more pronounced than EDTA inhibition, probably due to its attenuation of proteins (enzymes) and/or complex molecules necessary for biofilm formation. Results also showed that all nonalbicans yeasts isolates were susceptible to 5-flucytosine (MIC50, 0.016 µg/ml; MIC90, 0.064 µg/ml), but 14% of C. albicans isolates were resistant (MIC50, 0.064 µg/ml; MIC90 >32 µg/ml). The MIC50 value of amphotricin B for all C. albicans and non-albicans isolates was at a narrow range of 0.023 µg /ml, and the MIC90 values were 0.047 µg/ml and 0.064 µg/ml respectively, thereby confirming its efficacy as a first line empiric- treatment of Candida spp infections. PMID:23750080

  19. Chemical composition and antifungal activity of the essential oils of Lavandula viridis L'Her.

    PubMed

    Zuzarte, Mónica; Gonçalves, Maria José; Cavaleiro, Carlos; Canhoto, Jorge; Vale-Silva, Luís; Silva, Maria João; Pinto, Eugénia; Salgueiro, Lígia

    2011-05-01

    In the present work we report for what we believe to be the first time the antifungal activity and mechanism of action of the essential oils of Lavandula viridis from Portugal. The essential oils were isolated by hydrodistillation and analysed by GC and GC/MS. The MIC and the minimal lethal concentration (MLC) of the essential oil and its major compounds were determined against several pathogenic fungi. The influence of subinhibitory concentrations of the essential oil on the dimorphic transition in Candida albicans was also studied, as well as propidium iodide and FUN-1 staining of Candida albicans cells by flow cytometry following short treatments with the essential oil. The oils were characterized by a high content of oxygen-containing monoterpenes, with 1,8-cineole being the main constituent. Monoterpene hydrocarbons were present at lower concentrations. According to the determined MIC and MLC values, the dermatophytes and Cryptococcus neoformans were the most sensitive fungi (MIC and MLC values ranging from 0.32 to 0.64 µl ml⁻¹), followed by Candida species (at 0.64-2.5 µl ml⁻¹). For most of these strains, MICs were equivalent to MLCs, indicating a fungicidal effect of the essential oil. The oil was further shown to completely inhibit filamentation in Candida albicans at concentrations well below the respective MICs (as low as MIC/16). Flow cytometry results suggested a mechanism of action ultimately leading to cytoplasmic membrane disruption and cell death. Our results show that L. viridis essential oils may be useful in the clinical treatment of fungal diseases, particularly dermatophytosis and candidosis, although clinical trials are required to evaluate the practical relevance of our in vitro research.

  20. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds

    PubMed Central

    Penduka, Dambudzo; Okoh, Anthony I.

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8–11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079–0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log10 decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy. PMID:22072929

  1. In vitro anti-listerial activities of crude n-hexane and aqueous extracts of Garcinia kola (heckel) seeds.

    PubMed

    Penduka, Dambudzo; Okoh, Anthony I

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8-17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8-11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079-0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log(10) decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy.

  2. Synergistic effect of artocarpin on antibacterial activity of some antibiotics against methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2016-01-01

    Antibacterial resistance has dramatically increased and resulted in serious health problems worldwide. One appealing strategy to overcome this resistance problem is the use of combinations of antibacterial compounds to increase their potency. The objective of this study is to determine the synergistic effects of artocarpin for ampicillin, norfloxacin, and tetracycline against methicillin-resistant Staphylococcus aureus (MRSA) as well as the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. A broth microdilution method (1.95-250 µg/mL) was used to determine the minimum inhibitory concentration (MIC) of artocarpin and the antibiotics. Any synergistic effects were evaluated at their own MIC using the checkerboard method and a time-kill assay at 37 °C for 24 h. Artocarpin showed antibacterial activity against MRSA and E. coli with an MIC value of 62.5 µg/mL, and against P. aeruginosa with an MIC value of 250 µg/mL. The interaction of artocarpin with all tested antibiotics produced synergistic effects against MRSA with a fractional inhibitory concentration index (FICI) of 0.15-0.37. In addition, a combination of artocarpin and norfloxacin showed a synergistic effect against E. coli with an FICI value of 0.37, while the combinations of artocarpin and tetracycline as well as artocarpin and norfloxacin exhibited synergy interactions against P. aeruginosa with FICI values of 0.24 and 0.37, respectively. Time-kill assays indicated that artocarpin enhanced the antimicrobial activities of tetracycline, ampicillin, and norfloxacin against MRSA as well as Gram-negative bacteria.

  3. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration

    PubMed Central

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N.; Liu, Yongge

    2016-01-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. PMID:26976868

  4. Antimicrobial and anti-inflammatory activities of Pleurostylia capensis Turcz (Loes) (celastraceae).

    PubMed

    Razwinani, Mapula; Tshikalange, Thilivhali Emmanuel; Motaung, Shirley C K M

    2014-01-01

    Pleurostylia capensis is a large tree that can reach the maximum height of 20 m long, and it have been traditionally used as cosmetic, for steam bath, ritual body wash, and as a purgative to treat symptoms of witchcraft. Using ethanol, chloroform, dichloromethane (DCM), ethyl acetate (EA), and water extracts, leaves, bark and roots of Pleurostylia capensis were investigated scientifically for their effectiveness in antimicrobial, antioxidant and anti-inflammatory activities using standard methods. The extracts were evaluated for antimicrobial activity against Gram positive (Staphylococcus aureus, Bacillus cereus, and Mycobacterium smegmatis), Gram negative (Escherichia coli, Klebsiella pneumonia, Klebsiella oxytoca, Streptococcus pyogenes, Pseudomonas aeruginosa and Salmonella typhimurium), and Candida albicans. The antioxidant activity was investigated using 2, 2-diphenlyl-1-picrylhadrazyl (DPPH), free radical scavenging assay. The anti-inflammatory activity of P. capensis extracts was evaluated against both cyclooxygenase enzymes (COX 1 and 2). The ethyl acetate extracts of P. capensis showed a strong antimicrobial activity against B. cereus, K. pneumonia, S. pyogenes, and M. smegmatis with MIC value of 0.39 and 0.78 mg/ml. While the ethanol bark extract was most active against M. smegmatis with MIC value of 0.78 mg/ml; the least potent activity was observed with dichloromethane, chloroform and water extracts, with an MIC value ranging from 1.56 mg/ml to 50.0 mg/ml. The plant extracts proved to be good antioxidant agent, whereas extracts of ethanol were the most active, with IC50 ranging from 1.00 to 1.74 µg/ml, which is lower, and in close range to Vitamin C (1.40 µg/ml). Its moderation to potent inhibitory activity was observed in all extracts. Ethanol and dichloromethane extracts were among the most potent when compared to water and petroleum ether extracts. The water extracts showed to be nontoxic on the Hek cell line with an IC50 value of 204.0, and 207.3 µg/ml (roots and bark) respectively. The dichloromethane, ethyl acetate, chloroform and ethanol extracts showed to be toxic on the Hek cell, with IC50 range from 5.94 to 42.91µg/ml. The results obtained indicate the effectiveness of these plants.

  5. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population

    PubMed Central

    Lardieri, Allison B.; Heil, Emily L.; Morgan, Jill A.

    2017-01-01

    OBJECTIVES Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. METHODS This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. RESULTS A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. CONCLUSIONS The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC. PMID:28337080

  6. Vancomycin AUC/MIC and Corresponding Troughs in a Pediatric Population.

    PubMed

    Kishk, Omayma A; Lardieri, Allison B; Heil, Emily L; Morgan, Jill A

    2017-01-01

    Adult guidelines suggest an area under the curve/minimum inhibitory concentration (AUC/MIC) > 400 corresponds to a vancomycin trough serum concentration of 15 to 20 mg/L for methicillin-resistant Staphylococcus aureus infections, but obtaining these troughs in children are difficult. The primary objective of this study was to assess the likelihood that 15 mg/kg of vancomycin every 6 hours in a child achieves an AUC/MIC > 400. This retrospective chart review included pediatric patients >2 months to <18 years with a positive S aureus blood culture and documented MIC who received at least two doses of vancomycin with corresponding trough. Patients were divided into two groups: group 1 initially receiving ≥15 mg/kg every 6 hours, and group 2 initially receiving any other dosing ranges or intervals. AUCs were calculated four times using three pharmacokinetic methods. A total of 36 patients with 99 vancomycin trough serum concentrations were assessed. Baseline characteristics were similar between groups. For troughs in group 1 (n = 55), the probability of achieving an AUC/MIC > 400 ranged from 16.4% to 90.9% with a median trough concentration of 11.4 mg/L, while in group 2 (n = 44) the probability of achieving AUC/MIC > 400 ranged from 15.9% to 54.5% with mean trough concentration of 9.2 mg/L. The AUC/MICs were not similar between the different pharmacokinetic methods used; however, a trapezoidal equation (Method A) yielded the highest correlation coefficient (r 2 = 0.59). When dosing every 6 hours, an AUC/MIC of 400 correlated to a trough serum concentration of 11 mg/L. The probability of achieving an AUC/MIC > 400 using only a trough serum concentration and an MIC with patients receiving 15 mg/kg every 6 hours is variable based on the method used to calculate the AUC. An AUC/MIC of 400 in children correlated to a trough concentration of 11 mg/L using a trapezoidal Method to calculate AUC.

  7. Potential application of synthesized ferrocenylimines compounds for the elimination of bacteria in water

    NASA Astrophysics Data System (ADS)

    Ikhile, M. I.; Barnard, T. G.; Ngila, J. C.

    2017-08-01

    This work reports a study towards a search for environmentally friendly water disinfectant. The most common method for water treatment is based on chlorine which had a wide application over the years as a water disinfectant, but suffer the disadvantage of reacting with natural organic matter to form disinfection by products. In this study, the potential application of novel ferrocenylimines compounds, namely 4-ferrocenylaniline (1), N-(3-bromo-2-hydroxylbenzylidene)-4-ferrocenylimine (2) and N-(3-bromo-5-chlorosalicyl)-4-ferrocenylimine (3) for the elimination of bacteria in water was investigated by evaluating their antibacterial properties against twelve different bacterial strains using microdilution method in sterile 96 well micro titer plates. The in vitro antibacterial activity revealed that the ferrocenylimines compound exhibit higher antibacterial activity than ferrocene, which is one of the starting materials towards the synthesis of this novel ferrocenylimines compounds. The most active ferrocenylimines compound was compound 3 with a minimal inhibitory concentration (MIC) value of 0.30 mg/ml against S. sonnei. In addition, all the ferrocenylimines compounds possessed excellent antibacterial activity against B. cereus with the same MIC value of 0.31 mg/ml. The results obtained so far show great potential in the three tested ferrocenylimines compounds for use in water treatment in killing bacteria in water.

  8. Antimicrobial susceptibility of Brachyspira hyodysenteriae in Switzerland.

    PubMed

    Kirchgässner, C; Schmitt, S; Borgström, A; Wittenbrink, M M

    2016-06-01

    Brachyspira (B.) hyodysenteriae is the causative agent of swine dysentery (SD), a severe mucohaemorrhagic diarrheal disease in pigs worldwide. So far, the antimicrobial susceptibility patterns of B. hyodysenteriae in Switzerland have not been investigated. Therefore, a panel of 30 porcine B. hyodysenteriae isolates were tested against 6 antimicrobial agents by using the VetMIC Brachy panel, a broth microdilution test. Tiamulin and valnemulin showed high antimicrobial activity inhibiting all isolates at low concentrations. The susceptibility testing of doxycycline revealed values from ≤0.25 μg/ ml (47%) to 2 μg/ml (10%). The MIC values of lincomycin ranged between ≤0.5 μg/ml (30%) and 32 μg/ml (43%). For tylosin, 57% of the isolates could not be inhibited at the highest concentration of ≥128 μg/ml. The MIC values for tylvalosin were between ≤0.25 μg/ml (10%) and 8 μg/ml (20%). These findings reveal Switzerland's favourable situation compared to other European countries. Above all, tiamulin and valnemulin are still effective antimicrobial agents and can be further used for the treatment of SD.

  9. Additive interaction of carbon dots extracted from soluble coffee and biogenic silver nanoparticles against bacteria

    NASA Astrophysics Data System (ADS)

    Andrade, Patricia F.; Nakazato, Gerson; Durán, Nelson

    2017-06-01

    It is known the presence of carbon dots (CDs) in carbohydrate based foods. CDs extracted from coffee grounds and instant coffee was also published. CDs from soluble coffee revealed an average size of 4.4 nm. CDs were well-dispersed in water, fluorescent and we have characterized by XPS, XRD analysis, fluorescence and by FTIR spectra. The MIC value by serial micro-dilution assays for CDs on S. aureus ATCC 25923 was 250 μg/mL and E. coli ATCC 25922 >1000 ug/mL. For silver nanoparticles biogenically synthesized was 6.7 μg/mL. Following the checkerboard assay with combining ½ MIC values of the MICs of 125 μg/mL of carbon dots and 3.4 μg/mL of silver nanoparticles, following the fractionated inhibitory concentration (FIC) index methodology, on S. aureus gave a fractionated inhibitory concentration (FIC) value of 1.0, meaning additive interaction. In general, the unfunctionalized CDs showed to be inefficient as antibacterial compounds, however the CDs extracted from Coffee powder and together silver nanoparticles appeared interesting as antibacterial association.

  10. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves.

    PubMed

    Rodrigues, Fabiola F G; Oliveira, Liana G S; Rodrigues, Fábio F G; Saraiva, Manuele E; Almeida, Sheyla C X; Cabral, Mario E S; Campos, Adriana R; Costa, Jose Galberto M

    2012-07-01

    Cordia verbenacea is a Brazilian coastal shrub popularly known as "erva baleeira". The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens.

  11. In Vitro Anti-Malassezia Activity of Castanea crenata Shell and Oil-Soluble Glycyrrhiza Extracts

    PubMed Central

    Han, Song Hee; Hur, Min Seok; Kim, Min Jung; Jung, Won Hee; Park, Minji; Kim, Jeong Hwan; Shin, Hong Ju; Choe, Yong Beom; Ahn, Kyu Joong

    2017-01-01

    Background A new shampoo with anti-Malassezia properties obtained from various plants is required to provide seborrheic dermatitis patients with a wider range of treatment options. Objective The aim of this study was to obtain in vitro susceptibility profiles of Malassezia restricta and M. globosa, the most important pathogenic organisms in the development of seborrheic dermatitis, to the plant extracts used in commercial anti-dandruff shampoos. Methods Minimal inhibitory concentrations (MICs) were determined for eight candidate plant extracts and two plant-derived natural products diluted with Leeming and Notman medium to final concentrations of 0.016 to 1 mg/ml. Results Castanea crenata shell, Camellia sinensis leaf, and oil-soluble Glycyrrhiza extracts presented relatively low MIC values (≤0.5 mg/ml) against both strains. The C. crenata shell and oil-soluble Glycyrrhiza extracts demonstrated especially high anti-Malassezia activity, suggesting their potential use in the treatment of seborrheic dermatitis. The extracts also showed fungistatic activity against other common facultative pathogenic yeasts, Cryptococcus and Candida. Conclusion C. crenata shell and oil-soluble Glycyrrhiza extracts could potentially be used as active ingredients in anti-seborrheic and anti-dandruff shampoo formulations. They could be helpful for repeated treatments and regular prophylaxis of scalp seborrheic dermatitis. PMID:28566909

  12. Management and control of microbiologically influenced corrosion (MIC) in the oil and gas industry-Overview and a North Sea case study.

    PubMed

    Skovhus, Torben Lund; Eckert, Richard B; Rodrigues, Edgar

    2017-08-20

    Microbiologically influenced corrosion (MIC) is the terminology applied where the actions of microorganisms influence the corrosion process. In literature, terms such as microbial corrosion, biocorrosion, microbially influenced/induced corrosion, and biodegradation are often applied. MIC research in the oil and gas industry has seen a revolution over the past decade, with the introduction of molecular microbiological methods: (MMM) as well as new industry standards and procedures of sampling biofilm and corrosion products from the process system. This review aims to capture the most important trends the oil and gas industry has seen regarding MIC research over the past decade. The paper starts out with an overview of where in the process stream MIC occurs - from the oil reservoir to the consumer. Both biotic and abiotic corrosion mechanisms are explained in the context of managing MIC using a structured corrosion management (CM) approach. The corrosion management approach employs the elements of a management system to ensure that essential corrosion control activities are carried out in an effective, sustainable, well-planned and properly executed manner. The 3-phase corrosion management approach covering of both biotic and abiotic internal corrosion mechanisms consists of 1) corrosion assessment, 2) corrosion mitigation and 3) corrosion monitoring. Each of the three phases are described in detail with links to recent field cases, methods, industry standards and sampling protocols. In order to manage the corrosion threat, operators commonly use models to support decision making. The models use qualitative, semi-quantitative or quantitative measures to help assess the rate of degradation caused by MIC. The paper reviews four existing models for MIC Threat Assessment and describe a new model that links the threat of MIC in the oil processing system located on an offshore platform with a Risk Based Inspection (RBI) approach. A recent field case highlights and explains the conflicting historic results obtained through serial dilution of culture media using the most probable number (MPN) method as compared to data obtained from corrosion monitoring and the quantitative polymerase chain reaction (qPCR) method. Results from qPCR application in the field case have changed the way MIC is monitored on the oil production facility in the North Sea. A number of high quality resources have been published as technical conference papers, books, educational videos and peer-reviewed scientific papers, and thus we end the review with an updated list of state-of-the-art resources for anyone desiring to become more familiar with the topic of MIC in the upstream oil and gas sector. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In vitro antimicrobial susceptibility of Mycoplasma bovis isolated in Israel from local and imported cattle.

    PubMed

    Gerchman, Irena; Levisohn, Sharon; Mikula, Inna; Lysnyansky, Inna

    2009-06-12

    Monitoring of susceptibility to antibiotics in field isolates of pathogenic bovine mycoplasmas is important for appropriate choice of treatment. Our study compared in vitro susceptibility profiles of Mycoplasma bovis clinical strains, isolated during 2005-2007 from Israeli and imported calves. Minimal inhibitory concentration (MIC) values were determined for macrolides by the microbroth dilution test, for aminoglycosides by commercial Etest, and for fluoroquinolones and tetracyclines by both methods. Notably, although correlation between the methods was generally good, it was not possible to determine the MIC endpoint for enrofloxacin-resistant strains (MIC > or =2.5 microg/ml in the microtest) by Etest. Comparison of antibiotic susceptibility profiles between local and imported M. bovis strains revealed that local strains were significantly more resistant to macrolides than most isolates from imported animals, with MIC(50) of 128 microg/ml vs. 2 microg/ml for tilmicosin and 8 microg/ml vs. 1 microg/ml for tylosin, respectively. However, local strains were more susceptible than most imported strains to fluoroquinolones and spectinomycin. Difference in susceptibility to tetracycline, doxycycline and oxytetracycline between local and imported strains was expressed in MIC(90) values for imported strains in the susceptible range compared to intermediate susceptibility for local strains. The marked difference in susceptibility profiles of M. bovis strains isolated from different geographical regions seen in this study emphasizes the necessity for performing of the antimicrobial susceptibility testing periodically and on a regional basis.

  14. Efficacy of the Clinical Agent VT-1161 against Fluconazole-Sensitive and -Resistant Candida albicans in a Murine Model of Vaginal Candidiasis

    PubMed Central

    Hoekstra, W. J.; Schotzinger, R. J.; Sobel, J. D.; Lilly, E. A.; Fidel, P. L.

    2015-01-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. PMID:26124165

  15. Evaluation of the in vitro antimicrobial activity of an ethanol extract of Brazilian classified propolis on strains of Staphylococcus aureus

    PubMed Central

    Pamplona-Zomenhan, Lucila Coelho; Pamplona, Beatriz Coelho; da Silva, Cely Barreto; Marcucci, Maria Cristina; Mimica, Lycia Mara Jenné

    2011-01-01

    Staphylococcus aureus (S. aureus) is one of the most frequent causes of hospital acquired infections. With the increase in multiple drug resistant strains, natural products such as propolis are a stratagem for new product discovery. The aims of this study were: to determine the in vitro antimicrobial activity of an ethanol extract of propolis; to define the MIC50 and MIC90 (Minimal Inhibitory Concentration – MIC) against 210 strains of S. aureus; to characterize a crude sample of propolis and the respective ethanol extract as to the presence of predetermined chemical markers. The agar dilution method was used to define the MIC and the high performance liquid chromatography (HPLC) method was used to characterize the samples of propolis. MIC results ranged from 710 to 2,850 µg/mL. The MIC50 and MIC90 for the 210 strains as well as the individual analysis of American Type Culture Collection (ATCC) strains of Methicillin-susceptible Staphylococcus aureus (MSSA) and Methicillin-resistant Staphylococcus aureus (MRSA) were both 1,420 µg/mL. Based on the chromatographic analysis of the crude sample and ethanol extracted propolis, it was concluded that propolis was a mixture of the BRP (SP/MG) and BRP (PR) types. The results obtained confirm an antimicrobial activity in relation to the strains of the S. aureus tested. PMID:24031749

  16. Comparison of Meropenem MICs and Susceptibilities for Carbapenemase-Producing Klebsiella pneumoniae Isolates by Various Testing Methods▿

    PubMed Central

    Bulik, Catharine C.; Fauntleroy, Kathy A.; Jenkins, Stephen G.; Abuali, Mayssa; LaBombardi, Vincent J.; Nicolau, David P.; Kuti, Joseph L.

    2010-01-01

    We describe the levels of agreement between broth microdilution, Etest, Vitek 2, Sensititre, and MicroScan methods to accurately define the meropenem MIC and categorical interpretation of susceptibility against carbapenemase-producing Klebsiella pneumoniae (KPC). A total of 46 clinical K. pneumoniae isolates with KPC genotypes, all modified Hodge test and blaKPC positive, collected from two hospitals in NY were included. Results obtained by each method were compared with those from broth microdilution (the reference method), and agreement was assessed based on MICs and Clinical Laboratory Standards Institute (CLSI) interpretative criteria using 2010 susceptibility breakpoints. Based on broth microdilution, 0%, 2.2%, and 97.8% of the KPC isolates were classified as susceptible, intermediate, and resistant to meropenem, respectively. Results from MicroScan demonstrated the most agreement with those from broth microdilution, with 95.6% agreement based on the MIC and 2.2% classified as minor errors, and no major or very major errors. Etest demonstrated 82.6% agreement with broth microdilution MICs, a very major error rate of 2.2%, and a minor error rate of 2.2%. Vitek 2 MIC agreement was 30.4%, with a 23.9% very major error rate and a 39.1% minor error rate. Sensititre demonstrated MIC agreement for 26.1% of isolates, with a 3% very major error rate and a 26.1% minor error rate. Application of FDA breakpoints had little effect on minor error rates but increased very major error rates to 58.7% for Vitek 2 and Sensititre. Meropenem MIC results and categorical interpretations for carbapenemase-producing K. pneumoniae differ by methodology. Confirmation of testing results is encouraged when an accurate MIC is required for antibiotic dosing optimization. PMID:20484603

  17. Emergence of Quinolone Resistance and Cephalosporin MIC Creep in Neisseria gonorrhoeae Isolates from a Cohort of Young Men in Kisumu, Kenya, 2002 to 2009▿

    PubMed Central

    Mehta, Supriya D.; Maclean, Ian; Ndinya-Achola, Jeckoniah O.; Moses, Stephen; Martin, Irene; Ronald, Allan; Agunda, Lawrence; Murugu, Ruth; Bailey, Robert C.; Melendez, Johan; Zenilman, Jonathan M.

    2011-01-01

    We evaluated antimicrobial resistance in Neisseria gonorrhoeae isolated from men enrolled in a randomized trial of male circumcision to prevent HIV. Urethral specimens from men with discharge were cultured for N. gonorrhoeae. MICs were determined by agar dilution. Clinical and Laboratory Standards Institute (CLSI) criteria defined resistance: penicillin, tetracycline, and azithromycin MICs of ≥2.0 μg/ml; a ciprofloxacin MIC of ≥1.0 μg/ml; and a spectinomycin MIC of ≥128.0 μg/ml. Susceptibility to ceftriaxone and cefixime was shown by an MIC of ≤0.25 μg/ml. Additionally, PCR amplification identified mutations in parC and gyrA genes in selected isolates. From 2002 to 2009, 168 N. gonorrhoeae isolates were obtained from 142 men. Plasmid-mediated penicillin resistance was found in 65%, plasmid-mediated tetracycline resistance in 97%, and 11% were ciprofloxacin resistant (quinolone-resistant N. gonorrhoeae [QRNG]). QRNG appeared in November 2007, increasing from 9.5% in 2007 to 50% in 2009. Resistance was not detected for spectinomycin, cefixime, ceftriaxone, or azithromycin, but MICs of cefixime (P = 0.018), ceftriaxone (P < 0.001), and azithromycin (P = 0.097) increased over time. In a random sample of 51 men, gentamicin MICs were as follows: 4 μg/ml (n = 1), 8 μg/ml (n = 49), and 16 μg/ml (n = 1). QRNG increased rapidly and alternative regimens are required for N. gonorrhoeae treatment in this area. Amid emerging multidrug-resistant N. gonorrhoeae, antimicrobial resistance surveillance is essential for effective drug choice. High levels of plasmid-mediated resistance and increasing MICs for cephalosporins suggest that selective pressure from antibiotic use is a strong driver of resistance emergence. PMID:21606224

  18. Inhibition of penicillin-binding protein 2a (PBP2a) in methicillin resistant Staphylococcus aureus (MRSA) by combination of ampicillin and a bioactive fraction from Duabanga grandiflora.

    PubMed

    Santiago, Carolina; Pang, Ee Leen; Lim, Kuan-Hon; Loh, Hwei-San; Ting, Kang Nee

    2015-06-10

    The inhibition of penicillin-binding protein 2a (PBP2a) is a promising solution in overcoming resistance of methicillin resistance Staphylococcus aureus (MRSA). A potential approach in achieving this is by combining natural product with currently available antibiotics to restore the activity as well as to amplify the therapeutic ability of the drugs. We studied inhibition effects of a bioactive fraction, F-10 (isolated from the leaves of Duabanga grandiflora) alone and in combination with a beta-lactam drug, ampicillin on MRSA growth and expression of PBP2a. Additionally, phytochemical analysis was conducted on F-10 to identify the classes of phytochemicals present. Fractionation of the ethyl acetate leaf extract was achieved by successive column chromatography which eventually led to isolation of an active fraction, F-10. Both extract and F-10 were analyzed for the presence of major classes of phytochemicals in addition to obtaining a high performance liquid chromatography (HPLC) profile to reveal the complexity of the fraction F-10. Broth microdilution method was employed to determine minimum inhibitory concentration (MIC) of the extract and fractions against MRSA. Evaluation of synergistic activity of the active fraction with ampicillin was determined using checkerboard methodand kinetic growth experiments. Effect of combination treatments on expression of PBP2a, a protein that confers resistance to beta-lactam antibiotics, was elucidated with the Western blot assay. MIC of F-10 against MRSA was 750 mg/L which showed an improved activity by 4-fold compared to its crude extract (MIC = 3000 mg/L). Phytochemical analysis revealed occurrence of tannins, saponin, flavonoids, sterols, and glycosides in F10 fraction. In FIC index interpretation, the most synergistic activity was achieved for combinations of 1/64 × MIC ampicillin + 1/4 × MIC F-10. The combination also evidently inhibited MRSA growth in kinetic growth curve assay. As a result of this synergistic interaction, MIC of ampicillin against MRSA was reduced to 0.78 mg/L (64-fold) from initial value of 50 mg/L. Western blot analysis suggested inhibition of PBP2a in MRSA cultures grown in synergistic combination treatment in which no PBP2a band was expressed. The results demonstrated synergism between fraction F-10 of D. grandiflora with ampicillin in suppressing MRSA growth via PBP2a inhibition.

  19. In vitro susceptibility of Trichophyton rubrum isolates to griseofulvin and tioconazole. Induction and isolation of a resistant mutant to both antimycotic drugs. Mutant of Trichophyton rubrum resistant to griseofulvin and tioconazole.

    PubMed

    Fachin, A L; Maffei, C M; Martinez-Rossi, N M

    1996-01-01

    The in vitro susceptibility of three clinical Trichophyton rubrum isolates to griseofulvin and tioconazole, determined by the minimal inhibitory concentration (MIC), was 2 and 0.5 to 1.0 micrograms/ml, respectively. One mutant (gril) obtained after mutagenic treatment of one of these isolates was selected and showed simultaneous resistance to griseofulvin (MIC > 2000 micrograms/ml) and tioconazole (MIC = 1.0 microgram/ml). The clinical importance and the possibility of a multidrug resistance (MDR)-type mechanism being involved in this event is discussed.

  20. Biocompatibility of designed MicNo-ZnO particles: Cytotoxicity, genotoxicity and phototoxicity in human skin keratinocyte cells.

    PubMed

    Genç, Hatice; Barutca, Banu; Koparal, A Tansu; Özöğüt, Uğurcan; Şahin, Yücel; Suvacı, Ender

    2018-03-01

    Recently, designed platelet shaped micron particles that are composed of nano primary particles, called MicNo (=Micron+naNo) particles, have been developed to exploit the benefits of nano size, while removing the adverse effects of nanoparticles. It has been shown that MicNo-ZnO particles exhibit both micron and nanosized particle characteristics. Although physical and chemical properties of MicNo-ZnO particles have been studied, their biocompatibility has not yet been evaluated. Accordingly, the research objective of this study was to evaluate in vitro cytotoxicity, genotoxicity and phototoxicity behaviors of designed MicNo-ZnO particles over human epidermal keratinocyte (HaCaT) cells. MicNo-ZnO particles exhibit much less cytotoxicity with IC 50 concentrations between 40 and 50μg/ml, genotoxicity above 40μg/ml and lower photo genotoxicity under UVA on HaCaT than the ZnO nanoparticles. Although their chemistries are the same, the source of this difference in toxicity values may be attributed to size differences between the particles that are probably due to their ability to penetrate into the cells. In the present study, the expansive and detailed in vitro toxicity tests show that the biocompatibility of MicNo-ZnO particles is much better than that of the ZnO nanoparticles. Consequently, MicNo-ZnO particles can be considered an important active ingredient alternative for sunscreen applications due to their safer characteristics with respect to ZnO nanoparticles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. In vitro susceptibility of four antimicrobials against Riemerella anatipestifer isolates: a comparison of minimum inhibitory concentrations and mutant prevention concentrations for ceftiofur, cefquinome, florfenicol, and tilmicosin.

    PubMed

    Li, Yafei; Zhang, Yanan; Ding, Huanzhong; Mei, Xian; Liu, Wei; Zeng, Jiaxiong; Zeng, Zhenling

    2016-11-09

    Mutant prevention concentration (MPC) is an alternative pharmacodynamic parameter that has been used to measure antimicrobial activity and represents the propensities of antimicrobial agents to select resistant mutants. The concentration range between minimum inhibitory concentration (MIC) and MPC is defined as mutant selection window (MSW). The MPC and MSW parameters represent the ability of antimicrobial agents to inhibit the bacterial mutants selected. This study was conducted to determine the MIC and MPC values of four antimicrobials including ceftiofur, cefquinome, florfenicol and tilmicosin against 105 Riemerella anatipestifer isolates. The MIC 50 /MIC 90 values of clinical isolates tested in our study for ceftiofur, cefquinome, florfenicol and tilmicosin were 0.063/0.5、0.031/0.5、1/4、1/4 μg/mL, respectively; MPC 50 / MPC 90 values were 4/64、8/64、4/32、16/256 μg/mL, respectively. These results provided information on the use of these compounds in treating the R. anatipestifer infection; however, additional studies are needed to demonstrate their therapeutic efficacy. Based on the MSW theory, the hierarchy of these tested antimicrobial agents with respect to selecting resistant subpopulations was as follows: cefquinome > ceftiofur > tilmicosin > florfenicol. Cefquinome was the drug that presented the highest risk of selecting resistant mutant among the four antimicrobial agents.

  2. High-Level Fosfomycin Resistance in Vancomycin-Resistant Enterococcus faecium

    PubMed Central

    Guo, Yan; Tomich, Adam D.; McElheny, Christi L.; Cooper, Vaughn S.; Tait-Kamradt, Amelia; Wang, Minggui; Hu, Fupin; Rice, Louis B.; Sluis-Cremer, Nicolas

    2017-01-01

    Of 890 vancomycin-resistant Enterococcus faecium isolates obtained by rectal screening from patients in Pittsburgh, Pennsylvania, USA, 4 had MICs >1,024 μg/mL for fosfomycin. These isolates had a Cys119Asp substitution in the active site of UDP-N-acetylglucosamine enolpyruvyl transferase. This substitution increased the fosfomycin MIC >4-fold and rendered this drug inactive in biochemical assays. PMID:29048285

  3. Determination of moxifloxacin anaerobic susceptibility breakpoints according to the Clinical and Laboratory Standards Institute guidelines.

    PubMed

    Ambler, Jane; Rennie, Robert; Poupard, James; Koeth, Laura; Stass, Heino; Endermann, Rainer; Choudhri, Shurjeel

    2008-05-01

    A summary of the key data presented to Clinical and Laboratory Standards Institute (CLSI, formerly National Committee for Clinical and Laboratory Standards) in determination of moxifloxacin anaerobic breakpoints is presented. The breakpoint analysis required review of a variety of data, including bacteriologic and clinical outcomes by MIC of anaerobic isolates from prospective clinical trials in patients with complicated intra-abdominal infections, human and animal pharmacokinetic/pharmacodynamic (PK/PD) information and in vitro models, MIC distributions of indicated organisms, and animal model efficacy data for strains with MIC values around prospective breakpoints. The compilation of the various components of this breakpoint analysis supports the US Food and Drug Administration (FDA) and CLSI moxifloxacin anaerobic breakpoints of < or =2 mg/L (susceptible), 4 mg/L (intermediate), and > or =8 mg/L (resistant), and provides information to European investigators for interpretation of MICs prior to establishment of the European Committee on Antimicrobial Susceptibility Testing breakpoints.

  4. MIC of Delamanid (OPC-67683) against Mycobacterium tuberculosis Clinical Isolates and a Proposed Critical Concentration.

    PubMed

    Stinson, Kelly; Kurepina, Natalia; Venter, Amour; Fujiwara, Mamoru; Kawasaki, Masanori; Timm, Juliano; Shashkina, Elena; Kreiswirth, Barry N; Liu, Yongge; Matsumoto, Makoto; Geiter, Lawrence

    2016-06-01

    The increasing global burden of multidrug-resistant tuberculosis (MDR-TB) requires reliable drug susceptibility testing that accurately characterizes susceptibility and resistance of pathogenic bacteria to effectively treat patients with this deadly disease. Delamanid is an anti-TB agent first approved in the European Union in 2014 for the treatment of pulmonary MDR-TB in adults. Using the agar proportion method, delamanid MIC was determined for 460 isolates: 316 from patients enrolled in a phase 2 global clinical trial, 76 from two phase 2 early bactericidal activity trials conducted in South Africa, and 68 isolates obtained outside clinical trials (45 from Japanese patients and 23 from South African patients). With the exception of two isolates, MICs ranged from 0.001 to 0.05 μg/ml, resulting in an MIC50 of 0.004 μg/ml and an MIC90 of 0.012 μg/ml. Various degrees of resistance to other anti-TB drugs did not affect the distribution of MICs, nor did origin of isolates from regions/countries other than South Africa. A critical concentration/breakpoint of 0.2 μg/ml can be used to define susceptible and resistant isolates based on the distribution of MICs and available pharmacokinetic data. Thus, clinical isolates from delamanid-naive patients with tuberculosis have a very low MIC for delamanid and baseline resistance is rare, demonstrating the potential potency of delamanid and supporting its use in an optimized background treatment regimen for MDR-TB. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Long-term evaluation of the antimicrobial susceptibility and microbial profile of subgingival biofilms in individuals with aggressive periodontitis

    PubMed Central

    Lourenço, Talita Gomes Baêta; Heller, Débora; do Souto, Renata Martins; Silva-Senem, Mayra Xavier e; Varela, Victor Macedo; Torres, Maria Cynesia Barros; Feres-Filho, Eduardo Jorge; Colombo, Ana Paula Vieira

    2015-01-01

    This study evaluates the antimicrobial susceptibility and composition of subgingival biofilms in generalized aggressive periodontitis (GAP) patients treated using mechanical/antimicrobial therapies, including chlorhexidine (CHX), amoxicillin (AMX) and metronidazole (MET). GAP patients allocated to the placebo (C, n = 15) or test group (T, n = 16) received full-mouth disinfection with CHX, scaling and root planning, and systemic AMX (500 mg)/MET (250 mg) or placebos. Subgingival plaque samples were obtained at baseline, 3, 6, 9 and 12 months post-therapy from 3–4 periodontal pockets, and the samples were pooled and cultivated under anaerobic conditions. The minimum inhibitory concentrations (MICs) of AMX, MET and CHX were assessed using the microdilution method. Bacterial species present in the cultivated biofilm were identified by checkerboard DNA-DNA hybridization. At baseline, no differences in the MICs between groups were observed for the 3 antimicrobials. In the T group, significant increases in the MICs of CHX (p < 0.05) and AMX (p < 0.01) were detected during the first 3 months; however, the MIC of MET decreased at 12 months (p < 0.05). For several species, the MICs significantly changed over time in both groups, i.e., Streptococci MICs tended to increase, while for several periodontal pathogens, the MICs diminished. A transitory increase in the MIC of the subgingival biofilm to AMX and CHX was observed in GAP patients treated using enhanced mechanical therapy with topical CHX and systemic AMX/MET. Both protocols presented limited effects on the cultivable subgingival microbiota. PMID:26273264

  6. In vitro evaluation of the potential for resistance development to ceragenin CSA-13

    PubMed Central

    Pollard, Jake E.; Snarr, Jason; Chaudhary, Vinod; Jennings, Jacob D.; Shaw, Hannah; Christiansen, Bobbie; Wright, Jonathan; Jia, Wenyi; Bishop, Russell E.; Savage, Paul B.

    2012-01-01

    Objectives Though most bacteria remain susceptible to endogenous antimicrobial peptides, specific resistance mechanisms are known. As mimics of antimicrobial peptides, ceragenins were expected to retain antibacterial activity against Gram-positive and -negative bacteria, even after prolonged exposure. Serial passaging of bacteria to a lead ceragenin, CSA-13, was performed with representative pathogenic bacteria. Ciprofloxacin, vancomycin and colistin were used as comparators. The mechanisms of resistance in Gram-negative bacteria were elucidated. Methods Susceptible strains of Staphylococcus aureus, Pseudomonas aeruginosa and Acinetobacter baumannii were serially exposed to CSA-13 and comparators for 30 passages. MIC values were monitored. Alterations in the Gram-negative bacterial membrane composition were characterized via mass spectrometry and the susceptibility of antimicrobial-peptide-resistant mutants to CSA-13 was evaluated. Results S. aureus became highly resistant to ciprofloxacin after <20 passages. After 30 passages, the MIC values of vancomycin and CSA-13 for S. aureus increased 9- and 3-fold, respectively. The Gram-negative organisms became highly resistant to ciprofloxacin after <20 passages. MIC values of colistin for P. aeruginosa and A. baumannii increased to ≥100 mg/L after 20 passages. MIC values of CSA-13 increased to ∼20–30 mg/L and plateaued over the course of the experiment. Bacteria resistant to CSA-13 displayed lipid A modifications that are found in organisms resistant to antimicrobial peptides. Conclusions CSA-13 retained potent antibacterial activity against S. aureus over the course of 30 serial passages. Resistance generated in Gram-negative bacteria correlates with modifications to the outer membranes of these organisms and was not stable outside of the presence of the antimicrobial. PMID:22899801

  7. The pharmacokinetic-pharmacodynamic modeling and cut-off values of tildipirosin against Haemophilus parasuis

    PubMed Central

    Lei, Zhixin; Liu, Qianying; Yang, Bing; Ahmed, Saeed; Cao, Jiyue; He, Qigai

    2018-01-01

    The goal of this study was to establish the epidemiological, pharmacodynamic cut-off values, optimal dose regimens for tildipirosin against Haemophilus parasuis. The minimum inhibitory concentrations (MIC) of 164 HPS isolates were determined and SH0165 whose MIC (2 μg/ml ) were selected for PD analysis. The ex vivo MIC in plasma of SH0165 was 0.25 μg/ml which was 8 times lower than that in TSB. The bacteriostatic, bactericidal and elimination activity (AUC24h/MIC) in serum were 26.35, 52.27 and 73.29 h based on the inhibitory sigmoid Emax modeling. The present study demonstrates that 97.9% of the wild-type (WT) isolates were covered when the epidemiological cut-off value (ECV) was set at 8 μg/ml. The parameters including AUC24h, AUC, T1/2, Cmax, CLb and MRT in PELF were 19.56, 60.41, 2.32, 4.02, 56.6, and 2.63 times than those in plasma, respectively. Regarding the Monte Carlo simulation, the COPD was defined as 0.5 μg/ml in vitro, and the optimal doses to achieve bacteriostatic, bactericidal and elimination effect were 1.85, 3.67 and 5.16 mg/kg for 50% target, respectively, and 2.07, 4.17 and 5.78 mg/kg for 90% target, respectively. The results of this study offer a more optimised alternative for clinical use and demonstrated that 4.17 mg/kg of tildipirosin by intramuscular injection could have an effect on bactericidal activity against HPS. These values are of great significance for the effective treatment of HPS infections, but it also be deserved to be validated in clinical practice in the future research. PMID:29416722

  8. Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: An in vitro study.

