Science.gov

Sample records for mice demonstrate abnormal

  1. In vivo studies of Scn5a+/− mice modeling Brugada syndrome demonstrate both conduction and repolarization abnormalities

    PubMed Central

    Martin, Claire A.; Zhang, Yanmin; Grace, Andrew A.; Huang, Christopher L.-H.

    2010-01-01

    Objectives We investigate the extent to which the electrocardiographic (ECG) properties of intact Scn5a+/− mice reproduce the corresponding clinical Brugada syndrome phenotype and use this model to investigate the role of conduction and repolarization abnormalities in the arrhythmogenic mechanism. Methods and Results The ECGs were obtained from anesthetized wild-type and Scn5a+/− mice, before and after administration of the known pro- and antiarrhythmic agents flecainide and quinidine. The ECG intervals were measured and their dispersions calculated. Scn5a+/− hearts showed ventricular arrhythmias, ST elevation, and conduction disorders including increased QT dispersion, accentuated by flecainide. Quinidine did not cause ventricular arrhythmias but exerted variable effects on ST segments and worsened conduction abnormalities. Conclusions The ECG features in an Scn5a+/− mouse establish it as a suitable model for Brugada syndrome and demonstrate abnormal conduction and repolarization phenomena. Altered QT dispersion, taken to indicate increased transmural repolarization gradients, may be useful in clinical risk stratification. PMID:20638671

  2. Absence of cytoglobin promotes multiple organ abnormalities in aged mice

    PubMed Central

    Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi

    2016-01-01

    Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058

  3. Chemical induction of sperm abnormalities in mice.

    PubMed Central

    Wyrobek, A J; Bruce, W R

    1975-01-01

    The sperm of (C57BL X C3H)F1 mice were examined 1, 4, and 10 weeks after a subacute treatment with one of 25 chemicals at two or more dose levels. The fraction of sperm that were abnormal in shape was elevated above control values of 1.2-3.4% for methyl methanesulfonate, ethyl methanesulfonate, griseofulvin, benzo[a]pyrene, METEPA [tris(2-methyl-l-aziridinyl)phosphine oxide], THIO-TEPA [tris(l-aziridinyl)phosphine sulfide], mitomycin C, myleran, vinblastine sulphate, hydroxyurea, 3-methylcholanthrene, colchicine, actinomycin D, imuran, cyclophosphamide, 5-iododeoxyuridine, dichlorvos, aminopterin, and trimethylphosphate. Dimethylnitrosamine, urethane, DDT [1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane], 1,1-dimethylhydrazine, caffeine, and calcium cyclamate did not induce elevated levels of sperm abnormalities. The results suggest that sperm abnormalities might provide a rapid inexpensive mammalian screen for agents that lead to errors in the differentiation of spermatogenic stem cells in vivo and thus indicate agents which might prove to be mutagenic, teratogenic, or carcinogenic. Images PMID:1060122

  4. Connective tissue abnormalities in MRL/1 mice.

    PubMed Central

    Edwards, J C; Cooke, A; Moore, A R; Collins, C; Hay, F; Willoughby, D A

    1986-01-01

    Pathological changes in the connective tissue of the limbs of MRL/1 mice are described. Focal infiltrates of polymorphs or large mononuclear cells, or both, were seen both in synovial lining and subcutaneous tissue. Infiltrates were associated with vasculitis in some cases. Deposits of amorphous material were seen in and around joints and in foot pads. The material was more particulate and refractile than typical 'fibrinoid' and showed a positive Feulgen reaction. It was not surrounded by palisading cells and when seen in synovial tissue was not usually associated with changes in synovial lining cells. No obvious difference was seen between intra-articular and extra-articular lesions. Lesions in subcutaneous tissue occurred exclusively in the foot pads. Lymphocyte infiltration was not prominent at any site and no follicle formation was seen. Of two colonies studied, only one showed a significant increase in lining cell numbers in synovial tissue. Exercised animals had a similar distribution and severity of disease to those of matched controls. All lesions described were distinguishable from non-specific inflammatory lesions in normal control mice and MRL/++ mice on assessment of unmarked sections. The relation between these connective tissue lesions and the changes found in human chronic synovitis is discussed. Images PMID:3729576

  5. Hemorheological abnormalities in lipoprotein lipase deficient mice with severe hypertriglyceridemia

    SciTech Connect

    Zhao Tieqiang; Guo Jun; Li Hui; Huang Wei; Xian Xunde; Ross, Colin J.D.; Hayden, Michael R.; Wen Zongyao . E-mail: rheol@bjmu.edu.cn; Liu George . E-mail: vangeorgeliu@gmail.com

    2006-03-24

    Severe hypertriglyceridemia (HTG) is a metabolic disturbance often seen in clinical practice. It is known to induce life-threatening acute pancreatitis, but its role in atherogenesis remains elusive. Hemorheological abnormality was thought to play an important role in pathogenesis of both pancreatitis and atherosclerosis. However, hemorheology in severe HTG was not well investigated. Recently, we established a severe HTG mouse model deficient in lipoprotein lipase (LPL) in which severe HTG was observed to cause a significant increase in plasma viscosity. Disturbances of erythrocytes were also documented, including decreased deformability, electrophoresis rate, and membrane fluidity, and increased osmotic fragility. Scanning electron microscopy demonstrated that most erythrocytes of LPL deficient mice deformed with protrusions, irregular appearances or indistinct concaves. Analysis of erythrocyte membrane lipids showed decreased cholesterol (Ch) and phospholipid (PL) contents but unaltered Ch/PL ratio. The changes of membrane lipids may be partially responsible for the hemorheological and morphologic abnormalities of erythrocytes. This study indicated that severe HTG could lead to significant impairment of hemorheology and this model may be useful in delineating the role of severe HTG in the pathogenesis of hyperlipidemic pancreatitis and atherosclerosis.

  6. Prenatal imaging of distal limb abnormalities using OCT in mice

    NASA Astrophysics Data System (ADS)

    Larina, Irina V.; Syed, Saba H.; Dickinson, Mary E.; Overbeek, Paul; Larin, Kirill V.

    2012-01-01

    Congenital abnormalities of the limbs are common birth defects. These include missing or extra fingers or toes, abnormal limb length, and abnormalities in patterning of bones, cartilage or muscles. Optical Coherence Tomography (OCT) is a 3-D imaging modality, which can produce high-resolution (~8 μm) images of developing embryos with an imaging depth of a few millimeters. Here we demonstrate the capability of OCT to perform 3D imaging of limb development in normal embryos and a mouse model with congenital abnormalities. Our results suggest that OCT is a promising tool to analyze embryonic limb development in mammalian models of congenital defects.

  7. The MICE Demonstration of Ionization Cooling

    SciTech Connect

    Pasternak, J.; Blackmore, V.; Hunt, C.; Lagrange, J-B.; Long, K.; Collomb, N.; Snopok, P.

    2015-05-01

    Muon beams of low emittance provide the basis for the intense, well-characterised neutrino beams necessary to elucidate the physics of flavour at the Neutrino Factory and to provide lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling, the technique by which it is proposed to reduce the phase-space volume occupied by the muon beam at such facilities. In an ionization cooling channel, the muon beam passes through a material (the absorber) in which it loses energy. The energy lost is then replaced using RF cavities. The combined effect of energy loss and re-acceleration is to reduce the transverse emittance of the beam (transverse cooling). A major revision of the scope of the project was carried out over the summer of 2014. The revised project plan, which has received the formal endorsement of the international MICE Project Board and the international MICE Funding Agency Committee, will deliver a demonstration of ionization cooling by September 2017. In the revised configuration a central lithium-hydride absorber provides the cooling effect. The magnetic lattice is provided by the two superconducting focus coils and acceleration is provided by two 201 MHz single-cavity modules. The phase space of the muons entering and leaving the cooling cell will be measured by two solenoidal spectrometers. All the superconducting magnets for the ionization cooling demonstration are available at the Rutherford Appleton Laboratory and the first single-cavity prototype is under test in the MuCool Test Area at Fermilab. The design of the cooling demonstration experiment will be described together with a summary of the performance of each of its components. The cooling performance of the revised configuration will also be presented.