    PubMed

    Andrade, Verónica; Martínez, Alejandra; Rojas, Ninón; Bello-Toledo, Helia; Flores, Paulo; Sánchez-Sanhueza, Gabriela; Catalán, Alfonso

    2018-05-01

    Interim restorations are occasionally left in the mouth for extended periods and are susceptible to bacterial infiltration. Thus, dental interim cements with antibacterial properties are required. The purpose of this in vitro study was to determine in vitro antibacterial activity against Streptococcus mutans and to compare the diametrical tensile strength (DTSs) of dental interim cement modified with zinc oxide nanoparticles (ZnO-NPs) with that of cement modified with terpenes. Antibacterial properties of ZnO-NPs, terpenes, and dental interim cement modified with ZnO-NPs and cement modified with terpenes against S mutans were tested according to minimum inhibitory concentration (MIC) and direct contact inhibition (DCI). Tensile strength levels were evaluated using DTS. Results were analyzed using the Kolmogorov-Smirnov, ANOVA, and Tamhane tests (α=.05). The MICs of ZnO-NPs and terpenes against S mutans were 61.94 μg/g and 0.25% v/v, respectively. The DCI assay under the cylinders of cement (area of contact with the agar surface) revealed significant bacterial growth inhibition on Temp-Bond NE specimens with ZnO-NPs at MIC of 495.2 μg/g (8× MIC) and with terpenes at MIC 0.999% v/v (4× MIC) (P<.05). The Temp-Bond NE cement cylinder (control group) showed the lowest DTS (1.05 ±0.27 MPa) of all other test groups. In the Zn-NPs group, the greatest increase occurred in the NP8 (8× MIC; 495.2 μg/g) group with a value of 1.50 ±0.23 MPa, a significant increase in DTS compared with the control and terpene groups (P<.05). In the terpene group, the highest increase corresponded to group T2 (2× MIC; 0.4995% v/v) with a value of 1.29 ±0.18 MPa. The addition of terpenes and ZnO-NPs to interim cement showed antibacterial activity when in contact with S. mutans ATCC 25175. Both terpenes and ZnO-NPs antimicrobial agents increased diametral tensile strength. Copyright © 2017 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  9. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis.

    PubMed

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; Alencar, Severino Matias de

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1-OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5-100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry.

  10. Chemical Characterization and Antioxidant, Antimicrobial, and Anti-Inflammatory Activities of South Brazilian Organic Propolis

    PubMed Central

    Tiveron, Ana Paula; Rosalen, Pedro Luiz; Franchin, Marcelo; Lacerda, Risia Cristina Coelho; Bueno-Silva, Bruno; Benso, Bruna; Denny, Carina; Ikegaki, Masaharu; de Alencar, Severino Matias

    2016-01-01

    South Brazilian organic propolis (OP), which has never been studied before, was assessed and its chemical composition, scavenging potential of reactive oxygen species, antimicrobial and anti-inflammatory activities are herein presented. Based on the chemical profile obtained using HPLC, OP was grouped into seven variants (OP1–OP7) and all of them exhibited high scavenging activity, mainly against superoxide and hypochlorous acid species. OP1, OP2, and OP3 had the smallest minimal inhibitory concentration (MIC) against Gram-positive bacteria Streptococcus mutans, Streptococcus oralis, and Streptococcus aureus (12.5–100 μg/mL). OP1, OP2, OP3, and OP4 were more effective against Pseudomonas aeruginosa (Gram-negative), with MIC values ranging from 100 to 200 μg/mL. OP6 showed anti-inflammatory activity by decreasing NF-kB activation and TNF-α release in RAW 264.7 macrophages, and expressing the NF-κB-luciferase reporter stable gene. Therefore, south Brazilian OP can be considered an excellent source of bioactive compounds with great potential of application in the pharmaceutical and food industry. PMID:27802316

  11. In vitro activity of flumequine in comparison with several other antimicrobial agents against five pathogens isolated in calves in The Netherlands.

    PubMed

    Mevius, D J; Breukink, H J; van Miert, A S

    1990-10-01

    The in vitro activity of flumequine in comparison with several other drugs was tested against 17 P. multocida, 16 P. haemolytica, 21 S. dublin, 21 S. typhimurium and 21 E. coli strains, isolated in (veal) calves in the Netherlands. The MIC50 of flumequine for the respective pasteurellas was 0.25 and 1 microgram/ml, for the salmonellas and E. coli 0.5 micrograms/ml. In comparison with flumequine, enrofloxacin and ciprofloxacin showed higher in vitro activity, with MIC50 less than or equal to 0.008 micrograms/ml for ciprofloxacin. Decreased susceptibility of the pasteurellas was found for kanamycin, neomycin, streptomycin, gentamicin, oxytetracycline and doxycycline. The MIC50 of minocycline for P. multocida was 0.5 micrograms/ml and there was no cross resistance with the other tetracyclines. P. multocida was very susceptible to ampicillin (MIC50 less than or equal to 0.03 micrograms/ml), P. haemolytica, however, was 100% resistant to this drug. Both pasteurellas were susceptible to cephalothin and approximately 50% of the strains of both bacteria were resistant to chloramphenicol. The MIC50 of either spiramycin or tylosin was greater than or equal to their respective breakpoint-MIC values. Both pasteurellas were susceptible to the combination of trimethoprim and sulphamethoxazole. However, for P. multocida, the addition of sulphamethoxazole to trimethoprim had no synergistic effect on its MIC. In comparison with trimethorpim, aditoprim was less potent. Therefore only P. multocida was susceptible to aditoprim.

  12. The influence of study population and definition of improvement on the smallest detectable change and the minimal important change of the neck disability index.

    PubMed

    Schuller, Wouter; Ostelo, Raymond W J G; Janssen, Richard; de Vet, Henrica C W

    2014-04-15

    Reported values of the minimal important change (MIC) and the smallest detectable change (SDC) for the neck disability index (NDI) differ strongly, raising questions about the generalizability of these parameters. The SDC and the MIC are possibly influenced by the study design or by the study population. We studied the influence of the type of anchor, the definition of improvement and population characteristics on the SDC and the MIC of the NDI. A cohort study including 101 patients with non-specific, chronic neck pain. SDC and MIC were calculated using two types of external anchors. For each anchor we applied two different definitions to dichotomize the population into improved and unimproved patients. The influence of patient characteristics was assessed in relevant subgroups: patients with or without radiating pain and patients with different baseline scores. The influence of different anchors and different definitions of improvement on estimates of the SDC and the MIC was only minimal. The SDC and the MIC were similar for subgroups of patients with or without radiation, but differed strongly for subgroups of patients with higher or lower baseline scores. Our study shows that estimates of the SDC and the MIC of the NDI can be influenced by population characteristics. It is concluded that we cannot adopt a single change score to define relevant change by combining the result of previous studies.

  13. Pharmacodynamic effects of amoxicillin versus cefotaxime against penicillin-susceptible and penicillin-resistant pneumococcal strains: a phase I study.

    PubMed Central

    Aguilar, L; Rosendo, J; Balcabao, I P; Martín, M; Giménez, M J; Frías, J; Prieto, J

    1997-01-01

    Serum bactericidal activity against a penicillin-susceptible strain and a penicillin-resistant strain of Streptococcus pneumoniae (amoxicillin and cefotaxime MICs, 0.001 and 1 microg/ml, respectively, and MBCs, 0.01 and 2 microg/ml, respectively) was measured in 12 healthy volunteers who each received an oral 875-mg dose of amoxicillin and an intramuscular 1-g dose of cefotaxime in a crossover fashion. The areas under the bactericidal activity-time curves for the two strains were found to be similar for both antibiotics despite the significantly higher (P < 0.002) AUC/MIC and peak level/MIC values for cefotaxime. PMID:9174206

  14. Multicenter Evaluation of MIC Distributions for Epidemiologic Cutoff Value Definition To Detect Amphotericin B, Posaconazole, and Itraconazole Resistance among the Most Clinically Relevant Species of Mucorales

    PubMed Central

    Chakrabarti, A.; Chowdhary, A.; Cordoba, S.; Dannaoui, E.; Dufresne, P.; Fothergill, A.; Ghannoum, M.; Gonzalez, G. M.; Guarro, J.; Kidd, S.; Lass-Flörl, C.; Meis, J. F.; Pelaez, T.; Tortorano, A. M.; Turnidge, J.

    2015-01-01

    Clinical breakpoints (CBPs) have not been established for the Mucorales and any antifungal agent. In lieu of CBPs, epidemiologic cutoff values (ECVs) are proposed for amphotericin B, posaconazole, and itraconazole and four Mucorales species. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) were defined with available pooled CLSI MICs from 14 laboratories (Argentina, Australia, Canada, Europe, India, Mexico, and the United States) as follows: 10 Apophysomyces variabilis, 32 Cunninghamella bertholletiae, 136 Lichtheimia corymbifera, 10 Mucor indicus, 123 M. circinelloides, 19 M. ramosissimus, 349 Rhizopus arrhizus, 146 R. microsporus, 33 Rhizomucor pusillus, and 36 Syncephalastrum racemosum isolates. CLSI broth microdilution MICs were aggregated for the analyses. ECVs comprising ≥95% and ≥97.5% of the modeled populations were as follows: amphotericin B ECVs for L. corymbifera were 1 and 2 μg/ml, those for M. circinelloides were 1 and 2 μg/ml, those for R. arrhizus were 2 and 4 μg/ml, and those for R. microsporus were 2 and 2 μg/ml, respectively; posaconazole ECVs for L. corymbifera were 1 and 2, those for M. circinelloides were 4 and 4, those for R. arrhizus were 1 and 2, and those for R. microsporus were 1 and 2, respectively; both itraconazole ECVs for R. arrhizus were 2 μg/ml. ECVs may aid in detecting emerging resistance or isolates with reduced susceptibility (non-WT MICs) to the agents evaluated. PMID:25583714

  15. Multicenter evaluation of MIC distributions for epidemiologic cutoff value definition to detect amphotericin B, posaconazole, and itraconazole resistance among the most clinically relevant species of Mucorales.

    PubMed

    Espinel-Ingroff, A; Chakrabarti, A; Chowdhary, A; Cordoba, S; Dannaoui, E; Dufresne, P; Fothergill, A; Ghannoum, M; Gonzalez, G M; Guarro, J; Kidd, S; Lass-Flörl, C; Meis, J F; Pelaez, T; Tortorano, A M; Turnidge, J

    2015-03-01

    Clinical breakpoints (CBPs) have not been established for the Mucorales and any antifungal agent. In lieu of CBPs, epidemiologic cutoff values (ECVs) are proposed for amphotericin B, posaconazole, and itraconazole and four Mucorales species. Wild-type (WT) MIC distributions (organisms in a species-drug combination with no detectable acquired resistance mechanisms) were defined with available pooled CLSI MICs from 14 laboratories (Argentina, Australia, Canada, Europe, India, Mexico, and the United States) as follows: 10 Apophysomyces variabilis, 32 Cunninghamella bertholletiae, 136 Lichtheimia corymbifera, 10 Mucor indicus, 123 M. circinelloides, 19 M. ramosissimus, 349 Rhizopus arrhizus, 146 R. microsporus, 33 Rhizomucor pusillus, and 36 Syncephalastrum racemosum isolates. CLSI broth microdilution MICs were aggregated for the analyses. ECVs comprising ≥95% and ≥97.5% of the modeled populations were as follows: amphotericin B ECVs for L. corymbifera were 1 and 2 μg/ml, those for M. circinelloides were 1 and 2 μg/ml, those for R. arrhizus were 2 and 4 μg/ml, and those for R. microsporus were 2 and 2 μg/ml, respectively; posaconazole ECVs for L. corymbifera were 1 and 2, those for M. circinelloides were 4 and 4, those for R. arrhizus were 1 and 2, and those for R. microsporus were 1 and 2, respectively; both itraconazole ECVs for R. arrhizus were 2 μg/ml. ECVs may aid in detecting emerging resistance or isolates with reduced susceptibility (non-WT MICs) to the agents evaluated. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Lemongrass-Incorporated Tissue Conditioner Against Candida albicans Culture

    PubMed Central

    Amornvit, Pokpong; Srithavaj, Theerathavaj

    2014-01-01

    Background: Tissue conditioner is applied popularly with dental prosthesis during wound healing process but it becomes a reservoir of oral microbiota, especially Candida species after long-term usage. Several antifungal drugs have been mixed with this material to control fungal level. In this study, lemongrass essential oil was added into COE-COMFORT tissue conditioner before being determined for anti-Candida efficacy. Materials and Methods: Lemongrass (Cymbopogon citratus) essential oil was primarily determined for antifungal activity against C. albicans American type culture collection (ATCC) 10231 and MIC (minimum inhibitory concentration) value by agar disk diffusion and broth microdilution methods, respectively. COE-COMFORT tissue conditioner was prepared as recommended by the manufacturer after a fixed volume of the oil at its MIC or higher concentrations were mixed thoroughly in its liquid part. Antifungal efficacy of the tissue conditioner with/without herb was finally analyzed. Results: Lemongrass essential oil displayed potent antifungal activity against C. albicans ATCC 10231and its MIC value was 0.06% (v/v). Dissimilarly, the tissue conditioner containing the oil at MIC level did not cease the growth of the tested fungus. Both reference and clinical isolates of C. albicans were completely inhibited after exposed to the tissue conditioner containing at least 0.25% (v/v) of the oil (approximately 4-time MIC). The tissue conditioner without herb or with nystatin was employed as negative or positive control, respectively. Conclusion: COE-COMFORT tissue conditioner supplemented with lemongrass essential oil obviously demonstrated another desirable property as in vitro anti-Candida efficacy to minimize the risk of getting Candidal infection. PMID:25177638

  17. Development of cross-resistance by Aspergillus fumigatus to clinical azoles following exposure to prochloraz, an agricultural azole

    PubMed Central

    2014-01-01

    Background The purpose of this study was to unveil whether azole antifungals used in agriculture, similar to the clinical azoles used in humans, can evoke resistance among relevant human pathogens like Aspergillus fumigatus, an ubiquitous agent in nature. Additionally, cross-resistance with clinical azoles was investigated. Antifungal susceptibility testing of environmental and clinical isolates of A. fumigatus was performed according to the CLSI M38-A2 protocol. In vitro induction assays were conducted involving daily incubation of susceptible A. fumigatus isolates, at 35°C and 180 rpm, in fresh GYEP broth medium supplemented with Prochloraz (PCZ), a potent agricultural antifungal, for a period of 30 days. Minimal inhibitory concentrations (MIC) of PCZ and clinical azoles were monitored every ten days. In order to assess the stability of the developed MIC, the strains were afterwards sub-cultured for an additional 30 days in the absence of antifungal. Along the in vitro induction process, microscopic and macroscopic cultural observations were registered. Results MIC of PCZ increased 256 times after the initial exposure; cross-resistance to all tested clinical azoles was observed. The new MIC value of agricultural and of clinical azoles maintained stable in the absence of the selective PCZ pressure. PCZ exposure was also associated to morphological colony changes: macroscopically the colonies became mostly white, losing the typical pigmentation; microscopic examination revealed the absence of conidiation. Conclusions PCZ exposure induced Aspergillus fumigatus morphological changes and an evident increase of MIC value to PCZ as well as the development of cross-resistance with posaconazole, itraconazole and voriconazole. PMID:24920078

  18. Pharmacokinetic Modeling and Limited Sampling Strategies Based on Healthy Volunteers for Monitoring of Ertapenem in Patients with Multidrug-Resistant Tuberculosis.

    PubMed

    van Rijn, S P; Zuur, M A; van Altena, R; Akkerman, O W; Proost, J H; de Lange, W C M; Kerstjens, H A M; Touw, D J; van der Werf, T S; Kosterink, J G W; Alffenaar, J W C

    2017-04-01

    Ertapenem is a broad-spectrum carbapenem antibiotic whose activity against Mycobacterium tuberculosis is being explored. Carbapenems have antibacterial activity when the plasma concentration exceeds the MIC at least 40% of the time (40% T MIC ). To assess the 40% T MIC in multidrug-resistant tuberculosis (MDR-TB) patients, a limited sampling strategy was developed using a population pharmacokinetic model based on data for healthy volunteers. A two-compartment population pharmacokinetic model was developed with data for 42 healthy volunteers using an iterative two-stage Bayesian method. External validation was performed by Bayesian fitting of the model developed with data for volunteers to the data for individual MDR-TB patients (in which the fitted values of the area under the concentration-time curve from 0 to 24 h [AUC 0-24, fit values] were used) using the population model developed for volunteers as a prior. A Monte Carlo simulation ( n = 1,000) was used to evaluate limited sampling strategies. Additionally, the 40% T MIC with the free fraction ( f 40% T MIC ) of ertapenem in MDR-TB patients was estimated with the population pharmacokinetic model. The population pharmacokinetic model that was developed was shown to overestimate the area under the concentration-time curve from 0 to 24 h (AUC 0-24 ) in MDR-TB patients by 6.8% (range, -17.2 to 30.7%). The best-performing limited sampling strategy, which had a time restriction of 0 to 6 h, was found to be sampling at 1 and 5 h ( r 2 = 0.78, mean prediction error = -0.33%, root mean square error = 5.5%). Drug exposure was overestimated by a mean percentage of 4.2% (range, -15.2 to 23.6%). When a free fraction of 5% was considered and the MIC was set at 0.5 mg/liter, the minimum f 40% T MIC would have been exceeded in 9 out of 12 patients. A population pharmacokinetic model and limited sampling strategy, developed using data from healthy volunteers, were shown to be adequate to predict ertapenem exposure in MDR-TB patients. Copyright © 2017 American Society for Microbiology.

  19. Chemical composition, antibacterial and antifungal activities of essential oil from Cordia verbenacea DC leaves

    PubMed Central

    Rodrigues, Fabiola F. G.; Oliveira, Liana G. S.; Rodrigues, Fábio F. G.; Saraiva, Manuele E.; Almeida, Sheyla C. X.; Cabral, Mario E. S.; Campos, Adriana R.; Costa, Jose Galberto M.

    2012-01-01

    Background: Cordia verbenacea is a Brazilian coastal shrub popularly known as “erva baleeira”. The essential oil from fresh leaves was obtained by hydrodistillation and analyzed by CG/MS. The main components were identified as β-caryophyllene (25.4%), bicyclogermacrene (11.3%), δ-cadinene (9.%) and α-pinene (9.5%). In this study, the antimicrobial activity of Cordia verbenacea was evaluated. Materials and Methods: The minimal inhibitory concentration (MIC) of the essential oil was obtained using the broth microdilution assay (from 512 to 8 μg/ml). Results: The results showed that the essential oil presented fungistatic activity against Candida albicans and Candida krusei and antibacterial activity against Gram-positive strains (Staphylococcus aureus and Bacillus cereus) and against multiresistant Gram-negative (Escherichia coli 27), in all tests the MIC was 64 μg/ml. When the essential oil was associated to aminoglycosides (subinhibitory concentrations, MIC/8), a synergic and antagonic activity was verified. The synergic effect was observed to the amikacin association (MIC reduction from 256 mlto 64 μg/ml) in all strains tested. Conclusion: The essential oil of Cordia verbenacea influences the activity of antibiotics and may be used as an adjuvant in antibiotic therapy against respiratory tract bacterial pathogens. PMID:22923954

  20. Inhibition of Listeria monocytogenes by food antimicrobials applied singly and in combination.

    PubMed

    Brandt, Alex L; Castillo, Alejandro; Harris, Kerri B; Keeton, Jimmy T; Hardin, Margaret D; Taylor, Thomas M

    2010-01-01

    Combining food antimicrobials can enhance inhibition of Listeria monocytogenes in ready-to-eat (RTE) meats. A broth dilution assay was used to compare the inhibition of L. monocytogenes resulting from exposure to nisin, acidic calcium sulfate, ε-poly-L-lysine, and lauric arginate ester applied singly and in combination. Minimum inhibitory concentrations (MICs) were the lowest concentrations of single antimicrobials producing inhibition following 24 h incubation at 35 °C. Minimum bactericidal concentrations (MBCs) were the lowest concentrations that decreased populations by ≥3.0 log(10) CFU/mL. Combinations of nisin with acidic calcium sulfate, nisin with lauric arginate ester, and ɛ-poly-L-lysine with acidic calcium sulfate were prepared using a checkerboard assay to determine optimal inhibitory combinations (OICs). Fractional inhibitory concentrations (FICs) were calculated from OICs and were used to create FIC indices (FIC(I)s) and isobolograms to classify combinations as synergistic (FIC(I) < 1.00), additive/indifferent (FIC(I)= 1.00), or antagonistic (FIC(I) > 1.00). MIC values for nisin ranged from 3.13 to 6.25 μg/g with MBC values at 6.25 μg/g for all strains except for Natl. Animal Disease Center (NADC) 2045. MIC values for ε-poly-L-lysine ranged from 6.25 to 12.50 μg/g with MBCs from 12.50 to 25.00 μg/g. Lauric arginate ester at 12.50 μg/g was the MIC and MBC for all strains; 12.50 mL/L was the MIC and MBC for acidic calcium sulfate. Combining nisin with acidic calcium sulfate synergistically inhibited L. monocytogenes; nisin with lauric arginate ester produced additive-type inhibition, while ε-poly-L-lysine with acidic calcium sulfate produced antagonistic-type inhibition. Applying nisin along with acidic calcium sulfate should be further investigated for efficacy on RTE meat surfaces. © 2010 Institute of Food Technologists®

  1. Occurrence of porphyromonas gingivalis and its antibacterial susceptibility to metronidazole and tetracycline in patients with chronic periodontitis.

    PubMed

    Gamboa, Fredy; Acosta, Adriana; García, Dabeiba-Adriana; Velosa, Juliana; Araya, Natalia; Ledergerber, Roberto

    2014-01-01

    Chronic periodontitis is a multifactorial infectious disease associated with Gram-negative strict anaerobes which are immersed in the subgingival biofilm. Porphyromonas gingivalis, an important periodontal pathogen, is frequently detected in patients with chronic periodontitis. Although isolates of P. gingivalis tend to be susceptible to most antimicrobial agents, relatively little information is available on its in vitro antimicrobial susceptibility. The aim of this study was to determine the frequency of P. gingivalis in patients with chronic periodontitis and to assess antimicrobial susceptibility in terms of minimum inhibitory concentration (MIC) of clinical isolates to metronidazole and tetracycline. A descriptive, observational study was performed including 87 patients with chronic periodontitis. Samples were taken from the periodontal pocket using paper points, which were placed in thioglycollate broth. Samples were incubated for 4 hours at 37°C in anaerobic conditions and finally replated on Wilkins-Chalgren anaerobic agar (Oxoid). Bacteria were identified using the RapIDTMANAII system (Remel) and antimicrobial susceptibility was determined with the M.I.C. Evaluator test (MICE, Oxoid). P. gingivalis was identified in 30 of the 87 patients with chronic periodontitis, which represents a frequency of 34.5%. All 30 isolates (100%) were sensitive to metronidazole, with MIC values ranging from 0015-4ug/ml. Regarding tetracycline, 27 isolates (90%) were sensitive, with MIC values ranging from <0.015 to 4 ug /ml, the remaining three isolates (10%) were resistant to tetracycline with MIC values of 8ug/ ml. There was no statistically significant difference in age, gender, pocket depth, clinical attachment level and severity of periodontitis between the group of patients with chronic periodontitis and P. gingivalis and the group of patients with chronic periodontitis without P. gingivalis. In conclusion, P. gingivalis was found at a frequency of 34.5% in patients with chronic periodontitis and clinical isolates were highly sensitive to metronidazole and tetracycline.

  2. Effects of intramuscularly administered enrofloxacin on the susceptibility of commensal intestinal Escherichia coli in pigs (sus scrofa domestica).

    PubMed

    Römer, Antje; Scherz, Gesine; Reupke, Saskia; Meißner, Jessica; Wallmann, Jürgen; Kietzmann, Manfred; Kaspar, Heike

    2017-12-04

    In the European Union, various fluoroquinolones are authorised for the treatment of food producing animals. Each administration poses an increased risk of development and spread of antimicrobial resistance. The aim of this study was to investigate the impact of parenteral administration of enrofloxacin on the prevalence of enrofloxacin and ciprofloxacin susceptibilities in the commensal intestinal E. coli population. E. coli isolates from faeces of twelve healthy pigs were included. Six pigs were administered enrofloxacin on day 1 to 3 and after two weeks for further three days. The other pigs formed the control group. MIC values were determined. Virulence and resistance genes were detected by PCR. Phylogenetic grouping was performed by PCR. Enrofloxacin and ciprofloxacin were analysed in sedimentation samples by HPLC. Susceptibility shifts in commensal E. coli isolates were determined in both groups. Non-wildtype E. coli could be cultivated from two animals of the experimental group for the first time one week after the first administration and from one animal of the control group on day 28. The environmental load with enrofloxacin in sedimentation samples showed the highest amount between days one and five. The repeated parenteral administration of enrofloxacin to pigs resulted in rapidly increased MIC values (day 28: MIC up to 4 mg/L, day 35: MIC ≥ 32mg/L). E. coli populations of the control group in the same stable without direct contact to the experimental group were affected. The parenteral administration of enrofloxacin to piglets considerably reduced the number of the susceptible intestinal E. coli population which was replaced by E. coli strains with increased MIC values against enrofloxacin. Subsequently also pigs of the control were affected suggesting a transferability of strains from the experimental group through the environment to the control group especially as we could isolate the same PFGE strains from both pig groups and the environment.

  3. Inhibition of development, swarming differentiation and virulence factors in Proteus mirabilis by an extract of Lithrea molleoides and its active principle (Z,Z)-5-(trideca-4',7'-dienyl)-resorcinol.

    PubMed

    Carpinella, M C; De Bellis, L; Joray, M B; Sosa, V; Zunino, P M; Palacios, S M

    2011-08-15

    Antibacterial activity of Lithrea molleoides extract against Proteus mirabilis has been previously reported by our group. In the present study, the compound (Z,Z)-5-(trideca-4',7'-dienyl)-resorcinol (1) was isolated as its responsible active principle. The effects of the compound obtained and of L. molleoides extract on P. mirabilis growth and virulence factors were evaluated. Compound 1 showed MIC and MBC values of 4000 μg/ml. It was found that the extract, at four times the MIC, produced complete killing of the uropathogen at 2h from the beginning of the experiment, while the alkylresorcinol, at four times the MIC, produced the same effect after 24 h. Hemolysis was adversely affected in treatments with both products at 8 μg/ml, while hemagglutination was not altered. The whole extract induced complete autoaggregation of P. mirabilis at 2000 μg/ml, while compound 1 at the same concentration did not show this property. Swarming motility was delayed in treatments with the extract and with 1 at 1000 and 8 μg/ml, respectively, at 8h from the beginning of the assay. Complete inhibition of the phenomenon was still observed after 24 h when compound 1 was added at 125 μg/ml. These findings offer the possibility of new classes of antimicrobial medicines to tackle infections caused by P. mirabilis. Copyright © 2011 Elsevier GmbH. All rights reserved.

  4. Tannic Acid as a Potential Modulator of Norfloxacin Resistance in Staphylococcus Aureus Overexpressing norA.

    PubMed

    Diniz-Silva, Helena Taina; Cirino, Isis Caroline da Silva; Falcão-Silva, Vivyanne Dos Santos; Magnani, Marciane; de Souza, Evandro Leite; Siqueira-Júnior, José P

    2016-01-01

    Tannins have shown inhibitory effects against pathogenic bacteria, and these properties make tannins potential modifying agents in bacterial resistance. The minimum inhibitory concentration (MIC) of tannic acid (TA), gallic acid (GA) and norfloxacin (Nor) against Staphylococcus aureus SA-1119 (NorA-effluxing strain) was determined using broth microdilution tests. To assess the modulation of antibiotic resistance, the MIC of Nor was determined in growth media with or without TA or GA at a subinhibitory concentration (1/4 MIC). The checkerboard method was performed to obtain the fractional inhibitory concentration index (FICI) for the combined application of TA and Nor. TA displayed a weak inhibitory effect (MIC 512 μg/ml) against S. aureus SA-1119, while no inhibitory effect was displayed by GA (MIC >512 μg/ml). However, when TA was tested at a subinhibitory concentration in combination with Nor, the MIC of Nor against S. aureus SA-1119 decreased from 128 to 4 μg/ml (32-fold); this effect was not observed for GA. In the checkerboard assay, the MIC of TA and Nor decreased from 512 to 128 μg/ml (4-fold) and from 128 to 8 μg/ml (16-fold), respectively. The combination of TA and Nor presented an FICI as low as 0.31, which indicates a synergistic interaction. TA is a potential agent for increasing the clinical efficacy of Nor to control resistant S. aureus. © 2016 S. Karger AG, Basel.

  5. Antimicrobial and cytotoxic activity of Marrubium alysson and Retama raetam grown in Tunisia.

    PubMed

    Hayet, Edziri; Samia, Ammar; Patrick, Groh; Ali, Mahjoub Mohamed; Maha, Mastouri; Laurent, Gutmann; Mighri, Zine; Mahjoub, Laouni

    2007-05-15

    Antibacterial and antifungal activities of extracts obtained from M. alysson, R. raetam were tested using a solid medium technique. We showed that the petroleum ether extract of M. alysson had a Minimum Inhibitory Concentration (MIC) varied from 128 to 2000 microg mL(-1) against different Enterobacteriaceae and antifungal activity against Candida glabrata, Candida albicans, Candida parapsilosis and Candida kreusei with a MIC of 256 microg mL(-1). The ethyl acetate extract of R. raetam showed the best activity against Gram positive organisms with MICs of 128 to 256 microg mL(-1) against methicillin resistant Staphylococcus aureus but low activity against the different Candida species.

  6. In vitro susceptibility of Borrelia burgdorferi isolates to three antibiotics commonly used for treating equine Lyme disease.

    PubMed

    Caol, Sanjie; Divers, Thomas; Crisman, Mark; Chang, Yung-Fu

    2017-09-29

    Lyme disease in humans is predominantly treated with tetracycline, macrolides or beta lactam antibiotics that have low minimum inhibitory concentrations (MIC) against Borrelia burgdorferi. Horses with Lyme disease may require long-term treatment making frequent intravenous or intramuscular treatment difficult and when administered orally those drugs may have either a high incidence of side effects or have poor bioavailability. The aim of the present study was to determine the in vitro susceptibility of three B. burgdorferi isolates to three antibiotics of different classes that are commonly used in practice for treating Borrelia infections in horses. Broth microdilution assays were used to determine minimum inhibitory concentration of three antibiotics (ceftiofur sodium, minocycline and metronidazole), for three Borrelia burgdorferi isolates. Barbour-Stoner-Kelly (BSK K + R) medium with a final inoculum of 10 6 Borrelia cells/mL and incubation periods of 72 h were used in the determination of MICs. Observed MICs indicated that all isolates had similar susceptibility to each drug but susceptibility to the tested antimicrobial agents varied; ceftiofur sodium (MIC = 0.08 μg/ml), minocycline hydrochloride (MIC = 0.8 μg/ml) and metronidazole (MIC = 50 μg/ml). The MIC against B. burgorferi varied among the three antibiotics with ceftiofur having the lowest MIC and metronidazole the highest MIC. The MIC values observed for ceftiofur in the study fall within the range of reported serum and tissue concentrations for the drug metabolite following ceftiofur sodium administration as crystalline-free acid. Minocycline and metronidazole treatments, as currently used in equine practice, could fall short of attaining MIC concentrations for B. burgdorferi.

  7. Jacaranda cuspidifolia Mart. (Bignoniaceae) as an antibacterial agent.

    PubMed

    Arruda, Ana Lúcia A; Vieira, Carla J B; Sousa, Daniella G; Oliveira, Regilene F; Castilho, Rachel O

    2011-12-01

    This study evaluated, in vitro, the antimicrobial activity of the hexane extract (JCHE), methanol extract (JCME), and chloroform fraction (JCCF) of bark from Jacaranda cuspidifolia Mart. (Family Bignoniaceae), a Brazilian medicinal plant, traditionally used as anti-syphilis and anti-gonorrhea treatment. The antimicrobial activity was evaluated using the disc diffusion method followed by the determination of minimum inhibitory concentration (MIC) values. JCHE was not active against the bacteria evaluated. JCME presented antibacterial activity against Streptococcus pyogenes, Staphylococcus aureus, and Neisseria gonorrhoeae with MIC values of 16.3 mg/mL, 9.1 mg/mL, and 25.2 mg/mL, respectively. JCCF was active against Staphylococcus epidermidis, S. aureus, Proteus mirabilis, Serratia marcescens, S. pyogenes, Enterobacter aerogenes, and N. gonorrhoeae with MIC values of 18.3 mg/mL, 9.3 mg/mL, 6.3 mg/mL, 6.1 mg/mL, 9.2 mg/mL, 6.2 mg/mL, and 25.2 mg/mL, respectively. Phytochemical analysis of JCME and JCCF gave positive results for saponins, coumarins, flavonoids, tannins, quinones, alkaloids, triterpenes, and steroids. Verbascoside was isolated and identified as a major peak in JCME and JCCF high-performance liquid chromatography fingerprints and might contribute to the observed antimicrobial activity.

  8. [Fundamental studies on legionellosis--the growth with in Acanthamoeba sp. and antibiotics susceptibility of Legionella spp. isolated from soil samples in Japan].

    PubMed

    Furuhata, Katsunori; Miyamoto, Hiroshi; Hara, Motonobu; Fukuyama, Masafumi

    2003-02-01

    As part of an epidemiological study of legionellosis, we investigated the growth within Acanthamoeba sp. and antibiotic susceptibility of 62 strains of Legionella spp. isolated from surface soils nationwide in 2001. 1) All strains tested grew in Acanthamoeba sp., suggesting that the strains were pathogenic. The minimum bacterial number required for the growth in the amoeba was 10(3)-10(8) CFU/ml and there were differences between the strains. 2) Susceptibility to 10 drugs was investigated using the Etest. The MIC90 values of imipenem, as a beta-lactam, and rifampicin, as an antitubercular agent, were 0.047 microgram/ml and 0.064 microgram/ml, respectively, showing high sensitivity. In contrast, sensitivity to minocycline, as a tetracycline, and piperacillin, as a beta-lactam, was low and the MIC90 values were 12 micrograms/ml and 16 micrograms/ml, respectively. Sensitivity to minocycline was particularly low, with a MIC value of 32 micrograms/ml, in two strains. The above findings suggested that all soil-derived strains were pathogenic, and susceptibility of the strains tended to be slightly lower than that of clinical isolates.

  9. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents.

    PubMed

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent-independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and 0.63 mg/mL on Proteus mirabilis compared to other types of extracts. Our study indicates a possible use of lichens Platismatia glauca and Pseudevernia furfuracea as natural antioxidants and preservatives in food, pharmaceutical and cosmetic industry.

  10. Platismatia glaucia and Pseudevernia furfuracea lichens as sources of antioxidant, antimicrobial and antibiofilm agents

    PubMed Central

    Mitrovic, Tatjana; Stamenkovic, Slaviša; Cvetkovic, Vladimir; Radulovic, Niko; Mladenovic, Marko; Stankovic, Milan; Topuzovic, Marina; Radojevic, Ivana; Stefanovic, Olgica; Vasic, Sava; Comic, Ljiljana

    2014-01-01

    The antioxidative, antimicrobial and antibiofilm potentials of acetone, ethyl acetate and methanol extracts of lichen species Platismatia glauca and Pseudevernia furfuracea were evaluated. The phytochemical analysis by GC, GC/MS and NMR revealed caperatic acid, atraric acid, atranorin and chloroatranorin as the predominant compounds in Platismatia glauca. Atraric acid, olivetoric acid, atranorin and chloroatranorin were the major constituents in Pseudevernia furfuracea. The strong antioxidant capacities of the Platismatia glauca and Pseudevernia furfuracea extracts were assessed by their total phenolic and flavonoid contents and DPPH scavenging activities. The methanol extracts of both species exhibited the strongest antioxidant activities with the highest IC50 value for Pseudevernia furfuracea (95.33 µg/mL). The lichen extracts demonstrated important antibacterial activities against 11 bacterial strains with detectable MIC values from 0.08 mg/mL to 2.5 mg/mL for Platismatia glauca and from 0.005 mg/mL to 2.5 mg/mL for Pseudevernia furfuracea. While the antibacterial activities of Pseudevernia furfuracea were solvent–independent, the acetone and ethyl acetate extracts of Platismatia glauca showed higher antibacterial activities compared to its methanol extract. The methanol extracts of both species demonstrated significant antifungal activities against 9 fungal strains with detectable MIC values from 0.04 mg/mL to 2.5 mg/mL. The best antifungal activities were determined against Candida species in Pseudevernia furfuracea extracts with remarkable MIC values which were lower than the MIC values of the positive contol fluconazole. The acetone and ethyl acetate extracts of Platismatia glauca showed better antibiofilm activities on Staphylococcus aureus and Proteus mirabilis with BIC value at 0.63 mg/mL then its methanol extract. On the other hand, the methanol extract of Pseudevernia furfuracea was more potent with BIC value at 1.25 mg/mL on Staphylococcus aureus and 0.63 mg/mL on Proteus mirabilis compared to other types of extracts. Our study indicates a possible use of lichens Platismatia glauca and Pseudevernia furfuracea as natural antioxidants and preservatives in food, pharmaceutical and cosmetic industry. PMID:26417313

  11. Short communication: Interaction of the isomers carvacrol and thymol with the antibiotics doxycycline and tilmicosin: In vitro effects against pathogenic bacteria commonly found in the respiratory tract of calves.