  8. Abnormal neurodevelopment, neurosignaling and behaviour in Npas3-deficient mice.

    PubMed

    Brunskill, Eric W; Ehrman, Lisa A; Williams, Michael T; Klanke, Justin; Hammer, Daniel; Schaefer, Tori L; Sah, Renu; Dorn, Gerald W; Potter, S Steven; Vorhees, Charles V

    2005-09-01

    Npas3 is a member of the bHLH-PAS superfamily of transcription factors that is expressed broadly in the developing neuroepithelium. To study the function of this gene, mice deficient in Npas3 were generated and characterized. Npas3-/- mice were growth-retarded and exhibited developmental brain abnormalities that included a reduction in size of the anterior hippocampus, hypoplasia of the corpus callosum and enlargement of the ventricles. A number of behavioural abnormalities were identified in Npas3-/- mice including locomotor hyperactivity, subtle gait defects, impairment of prepulse inhibition of acoustic startle, deficit in recognition memory and altered anxiety-related responses. Characterization of neurosignaling pathways using several pharmacological agents revealed dysfunctional glutamate, dopamine and serotonin neurotransmitter signaling. Consistent with these findings, we identified a significant alteration in cortical PSD-95 expression, a PDZ-containing protein that has been shown to be involved in postsynaptic signal transduction. Together, our observations indicate an important role for Npas3 in controlling normal brain development and neurosignaling pathways. PMID:16190882

  9. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice

    PubMed Central

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F.; Charbonneau, Noe L.; Smaldone, Silvia; Carlson, Eric J.; Ramirez, Francesco; Keene, Douglas R.; Sakai, Lynn Y.

    2015-01-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  10. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    PubMed

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F; Charbonneau, Noe L; Smaldone, Silvia; Carlson, Eric J; Ramirez, Francesco; Keene, Douglas R; Sakai, Lynn Y

    2015-06-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  11. Abnormal Activation of BMP Signaling Causes Myopathy in Fbn2 Null Mice.

    PubMed

    Sengle, Gerhard; Carlberg, Valerie; Tufa, Sara F; Charbonneau, Noe L; Smaldone, Silvia; Carlson, Eric J; Ramirez, Francesco; Keene, Douglas R; Sakai, Lynn Y

    2015-06-01

    Fibrillins are large extracellular macromolecules that polymerize to form the backbone structure of connective tissue microfibrils. Mutations in the gene for fibrillin-1 cause the Marfan syndrome, while mutations in the gene for fibrillin-2 cause Congenital Contractural Arachnodactyly. Both are autosomal dominant disorders, and both disorders affect musculoskeletal tissues. Here we show that Fbn2 null mice (on a 129/Sv background) are born with reduced muscle mass, abnormal muscle histology, and signs of activated BMP signaling in skeletal muscle. A delay in Myosin Heavy Chain 8, a perinatal myosin, was found in Fbn2 null forelimb muscle tissue, consistent with the notion that muscle defects underlie forelimb contractures in these mice. In addition, white fat accumulated in the forelimbs during the early postnatal period. Adult Fbn2 null mice are already known to demonstrate persistent muscle weakness. Here we measured elevated creatine kinase levels in adult Fbn2 null mice, indicating ongoing cycles of muscle injury. On a C57Bl/6 background, Fbn2 null mice showed severe defects in musculature, leading to neonatal death from respiratory failure. These new findings demonstrate that loss of fibrillin-2 results in phenotypes similar to those found in congenital muscular dystrophies and that FBN2 should be considered as a candidate gene for recessive congenital muscular dystrophy. Both in vivo and in vitro evidence associated muscle abnormalities and accumulation of white fat in Fbn2 null mice with abnormally activated BMP signaling. Genetic rescue of reduced muscle mass and accumulation of white fat in Fbn2 null mice was accomplished by deleting a single allele of Bmp7. In contrast to other reports that activated BMP signaling leads to muscle hypertrophy, our findings demonstrate the exquisite sensitivity of BMP signaling to the fibrillin-2 extracellular environment during early postnatal muscle development. New evidence presented here suggests that fibrillin-2 can

  12. Chronic stress does not further exacerbate the abnormal psychoneuroendocrine phenotype of Cbg-deficient male mice.

    PubMed

    de Medeiros, Gabriela F; Minni, Amandine M; Helbling, Jean-Christophe; Moisan, Marie-Pierre

    2016-08-01

    Chronic stress leads to a dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis which can constitute a base for pathophysiological consequences. Using mice totally deficient in Corticosteroid binding globulin (CBG), we have previously demonstrated the important role of CBG in eliciting an adequate response to an acute stressor. Here, we have studied its role in chronic stress situations. We have submitted Cbg ko and wild-type (WT) male mice to two different chronic stress paradigms - the unpredictable chronic mild stress and the social defeat. Then, their impact on neuroendocrine function - through corticosterone and CBG measurement - and behavioral responses - via anxiety and despair-like behavioral tests - was evaluated. Both chronic stress paradigms increased the display of despair-like behavior in WT mice, while that from Cbg ko mice - which was already high - was not aggravated. We have also found that control and defeated (stressed) Cbg ko mice show no difference in the social interaction test, while defeated WT mice reduce their interaction time when compared to unstressed WT mice. Interestingly, the same pattern was observed for corticosterone levels, where both chronic stress paradigms lowered the corticosterone levels of WT mice, while those from Cbg ko mice remained low and unaltered. Plasma CBG binding capacity remained unaltered in WT mice regardless of the stress paradigm. Through the use of the Cbg ko mice, which only differs genetically from WT mice by the absence of CBG, we demonstrated that CBG is crucial in modulating the effects of stress on plasma corticosterone levels and consequently on behavior. In conclusion, individuals with CBG deficiency, whether genetically or environmentally-induced, are vulnerable to acute stress but do not have their abnormal psychoneuroendocrine phenotype further affected by chronic stress.

  13. A single dose of hypnotic corrects sleep and EEG abnormalities in symptomatic Huntington's disease mice.

    PubMed

    Kantor, Sandor; Varga, Janos; Morton, A Jennifer

    2016-06-01

    Sleep and electroencephalogram abnormalities are prominent early features of Huntington's disease (HD) that typically appear before the onset of characteristic motor symptoms. The changes in sleep and electroencephalogram seen in HD patients are largely recapitulated in mouse models of HD such as transgenic R6/2 lines. To test whether or not drugs with hypnotic properties can correct the sleep and electroencephalogram abnormalities seen in HD mice, we treated male wild-type (WT; N = 7) and R6/2 mice (N = 9) acutely with intraperitoneal injections of vehicle, zolpidem (5, 10 or 20 mg/kg) or amitriptyline (5, 10 or 20 mg/kg), and then monitored their sleep-wake behavior. In R6/2 mice, both zolpidem and amitriptyline suppressed the abnormally high REM sleep amount and electroencephalographic gamma (30-46 Hz) oscillations in a dose-dependent manner. Amitriptyline's effect on sleep was similar in both genotypes, whereas zolpidem showed significant genotype differences. Zolpidem exerted a strong hypnotic effect in WT mice by increasing electroencephalographic delta power, doubling the mean bout duration and the total amount of non-rapid eye movement sleep. However, no such effect was seen in R6/2 mice. Our study demonstrates that the pathophysiological changes seen in sleep and electroencephalogram are not 'hard-wired' in HD brain and can be reversed even at late stages of the disease. The diminished hypnotic effect of zolpidem suggests that the GABAergic control of sleep-wake states is impaired in HD mice. A better understanding of the neurochemical basis underlying these abnormalities should lead to more effective and rational therapies for HD. PMID:26805423

  14. Loss of polyubiquitin gene Ubb leads to metabolic and sleep abnormalities in mice

    PubMed Central

    Ryu, K.-Y.; Fujiki, N.; Kazantzis, M.; Garza, J. C.; Bouley, D. M.; Stahl, A.; Lu, X.-Y.; Nishino, S.; Kopito, R. R.