    PubMed

    Kissels, W; Wu, X; Santos, R R

    2017-02-01

    Bovine respiratory disease is the major problem faced by cattle, specially calves, leading to reduced animal performance and increased mortality, consequently causing important economic losses. Hence, calves must be submitted to antibiotic therapy to counteract this infection usually initiated by the combination of environmental stress factors and viral infection, altering the animal's defense mechanism, and thus allowing lung colonization by the opportunistic bacteria Mannheimia haemolytica and Pasteurella multocida. Essential oils appear to be candidates to replace antibiotics or to act as antibiotic adjuvants due to their antimicrobial properties. In the present study, we aimed to evaluate the 4 essential oil components carvacrol, thymol, trans-anethole, and 1,8 cineole as antibacterial agents or as adjuvants for the antibiotics doxycycline and tilmicosin against M. haemolytica and P. multocida. Bacteria were cultured according to standard protocols, followed by the determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration. A checkerboard assay was applied to detect possible interactions between components, between antibiotics, and between components and antibiotics. Doxycycline at 0.25 and 0.125 μg/mL inhibited the growth of P. multocida and M. haemolytica, respectively, whereas tilmicosin MIC values were 1.0 and 4.0 μg/mL for P. multocida and M. haemolytica, respectively. Carvacrol MIC values were 2.5 and 1.25 mM for P. multocida and M. haemolytica, respectively, whereas thymol MIC values were 1.25 and 0.625 mM for P. multocida and M. haemolytica, respectively. Trans-anethole and 1,8 cineole did not present any antibacterial effect even at 40 mM against the investigated pathogens. All minimum bactericidal concentration values were the same as MIC, except when thymol was tested against M. haemolytica, being twice the MIC data (i.e., 1.25 mM thymol). Based on fractional inhibitory concentration checkerboard assay, no interaction was observed between doxycycline and tilmicosin. Carvacrol and thymol presented an additive effect when one of them was combined with tilmicosin. Additive effect was also observed when doxycycline was combined with thymol. Synergism was observed when carvacrol was combined with doxycycline or with thymol. Although the antibacterial effects of the tested essential oil components were observed at high concentrations for in vitro conditions, the additive and synergic effects of carvacrol and thymol with antibiotics suggest the option to apply them as antibiotic adjuvants. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Improved detection of Candida sp. fks hot spot mutants by using the method of the CLSI M27-A3 document with the addition of bovine serum albumin.

    PubMed

    Garcia-Effron, Guillermo; Park, Steven; Perlin, David S

    2011-05-01

    Echinocandins are highly bound to serum proteins, altering their antifungal properties. The addition of 50% human serum to the MIC assay improves the identification of echinocandin-resistant Candida spp. harboring fks hot spot mutations. However, this modification cannot readily be applied to the method of the CLSI M27-A3 document due to safety and standardization difficulties. The aim of this study was to evaluate commercial bovine serum albumin (BSA) as a safe and standardized alternative to human serum. A collection of 28 echinocandin-susceptible strains, 10 Candida parapsilosis sensu lato strains (with naturally reduced echinocandin susceptibility), and 40 FKS hot spot mutants was used in this work. When RPMI 1640 was used for susceptibility testing, wild-type strains and fks mutants showed MIC range overlaps (-2, -1, and -3 2-fold-dilution steps separated these populations for anidulafungin, caspofungin, and micafungin, respectively). On the other hand, the addition of BSA to RPMI 1640 differentially increased echinocandin MIC values for these groups of strains, allowing better separation between populations, with no MIC range overlaps for any of the echinocandin drugs tested. Moreover, the use of RPMI-BSA reduced the number of fks hot spot mutant isolates for which MIC values were less than or equal to the upper limit for the wild type (very major errors) from 9, 2, and 7 with RPMI alone to 3, 0, and 3 for anidulafungin, caspofungin, and micafungin, respectively. When RPMI-BSA was used to study the susceptibility of C. parapsilosis sensu lato species to echinocandins, the strains behaved as anidulafungin- and micafungin-resistant isolates (MIC, ≥8 μg/ml). These data support the need for a revision of the CLSI protocol for in vitro testing of echinocandin susceptibility in order to identify all or most of the fks hot spot mutants. Also, caspofungin could be used as a surrogate marker of reduced susceptibility to echinocandins.

  13. In Vitro Activity and Fecal Concentration of Rifaximin after Oral Administration

    PubMed Central

    Jiang, Zhi-Dong; Ke, Shi; Palazzini, Ernesto; Riopel, Lise; Dupont, Herbert

    2000-01-01

    Rifaximin showed moderately high MICs (the MIC at which 90% of the isolates tested were inhibited = 50 μg/ml) for 145 bacterial enteropathogens from patients with traveler's diarrhea acquired in Mexico during the summers of 1997 and 1998. Rifaximin concentrations in stool the day after oral administration (800 mg daily for 3 days) were high (average, 7,961 μg/g), proving the value of the drug. PMID:10898704

  14. In vitro activity of bergamot natural essence and furocoumarin-free and distilled extracts, and their associations with boric acid, against clinical yeast isolates.

    PubMed

    Romano, L; Battaglia, F; Masucci, L; Sanguinetti, M; Posteraro, B; Plotti, G; Zanetti, S; Fadda, G

    2005-01-01

    There is very little information, to date, on the antifungal activity of bergamot oil. In this study, we investigated the in vitro activity of three bergamot oils (natural essence, furocoumarin-free extract and distilled extract) against clinically relevant Candida species. We studied the two derivatives, components of Italian pharmaceutical products, that are supposed to be less toxic than the essential oil. In vitro susceptibility of 40 clinical isolates of Candida spp. (Candida albicans, n=20; Candida glabrata, n=13; Candida krusei, n=4; Candida tropicalis, n=2; Candida parapsilosis, n=1), associated with symptomatic and asymptomatic vulvovaginal candidiasis, was determined using a modification of the NCCLS M27-A2 broth microdilution method. MICs were evaluated for each of the oils alone and combined with sub-inhibitory concentrations of the well-known antiseptic, boric acid. To boric acid, all isolates had MIC values ranging from 0.094% to 0.187% (w/v). At 24 h readings, the MIC(90 )s (for all isolates) were (v/v): 5% for natural essence of bergamot, 2.5% for the furocoumarin-free extract, and 1.25% for the distilled extract. At the 48 h reading, these values increased to >10%, 5% and 2.5%, respectively. At both readings, MIC(90 )s for all oil+boric acid combinations were significantly lower than corresponding values for the oils alone (P <0.05). These data indicate that bergamot oils are active in vitro against Candida spp., suggesting their potential role for the topical treatment of Candida infections.

  15. Efficacy of the clinical agent VT-1161 against fluconazole-sensitive and -resistant Candida albicans in a murine model of vaginal candidiasis.

    PubMed

    Garvey, E P; Hoekstra, W J; Schotzinger, R J; Sobel, J D; Lilly, E A; Fidel, P L

    2015-09-01

    Vulvovaginal candidiasis (VVC) and recurrent VVC (RVVC) remain major health problems for women. VT-1161, a novel fungal CYP51 inhibitor which has potent antifungal activity against fluconazole-sensitive Candida albicans, retained its in vitro potency (MIC50 of ≤0.015 and MIC90 of 0.12 μg/ml) against 10 clinical isolates from VVC or RVVC patients resistant to fluconazole (MIC50 of 8 and MIC90 of 64 μg/ml). VT-1161 pharmacokinetics in mice displayed a high volume of distribution (1.4 liters/kg), high oral absorption (73%), and a long half-life (>48 h) and showed rapid penetration into vaginal tissue. In a murine model of vaginal candidiasis using fluconazole-sensitive yeast, oral doses as low as 4 mg/kg VT-1161 significantly reduced the fungal burden 1 and 4 days posttreatment (P < 0.0001). Similar VT-1161 efficacy was measured when an isolate highly resistant to fluconazole (MIC of 64 μg/ml) but fully sensitive in vitro to VT-1161 was used. When an isolate partially sensitive to VT-1161 (MIC of 0.12 μg/ml) and moderately resistant to fluconazole (MIC of 8 μg/ml) was used, VT-1161 remained efficacious, whereas fluconazole was efficacious on day 1 but did not sustain efficacy 4 days posttreatment. Both agents were inactive in treating an infection with an isolate that demonstrated weaker potency (MICs of 2 and 64 μg/ml for VT-1161 and fluconazole, respectively). Finally, the plasma concentrations of free VT-1161 were predictive of efficacy when in excess of the in vitro MIC values. These data support the clinical development of VT-1161 as a potentially more efficacious treatment for VVC and RVVC. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Improvement of citral antimicrobial activity by incorporation into nanostructured lipid carriers: a potential application in food stuffs as a natural preservative.

    PubMed

    Mokarizadeh, Manijeh; Kafil, Hossein Samadi; Ghanbarzadeh, Saeed; Alizadeh, Ainaz; Hamishehkar, Hamed

    2017-10-01

    At the present time, utilization of essential oils in food preservation to prevent bacterial and fungal growth and improve shelf life and safety of the food products has notably gained increased interest. The aim of the present study was to improve the antimicrobial efficacy of citral as a natural preservative using nanostructured lipid carriers (NLCs). Formulations of NLCs were characterized using particle size analysis and scanning electron microscopy methods. Possible citral-carrier interaction and citral encapsulation efficiency percent (EE%) were assessed by Fourier transform infrared (FTIR) spectroscopy and gas chromatography techniques, respectively. Antimicrobial activity, minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) of citral-loaded NLCs were evaluated and compared with the conventional citral emulsion against various gram-positive bacteria ( Staphylococcus aureus , Bacillus cereus ), gram-negative bacteria ( Escherichia coli ), and fungi ( Candida albicans ). Citral-loaded NLCs were spherically shaped nanosized (74.8 nm) particles with narrow size distribution, high EE% (99.84%), and appropriate physical stability during 90 days of storage period. FTIR spectra indicated the interaction between citral and formulation ingredients, which justified the obtained high EE% value. The MIC and MBC values of citral-loaded NLCs were lower than those of citral emulsion for all microorganisms. NLCs formulation showed remarkable capability of encapsulating essential oil and increasing antimicrobial properties to offer effective preservation in food industry.

  17. Anticandidal, antibacterial, cytotoxic and antioxidant activities of Calendula arvensis flowers.

    PubMed

    Abudunia, A-M; Marmouzi, I; Faouzi, M E A; Ramli, Y; Taoufik, J; El Madani, N; Essassi, E M; Salama, A; Khedid, K; Ansar, M; Ibrahimi, A

    2017-03-01

    Calendula arvensis (CA) is one of the important plants used in traditional medicine in Morocco, due to its interesting chemical composition. The present study aimed to determine the anticandidal, antioxidant and antibacterial activities, and the effects of extracts of CA flowers on the growth of myeloid cancer cells. Also, to characterize the chemical composition of the plant. Flowers of CA were collected based on ethnopharmacological information from the villages around the region Rabat-Khemisset, Moroccco. The hexane and methanol extracts were obtained by soxhlet extraction, while aqueous extracts was obtained by maceration in cold water. CA extracts were assessed for antioxidant activity using four different methods (DPPH, FRAP, TEAC, β-carotene bleaching test). Furthermore, the phenolic and flavonoid contents were measured, also the antimicrobial activity has been evaluated by the well diffusion method using several bacterial and fungal strains. Finally, extracts cytotoxicity was assessed using MTT test. Phytochemical quantification of the methanolic and aqueous extracts revealed that they were rich with flavonoid and phenolic content and were found to possess considerable antioxidant activities. MIC values of methanolic extracts were 12.5-25μg/mL. While MIC values of hexanolic extracts were between 6.25-12.5μg/mL and were bacteriostatic for all bacteria while methanolic and aqueous extracts were bactericidal. In addition, the extracts exhibited no activity on Candida species except the methanolic extract, which showed antifungal activity onCandida tropicalis 1 and Candida famata 1. The methanolic and aqueous extracts also exhibited antimyeloid cancer activity (IC 50 of 31μg/mL). In our study, we conclude that the methanolic and aqueous extracts were a promising source of antioxidant, antimicrobial and cytotoxic agents. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Antibacterial and anti-inflammatory activities of extract and fractions from Pyrrosia petiolosa (Christ et Bar.) Ching.

    PubMed

    Cheng, Dandan; Zhang, Yingying; Gao, Demin; Zhang, Hongmeng

    2014-09-11

    Pyrrosia petiolosa is commonly used as a traditional Chinese medicine for treatment of acute pyelonephritis, chronic bronchitis and bronchial asthma. This study aims to evaluate the antibacterial activity of the ethanol extract and its derived fractions of Pyrrosia petiolosa obtained with solvents of different polarities and to perform the anti-inflammatory screening. The powdered aerial parts of Pyrrosia petiolosa were used to extract various fractions with ethanol, petroleum ether, ethyl acetate, N-butanol and aqueous. Qualitative phytochemical screening was performed on the ethanol extract, petroleum ether fraction, ethyl acetate fraction, N-butanol fraction and aqueous fraction. The agar diffusion method, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were employed to evaluate antibacterial activity of the ethanol extract and fractions. The in vitro cytotoxicity of ethanol extract and fractions was determined using MTT assay. The anti-inflammatory activity was analyzed using the mouse ear swelling induced by xylene. The phytochemical screening revealed the presence of anthraquinones, flavonoids, terpenoids, steroids, saponins, phenols and reducing sugars in the extract and fractions. Antibacterial results showed that petroleum ether fraction and N-butanol fraction inhibited all the tested microorganisms with the maximum inhibition zone of 15.25±0.35 mm. Ethyl acetate fraction also exhibited good antibacterial activity except Pseudomonas aeruginosa ATCC 27853, while extract and aqueous fraction inhibited 8 out of 13 (61.5%) of the tested microorganisms. The MIC values of ethanol extract and fractions ranged from 1.25 to 10.00 mg/mL and most of the MBC values were equal or twice as high as the corresponding MIC values. The in vitro cytotoxicity showed the ethanol extract and fractions exhibited non-toxic or low toxic activity against lung cancer cell lines A549 and mouse spleen cells. In anti-inflammatory experiment, ethanol extract at 5.0 and 10.0 mg/kg exhibited significant anti-inflammatory activity against the mouse ear swelling induced by xylene and the maximum inhibition rate reached as high as 67%. Pyrrosia petiolosa could be a potential candidate for future development of a novel antibacterial and anti-inflammatory agent. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Dalbavancin Activity When Tested against Streptococcus pneumoniae Isolated in Medical Centers on Six Continents (2011 to 2014).

    PubMed

    Jones, Ronald N; Schuchert, Jason E; Mendes, Rodrigo E

    2016-06-01

    Dalbavancin, a novel lipoglycopeptide, was approved for use in 2014 by regulatory agencies in the United States and Europe for the treatment of skin and skin structure infections. The activity of dalbavancin was also widely assessed by determination of its activity against Streptococcus pneumoniae clinical isolates collected from patients on six continents monitored during two time intervals (2011 to 2013 and 2014). A total of 18,186 pneumococcal isolates were obtained from 49 nations and submitted to a monitoring laboratory as part of the SENTRY Antimicrobial Surveillance Program for reference susceptibility testing. The potency of dalbavancin against S. pneumoniae was consistent across the years that it was monitored, with the MIC50 and MIC90 being 0.015 and 0.03 μg/ml, respectively, and all isolates were inhibited by ≤0.12 μg/ml. The activity of dalbavancin was not adversely influenced by nonsusceptibility to β-lactams (ceftriaxone or penicillin), macrolides, clindamycin, fluoroquinolones, or tetracyclines or multidrug resistance (MDR). Regional variations in dalbavancin activity were not detected, but S. pneumoniae strains isolated in the Asia-Pacific region were more likely to be nonsusceptible to penicillin and ceftriaxone as well as to be MDR than strains isolated in North or South America and Europe. Direct comparisons of potency illustrated that dalbavancin (MIC50 and MIC90, 0.015 and 0.03 μg/ml, respectively) was 16-fold or more active than vancomycin (MIC50, 0.25 μg/ml), linezolid (MIC50, 1 μg/ml), levofloxacin (MIC50, 1 μg/ml), ceftriaxone (MIC90, 1 μg/ml), and penicillin (MIC90, 2 μg/ml). In conclusion, dalbavancin had potent and consistent activity against this contemporary (2011 to 2014) collection of S. pneumoniae isolates. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  20. Chemical Composition and Antimicrobial Activity of Essential Oils from the Aerial Parts of Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC.: Two Asteraceae Herbs Growing Wild in the Hoggar.

    PubMed

    Chaib, Faiza; Allali, Hocine; Bennaceur, Malika; Flamini, Guido

    2017-08-01

    In recent years, antimicrobial activities of essential oils have been intensively explored, mainly in researching and developing new antimicrobial agents to overcome microbial resistance. The present study investigates the chemical composition and antimicrobial activities of essential oils obtained from two Asteraceae: Asteriscus graveolens (Forssk.) Less. and Pulicaria incisa (Lam.) DC. Chemical analysis was performed using a combination of capillary GC-FID and GC/MS analytical techniques. The major component of Asteriscus graveolens were cis-chrysanthenyl acetate (31.1%), myrtenyl acetate (15.1%), and kessane (11.5%), while for Pulicaria incisa the main components were chrysanthenone (45.3%) and 2,6-dimethylphenol (12.6%). The oils obtained from the aerial parts were tested against sixteen microbial strains by agar well diffusion technique and dilution methods and showed minimum inhibitory concentrations (MIC) in the range of 19 - 1250 μg/ml. A good antibacterial activity against a common nosocomial pathogen, Acinetobacter baumanniiATCC 19606 was observed, especially from Pulicaria incisa essential oil, with a MIC value up to 19 μg/ml. These results give significant information about the pharmacological activity of these essential oils, which suggest their benefits to human health, having the potential to be used for medical purposes. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  1. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations

    PubMed Central

    Machado, Kamilla N.; Kaneko, Telma M.; Young, Maria Cláudia M.; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H.

    2017-01-01

    Background: Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Methods: Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. Results: The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. Conclusions: The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa. PMID:28930241

  2. Chemical Composition, Antimicrobial and Antioxidant Activities of Essential Oils from Two Avicennia schaueriana Stapf & Leechm. Ex Moldenke (Acanthaceae) Populations.

    PubMed

    Machado, Kamilla N; Kaneko, Telma M; Young, Maria Cláudia M; Murakami, Cynthia; Cordeiro, Inês; Moreno, Paulo Roberto H

    2017-05-01

    Avicennia schaueriana Stapf & Leechm. ex Moldenke (Acanthaceae) is a native species from the Brazilian mangroves presenting ecological and economic significance. This study compared the composition and the biological activities from the essential oils obtained from two A. schaueriana populations collected at Jureia-Itatins and Ilha do Cardoso. Essential oils were obtained by conventional means, and their compositions were analyzed by GC-MS. Screening assays for antimicrobial activity were carried out by the microdilution method and the antioxidant potential was assessed by the DPPH scavenging method. The GC-MS analysis indicated that the Jureia oil (1) was composed mostly of the fatty acids palmitic (46.5%) and myristic (11.6%) acids, while the main components for the Ilha do Cardoso oil (2) were eugenol (19.7%), eugenol acetate (12.9%) and palmitic acid (15.1%). The oils showed an IC50 of 0.9 ± 0.011 mg/mL for 1 and 1.13 ± 0.028 mg/mL for 2 in the DPPH assay. The antimicrobial assay indicated MIC > 217 µg/mL for all tested microorganisms. The different essential oil composition may indicate the presence of chemotypes for A. schaueriana. The antioxidant activity of the oils was weak if compared with flavonoids. Despite the high MIC values, these oils presented some antibacterial potential against Pseudomonas aeruginosa.

  3. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Essential Oil from Premna microphylla Turczaninow.

    PubMed

    Zhang, Han-Yu; Gao, Yang; Lai, Peng-Xiang

    2017-02-28

    Premna microphylla Turczaninow, an erect shrub, was widely used in Chinese traditional medicine to treat dysentery, appendicitis, and infections. In this study, the essential oil from P. microphylla Turcz. was obtained by hydrodistillation and analyzed by GC (Gas Chromatography) and GC-MS (Gas Chromatography-Mass Spectrometer). Fifty-six compounds were identified in the oil which comprised about 97.2% of the total composition of the oil. Major components of the oil were blumenol C (49.7%), β-cedrene (6.1%), limonene (3.8%), α-guaiene (3.3%), cryptone (3.1%), and α-cyperone (2.7%). Furthermore, we assessed the in vitro biological activities displayed by the oil obtained from the aerial parts of P. microphylla, namely the antioxidant, antimicrobial, and cytotoxic activities. The antioxidant activity of the essential oil was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. For this, the IC50 value was estimated to be 0.451 mg/mL. The essential oil of P. microphylla exhibited considerable antibacterial capacity against Escherichia coli with an MIC (Minimum Inhibitory Concentration) value of 0.15 mg/mL, along with noticeable antibacterial ability against Bacillus subtilis and Staphylococcus aureus with an MIC value of 0.27 mg/mL. However, the essential oil did not show significant activity against fungus. The oil was tested for its cytotoxic activity towards HepG2 (liver hepatocellular cells) and MCF-7 Cells (human breast adenocarcinoma cell line) using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, and exerted cytotoxic activity with an IC50 of 0.072 and 0.188 mg/mL for 72 h. In conclusion, the essential oil from P. microphylla is an inexpensive but favorable resource with strong antibacterial capacity as well as cytotoxic activity. Thus, it has the potential for utilization in the cosmetics and pharmaceutical industries.

  4. Comparison of results of fluconazole disk diffusion testing for Candida species with results from a central reference laboratory in the ARTEMIS global antifungal surveillance program.

    PubMed

    Pfaller, M A; Hazen, K C; Messer, S A; Boyken, L; Tendolkar, S; Hollis, R J; Diekema, D J

    2004-08-01

    The accuracy of antifungal susceptibility tests is important for accurate resistance surveillance and for the clinical management of patients with serious infections. Our main objective was to compare the results of fluconazole disk diffusion testing of Candida spp. performed by ARTEMIS participating centers with disk diffusion and MIC results obtained by the central reference laboratory. A total of 2,949 isolates of Candida spp. were tested by NCCLS disk diffusion and reference broth microdilution methods in the central reference laboratory. These results were compared to the results of disk diffusion testing performed in the 54 participating centers. All tests were performed and interpreted following NCCLS recommendations. Overall categorical agreement between participant disk diffusion test results and reference laboratory MIC results was 87.4%, with 0.2% very major errors (VME) and 3.3% major errors (ME). The categorical agreement between the disk diffusion test results obtained in the reference laboratory with the MIC test results was similar: 92.8%. Likewise, good agreement was observed between participant disk diffusion test results and reference laboratory disk diffusion test results: 90.4%, 0.4% VME, and 3.4% ME. The disk diffusion test was especially reliable in detecting those isolates of Candida spp. that were characterized as resistant by reference MIC testing. External quality assurance data obtained by surveillance programs such as the ARTEMIS Global Antifungal Surveillance Program ensure the generation of useful surveillance data and result in the continued improvement of antifungal susceptibility testing practices.

  5. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection.

    PubMed

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller-Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration-time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin ( R 2 = 0.9711). The calculated AUC 12h /MIC ratios in serum required to produce the net bacterial stasis, 1-log 10 and 2-log 10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections.

  6. Pharmacodynamic Evaluation and PK/PD-Based Dose Prediction of Tulathromycin: A Potential New Indication for Streptococcus suis Infection

    PubMed Central

    Zhou, Yu-Feng; Peng, Hui-Min; Bu, Ming-Xiao; Liu, Ya-Hong; Sun, Jian; Liao, Xiao-Ping

    2017-01-01

    Tulathromycin is the first member of the triamilide antimicrobial drugs that has been registered in more than 30 countries. The goal of this study is to provide a potential new indication of tulathromycin for Streptococcus suis infections. We investigated the pharmacokinetic and ex vivo pharmacodynamics of tulathromycin against experimental S. suis infection in piglets. Tulathromycin demonstrated a relatively long elimination half-life (74.1 h) and a mean residence time of 97.6 h after a single intramuscular administration. The minimal inhibitory concentration (MIC) and bactericidal concentration in serum were markedly lower than those in broth culture, with Mueller–Hinton broth/serum ratios of 40.3 and 11.4, respectively. The post-antibiotic effects were at 1.27 h (1× MIC) and 2.03 h (4× MIC) and the post-antibiotic sub-MIC effect values ranged from 2.47 to 3.10 h. The ratio of the area under the concentration–time curve divided by the MIC (AUC/MIC) correlated well with the ex vivo antimicrobial effectiveness of tulathromycin (R2 = 0.9711). The calculated AUC12h/MIC ratios in serum required to produce the net bacterial stasis, 1-log10 and 2-log10 killing activities were 9.62, 18.9, and 32.7, respectively. Based on the results of Monte Carlo simulation, a dosage regimen of 3.56 mg/kg tulathromycin was estimated to be effective, achieving for a bacteriostatic activity against S. suis infection over 5 days period. Tulathromycin may become a potential option for the treatment of S. suis infections. PMID:29033841

  7. Antimicrobial activity of ceftaroline and comparator agents when tested against numerous species of coagulase-negative Staphylococcus causing infection in US hospitals.

    PubMed

    Sader, Helio S; Farrell, David J; Flamm, Robert K; Streit, Jennifer M; Mendes, Rodrigo E; Jones, Ronald N

    2016-05-01

    A total of 1593 coagulase-negative staphylococci (CoNS) considered clinically significant were collected from 71 US medical centers in 2013-2014 and tested for susceptibility by CLSI broth microdilution methods. Species identification was performed by matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Overall, 59.7% of isolates were oxacillin resistant (MRCoNS). Ceftaroline (MIC50/90, 0.25/0.5μg/mL) inhibited 99.2% of CoNS at ≤1μg/mL (susceptible breakpoint for Staphylococcus aureus), including 98.7% of MRCoNS, and the highest ceftaroline MIC value was 2μg/mL (13 isolates). Staphylococcus epidermidis represented 60.3% of the CoNS collection and was highly susceptible to ceftaroline (MIC50/90, 0.25/0.5μg/mL, 99.9% inhibited at ≤1μg/mL). All isolates of Staphylococcus capitis, Staphylococcus caprae, Staphylococcus hominis, Staphylococcus lugdunensis, Staphylococcus pettenkoferi, Staphylococcus simulans, and Staphylococcus warneri (MIC50/90, 0.06-0.25/0.25-0.5μg/mL) were inhibited at ceftaroline MIC of ≤1μg/mL. Staphylococcus haemolyticus represented only 4.8%, was atypically less susceptible to ceftaroline (MIC50/90, 0.5/2μg/mL, 87.0% inhibited at ≤1μg/mL), and accounted for 76.9% (10/13) of isolates with ceftaroline MIC >1μg/mL. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Screening antimicrobial activity of various extracts of Urtica dioica.

    PubMed

    Modarresi-Chahardehi, Amir; Ibrahim, Darah; Fariza-Sulaiman, Shaida; Mousavi, Leila

    2012-12-01

    Urtica dioica or stinging nettle is traditionally used as an herbal medicine in Western Asia. The current study represents the investigation of antimicrobial activity of U. dioica from nine crude extracts that were prepared using different organic solvents, obtained from two extraction methods: the Soxhlet extractor (Method I), which included the use of four solvents with ethyl acetate and hexane, or the sequential partitions (Method II) with a five solvent system (butanol). The antibacterial and antifungal activities of crude extracts were tested against 28 bacteria, three yeast strains and seven fungal isolates by the disc diffusion and broth dilution methods. Amoxicillin was used as positive control for bacteria strains, vancomycin for Streptococcus sp., miconazole nitrate (30 microg/mL) as positive control for fungi and yeast, and pure methanol (v/v) as negative control. The disc diffusion assay was used to determine the sensitivity of the samples, whilst the broth dilution method was used for the determination of the minimal inhibition concentration (MIC). The ethyl acetate and hexane extract from extraction method I (EA I and HE I) exhibited highest inhibition against some pathogenic bacteria such as Bacillus cereus, MRSA and Vibrio parahaemolyticus. A selection of extracts that showed some activity was further tested for the MIC and minimal bactericidal concentrations (MBC). MIC values of Bacillus subtilis and Methicillin-resistant Staphylococcus aureus (MRSA) using butanol extract of extraction method II (BE II) were 8.33 and 16.33mg/mL, respectively; while the MIC value using ethyl acetate extract of extraction method II (EAE II) for Vibrio parahaemolyticus was 0.13mg/mL. Our study showed that 47.06% of extracts inhibited Gram-negative (8 out of 17), and 63.63% of extracts also inhibited Gram-positive bacteria (7 out of 11); besides, statistically the frequency of antimicrobial activity was 13.45% (35 out of 342) which in this among 21.71% belongs to antimicrobial activity extracts from extraction method I (33 out of 152 of crude extracts) and 6.82% from extraction method II (13 out of 190 of crude extracts). However, crude extracts from method I exhibited better antimicrobial activity against the Gram-positive bacteria than the Gram-negative bacteria. The positive results on medicinal plants screening for antibacterial activity constitutes primary information for further phytochemical and pharmacological studies. Therefore, the extracts could be suitable as antimicrobial agents in pharmaceutical and food industry.

  9. [Heterogeneity of Brain Heart Infusion agar media (BHI): effects on the determination of the vancomycin and the teicoplanin minimal inhibitory concentrations (MIC) of Staphylococcus aureus strains].

    PubMed

    Martin, C

    2004-10-01

    The influence of BHI media commercially available on the results of glycopeptides MIC measured by E-test method was studied on 36 S. aureus isolates (21 MRSA and 15 MSSA). The MIC obtained with the vancomycin and the teicoplanin determined by the E-test method, on the ready prepared BHI plates (AES) and the plate prepared at the laboratory among the four dehydrated bases (AES, Biorad, Oxoid, and Becton Dickinson), were compared. The mean of the MIC showed variations from 3.14 (Biorad) to 5.25 mg/L (Oxoid) and from 3.33 (Biorad) to 9.75 mg/L (ready prepared AES) respectively for the vancomycin and for the teicoplanin. A variance analysis (Test de Friedman) showed a significant difference between the five media (p <0.001) with the two antibiotics. The comparison of media 2 by 2 allowed that all combinations excepted one (Biorad vs Becton with the vancomycin) were statistically different (p <0.001). The variation of the MIC observed in relation to the origin of the product of BHI media requires the inclusion of glycopeptide-intermediate S. aureus reference strains to control the prepared culture media.

  10. Pharmacodynamics of Isavuconazole in a Dynamic In Vitro Model of Invasive Pulmonary Aspergillosis

    PubMed Central

    Box, Helen; Livermore, Joanne; Johnson, Adam; McEntee, Laura; Felton, Timothy W.; Whalley, Sarah; Goodwin, Joanne

    2015-01-01

    Isavuconazonium sulfate is a novel triazole prodrug that has been recently approved for the treatment of invasive aspergillosis by the FDA. The active moiety (isavuconazole) has a broad spectrum of activity against many pathogenic fungi. This study utilized a dynamic in vitro model of the human alveolus to describe the pharmacodynamics of isavuconazole against two wild-type and two previously defined azole-resistant isolates of Aspergillus fumigatus. A human-like concentration-time profile for isavuconazole was generated. MICs were determined using CLSI and EUCAST methodologies. Galactomannan was used as a measure of fungal burden. Target values for the area under the concentration-time curve (AUC)/MIC were calculated using a population pharmacokinetics-pharmacodynamics (PK-PD) mathematical model. Isolates with higher MICs required higher AUCs in order to achieve maximal suppression of galactomannan. The AUC/MIC targets necessary to achieve 90% probability of galactomannan suppression of <1 were 11.40 and 11.20 for EUCAST and CLSI, respectively. PMID:26503648

  11. Influence of the treatment of Listeria monocytogenes and Salmonella enterica serovar Typhimurium with citral on the efficacy of various antibiotics.

    PubMed

    Zanini, Surama F; Silva-Angulo, Angela B; Rosenthal, Amauri; Aliaga, Dolores Rodrigo; Martínez, Antonio

    2014-04-01

    The main goal of this work was to study the bacterial adaptive responses to antibiotics induced by sublethal concentration of citral on first-and second-generation cells of Listeria monocytogenes serovar 4b (CECT 4032) and Salmonella enterica serovar Typhimurium (CECT 443). The first-generation cells were not pretreated with citral, while the second-generation cells were obtained from cells previously exposed to citral during 5 h. The trials were conducted at 37°C. The presence of citral in the culture medium and the antibiotic strips resulted in a reduced minimum inhibitory concentration (MIC) for the first-generation cells of Listeria monocytogenes serovar 4b and Salmonella Typhimurium. This result was observed for almost all the antibiotics, compared with the same microorganisms of the control group (without citral), which could represent an additive effect. For Listeria serovar 4b, the second-generation cells of the test group maintained the same susceptibility to antibiotics compared with cells in the control group and in the test group of the first generation. The second-generation cells of the control group indicated that the Salmonella Typhimurium maintained the same sensitivity to the antibiotics tested compared with the first generation of this group, except in the case of erythromycin, which exhibited an increased MIC value. With respect to the second-generation cells of Salmonella Typhimurium, the presence of citral determined a decrease in the antibiotic susceptibility for almost all of the antibiotics, except colistin, compared with the first-generation of the test group, which can be seen by increase of MIC values. In conclusion, the presence of citral in the culture medium of Listeria 4b and Salmonella Typhimurium increased the antibiotic susceptibility of the first generations, while we observed an increase in antibiotic resistance in the second generation of Salmonella Typhimurium.

  12. Inhibitory effect of essential oils obtained from plants grown in Colombia on yellow fever virus replication in vitro

    PubMed Central

    Meneses, Rocío; Ocazionez, Raquel E; Martínez, Jairo R; Stashenko, Elena E

    2009-01-01

    Background An antiviral drug is needed for the treatment of patients suffering from yellow fever. Several compounds present in plants can inactive in vitro a wide spectrum of animal viruses. Aim In the present study the inhibitory effect of essential oils of Lippia alba, Lippia origanoides, Oreganum vulgare and Artemisia vulgaris on yellow fever virus (YFV) replication was investigated. Methods The cytotoxicity (CC50) on Vero cells was evaluated by the MTT reduction method. The minimum concentration of the essential oil that inhibited virus titer by more than 50% (MIC) was determined by virus yield reduction assay. YFV was incubated 24 h at 4°C with essential oil before adsorption on Vero cell, and viral replication was carried out in the absence or presence of essential oil. Vero cells were exposed to essential oil 24 h at 37°C before the adsorption of untreated-virus. Results The CC50 values were less than 100 μg/mL and the MIC values were 3.7 and 11.1 μg/mL. The CC50/MIC ratio was of 22.9, 26.4, 26.5 and 8.8 for L. alba, L origanoides, O. vulgare and A. vulgaris, respectively. The presence of essential oil in the culture medium enhances the antiviral effect: L. origanoides oil at 11.1 μg/mLproduced a 100% reduction of virus yield, and the same result was observed with L. alba, O. vulgare and A. vulgaris oils at100 μg/mL. No reduction of virus yield was observed when Vero cells were treated with essential oil before the adsorption of untreated-virus. Conclusion The essential oils evaluated in the study showed antiviral activities against YFV. The mode of action seems to be direct virus inactivation. PMID:19267922

  13. Anti-MRSA cephalosporins Bristol-Myers Squibb.

    PubMed

    Johnson, A P

    2001-02-01

    BMS is investigating a series of cephalosporins for potential use in the treatment of methicillin-resistant Staphylococcus aureus (MRSA) infection [274213]. In vitro activity tests resulted in a minimum inhibitory concentration (MIC) of 1 to 8 microg/ml against MRSA 1274213]. A series of C(3) benzoyloxymethyl cephalosporins exhibited in vitro activity against MRSA and methicillin-susceptible Staphylococcus aureus (MSSA), with MIC values ranging from 0.007 to 2 microM, and improved in vivo stability in human plasma [258890].

  14. Azole susceptibility of Malassezia pachydermatis and Malassezia furfur and tentative epidemiological cut-off values.

    PubMed

    Cafarchia, Claudia; Iatta, Roberta; Immediato, Davide; Puttilli, Maria Rita; Otranto, Domenico

    2015-09-01

    This study aims to determine the minimal inhibitory concentration (MIC) distribution and the epidemiological cut-off values (ECVs) of Malassezia pachydermatis and Malassezia furfur isolates for fluconazole (FLZ), itraconazole (ITZ), posaconazole (POS), and voriconazole (VOR). A total of 62 M. pachydermatis strains from dogs with dermatitis and 78 M. furfur strains from humans with bloodstream infections (BSI) were tested by a modified broth microdilution Clinical and Laboratory Standards Institute (CLSI) method. ITZ and POS displayed lower MICs than VOR and FLZ, regardless of the Malassezia species. The MIC data for azoles of M. pachydermatis were four two-fold dilutions lower than those of M. furfur. Based on the ECVs, about 94% of Malassezia strains might be categorized within susceptible population for all azoles, except for FLZ, and azole cross-resistance was detected in association with FLZ in M. pachydermatis but not in M. furfur.The study proposes, for the first time, tentative azole ECVs for M. pachydermatis and M. furfur for monitoring the emergence of isolates with decreased susceptibilities and shows that the azole MIC distribution varied according to the Malassezia species tested, thus suggesting the usefulness of determining the susceptibility profile for effective treatment of each species. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Action of Monomeric/Gemini Surfactants on Free Cells and Biofilm of Asaia lannensis.

    PubMed

    Koziróg, Anna; Kręgiel, Dorota; Brycki, Bogumił

    2017-11-22

    We investigated the biological activity of surfactants based on quaternary ammonium compounds: gemini surfactant hexamethylene-1,6-bis-( N,N -dimethyl- N -dodecylammonium bromide) (C6), synthesized by the reaction of N,N -dimethyl- N- dodecylamine with 1,6-dibromohexane, and its monomeric analogue dodecyltrimethylammonium bromide (DTAB). The experiments were performed with bacteria Asaia lannensis , a common spoilage in the beverage industry. The minimal inhibitory concentration (MIC) values were determined using the tube standard two-fold dilution method. The growth and adhesive properties of bacterial cells were studied in different culture media, and the cell viability was evaluated using plate count method. Both of the surfactants were effective against the bacterial strain, but the MIC of gemini compound was significantly lower. Both C6 and DTAB exhibited anti-adhesive abilities. Treatment with surfactants at or below MIC value decreased the number of bacterial cells that were able to form biofilm, however, the gemini surfactant was more effective. The used surfactants were also found to be able to eradicate mature biofilms. After 4 h of treatment with C6 surfactant at concentration 10 MIC, the number of bacterial cells was reduced by 91.8%. The results of this study suggest that the antibacterial activity of the gemini compound could make it an effective microbiocide against the spoilage bacteria Asaia sp. in both planktonic and biofilm stages.

  16. Pharmacokinetics of meropenem after intravenous, intramuscular and subcutaneous administration to cats.

    PubMed

    Albarellos, Gabriela A; Montoya, Laura; Passini, Sabrina M; Lupi, Martín P; Lorenzini, Paula M; Landoni, María F

    2016-12-01

    The aim of the study was to describe the pharmacokinetics and predicted efficacy of meropenem after intravenous (IV), intramuscular (IM) and subcutaneous (SC) administration to cats at a single dose of 10 mg/kg. Five adult healthy cats were used. Blood samples were withdrawn at predetermined times over a 12 h period. Meropenem concentrations were determined by microbiological assay. Pharmacokinetic analyses were performed with computer software. Initial estimates were determined using the residual method and refitted by non-linear regression. The time that plasma concentrations were greater than the minimum inhibitory concentration (T >MIC) was estimated by applying bibliographic MIC values and meropenem MIC breakpoint. Maximum plasma concentrations of meropenem were 101.02 µg/ml (C p(0) , IV), 27.21 µg/ml (C max , IM) and 15.57 µg/ml (C max , SC). Bioavailability was 99.69% (IM) and 96.52 % (SC). Elimination half-lives for the IV, IM and SC administration were 1.35, 2.10 and 2.26 h, respectively. Meropenem, when administered to cats at a dose of 10 mg/kg q12h,, is effective against bacteria with MIC values of 6 μg/ml, 7 μg/ml and 10 μg/ml for IV, IM and SC administration, respectively. However, clinical trials are necessary to confirm clinical efficacy of the proposed dosage regimen. © The Author(s) 2015.