    2010-01-01

    Aims Ubiquitin performs essential roles in a myriad of signalling pathways required for cellular function and survival. Recently, we reported that disruption of the stress-inducible ubiquitin-encoding gene Ubb reduces ubiquitin content in the hypothalamus and leads to adult-onset obesity coupled with a loss of arcuate nucleus neurones and disrupted energy homeostasis in mice. Neuropeptides expressed in the hypothalamus control both metabolic and sleep behaviours. In order to demonstrate that the loss of Ubb results in broad hypothalamic abnormalities, we attempted to determine whether metabolic and sleep behaviours were altered in Ubb knockout mice. Methods Metabolic rate and energy expenditure were measured in a metabolic chamber, and sleep stage was monitored via electroencephalographic/electromyographic recording. The presence of neurodegeneration and increased reactive gliosis in the hypothalamus were also evaluated. Results We found that Ubb disruption leads to early-onset reduced activity and metabolic rate. Additionally, we have demonstrated that sleep behaviour is altered and sleep homeostasis is disrupted in Ubb knockout mice. These early metabolic and sleep abnormalities are accompanied by persistent reactive gliosis and the loss of arcuate nucleus neurones, but are independent of neurodegeneration in the lateral hypothalamus. Conclusions Ubb knockout mice exhibit phenotypes consistent with hypothalamic dysfunction. Our data also indicate that Ubb is essential for the maintenance of the ubiquitin levels required for proper regulation of metabolic and sleep behaviours in mice. PMID:20002312

  15. Deletion of PTH rescues skeletal abnormalities and high osteopontin levels in Klotho-/- mice.

    PubMed

    Yuan, Quan; Sato, Tadatoshi; Densmore, Michael; Saito, Hiroaki; Schüler, Christiane; Erben, Reinhold G; Lanske, Beate

    2012-01-01

    Maintenance of normal mineral ion homeostasis is crucial for many biological activities, including proper mineralization of the skeleton. Parathyroid hormone (PTH), Klotho, and FGF23 have been shown to act as key regulators of serum calcium and phosphate homeostasis through a complex feedback mechanism. The phenotypes of Fgf23(-/-) and Klotho(-/-) (Kl(-/-)) mice are very similar and include hypercalcemia, hyperphosphatemia, hypervitaminosis D, suppressed PTH levels, and severe osteomalacia/osteoidosis. We recently reported that complete ablation of PTH from Fgf23(-/-) mice ameliorated the phenotype in Fgf23(-/-)/PTH(-/-) mice by suppressing serum vitamin D and calcium levels. The severe osteomalacia in Fgf23(-/-) mice, however, persisted, suggesting that a different mechanism is responsible for this mineralization defect. In the current study, we demonstrate that deletion of PTH from Kl(-/-) (Kl(-/-)/PTH(-/-) or DKO) mice corrects the abnormal skeletal phenotype. Bone turnover markers are restored to wild-type levels; and, more importantly, the skeletal mineralization defect is completely rescued in Kl(-/-)/PTH(-/-) mice. Interestingly, the correction of the osteomalacia is accompanied by a reduction in the high levels of osteopontin (Opn) in bone and serum. Such a reduction in Opn levels could not be observed in Fgf23(-/-)/PTH(-/-) mice, and these mice showed sustained osteomalacia. This significant in vivo finding is corroborated by in vitro studies using calvarial osteoblast cultures that show normalized Opn expression and rescued mineralization in Kl(-/-)/PTH(-/-) mice. Moreover, continuous PTH infusion of Kl(-/-) mice significantly increased Opn levels and osteoid volume, and decreased trabecular bone volume. In summary, our results demonstrate for the first time that PTH directly impacts the mineralization disorders and skeletal deformities of Kl(-/-), but not of Fgf23(-/-) mice, possibly by regulating Opn expression. These are significant new perceptions

  16. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    PubMed Central

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  17. Epilepsy-induced abnormal striatal plasticity in Bassoon mutant mice.

    PubMed

    Ghiglieri, Veronica; Picconi, Barbara; Sgobio, Carmelo; Bagetta, Vincenza; Barone, Ilaria; Paillè, Vincent; Di Filippo, Massimiliano; Polli, Federica; Gardoni, Fabrizio; Altrock, Wilko; Gundelfinger, Eckart D; De Sarro, Giovambattista; Bernardi, Giorgio; Ammassari-Teule, Martine; Di Luca, Monica; Calabresi, Paolo

    2009-05-01

    Recently, the striatum has been implicated in the spread of epileptic seizures. As the absence of functional scaffolding protein Bassoon in mutant mice is associated with the development of pronounced spontaneous seizures, we utilized this new genetic model of epilepsy to investigate seizure-induced changes in striatal synaptic plasticity. Mutant mice showed reduced long-term potentiation in striatal spiny neurons, associated with an altered N-methyl-D-aspartate (NMDA) receptor subunit distribution, whereas GABAergic fast-spiking (FS) interneurons showed NMDA-dependent short-term potentiation that was absent in wild-type animals. Alterations in the dendritic morphology of spiny neurons and in the number of FS interneurons were also observed. Early antiepileptic treatment with valproic acid reduced epileptic attacks and mortality, rescuing physiological striatal synaptic plasticity and NMDA receptor subunit composition. However, morphological alterations were not affected by antiepileptic treatment. Our results indicate that, in Bsn mutant mice, initial morphological alterations seem to reflect a more direct effect of the abnormal genotype, whereas plasticity changes are likely to be caused by the occurrence of repeated cortical seizures.

  18. Cerebellothalamocortical pathway abnormalities in torsinA DYT1 knock-in mice

    PubMed Central

    Uluğ, Aziz M.; Vo, An; Argyelan, Miklos; Tanabe, Lauren; Schiffer, Wynne K.; Dewey, Stephen; Dauer, William T.; Eidelberg, David

    2011-01-01

    The factors that determine symptom penetrance in inherited disease are poorly understood. Increasingly, magnetic resonance diffusion tensor imaging (DTI) and PET are used to separate alterations in brain structure and function that are linked to disease symptomatology from those linked to gene carrier status. One example is DYT1 dystonia, a dominantly inherited movement disorder characterized by sustained muscle contractions, postures, and/or involuntary movements. This form of dystonia is caused by a 3-bp deletion (i.e., ΔE) in the TOR1A gene that encodes torsinA. Carriers of the DYT1 dystonia mutation, even if clinically nonpenetrant, exhibit abnormalities in cerebellothalamocortical (CbTC) motor pathways. However, observations in human gene carriers may be confounded by variability in genetic background and age. To address this problem, we implemented a unique multimodal imaging strategy in a congenic line of DYT1 mutant mice that contain the ΔE mutation in the endogenous mouse torsinA allele (i.e., DYT1 knock-in). Heterozygous knock-in mice and littermate controls underwent microPET followed by ex vivo high-field DTI and tractographic analysis. Mutant mice, which do not display abnormal movements, exhibited significant CbTC tract changes as well as abnormalities in brainstem regions linking cerebellar and basal ganglia motor circuits highly similar to those identified in human nonmanifesting gene carriers. Moreover, metabolic activity in the sensorimotor cortex of these animals was closely correlated with individual measures of CbTC pathway integrity. These findings further link a selective brain circuit abnormality to gene carrier status and demonstrate that DYT1 mutant torsinA has similar effects in mice and humans. PMID:21464304

  19. Phenotypic abnormalities observed in aged cloned mice from embryonic stem cells after long-term maintenance.

    PubMed

    Shimozawa, Nobuhiro; Sotomaru, Yusuke; Eguchi, Natsuko; Suzuki, Shuzo; Hioki, Kyoji; Usui, Toshimi; Kono, Tomohiro; Ito, Mamoru