  17. Francisella tularensis Susceptibility to Antibiotics: A Comprehensive Review of the Data Obtained In vitro and in Animal Models

    PubMed Central

    Caspar, Yvan; Maurin, Max

    2017-01-01

    The antibiotic classes that are recommended for tularaemia treatment are the aminoglycosides, the fluoroquinolones and the tetracyclines. However, cure rates vary between 60 and 100% depending on the antibiotic used, the time to appropriate antibiotic therapy setup and its duration, and the presence of complications, such as lymph node suppuration. Thus, antibiotic susceptibility testing (AST) of F. tularensis strains remains of primary importance for detection of the emergence of antibiotic resistances to first-line drugs, and to test new therapeutic alternatives. However, the AST methods reported in the literature were poorly standardized between studies and AST data have not been previously evaluated in a comprehensive and comparative way. The aim of the present review was to summarize experimental data on antibiotic susceptibilities of F. tularensis obtained in acellular media, cell models and animal models since the introduction of fluoroquinolones in the treatment of tularaemia in 1989. We compiled MIC data of 33 antibiotics (including aminoglycosides, fluoroquinolones, tetracyclines, macrolides, β-lactams, chloramphenicol, rifampicin, and linezolid) against 900 F. tularensis strains (504 human strains), including 107 subsp. tularensis (type A), 789 subsp. holarctica (type B) and four subsp. mediasiatica strains, using various AST methods. Specific culture media were identified or confirmed as unsuitable for AST of F. tularensis. Overall, MICs were the lowest for ciprofloxacin (≤ 0.002–0.125 mg/L) and levofloxacin, and ranged from ≤ 0.016 to 2 mg/L for gentamicin, and 0.064 to 4 mg/L for doxycycline. No resistant strain to any of these antibiotics was reported. Fluoroquinolones also exhibited a bactericidal activity against intracellular F. tularensis and lower relapse rates in animal models when compared with the bacteriostatic compound doxycycline. As expected, lower MIC values were found for macrolides against type A and biovar I type B strains, compared to biovar II type B strains. The macrolides were more effective against F. tularensis grown in phagocytic cells than in acellular media. PMID:28443249

  18. Development and Validation of Limited-Sampling Strategies for Predicting Amoxicillin Pharmacokinetic and Pharmacodynamic Parameters

    PubMed Central

    Suarez-Kurtz, Guilherme; Ribeiro, Frederico Mota; Vicente, Flávio L.; Struchiner, Claudio J.

    2001-01-01

    Amoxicillin plasma concentrations (n = 1,152) obtained from 48 healthy subjects in two bioequivalence studies were used to develop limited-sampling strategy (LSS) models for estimating the area under the concentration-time curve (AUC), the maximum concentration of drug in plasma (Cmax), and the time interval of concentration above MIC susceptibility breakpoints in plasma (T>MIC). Each subject received 500-mg amoxicillin, as reference and test capsules or suspensions, and plasma concentrations were measured by a validated microbiological assay. Linear regression analysis and a “jack-knife” procedure revealed that three-point LSS models accurately estimated (R2, 0.92; precision, <5.8%) the AUC from 0 h to infinity (AUC0-∞) of amoxicillin for the four formulations tested. Validation tests indicated that a three-point LSS model (1, 2, and 5 h) developed for the reference capsule formulation predicts the following accurately (R2, 0.94 to 0.99): (i) the individual AUC0-∞ for the test capsule formulation in the same subjects, (ii) the individual AUC0-∞ for both reference and test suspensions in 24 other subjects, and (iii) the average AUC0-∞ following single oral doses (250 to 1,000 mg) of various amoxicillin formulations in 11 previously published studies. A linear regression equation was derived, using the same sampling time points of the LSS model for the AUC0-∞, but using different coefficients and intercept, for estimating Cmax. Bioequivalence assessments based on LSS-derived AUC0-∞'s and Cmax's provided results similar to those obtained using the original values for these parameters. Finally, two-point LSS models (R2 = 0.86 to 0.95) were developed for T>MICs of 0.25 or 2.0 μg/ml, which are representative of microorganisms susceptible and resistant to amoxicillin. PMID:11600352

  19. Regression analysis and categorical agreement of fluconazole disk zone diameters and minimum inhibitory concentration by broth microdilution of clinical isolates of Candida.

    PubMed

    Aggarwal, P; Kashyap, B

    2017-06-01

    Rampant use of fluconazole in Candida infections has led to predominance of less susceptible non-albicans Candida over Candida albicans. The aim of the study was to determine if zone diameters around fluconazole disk can be used to estimate the minimum inhibitory concentration (MIC) for clinical isolates of Candida species and vice versa. Categorical agreement between the Clinical & Laboratory Standards Institute (CLSI) recommended disk diffusion and CLSI broth microdilution method was sought for. Antifungal susceptibility testing by disk diffusion and Broth microdilution was done as per CLSI document M44-S3 and CLSI document M27-S4 for Candida isolates respectively. Regression analysis correlating zone diameters to MIC value was done. Pearson's correlation coefficient was calculated to determine correlation between disk zone diameters and MICs. Candida albicans (33.3%) was clearly outnumbered by other non-albicans species predominantly Candida tropicalis (42.5%) and Candida glabrata (18.4%). Ten percent of the strains were resistant to fluconazole by disk diffusion and 13% by broth microdilution. MIC range for Candida albicans and Candida tropicalis ranged from≤0.25-64μg/ml while that of Candida glabrata ranged from≤0.25-128μg/ml. Categorical agreement between disk diffusion and broth microdilution was 86.8%. Pearson's coefficient of correlation was -0.5975 indicating moderate negative correlation between the two variables. Zone sizes can be used to estimate the MIC values, although with limited accuracy. There should be a constant effort to upgrade the guidelines in view of new clinical data, and laboratories should make an active effort to incorporate them. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Antibacterial assay-guided isolation of active compounds from Artocarpus heterophyllus heartwoods.

    PubMed

    Septama, Abdi Wira; Panichayupakaranant, Pharkphoom

    2015-01-01

    Preparations from Artocarpus heterophyllus Lam. (Moraceae) heartwoods are used in the traditional folk medicine for the treatment of inflammation, malarial fever, and to prevent bacterial and fungal infections. The objective of this study was to isolate pure antibacterial compounds from A. heterophyllus heartwoods. The dried and powdered A. heterophyllus heartwoods were successively extracted with the following solvents: hexane, ethyl acetate, and methanol. Each of the extracts was screened for their antibacterial activities using a disc diffusion method (10 mg/disc). Their minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) were determined using a broth microdilution method. The extract that showed the strongest antibacterial activities was fractionated to isolate the active compounds by an antibacterial assay-guided isolation process. The ethyl acetate extract exhibited the strongest antibacterial activities against Streptococcus mutans, S. pyogenes, and Bacillus subtilis with MIC values of 78, 39, and 9.8 µg/mL, respectively. Based on an antibacterial assay-guided isolation, four antibacterial compounds: cycloartocarpin (1), artocarpin (2), artocarpanone (3), and cyanomaclurin (4) were purified. Among these isolated compounds, artocarpin exhibited the strongest antibacterial activity against Gram-positive bacteria, including S. mutans, S. pyogenes, B. subtilis, Staphylococcus aureus, and S. epidermidis with MICs of 4.4, 4.4, 17.8, 8.9, and 8.9 µM, respectively, and MBCs of 8.9, 8.9, 17.8, 8.9, and 8.9 µM, respectively, while artocarpanone showed the strongest activity against Escherichia coli, a Gram-negative bacteria with MIC and MBC values of 12.9 and 25.8 µM, respectively. Only artocarpin showed inhibitory activity against Pseudomonas aeruginosa with an MIC of 286.4 µM.

  1. Propolis: a potential natural product to fight Candida species infections.

    PubMed

    Tobaldini-Valerio, Flávia K; Bonfim-Mendonça, Patricia S; Rosseto, Helen C; Bruschi, Marcos L; Henriques, Mariana; Negri, Melyssa; Silva, Sonia; Svidzinski, Terezinha Ie

    2016-08-01

    To evaluate the effect of propolis against Candida species planktonic cells and its counterpart's biofilms. The MIC values, time-kill curves and filamentation form inhibition were determined in Candida planktonic cells. The effect of propolis on Candida biofilms was assessed through quantification of CFUs. MIC values, ranging from 220 to 880 µg/ml, demonstrated higher efficiency on C. albicans and C. parapsilosis than on C. tropicalis cells. In addition, propolis was able to prevent Candida species biofilm's formation and eradicate their mature biofilms, coupled with a significant reduction on C. tropicalis and C. albicans filamentation. Propolis is an inhibitor of Candida virulence factors and represents an innovative alternative to fight candidiasis.

  2. Chemical conjugation of 2-hexadecynoic acid to C5-curcumin enhances its antibacterial activity against multi-drug resistant bacteria.

    PubMed

    Sanabria-Ríos, David J; Rivera-Torres, Yaritza; Rosario, Joshua; Gutierrez, Ricardo; Torres-García, Yeireliz; Montano, Nashbly; Ortíz-Soto, Gabriela; Ríos-Olivares, Eddy; Rodríguez, José W; Carballeira, Néstor M

    2015-11-15

    The first total synthesis of a C5-curcumin-2-hexadecynoic acid (C5-Curc-2-HDA, 6) conjugate was successfully performed. Through a three-step synthetic route, conjugate 6 was obtained in 13% overall yield and tested for antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA) strains. Our results revealed that 6 was active against eight MRSA strains at MICs that range between 31.3 and 62.5 μg/mL. It was found that the presence of 2-hexadecynoic acid (2-HDA, 4) in conjugate 6 increased 4-8-fold its antibacterial activity against MRSA strains supporting our hypothesis that the chemical connection of 4 to C5-curcumin (2) increases the antibacterial activity of 2 against Gram-positive bacteria. Combinational index (CIn) values that range between 1.6 and 2.3 were obtained when eight MRSA strains were treated with an equimolar mixture of 2 and 4. These results demonstrated that an antagonistic effect is taking place. Finally, it was investigated whether conjugate 6 can affect the replication process of S. aureus, since this compound inhibited the supercoiling activity of the S. aureus DNA gyrase at minimum inhibitory concentrations (MIC) of 250 μg/mL (IC50=100.2±13.9 μg/mL). Moreover, it was observed that the presence of 4 in conjugate 6 improves the anti-topoisomerase activity of 2 towards S. aureus DNA gyrase, which is in agreement with results obtained from antibacterial susceptibility tests involving MRSA strains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Isocoumarin derivatives from the endophytic fungus, Pestalotiopsis sp.

    PubMed

    Song, Ren-Yu; Wang, Xiao-Bing; Yin, Guo-Ping; Liu, Rui-Huan; Kong, Ling-Yi; Yang, Ming-Hua

    2017-10-01

    Five new isocoumarin derivatives, pestalactone A-C (1-3) and pestapyrone D-E (4-5), together with two known compounds (6-7) were isolated from the solid cultures of the endophytic fungus Pestalotiopsis sp. obtained from Photinia frasery. Their structures were mainly determined by extensive spectroscopic analysis, Mo 2 (OCOCH 3 ) 4 -induced electronic circular dichroism (ECD), and ECD calculation. Compounds 1 and 2 were rare isocoumarin derivatives and derived from distinctive polyketide pathways. Compound 3 exhibited potent antifungal activity against Candida glabrata (ATCC 90030) with an MIC 50 value of 3.49±0.21μg/mL. Copyright © 2017. Published by Elsevier B.V.

  4. Antimicrobial, Antioxidant, and Anti-Inflammatory Activities of Essential Oils of Selected Aromatic Plants from Tajikistan.

    PubMed

    Sharopov, Farukh; Braun, Markus Santhosh; Gulmurodov, Isomiddin; Khalifaev, Davlat; Isupov, Salomiddin; Wink, Michael

    2015-11-02

    Antimicrobial, antioxidant, and anti-inflammatory activities of the essential oils of 18 plant species from Tajikistan (Central Asia) were investigated. The essential oil of Origanum tyttanthum showed a strong antibacterial activity with both minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 312.5 µg/mL for E. coli , 625 µg/mL (MIC) and 1250 µg/mL (MBC) for MRSA (methicillin-resistant Staphylococcus aureus), respectively. The essential oil of Galagania fragrantissima was highly active against MRSA at concentrations as low as 39.1 µg/mL and 78.2 µg/mL for MIC and MBC, respectively. Origanum tyttanthum essential oil showed the highest antioxidant activity with IC 50 values of 0.12 mg/mL for ABTS (2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid)) and 0.28 mg/mL for DPPH (2,2-diphenyl-1-picrylhydrazyl) . Galagania fragrantissima and Origanum tyttanthum essential oils showed the highest anti-inflammatory activity; IC 50 values of 5-lipoxygenase (5-LOX) inhibition were 7.34 and 14.78 µg/mL, respectively. In conclusion, essential oils of Origanum tyttanthum and Galagania fragrantissima exhibit substantial antimicrobial, antioxidant, and anti-inflammatory activities. They are interesting candidates in phytotherapy.

  5. Anti-fungal and Anti-Mycobacterial activity of plants of Nuevo Leon, Mexico.

    PubMed

    Garza, Blanca Alicia Alanis; Arroyo, Joel López; González, Gloria González; González, Elvira Garza; González, Elvira Garza; de Torres, Noemí Waksman; Aranda, Ricardo Salazar

    2017-01-01

    Severe fungal infections, particularly those caused by Candida spp, have increased in recent decades and are associated with an extremely high rate of morbidity and mortality. Since plants are an important source of potentially bioactive compounds, in this work the antifungal activity of the methanol extracts of 10 plants (Acacia rigidula, Buddleja cordata, Cephalanthus occidentalis, Juglans nigra, Parkinsonia aculeata, Parthenium hysterophorus, Quercus canbyi, Ricinus communis, Salvia coccinea and Teucrium bicolor) were evaluated. The activity was evaluated according to the micro dilution assay described in CLSI M27-A protocol using some clinical isolates of different species of Candida (C. albicans, C. parapsilosis, C. tropicalis, C. krusei and C. glabrata). All extracts showed MIC values < 31.25μg/mL against at least one of the strains used, which is very interesting because it was crude extracts. Acacia rigidula (0.93-3.75μg/mL) and Quercus canbyi (0.93-7.5μg/mL) had antifungal activity against 7 strains with MIC values <8μg/mL in all cases. Furthermore excerpts activity against Mycobacterium tuberculosis (strain H37rv) was evaluated. Only Salvia coccinea and Teucrium bicolor showed MIC values125μg/mL by the method of MABA.

  6. Postantibiotic effect of various antibiotics on Legionella pneumophila strains isolated from water systems.

    PubMed

    Birteksöz-Tan, Ayşe Seher; Zeybek, Zuhal

    2012-11-01

    The postantibiotic effects (PAE) of azithromycin, clarithromycin, ciprofloxacin, and levofloxacin were investigated against Legionella pneumophila (L. pneumophila) strains isolated from several hot water systems of different buildings in Istanbul. Each strain in logarithmic phase of growth was exposed to concentrations of antibiotics equal to minimum inhibitory concentration (MIC) and 4× MIC for 1 h. Recovery periods of test cultures were evaluated after centrifugation using the viable counting method. The mean values of PAEs for the strains of L. pneumophila, azithromycin at a concentration equal to and 4 times of MIC values were found 1.75 ± 0.28 h and 4.06 ± 0.44 h, for clarithromycin 2.98 ± 0.70 h and 4.18 ± 0.95 h, for ciprofloxacin 2.97 ± 0.63 h and 4.70 ± 0.63 h, for levofloxacin 2.05 ± 0.33 h and 3.78 ± 0.46 h, respectively. All of the antibiotics showed increased PAE values in a concentration-dependent manner. The findings of our study may play useful role in selecting the appropriate timing of doses during therapy with antimicrobials to treat patients infected with L. pneumophila.

  7. Essential oil composition and antimicrobial activity of wild and cultivated Moroccan Achillea ageratum L.: a rare and threatened medicinal species.

    PubMed

    El Bouzidi, Laila; Abbad, Abdelaziz; Hassani, Lahcen; Fattarsi, Karine; Leach, David; Markouk, Mohammed; Legendre, Laurent; Bekkouche, Khalid

    2012-03-01

    The essential oils of leaves and flowers of the wild and cultivated Moroccan Achillea ageratum L., a rare and threatened medicinal species, were examined by GC/MS, and their chemical compositions were compared. At least nine components were identified in both wild and cultivated A. ageratum oils, representing more than 95% of the oils. Artemisyl acetate (62.34-78.79%), yomogi alcohol (4.89-12.40%), santolina alcohol (4.86-11.77%), and artemisia alcohol (3.36-7.04%) were the major compounds. Terpene-alcohol proportion was higher in wild A. ageratum than in cultivated A. ageratum. The antibacterial analysis showed that both oils presented high activity against all the studied Gram-positive strains in a range of MIC values from 2.55 to 7.02 mg/ml, but they appeared not effective against the tested Gram-negative ones (MIC values 20.40-41.10 mg/ml). They also exhibited remarkable antifungal activities against Candida species with MIC values ranging from 5.83 to 8.42 mg/ml. From these results, it was concluded that domestication of this threatened medicinal species using clonal propagation did not significantly affect its chemical composition and consequently its antimicrobial properties. Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  8. Comparison of MICs of Fluconazole and Flucytosine When Dissolved in Dimethyl Sulfoxide or Water

    PubMed Central

    Fothergill, Annette W.; Sanders, Carmita

    2013-01-01

    A total of 145 clinical strains of Candida species were tested by the Clinical and Laboratory Standards Institute M27-A3 methodology to determine if replacing water with dimethyl sulfoxide as the solvent for fluconazole and flucytosine impacted the in vitro potency. No significant differences in MIC values were observed with either antifungal between the two solvents against any Candida species, and the essential agreement for each agent between the two solvents was greater than 99%. PMID:23576540

  9. Resistance of Bacteroides isolates recovered among clinical samples from a major Costa Rican hospital between 2000 and 2008 to ß-lactams, clindamycin, metronidazole, and chloramphenicol.

    PubMed

    Cordero-Laurent, E; Rodríguez, C; Rodríguez-Cavallini, E; Gamboa-Coronado, M M; Quesada-Gómez, C

    2012-12-01

    To assess the susceptibility of 100 isolates of Bacteroides spp. recovered in a major Costa Rican hospital between 2000 and 2008 to several ß-lactams, chloramphenicol, clindamycin and metronidazole. Susceptibility to amoxicillin, amoxicillin with clavulanic acid, piperacillin, piperacillin with tazobactam, ticarcillin, ticarcillin with clavulanic acid, cefoxitin, cefotetan, imipenem, chloramphenicol, clindamycin, and metronidazole was determined with the ATB ANA® system. In addition, minimum inhibitory concentrations (MIC) of clindamycin and metronidazole were determined with the broth microdilution method because these drugs are the treatment of choice for anaerobic infections in Costa Rica. Reference strains ATCC® 25285 and ATCC® 29741 were employed as indicated. According to the ATB ANA® system, 93 isolates were resistant to at least one antibiotic. Resistance to ß-lactams was common. By contrast, resistance to ß-lactams supplemented with ß-lactamase inhibitors was rare. All of the strains were inhibited by imipenem and chloramphenicol. By a broth microdilución test, resistance to clindamycin was 20%, with MIC ranging from 64 mg/L to 256 mg/L; all of the strains were susceptible to metronidazole. The high MIC for clindamycin obtained for the majority of the resistant strains is highly suggestive of the presence of mechanisms of acquired resistance among the isolates, therefore surveillance studies are required to determine its efficacy. The low resistance to metronidazole observed underlines its value as a first-line drug. On the other hand, imipenem could be used to treat infections that do not respond well to metronidazole or clindamycin.

  10. Antifungal Effect of Malaysian Aloe vera Leaf Extract on Selected Fungal Species of Pathogenic Otomycosis Species in In Vitro Culture Medium.

    PubMed

    Saniasiaya, Jeyasakthy; Salim, Rosdan; Mohamad, Irfan; Harun, Azian

    2017-01-01

    Aloe barbadensis miller or Aloe vera has been used for therapeutic purposes since ancient times with antifungal activity known to be amongst its medicinal properties. We conducted a pilot study to determine the antifungal properties of Malaysian Aloe vera leaf extract on otomycosis species including Aspergillus niger and Candida albicans. This laboratory-controlled prospective study was conducted at the Universiti Sains Malaysia. Extracts of Malaysian Aloe vera leaf was prepared in ethanol and solutions via the Soxhlet extraction method. Sabouraud dextrose agar cultured with the two fungal isolates were inoculated with the five different concentrations of each extract (50 g/mL, 25 g/mL, 12.5 g/mL, 6.25 g/mL, and 3.125 g/mL) using the well-diffusion method. Zone of inhibition was measured followed by minimum inhibitory concentration (MIC). For A. niger, a zone of inhibition for alcohol and aqueous extract was seen for all concentrations except 3.125 g/mL. There was no zone of inhibition for both alcohol and aqueous extracts of Aloe vera leaf for C. albicans . The MIC values of aqueous and alcohol extracts were 5.1 g/mL and 4.4 g/mL for A. niger and since no zone of inhibition was obtained for C. albicans the MIC was not determined. The antifungal effect of alcohol extracts of Malaysian Aloe vera leaf is better than the aqueous extract for A. niger ( p < 0.001). Malaysian Aloe vera has a significant antifungal effect towards A. niger.

  11. Antimycobacterial potency and cytotoxicity study of three medicinal plants.

    PubMed

    Tsouh Fokou, Patrick Valere; Appiah-Opong, Regina; Yeboah-Manu, Dorothy; Kissi-Twum, Abena Adomah; Yamthe, Lauve Rachel Tchokouaha; Mokale Kognou, Aristide Laurel; Addo, Phyllis; Boyom, Fabrice Fekam; Nyarko, Alexander Kwadwo

    2016-12-01

    Mycobacterial infections including tuberculosis, leprosy, and buruli ulcer are among the most prevalent, debilitating, and deadly tropical diseases, especially in Sub-Saharan Africa. The development of drug resistance to the currently available drugs and the poor compliance emphasize the need for new chemotherapeutic agents. This study was designed to evaluate the in vitro activity of Cleistopholis patens, Annona reticulata, and Greenwayodendron suaveolens against Mycobacterium smegmatis. The safety on normal liver cells was also assessed. The crude extracts, fractions, and subfractions were tested against M. smegmatis and for cell cytotoxicity on WRL-68, normal human hepatocyte using microdilution resazurin-based assays. The phytochemical screening was performed using standard methods. Most of the extracts, fractions, and subfractions inhibited the growth of M. smegmatis with minimum inhibitory concentration (MIC) values ranging from 6.25μg/mL to 125μg/mL. The subfractions P12 and P29 from G. suaveolens twig were more potent with MIC values of 6.25μg/mL and 25μg/mL, respectively. Fruit crude extract and root CH 2 Cl 2 fraction from A. reticulata also showed activity with MIC values of 50μg/mL and 25μg/mL, respectively. Crude extracts from the twig and stem bark of C. patens displayed inhibition at MIC values of 125μg/mL and 100μg/mL, respectively. Majority of active extracts showed no cell cytotoxicity, except the extract from C. patens with IC 50 ranging from 41.40μg/mL to 93.78μg/mL. The chemical investigation of the promising extracts revealed the presence of phenols, alkaloids, glycosides, triterpenes, and acetogenins. The results achieved from this preliminary antimycobacterial drug discovery study supported the traditional claims of C. patens, A. reticulata, and G. suaveolens in the treatment of mycobacterial infections. Meanwhile, further fractionation is required to characterize the active ingredients. Copyright © 2016.

  12. Using ROC Curves to Choose Minimally Important Change Thresholds when Sensitivity and Specificity Are Valued Equally: The Forgotten Lesson of Pythagoras. Theoretical Considerations and an Example Application of Change in Health Status

    PubMed Central

    Froud, Robert; Abel, Gary

    2014-01-01

    Background Receiver Operator Characteristic (ROC) curves are being used to identify Minimally Important Change (MIC) thresholds on scales that measure a change in health status. In quasi-continuous patient reported outcome measures, such as those that measure changes in chronic diseases with variable clinical trajectories, sensitivity and specificity are often valued equally. Notwithstanding methodologists agreeing that these should be valued equally, different approaches have been taken to estimating MIC thresholds using ROC curves. Aims and objectives We aimed to compare the different approaches used with a new approach, exploring the extent to which the methods choose different thresholds, and considering the effect of differences on conclusions in responder analyses. Methods Using graphical methods, hypothetical data, and data from a large randomised controlled trial of manual therapy for low back pain, we compared two existing approaches with a new approach that is based on the addition of the sums of squares of 1-sensitivity and 1-specificity. Results There can be divergence in the thresholds chosen by different estimators. The cut-point selected by different estimators is dependent on the relationship between the cut-points in ROC space and the different contours described by the estimators. In particular, asymmetry and the number of possible cut-points affects threshold selection. Conclusion Choice of MIC estimator is important. Different methods for choosing cut-points can lead to materially different MIC thresholds and thus affect results of responder analyses and trial conclusions. An estimator based on the smallest sum of squares of 1-sensitivity and 1-specificity is preferable when sensitivity and specificity are valued equally. Unlike other methods currently in use, the cut-point chosen by the sum of squares method always and efficiently chooses the cut-point closest to the top-left corner of ROC space, regardless of the shape of the ROC curve. PMID:25474472

  13. Antimicrobial and antioxidant activity of kaempferol rhamnoside derivatives from Bryophyllum pinnatum

    PubMed Central

    2012-01-01

    Background Bryophyllum pinnatum (Lank.) Oken (Crassulaceae) is a perennial succulent herb widely used in traditional medicine to treat many ailments. Its wide range of uses in folk medicine justifies its being called "life plant" or "resurrection plant", prompting researchers' interest. We describe here the isolation and structure elucidation of antimicrobial and/or antioxidant components from the EtOAc extract of B. pinnatum. Results The methanol extract displayed both antimicrobial activities with minimum inhibitory concentration (MIC) values ranging from 32 to 512 μg/ml and antioxidant property with an IC50 value of 52.48 μg/ml. Its partition enhanced the antimicrobial activity in EtOAc extract (MIC = 16-128 μg/ml) and reduced it in hexane extract (MIC = 256-1024 μg/ml). In addition, this process reduced the antioxidant activity in EtOAc and hexane extracts with IC50 values of 78.11 and 90.04 μg/ml respectively. Fractionation of EtOAc extract gave seven kaempferol rhamnosides, including; kaempferitrin (1), kaempferol 3-O-α-L-(2-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (2), kaempferol 3-O-α-L-(3-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (3), kaempferol 3-O-α-L-(4-acetyl)rhamnopyranoside-7-O-α-L-rhamnopyranoside (4), kaempferol 3-O-α-D- glucopyranoside-7-O-α-L-rhamnopyranoside (5), afzelin (6) and α-rhamnoisorobin (7). All these compounds, except 6 were isolated from this plant for the first time. Compound 7 was the most active, with MIC values ranging from 1 to 2 μg/ml and its antioxidant activity (IC50 = 0.71 μg/ml) was higher than that of the reference drug (IC50 = 0.96 μg/ml). Conclusion These findings demonstrate that Bryophyllum pinnatum and some of its isolated compounds have interesting antimicrobial and antioxidant properties, and therefore confirming the traditional use of B. pinnatum in the treatment of infectious and free radical damages. PMID:22433844

  14. Characterisation of penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine milk samples in Minas Gerais, Brazil.

    PubMed

    Martini, Caroline L; Lange, Carla C; Brito, Maria Avp; Ribeiro, João B; Mendonça, Letícia C; Vaz, Eliana K

    2017-05-01

    This Regional Research Communication describes the characterisation of ampicillin, penicillin and tetracycline resistance in Staphylococcus aureus isolated from bovine subclinical mastitis in Minas Gerais State, Brazil. Ninety S. aureus isolates from bovine mastitis exhibiting phenotypic resistance to ampicillin, penicillin and/or tetracycline were selected for this study. The minimum inhibitory concentration (MIC) of each antibiotic was determined using the E-Test® and the production of beta-lactamase was determined by cefinase disks. The resistance genes blaZ, tet(K), tet(L), tet(M), and tet(O) were investigated by PCR in all of the isolates. The MIC results classified 77, 83 and 71% of the isolates as resistant to ampicillin, penicillin and tetracycline, respectively. The MIC50 and MIC90 were, respectively, 1 and 2 µg/ml for ampicillin, 0·5 and 1 µg/ml for penicillin and 32 and 64 µg/ml for tetracycline. Eighty-six per cent of beta-lactamase producing isolates were detected. Of the 90 isolates investigated, 97% amplified blaZ, 84% amplified tet(K), 9% amplified tet(L), 2% amplified tet(M) and 1% amplified tet(O). Seventy-nine isolates (88%) showed blaZ together with at least one tet gene. S. aureus isolates showed high MIC50 and MIC90 values for the three antimicrobials. The blaZ and tet(K) genes were widespread in the herds studied, and most of the isolates harboured blaZ and tet(K) concomitantly.

  15. Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).

    PubMed

    Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping

    2017-09-01

    Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.

  16. Determination of the antimicrobial susceptibilities of Canadian isolates of Haemophilus influenzae, Streptococcus pneumoniae and Moraxella catarrhalis. Canadian Antimicrobial Study Group.

    PubMed

    Blondeau, J M; Suter, M; Borsos, S

    1999-03-01

    The susceptibility of Canadian isolates of three respiratory tract pathogens (Haemophilus influenzae, Moraxella catarrhalis and Streptococcus pneumoniae) to several antimicrobial agents were tested by two different methods. Beta-lactamase was produced by 68/211 (32.2%) of H. influenzae isolates and 64/75 (85.3%) of M. catarrhalis isolates. For S. pneumoniae, 19/156 (12.2%) isolates were resistant to penicillin (MIC > or = 0.12 mg/L) and two isolates had MICs of 1.5 mg/L. For some combinations of agents and organisms, different methods gave different values for the proportion of isolates susceptible. Regardless of methodology, for H. influenzae, the most active antimicrobials based on proportion of strains susceptible were ciprofloxacin (100%) and cefpodoxime (98.5-100%). For M. catarrhalis, the most active agents were azithromycin, cefaclor, cefixime, cefpodoxime, cefuroxime, ciprofloxacin, clarithromycin and loracarbef (100% each); the least active was ampicillin. Against penicillin-sensitive and -resistant pneumococci, the activity was not significantly different for azithromycin and clarithromycin (93.4-100%) and ciprofloxacin (MIC90 2.0 and 1.5 mg/L, respectively) but was different for cefuroxime (99.3% and 31.6%, respectively), cefaclor (MIC90 0.75 and > or = 256 mg/L, respectively), cefpodoxime (MIC90 0.047 and 1.5 mg/L, respectively) and loracarbef (MIC90 0.75 and > or = 256 mg/L, respectively). This study indicates the increasing incidence, in Canada, of beta-lactamase resistance in H. influenzae and M. catarrhalis and penicillin resistance in S. pneumoniae.

  17. Structure and Function of Task-Oriented Social Networks

    DTIC Science & Technology

    2015-01-05

    sizes can cause instability in correlation measures. A recently developed bivariate measure of  association, Maximal Information Coefficient ( MIC ...promises to simultaneously discover if two  variables have: a) any association, b) a functional relationship, and c) a non­linear  relationship. The  MIC ...problems with the values reported by standard and rank  correlation measures. In our first study [15], we illustrated the use of  MIC  using a variety of

  18. E. coli encoding blaNDM-5 associated with community-acquired UTI cases with unusual MIC creep like phenomenon against Imipenem.

    PubMed

    Gajamer, Varsha Rani; Bhattacharjee, Amitabha; Paul, Deepjyoti; Deshamukhya, Chandrayee; Singh, Ashish Kr; Pradhan, Nilu; Tiwari, Hare Krishna

    2018-05-15

    Carbapenemase-producing Escherichia coli are of major clinical concern. The present study aimed to identify NDM-5 producing E.coli associated with community-acquired urinary tract infection, co-harboring ESBL genes and a pattern of imipenem MIC creep. A total of 973 urine samples were collected from females of age between 18-49 diagnosed with UTI. Isolates were identified by standard microbiological procedures. Presence of bla NDM and ESBL genes was determined by PCR assay and sequencing.PCR based replicon typing was performed. Plasmid stability of all bla producers and their transformants study were analyzed by serial passages and MIC creep phenomenon was analysed by studying revertants. Among 34 bla NDM-5 positive E.coli isolates, 21 isolates co harbored bla CTX-M-15 , followed by multiple combinations of genes. The study revealed diverse types of plasmids type viz; HI1, I1, FIA+FIB, FIA and Y. The strains showed progressive plasmid loss after 31 passages.Twenty-eight isolates mostly had MIC value of 0.5μg/ml and 1μg/ml against imipenem, ertapenem and meropenem. However, on studying the MIC creep activity; the MIC was found elevated from 0.5ug/ml to 64μg/ml and from 1μg/ml to 128μg/ml. While analyzing the revertants, MIC of most of the NDM positive isolates was reduced to 16μg/ml after the 30th serial passages. This study observed a unique phenotype of NDM producers which is not been reported earlier. In the current study, the observed phenomenon poses a global threat as these pathogens may evade phenotypic screening by routine laboratories. Copyright © 2018. Published by Elsevier Ltd.

  19. In vitro susceptibility of filamentous fungi from mycotic keratitis to azole drugs.

    PubMed

    Shobana, C S; Mythili, A; Homa, M; Galgóczy, L; Priya, R; Babu Singh, Y R; Panneerselvam, K; Vágvölgyi, C; Kredics, L; Narendran, V; Manikandan, P

    2015-03-01

    The in vitro antifungal activities of azole drugs viz., itraconazole, voriconazole, ketoconazole, econazole and clotrimazole were investigated in order to evaluate their efficacy against filamentous fungi isolated from mycotic keratitis. The specimen collection was carried out from fungal keratitis patients attending Aravind eye hospital and Post-graduate institute of ophthalmology, Coimbatore, India and was subsequently processed for the isolation of fungi. The dilutions of antifungal drugs were prepared in RPMI 1640 medium. Minimum inhibitory concentrations (MICs) were determined and MIC50 and MIC90 were calculated for each drug tested. A total of 60 fungal isolates were identified as Fusarium spp. (n=30), non-sporulating moulds (n=9), Aspergillus flavus (n=6), Bipolaris spp. (n=6), Exserohilum spp. (n=4), Curvularia spp. (n=3), Alternaria spp. (n=1) and Exophiala spp. (n=1). The MICs of ketoconazole, clotrimazole, voriconazole, econazole and itraconazole for all the fungal isolates ranged between 16 μg/mL and 0.03 μg/mL, 4 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL, 8 μg/mL and 0.015 μg/mL and 32 μg/mL and 0.06 μg/mL respectively. From the MIC50 and MIC90 values, it could be deciphered that in the present study, clotrimazole was more active against the test isolates at lower concentrations (0.12-5 μg/mL) when compared to other drugs tested. The results suggest that amongst the tested azole drugs, clotrimazole followed by voriconazole and econazole had lower MICs against moulds isolated from mycotic keratitis. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Surveillance for azole resistance in clinical and environmental isolates of Aspergillus fumigatus in Australia and cyp51A homology modelling of azole-resistant isolates.

    PubMed

    Talbot, Jessica J; Subedi, Shradha; Halliday, Catriona L; Hibbs, David E; Lai, Felcia; Lopez-Ruiz, Francisco J; Harper, Lincoln; Park, Robert F; Cuddy, William S; Biswas, Chayanika; Cooley, Louise; Carter, Dee; Sorrell, Tania C; Barrs, Vanessa R; Chen, Sharon C-A

    2018-05-29

    The prevalence of azole resistance in Aspergillus fumigatus is uncertain in Australia. Azole exposure may select for resistance. We investigated the frequency of azole resistance in a large number of clinical and environmental isolates. A. fumigatus isolates [148 human, 21 animal and 185 environmental strains from air (n = 6) and azole-exposed (n = 64) or azole-naive (n = 115) environments] were screened for azole resistance using the VIPcheck™ system. MICs were determined using the Sensititre™ YeastOne YO10 assay. Sequencing of the Aspergillus cyp51A gene and promoter region was performed for azole-resistant isolates, and cyp51A homology protein modelling undertaken. Non-WT MICs/MICs at the epidemiological cut-off value of one or more azoles were observed for 3/148 (2%) human isolates but not amongst animal, or environmental, isolates. All three isolates grew on at least one azole-supplemented well based on VIPcheck™ screening. For isolates 9 and 32, the itraconazole and posaconazole MICs were 1 mg/L (voriconazole MICs 0.12 mg/L); isolate 129 had itraconazole, posaconazole and voriconazole MICs of >16, 1 and 8 mg/L, respectively. Soil isolates from azole-exposed and azole-naive environments had similar geometric mean MICs of itraconazole, posaconazole and voriconazole (P > 0.05). A G54R mutation was identified in the isolates exhibiting itraconazole and posaconazole resistance, and the TR34/L98H mutation in the pan-azole-resistant isolate. cyp51A modelling predicted that the G54R mutation would prevent binding of itraconazole and posaconazole to the haem complex. Azole resistance is uncommon in Australian clinical and environmental A. fumigatus isolates; further surveillance is indicated.

  1. Wild-Type and Non-Wild-Type Mycobacterium tuberculosis MIC Distributions for the Novel Fluoroquinolone Antofloxacin Compared with Those for Ofloxacin, Levofloxacin, and Moxifloxacin

    PubMed Central

    Yu, Xia; Wang, Guirong; Chen, Suting; Wei, Guomei; Shang, Yuanyuan; Dong, Lingling; Schön, Thomas; Moradigaravand, Danesh; Peacock, Sharon J.

    2016-01-01

    Antofloxacin (AFX) is a novel fluoroquinolone that has been approved in China for the treatment of infections caused by a variety of bacterial species. We investigated whether it could be repurposed for the treatment of tuberculosis by studying its in vitro activity. We determined the wild-type and non-wild-type MIC ranges for AFX as well as ofloxacin (OFX), levofloxacin (LFX), and moxifloxacin (MFX), using the microplate alamarBlue assay, of 126 clinical Mycobacterium tuberculosis strains from Beijing, China, of which 48 were OFX resistant on the basis of drug susceptibility testing on Löwenstein-Jensen medium. The MIC distributions were correlated with mutations in the quinolone resistance-determining regions of gyrA (Rv0006) and gyrB (Rv0005). Pharmacokinetic/pharmacodynamic (PK/PD) data for AFX were retrieved from the literature. AFX showed lower MIC levels than OFX but higher MIC levels than LFX and MFX on the basis of the tentative epidemiological cutoff values (ECOFFs) determined in this study. All strains with non-wild-type MICs for AFX harbored known resistance mutations that also resulted in non-wild-type MICs for LFX and MFX. Moreover, our data suggested that the current critical concentration of OFX for Löwenstein-Jensen medium that was recently revised by the World Health Organization might be too high, resulting in the misclassification of phenotypically non-wild-type strains with known resistance mutations as wild type. On the basis of our exploratory PK/PD calculations, the current dose of AFX is unlikely to be optimal for the treatment of tuberculosis, but higher doses could be effective. PMID:27324769

  2. Cytotoxicity and anti-Sporothrix brasiliensis activity of the Origanum majorana Linn. oil.

    PubMed

    Waller, Stefanie Bressan; Madrid, Isabel Martins; Ferraz, Vanny; Picoli, Tony; Cleff, Marlete Brum; de Faria, Renata Osório; Meireles, Mário Carlos Araújo; de Mello, João Roberto Braga

    The study aimed to evaluate the anti-Sporothrix sp. activity of the essential oil of Origanum majorana Linn. (marjoram), its chemical analysis, and its cytotoxic activity. A total of 18 fungal isolates of Sporothrix brasiliensis (n: 17) from humans, dogs and cats, and a standard strain of Sporothrix schenckii (n: 1) were tested using the broth microdilution technique (Clinical and Laboratory Standard Institute - CLSI M27-A3) and the results were expressed in minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC). The MIC 50 and MIC 90 of itraconazole against S. brasiliensis were 2μg/mL and 8μg/mL, respectively, and the MFC 50 and MFC 90 were 2μg/mL and >16μg/mL, respectively, with three S. brasiliensis isolates resistant to antifungal. S. schenckii was sensitive at MIC of 1μg/mL and MFC of 8μg/mL. For the oil of O. majorana L., all isolates were susceptible to MIC of ≤2.25-9mg/mL and MFC of ≤2.25-18mg/mL. The MIC 50 and MIC 90 were ≤2.25mg/mL and 4.5mg/mL, respectively, and the MFC 50/90 values were twice more than the MIC. Twenty-two compounds were identified by gas chromatography with a flame ionization detector (CG-FID) and 1,8-cineole and 4-terpineol were the majority. Through the colorimetric (MTT) assay, the toxicity was observed in 70-80% of VERO cells between 0.078 and 5mg/mL. For the first time, the study demonstrated the satisfactory in vitro anti-Sporothrix sp. activity of marjoram oil and further studies are needed to ensure its safe and effective use. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  3. In Vitro Studies of Pharmacodynamic Properties of Vancomycin against Staphylococcus aureus and Staphylococcus epidermidis

    PubMed Central

    Löwdin, E.; Odenholt, I.; Cars, O.

    1998-01-01

    The bactericidal activities of vancomycin against two reference strains and two clinical isolates of Staphylococcus aureus and Staphylococcus epidermidis were studied with five different concentrations ranging from 2× to 64× the MIC. The decrease in the numbers of CFU at 24 h was at least 3 log10 CFU/ml for all strains. No concentration-dependent killing was observed. The postantibiotic effect (PAE) was determined by obtaining viable counts for two of the reference strains, and the viable counts varied markedly: 1.2 h for S. aureus and 6.0 h for S. epidermidis. The determinations of the PAE, the postantibiotic sub-MIC effect (PA SME), and the sub-MIC effect (SME) for all strains were done with BioScreen C, a computerized incubator for bacteria. The PA SMEs were longer than the SMEs for all strains tested. A newly developed in vitro kinetic model was used to expose the bacteria to continuously decreasing concentrations of vancomycin. A filter prevented the loss of bacteria during the experiments. One reference strain each of S. aureus and S. epidermidis and two clinical isolates of S. aureus were exposed to an initial concentration of 10× the MIC of vancomycin with two different half-lives (t1/2s): 1 or 5 h. The post-MIC effect (PME) was calculated as the difference in time for the bacteria to grow 1 log10 CFU/ml from the numbers of CFU obtained at the time when the MIC was reached and the corresponding time for an unexposed control culture. The difference in PME between the strains was not as pronounced as that for the PAE. Furthermore, the PME was shorter when a t1/2 of 5 h (approximate terminal t1/2 in humans) was used. The PMEs at t1/2s of 1 and 5 h were 6.5 and 3.6 h, respectively, for S. aureus. The corresponding figures for S. epidermidis were 10.3 and less than 6 h. The shorter PMEs achieved with a t1/2 of 5 h and the lack of concentration-dependent killing indicate that the time above the MIC is the parameter most important for the efficacy of vancomycin. PMID:9756787

  4. Antimicrobial Activity of Pomegranate and Green Tea Extract on Propionibacterium Acnes, Propionibacterium Granulosum, Staphylococcus Aureus and Staphylococcus Epidermidis.

    PubMed

    Li, Zhaoping; Summanen, Paula H; Downes, Julia; Corbett, Karen; Komoriya, Tomoe; Henning, Susanne M; Kim, Jenny; Finegold, Sydney M

    2015-06-01

    We used pomegranate extract (POMx), pomegranate juice (POM juice) and green tea extract (GT) to establish in vitro activities against bacteria implicated in the pathogenesis of acne. Minimum inhibitory concentrations (MIC) of 94 Propionibacterium acnes, Propionibacterium granulosum, Staphylococcus aureus, and Staphylococcus epidermidis strains were determined by Clinical and Laboratory Standards Institute-approved agar dilution technique. Total phenolics content of the phytochemicals was determined using the Folin-Ciocalteu method and the polyphenol composition by HPLC. Bacteria were identified by 16S rRNA sequence analysis. GT MIC of 400 μg/ml or less was obtained for 98% of the strains tested. 64% of P. acnes strains had POMx MICs at 50 μg/ml whereas 36% had MIC >400 μg/ml. POMx, POM juice, and GT showed inhibitory activity against all the P. granulosum strains at ≤100 μg/ml. POMx and GT inhibited all the S. aureus strains at 400 μg/ml or below, and POM juice had an MIC of 200 μg/ml against 17 S. aureus strains. POMx inhibited S. epidermidis strains at 25 μg/ml, whereas POM juice MICs were ≥200 μg/ml. The antibacterial properties of POMx and GT on the most common bacteria associated with the development and progression of acne suggest that these extracts may offer a better preventative/therapeutic regimen with fewer side effects than those currently available.

  5. In Vitro Susceptibility of Sporothrix brasiliensis to Essential Oils of Lamiaceae Family.

    PubMed

    Waller, Stefanie Bressan; Madrid, Isabel Martins; Silva, Anna Luiza; Dias de Castro, Luciana Laitano; Cleff, Marlete Brum; Ferraz, Vanny; Meireles, Mário Carlos Araújo; Zanette, Régis; de Mello, João Roberto Braga

    2016-12-01

    This study evaluated the chemical, cytotoxic and anti-Sporothrix brasiliensis properties of commercial essential oils of rosemary (Rosmarinus officinalis L.), oregano (Origanum vulgare L.) and marjoram (Origanum majorana L.). Chemical composition of the oils was identified through gas chromatography with flame ionization detector, and cytotoxicity was performed through MTT assay in VERO cell line. Anti-S. brasiliensis activity was performed according to the CLSI M38-A2 guidelines using isolates obtained from cats and dogs. The major compounds found were carvacrol in the oregano oil (73.9 %) and 1,8-cineole in rosemary and marjoram oils (49.4 and 20.9 %, respectively). All S. brasiliensis isolates were susceptible to the plant oils, including itraconazole-resistant ones. Marjoram and rosemary oils showed MIC 90 of 0.56 and 1.12 mg ml -1 , and MFC 90 of 4.5 and 9 mg ml -1 , respectively. For oregano oil, a strong antifungal activity was observed with MIC 90 and MFC 90 values ≤0.07 mg ml -1 . The weakest cytotoxicity was observed for rosemary oil. Further studies should be undertaken to evaluate the safety and efficacy of these essential oils in sporotrichosis.

  6. Comparison of susceptibility test methods to detect penicillin susceptibility in Streptococcus pneumoniae isolates.

    PubMed

    Mohd Nasir, Mohd Desa; Parasakthi, Navaratnam

    2004-06-01

    The increasing prevalence of penicillin-resistant Streptococuus pneumoniae urges for fast and accurate susceptibility testing methods. This study evaluated the comparability of three commonly used techniques; disk diffusion, E-test and agar dilution, to detect penicillin susceptibility in clinical isolates of S. pneumoniae. Fifty pneumococcal isolates, obtained from patients at the University of Malaya Medical Centre, were selected to include both penicillin-susceptible strains and those that had decreased susceptibility (resistant and intermediate) to penicillin. The minimum inhibitory concentration (MIC) values of penicillin to serve as the reference was determined by the agar dilution method in which, based on the MIC breakpoints recommended by the National Committee for Clinical Laboratory Standards (NCCLS), 27 strains had decreased susceptibility to penicillin with 17 strains resistant and 10 intermediate. Comparing to the agar dilution method, oxacillin disk diffusion test detected all strains with decreased penicillin susceptibility as such while E-test showed a close agreement of susceptibility (92%) of the isolates to penicillin. This confirmed that oxacillin is a good screening test for S. pneumoniae isolates with decreased susceptibility to penicillin while E-test is very reliable for rapid and accurate detection of penicillin susceptibility.

  7. Antioxidant and antibacterial effects of Lavandula and Mentha essential oils in minced beef inoculated with E. coli O157:H7 and S. aureus during storage at abuse refrigeration temperature.

    PubMed

    Djenane, Djamel; Aïder, Mohammed; Yangüela, Javier; Idir, Lamia; Gómez, Diego; Roncalés, Pedro

    2012-12-01

    The essential oils (EOs) of Lavandula angustifolia L. and Mentha piperita L. were analyzed by gas chromatography mass spectrometry (GC/MS). The major constituents were linalool (22.35%), linalyl acetate (21.80%), trans-ocimene (6.16%) and 4-terpineol (5.19%) for L. angustifolia and menthol (33.28%), menthone (22.03%), and menthyl acetate (6.40%) for M. piperita. In vitro antibacterial activity of both EOs against Escherichia coli O157:H7 and Staphylococcus aureus CECT 4459 showed high inhibition against S. aureus. The lowest minimal inhibitory concentrations (MIC) were obtained with L. angustifolia (0.25 μL/mL) against S. aureus; M. piperita exhibited a MIC of 0.50 μL/mL against both microorganisms. Both EOs caused a significant decrease of bacterial growth in minced beef (p<0.05) stored at 9±1 °C. Minced beef treated with EOs showed the lowest TBARS values (lipid oxidation). Moreover, the results showed that the addition of EOs significantly extended fresh meat odor even at abuse temperature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Fluorocycline TP-271 Is Potent against Complicated Community-Acquired Bacterial Pneumonia Pathogens

    PubMed Central

    Fyfe, Corey; O’Brien, William; Hackel, Meredith; Minyard, Mary Beth; Waites, Ken B.; Dubois, Jacques; Murphy, Timothy M.; Slee, Andrew M.; Weiss, William J.; Sutcliffe, Joyce A.

    2017-01-01

    ABSTRACT TP-271 is a novel, fully synthetic fluorocycline antibiotic in clinical development for the treatment of respiratory infections caused by susceptible and multidrug-resistant pathogens. TP-271 was active in MIC assays against key community respiratory Gram-positive and Gram-negative pathogens, including Streptococcus pneumoniae (MIC90 = 0.03 µg/ml), methicillin-sensitive Staphylococcus aureus (MSSA; MIC90 = 0.25 µg/ml), methicillin-resistant S. aureus (MRSA; MIC90 = 0.12 µg/ml), Streptococcus pyogenes (MIC90 = 0.03 µg/ml), Haemophilus influenzae (MIC90 = 0.12 µg/ml), and Moraxella catarrhalis (MIC90 ≤0.016 µg/ml). TP-271 showed activity (MIC90 = 0.12 µg/ml) against community-acquired MRSA expressing Panton-Valentine leukocidin (PVL). MIC90 values against Mycoplasma pneumoniae, Legionella pneumophila, and Chlamydia pneumoniae were 0.004, 1, and 4 µg/ml, respectively. TP-271 was efficacious in neutropenic and immunocompetent animal pneumonia models, generally showing, compared to the burden at the start of dosing, ~2 to 5 log10 CFU reductions against MRSA, S. pneumoniae, and H. influenzae infections when given intravenously (i.v.) and ~1 to 4 log10 CFU reductions when given orally (p.o.). TP-271 was potent against key community-acquired bacterial pneumonia (CABP) pathogens and was minimally affected, or unaffected, by tetracycline-specific resistance mechanisms and fluoroquinolone or macrolide drug resistance phenotypes. IMPORTANCE Rising resistance rates for macrolides, fluoroquinolones, and β-lactams in the most common pathogens associated with community-acquired bacterial pneumonia (CABP) are of concern, especially for cases of moderate to severe infections in vulnerable populations such as the very young and the elderly. New antibiotics that are active against multidrug-resistant Streptococcus pneumoniae and Staphylococcus aureus are needed for use in the empirical treatment of the most severe forms of this disease. TP-271 is a promising new fluorocycline antibiotic demonstrating in vitro potency and nonclinical efficacy by intravenous and oral administration against the major pathogens associated with moderate to severe CABP. PMID:28251179

  9. Impact of imipenem and amikacin pharmacokinetic/pharmacodynamic parameters on microbiological outcome of Gram-negative bacilli ventilator-associated pneumonia.

    PubMed

    Pajot, O; Burdet, C; Couffignal, C; Massias, L; Armand-Lefevre, L; Foucrier, A; Da Silva, D; Lasocki, S; Laouénan, C; Mentec, H; Mentré, F; Wolff, M

    2015-05-01

    Despite recent advances, antibiotic therapy of ventilator-associated pneumonia (VAP) in ICU patients is still challenging. We assessed the impact of imipenem and amikacin pharmacokinetic and pharmacodynamic parameters on microbiological outcome in these patients. Patients with Gram-negative bacilli (GNB) VAP were prospectively included. Blood samples for pharmacokinetic analysis were collected after empirical administration of a combination of imipenem three times daily and one single dose of amikacin. MICs were estimated for each GNB obtained from respiratory samples. Microbiological success was defined as a ≥10(3) cfu/mL decrease in bacterial count in quantitative cultures between baseline and the third day of treatment. Thirty-nine patients [median (min-max) age = 60 years (28-84) and median SAPS2 at inclusion = 40 (19-73)] were included. Median MICs of imipenem and amikacin were 0.25 mg/L (0.094-16) and 2 mg/L (1-32), respectively. Median times over MIC and over 5× MIC for imipenem were 100% (8-100) and 74% (3-100), respectively. The median C1/MIC ratio for amikacin was 23 (1-76); 34 patients (87%) achieved a C1/MIC ≥10. Microbiological success occurred in 29 patients (74%). No imipenem pharmacodynamic parameter was significantly associated with the microbiological success. For amikacin, C1/MIC was significantly higher in the microbiological success group: 26 (1-76) versus 11 (3-26) (P = 0.004). In ICU patients with VAP, classic imipenem pharmacodynamic targets are easily reached with usual dosing regimens. In this context, for amikacin, a higher C1/MIC ratio than previously described might be necessary. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  10. [Nationwide sensitivity surveillance of ciprofloxacin and various parenteral antibiotics against bacteria isolated from patients with severe infections--the first Ciproxan IV special investigation in 2001].

    PubMed

    Yamaguchi, Keizo; Ishii, Yoshikazu; Iinuma, Yoshitsugu; Yamanaka, Kiyoharu; Ichiyama, Satoshi; Watanabe, Naoki; Uehara, Nobuyuki; Kaku, Mitsuo; Kurokawa, Yukinori; Hayashi, Mutsumu; Hirakata, Yoichi

    2003-12-01

    The parenteral injection of ciprofloxacin (CPFX), a fluoroquinolone antimicrobial drug, was approved in September 2000 and a re-examination period of 6 years was set at that time. As a special investigation to apply for re-examination of this drug, it has been planned to conduct 3 nationwide surveillances during the re-examination period by collecting clinically isolated bacteria from patients with severe infections, to whom the drug was mainly indicated, and examining drug susceptibilities of the bacteria to various parenteral antimicrobial drugs including CPFX. This time, we determined the minimum inhibitory concentrations (MICs) of various parenteral antimicrobial drugs including CPFX against 1,220 strains isolated from patients with severe infections by the micro-liquid dilution method and compared susceptibilities of various clinically isolated bacteria to CPFX with those to other antimicrobial drugs. Gram-positive bacteria were less susceptible to CPFX than to carbapenems except 2 bacterial species, Enterococcus faecium and Enterococcus avium but susceptibilities of methicillin-susceptible Staphylococcus aureus (MSSA), Staphylococcus epidermidis and Enterococcus faecalis to CPFX were comparable to those to cefozopran. Susceptibility of Streptococcus pneumoniae to CPFX did not differ among ampicillin (ABPC)-susceptible Streptococcus pneumoniae (MIC of ABPC: < 0.25 microgram/ml), ABPC-intermediate S. pneumoniae (MIC of ABPC: 0.25-2 micrograms/ml) and ABPC-resistant S. pneumoniae (MIC of ABPC: > or = 4 micrograms/ml) MIC90 of CPFX: 1 microgram/ml) and a decrease in the antimicrobial activity seen among cephem and carbapenem antimicrobial drugs against penicillin-intermediate strains was not noted with CPFX. Gram-negative bacteria were susceptible to CPFX similarly to carbapenems and the MIC90 values of CPFX were in the range from < or = 0.063 to 2 micrograms/ml against strains except Stenotrophomonas maltophilia and Burkholderia cepacia. Pseudomonas aeruginosa was most susceptible to CPFX among the antibacterial drugs examined and the MIC90 was 2 micrograms/ml. CPFX also showed the lowest MIC90 value (0.5 microgram/ml) against beta-lactam-resistant P. aeruginosa among the drugs examined. When extended-spectrum beta-lactamase (ESBL) production and class B beta-lactamase production were examined in 439 strains of Enterobacteriaceae and 168 strains of glucose non-fermentative bacteria out of the Gram-negative bacteria collected this time, 3 strains (0.49%) producing ESBL and 7 strains (1.15%) producing class B beta-lactamase were found. The MIC range of CPFX to these 10 strains was between < or = 0.063 to 8 micrograms/ml and 5 strains among those showed susceptibilities (MIC of CPFX: 1 microgram/ml) based on the NCCLS breakpoint. CPFX also showed a satisfactory result concerning susceptibilities of major causal bacteria based on the report of the committee of Japan Society of Chemotherapy on the standard method for determination of susceptibility to antimicrobial agents, the breakpoint of pneumonia. Furthermore, susceptibilities of various bacteria isolated clinically from patients with severe infections this time did not differ much from the result of the nationwide surveillance which we conducted in 1997. Thus, it was concluded that the antimicrobial activity of CPFX was maintained in the post-marketing surveillance for its parenteral preparation.

  11. Improved Detection of Candida sp. fks Hot Spot Mutants by Using the Method of the CLSI M27-A3 Document with the Addition of Bovine Serum Albumin▿†

    PubMed Central

    Garcia-Effron, Guillermo; Park, Steven; Perlin, David S.

    2011-01-01

    Echinocandins are highly bound to serum proteins, altering their antifungal properties. The addition of 50% human serum to the MIC assay improves the identification of echinocandin-resistant Candida spp. harboring fks hot spot mutations. However, this modification cannot readily be applied to the method of the CLSI M27-A3 document due to safety and standardization difficulties. The aim of this study was to evaluate commercial bovine serum albumin (BSA) as a safe and standardized alternative to human serum. A collection of 28 echinocandin-susceptible strains, 10 Candida parapsilosis sensu lato strains (with naturally reduced echinocandin susceptibility), and 40 FKS hot spot mutants was used in this work. When RPMI 1640 was used for susceptibility testing, wild-type strains and fks mutants showed MIC range overlaps (−2, −1, and −3 2-fold-dilution steps separated these populations for anidulafungin, caspofungin, and micafungin, respectively). On the other hand, the addition of BSA to RPMI 1640 differentially increased echinocandin MIC values for these groups of strains, allowing better separation between populations, with no MIC range overlaps for any of the echinocandin drugs tested. Moreover, the use of RPMI-BSA reduced the number of fks hot spot mutant isolates for which MIC values were less than or equal to the upper limit for the wild type (very major errors) from 9, 2, and 7 with RPMI alone to 3, 0, and 3 for anidulafungin, caspofungin, and micafungin, respectively. When RPMI-BSA was used to study the susceptibility of C. parapsilosis sensu lato species to echinocandins, the strains behaved as anidulafungin- and micafungin-resistant isolates (MIC, ≥8 μg/ml). These data support the need for a revision of the CLSI protocol for in vitro testing of echinocandin susceptibility in order to identify all or most of the fks hot spot mutants. Also, caspofungin could be used as a surrogate marker of reduced susceptibility to echinocandins. PMID:21383097

  12. In vitro activity and rodent efficacy of clinafloxacin for bovine and swine respiratory disease.

    PubMed

    Sweeney, Michael T; Quesnell, Rebecca; Tiwari, Raksha; Lemay, Mary; Watts, Jeffrey L

    2013-01-01

    Clinafloxacin is a broad-spectrum fluoroquinolone that was originally developed and subsequently abandoned in the late 1990s as a human health antibiotic for respiratory diseases. The purpose of this study was to investigate the activity of clinafloxacin as a possible treatment for respiratory disease in cattle and pigs. Minimum inhibitory concentration (MIC) values were determined using Clinical and Laboratory Standards Institute recommended procedures with recent strains from the Zoetis culture collection. Rodent efficacy was determined in CD-1 mice infected systemically or intranasally with bovine Mannheimia haemolytica or Pasteurella multocida, or swine Actinobacillus pleuropneumoniae, and administered clinafloxacin for determination of ED50 (efficacious dose-50%) values. The MIC90 values for clinafloxacin against bovine P. multocida, M. haemolytica, Histophilus somni, and M. bovis were 0.125, 0.5, 0.125, and 1 μg/ml, respectively, and the MIC90 values against swine P. multocida, A. pleuropneumoniae, S. suis, and M. hyopneumoniae were í0.03, í0.03, 0.125, and í0.008 μg/ml, respectively. Efficacy in mouse models showed average ED50 values of 0.019 mg/kg/dose in the bovine M. haemolytica systemic infection model, 0.55 mg/kg in the bovine P. multocida intranasal lung challenge model, 0.08 mg/kg/dose in the bovine P. multocida systemic infection model, and 0.7 mg/kg/dose in the swine A. pleuropneumoniae systemic infection model. Clinafloxacin shows good in vitro activity and efficacy in mouse models and may be a novel treatment alternative for the treatment of respiratory disease in cattle and pigs.

  13. Antimicrobial activity and molecular docking studies of a novel anthraquinone from a marine-derived fungus Aspergillus versicolor.

    PubMed

    Wang, Weiyi; Chen, Ruixuan; Luo, Zhuhua; Wang, Wei; Chen, Jianming

    2018-03-01

    A novel anthraquinone, 2-(dimethoxymethyl)-1-hydroxyanthracene-9,10-dione (1), together with nine known compounds (2-10), were isolated from the fermentation of Aspergillus versicolor derived from deep sea sediment. Their structures were established through spectroscopic methods. Compound 1 exhibited strong inhibitory activities against MRSA ATCC 43300 and MRSA CGMCC 1.12409 (with MIC values of 3.9 and 7.8 μg/mL respectively) and moderate activities against tested strains of Vibrio (with MIC values ranging from 15.6 to 62.5 μg/mL). Compound 1 was subjected to molecular docking studies for inhibition of topoisomerase IV and AmpC β-lactamase enzymes indicating its usefulness as antimicrobial agent.

  14. Escherichia coli Cell Surface Perturbation and Disruption Induced by Antimicrobial Peptides BP100 and pepR*

    PubMed Central

    Alves, Carla S.; Melo, Manuel N.; Franquelim, Henri G.; Ferre, Rafael; Planas, Marta; Feliu, Lidia; Bardají, Eduard; Kowalczyk, Wioleta; Andreu, David; Santos, Nuno C.; Fernandes, Miguel X.; Castanho, Miguel A. R. B.

    2010-01-01

    The potential of antimicrobial peptides (AMPs) as an alternative to conventional therapies is well recognized. Insights into the biological and biophysical properties of AMPs are thus key to understanding their mode of action. In this study, the mechanisms adopted by two AMPs in disrupting the Gram-negative Escherichia coli bacterial envelope were explored. BP100 is a short cecropin A-melittin hybrid peptide known to inhibit the growth of phytopathogenic Gram-negative bacteria. pepR, on the other hand, is a novel AMP derived from the dengue virus capsid protein. Both BP100 and pepR were found to inhibit the growth of E. coli at micromolar concentrations. Zeta potential measurements of E. coli incubated with increasing peptide concentrations allowed for the establishment of a correlation between the minimal inhibitory concentration (MIC) of each AMP and membrane surface charge neutralization. While a neutralization-mediated killing mechanism adopted by either AMP is not necessarily implied, the hypothesis that surface neutralization occurs close to MIC values was confirmed. Atomic force microscopy (AFM) was then employed to visualize the structural effect of the interaction of each AMP with the E. coli cell envelope. At their MICs, BP100 and pepR progressively destroyed the bacterial envelope, with extensive damage already occurring 2 h after peptide addition to the bacteria. A similar effect was observed for each AMP in the concentration-dependent studies. At peptide concentrations below MIC values, only minor disruptions of the bacterial surface occurred. PMID:20566635

  15. Antifungal activity and mode of action of thymol and its synergism with nystatin against Candida species involved with infections in the oral cavity: an in vitro study.

    PubMed

    de Castro, Ricardo Dias; de Souza, Trícia Murielly Pereira Andrade; Bezerra, Louise Morais Dornelas; Ferreira, Gabriela Lacet Silva; Costa, Edja Maria Melo de Brito; Cavalcanti, Alessandro Leite

    2015-11-24

    Limitations of antifungal agents used in the treatment of oral candidiasis, as the development of resistant strains, are known by the scientific community. In this context, the aim of this study was to evaluate the antifungal activity of thymol against Candida albicans, Candida tropicalis and Candida krusei strains and to determine its mode of action and synergistic effect when combined with the synthetic antifungal nystatin. The minimum inhibitory concentration (MIC) was determined using a microdilution technique, and the minimum fungicidal concentration (MFC) was determined via subculture sowing. The mode of action of thymol was established by verifying fungal growth in the presence of sorbitol or ergosterol. The fractional inhibitory concentration index (FIC) was determined using the checkerboard method. Thymol presented an antifungal effect, with MICs of 39 μg/mL for C. albicans and C. krusei and 78 μg/mL for C. tropicalis. The results of the antifungal test remained unchanged in the presence of sorbitol; however, the MIC value of thymol against C. albicans increased eight times (from 39.0 to 312.5 μg/mL) in presence of exogenous ergosterol. The combination of thymol and nystatin reduced the MIC values of both products by 87.4%, generating an FIC index of 0.25. Thymol was found to have a fungicidal effect on Candida species and a synergistic effect when combined with nystatin.

  16. Activity of TDT 067 (Terbinafine in Transfersome) against Agents of Onychomycosis, as Determined by Minimum Inhibitory and Fungicidal Concentrations▿

    PubMed Central

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-01-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38–A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC50 values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted. PMID:21411586

  17. Activity of TDT 067 (terbinafine in Transfersome) against agents of onychomycosis, as determined by minimum inhibitory and fungicidal concentrations.

    PubMed

    Ghannoum, Mahmoud; Isham, Nancy; Herbert, Jacqueline; Henry, William; Yurdakul, Sam

    2011-05-01

    TDT 067 is a novel carrier-based dosage form (liquid spray) of 15 mg/ml of terbinafine in Transfersome that has been developed to deliver terbinafine to the nail bed to treat onychomycosis. In this study, we report the in vitro activities of TDT 067 against dermatophytes, compared with those of the Transfersome vehicle, naked terbinafine, and commercially available terbinafine (1%) spray. The MICs of TDT 067 and comparators against 25 clinical strains each of Trichophyton rubrum, T. mentagrophytes, and Epidermophyton floccosum were determined according to the CLSI M38-A2 susceptibility method (2008). Minimum fungicidal concentrations (MFCs) were determined by subculturing visibly clear wells from the MIC microtiter plates. TDT 067 demonstrated potent activity against the dermatophyte strains tested, with an MIC range of 0.00003 to 0.015 μg/ml. Overall, TDT 067 MIC(50) values (defined as the lowest concentrations to inhibit 50% of the strains tested) were 8-fold and 60-fold lower than those of naked terbinafine and terbinafine spray, respectively. The Transfersome vehicle showed minimal inhibitory activity. TDT 067 demonstrated lower MFC values for T. rubrum and E. floccosum than naked terbinafine and terbinafine spray. TDT 067 has more potent antifungal activity against dermatophytes that cause nail infection than conventional terbinafine preparations. The Transfersome vehicle appears to potentiate the antifungal activity of terbinafine. Clinical investigation of TDT 067 for the topical treatment of onychomycosis is warranted.

  18. Antimicrobial susceptibility of Brachyspira hyodysenteriae isolated from 21 Polish farms.

    PubMed

    Zmudzki, J; Szczotka, A; Nowak, A; Strzelecka, H; Grzesiak, A; Pejsak, Z

    2012-01-01

    Swine dysentery (SD) is a common disease among pigs worldwide, which contributes to major production losses. Antimicrobial susceptibility testing of B. hyodysenteriae, the etiological agent of SD, is mainly performed by the agar dilution method. This method has certain limitations due to difficulties in interpretation of results. The aim of this study was the analysis of antimicrobial susceptibility of Brachyspira hyodysenteriae (B. hyodysenteriae) Polish field isolates by broth microdilution procedure. The study was performed on 21 isolates of B. hyodysenteriae, collected between January 2006 to December 2010 from cases of swine dysentery. VetMIC Brachyspira panels with antimicrobial agents (tiamulin, valnemulin, doxycycline, lincomycin, tylosin and ampicillin) were used for susceptibility testing of B. hyodysenteriae. The minimal inhibitory concentration (MIC) was determined by the broth dilution procedure. The lowest antimicrobial activity was demonstrated for tylosin and lincomycin, with inhibition of bacterial growth using concentrations > 128 microg/ml and 32 microg/ml, respectively. In the case of doxycycline, the MIC values were < or = 2.0 microg/ml. No decreased susceptibility to tiamulin was found among the Polish isolates and MIC values for this antibiotic did not exceed 1.0 microg/ml. The results of the present study confirmed that Polish B. hyodysenteriae isolates were susceptible to the main antibiotics (tiamulin and valnemulin) used in treatment of swine dysentery. Further studies are necessary to evaluate a possible slow decrease in susceptibility to tiamulin and valnemulin of B. hyodysenteriae strains in Poland.

  19. The Impact of Efflux Pump Inhibitors on the Activity of Selected Non-Antibiotic Medicinal Products against Gram-Negative Bacteria.

    PubMed

    Laudy, Agnieszka E; Kulińska, Ewa; Tyski, Stefan

    2017-01-11

    The potential role of non-antibiotic medicinal products in the treatment of multidrug-resistant Gram-negative bacteria has recently been investigated. It is highly likely that the presence of efflux pumps may be one of the reasons for the weak activity of non-antibiotics, as in the case of some non-steroidal anti-inflammatory drugs (NSAIDs), against Gram-negative rods. The activity of eight drugs of potential non-antibiotic activity, active substance standards, and relevant medicinal products were analysed with and without of efflux pump inhibitors against 180 strains of five Gram-negative rod species by minimum inhibitory concentration (MIC) value determination in the presence of 1 mM MgSO₄. Furthermore, the influence of non-antibiotics on the susceptibility of clinical strains to quinolones with or without PAβN (Phe-Arg-β-naphthylamide) was investigated. The impacts of PAβN on the susceptibility of bacteria to non-antibiotics suggests that amitriptyline, alendronate, nicergoline, and ticlopidine are substrates of efflux pumps in Gram-negative rods. Amitriptyline/Amitriptylinum showed the highest direct antibacterial activity, with MICs ranging 100-800 mg/L against all studied species. Significant decreases in the MIC values of other active substances (acyclovir, atorvastatin, and famotidine) tested with pump inhibitors were not observed. The investigated non-antibiotic medicinal products did not alter the MICs of quinolones in the absence and in the presence of PAβN to the studied clinical strains of five groups of species.

  20. Alkylphenol Activity against Candida spp. and Microsporum canis: A Focus on the Antifungal Activity of Thymol, Eugenol and O-Methyl Derivatives.

    PubMed

    Fontenelle, Raquel O S; Morais, Selene M; Brito, Erika H S; Brilhante, Raimunda S N; Cordeiro, Rossana A; Lima, Ynayara C; Brasil, Nilce V G P S; Monteiro, André J; Sidrim, José J C; Rocha, Marcos F G

    2011-07-29

    In recent years there has been an increasing search for new antifungal compounds due to the side effects of conventional antifungal drugs and fungal resistance. The aims of this study were to test in vitro the activity of thymol, eugenol, estragole and anethole and some O-methyl-derivatives (methylthymol and methyleugenol) against Candida spp. and Microsporum canis. The broth microdilution method was used to determine the minimum inhibitory concentration (MIC). The minimum fungicidal concentrations (MFC) for both Candida spp. and M. canis were found by subculturing each fungal suspension on potato dextrose agar. Thymol, methylthymol, eugenol, methyl-eugenol, anethole, estragole and griseofulvin respectively, presented the following MIC values against M. canis: 4.8-9.7; 78-150; 39; 78-150; 78-150; 19-39 µg/mL and 0.006-2.5 mg/mL. The MFC values for all compounds ranged from 9.7 to 31 µg/mL. Concerning Candida spp, thymol, methylthymol, eugenol, methyleugenol, anethole, estragole and amphotericin, respectively, showed the following MIC values: 39; 620-1250; 150-620; 310-620; 620; 620-1250 and 0.25-2.0 mg/mL. The MFC values varied from 78 to 2500 µg/mL. All tested compounds thus showed in vitro antifungal activity against Candida spp. and M. canis. Therefore, further studies should be carried out to confirm the usefulness of these alkylphenols in vivo.

  1. Comparative minimum inhibitory and mutant prevention drug concentrations of enrofloxacin, ceftiofur, florfenicol, tilmicosin and tulathromycin against bovine clinical isolates of Mannheimia haemolytica.

    PubMed

    Blondeau, J M; Borsos, S; Blondeau, L D; Blondeau, B J J; Hesje, C E

    2012-11-09

    Mannheimia haemolytica is the most prevalent cause of bovine respiratory disease (BRD) and this disease accounts for 75% of morbidity, 50-70% of feedlot deaths and is estimated to cost up to $1 billion dollars annually in the USA. Antimicrobial therapy is essential for reducing morbidity, mortality and impacting on the financial burden of this disease. Due to the concern of increasing antimicrobial resistance, investigation of antibacterial agents for their potential for selecting for resistance is of paramount importance. A novel in vitro measurement called the mutant prevention concentration (MPC) defines the antimicrobial drug concentration necessary to block the growth of the least susceptible cells present in high density (≥10(7) colony forming units/ml) bacterial populations such as those seen in acute infection. We compared the minimum inhibitory concentration (MIC) and MPC values for 5 antimicrobial agents (ceftiofur, enrofloxacin, florfenicol, tilmicosin, tulathromycin) against 285 M. haemolytica clinical isolates. The MIC(90)/MPC(90) values for each agent respectively were as follows: 0.016/2, 0.125/1, 2/≥16, 8/≥32, 2/8. Dosing to achieve MPC concentrations (where possible) may serve to reduce the selection of bacterial subpopulations with reduced antimicrobial susceptibility. The rank order of potency based on MIC(90) values was ceftiofur > enrofloxacin > florfenicol = tulathromycin > tilmicosin. The rank order of potency based on MPC(90) values was enrofloxacin > ceftiofur > tulathromycin > florfenicol ≥ tilmicosin. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. In vitro activity of Schinus terebinthifolius (Brazilian pepper tree) on Candida tropicalis growth and cell wall formation.

    PubMed

    Alves, Lívia A; Freires, Irlan de A; de Souza, Tricia M P A; de Castro, Ricardo D

    2012-01-01

    The aim of this study was to evaluate the in vitro antifungal activity of Schinus terebinthifolius (Brazilian pepper tree) tincture on planktonic Candida tropicalis (ATCC 40042), which is a microorganism associated to oral cavity infections. Minimum Inhibitory Concentration (MIC) and Minimum Fungicidal Concentration (MFC) were determined through the microdilution technique. Possible action of the tincture on fungal cell wall formation was also studied by adding an osmotic protector (0.8M sorbitol) to the microplates. Nystatin was used as standard control and tests were performed in triplicate. S. terebinthifolius was found to have MIC and MFC values of 625 microg/mL on the strain assayed, whereas nystatin showed MIC and MFC of 6.25 microg/mL. Results suggest that S. terebinthifolius tincture acts on fungal cell walls, since the sorbitol test indicated a MIC of 1.250 microg/mL. It may be concluded that S. terebinthifolius has potential in vitro antifungal activity against C. tropicalis strains, and probably acts by inhibiting fungal cell wall formation.

  3. Spirotetronate antibiotics with anti-Clostridium activity from Actinomadura sp. 2EPS.

    PubMed

    Euanorasetr, Jirayut; Intra, Bungonsiri; Mongkol, Phayungsak; Chankhamhaengdecha, Surang; Tuchinda, Patoomratana; Mori, Mihoko; Shiomi, Kazuro; Nihira, Takuya; Panbangred, Watanalai

    2015-02-01

    The rare actinomycetes strain 2EPS was isolated from soil and analysis of cultural, morphological characteristics, diaminopimelic acid content of its cell wall, and 16S rRNA gene sequence indicates that 2EPS belongs to genus Actinomadura. In addition, neighbor-joining phylogenetic tree also confirmed the relationships of this strain to other members of Actinomadura. A butanol extract with antibacterial activity was purified by reversed-phase chromatography to obtain three bioactive compounds, designated as compounds 1, 2 and 3. The structures of these compounds were determined using spectroscopic analysis ((1)H-NMR and (13)C-NMR) and mass spectrometric analysis (HR-TOF-MS). Compounds 1-3 were identified and found to be the same as those included in the Japanese patent number JP 09227587 for spirotetronate antibiotics and are BE-45722A (1), BE-45722B (2) and BE-45722C (3), respectively. All compounds were active against Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Bacillus cereus ATCC 14579, and B. subtilis ATCC 6633) with low MIC values between 0.08 and 5.0 µg/ml. Moreover, both 1 and 3 also exhibited strong activity, with similar MIC values, against Clostridium perfringens S107 at 0.63 µg/ml and C. difficile 630 at 0.08 µg/ml. These results suggest the identified spirotetronate compounds may have potential in the treatment of Clostridium infections. Overall, this analysis demonstrates that rare actinomycetes are a promising source for discovery of antimicrobial compounds.

  4. Isolation, molecular characterization and antimicrobial susceptibilities of isolates of Mycoplasma agalactiae from bulk tank milk in an endemic area of Spain.

    PubMed

    de Garnica, M L; Rosales, R S; Gonzalo, C; Santos, J A; Nicholas, R A J

    2013-06-01

    To isolate and characterize strains of Mycoplasma agalactiae from bulk tank and silo ewes' milk. Thirteen mycoplasma isolates were obtained from samples of sheep milk taken from bulk tank and large silos and identified as Myc. agalactiae by PCR-DGGE. The isolates were typed by pulsed field gel electrophoresis (PFGE), SDS-PAGE and immunoblot. The in vitro activity of 13 antimicrobials of veterinary interest was tested against these isolates. Results showed that the most effective compounds against Myc. agalactiae in vitro were clindamycin, an antibiotic not previously described as a suitable contagious agalactia (CA) treatment, with Minimum Inhibitory Concentration (MIC) values of <0·12 μg ml(-1) , and quinolones, with MIC values <0·12-0·5 μg ml(-1) , which are used as standard treatments against CA. Based on the in vitro assay, clindamycin, quinolones, tylosin and tilmicosin would be appropriate antimicrobials for CA treatment. The isolates were mostly resistant to erythromycin, indicating that it would not be a suitable choice for therapy. The isolates showed common molecular and protein profiles by PFGE and SDS-PAGE, with minor differences observed by immunoblot analysis, suggesting a clonal relationship among them. This study demonstrated the importance of the appropriate selection of antimicrobials for treatment of CA. © [2013] Crown copyright. This article is published with the permission of the Controller of HMSO and the Queen's Printer for Scotland.

  5. Susceptibility of 100 filamentous fungi: comparison of two diffusion methods, Neo-Sensitabs and E-test, for amphotericin B, caspofungin, itraconazole, voriconazole and posaconazole.

    PubMed

    Colosi, Ioana A; Faure, Odile; Dessaigne, Bérangére; Bourdon, Cécile; Lebeau, Bernadette; Colosi, Horaţiu A; Pelloux, Hervé

    2012-05-01

    We compared the E-test method to that of the Neo-Sensitabs tablet diffusion assay for evaluating the in vitro susceptibility of 100 clinical isolates of filamentous fungi (Aspergillus spp., Fusarium spp., Scedosporium spp., zygomycetes and other molds) to amphotericin B, itraconazole, voriconazole, caspofungin, and posaconazole. We determined the categorical agreement level between E-test minimum inhibitory concentrations (MIC) and tablet end-points, as opposed to the following disagreement parameters: very major error - resistant parameter (R) in E-test and susceptible (S) in tablet; major error - S by E-test and R by tablet; minor error - shifts between S and susceptible dose-dependent (S-DD) or S-DD and R. We also performed linear regression analyses and computed Pearson's correlation coefficients (R values) between the log transforms of MICs and the inhibition zone diameters of the five studied antifungal agents. For itraconazole we obtained 97% categorical agreement and R = -0.727. Categorical agreement for caspofungin and voriconazole was 96% and R =-0.821 and R = -0.789, respectively. For posaconazole the categorical agreement was 94% and R =-0.743. Amphotericin B exhibited a lower degree of agreement (76%, R = -0.672), especially in studies of Aspergillus spp. Our results suggest a potential value of the Neo-Sensitabs assay for in vitro susceptibility testing of molds to itraconazole, voriconazole, caspofungin and posaconazole, while amphotericin B exhibited an overall lower degree of agreement.