    2006-09-01

    Somatic/embryonic stem cell cloning has made it possible to produce an individual genomically identical to another individual. However, the cloned animals have a variety of abnormalities caused by the aberrant gene modification, with insufficient reprogramming in cloning. We previously reported abnormalities in cloned mice at birth. In this study, we examined what abnormalities could be seen in cloned mice after long-term maintenance. The aged cloned mice showed multiple abnormalities: increase of body weight, some phenotypic abnormalities in the kidneys, testes and thymus, and lower urea nitrogen in their serum biochemical values. The kidneys of all cloned mice were hypertrophied, with a metamorphic or whitish appearance. The multiple lesions, including the enlarged renal pelvis and distension of the renal veins in histology, might be the result of urine accumulation by urinary tract obstruction. The testes of the cloned mice were atrophied, and showed no sperm formation in histology. In contrast, the thymus was rather hypertrophied, and a comparably increased number of lymphocytes were observed in the medulla, consisting mainly of T cells. By conducting a progeny test between the cloned mice, it was confirmed that these abnormalities in the aged cloned mice were not transmitted to their offspring, indicating that the incomplete reprogramming in clones might be in part responsible for the abnormalities detected in aged clones. These results indicate that the postnatal abnormalities observed in aged cloned mice are varied and can be restored through the germ line. PMID:16940284

  20. Transgenic mice overexpressing reticulon 3 develop neuritic abnormalities

    PubMed Central

    Hu, Xiangyou; Shi, Qi; Zhou, Xiangdong; He, Wanxia; Yi, Hong; Yin, Xinghua; Gearing, Marla; Levey, Allan; Yan, Riqiang

    2007-01-01

    Dystrophic neurites are swollen dendrites or axons recognizable near amyloid plaques as a part of important pathological feature of Alzheimer's disease (AD). We report herein that reticulon 3 (RTN3) is accumulated in a distinct population of dystrophic neurites named as RTN3 immunoreactive dystrophic neurites (RIDNs). The occurrence of RIDNs is concomitant with the formation of high-molecular-weight RTN3 aggregates in brains of AD cases and mice expressing mutant APP. Ultrastructural analysis confirms accumulation of RTN3-containing aggregates in RIDNs. It appears that the protein level of RTN3 governs the formation of RIDNs because transgenic mice expressing RTN3 will develop RIDNs, initially in the hippocampal CA1 region, and later in other hippocampal and cortical regions. Importantly, we show that the presence of dystrophic neurites in Tg-RTN3 mice causes impairments in spatial learning and memory, as well as synaptic plasticity, implying that RIDNs potentially contribute to AD cognitive dysfunction. Together, we demonstrate that aggregation of RTN3 contributes to AD pathogenesis by inducing neuritic dystrophy. Inhibition of RTN3 aggregation is likely a therapeutic approach for reducing neuritic dystrophy. PMID:17476306

  1. Abnormal Mammary Development in 129:STAT1-Null Mice is Stroma-Dependent.

    PubMed

    Chen, Jane Q; Mori, Hidetoshi; Cardiff, Robert D; Trott, Josephine F; Hovey, Russell C; Hubbard, Neil E; Engelberg, Jesse A; Tepper, Clifford G; Willis, Brandon J; Khan, Imran H; Ravindran, Resmi K; Chan, Szeman R; Schreiber, Robert D; Borowsky, Alexander D

    2015-01-01

    Female 129:Stat1-null mice (129S6/SvEvTac-Stat1(tm1Rds) homozygous) uniquely develop estrogen-receptor (ER)-positive mammary tumors. Herein we report that the mammary glands (MG) of these mice have altered growth and development with abnormal terminal end buds alongside defective branching morphogenesis and ductal elongation. We also find that the 129:Stat1-null mammary fat pad (MFP) fails to sustain the growth of 129S6/SvEv wild-type and Stat1-null epithelium. These abnormalities are partially reversed by elevated serum progesterone and prolactin whereas transplantation of wild-type bone marrow into 129:Stat1-null mice does not reverse the MG developmental defects. Medium conditioned by 129:Stat1-null epithelium-cleared MFP does not stimulate epithelial proliferation, whereas it is stimulated by medium conditioned by epithelium-cleared MFP from either wild-type or 129:Stat1-null females having elevated progesterone and prolactin. Microarrays and multiplexed cytokine assays reveal that the MG of 129:Stat1-null mice has lower levels of growth factors that have been implicated in normal MG growth and development. Transplanted 129:Stat1-null tumors and their isolated cells also grow slower in 129:Stat1-null MG compared to wild-type recipient MG. These studies demonstrate that growth of normal and neoplastic 129:Stat1-null epithelium is dependent on the hormonal milieu and on factors from the mammary stroma such as cytokines. While the individual or combined effects of these factors remains to be resolved, our data supports the role of STAT1 in maintaining a tumor-suppressive MG microenvironment.

  2. Targeting the NLRP3 Inflammasome to Reduce Diet-Induced Metabolic Abnormalities in Mice

    PubMed Central

    Chiazza, Fausto; Couturier-Maillard, Aurélie; Benetti, Elisa; Mastrocola, Raffaella; Nigro, Debora; Cutrin, Juan C; Serpe, Loredana; Aragno, Manuela; Fantozzi, Roberto; Ryffel, Bernard; Collino, Massimo

    2015-01-01

    Although the molecular links underlying the causative relationship between chronic low-grade inflammation and insulin resistance are not completely understood, compelling evidence suggests a pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) inflammasome. Here we tested the hypothesis that either a selective pharmacological inhibition or a genetic downregulation of the NLRP3 inflammasome results in reduction of the diet-induced metabolic alterations. Male C57/BL6 wild-type mice and NLRP3−/− littermates were fed control diet or high-fat, high-fructose diet (HD). A subgroup of HD-fed wild-type mice was treated with the NLRP3 inflammasome inhibitor BAY 11-7082 (3 mg/kg intraperitoneally [IP]). HD feeding increased plasma and hepatic lipids and impaired glucose homeostasis and renal function. Renal and hepatic injury was associated with robust increases in profibrogenic markers, while only minimal fibrosis was recorded. None of these metabolic abnormalities were detected in HD-fed NLRP3−/− mice, and they were dramatically reduced in HD-mice treated with the NLRP3 inflammasome inhibitor. BAY 11-7082 also attenuated the diet-induced increase in NLRP3 inflammasome expression, resulting in inhibition of caspase-1 activation and interleukin (IL)-1β and IL-18 production (in liver and kidney). Interestingly, BAY 11-7082, but not gene silencing, inhibited nuclear factor (NF)-κB nuclear translocation. Overall, these results demonstrate that the selective pharmacological modulation of the NLRP3 inflammasome attenuates the metabolic abnormalities and the related organ injury/dysfunction caused by chronic exposure to HD, with effects similar to those obtained by NLRP3 gene silencing. PMID:26623925

  3. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  4. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition

    PubMed Central

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Yan, Zuoqin; Qian, Ruizhe

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  5. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation.

  6. Altered Clock and Lipid Metabolism-Related Genes in Atherosclerotic Mice Kept with Abnormal Lighting Condition.

    PubMed

    Zhu, Zhu; Hua, Bingxuan; Shang, Zhanxian; Yuan, Gongsheng; Xu, Lirong; Li, Ermin; Li, Xiaobo; Sun, Ning; Yan, Zuoqin; Qian, Ruizhe; Lu, Chao

    2016-01-01

    Background. The risk of atherosclerosis is elevated in abnormal lipid metabolism and circadian rhythm disorder. We investigated whether abnormal lighting condition would have influenced the circadian expression of clock genes and clock-controlled lipid metabolism-related genes in ApoE-KO mice. Methods. A mouse model of atherosclerosis with circadian clock genes expression disorder was established using ApoE-KO mice (ApoE-KO LD/DL mice) by altering exposure to light. C57 BL/6J mice (C57 mice) and ApoE-KO mice (ApoE-KO mice) exposed to normal day and night and normal diet served as control mice. According to zeitgeber time samples were acquired, to test atheromatous plaque formation, serum lipids levels and rhythmicity, clock genes, and lipid metabolism-related genes along with Sirtuin 1 (Sirt1) levels and rhythmicity. Results. Atherosclerosis plaques were formed in the aortic arch of ApoE-KO LD/DL mice. The serum lipids levels and oscillations in ApoE-KO LD/DL mice were altered, along with the levels and diurnal oscillations of circadian genes, lipid metabolism-associated genes, and Sirt1 compared with the control mice. Conclusions. Abnormal exposure to light aggravated plaque formation and exacerbated disorders of serum lipids and clock genes, lipid metabolism genes and Sirt1 levels, and circadian oscillation. PMID:27631008