  6. Speech perception for adult cochlear implant recipients in a realistic background noise: effectiveness of preprocessing strategies and external options for improving speech recognition in noise.

    PubMed

    Gifford, René H; Revit, Lawrence J

    2010-01-01

    Although cochlear implant patients are achieving increasingly higher levels of performance, speech perception in noise continues to be problematic. The newest generations of implant speech processors are equipped with preprocessing and/or external accessories that are purported to improve listening in noise. Most speech perception measures in the clinical setting, however, do not provide a close approximation to real-world listening environments. To assess speech perception for adult cochlear implant recipients in the presence of a realistic restaurant simulation generated by an eight-loudspeaker (R-SPACE) array in order to determine whether commercially available preprocessing strategies and/or external accessories yield improved sentence recognition in noise. Single-subject, repeated-measures design with two groups of participants: Advanced Bionics and Cochlear Corporation recipients. Thirty-four subjects, ranging in age from 18 to 90 yr (mean 54.5 yr), participated in this prospective study. Fourteen subjects were Advanced Bionics recipients, and 20 subjects were Cochlear Corporation recipients. Speech reception thresholds (SRTs) in semidiffuse restaurant noise originating from an eight-loudspeaker array were assessed with the subjects' preferred listening programs as well as with the addition of either Beam preprocessing (Cochlear Corporation) or the T-Mic accessory option (Advanced Bionics). In Experiment 1, adaptive SRTs with the Hearing in Noise Test sentences were obtained for all 34 subjects. For Cochlear Corporation recipients, SRTs were obtained with their preferred everyday listening program as well as with the addition of Focus preprocessing. For Advanced Bionics recipients, SRTs were obtained with the integrated behind-the-ear (BTE) mic as well as with the T-Mic. Statistical analysis using a repeated-measures analysis of variance (ANOVA) evaluated the effects of the preprocessing strategy or external accessory in reducing the SRT in noise. In addition, a standard t-test was run to evaluate effectiveness across manufacturer for improving the SRT in noise. In Experiment 2, 16 of the 20 Cochlear Corporation subjects were reassessed obtaining an SRT in noise using the manufacturer-suggested "Everyday," "Noise," and "Focus" preprocessing strategies. A repeated-measures ANOVA was employed to assess the effects of preprocessing. The primary findings were (i) both Noise and Focus preprocessing strategies (Cochlear Corporation) significantly improved the SRT in noise as compared to Everyday preprocessing, (ii) the T-Mic accessory option (Advanced Bionics) significantly improved the SRT as compared to the BTE mic, and (iii) Focus preprocessing and the T-Mic resulted in similar degrees of improvement that were not found to be significantly different from one another. Options available in current cochlear implant sound processors are able to significantly improve speech understanding in a realistic, semidiffuse noise with both Cochlear Corporation and Advanced Bionics systems. For Cochlear Corporation recipients, Focus preprocessing yields the best speech-recognition performance in a complex listening environment; however, it is recommended that Noise preprocessing be used as the new default for everyday listening environments to avoid the need for switching programs throughout the day. For Advanced Bionics recipients, the T-Mic offers significantly improved performance in noise and is recommended for everyday use in all listening environments. American Academy of Audiology.

  7. In vitro synergistic effect of Hibiscus sabdariffa aqueous extract in combination with standard antibiotics against Helicobacter pylori clinical isolates.

    PubMed

    Hassan, Sherif T S; Berchová, Kateřina; Majerová, Michaela; Pokorná, Marie; Švajdlenka, Emil

    2016-09-01

    Context The increasing problem of drug-resistant strains has led to the failure of current treatment regimens of Helicobacter pylori (HP) infection. Recently, a new treatment strategy has been developed to overcome the problem by using natural products in combination with antibiotics to enhance the treatment efficacy. Objective The antimicrobial combinatory effect of the aqueous extract of Hibiscus sabdariffa L. (Malvaceae) (AEHS) with antibiotics (clarithromycin, CLA; amoxicillin, AMX; metronidazole, MTZ) has been evaluated in vitro against HP strains. Materials and methods Hibiscus calyces (35 g) were brewed in 250 mL of boiled water for 30 min, and minimum inhibitory concentrations (MICs) were determined by agar dilution method. The checkerboard assay was used to evaluate the antimicrobial combinatory effect according to the sum of fractional inhibitory concentration (∑FIC) indices. Results In this study, AEHS exerted remarkable bacteriostatic effect against all HP strains tested with MICs values ranging from 9.18 to 16.68 μg/mL. Synergy effect of AEHS with CLA or MTZ was obtained against four of seven HP strains tested with ∑FIC ranging from 0.21 to 0.39. The additive effect of AEHS with AMX was obtained against five of seven HP strains tested with ∑FIC ranging from 0.61 to 0.91. Conclusion This study presents AEHS as a potent therapeutic candidate alone, or in combination with antibiotics for the treatment of HP infection.

  8. The Antibacterial Activity of Coriolus versicolor Methanol Extract and Its Effect on Ultrastructural Changes of Staphylococcus aureus and Salmonella Enteritidis.

    PubMed

    Matijašević, Danka; Pantić, Milena; Rašković, Božidar; Pavlović, Vladimir; Duvnjak, Dunja; Sknepnek, Aleksandra; Nikšić, Miomir

    2016-01-01

    The antibacterial activity of methanol extract obtained from fruiting body of industrially grown basidiomycete Coriolus versicolor was examined. The Minimum Inhibitory Concentration (MIC) values against various bacteria ranged from 0.625 to 20 mg mL(-1). C. versicolor expressed bactericidal activity against both Gram-positive and Gram-negative bacteria. The growth curves of Staphylococcus aureus and Salmonella enterica serovar Enteritidis, measured at 630 nm, and confirmed with macrodilution method showed that the obtained extract could inhibit the growth of tested bacteria. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and the loss of 260-nm-absorbing material were used to examine the ultrastructural changes in bacteria induced by the extract. When S. aureus was exposed to the MIC of C. versicolor, elongated and malformed cells were observed by SEM, while S. Enteritidis treated cells appeared shorter and aggregated with ruptured cell walls. TEM revealed the formation of non-membrane-enclosed bodies and depleted inner content of S. aureus. Larger and irregular periplasmic space and deformed and scattered components of the cell envelope were observed in treated S. Enteritidis. The loss of 260-nm-absorbing material indicated that the disruptive action of the extract on cytoplasmic membrane was more pronounced in S. aureus than in S. Enteritidis treated cells. The UV and FTIR spectrophotometric analyses revealed diverse composition of C. versicolor extract and high content of total phenolics. Altogether, mushroom extracts could be used to develop nutraceuticals or drugs effective against pathogenic microorganisms.

  9. Antibacterial Activity of Ethyl Acetate the Extract of Noni Fruit (Morinda citrifolia L.) Against Bacterial Spoilage in Fish

    NASA Astrophysics Data System (ADS)

    Nugraheni, E. R.; Adriani, G. R.; Munawaroh, H.

    2017-04-01

    Noni fruit (Morinda citrifolia L.) contains compounds that have potential as antibacterial agent. Antibacterial compounds produced noni fruit (M. citrifolia L.) can inhibit bacterial growth. This study was conducted to test the antibacterial activity of ethyl acetate extract of noni fruit (M. citrifolia L.) against spoilage bacterial in fish. Pseudomonas aeruginosa, Bacillus cereus, Escherichia coli, Klebsiella oxytoca, and Enterobacter aerogenes isolates and examine antibacterial phytochemical profile. Extraction of noni compounds was done by maceration, followed by partition with ethyl acetate to obtain the soluble and insoluble ethyl acetate fraction. Previews result show that the ethyl acetate extract had very strong activity. Extraction process continued by separation and isolation used preparative thin layer chromatography method, so that obtained five isolates and mark them as A, B, C, D and E. Antibacterial activity assay performed on isolates A, B, C, D, and E with 20 and 30% concentration. The test results showed that isolates A could not be inhibit the growth of bacteria, isolates B, C, D, and E has antibacterial activity with weak to strong inhibition. Isolate B had the greatest inhibition activity against the B. cereus, whereas isolates E had the greatest inhibition activity against P. aeroginosa. MIC (Minimum Inhibitor Concentration) and MBC (Minimum Bactericidal Concentration) test result showed that MIC and MBC values could not be determined. Analysis of compounds by TLC showed that isolate B suspected contains coumarin or flavonoids compounds that have antibacterial activity.

  10. Polyketide derivatives from a marine-sponge-associated fungus Pestalotiopsis heterocornis.

    PubMed

    Lei, Hui; Lin, Xiuping; Han, Li; Ma, Jian; Dong, Kailin; Wang, Xingbo; Zhong, Jialiang; Mu, Yu; Liu, Yonghong; Huang, Xueshi

    2017-10-01

    Twelve previously undescribed polyketide derivatives, heterocornols A-L, and seven known analogues were isolated from a culture of the fungus Pestalotiopsis heterocornis associated with sponge. Their structures were elucidated by a comprehensive spectroscopic data analysis and CD Cotton effects. These compounds were evaluated for cytotoxic and antibacterial activities in vitro. Among them, heterocornols A-C, F-H, methyl-(2-formyl-3-hydroxyphenyl)propanoate, agropyrenol, and vaccinol G exhibited cytotoxicities against four human cancer cell lines with IC 50 values 15-100 μM, and they also showed antibacterial activities against Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis with MIC values ranging from 25 to 100 μg/mL. Moreover, compounds heterocornol C, heterocornol G, agropyrenol, and vaccinol G showed weak antifungal activities against Candida parapsilosis and Cryptococcus neoformans with MIC values 100 μg/mL. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Effects of ceftazidime and ciprofloxacin on biofilm formation in Proteus mirabilis rods.

    PubMed

    Kwiecińska-Piróg, Joanna; Bogiel, Tomasz; Gospodarek, Eugenia

    2013-10-01

    Proteus mirabilis rods are one of the most commonly isolated species of the Proteus genus from human infections, mainly those from the urinary tract and wounds. They are often related to biofilm structure formation. The bacterial cells of the biofilm are less susceptible to routinely used antimicrobials, making the treatment more difficult. The aim of this study was to evaluate quantitatively the influence of ceftazidime and ciprofloxacin on biofilm formation on the polyvinyl chloride surface by 42 P. mirabilis strains isolated from urine, purulence, wound swab and bedsore samples. It has been shown that ceftazidime and ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular Proteus spp. strains decrease their ability to form biofilms. Moreover, ciprofloxacin at concentrations equal to 1/4, 1/2 and 1 times their MIC values for particular P. mirabilis strains reduces biofilm formation more efficiently than ceftazidime at the corresponding concentration values.

  12. Chemical composition and antibacterial activity of Lavandula coronopifolia essential oil against antibiotic-resistant bacteria.

    PubMed

    Ait Said, L; Zahlane, K; Ghalbane, I; El Messoussi, S; Romane, A; Cavaleiro, C; Salgueiro, L

    2015-01-01

    The aim of this study was to analyse the composition of the essential oil (EO) of Lavandula coronopifolia from Morocco and to evaluate its in vitro antibacterial activity against antibiotic-resistant bacteria isolated from clinical infections. The antimicrobial activity was assessed by a broth micro-well dilution method using multiresistant clinical isolates of 11 pathogenic bacteria: Klebsiella pneumoniae subsp. pneumoniae, Klebsiella ornithinolytica, Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Providencia rettgeri, Citrobacter freundii, Hafnia alvei, Salmonella spp., Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus. The main compounds of the oil were carvacrol (48.9%), E-caryophyllene (10.8%) and caryophyllene oxide (7.7%). The oil showed activity against all tested strains with minimal inhibitory concentration (MIC) values ranging between 1% and 4%. For most of the strains, the MIC value was equivalent to the minimal bactericidal concentration value, indicating a clear bactericidal effect of L. coronopifolia EO.

  13. [Post-marketing surveillance of antibacterial activities of cefozopran against various clinical isolates--II. Gram-negative bacteria].

    PubMed

    Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo

    2003-10-01

    As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, carbapenems, monobactams, and penicillins. Changes in CZOP susceptibility among bacteria were also evaluated with the bacterial resistance ratio calculated from the breakpoint MIC. Twenty-five species (4,154 strains) of Gram-negative bacteria were isolated from the clinical materials annually collected from 1996 to 2001, and consisted of Moraxella (Branhamella) catarrhalis, Haemophilus influenzae, Escherichia coli, Klebsiella pneumoniae, Klebsiella oxytoca, Enterobacter cloacae, Enterobacter aerogenes, Serratia marcescens, Serratia liquefaciens, Citrobacter freundii, Citrobacter koseri, Proteus mirabilis, Proteus vulgaris, Morganella morganii, Providencia spp., Pseudomonas aeruginosa, Pseudomonas fluorescens, Pseudomonas putida, Acinetobacter baumannii, Acinetobacter Iwoffii, Burkholderia cepacia, Stenotrophomonas maltophilia, Bacteroides fragilis group, and Prevotella/Porphyromonas. CZOP preserved its antibacterial activity against M. (B.) catarrhalis (MIC90: 4 micrograms/mL) and showed comparable activity to carbapenems against H. influenzae (MIC90: 1 microgram/mL). The antibacterial activity of CZOP against E. coli was preferable (MIC90: 0.125 microgram/mL) and comparable to those of cefpirome (CPR), cefepime (CFPM), and imipenem (IPM). The MIC90 of CZOP against K. pneumoniae and K. oxytoca was 1 and 0.25 microgram/mL, respectively. The MIC90 of CZOP against E. cloacae increased during 6 years (32 to 128 micrograms/mL). The antibacterial activity of CZOP against E. aerogenes was preferable (MIC90: 1 microgram/mL). The antibacterial activities of CZOP against S. marcescens and S. liquefaciens were relatively potent (MIC90: 0.5 and 0.25 microgram/mL) and comparable to those of CPR, CFPM, and carumonam. CZOP preserved comparable antibacterial activity to CPR against C. freundii and C. koseri (MIC90: 8 and 0.125 micrograms/mL). The MIC90 of CZOP against P. mirabilis, P. vulgaris, and M. morganii was 0.25, 16, and 2 micrograms/mL, respectively. The antibacterial activity of CZOP against Providencia spp. was moderate (MIC90: 64 micrograms/mL). The antibacterial activity of CZOP against P. aeruginosa was the most potent (MIC90: 16 micrograms/mL) among the test agents and comparable to those CFPM, IPM, and MEPM. CZOP had low activity against P. fluorescens and P. putida (MIC90: 128 micrograms/mL). The antibacterial activity of CZOP against A. baumannii was comparable to those of ceftazidime (CAZ), CPR and CFPM (MIC90: 32 micrograms/mL) and against A. lwoffii was moderate (MIC90: 64 micrograms/mL). Most of the test agents including CZOP had low antibacterial activity against B. cepacia, S. maltophilia, and B. fragilis group. The MIC90 of CZOP against Prevotella/Porphyromonas was 64 micrograms/mL. Bacterial cross-resistance ratio between CZOP and other agents was low in most of the species, ranging from 0.0 to 15.1%. In non-glucose fermentative bacteria, however, the bacterial cross-resistance ratio between CZOP and CFPM, CAZ, CPR, or IPM was high, being 36.8%, 28.0%, 38.7%, or 31.1%, respectively. In conclusion, the 6-year duration study suggested that the antibacterial activity of CZOP against E. cloacae possible decreased, but against other Gram-negative bacteria was consistent with the study results obtained until the new drug application approval.

  14. Nonaqueous Hybrid Lithium-Ion and Sodium-Ion Capacitors.

    PubMed

    Wang, Huanwen; Zhu, Changrong; Chao, Dongliang; Yan, Qingyu; Fan, Hong Jin

    2017-12-01

    Hybrid metal-ion capacitors (MICs) (M stands for Li or Na) are designed to deliver high energy density, rapid energy delivery, and long lifespan. The devices are composed of a battery anode and a supercapacitor cathode, and thus become a tradeoff between batteries and supercapacitors. In the past two decades, tremendous efforts have been put into the search for suitable electrode materials to overcome the kinetic imbalance between the battery-type anode and the capacitor-type cathode. Recently, some transition-metal compounds have been found to show pseudocapacitive characteristics in a nonaqueous electrolyte, which makes them interesting high-rate candidates for hybrid MIC anodes. Here, the material design strategies in Li-ion and Na-ion capacitors are summarized, with a focus on pseudocapacitive oxide anodes (Nb 2 O 5 , MoO 3 , etc.), which provide a new opportunity to obtain a higher power density of the hybrid devices. The application of Mxene as an anode material of MICs is also discussed. A perspective to the future research of MICs toward practical applications is proposed to close. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. In Vitro Antimicrobial Activity of Razupenem (SMP-601, PTZ601) against Anaerobic Bacteria▿

    PubMed Central

    Tran, Chau Minh; Tanaka, Kaori; Yamagishi, Yuka; Goto, Takatsugu; Mikamo, Hiroshige; Watanabe, Kunitomo

    2011-01-01

    We evaluated the in vitro antianaerobic activity of razupenem (SMP-601, PTZ601), a new parenterally administered carbapenem, against 70 reference strains and 323 clinical isolates. Razupenem exhibited broad-spectrum activity against anaerobes, inhibiting most of the reference strains when used at a concentration of ≤1 μg/ml. Furthermore, it exhibited strong activity, comparable to those of other carbapenems (meropenem and doripenem), against clinically isolated non-fragilis Bacteroides spp. (MIC90s of 2 μg/ml), with MIC90 values of 0.06, 0.03, and 0.5 μg/ml against Prevotella spp., Porphyromonas spp., and Fusobacterium spp., respectively. Clinical isolates of anaerobic Gram-positive cocci, Eggerthella spp., and Clostridium spp. were highly susceptible to razupenem (MIC90s, 0.03 to 1 μg/ml). PMID:21343447

  16. Effect of biaxial versus coaxial microincision cataract surgery on optical quality of the cornea.

    PubMed

    Eliwa, Tamer Fahmy; Elsamkary, Mahmoud A; Hamza, Ismail

    2015-06-01

    Visual function is determined by a combination of the cornea, which has a larger effect and internal aberrations generated by the intraocular lens and those induced by the surgery. These corneal refractive changes are related to the location and size of the corneal incision. The smaller the incision, the lower the aberrations and the better the optical quality. To compare the effect of uneventful coaxial versus biaxial microincision cataract surgery (MICS) on the corneal aberrations. Retrospective interventional nonrandomized comparative case study comprised 40 eyes of 36 patients with primary senile cataract. They were divided into two groups: Group I (20 eyes) had operated by biaxial MICS and Group II (20 eyes) had operated by coaxial MICS. Each group were assessed by corneal topography and wavefront analysis over 6 mm pupil size preoperatively and 1-month postoperatively. Statistical analysis was performed using SPSS for Windows (version 17.0.1, SPSS, Inc.). The paired t-test was used to compare the mean values of corneal aberrations preoperatively and 1-month postoperatively in each group. There was a significant increase in trefoil and quatrefoil in biaxial MICS (P = 0.063, 0.032 respectively) while other aberrations insignificantly changed. The coaxial MICS showed a significant increase in root mean square (RMS) of total high order aberrations (HOAs) (P = 0.02) and coma (0.028), but not the others. In comparison to each other, there was the insignificant difference as regards astigmatism, RMS of individual and total HOAs. Coaxial and biaxial MICS are neutral on corneal astigmatism and aberrations.

  17. Synergic activity, for anaerobes, of trovafloxacin with clindamycin or metronidazole: chequerboard and time-kill methods.

    PubMed

    Ednie, L M; Credito, K L; Khantipong, M; Jacobs, M R; Appelbaum, P C

    2000-05-01

    Chequerboard titrations were used to test the activity of trovafloxacin, alone and in combination with clindamycin or metronidazole, against 156 Gram-positive or Gram-negative anaerobes, including 47 Bacteroides fragilis group, 36 Prevotella spp., 26 fusobacteria, 21 peptostreptococci and 26 clostridia. MIC50/MIC90 values (mg/L) of each drug alone against all 156 strains were: trovafloxacin, 0.5/1; clindamycin, 0.25/2; metronidazole, 1/2. Synergy (FIC indices 0. 5-2.0); no antagonism (FIC indices >4.0) was seen. In addition, synergy was tested by time-kill methodology for each of the above combinations against 12 Gram-positive or Gram-negative strains. Results indicated that synergy (defined as a >/= 2 log(10) decrease in cfu/mL at 48 h compared with the more active drug alone) was found between trovafloxacin at or below the MIC and both clindamycin and metronidazole at or below the MIC in one strain each of Bacteroides fragilis, Bacteroides thetaiotaomicron, Prevotella intermedia, Fusobacterium varium, Peptostreptococcus asaccharolyticus and Clostridium bifermentans. Synergy between trovafloxacin (

  18. Pharmacokinetic/pharmacodynamic integration and modelling of oxytetracycline for the porcine pneumonia pathogens Actinobacillus pleuropneumoniae and Pasteurella multocida.

    PubMed

    Dorey, L; Pelligand, L; Cheng, Z; Lees, P

    2017-10-01

    Pharmacokinetic-pharmacodynamic (PK/PD) integration and modelling were used to predict dosage schedules of oxytetracycline for two pig pneumonia pathogens, Actinobacillus pleuropneumoniae and Pasteurella multocida. Minimum inhibitory concentration (MIC) and mutant prevention concentration (MPC) were determined in broth and porcine serum. PK/PD integration established ratios of average concentration over 48 h (C av0-48 h )/MIC of 5.87 and 0.27 μg/mL (P. multocida) and 0.70 and 0.85 μg/mL (A. pleuropneumoniae) for broth and serum MICs, respectively. PK/PD modelling of in vitro time-kill curves established broth and serum breakpoint values for area under curve (AUC 0-24 h )/MIC for three levels of inhibition of growth, bacteriostasis and 3 and 4 log 10 reductions in bacterial count. Doses were then predicted for each pathogen, based on Monte Carlo simulations, for: (i) bacteriostatic and bactericidal levels of kill; (ii) 50% and 90% target attainment rates (TAR); and (iii) single dosing and daily dosing at steady-state. For 90% TAR, predicted daily doses at steady-state for bactericidal actions were 1123 mg/kg (P. multocida) and 43 mg/kg (A. pleuropneumoniae) based on serum MICs. Lower TARs were predicted from broth MIC data; corresponding dose estimates were 95 mg/kg (P. multocida) and 34 mg/kg (A. pleuropneumoniae). © 2017 The Authors. Journal of Veterinary Pharmacology and Therapeutics Published by John Wiley & Sons Ltd.

  19. ent-Kaurenoic acid-rich extract from Mikania glomerata: In vitro activity against bacteria responsible for dental caries.

    PubMed

    Moreira, Monique Rodrigues; Souza, Ariana Borges; Soares, Sandra; Bianchi, Thamires Chiquini; de Souza Eugênio, Daniele; Lemes, Danieli Cristina; Martins, Carlos Henrique Gomes; da Silva Moraes, Thaís; Tavares, Denise Crispim; Ferreira, Natália Helen; Ambrósio, Sergio Ricardo; Veneziani, Rodrigo Cassio Sola

    2016-07-01

    Many studies have reported that medicinal plant extracts can inhibit oral pathogen growth or adhesion to surfaces and therefore reduce dental caries formation. The addition of these extracts to oral products like mouthwashes and dentifrices is considered an important strategy in caries control. In this sense, we have developed a Mikania glomerata extract with high ent-kaurenoic acid content (KAMg). So, this work describes the preparation of such extract and the development of a validated HPLC-DAD method to determine its ent-kaurenoic acid (KA) content. Herein it is also described the KAMg in vitro antibacterial evaluation against several cariogenic bacteria in comparison with KA and the investigation of further aspects of the KAMg activity. Toxicological aspects of the developed extract were evaluated by assessing its cytotoxicity and genotoxicity. KA and a KA-rich extract like KAMg showed to inhibit the growth of microorganisms responsible for dental caries at relatively low MIC (Minimum inhibitory concentration) values, albeit not as low as the MIC value obtained for chlorhexidine digluconate (CHD), the golden anticariogenic standard approved by the American Dental Association Council on Dental Therapeutics. However, KAMg was more effective to inhibit the formation of a Streptococcus mutans biofilm with four times lower MICB50 (minimum inhibitory concentration that reduces 50% of the biofilm) value as compared with CHD. Taking into account all these data and considering the absence of genotoxic and cytotoxic activity under the tested conditions, it is suggested that KAMg is a natural product to be considered as active ingredient in oral care products. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Antianaerobic activity of sulopenem compared to six other agents.

    PubMed

    Ednie, Lois M; Appelbaum, Peter C

    2009-05-01

    Agar dilution MIC methodology was used to compare the activity of sulopenem with those of amoxicillin/clavulanate, ampicillin/sulbactam, piperacillin-tazobactam, imipenem, clindamycin, and metronidazole against 431 anaerobes. Overall, MIC(50)/(90) values were as follows: sulopenem, 0.25/1.0 microg/ml; amoxicillin/clavulanate, 0.5/2.0 microg/ml; ampicillin/sulbactam, 0.5/4.0 microg/ml; piperacillin/tazobactam, 0.25/8.0 microg/ml; imipenem, 0.06/1.0 microg/ml; clindamycin, 0.25/16.0 microg/ml; and metronidazole, 1.0/4.0 microg/ml.

  1. Synthesis, antimicrobial activity and advances in structure-activity relationships (SARs) of novel tri-substituted thiazole derivatives.

    PubMed

    Reddy, Guda Mallikarjuna; Garcia, Jarem Raul; Reddy, Vemulapati Hanuman; de Andrade, Ageo Meier; Camilo, Alexandre; Pontes Ribeiro, Renan Augusto; de Lazaro, Sergio Ricardo

    2016-11-10

    Trisubstituted thiazoles were synthesized and studied for their antimicrobial activity and supported by theoretical calculations. In addition, MIC, MBC and MFC were also tested. Moreover, the present study was analyzed to scrutinize comprehensive structure-activity relationships. In fact, LUMO orbital energy and orbital orientation was reliable to explain their antibacterial and antifungal assay. Amongst the tested compounds, tri-methyl-substituted thiazole compound showed higher antimicrobial activity and low MIC value due to highest LUMO energy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Feasibility of Rare Earth Element Determination in Low Concentration in Crude Oil: Direct Sampling Electrothermal Vaporization-Inductively Coupled Plasma Mass Spectrometry.

    PubMed

    Silva, Jussiane Souza; Schneider Henn, Alessandra; Dressler, Valderi Luiz; Mello, Paola Azevedo; Flores, Erico Marlon Moraes

    2018-06-05

    A comprehensive study was developed showing the feasibility of determination of rare earth elements (REE) in low concentration in crude oil by using direct sampling electrothermal vaporization system coupled to inductively coupled plasma mass spectrometry (ETV-ICP-MS). The effect of organic modifier on the REE signal was evaluated and the use of 6 mg of citric acid allowed calibration using aqueous reference solutions (selected pyrolysis and vaporization temperatures were 700 and 2200 °C, respectively). Because of the facility of REE in forming refractory compounds inside the graphite furnace during the heating step, the use of a modifier gas (Freon R-12, 3.0 mL min -1 ) was necessary to allow quantitative vaporization of these elements. A flow rate of 0.40 L min -1 was selected for both bypass and carrier gases. Under optimized conditions, the influence of sample mass was evaluated, and even using a relatively high mass of crude oil (up to 18 mg), accurate results were obtained. The accuracy was evaluated by the comparison of results by ETV-ICP-MS with those obtained by ICP-MS with ultrasonic nebulizer (USN) after high-pressure microwave-assisted wet digestion (MAWD) and microwave-induced combustion (MIC) and no statistical difference was observed between the results. The limits of quantification for REE by ETV-ICP-MS were lower (0.02-0.8 ng g -1 ) than those obtained by USN-ICP-MS after MAWD and MIC (0.6-5.1 ng g -1 ). Negligible blank values and relative standard deviations lower than 12% show the feasibility of the proposed ETV-ICP-MS method for routine analysis of crude oil.

  3. Propolis, A Hope for the Future in Treating Resistant Periodontal Pathogens.

    PubMed

    Shabbir, Ambreen; Rashid, Maryam; Tipu, Hamid N

    2016-07-12

    Periodontitis is one of the most common causes of tooth loss worldwide. Recently, special attention has been paid to natural medication for its treatment. For this purpose, propolis (bee glue) activity has also been investigated. Its antibacterial properties are mainly attributed to flavonones pinocembrin, flavonols galangin and to the caffeic acid phenethyl ester. This study is aimed at evaluating the antimicrobial effects of propolis from Pakistan on 35 clinical isolates of pigmented anaerobic periodontal pathogens. This study was conducted in the Microbiology department, University of Health Sciences, Lahore, Pakistan. Pathogens included were Porphyromonas asaccharolytica (n=9), Porphyromonas gingivalis (n=13), Prevotella intermedia (n=9), Prevotella melaninogenica (n=4). Minimum inhibitory concentration (MIC) to three antibiotics was obtained by E-test method. All strains were sensitive to amoxicillin plus clavulanic acid and metronidazole, but 100% of P asaccharolytica and P melaninogenica strains displayed intermediate resistance to tetracycline while 69.2% P gingivalis and 100% P intermedia strains exhibited complete resistance to tetracycline. Screening for antibacterial activity of propolis extract was done by agar well diffusion assay, and all strains were found sensitive to ethanolic extract of propolis. MIC was obtained by agar incorporation technique with values ranging from 0.064 to 0.512 mg/ml. It was also noticed that percentage yield of ethanolic extract of propolis prepared from ultrasonic extraction method was higher compared to extract obtained with maceration. These results indicate that propolis from this region has potent antimicrobial activity against pigmented anaerobic periodontal pathogens. Taking into consideration the increasing resistance in anaerobic bacteria, this effective antimicrobial activity of propolis gives hope in the treatment of oral cavity diseases.

  4. Propolis, A Hope for the Future in Treating Resistant Periodontal Pathogens

    PubMed Central

    Rashid, Maryam; Tipu, Hamid N

    2016-01-01

    Introduction: Periodontitis is one of the most common causes of tooth loss worldwide. Recently, special attention has been paid to natural medication for its treatment. For this purpose, propolis (bee glue) activity has also been investigated. Its antibacterial properties are mainly attributed to flavonones pinocembrin, flavonols galangin and to the caffeic acid phenethyl ester. This study is aimed at evaluating the antimicrobial effects of propolis from Pakistan on 35 clinical isolates of pigmented anaerobic periodontal pathogens. Methods: This study was conducted in the Microbiology department, University of Health Sciences, Lahore, Pakistan. Pathogens included were Porphyromonas asaccharolytica (n=9), Porphyromonas gingivalis (n=13), Prevotella intermedia (n=9), Prevotella melaninogenica (n=4). Minimum inhibitory concentration (MIC) to three antibiotics was obtained by E-test method. All strains were sensitive to amoxicillin plus clavulanic acid and metronidazole, but 100% of P asaccharolytica and P melaninogenica strains displayed intermediate resistance to tetracycline while 69.2% P gingivalis and 100% P intermedia strains exhibited complete resistance to tetracycline. Screening for antibacterial activity of propolis extract was done by agar well diffusion assay, and all strains were found sensitive to ethanolic extract of propolis. Results: MIC was obtained by agar incorporation technique with values ranging from 0.064 to 0.512 mg/ml. It was also noticed that percentage yield of ethanolic extract of propolis prepared from ultrasonic extraction method was higher compared to extract obtained with maceration. Conclusion: These results indicate that propolis from this region has potent antimicrobial activity against pigmented anaerobic periodontal pathogens. Taking into consideration the increasing resistance in anaerobic bacteria, this effective antimicrobial activity of propolis gives hope in the treatment of oral cavity diseases. PMID:27563508

  5. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion

    PubMed Central

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml. PMID:27218674

  6. In Vivo Pharmacokinetics/Pharmacodynamics of Cefquinome in an Experimental Mouse Model of Staphylococcus Aureus Mastitis following Intramammary Infusion.

    PubMed

    Yu, Yang; Zhou, Yu-Feng; Chen, Mei-Ren; Li, Xiao; Qiao, Gui-Lin; Sun, Jian; Liao, Xiao-Ping; Liu, Ya-Hong

    2016-01-01

    Staphylococcus aureus remains the major cause of morbidity of bovine mastitis worldwide leading to massive economic losses. Cefquinome is a fourth generation cephalosporin, which preserves susceptibility and antibacterial activity against S. aureus. This work aims to study the pharmacokinetic (PK) and pharmacodynamic (PD) modeling following intramammary administration of cefquinome against S. aureus mastitis. The mouse model of S. aureus mastitis was developed for the PK/PD experiments. The plasma PK characteristics after intramammary injection of cefquinome at various single doses of 25, 50, 100, 200, 400 μg per gland (both fourth pairs of glands: L4 and R4) were calculated using one-compartment and first-order absorption model. PD study was investigated based on twenty-one intermittent dosing regimens, of which total daily dose ranged from 25 to 4800 μg per mouse and dosage intervals included 8, 12 or 24 h. The sigmoid Emax model of inhibitory effect was employed for PK/PD modeling. The results of PK/PD integration of cefquinome against S. aureus suggested that the percentage of duration that drug concentration exceeded the minimal inhibitory concentration (%T>MIC) and the ratio of area under time-concentration curve over MIC (AUC/MIC) are important indexes to evaluate the antibacterial activity. The PK/PD parameters of %T>MIC and AUC0-24/MIC were 35.98% and 137.43 h to obtain a 1.8 logCFU/gland reduction of bacterial colony counts in vivo, against S. aureus strains with cefquinome MIC of 0.5μg/ml.

  7. In Vitro Antimicrobial Activity and Effect on Biofilm Production of a White Grape Juice (Vitis vinifera) Extract.

    PubMed

    Filocamo, Angela; Bisignano, Carlo; Mandalari, Giuseppina; Navarra, Michele

    2015-01-01

    Background. The aim of the present study was to evaluate the antimicrobial effect of a white grape juice extract (WGJe) against a range of Gram-positive and Gram-negative bacteria, yeasts, and the fungus Aspergillus niger. WGJe was also tested on the production of bacterial biofilms in vitro. Results. WGJe inhibited in vitro most Gram-positive bacteria tested, Staphylococcus aureus ATCC 6538P being the most sensitive strain (MIC values of 3.9 μg/mL). The effect was bactericidal at the concentration of 500 μg/mL. Amongst the Gram-negative bacteria, Escherichia coli was the only susceptible strain (MIC and MBC of 2000 μg/mL). No effect on the growth of Candida sp. and the fungus Aspergillus niger was detected (MIC values > 2000 μg/mL). WGJe inhibited the biofilms formation of E. coli and Pseudomonas aeruginosa with a dose-dependent effect. Conclusions. WGJe exerted both bacteriostatic and bactericidal activity in vitro. The presented results could be used to develop novel strategies for the treatment of skin infections and against potential respiratory pathogens.

  8. Tolerance to chitosan by Trichoderma species is associated with low membrane fluidity.

    PubMed

    Zavala-González, Ernesto A; Lopez-Moya, Federico; Aranda-Martinez, Almudena; Cruz-Valerio, Mayra; Lopez-Llorca, Luis Vicente; Ramírez-Lepe, Mario

    2016-07-01

    The effect of chitosan on growth of Trichoderma spp., a cosmopolitan genus widely exploited for their biocontrol properties was evaluated. Based on genotypic (ITS of 18S rDNA) characters, four isolates of Trichoderma were identified as T. pseudokoningii FLM16, T. citrinoviride FLM17, T. harzianum EZG47, and T. koningiopsis VSL185. Chitosan reduces radial growth of Trichoderma isolates in concentration-wise manner. T. koningiopsis VSL185 was the most chitosan tolerant isolate in all culture media amended with chitosan (0.5-2.0 mg ml(-1) ). Minimal Inhibitory Concentration (MIC) and Minimal Fungicidal Concentration (MFC) were determined showing that T. koningiopsis VSL185 displays higher chitosan tolerance with MIC value >2000 μg ml(-1) while for other Trichoderma isolates MIC values were around 10 μg ml(-1) . Finally, free fatty acid composition reveals that T. koningiopsis VSL185, chitosan tolerant isolate, displays lower linolenic acid (C18:3) content than chitosan sensitive Trichoderma isolates. Our findings suggest that low membrane fluidity is associated with chitosan tolerance in Trichoderma spp. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Antibacterial Chemical Constituent and Antiseptic Herbal Soap from Salvinia auriculata Aubl.

    PubMed Central

    Lima, Samia; Diaz, Gaspar; Diaz, Marisa Alves Nogueira

    2013-01-01

    The bioassay-guided isolation of the active extract of Salvinia auriculata Aubl. led to the separation of three main compounds, characterized as stigmasterone, stigmasterol, and friedelinol. The pure form of diketosteroid presented a potential antibacterial activity with a minimum inhibitory concentration (MIC) value of 0.01 mg mL−1 against Staphylococcus aureus isolated from animals with mastitis infections. The active extract also showed a similar result to that previously obtained with pure diketosteroid when tested with the same isolates. The present study's results demonstrate the potential of this plant as an excipient for the production of antibacterial soaps aimed at controlling bovine mastitis infections, especially on small farms. PMID:24459530

  10. Antimicrobial Susceptibility to Azithromycin among Salmonella enterica Isolates from the United States▿

    PubMed Central

    Sjölund-Karlsson, Maria; Joyce, Kevin; Blickenstaff, Karen; Ball, Takiyah; Haro, Jovita; Medalla, Felicita M.; Fedorka-Cray, Paula; Zhao, Shaohua; Crump, John A.; Whichard, Jean M.

    2011-01-01

    Due to emerging resistance to traditional antimicrobial agents, such as ampicillin, trimethoprim-sulfamethoxazole, and chloramphenicol, azithromycin is increasingly used for the treatment of invasive Salmonella infections. In the present study, 696 isolates of non-Typhi Salmonella collected from humans, food animals, and retail meats in the United States were investigated for antimicrobial susceptibility to azithromycin. Seventy-two Salmonella enterica serotype Typhi isolates from humans were also tested. For each isolate, MICs of azithromycin and 15 other antimicrobial agents were determined by broth microdilution. Among the non-Typhi Salmonella isolates, azithromycin MICs among human isolates ranged from 1 to 32 μg/ml, whereas the MICs among the animal and retail meat isolates ranged from 2 to 16 μg/ml and 4 to 16 μg/ml, respectively. Among Salmonella serotype Typhi isolates, the azithromycin MICs ranged from 4 to 16 μg/ml. The highest MIC observed in the present study was 32 μg/ml, and it was detected in three human isolates belonging to serotypes Kentucky, Montevideo, and Paratyphi A. Based on our findings, we propose an epidemiological cutoff value (ECOFF) for wild-type Salmonella of ≤16 μg/ml of azithromycin. The susceptibility data provided could be used in combination with clinical outcome data to determine tentative clinical breakpoints for azithromycin and Salmonella enterica. PMID:21690279

  11. Antimicrobial Susceptibility Patterns of Enterococcus faecalis and Enterococcus faecium Isolated from Poultry Flocks in Germany.

    PubMed

    Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M

    2015-03-01

    Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems.

  12. Synthesis and quantitative structure activity relationship (QSAR) of arylidene (benzimidazol-1-yl)acetohydrazones as potential antibacterial agents.