  7. Neonatal iron deficiency causes abnormal phosphate metabolism by elevating FGF23 in normal and ADHR mice.

    PubMed

    Clinkenbeard, Erica L; Farrow, Emily G; Summers, Lelia J; Cass, Taryn A; Roberts, Jessica L; Bayt, Christine A; Lahm, Tim; Albrecht, Marjorie; Allen, Matthew R; Peacock, Munro; White, Kenneth E

    2014-02-01

    Fibroblast growth factor 23 (FGF23) gain of function mutations can lead to autosomal dominant hypophosphatemic rickets (ADHR) disease onset at birth, or delayed onset following puberty or pregnancy. We previously demonstrated that the combination of iron deficiency and a knock-in R176Q FGF23 mutation in mature mice induced FGF23 expression and hypophosphatemia that paralleled the late-onset ADHR phenotype. Because anemia in pregnancy and in premature infants is common, the goal of this study was to test whether iron deficiency alters phosphate handling in neonatal life. Wild-type (WT) and ADHR female breeder mice were provided control or iron-deficient diets during pregnancy and nursing. Iron-deficient breeders were also made iron replete. Iron-deficient WT and ADHR pups were hypophosphatemic, with ADHR pups having significantly lower serum phosphate (p < 0.01) and widened growth plates. Both genotypes increased bone FGF23 mRNA (>50 fold; p < 0.01). WT and ADHR pups receiving low iron had elevated intact serum FGF23; ADHR mice were affected to a greater degree (p < 0.01). Iron-deficient mice also showed increased Cyp24a1 and reduced Cyp27b1, and low serum 1,25-dihydroxyvitamin D (1,25D). Iron repletion normalized most abnormalities. Because iron deficiency can induce tissue hypoxia, oxygen deprivation was tested as a regulator of FGF23, and was shown to stimulate FGF23 mRNA in vitro and serum C-terminal FGF23 in normal rats in vivo. These studies demonstrate that FGF23 is modulated by iron status in young WT and ADHR mice and that hypoxia independently controls FGF23 expression in situations of normal iron. Therefore, disturbed iron and oxygen metabolism in neonatal life may have important effects on skeletal function and structure through FGF23 activity on phosphate regulation.

  8. MCT8 Deficiency in Male Mice Mitigates the Phenotypic Abnormalities Associated With the Absence of a Functional Type 3 Deiodinase.

    PubMed

    Stohn, J Patrizia; Martinez, M Elena; Matoin, Kassey; Morte, Beatriz; Bernal, Juan; Galton, Valerie Anne; St Germain, Donald; Hernandez, Arturo

    2016-08-01

    Mice deficient in the type 3 deiodinase (D3KO mice) manifest impaired clearance of thyroid hormone (TH), leading to elevated levels of TH action during development. This alteration causes reduced neonatal viability, growth retardation, and central hypothyroidism. Here we examined how these phenotypes are affected by a deficiency in the monocarboxylate transporter 8 (MCT8), which is a major contributor to the transport of the active thyroid hormone, T3, into the cell. MCT8 deficiency eliminated the neonatal lethality of type 3 deiodinase (D3)-deficient mice and significantly ameliorated their growth retardation. Double-mutant newborn mice exhibited similar peripheral thyrotoxicosis and increased brain expression of T3-dependent genes as mice with D3 deficiency only. Later in neonatal life and adulthood, double-mutant mice manifested central and peripheral TH status similar to mice with single MCT8 deficiency, with low serum T4, elevated serum TSH and T3, and decreased T3-dependent gene expression in the hypothalamus. In double-mutant adult mice, both thyroid gland size and the hypothyroidism-induced rise in TSH were greater than those in mice with single D3 deficiency but less than those in mice with MCT8 deficiency alone. Our results demonstrate that the marked phenotypic abnormalities observed in the D3-deficient mouse, including perinatal mortality, growth retardation, and central hypothyroidism in adult animals, require expression of MCT8, confirming the interdependent relationship between the TH transport into cells and the deiodination processes. PMID:27254003

  9. Abnormal grooming activity in Dab1(scm) (scrambler) mutant mice.

    PubMed

    Strazielle, C; Lefevre, A; Jacquelin, C; Lalonde, R

    2012-07-15

    Dab1(scm) mutant mice, characterized by cell ectopias and degeneration in cerebellum, hippocampus, and neocortex, were compared to non-ataxic controls for different facets of grooming caused by brief water immersions, as well as some non-grooming behaviors. Dab1(scm) mutants were strongly affected in their quantitative functional parameters, exhibiting higher starting latencies before grooming relative to non-ataxic littermates of the A/A strain, fewer grooming bouts, and grooming components of shorter duration, with an unequal regional distribution targeting almost totally the rostral part (head washing and forelimb licking) of the animal. Only bouts of a single grooming element were preserved. The cephalocaudal order of grooming elements appeared less disorganized, mutant and control mice initiating the grooming with head washing and forelimb licking prior to licking posterior parts. However, mutants differed from controls in that all their bouts were incomplete but uninterrupted, although intergroup difference for percentage of the incorrect transitions was not significant. In contrast to grooming, Dab1(scm) mice ambulated for a longer time. During walking episodes, they exhibited more body scratching than controls, possibly to compensate for the lack of licking different body parts. In conjunction with studies with other ataxic mice, these results indicate that the cerebellar cortex affects grooming activity and is consequently involved in executing various components, but not in its sequential organization, which requires other brain regions such as cerebral cortices or basal ganglia.

  10. Age-dependent gait abnormalities in mice lacking the Rnf170 gene linked to human autosomal-dominant sensory ataxia.

    PubMed

    Kim, Youngsoo; Kim, Seong Hun; Kim, Kook Hwan; Chae, Sujin; Kim, Chanki; Kim, Jeongjin; Shin, Hee-Sup; Lee, Myung-Shik; Kim, Daesoo

    2015-12-20

    Really interesting new gene (RING) finger protein 170 (RNF170) is an E3 ubiquitin ligase known to mediate ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate receptors (ITPR1). It has recently been demonstrated that a point mutation of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), which is characterized by an age-dependent increase of walking abnormalities, a rare genetic disorder reported in only two families. Although this mutant allele is known to be dominant, the functional identity thereof has not been clearly established. Here, we generated mice lacking Rnf170 (Rnf170(-/-)) to evaluate the effect of its loss of function in vivo. Remarkably, Rnf170(-/-) mice began to develop gait abnormalities in old age (12 months) in the form of asynchronous stepping between diagonal limb pairs with a fixed step sequence during locomotion, while age-matched wild-type mice showed stable gait patterns using several step sequence repertoires. As reported in ADSA patients, they also showed a reduced sensitivity for proprioception and thermal nociception. Protein blot analysis revealed that the amount of Itpr1 protein was significantly elevated in the cerebellum and spinal cord but intact in the cerebral cortex in Rnf170(-/-) mice. These results suggest that the loss of Rnf170 gene function mediates ADSA-associated phenotypes and this gives insights on the cure of patients with ADSA and other age-dependent walking abnormalities.

  11. Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice

    NASA Technical Reports Server (NTRS)

    Levasseur, Regis; Barrios, Roberto; Elefteriou, Florent; Glass, Donald A 2nd; Lieberman, Michael W.; Karsenty, Gerard

    2003-01-01

    Gamma-glutamyl transpeptidase (GGT) is a widely distributed ectopeptidase responsible for the degradation of glutathione in the gamma-glutamyl cycle. This cycle is implicated in the metabolism of cysteine, and absence of GGT causes a severe intracellular decrease in this amino acid. GGT-deficient (GGT-/-) mice have multiple metabolic abnormalities and are dwarf. We show here that this latter phenotype is due to a decreased of the growth plate cartilage total height resulting from a proliferative defect of chondrocytes. In addition, analysis of vertebrae and tibiae of GGT-/- mice revealed a severe osteopenia. Histomorphometric studies showed that this low bone mass phenotype results from an increased osteoclast number and activity as well as from a marked decrease in osteoblast activity. Interestingly, neither osteoblasts, osteoclasts, nor chondrocytes express GGT, suggesting that the observed defects are secondary to other abnormalities. N-acetylcysteine supplementation has been shown to reverse the metabolic abnormalities of the GGT-/- mice and in particular to restore the level of IGF-1 and sex steroids in these mice. Consistent with these previous observations, N-acetylcysteine treatment of GGT-/- mice ameliorates their skeletal abnormalities by normalizing chondrocytes proliferation and osteoblastic function. In contrast, resorbtion parameters are only partially normalized in GGT-/- N-acetylcysteine-treated mice, suggesting that GGT regulates osteoclast biology at least partly independently of these hormones. These results establish the importance of cysteine metabolism for the regulation of bone remodeling and longitudinal growth.

  12. Environmental factors during early developmental period influence psychobehavioral abnormalities in adult PACAP-deficient mice.

    PubMed

    Ishihama, Toshihiro; Ago, Yukio; Shintani, Norihito; Hashimoto, Hitoshi; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2010-06-19

    Mice lacking the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) (PACAP(-/-)) display behavioral abnormalities, and genetic variants of the genes encoding PACAP are associated with schizophrenia. Clinical studies show that environmental factors, besides genetic factors, play a key role in etiology of many psychiatric disorders. This study examined the effects of environmental factors such as short-term social isolation and an enriched environment on behavioral abnormalities of PACAP(-/-) mice. Rearing in isolation for 2-weeks from 4-weeks old induced hyperlocomotion and aggressive behaviors in the PACAP(-/-) mice without affecting the behavioral performance of the wild-type controls. Adult PACAP(-/-) mice showed not only hyperactivity, jumping behavior, and depression-like behavior, but also decreased social interaction. These abnormal behaviors were improved by rearing for 4-weeks in an early enriched environment (from 4-weeks old), although the deficits of prepulse inhibition (PPI) were not influenced by the enriched condition. In contrast, rearing for 4-weeks in late enriched environment (from 8-weeks old) did not affect the hyperactivity and jumping behaviors in the PACAP(-/-) mice. These results suggest that abnormal behaviors except PPI deficits in PACAP(-/-) mice depend on the environmental factors during the early stages of development.

  13. Multiple Renal Cyst Development but Not Situs Abnormalities in Transgenic RNAi Mice against Inv::GFP Rescue Gene

    PubMed Central

    Kamijho, Yuki; Shiozaki, Yayoi; Sakurai, Eiki; Hanaoka, Kazunori; Watanabe, Daisuke

    2014-01-01

    In this study we generated RNA interference (RNAi)-mediated gene knockdown transgenic mice (transgenic RNAi mice) against the functional Inv gene. Inv mutant mice show consistently reversed internal organs (situs inversus), multiple renal cysts and neonatal lethality. The Inv::GFP-rescue mice, which introduced the Inv::GFP fusion gene, can rescue inv mutant mice phenotypes. This indicates that the Inv::GFP gene is functional in vivo. To analyze the physiological functions of the Inv gene, and to demonstrate the availability of transgenic RNAi mice, we introduced a short hairpin RNA expression vector against GFP mRNA into Inv::GFP-rescue mice and analyzed the gene silencing effects and Inv functions by examining phenotypes. Transgenic RNAi mice with the Inv::GFP-rescue gene (Inv-KD mice) down-regulated Inv::GFP fusion protein and showed hypomorphic phenotypes of inv mutant mice, such as renal cyst development, but not situs abnormalities or postnatal lethality. This indicates that shRNAi-mediated gene silencing systems that target the tag sequence of the fusion gene work properly in vivo, and suggests that a relatively high level of Inv protein is required for kidney development in contrast to left/right axis determination. Inv::GFP protein was significantly down-regulated in the germ cells of Inv-KD mice testis compared with somatic cells, suggesting the existence of a testicular germ cell-specific enhanced RNAi system that regulates germ cell development. The Inv-KD mouse is useful for studying Inv gene functions in adult tissue that are unable to be analyzed in inv mutant mice showing postnatal lethality. In addition, the shRNA-based gene silencing system against the tag sequence of the fusion gene can be utilized as a new technique to regulate gene expression in either in vitro or in vivo experiments. PMID:24586938

  14. Behavioral abnormalities in mice lacking mesenchyme-specific Pten.

    PubMed

    Borniger, Jeremy C; Cissé, Yasmine M; Cantemir-Stone, Carmen Z; Bolon, Brad; Nelson, Randy J; Marsh, Clay B

    2016-05-01

    Phosphatase and tensin homolog (Pten) is a negative regulator of cell proliferation and growth. Using a Cre-recombinase approach with Lox sequences flanking the fibroblast-specific protein 1 (Fsp1 aka S100A4; a mesenchymal marker), we probed sites of expression using a β-galactosidase Rosa26(LoxP) reporter allele; the transgene driving deletion of Pten (exons 4-5) was found throughout the brain parenchyma and pituitary, suggesting that deletion of Pten in Fsp1-positive cells may influence behavior. Because CNS-specific deletion of Pten influences social and anxiety-like behaviors and S100A4 is expressed in astrocytes, we predicted that loss of Pten in Fsp1-expressing cells would result in deficits in social interaction and increased anxiety. We further predicted that environmental enrichment would compensate for genetic deficits in these behaviors. We conducted a battery of behavioral assays on Fsp1-Cre;Pten(LoxP/LoxP) male and female homozygous knockouts (Pten(-/-)) and compared their behavior to Pten(LoxP/LoxP) (Pten(+/+)) conspecifics. Despite extensive physical differences (including reduced hippocampal size) and deficits in sensorimotor function, Pten(-/-) mice behaved remarkably similar to control mice on nearly all behavioral tasks. These results suggest that the social and anxiety-like phenotypes observed in CNS-specific Pten(-/-) mice may depend on neuronal Pten, as lack of Pten in Fsp1-expressing cells of the CNS had little effect on these behaviors.

  15. Abnormal Vascular Function and Hypertension in Mice Deficient in Estrogen Receptor β

    NASA Astrophysics Data System (ADS)

    Zhu, Yan; Bian, Zhao; Lu, Ping; Karas, Richard H.; Bao, Lin; Cox, Daniel; Hodgin, Jeffrey; Shaul, Philip W.; Thorén, Peter; Smithies, Oliver; Gustafsson, Jan-Åke; Mendelsohn, Michael E.

    2002-01-01

    Blood vessels express estrogen receptors, but their role in cardiovascular physiology is not well understood. We show that vascular smooth muscle cells and blood vessels from estrogen receptor β (ERβ)-deficient mice exhibit multiple functional abnormalities. In wild-type mouse blood vessels, estrogen attenuates vasoconstriction by an ERβ-mediated increase in inducible nitric oxide synthase expression. In contrast, estrogen augments vasoconstriction in blood vessels from ERβ-deficient mice. Vascular smooth muscle cells isolated from ERβ-deficient mice show multiple abnormalities of ion channel function. Furthermore, ERβ-deficient mice develop sustained systolic and diastolic hypertension as they age. These data support an essential role for ERβ in the regulation of vascular function and blood pressure.

  16. Attenuation effect of Abnormal Savda Munziq on liver and heart toxicity caused by chemotherapy in mice

    PubMed Central

    AIKEMU, AINIWAER; AMAT, NURMUHAMAT; YUSUP, ABDIRYIM; SHAN, LIANLIAN; QI, XINWEI; UPUR, HALMURAT

    2016-01-01

    Abnormal Savda Munziq (ASMq), an Uighur medicine formula commonly used in the treatment of cancer, has been speculated to possess antioxidative and antiproliferative effects, and to regulate immune activity. The present study was designed to systematically elucidate the toxicity-reducing activity of ASMq in mice undergoing combination chemotherapy with doxorubicin and 5-fluorouracil (5-FU). The mice were divided into normal (saline, 10 ml/kg) and doxorubicin + 5-FU groups (doxorubicin, 2.5 mg/kg; 5-FU, 10 mg/kg on alternate days). In addition, three groups received different doses of ASMq (2, 4 and 8 g/kg), in addition to doxorubicin (2.5 mg/kg) and 5-FU (10 mg/kg) treatment on alternate days. The histology of the heart and liver, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) activity, malondialdehyde (MDA) concentrations in heart homogenate, and various biochemical parameters of the liver were evaluated. Compared with the normal control group, ASMq dose-dependently improved a number of variables, including body weight, liver index, transaminase and total protein, and partially normalized liver and cardiac pathology. ASMq restored activities of defense antioxidant enzymes SOD and GSH-Px towards normal levels, and decreased MDA concentration in dose-dependent manner. These results demonstrated that ASMq provides significant protection against doxorubicin + 5-FU combination induced hepatotoxicity and cardiotoxicity. Further studies are required to determine the effects of ASMq against doxorubicin + 5-FU-induced toxicity during chemotherapy in vivo. PMID:27347066

  17. Chromosome aberrations, micronucleus and sperm head abnormalities in mice treated with natamycin, [corrected] a food preservative.