    PubMed

    El-Kilany, Yeldez; Nahas, Nariman M; Al-Ghamdi, Mariam A; Badawy, Mohamed E I; El Ashry, El Sayed H

    2015-01-01

    Ethyl (benzimidazol-1-yl)acetate was subjected to hydrazinolysis with hydrazine hydrate to give (benzimidazol-1-yl)acetohydrazide. The latter was reacted with various aromatic aldehydes to give the respective arylidene (1H-benzimidazol-1-yl)acetohydrazones. Solutions of the prepared hydrazones were found to contain two geometric isomers. Similarly (2-methyl-benzimidazol-1-yl)acetohydrazide was reacted with various aldehydes to give the corresponding hydrazones. The antibacterial activity was evaluated in vitro by minimum inhibitory concentration (MIC) against Agrobacterium tumefaciens (A. tumefaciens), Erwinia carotovora (E. carotovora), Corynebacterium fascians (C. fascians) and Pseudomonas solanacearum (P. solanacearum). MIC result demonstrated that salicylaldehyde(1H-benzimidazol-1-yl)acetohydrazone (4) was the most active compound (MIC = 20, 35, 25 and 30 mg/L against A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively). Quantitative structure activity relationship (QSAR) investigation using Hansch analysis was applied to find out the correlation between antibacterial activity and physicochemical properties. Various physicochemical descriptors and experimentally determined MIC values for different microorganisms were used as independent and dependent variables, respectively. pMICs of the compounds exhibited good correlation (r = 0.983, 0.914, 0.960 and 0.958 for A. tumefaciens, C. fascians, E. carotovora and P. solanacearum, respectively) with the prediction made by the model. QSAR study revealed that the hydrophobic parameter (ClogP), the aqueous solubility (LogS), calculated molar refractivity, topological polar surface area and hydrogen bond acceptor were found to have overall significant correlation with antibacterial activity. The statistical results of training set, correlation coefficient (r and r (2)), the ratio between regression and residual variances (f, Fisher's statistic), the standard error of estimates and significant (s) gave reliability to the prediction of molecules with activity using QSAR models. However, QSAR equations derived for the MIC values against the tested bacteria showed negative contribution of molecular mass.

  13. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    NASA Technical Reports Server (NTRS)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control (normal gravity) MIC values will be generated by simultaneous inoculation and incubation of a second set of test cards in a laboratory at the launch site. This procedure can provide a safe and compact experiment that should yield new information on the affects of microgravity on the biological activities of various classes of antibiotics.

  14. Comparative in vitro activity of carbapenems against major Gram-negative pathogens: results of Asia-Pacific surveillance from the COMPACT II study.

    PubMed

    Kiratisin, Pattarachai; Chongthaleong, Anan; Tan, Thean Yen; Lagamayo, Evelina; Roberts, Sally; Garcia, Jemelyn; Davies, Todd

    2012-04-01

    Resistance rates amongst Gram-negative pathogens are increasing in the Asia-Pacific region. The Comparative Activity of Carbapenem Testing (COMPACT) II study surveyed the carbapenem susceptibility and minimum inhibitory concentrations (MICs) of doripenem, imipenem and meropenem against 1260 major Gram-negative pathogens isolated from hospitalised patients at 20 centres in five Asia-Pacific countries (New Zealand, the Philippines, Singapore, Thailand and Vietnam) during 2010. Pseudomonas aeruginosa (n=625), Enterobacteriaceae (n=500), and other Gram-negative pathogens including Acinetobacter baumannii (n=135) were collected from patients with bloodstream infection (32.2%), nosocomial pneumonia including ventilator-associated pneumonia (58.1%), and complicated intra-abdominal infection (9.7%), with 36.7% being isolated from patients in an Intensive Care Unit. As high as 29.8% of P. aeruginosa and 73.0% of A. baumannii isolates were not susceptible to at least a carbapenem, whereas the majority of Enterobacteriaceae (97.2%) were susceptible to all carbapenems. Respective MIC(50)/MIC(90) values (MICs for 50% and 90% of the organisms, respectively) of doripenem, imipenem and meropenem were: 0.38/8, 1.5/32 and 0.38/16 mg/L for P. aeruginosa; 0.023/0.094, 0.25/0.5 and 0.032/0.094 mg/L for Enterobacteriaceae; and 32/64, 32/128 and 32/64 mg/L for A. baumannii. Doripenem and meropenem had comparable activity against P. aeruginosa, both being more active than imipenem. All carbapenems were highly potent against Enterobacteriaceae, although imipenem demonstrated higher MIC values than doripenem and meropenem. The three carbapenems showed less activity against A. baumannii. The high prevalence of carbapenem resistance amongst important nosocomial pathogens (P. aeruginosa and A. baumannii) warrants rigorous infection control measures and appropriate antimicrobial use in the Asia-Pacific region. Copyright © 2012 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  15. In vitro activity of two amphotericin B formulations against Malassezia furfur strains recovered from patients with bloodstream infections.

    PubMed

    Iatta, Roberta; Immediato, Davide; Montagna, Maria Teresa; Otranto, Domenico; Cafarchia, Claudia

    2015-04-01

    Although guidelines for the treatment of Malassezia furfur fungemia are not yet defined, clinical data suggest that amphotericin B (AmB) is effective for treating systemic infections. In the absence of clinical breakpoints for Malassezia yeasts, epidemiological cut-off values (ECVs) are useful to discriminate between isolates with and without drug resistance. This study aimed to compare the distribution of minimal inhibitory concentration (MIC) and the ECVs for AmB of both deoxycholate (d-AmB) and liposomal (l-AmB) formulations of M. furfur isolates. The 84 M. furfur strains analyzed, which included 56 from blood, sterile sites and catheters, and 28 from skin, were isolated from patients with bloodstream infections. MICs were determined by the modified broth microdilution method of the Clinical and Laboratory Standards Institute (CLSI). The l-AmB MIC and the ECVs were two-fold lower than those of d-AmB and a lower l-AmB mean MIC value was found for blood isolates than from skin. The ECVs for l-AmB and d-AmB were 8 mg/l and 32 mg/l, respectively. Three strains (3.6%) showed l-AmB MIC higher than ECV (MIC > 8 mg/l) of which two were isolated from the catheter tip of patients treated with micafugin, l-Amb and fluconazole, and one from skin. The results showed that the l-AmB might be employed for assessing the in vitro antifungal susceptibility of M. furfur by a modified CLSI protocol and that ECVs might be useful for detecting the emergence of resistance. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. In Vivo Pharmacodynamic Target Assessment of Eravacycline against Escherichia coli in a Murine Thigh Infection Model.

    PubMed

    Zhao, Miao; Lepak, Alexander J; Marchillo, Karen; VanHecker, Jamie; Andes, David R

    2017-07-01

    Eravacycline is a novel fluorocycline antibiotic with potent activity against a broad range of pathogens, including strains with tetracycline and other drug resistance phenotypes. The goal of the studies was to determine which pharmacokinetic/pharmacodynamic (PK/PD) parameter and magnitude best correlated with efficacy in the murine thigh infection model. Six Escherichia coli isolates were utilized for the studies. MICs were determined using CLSI methods and ranged from 0.125 to 0.25 mg/liter. A neutropenic murine thigh infection model was utilized for all treatment studies. Single-dose plasma pharmacokinetics were determined in mice after administration of 2.5, 5, 10, 20, 40, and 80 mg/kg of body weight. Pharmacokinetic studies exhibited maximum plasma concentration ( C max ) values of 0.34 to 2.58 mg/liter, area under the concentration-time curve (AUC) from time zero to infinity (AUC 0-∞ ) values of 2.44 to 57.6 mg · h/liter, and elimination half-lives of 3.9 to 17.6 h. Dose fractionation studies were performed using total drug doses of 6.25 mg/kg to 100 mg/kg fractionated into 6-, 8-, 12-, or 24-h regimens. Nonlinear regression analysis demonstrated that the 24-h free drug AUC/MIC ( f AUC/MIC) was the PK/PD parameter that best correlated with efficacy ( R 2 = 0.80). In subsequent studies, we used the neutropenic murine thigh infection model to determine if the magnitude of the AUC/MIC needed for the efficacy of eravacycline varied among pathogens. Mice were treated with 2-fold increasing doses (range, 3.125 to 50 mg/kg) of eravacycline every 12 h. The mean f AUC/MIC magnitudes associated with the net stasis and the 1-log-kill endpoints were 27.97 ± 8.29 and 32.60 ± 10.85, respectively. Copyright © 2017 American Society for Microbiology.

  17. In vitro Antibacterial Activity of Ocimum suave Essential Oils against Uropathogens Isolated from Patients in Selected Hospitals in Bushenyi District, Uganda

    PubMed Central

    Tibyangye, Julius; Okech, Matilda Angela; Nyabayo, Josephat Maniga; Nakavuma, Jessica Lukanga

    2015-01-01

    Aims To determine antibacterial activity of Ocimum suave essential oils against bacterial uropathogens. Study Design A cross sectional and experimental study. Place and Duration of Study Six selected hospitals in Bushenyi District, Uganda between June 2012 and July 2013. Methodology Clean catch midstream urine samples were collected and inoculated on Cystine Lysine Electrolyte Deficient (CLED) agar. The plates were incubated at 37°C for 24hrs to 48hrs. The O. suave essential oils were extracted by hydrodistillation of leaves for 4hrs using a Clevenger apparatus. The oil was collected and dried over anhydrous sodium sulphate (Na2SO4) and kept at 4°C till further use. The antimicrobial activity of O. suave essential oils against isolates was determined by agar well method. The MIC of O. suave essential oil extract was carried out by microbroth dilution method. Results Of the three hundred (300) midstream urine samples collected, 67(22.33%) had significant bacterial growth. Escherichia coli is the most common isolate (61.19%, n = 41). The essential oil from O. suave showed activity against isolates of E. coli, K. pneumoniae, S. aureus, E. feacalis, M. morganii, Citrobacter species, Enterobacter species and P. aeruginosa with mean zone of inhibition (ZI) ranging from 10–22 mm. The essential oils had no inhibitory activity on Acinetobacter species. The minimum inhibitory concentration (MIC) for O. suave essential oils ranged from 0.78 to 22 μg/ml. This study showed that O. suave essential oils had MIC value of 0.78 μg/ml against S. aureus and MIC values ranging from 3 to 22 μg/ml against the other tested isolates. Conclusion The most common uropathogen was E. coli (61.19% n = 41). O. suave essential oils exhibited antibacterial activity against majority of the uropathogens, except Acinetobacter species, mean ZI of 10–22 mm and MIC of 0.78 – 22 μg/ml. PMID:26120574

  18. In Vitro Antibacterial Activities of JNJ-Q2, a New Broad-Spectrum Fluoroquinolone ▿ ‡

    PubMed Central

    Morrow, Brian J.; He, Wenping; Amsler, Karen M.; Foleno, Barbara D.; Macielag, Mark J.; Lynch, A. Simon; Bush, Karen

    2010-01-01

    JNJ-Q2, a novel fluorinated 4-quinolone, was evaluated for its antibacterial potency by broth and agar microdilution MIC methods in studies focused on skin and respiratory tract pathogens, including strains exhibiting contemporary fluoroquinolone resistance phenotypes. Against a set of 118 recent clinical isolates of Streptococcus pneumoniae, including fluoroquinolone-resistant variants bearing multiple DNA topoisomerase target mutations, an MIC90 value for JNJ-Q2 of 0.12 μg/ml was determined, indicating that it was 32-fold more potent than moxifloxacin. Against a collection of 345 recently collected methicillin-resistant Staphylococcus aureus (MRSA) isolates, including 256 ciprofloxacin-resistant strains, the JNJ-Q2 MIC90 value was 0.25 μg/ml, similarly indicating that it was 32-fold more potent than moxifloxacin. The activities of JNJ-Q2 against Gram-negative pathogens were generally comparable to those of moxifloxacin. In further studies, JNJ-Q2 exhibited bactericidal activities at 2× and 4× MIC levels against clinical isolates of S. pneumoniae and MRSA with various fluoroquinolone susceptibilities, and its activities were enhanced over those of moxifloxacin. In these studies, the activity exhibited against strains bearing gyrA, parC, or gyrA plus parC mutations was indicative of the relatively balanced (equipotent) activity of JNJ-Q2 against the DNA topoisomerase target enzymes. Finally, determination of the relative rates or frequencies of the spontaneous development of resistance to JNJ-Q2 at 2× and 4× MICs in S. pneumoniae, MRSA, and Escherichia coli were indicative of a lower potential for resistance development than that for current fluoroquinolones. In conclusion, JNJ-Q2 exhibits a range of antibacterial activities in vitro that is supportive of its further evaluation as a potential new agent for the treatment of skin and respiratory tract infections. PMID:20176911

  19. Prevalence, genetic relatedness and antibiotic resistance of hospital-acquired clostridium difficile PCR ribotype 018 strains.

    PubMed

    Seo, Mi-Ran; Kim, Jieun; Lee, Yangsoon; Lim, Dong-Gyun; Pai, Hyunjoo

    2018-05-01

    Clostridium difficile infection (CDI) is a major healthcare-associated infection. The aim of this study was to investigate the genetic relatedness of the endemic C. difficile PCR ribotype 018 strains in an institution and changes to their characteristics during a five-year period. A total of 207 isolates from inpatients at Hanyang University Hospital from 2009 to 2013 were analysed using multilocus variable-number tandem-repeat analysis (MLVA). Minimum inhibitory concentrations (MICs) of several antibiotics were determined. In total, 204 (98.6%) were genetically related, with a summed tandem-repeat distance (STRD) ≤ 10. Minimum-spanning-tree analysis identified 78 MLVA types, categorized into six clonal complexes (CCs). The largest cluster, CC-I, included 51 MLVA types from 148 isolates (71.5%) and the second largest cluster, CC-II, included 10 MLVA types from 36 isolates (17.4%). Resistance rates for antibiotics were: clindamycin (CLI), 97.6%; moxifloxacin (MXF), 98.6%; vancomycin (VAN), 1.4%; and rifaximin (RFX), 8.2%. All isolates were susceptible to piperacillin/tazobactam (TZP) and metronidazole (MTZ). Comparing the MICs of antibiotics for the isolates each year from 2009 to 2013, MICs of antibiotics that promote CDI, such as CLI, MXF, TZP and RFX, increased over the five-year period (P-value by Kruskal-Wallis test: < 0.0001, <0.0001, <0.0001, and <0.0001 respectively); however, MICs of VAN or MTZ, antibiotics for treatment of CDI, did not increase or decreased over the same time period (P-value by Kruskal-Wallis test: 0.166, <0.0001). C. difficile RT018 isolates in a tertiary hospital over a five-year period presented a close clonal relationship. MICs of antibiotics promoting CDI increased with this clonal expansion. Copyright © 2018 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  20. Antibiofilm Activity of the Brown Alga Halidrys siliquosa against Clinically Relevant Human Pathogens

    PubMed Central

    Busetti, Alessandro; Thompson, Thomas P.; Tegazzini, Diana; Megaw, Julianne; Maggs, Christine A.; Gilmore, Brendan F.

    2015-01-01

    The marine brown alga Halidrys siliquosa is known to produce compounds with antifouling activity against several marine bacteria. The aim of this study was to evaluate the antimicrobial and antibiofilm activity of organic extracts obtained from the marine brown alga H. siliquosa against a focused panel of clinically relevant human pathogens commonly associated with biofilm-related infections. The partially fractionated methanolic extract obtained from H. siliquosa collected along the shores of Co. Donegal; Ireland; displayed antimicrobial activity against bacteria of the genus Staphylococcus; Streptococcus; Enterococcus; Pseudomonas; Stenotrophomonas; and Chromobacterium with MIC and MBC values ranging from 0.0391 to 5 mg/mL. Biofilms of S. aureus MRSA were found to be susceptible to the algal methanolic extract with MBEC values ranging from 1.25 mg/mL to 5 mg/mL respectively. Confocal laser scanning microscopy using LIVE/DEAD staining confirmed the antimicrobial nature of the antibiofilm activity observed using the MBEC assay. A bioassay-guided fractionation method was developed yielding 10 active fractions from which to perform purification and structural elucidation of clinically-relevant antibiofilm compounds. PMID:26058011

  1. Antifungal compounds from Zanthoxylum chiloperone var. angustifolium.

    PubMed

    Thouvenel, Céline; Gantier, Jean-Charles; Duret, Philippe; Fourneau, Christophe; Hocquemiller, Reynald; Ferreira, Maria-Elena; Rojas de Arias, Antonieta; Fournet, Alain

    2003-06-01

    An alkaloidal extract of the stem barks of Zanthoxylum chiloperone var. angustifolium exhibited antifungal activity against Candida albicans, Aspergillus fumigatus and Trichophyton mentagrophytes var. interdigitale using a TLC bioautographic method. Bioassay-guided fractionation of this extract resulted in the isolation of two active compounds identi fi ed as canthin-6-one and 5-methoxycanthin-6-one. Canthin-6-one exhibited a broad spectrum of activities against Aspergillus fumigatus, A. niger, A. terreus, Candida albicans, C. tropicalis, C. glabrata, Cryptococcus neoformans, Geotrichum candidum, Saccharomyces cerevisiae, Trichosporon beigelii, Trichosporon cutaneum and Trichophyton mentagrophytes var. interdigitale with MICs values between 5.3 and 46 micro mol/L. 5-methoxy-canthin-6-one was active against only Trichophyton mentagrophytes var. interdigitale with a MIC value of 12.3 micro mol/L. Copyright 2003 John Wiley & Sons, Ltd.

  2. Optimal timing of oral fosfomycin administration for pre-prostate biopsy prophylaxis.

    PubMed

    Rhodes, Nathaniel J; Gardiner, Bradley J; Neely, Michael N; Grayson, M Lindsay; Ellis, Andrew G; Lawrentschuk, Nathan; Frauman, Albert G; Maxwell, Kelly M; Zembower, Teresa R; Scheetz, Marc H

    2015-07-01

    As the optimal administration time for fosfomycin peri-procedural prophylaxis is unclear, we sought to determine optimal administration times for fosfomycin peri-procedural prophylaxis. Plasma, peripheral zone and transition zone fosfomycin concentrations were obtained from 26 subjects undergoing transurethral resection of the prostate (TURP), following a single oral dose of 3 g of fosfomycin. Population pharmacokinetic modelling was completed with the Nonparametric Adaptive Grid (NPAG) algorithm (Pmetrics package for R), with a four-compartment model. Plasma and tissue concentrations were simulated during the first 24 h post-dose, comparing these with EUCAST susceptibility breakpoints for Escherichia coli, a common uropathogen. Non-compartmental-determined pharmacokinetic values in our population were similar to those reported in the package insert. Predicted plasma concentrations rapidly increased after the first hour, giving more than 90% population coverage for organisms with an MIC ≤4 mg/L over the first 12 h post-dose. Organisms with higher MICs fared much worse, with organisms at the EUCAST breakpoint being covered for <10% of the population at any time. Transitional zone prostate concentrations exceeded 4 mg/L for 90% of the population between hours 1 and 9. Peripheral zone prostate concentrations were much lower and only exceeded 4 mg/L for 70% of the population between hours 1 and 4. Until more precise plasma and tissue data are available, we recommend that fosfomycin prophylaxis be given 1-4 h prior to prostate biopsy. We do not recommend fosfomycin prophylaxis for subjects with known organisms with MICs >4 mg/L. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. In vitro antibacterial and time-kill assessment of crude methanolic stem bark extract of Acacia mearnsii de wild against bacteria in shigellosis.

    PubMed

    Olajuyigbe, Olufunmiso Olusola; Afolayan, Anthony Jide

    2012-02-21

    Shigellosis is an important cause of worldwide morbidity and mortality among young children and old people for which treatment with antimicrobial agents is limited. Hence, the need for curative potentials obtainable from medicinal plants becomes inevitable. This study was carried out to assess the antibacterial potentials of crude methanolic extract of the stem bark of Acacia mearnsii against some selected bacteria of clinical importance in shigellosis. The bacteria were inhibited by the extract to produce concentration dependent inhibition zones. The extract exhibited a varied degree of antibacterial activity against all the tested isolates. The MIC values for Gram negative (0.0391-0.3125) mg/mL and those of Gram positive bacteria (0.0781-0.625) mg/mL indicated that the Gram negative bacteria were more inhibited by the extract than the Gram positive bacteria. Average log reduction in viable cell count in time-kill assay ranged between -2.456 Log₁₀ to 2.230 Log₁₀ cfu/mL after 4 h of interaction, and between -2.921 Log₁₀ and 1.447 Log₁₀ cfu/mL after 8 h interaction in 1× MIC and 2× MIC of the extract. The study provided scientific justification for the use of the crude methanolic extract from the stem bark of A. mearnsii in shigellosis. The degree of the antibacterial activity indicated that the crude extract is a potential source of bioactive compounds that could be useful for the development of new antimicrobial agents capable of decreasing the burden of drug resistance and cost of management of diseases of clinical and public health importance in South Africa.

  4. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    PubMed

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals for receptor binding.

  5. Honey Bee as Alternative Medicine to Treat Eleven Multidrug-Resistant Bacteria Causing Urinary Tract Infection during Pregnancy.

    PubMed

    Bouacha, Mabrouka; Ayed, Hayette; Grara, Nedjoud

    2018-04-13

    Medicinal benefits of honey bee have been recognized in the medical community since ancient times as a remedy for many diseases and infections. This study aimed to investigate the in vitro susceptibility of 11 multidrug-resistant bacterial strains, isolated from urinary tract infections of pregnant women, to six honey samples collected from different localities in the east of Algeria. The evaluation of the antibacterial activity was performed by the well method followed by the broth dilution method using two-fold dilutions of each honey sample ranging from 2.5 to 80% (w/v). The results obtained in this study revealed that all tested honeys exhibited potent antibacterial activity against the tested strains. The diameters of inhibition ranged from 19.67 to 53.33 mm, with minimum inhibitory concentrations (MICs) ranging from 2.5 to 40% (w/v) and minimum bactericidal concentration (MBCs) varied between 2.5 and 80% (w/v). Gram-positive bacteria were found to be more susceptible than Gram-negative bacteria with diameters ranging from 43.33 to 53.33 mm; MIC and MBC values ranged from 2.5 to 5% (w/v). The P.aeruginosa strain was found to be less susceptible than other strains with inhibitory diameters ranging from 19.67 to 27.33 mm; MICs ranged from 20 to 40% and MBCs ranged from 20 to 80% ( w/v ). This contribution has provided a broad overview of the antibacterial activity of Algerian honey and shown that honey bee has great potential for therapeutic use as an alternative therapy for urinary tract infection treatment which is safe and efficient during pregnancy.

  6. Antibacterial and leishmanicidal activity of Bolivian propolis.

    PubMed

    Nina, N; Lima, B; Feresin, G E; Giménez, A; Salamanca Capusiri, E; Schmeda-Hirschmann, G

    2016-03-01

    The antimicrobial activity of Bolivian propolis was assessed for the first time on a panel of bacteria and two endemic parasitic protozoa. Ten samples of Bolivian propolis and their main constituents were tested using the micro-broth dilution method against 11 bacterial pathogenic strains as well as against promastigotes of Leishmania amazonensis and L. braziliensis using the XTT-based colorimetric method. The methanolic extracts showed antibacterial effect ranging from inactive (MICs > 1000 μg ml(-1) ) to low (MICs 250-1000 μg ml(-1) ), moderate (62·5-125 μg ml(-1) ) and high antibacterial activity (MIC 31·2 μg ml(-1) ), according to the collection place and chemical composition. The most active samples towards Leishmania species were from Cochabamba and Tarija, with IC50 values of 12·1 and 7·8, 8·0 and 10·9 μg ml(-1) against L. amazonensis and Leishmania brasiliensis respectively. The results show that the best antibacterial and antiprotozoal effect was observed for some phenolic-rich propolis. Propolis is used in Bolivia as an antimicrobial agent. Bolivian propolis from the main production areas was assessed for antibacterial and leishmanicidal effect and the results were compared with the propolis chemical composition. The active antibacterial propolis samples were phenolic-rich while those containing mainly triterpenes were devoid of activity or weakly active. A similar picture was obtained for the effect on Leishmania, with better effect for the phenolic-rich samples. As propolis is used for the same purposes regardless of the production area and composition, our findings indicate the need for the standardization of this natural product as antimicrobial. © 2016 The Society for Applied Microbiology.

  7. Antimicrobial Activity and Biocompatibility of the Psidium cattleianum Extracts for Endodontic Purposes.

    PubMed

    Massunari, Loiane; Novais, Renata Zoccal; Oliveira, Márcio Teixeira; Valentim, Diego; Dezan Junior, Eloi; Duque, Cristiane

    2017-01-01

    Psidium cattleianum (PC) has been displaying inhibitory effect against a variety of microorganisms, but this effect has not yet been tested against endodontic pathogens. The aim of this study was to evaluate the antimicrobial activity and biocompatibility of the aqueous (PCAE) and hydroethanolic (PCHE) extracts from Psidium cattleianum (PC) leaves. Minimum inhibitory concentration (MIC) and minimum lethal concentration (MLC) were determined using the microdilution broth method in order to analyze the antimicrobial effect against Enterococcus faecalis, Pseudomonas aeruginosa, Actinomyces israelii and Candida albicans in planktonic conditions. Biofilm assays were conducted only with the extracts that were able to determine the MLC for microorganisms in planktonic conditions. Immediate and late tissue reactions against PC extracts were evaluated using edemogenic test and histological analysis of subcutaneous implants in Wistar rats. The results showed that the MIC and MLC values ranged between 0.25 and 4 mg/mL. The MLC obtained for PCHE inhibited 100% growth of all the tested strains, except for C. albicans. PCAE had the same effect for E. faecalis and P. aeruginosa. Both PC extracts were able to eliminate E. faecalis biofilms and only the PCHE eliminated P. aeruginosa biofilms. The positive controls inhibited the growth of all tested strains in MIC and MLC essays, but no CHX tested concentrations were able to eliminate A. israelii biofilm. PCAE caused a discrete increase in the edema over time, while PCHE caused a higher initial edema, which decreased progressively. Both PCAE and PCHE extracts were biocompatible, but PCHE showed better results with slight levels of inflammation at 28 days. In conclusion, PCHE was biocompatible and presented better antimicrobial effect against important pathogens associated with persistent endodontic infections.

  8. Comparison of broth macrodilution, broth microdilution, and E test antifungal susceptibility tests for fluconazole.

    PubMed Central

    Sewell, D L; Pfaller, M A; Barry, A L

    1994-01-01

    A comparison of the E test, the broth microdilution test, and the reference broth macrodilution susceptibility test of the National Committee for Clinical Laboratory Standards for fluconazole susceptibility testing was performed with 238 clinical isolates of Candida species and Torulopsis (Candida) glabrata. An 80% inhibition endpoint MIC was determined by the reference broth macrodilution method after 48 h of incubation. The MICs obtained by the two study methods were read after 24 and 48 h of incubation. Overall, excellent agreement within 2 doubling dilutions was obtained between the broth microdilution and the broth macrodilution methods for the combined results for all species at both 24 h (93%) and 48 h (94%). The correlation of 24-h MIC endpoints between the E test and the broth macrodilution methods was 37% for T. glabrata, 56% for Candida tropicalis, 93% for Candida albicans, and 90% for other Candida species. The percent agreement at 48 h ranged from 34% for T. glabrata to 97% for Candida species other than C. albicans and C. tropicalis. These initial results support the further evaluation of the E test as an alternative method for fluconazole susceptibility testing of Candida species. PMID:7814531

  9. Investigating inhibition of microbes inducing microbiologically-influenced-corrosion by Tectona grandis based Fe-nanoparticle material

    NASA Astrophysics Data System (ADS)

    Okeniyi, Joshua Olusegun; Omotosho, Olugbenga Adeshola; Inyang, Michael Anietie; Okeniyi, Elizabeth Toyin; Nwaokorie, Ikechi Thaddeus; Adidi, Emmanuel Amanogho; Owoeye, Taiwo Felicia; Nwakudu, Kelechukwu Chinedu; Akinlabu, Deborah Kehinde; Gabriel, Olanrewaju Oyewale; Taiwo, Olugbenga Samson; Awotoye, Olufisayo Adebola

    2017-02-01

    In this paper, inhibition of microbes inducing microbiologically-influenced-corrosion (MIC) of metals by Tectona grandis based Fe (iron) Nanoparticle material was investigated. For this, extract was obtained from the leaf of Tectona grandis and this was employed as precursor for synthesizing the Fe-nanoparticle material. From this, the synthesized plant extract based nanoparticle material was characterized using scanning electron microscopy and energy dispersive spectroscopy (SEM+EDS) instrument. The developed Fe bio-nanoparticle material was then employed for sensitivity and/or resistance study application against different strains of microbes that are known to induce microbiologically-influenced-corrosion, in metallic materials, and for this, microbial growth inhibition effect was compared with that from a commercial antibiotic employed as control. Results showed that the Tectona grandis based Fe-nanoparticle exhibited good inhibition effects on the growth of many of the MIC inducing microbes investigated. Sensitivity measures of zone of inhibition against the growth of MIC inducing microbial strains either outperformed or compares well with that obtained from the commercial antibiotic control, in the study. These results indicate positive prospect on the suitability of Fe bio-nanoparticle for corrosion inhibition applications for the protection of metals against microbiological corrosion influencing environment.

  10. Establishing quality control ranges for antimicrobial susceptibility testing of Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus: a cornerstone to develop reference strains for Korean clinical microbiology laboratories.

    PubMed

    Hong, Sung Kuk; Choi, Seung Jun; Shin, Saeam; Lee, Wonmok; Pinto, Naina; Shin, Nari; Lee, Kwangjun; Hong, Seong Geun; Kim, Young Ah; Lee, Hyukmin; Kim, Heejung; Song, Wonkeun; Lee, Sun Hwa; Yong, Dongeun; Lee, Kyungwon; Chong, Yunsop

    2015-11-01

    Quality control (QC) processes are being performed in the majority of clinical microbiology laboratories to ensure the performance of microbial identification and antimicrobial susceptibility testing by using ATCC strains. To obtain these ATCC strains, some inconveniences are encountered concerning the purchase cost of the strains and the shipping time required. This study was focused on constructing a database of reference strains for QC processes using domestic bacterial strains, concentrating primarily on antimicrobial susceptibility testing. Three strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) that showed legible results in preliminary testing were selected. The minimal inhibitory concentrations (MICs) and zone diameters (ZDs) of eight antimicrobials for each strain were determined according to the CLSI M23. All resulting MIC and ZD ranges included at least 95% of the data. The ZD QC ranges obtained by using the CLSI method were less than 12 mm, and the MIC QC ranges extended no more than five dilutions. This study is a preliminary attempt to construct a bank of Korean QC strains. With further studies, a positive outcome toward cost and time reduction can be anticipated.

  11. Statistics for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater runoff best management practices (BMPs)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The U.S. Geological Survey (USGS) developed the Stochastic Empirical Loading and Dilution Model (SELDM) in cooperation with the Federal Highway Administration (FHWA) to indicate the risk for stormwater concentrations, flows, and loads to be above user-selected water-quality goals and the potential effectiveness of mitigation measures to reduce such risks. SELDM models the potential effect of mitigation measures by using Monte Carlo methods with statistics that approximate the net effects of structural and nonstructural best management practices (BMPs). In this report, structural BMPs are defined as the components of the drainage pathway between the source of runoff and a stormwater discharge location that affect the volume, timing, or quality of runoff. SELDM uses a simple stochastic statistical model of BMP performance to develop planning-level estimates of runoff-event characteristics. This statistical approach can be used to represent a single BMP or an assemblage of BMPs. The SELDM BMP-treatment module has provisions for stochastic modeling of three stormwater treatments: volume reduction, hydrograph extension, and water-quality treatment. In SELDM, these three treatment variables are modeled by using the trapezoidal distribution and the rank correlation with the associated highway-runoff variables. This report describes methods for calculating the trapezoidal-distribution statistics and rank correlation coefficients for stochastic modeling of volume reduction, hydrograph extension, and water-quality treatment by structural stormwater BMPs and provides the calculated values for these variables. This report also provides robust methods for estimating the minimum irreducible concentration (MIC), which is the lowest expected effluent concentration from a particular BMP site or a class of BMPs. These statistics are different from the statistics commonly used to characterize or compare BMPs. They are designed to provide a stochastic transfer function to approximate the quantity, duration, and quality of BMP effluent given the associated inflow values for a population of storm events. A database application and several spreadsheet tools are included in the digital media accompanying this report for further documentation of methods and for future use. In this study, analyses were done with data extracted from a modified copy of the January 2012 version of International Stormwater Best Management Practices Database, designated herein as the January 2012a version. Statistics for volume reduction, hydrograph extension, and water-quality treatment were developed with selected data. Sufficient data were available to estimate statistics for 5 to 10 BMP categories by using data from 40 to more than 165 monitoring sites. Water-quality treatment statistics were developed for 13 runoff-quality constituents commonly measured in highway and urban runoff studies including turbidity, sediment and solids; nutrients; total metals; organic carbon; and fecal coliforms. The medians of the best-fit statistics for each category were selected to construct generalized cumulative distribution functions for the three treatment variables. For volume reduction and hydrograph extension, interpretation of available data indicates that selection of a Spearman’s rho value that is the average of the median and maximum values for the BMP category may help generate realistic simulation results in SELDM. The median rho value may be selected to help generate realistic simulation results for water-quality treatment variables. MIC statistics were developed for 12 runoff-quality constituents commonly measured in highway and urban runoff studies by using data from 11 BMP categories and more than 167 monitoring sites. Four statistical techniques were applied for estimating MIC values with monitoring data from each site. These techniques produce a range of lower-bound estimates for each site. Four MIC estimators are proposed as alternatives for selecting a value from among the estimates from multiple sites. Correlation analysis indicates that the MIC estimates from multiple sites were weakly correlated with the geometric mean of inflow values, which indicates that there may be a qualitative or semiquantitative link between the inflow quality and the MIC. Correlations probably are weak because the MIC is influenced by the inflow water quality and the capability of each individual BMP site to reduce inflow concentrations.

  12. Growth Inhibition and Morphological Alterations of Trichophyton Rubrum Induced by Essential oil from Cymbopogon Winterianus Jowitt Ex Bor

    PubMed Central

    de Oliveira Pereira, Fillipe; Alves Wanderley, Paulo; Cavalcanti Viana, Fernando Antônio; Baltazar de Lima, Rita; Barbosa de Sousa, Frederico; de Oliveira Lima, Edeltrudes

    2011-01-01

    Trichophyton rubrum is one of the most common fungi causer of dermatophytosis, mycosis that affect humans and animals around the world. Researches aiming new products with antifungal activity become necessary to overcome difficulties on treatment of these infections. Accordingly, this study aimed to investigate the antifungal activity of essential oil from Cymbopogon winterianus against the dermatophyte T. rubrum. The antifungal screening was performed by solid medium diffusion method with 16 T. rubrum strains, minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were determined using the microdilution method. The effects on mycelial dry weight and morphology were also observed. Screening showed essential oil in natura inhibited all the tested strains, with inhibition zones between 24-28 mm diameter. MIC50 and MIC90 values of the essential oil were 312 μg/mL for nearly all the essayed strains (93.75 %) while the MFC50 and MFC90 values were about eight times higher than MIC for all tested strains. All tested essential oil concentrations managed to inhibit strongly the mycelium development. Main morphological changes on the fungal strains observed under light microscopy, which were provided by the essential oil include loss of conidiation, alterations concerning form and pigmentation of hyphae. In the oil presence, colonies showed folds, cream color and slightly darker than the control, pigment production was absent on the reverse and with evident folds. It is concluded that C. winterianus essential oil showed activity against T. rubrum. Therefore, it could be known as potential antifungal compound especially for protection against dermatophytosis. PMID:24031626

  13. Ceftaroline efficacy against high-MIC clinical Staphylococcus aureus isolates in an in vitro hollow-fibre infection model.

    PubMed

    Singh, Renu; Almutairi, Mashal; Alm, Richard A; Lahiri, Sushmita D; San Martin, Maryann; Chen, April; Ambler, Jane E

    2017-10-01

    The current CLSI and EUCAST clinical susceptible breakpoint for 600 mg q12h dosing of ceftaroline (active metabolite of ceftaroline fosamil) for Staphylococcus aureus is ≤1 mg/L. Efficacy data for S. aureus infections with ceftaroline MIC ≥2 mg/L are limited. This study was designed to generate in-depth pharmacokinetic/pharmacodynamics (PK/PD) understanding of S. aureus isolates inhibited by ≥ 2 mg/L ceftaroline using an in vitro hollow-fibre infection model (HFIM). The PK/PD target of ceftaroline was investigated against 12 diverse characterized clinical MRSA isolates with ceftaroline MICs of 2 or 4 mg/L using q8h dosing for 24 h. These isolates carried substitutions in the penicillin-binding domain (PBD) and/or the non-PBD. Additionally, PD responses of mutants with ceftaroline MICs ranging from 2 to 32 mg/L were evaluated against the mean 600 mg q8h human-simulated dose over 72 h. The mean stasis, 1 log10-kill and 2 log10-kill PK/PD targets were 29%, 32% and 35% f T>MIC, respectively. In addition, these data suggest that the PK/PD target for MRSA is not impacted by the presence of substitutions in the non-PBD commonly found in isolates with ceftaroline MIC values of ≤ 2 mg/L. HFIM studies with 600 mg q8h dosing demonstrated a sustained long-term bacterial suppression for isolates with ceftaroline MICs of 2 and 4 mg/L. Overall, efficacy was demonstrated against a diverse collection of clinical isolates using HFIM indicating the utility of 600 mg ceftaroline fosamil for S. aureus isolates with MIC ≤4 mg/L using q8h dosing. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  14. Chemical characterisation and biological activity of leaf essential oils obtained from Pistacia terebinthus growing wild in Tunisia and Sardinia Island.

    PubMed

    Piras, Alessandra; Marzouki, Hanen; Maxia, Andrea; Marengo, Arianna; Porcedda, Silvia; Falconieri, Danilo; Gonçalves, Maria José; Cavaleiro, Carlos; Salgueiro, Ligia

    2017-11-01

    In the present work the chemical compositions, measured by GC and GC-MS, of the essential oils obtained by hydrodistillation from leaves of Pistacia terebinthus collected in Bizerte (Tunisia) and Baunei (Italy) are reported. Both essential oils possessed high content of monoterpene hydrocarbons (86.3% and 90.9%, respectively), being α-pinene (62.4 vs. 35.0)%, camphene (3.0 vs. 2.4)%, β-pinene (12.1 vs. 4.5)%, terpinolene (1.7 vs. 35.2)% and β-phellandrene (3.8 vs. 4.5)% the main components. The Tunisian essential oil exhibited higher antifungal activity than the Italian one. Cryptococcus neoformans and the majority of dermatophyte strains showed more sensitivity to the Tunisian oil, when compared to Candida strains, in particular Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum, with MIC and MLC values in the range (0.16-0.32) μL/mL. The results obtained support the use of the oil from Tunisia for the treatment of dermatophytosis.

  15. 1-[(3-Aryloxy-3-aryl)propyl]-1H-imidazoles, new imidazoles with potent activity against Candida albicans and dermatophytes. Synthesis, structure-activity relationship, and molecular modeling studies.

    PubMed

    La Regina, Giuseppe; D'Auria, Felicia Diodata; Tafi, Andrea; Piscitelli, Francesco; Olla, Stefania; Caporuscio, Fabiana; Nencioni, Lucia; Cirilli, Roberto; La Torre, Francesco; De Melo, Nadja Rodrigues; Kelly, Steven L; Lamb, David C; Artico, Marino; Botta, Maurizio; Palamara, Anna Teresa; Silvestri, Romano

    2008-07-10

    New 1-[(3-aryloxy-3-aryl)propyl]-1 H-imidazoles were synthesized and evaluated against Candida albicans and dermatophytes in order to develop structure-activity relationships (SARs). Against C. albicans the new imidazoles showed minimal inhibitory concentrations (MICs) comparable to those of ketoconazole, miconazole, and econazole, and were more potent than fluconazole. Several derivatives ( 10, 12, 14, 18- 20, 24, 28, 29, 30, and 34) turned out to be potent inhibitors of C. albicans strains resistant to fluconazole, with MIC values less than 10 microg/mL. Against dermatophytes strains, compounds 20, 25, and 33 (MIC

  16. In Vitro Antimicrobial and Modulatory Activity of the Natural Products Silymarin and Silibinin

    PubMed Central

    Rakelly de Oliveira, Dayanne; Relison Tintino, Saulo; Morais Braga, Maria Flaviana Bezerra; Boligon, Aline Augusti; Linde Athayde, Margareth; Douglas Melo Coutinho, Henrique; de Menezes, Irwin Rose Alencar; Fachinetto, Roselei

    2015-01-01

    Silymarin is a standardized extract from the dried seeds of the milk thistle (Silybum marianum L. Gaertn.) clinically used as an antihepatotoxic agent. The aim of this study was to investigate the antibacterial and antifungal activity of silymarin and its major constituent (silibinin) against different microbial strains and their modulatory effect on drugs utilized in clinical practice. Silymarin demonstrated antimicrobial activity of little significance against the bacterial strains tested, with MIC (minimum inhibitory concentration) values of 512 µg/mL. Meanwhile, silibinin showed significant activity against Escherichia coli with a MIC of 64 µg/mL. The results for the antifungal activity of silymarin and silibinin demonstrated a MIC of 1024 µg/mL for all strains. Silymarin and silibinin appear to have promising potential, showing synergistic properties when combined with antibacterial drugs, which should prompt further studies along this line. PMID:25866771

  17. Application of Origanum majorana L. essential oil as an antimicrobial agent in sausage.

    PubMed

    Busatta, C; Vidal, R S; Popiolski, A S; Mossi, A J; Dariva, C; Rodrigues, M R A; Corazza, F C; Corazza, M L; Vladimir Oliveira, J; Cansian, R L

    2008-02-01

    This work reports on the antimicrobial activity in fresh sausage of marjoram (Origanum majorana L.) essential oil against several species of bacteria. The in vitro minimum inhibitory concentration (MIC) was determined for 10 selected aerobic heterotrophic bacterial species. The antimicrobial activity of distinct concentrations of the essential oil based on the highest MIC value was tested in a food system comprising fresh sausage. Batch food samples were also inoculated with a fixed concentration of Escherichia coli and the time course of the product was evaluated with respect to the action of the different concentrations of essential oil. Results showed that addition of marjoram essential oil to fresh sausage exerted a bacteriostatic effect at oil concentrations lower than the MIC, while a bactericidal effect was observed at higher oil concentrations which also caused alterations in the taste of the product.

  18. The role of outer membrane in Serratia marcescens intrinsic resistance to antibiotics.

    PubMed

    Sánchez, L; Ruiz, N; Leranoz, S; Viñas, M; Puig, M

    1997-09-01

    Three different porins from Serratia marcescens were described. They were named Omp1, Omp2 and Omp3 and their molecular weights were 42, 40 and 39 kDa respectively. Omp2 and Omp3 showed osmoregulation and thermoregulation in a similar way to OmpC and OmpF of Escherichia coli. Permeability coefficients of the outer membrane of this species were calculated following the Zimmermann and Rosselet method. P values were similar to those obtained in Escherichia coli, which suggests that the chromosomal beta-lactamase would play a major role in the resistance of Serratia marcescens to beta-lactam antibiotics. Both MIC values and permeabilities were modified by salycilates and acetylsalycilate. Synergism between the outer membrane and the beta-lactamase was also evaluated. When bacteria grew in the presence of a beta-lactam in the medium, the beta-lactamase accounted for most of the resistance.

  19. Essential oil from the leaves of Annona vepretorum: chemical composition and bioactivity.

    PubMed

    Costa, Emmanoel Vilaça; Dutra, Lívia Macedo; Nogueira, Paulo Cesar de Lima; Moraes, Valéria Regina de Souza; Salvador, Marcos José; Ribeiro, Luis Henrique Gonzaga; Gadelha, Fernanda Ramos

    2012-02-01

    The essential oil from the leaves of Annona vepretorun was obtained by hydrodistillation using a Clevenger-type apparatus and analyzed by GC-MS and GC-FID. Eighteen compounds representing 98.1% of the crude essential oil were identified. The major compounds identified were bicyclogermacrene (43.7%), spathulenol (11.4%), alpha-felandrene (10.0%), alpha-pinene (7.1%), (E)-beta-ocimene (6.8%), germacrene D (5.8%), and p-cymene (4.2%). The trypanocidal activity against Trypanosoma cruzi epimastigote forms, as well as, the antimicrobial and antioxidant proprieties was investigated. The essential oil showed a potent trypanocidal activity with IC50 value of 31.9 +/-1.3 microg x mL(-1). For antimicrobial activity, the best result was observed against Candida tropicalis with a MIC value of 100 microg x mL(-1). For antioxidant capacity the essential oil showed weak activity.

  20. In vitro activity of novel anti-MRSA cephalosporins and comparator antimicrobial agents against staphylococci involved in prosthetic joint infections.

    PubMed

    Isnard, Christophe; Dhalluin, Anne; Malandain, Damasie; Bruey, Quentin; Auzou, Michel; Michon, Jocelyn; Giard, Jean-Christophe; Guérin, François; Cattoir, Vincent

    2018-02-05

    Ceftaroline and ceftobiprole are new parenteral cephalosporins with potent activity against methicillin-resistant (MR) staphylococci, which are the leading cause of prosthetic joint infections (PJIs). The aim of this study was to determine and compare the in vitro activities of both molecules against staphylococcal isolates recovered from clinically documented PJIs. A collection of 200 non-duplicate clinical isolates [100 Staphylococcus aureus and 100 coagulase-negative staphylococci (CoNS), including 19 and 27 MR isolates, respectively] was studied. Minimum inhibitory concentrations (MICs) of oxacillin, ceftaroline, ceftobiprole, vancomycin, teicoplanin, clindamycin, levofloxacin, linezolid and daptomycin were determined by the broth microdilution method. Bactericidal activity (at 4× MIC) of ceftaroline, ceftobiprole, vancomycin, teicoplanin, linezolid and daptomycin was assessed by time-kill assay. Among the S. aureus isolates, 100% were susceptible to ceftaroline (MIC 50/90 , 0.25/0.5μg/mL) and 98% were susceptible to ceftobiprole (MIC 50/90 , 0.5/1μg/mL), regardless of their methicillin resistance. The two ceftobiprole-non-susceptible strains (including one MRSA) showed MICs at 4mg/L. Against CoNS isolates, ceftaroline and ceftobiprole exhibited in vitro potency with MIC 50/90 values at 0.06/0.25μg/mL and 0.25/1μg/mL, respectively. At 4× MIC, ceftaroline and ceftobiprole showed rapid and marked bactericidal activity against both S. aureus and CoNS (after 24/12h and 12/6h of incubation, respectively), whilst none of the other molecules tested had a bactericidal effect by 24h. This study showed that ceftaroline and ceftobiprole have excellent in vitro activity against clinical isolates of staphylococci involved in PJIs. These molecules may therefore represent promising alternatives for the treatment of such infections. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.

  1. Pheno- and genotypic analysis of antimicrobial resistance properties of Yersinia ruckeri from fish.

    PubMed

    Huang, Yidan; Michael, Geovana Brenner; Becker, Roswitha; Kaspar, Heike; Mankertz, Joachim; Schwarz, Stefan; Runge, Martin; Steinhagen, Dieter

    2014-07-16

    Enteric red-mouth disease, caused by Yersinia ruckeri, is an important disease in rainbow trout aquaculture. Antimicrobial agents are frequently used in aquaculture, thereby causing a selective pressure on bacteria from aquatic organisms under which they may develop resistance to antimicrobial agents. In this study, the distribution of minimal inhibitory concentrations (MICs) of antimicrobial agents for 83 clinical and non-clinical epidemiologically unrelated Y. ruckeri isolates from north west Germany was determined. Antimicrobial susceptibility was conducted by broth microdilution at 22 ± 2°C for 24, 28 and 48 h. Incubation for 24h at 22 ± 2°C appeared to be suitable for susceptibility testing of Y. ruckeri. In contrast to other antimicrobial agents tested, enrofloxacin and nalidixic acid showed a bimodal distribution of MICs, with one subpopulation showing lower MICs for enrofloxacin (0.008-0.015 μg/mL) and nalidixic acid (0.25-0.5 μg/mL) and another subpopulation exhibiting elevated MICs of 0.06-0.25 and 8-64 μg/mL, respectively. Isolates showing elevated MICs revealed single amino acid substitutions in the quinolone resistance-determining region (QRDR) of the GyrA protein at positions 83 (Ser83-Arg or -Ile) or 87 (Asn87-Tyr), which raised the MIC values 8- to 32-fold for enrofloxacin or 32- to 128-fold for nalidixic acid. An isolate showing elevated MICs for sulfonamides and trimethoprim harbored a ∼ 8.9 kb plasmid, which carried the genes sul2, strB and a dfrA14 gene cassette integrated into the strA gene. These observations showed that Y. ruckeri isolates were able to develop mutations that reduce their susceptibility to (fluoro)quinolones and to acquire plasmid-borne resistance genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Time efficient 124I-PET volumetry in benign thyroid disorders by automatic isocontour procedures: mathematic adjustment using manual contoured measurements in low-dose CT.

    PubMed

    Freesmeyer, Martin; Kühnel, Christian; Westphal, Julian G

    2015-01-01

    Benign thyroid diseases are widely common in western societies. However, the volumetry of the thyroid gland, especially when enlarged or abnormally formed, proves to be a challenge in clinical routine. The aim of this study was to develop a simple and rapid threshold-based isocontour extraction method for thyroid volumetry from (124)I-PET/CT data in patients scheduled for radioactive iodine therapy. PET/CT data from 45 patients were analysed 30 h after 1 MBq (124)I administration. Anatomical reference volume was calculated using manually contoured data from low-dose CT images of the neck (MC). In addition, we applied an automatic isocontour extraction method (IC0.2/1.0), with two different threshold values (0.2 and 1.0 kBq/ml), for volumetry of the PET data-set. IC0.2/1.0 shape data that showed significant variation from MC data were excluded. Subsequently, a mathematical correlation using a model of linear regression with multiple variables and step-wise elimination (mIC0.2/1.0), between IC0.2/1.0 and MC, was established. Data from 41 patients (IC0.2), and 32 patients (IC1.0) were analysed. The mathematically calculated volume, mIC, showed a median deviation from the reference (MC), of ±9 % (1-54 %) for mIC0.2 and of ±8.2 % (1-50 %) for mIC1.0 CONCLUSION: Contour extraction with both, mIC1.0 and mIC0.2 gave rapid and reliable results. However, mIC0.2 can be applied to significantly more patients (>90 %) and is, therefore, deemed to be more suitable for clinical routine, keeping in mind the potential advantages of using (124)I-PET/CT for the preparation of patients scheduled for radioactive iodine therapy.

  3. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes

    PubMed Central

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL-1 and 125.00 µg mL-1, respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes. PMID:27226881

  4. Inhibitory effect of Zataria multiflora Boiss. essential oil, alone and in combination with monolaurin, on Listeria monocytogenes.

    PubMed

    Raeisi, Mojtaba; Tajik, Hossein; Razavi Rohani, Seyed Mehdi; Tepe, Bektas; Kiani, Hossein; Khoshbakht, Rahem; Shirzad Aski, Hesamaddin; Tadrisi, Hamed

    2016-01-01

    Listeria monocytogenes is one of the major causes of infections in developing countries. In this study, chemical composition and anti-listerial effect of the essential oil of Zataria multiflora Boiss. alone and in combination with monolaurin were evaluated at different pH values (5, 6, and 7) and temperatures (5 ˚C and 30 ˚C). Chemical composition of Zataria multiflora Boiss. essential oil was evaluated by gas chromatography-mass spectrometry (GC-MS) analysis. Minimum inhibitory concentration (MIC) of the essential oil and monolaurin were determined using microbroth dilution method and the interactions of essential oil and monolaurin were determined by the evaluation of fractional inhibitory concentrations (FIC) index. Carvacrol (63.20%) and thymol (15.10%) were found as the main components of the essential oil. The MIC values of the oil and monolaurin at pH 7 and 30 ˚C were measured as 312.50 µg mL(-1) and 125.00 µg mL(-1), respectively. Combination of monolaurin and Z. multiflora essential oil were found to act synergistically (FIC index < 0.5) against L. monocytogenes under different pH and temperature conditions. Decrease in the pH and temperature values have increased the anti-listerial activity of monolaurin and the essential oil. The lowest MIC value of monolaurin and essential oil was observed at pH 5 and 5 ˚C. According to our results, the oil alone or in combination with monolaurin at low pH and temperature conditions showed a promising inhibitory effect on L. monocytogenes.

  5. Influence of culture site-specific MIC distributions on the pharmacokinetic and pharmacodynamic properties of piperacillin/tazobactam and piperacillin: a data analysis.

    PubMed

    Frei, Christopher R; Hampton, Shanna L; Burgess, David S

    2006-07-01

    Investigators who perform pharmacokinetic/pharmacodynamic (PK-PD) modeling with Monte Carlo simulation have historically not stratified microbiological data by culture site. This lack of stratification might be problematic if susceptibility patterns differ among sites and might lead to differences in PK-PD. This study compared the PK-PD of 2 antimicrobial regimens against 5 gram-negative bacterial species form 3 culture sites. This data analysis was performed at the Department of Pharmacology, The University of Texas Health Science Center, San Antonio, Texas. Blood, pulmonary (ie, bronchial, endotracheal, lung, respiratory, sputum, and tracheal secretions), and wound distributions of MICs were extracted from the 2002 Intensive Care Unit Surveillance System database. Bacteria included Acinetobacter baumannii, Enterobacter cloacae, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The PK properties of piperacillin/tazobactam (3.375 g every 4 hours) and piperacillin (3 g every 4 hours) were obtained from studies in healthy volunteers. Monte Carlo simulation was used in 10,000 patients for each antimicrobial-bacteria-culture site combination. The cumulative fraction of response (CFR) for a free percentage time above the MIC of > or =50% was determined for each combination, and a clinically significant difference was defined a priori as > or =10%. Data from 2408 pulmonary, 490 blood, and 242 wound isolates were included. For piperacillin/tazobactam, the CFR varied <10% by culture site in all 5 bacterial species. Site-specific differences were noted in MIC50 for piperacillin versus E cloacae and E coli and MIC90 for piperacillin/tazobactam versus K pneumoniae and P aeruginosa. Likewise, for piperacillin, the CFR was similar among the 3 culture sites for P aeruginosa. However, the CFR for piperacillin varied by > or =10% for A baumannii (blood > wound), E cloacae (pulmonary > blood), E coli (pulmonary and blood > wound), and K pneumoniae (wound > blood). The PK-PD models based on PK properties found in healthy humans and site-specific MIC distributions in this study suggest that for piperacillin, culture-site differences subsequently resulted in CFR differences that exceeded a predetermined level of clinical significance. Furthermore, these data suggest that traditional reporting strategies for microbiological data (ie, MIC50 and MIC90) might fail to adequately characterize the MIC population.

  6. SYNTHESIS AND BIOLOGICAL EVALUATION OF N-(SUBSTITUTED PHENYL)-2-(5H-[1,2,4]TRIAZINO[5,6-b]INDOL-3-YLSULFANYL)ACETAMIDES AS ANTIMICROBIAL, ANTIDEPRESSANT AND ANTICONVULSANT AGENTS.

    PubMed

    Shruthi, N; Poojary, Boja; Kumar, Vasantha; Prathibha, A; Hussain, Mumtaz Mohammed; Revanasiddappa, B C; Joshi, Himanshu

    2015-01-01

    A new series of N-Aryl-2-(5H-[1,2,4]triazino[5,6-b]indol-3-ylsulfanyl)acetamides were synthesized by condensation of tricyclic compound 2,5-dihydro-3H-[1,2,4]triazino[5,6-b]indole-3-thione with chloro N-phenylacetamides. The tricyclic compound was obtained by condensation of Isatin with thiosemicarbazide. Chloro N-phenylacetamides were obtained from different substituted anilines. Their structures were characterized by IR, 1H NMR, LC-MS and elemental analyses. Newly synthesized compounds were screened for antimicrobial, antidepressant and anticonvulsant activities. Preliminary results indicated that most of the compounds showed lesser MIC value than the standard drug used when tested for antimicrobial activity. Some of the compounds were endowed with very good antidepressant and anticonvulsant activity.

  7. influence of TEM-1 beta-lactamase on the pharmacodynamic activity of simulated total versus free-drug serum concentrations of cefditoren (400 milligrams) versus amoxicillin-clavulanic acid (2,000/125 milligrams) against Haemophilus influenzae strains exhibiting an N526K mutation in the ftsI gene.

    PubMed

    Torrico, M; Aguilar, L; González, N; Giménez, M J; Echeverría, O; Cafini, F; Sevillano, D; Alou, L; Coronel, P; Prieto, J

    2007-10-01

    The aim of this study was to explore bactericidal activity of total and free serum simulated concentrations after the oral administration of cefditoren (400 mg, twice daily [bid]) versus the oral administration of amoxicillin-clavulanic acid extended release formulation (2,000/125 mg bid) against Haemophilus influenzae. A computerized pharmacodynamic simulation was performed, and colony counts and beta-lactamase activity were determined over 48 h. Three strains were used: ampicillin-susceptible, beta-lactamase-negative ampicillin-resistant (BLNAR) (also resistant to amoxicillin-clavulanic acid) and beta-lactamase-positive amoxicillin-clavulanic acid-resistant (BLPACR) strains, with cefditoren MICs of < or =0.12 microg/ml and amoxicillin-clavulanic acid MICs of 2, 8, and 8 microg/ml, respectively. Against the ampicillin-susceptible and BLNAR strains, bactericidal activity (> or =3 log(10) reduction) was obtained from 6 h on with either total and free cefditoren or amoxicillin-clavulanic acid. Against the BLPACR strain, free cefditoren showed bactericidal activity from 8 h on. In amoxicillin-clavulanic acid simulations the increase in colony counts from 4 h on occurred in parallel with the increase in beta-lactamase activity for the BLPACR strain. Since both BLNAR and BLPACR strains exhibited the same MIC, this was due to the significantly lower (P < or = 0.012) amoxicillin concentrations from 4 h on in simulations with beta-lactamase positive versus negative strains, thus decreasing the time above MIC (T>MIC). From a pharmacodynamic point of view, the theoretical amoxicillin T>MIC against strains with elevated ampicillin/amoxicillin-clavulanic acid MICs should be considered with caution since the presence of beta-lactamase inactivates the antibiotic, thus rendering inaccurate theoretical calculations. The experimental bactericidal activity of cefditoren is maintained over the dosing interval regardless of the presence of a mutation in the ftsI gene or beta-lactamase production.

  8. Clinical resistance and decreased susceptibility in Streptococcus suis isolates from clinically healthy fattening pigs.

    PubMed

    Callens, Bénédicte F; Haesebrouck, Freddy; Maes, Dominiek; Butaye, Patrick; Dewulf, Jeroen; Boyen, Filip

    2013-04-01

    Streptococcus suis (S. suis) has often been reported as an important swine pathogen and is considered as a new emerging zoonotic agent. Consequently, it is important to be informed on its susceptibility to antimicrobial agents. In the current study, the Minimum Inhibitory Concentration (MIC) population distribution of nine antimicrobial agents has been determined for nasal S. suis strains, isolated from healthy pigs at the end of the fattening period from 50 closed or semiclosed pig herds. The aim of the study was to report resistance based on both clinical breakpoints (clinical resistance percentage) and epidemiological cutoff values (non-wild-type percentage). Non-wild-type percentages were high for tetracycline (98%), lincomycin (92%), tilmicosin (72%), erythromycin (70%), tylosin (66%), and low for florfenicol (0%) and enrofloxacin (0.3%). Clinical resistance percentages were high for tetracycline (95%), erythromycin (66%), tylosin (66%), and low for florfenicol (0.3%) and enrofloxacin (0.3%). For tiamulin, for which no clinical breakpoint is available, 57% of the isolates did not belong to the wild-type population. Clinical resistance and non-wild-type percentages differed substantially for penicillin. Only 1% of the tested S. suis strains was considered as clinically resistant, whereas 47% of the strains showed acquired resistance when epidemiological cutoff values were used. In conclusion, MIC values for penicillin are gradually increasing, compared to previous reports, although pigs infected with strains showing higher MICs may still respond to treatment with penicillin. The high rate of acquired resistance against tiamulin has not been reported before. Results from this study clearly demonstrate that the use of different interpretive criteria contributes to the extent of differences in reported antimicrobial resistance results. The early detection of small changes in the MIC population distribution of isolates, while clinical failure may not yet be observed, provides the opportunity to implement appropriate risk management steps.

  9. A diterpenoid taxodone from Metasequoia glyptostroboides with antimycotic potential against clinical isolates of Candida species.

    PubMed

    Bajpai, V K; Park, Y-H; Kang, S C

    2015-03-01

    The increasing importance of clinical isolates of Candida species and emerging resistance of Candida species to current synthetic antifungal agents have stimulated the search for safer and more effective alternative drugs from natural sources. This study was directed towards exploring the antimycotic potential of a diterpenoid compound taxodone isolated from Metasequoia glyptostroboides against pathogenic isolates of Candida species. Antimycotic efficacy of taxodone was evaluated by disc diffusion assay, determination of minimum inhibitory (MIC) and minimum fungicidal (MFC) concentrations, and cell viability assay. To confirm a partial antimycotic mode of action of taxodone, the efficacy of taxodone was determined by measuring the release of 260 nm absorbing materials from the selected Candida species as compared to control. The taxodone at the concentration of 400 μg/disc displayed potential antimycotic effect against the tested clinical and pathogenic isolates of Candida species as diameters of zones of inhibitions, which were found in the range of 11 ± 0.0 to 12.6 ± 0.5mm. The MIC and MFC values of taxodone against the tested clinical isolates were found in the range of 250 to 1000 and 500 to 2000μ g/mL, respectively. On the other hand, the MIC and MFC values of positive control (amphotericin B) against the tested Candida isolates were found in the range of 62.5 to 250 and 500 to 2000 μg/mL. On the viable counts of the tested fungal isolates, the taxodone exerted significant antimycotic effect. Elaborative study of partial mode of action conducted onto the release of 260nm materials (DNA and RNA) revealed potential detrimental effect of taxodone on the membrane integrity of the tested pathogens at MIC concentration. With respect to the antimycotic effect of taxodone against pathogenic and clinical isolates of Candida species, it might be confirmed that bioactive compound taxodone present in M. glyptostroboides holds therapeutic value of medicinal significance. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. In Vitro Susceptibility of Malassezia pachydermatis Isolates from Canine Skin with Atopic Dermatitis to Ketoconazole and Itraconazole in East Asia

    PubMed Central

    WATANABE, Shion; KOIKE, Anna; KANO, Rui; NAGATA, Masahiko; CHEN, Charles; HWANG, Cheol-Yong; HASEGAWA, Atsuhiko; KAMATA, Hiroshi

    2013-01-01

    ABSTRACT Topical or oral azole antifungals are commonly used in canine atopic dermatitis (AD), as the lipophilic yeast Malassezia pachydermatis exacerbates canine AD. To examine whether canine AD lesions harbor azole-resistant M. pachydermatis isolates in East Asia, we investigated the in vitro susceptibility of M. pachydermatis isolates to ketoconazole (KTZ) and itraconazole (ITZ) obtained from AD lesions of canines in Japan, Korea and Taiwan. The minimum inhibitory concentrations (MICs) of KTZ and ITZ were measured by the E-test using Sabouraud dextrose agar with 0.5% Tween 40. The MICs of KTZ and ITZ for isolates from canines with AD were significantly higher than the MICs for isolates from healthy canines. Our findings suggested that the clinical isolates from canine AD skin lesions were less susceptible to azoles than those from normal canine skin in East Asia. PMID:24334863

  11. In vitro susceptibility of Malassezia pachydermatis isolates from canine skin with atopic dermatitis to ketoconazole and itraconazole in East Asia.

    PubMed

    Watanabe, Shion; Koike, Anna; Kano, Rui; Nagata, Masahiko; Chen, Charles; Hwang, Cheol-Yong; Hasegawa, Atsuhiko; Kamata, Hiroshi

    2014-04-01

    Topical or oral azole antifungals are commonly used in canine atopic dermatitis (AD), as the lipophilic yeast Malassezia pachydermatis exacerbates canine AD. To examine whether canine AD lesions harbor azole-resistant M. pachydermatis isolates in East Asia, we investigated the in vitro susceptibility of M. pachydermatis isolates to ketoconazole (KTZ) and itraconazole (ITZ) obtained from AD lesions of canines in Japan, Korea and Taiwan. The minimum inhibitory concentrations (MICs) of KTZ and ITZ were measured by the E-test using Sabouraud dextrose agar with 0.5% Tween 40. The MICs of KTZ and ITZ for isolates from canines with AD were significantly higher than the MICs for isolates from healthy canines. Our findings suggested that the clinical isolates from canine AD skin lesions were less susceptible to azoles than those from normal canine skin in East Asia.

  12. Tiamulin resistance in porcine Brachyspira pilosicoli isolates.

    PubMed

    Pringle, M; Landén, A; Franklin, A

    2006-02-01

    There are few studies on antimicrobial susceptibility of Brachyspira pilosicoli, therefore this study was performed to investigate the situation among isolates from pigs. The tiamulin and tylosin susceptibility was determined by broth dilution for 93 and 86 porcine B. pilosicoli isolates, respectively. The isolates came from clinical samples taken in Swedish pig herds during the years 2002 and 2003. The tylosin minimal inhibitory concentration (MIC) was >16 microg/ml for 50% (n=43) of the isolates tested. A tiamulin MIC >2 microg/ml was obtained for 14% (n=13) of the isolates and these were also tested against doxycycline, salinomycin, valnemulin, lincomycin and aivlosin. For these isolates the susceptibility to salinomycin and doxycycline was high but the MICs for aivlosin varied. The relationship between the 13 tiamulin resistant isolates was analyzed by pulsed-field gel electrophoresis (PFGE). Among the 13 isolates 10 different PFGE patterns were identified.

  13. In Vitro Activities of Five Antifungal Drugs Against Opportunistic Agents of Aspergillus Nigri Complex.

    PubMed

    Badali, Hamid; Fakhim, Hamed; Zarei, Fereshteh; Nabili, Mojtaba; Vaezi, Afsane; Poorzad, Nafiseh; Dolatabadi, Somayeh; Mirhendi, Hossein

    2016-04-01

    Black aspergilli, particularly Aspergillus niger and A. tubingensis, are the most common etiological agents of otomycosis followed by onychomycosis, pulmonary aspergillosis and aspergilloma. However, so far there is no systematic study on their antifungal susceptibility profiles. A collection of 124 clinical and environmental species of black aspergilli consisted of A. niger, A. tubingensis, A. uvarum. A. acidus and A. sydowii were verified by DNA sequencing of the partial β-tubulin gene. MICs of amphotericin B, itraconazole, voriconazole, posaconazole, and MECs of caspofungin were performed based on CLSI M38-A2. Posaconazole and caspofungin had the lowest MIC range (0.016-0.125 µg/ml and 0.008-0.031 µg/ml, respectively), followed by amphotericin B (0.25-4 µg/ml), voriconazole (0.125-16 µg/ml) and itraconazole (0.25 to >16) in an increasing order. Some strains of A. niger showed high MIC value for itraconazole and voriconazole (>16 µg/ml), in contrast only environmental isolates of A. tubingensis had high itraconazole MICs (>16 µg/ml). These results confirm that posaconazole and caspofungin are potential drugs for treatment of aspergillosis due to opportunistic agents of Aspergillus Nigri complex. However, in vivo efficacy remains to be determined.

  14. Evaluation of the antimicrobial efficacy of Minthostachys verticillata essential oil and limonene against Streptococcus uberis strains isolated from bovine mastitis.

    PubMed

    Montironi, Ivana D; Cariddi, Laura N; Reinoso, Elina B

    Bovine mastitis is a disease that causes great economic losses per year, being Streptococcus uberis the main environmental pathogen involved. The aim of the present study was to determine the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of Minthostachys verticillata essential oil and limonene for S. uberis strains isolated from bovine mastitis. In addition, the effect of MIC on biofilm formation was analyzed. MIC values for the essential oil ranged from 14.3 to 114.5mg/ml (1.56-12.5%v/v) and MBC between 114.5 and 229mg/ml (12.5-25%v/v). MICs for limonene ranged from 3.3 to 52.5mg/ml (0.39-6.25%v/v) and MBC was 210mg/ml (25%v/v). Both compounds showed antibacterial activity and affected the biofilm formation of most of the strains tested. In conclusion, these compounds could be used as an alternative and/or complementary therapy for bovine mastitis caused by S. uberis. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. ANTIMICROBIAL AND ANTIBIOFILM EFFECTS OF EXTRACTS FROM TRAPA NATANS L., EVALUATION OF TOTAL PHENOLIC AND FLAVONOID CONTENTS AND GC-MS ANALYSIS.

    PubMed

    Radojevic, Ivana D; Vasic, Sava M; Dekic, Milan S; Radulovic, Niko S; Delic, Gorica T; Durdevic, Jelena S; Comic, Ljiljana R

    2016-11-01

    Research conducted in this study shows the applied in vitro antimicrobial and antibiofilm activity of the four extracts isolated from Trapa natans L. leaves. In this study, different methods were used (microdilution, tissue culture plate, different colorimetric methods, GC-FID and GC-MS analysis). While the water extract didn't show antibacterial activity, the acetone extract showed the strongest one. The same activity in the case of Pseudomonas aeruginosa (MIC was 313 μg/mL) was better than the activity of controls and it matched with antibiofilm activity. The effect of extracts was better on G+ bacteria (MICs were <78-625 μg/mL). For ethanol and ethyl acetate extracts all BIC values were better than MICs. Extracts showed a significant effect on Aspergillus restrictus (MICs were < 78/156 μg/mL). The GC and GC-MS analysis of the ethyl acetate extract revealed the identification of 22 compounds with (all E)-squalene (20.2%), n-alkanes and norlignan hinokiresinol among the most abundant ones. This is the first time that T. natans was studied using these methods.

  16. Synthesis, antibacterial activity, synergistic effect, cytotoxicity, docking and molecular dynamics of benzimidazole analogues.

    PubMed

    Srivastava, Ritika; Gupta, Sunil K; Naaz, Farha; Singh, Anuradha; Singh, Vishal K; Verma, Rajesh; Singh, Nidhi; Singh, Ramendra K

    2018-05-24

    A series of 2-Cl-benzimidazole derivatives was synthesized and assessed for antibacterial activity. Antibacterial results indicated that compounds 2d, 2e, 3a, 3b, 3c, 4d and 4e showed promising activity against B. cerus, S. aureus and P. aeruginosa (MIC: 6.2 μg/mL) and excellent efficacy against E. coli (MIC: 3.1 μg/mL). Furthermore, compounds 3d and 3e displayed better activity (MIC: 3.1 μg/mL) than the reference drugs chloramphenicol and cycloheximide against gram positive and gram negative bacterial strains. The compounds 3d-e also showed better activity than the reference drug paromomycin against B. cerus and P. aeruginosa and showed similar inhibition pattern against S. aureus and E. coli. (MIC: 3.1 μg/mL). Studies on fractional inhibitory concentration (FIC) determination of compounds 1a-e, 2a-c, 4a-c and the reference antibiotic via combination approach revealed a synergistic effect as the MIC values were lowered up to 1 / 8 th to 1 / 33 rd of the original MIC. In-vitro cytotoxicity study indicated that 2-Cl-benzimidazole derivatives showed less toxicity than the reference used against PBM, CEM and Vero cell lines. Docking studies and MD simulations of compounds on bacterial protein (eubacterial ribosomal decoding A site, PDB: 1j7t) have been conducted to find the possible mode of action of the molecules. In silico ADMET evaluations of compounds 3d and 3e showed promising results comparable to the reference drugs used in this study. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Evaluating the Relationship between Vancomycin Trough Concentration and 24-Hour Area under the Concentration-Time Curve in Neonates.

    PubMed

    Tseng, Sheng-Hsuan; Lim, Chuan Poh; Chen, Qi; Tang, Cheng Cai; Kong, Sing Teang; Ho, Paul Chi-Lui

    2018-04-01

    Bacterial sepsis is a major cause of morbidity and mortality in neonates, especially those involving methicillin-resistant Staphylococcus aureus (MRSA). Guidelines by the Infectious Diseases Society of America recommend the vancomycin 24-h area under the concentration-time curve to MIC ratio (AUC 24 /MIC) of >400 as the best predictor of successful treatment against MRSA infections when the MIC is ≤1 mg/liter. The relationship between steady-state vancomycin trough concentrations and AUC 24 values (mg·h/liter) has not been studied in an Asian neonatal population. We conducted a retrospective chart review in Singapore hospitals and collected patient characteristics and therapeutic drug monitoring data from neonates on vancomycin therapy over a 5-year period. A one-compartment population pharmacokinetic model was built from the collected data, internally validated, and then used to assess the relationship between steady-state trough concentrations and AUC 24 A Monte Carlo simulation sensitivity analysis was also conducted. A total of 76 neonates with 429 vancomycin concentrations were included for analysis. Median (interquartile range) was 30 weeks (28 to 36 weeks) for postmenstrual age (PMA) and 1,043 g (811 to 1,919 g) for weight at the initiation of treatment. Vancomycin clearance was predicted by weight, PMA, and serum creatinine. For MRSA isolates with a vancomycin MIC of ≤1, our major finding was that the minimum steady-state trough concentration range predictive of achieving an AUC 24 /MIC of >400 was 8 to 8.9 mg/liter. Steady-state troughs within 15 to 20 mg/liter are unlikely to be necessary to achieve an AUC 24 /MIC of >400, whereas troughs within 10 to 14.9 mg/liter may be more appropriate. Copyright © 2018 American Society for Microbiology.

  18. Determination of Isavuconazole Susceptibility of Aspergillus and Candida Species by the EUCAST Method

    PubMed Central

    Howard, Susan J.; Lass-Flörl, Cornelia; Cuenca-Estrella, Manuel; Gomez-Lopez, Alicia

    2013-01-01

    Isavuconazole is a novel expanded-spectrum triazole, which has recently been approved by the FDA as an orphan drug to treat invasive aspergillosis and is currently being studied in phase III clinical trials for invasive candidiasis. The susceptibility of relatively few clinical isolates has been reported. In this study, the isavuconazole susceptibilities of 1,237 Aspergillus and 2,010 Candida geographically diverse clinical isolates were determined by EUCAST methodology at four European mycology laboratories, producing the largest multicenter data set thus far for this compound. In addition, a blinded collection of 30 cyp51A mutant Aspergillus fumigatus clinical isolates and 10 wild-type isolates was tested. From these two data sets, the following preliminary epidemiological cutoff (ECOFF) values were suggested: 2 mg/liter for Aspergillus fumigatus, Aspergillus terreus, and Aspergillus flavus; 4 mg/liter for Aspergillus niger; 0.25 mg/liter for Aspergillus nidulans; and 0.03 mg/liter for Candida albicans, Candida parapsilosis, and Candida tropicalis. Unfortunately, ECOFFs could not be determined for Candida glabrata or Candida krusei due to an unexplained interlaboratory MIC variation. For the blinded collection of A. fumigatus isolates, all MICs were ≤2 mg/liter for wild-type isolates. Differential isavuconazole MICs were observed for triazole-resistant A. fumigatus isolates with different cyp51A alterations: TR34/L98H mutants had elevated isavuconazole MICs, whereas isolates with G54 and M220 alterations had MICs in the wild-type range, suggesting that the efficacy of isavuconazole may not be affected by these alterations. This study will be an aid in interpreting isavuconazole MICs for clinical care and an important step in the future process of setting official clinical breakpoints. PMID:23959309

  19. A multicentre study of meticillin-resistant Staphylococcus aureus in acute bacterial skin and skin-structure infections in China: susceptibility to ceftaroline and molecular epidemiology.

    PubMed

    Zhang, Hui; Xiao, Meng; Kong, Fanrong; O'Sullivan, Matthew V N; Mao, Lei-Li; Zhao, Hao-Ran; Zhao, Ying; Wang, He; Xu, Ying-Chun

    2015-04-01

    Ceftaroline is a novel cephalosporin with activity against Gram-positive organisms, including meticillin-resistant Staphylococcus aureus (MRSA). The objective of this study was to investigate the susceptibility to ceftaroline of hospital-associated MRSA (HA-MRSA) isolates causing acute bacterial skin and skin-structure infections (ABSSSIs) in China and to examine their relationship by genotyping. A total of 251 HA-MRSA isolates causing ABSSSIs were collected from a multicentre study involving 56 hospitals in 38 large cities across 26 provinces in mainland China. All isolates were characterised by multilocus sequence typing (MLST), staphylococcal cassette chromosome mec (SCCmec) typing, spa typing and detection of the Panton-Valentine leukocidin locus (lukS-PV and lukF-PV). Minimum inhibitory concentrations (MICs) of 14 antimicrobial agents, including ceftaroline, were determined by broth microdilution and were interpreted using Clinical and Laboratory Standards Institute breakpoints. The ceftaroline MIC50 and MIC90 values (MICs that inhibit 50% and 90% of the isolates, respectively) were 1 μg/mL and 2 μg/mL, respectively; 33.5% (n=84) of the isolates studied were ceftaroline-non-susceptible, with MICs of 2 μg/mL, but no isolate exhibited ceftaroline resistance (MIC>2 μg/mL). All of the ceftaroline-non-susceptible isolates belonged to the predominant HA-MRSA clones: 95.2% (n=80) from MLST clonal complex 8 (CC8), with the remaining 4.8% (n=4) from CC5. The high rate of non-susceptibility to ceftaroline amongst HA-MRSA causing ABSSSIs in China is concerning. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  20. Characterization of Resistance Patterns and Detection of Apramycin Resistance Genes in Escherichia coli Isolated from Chicken Feces and Houseflies after Apramycin Administration.

    PubMed

    Zhang, Anyun; Li, Yunxia; Guan, Zhongbin; Tuo, Hongmei; Liu, Dan; Yang, Yanxian; Xu, Changwen; Lei, Changwei; Wang, Hongning

    2018-01-01

    The aim of this study was to evaluate the influence of apramycin administration on the development of antibiotic resistance in Escherichia coli ( E. coli ) strains isolated from chicken feces and houseflies under field conditions. Chickens in the medicated group ( n = 25,000) were given successive prophylactic doses (0.5 mg/l) of apramycin in their drinking water from Days 1 to 5, while no antibiotics were added to the un-medicated groups drinking water ( n = 25,000). Over 40 days, a total of 1170 E. coli strains were isolated from fecal samples obtained from medicated and un-medicated chickens and houseflies from the same chicken farm. Apramycin MIC90 values for E. coli strains obtained from the medicated group increased 32-128 times from Days 2 to 6 (256-1024 μg/ml) when compared to those on Day 0 (8 μg/ml). Strains isolated from un-medicated chickens and houseflies had consistently low MIC90 values (8-16 μg/ml) during the first week, but showed a dramatic increase from Days 8 to 10 (128-1024 μg/ml). The apramycin resistance gene aac(3)-IV was detected in E. coli strains from medicated ( n = 71), un-medicated ( n = 32), and housefly groups ( n = 42). All strains positive for aac(3)-IV were classified into 12 pulsed-field gel electrophoresis (PFGE) types. PFGE types A, E, and G were the predominant types in both the medicated and housefly groups, suggesting houseflies play an important role in spreading E. coli -resistant strains. Taken together, our study revealed that apramycin administration could facilitate the occurrence of apramycin-resistant E. coli and the apramycin resistance gene acc(3)-IV . In turn, these strains could be transmitted by houseflies, thus increasing the potential risk of spreading multi-drug-resistant E. coli to the public.

Top