    PubMed

    Rasgele, Pinar Goc; Kaymak, Fisun

    2010-03-01

    Natamycin [corrected] is used as preservative in foods. The genotoxic effects of the food preservative natamycin [corrected] were evaluated using chromosome aberrations and micronucleus test in bone marrow cells and sperm head abnormality assays in mice. Blood samples were taken from mice and levels of total testosterone in serum were also determined. Natamycin [corrected] was intraperitoneally (ip) injected at 200, 400 and 800 mg/kg. Natamycin [corrected] did not induce chromosome aberrations but significantly increased the number of micronucleated polychromatic erythrocytes in bone marrow and sperm head abnormalities at all concentrations and treatment periods. It also decreased MI at all concentrations for 6, 12 and 24h treatment periods. Natamycin [corrected] decreased PCE/NCE ratio at all concentrations for 48h in female mice, for 24 and 48h treatment periods in male mice. At the 800 mg/kg concentration, natamycin [corrected] decreased PCE/NCE ratio for 24 and 72h in female mice. A dose dependent increase was observed in the percentage of sperm head abnormalities. The levels of serum testosterone decreased dose-dependently. The obtained results indicate that natamycin [corrected] is not clastogenic, but it is aneugenic in mice bone marrow and it is a potential germ cell mutagen in sperm cells.

  18. Conditional expression of human bone Gla protein in osteoblasts causes skeletal abnormality in mice.

    PubMed

    Ikeda, Kazuhiro; Tsukui, Tohru; Tanaka, Daisuke; Maruyama, Yojiro; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-07-20

    Bone Gla protein (BGP), also known as osteocalcin, is one of the most abundant γ-carboxylated noncollagenous protein in bone matrix and plays important roles in mineralization and calcium ion homeostasis. BGP is synthesized specifically in osteoblasts; however, its precise function in bone metabolism has not been fully elucidated. To investigate the in vivo function of human BGP (hBGP), we generated CAG-GFP(floxed)-hBGP transgenic mice carrying a transgene cassette composed of the promoter and a floxed GFP linked to hBGP cDNA. The mice were crossed with ColI-Cre mice, which express the Cre recombinase driven by the mouse collagen type 1a1 gene promoter, to obtain hBGP(ColI) conditional transgenic mice that expressed human BGP in osteoblasts. The hBGP(ColI) mice did not survive more than 2days after birth. The analysis of the 18.5-day post coitum fetuses of the hBGP(ColI) mice revealed that they displayed abnormal skeletal growth such as deformity of the rib and short femur and cranium lengths. Moreover, increased BGP levels were detected in the serum of the neonates. These findings indicate that hBGP expression in osteoblasts resulted in the abnormal skeletal growth in the mice. Our study provides a valuable model for understanding the fundamental role of BGP in vivo.

  19. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice.

    PubMed

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J; Hong, Seok-Ho; DeMayo, Francesco J; Lydon, John P; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-01-01

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8(d/d)) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8(d/d) females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8(d/d) mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice. PMID:26833131

  20. Deficiency in DGCR8-dependent canonical microRNAs causes infertility due to multiple abnormalities during uterine development in mice

    PubMed Central

    Kim, Yeon Sun; Kim, Hye-Ryun; Kim, Hyongbum; Yang, Seung Chel; Park, Mira; Yoon, Jung Ah; Lim, Hyunjung J.; Hong, Seok-Ho; DeMayo, Francesco J.; Lydon, John P.; Choi, Youngsok; Lee, Dong Ryul; Song, Haengseok

    2016-01-01

    DGCR8 is an RNA-binding protein that interacts with DROSHA to produce pre-microRNA in the nucleus, while DICER generates not only mature microRNA, but also endogenous small interfering RNAs in the cytoplasm. Here, we produced Dgcr8 conditional knock-out mice using progesterone receptor (PR)-Cre (Dgcr8d/d) and demonstrated that canonical microRNAs dependent on the DROSHA-DGCR8 complex are required for uterine development as well as female fertility in mice. Adult Dgcr8d/d females neither underwent regular reproductive cycles nor produced pups, whereas administration of exogenous gonadotropins induced normal ovulation in these mice. Interestingly, immune cells associated with acute inflammation aberrantly infiltrated into reproductive organs of pregnant Dgcr8d/d mice. Regarding uterine development, multiple uterine abnormalities were noticeable at 4 weeks of age when PR is significantly increased, and the severity of these deformities increased over time. Gland formation and myometrial layers were significantly reduced, and the stromal cell compartment did not expand and became atrophic during uterine development in these mice. These results were consistent with aberrantly reduced stromal cell proliferation and completely failed decidualization. Collectively, we suggest that DGCR8-dependent canonical microRNAs are essential for uterine development and physiological processes such as proper immune modulation, reproductive cycle, and steroid hormone responsiveness in mice. PMID:26833131

  1. Forelimb contractures and abnormal tendon collagen fibrillogenesis in fibulin-4 null mice.

    PubMed

    Markova, Dessislava Z; Pan, Te-Cheng; Zhang, Rui-Zhu; Zhang, Guiyun; Sasaki, Takako; Arita, Machiko; Birk, David E; Chu, Mon-Li

    2016-06-01

    Fibulin-4 is an extracellular matrix glycoprotein essential for elastic fiber formation. Mice deficient in fibulin-4 die perinatally because of severe pulmonary and vascular defects associated with the lack of intact elastic fibers. Patients with fibulin-4 mutations demonstrate similar defects, and a significant number die shortly after birth or in early childhood from cardiopulmonary failure. The patients also demonstrate skeletal and other systemic connective tissue abnormalities, including joint laxity and flexion contractures of the wrist. A fibulin-4 null mouse strain was generated and used to analyze the roles of fibulin-4 in tendon fibrillogenesis. This mouse model displayed bilateral forelimb contractures, in addition to pulmonary and cardiovascular defects. The forelimb and hindlimb tendons exhibited disruption in collagen fibrillogenesis in the absence of fibulin-4 as analyzed by transmission electron microscopy. Fewer fibrils were assembled, and fibrils were disorganized compared with wild-type controls. The organization of developing tenocytes and compartmentalization of the extracellular space was also disrupted. Fibulin-4 was co-localized with fibrillin-1 and fibrillin-2 in limb tendons by using immunofluorescence microscopy. Thus, fibulin-4 seems to play a role in regulating tendon collagen fibrillogenesis, in addition to its essential function in elastogenesis. PMID:26711913

  2. Abnormal Population Responses in the Somatosensory Cortex of Alzheimer’s Disease Model Mice

    PubMed Central

    Maatuf, Yossi; Stern, Edward A.; Slovin, Hamutal

    2016-01-01

    Alzheimer’s disease (AD) is the most common form of dementia. One of the neuropathological hallmarks of AD is the accumulation of amyloid-β plaques. Overexpression of human amyloid precursor protein in transgenic mice induces hippocampal and neocortical amyloid-β accumulation and plaque deposition that increases with age. The impact of these effects on neuronal population responses and network activity in sensory cortex is not well understood. We used Voltage Sensitive Dye Imaging, to investigate at high spatial and temporal resolution, the sensory evoked population responses in the barrel cortex of aged transgenic (Tg) mice and of age-matched non-transgenic littermate controls (Ctrl) mice. We found that a whisker deflection evoked abnormal sensory responses in the barrel cortex of Tg mice. The response amplitude and the spatial spread of the cortical responses were significantly larger in Tg than in Ctrl mice. At the network level, spontaneous activity was less synchronized over cortical space than in Ctrl mice, however synchronization during evoked responses induced by whisker deflection did not differ between the two groups. Thus, the presence of elevated Aβ and plaques may alter population responses and disrupts neural synchronization in large-scale networks, leading to abnormalities in sensory processing. PMID:27079783

  3. Demonstration of sperm head shape abnormality and clastogenic potential of cypermethrin.

    PubMed

    Kumar, S; Gautam, A K; Agarwal, K R; Shah, B A; Saiyad, H N

    2004-04-01

    Adult male Swiss albino mice were administered ip. suspension solution of cypermethrin in 0.15% DMSO at the doses of 30 mg, 60 mg and 90 mg/kg b. wt. daily for 5 days. Another group of animals was injected cyclophosphamide ip. (60 mg/kg b. wt.) in similar manner which served as positive control. Effect of cypermethrin on body and testes weight and sperm head morphology was studied. Clastogenic potential of cypermethrin was studied by using modified Allium test. The cytological changes were studied in the root tip cells of Allium cepa after 3 days treatment with three different concentration of cypermethrin (0.1, 1.0 and 10.0 microg/ml). The results revealed that body weight gain was considerably reduced in higher dose groups, but the testicular weight did not change significantly in any of the cypermethrin treated groups. However, a significant elevation in the number of abnormal shape of sperm head was noticed in higher dose groups as compared to control. It was observed that the abnormality in the shape of sperm head was dose-dependent. The cytological changes in the root tip cells of Allium cepa indicated that cypermethrin is having toxic effects on the root tip cells in the form of stickiness of chromosomes and also affect the mitotic activity. This study suggest that cypermethrin may have the potential to induce adverse effects on sperm head shape morphology of mouse as well as clastogenic effects on root tip cells of Allium cepa. PMID:15529877

  4. Abnormal corneal epithelial maintenance in mice heterozygous for the micropinna microphthalmia mutation Mp.

    PubMed

    Douvaras, Panagiotis; Dorà, Natalie J; Mort, Richard L; Lodge, Emily J; Hill, Robert E; West, John D

    2016-08-01

    We investigated the corneal morphology of adult Mp/+ mice, which are heterozygous for the micropinna microphthalmia mutation, and identified several abnormalities, which implied that corneal epithelial maintenance was abnormal. The Mp/+ corneal epithelium was thin, loosely packed and contained goblet cells in older mice. Evidence also suggested that the barrier function was compromised. However, there was no major effect on corneal epithelial cell turnover and mosaic patterns of radial stripes indicated that radial cell movement was normal. Limbal blood vessels formed an abnormally wide limbal vasculature ring, K19-positive cells were distributed more widely than normal and K12 was weakly expressed in the peripheral cornea. This raises the possibilities that the limbal-corneal boundary was poorly defined or the limbus was wider than normal. BrdU label-retaining cell numbers and quantitative clonal analysis suggested that limbal epithelial stem cell numbers were not depleted and might be higher than normal. However, as corneal epithelial homeostasis was abnormal, it is possible that Mp/+ stem cell function was impaired. It has been shown recently that the Mp mutation involves a chromosome 18 inversion that disrupts the Fbn2 and Isoc1 genes and produces an abnormal, truncated fibrillin-2(MP) protein. This abnormal protein accumulates in the endoplasmic reticulum (ER) of cells that normally express Fbn2 and causes ER stress. It was also shown that Fbn2 is expressed in the corneal stroma but not the corneal epithelium, suggesting that the presence of truncated fibrillin-2(MP) protein in the corneal stroma disrupts corneal epithelial homeostasis in Mp/+ mice. PMID:27235794

  5. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  6. No obvious phenotypic abnormalities in mice lacking the Pate4 gene.

    PubMed

    Heckt, Timo; Keller, Johannes; Reusch, Roswitha; Hartmann, Kristin; Krasemann, Susanne; Hermans-Borgmeyer, Irm; Amling, Michael; Schinke, Thorsten

    2016-01-22

    We have previously reported that the hormone calcitonin (CT) negatively regulates bone formation by inhibiting the release of sphingosine-1-phosphate from bone-resorbing osteoclasts. In the context of this study we additionally observed that CT repressed the expression of Pate4, encoding the secreted protein caltrin/Svs7, in osteoclasts from wildtype mice. To assess a possible function of Pate4 in bone remodeling, we utilized commercially available embryonic stem cells with a targeted Pate4 allele to generate Pate4-deficient mice. These were born at the expected Mendelian ratio and did not display obvious abnormalities until the age of 6 months. A bone-specific histomorphometric analysis further revealed that bone remodeling is unaffected in male and female Pate4-deficient mice. Since a subsequently performed multi-tissue expression analysis confirmed that Pate4 is primarily expressed in prostate and seminal vesicles, we additionally analyzed the respective tissues of Pate4-deficient mice, but failed to detect histological abnormalities. Most importantly, as assessed by mating with female wildtype mice, we did not observe reduced fertility associated with Pate4-deficiency. Taken together, our study was the first to generate and analyze a mouse model lacking Pate4, a gene with strong expression in prostate and seminal vesicles, yet without major function for fertility.

  7. Metabolic abnormalities and hypoleptinemia in α-synuclein A53T mutant mice.

    PubMed

    Rothman, Sarah M; Griffioen, Kathleen J; Fishbein, Kenneth W; Spencer, Richard G; Makrogiannis, Sokratis; Cong, Wei-Na; Martin, Bronwen; Mattson, Mark P

    2014-05-01

    Parkinson's disease (PD) patients frequently display loss of body fat mass and increased energy expenditure, and several studies have outlined a relationship between these metabolic abnormalities and disease severity, yet energy metabolism is largely unstudied in mouse models of PD. Here we characterize metabolic and physiologic responses to a high calorie diet (HCD) in mice expressing in neurons a mutant form of human α-synuclein (A53T) that causes dominantly inherited familial forms of the disease. A53T (SNCA) and wild type (WT) littermate mice were placed on a HCD for 12 weeks and evaluated for weight gain, food intake, body fat, blood plasma leptin, hunger, glucose tolerance, and energy expenditure. Results were compared with both SNCA and WT mice on a control diet. Despite consuming similar amounts of food, WT mice gained up to 66% of their original body weight on a HCD, whereas SNCA mice gained only 17%. Further, after 12 weeks on a HCD, magnetic resonance imaging analysis revealed that WT mice had significantly greater total and visceral body fat compared with SNCA mice (p < 0.007). At the age of 24 weeks SNCA mice displayed significantly increased hunger compared with WT (p < 0.03). At the age of 36 weeks, SNCA mice displayed significant hypoleptinemia compared with WT, both on a normal diet and a HCD (p < 0.03). The HCD induced insulin insensitivity in WT, but not SNCA mice, as indicated by an oral glucose tolerance test. Finally, SNCA mice displayed greater energy expenditure compared with WT, as measured in a Comprehensive Laboratory Animal Monitoring System, after 12 weeks on a HCD. Thus, SNCA mice are resistant to HCD-induced obesity and insulin resistance and display reduced body fat, increased hunger, hypoleptinemia and increased energy expenditure. Our findings reveal a profile of metabolic dysfunction in a mouse model of PD that is similar to that of human PD patients, thus providing evidence that α-synuclein pathology is sufficient to drive such

  8. Hyperlipidemia and cutaneous abnormalities in transgenic mice overexpressing human apolipoprotein C1.

    PubMed

    Jong, M C; Gijbels, M J; Dahlmans, V E; Gorp, P J; Koopman, S J; Ponec, M; Hofker, M H; Havekes, L M

    1998-01-01

    Transgenic mice were generated with different levels of human apolipoprotein C1 (APOC1) expression in liver and skin. At 2 mo of age, serum levels of cholesterol, triglycerides (TG), and FFA were strongly elevated in APOC1 transgenic mice compared with wild-type mice. These elevated levels of serum cholesterol and TG were due mainly to an accumulation of VLDL particles in the circulation. In addition to hyperlipidemia, APOC1 transgenic mice developed dry and scaly skin with loss of hair, dependent on the amount of APOC1 expression in the skin. Since these skin abnormalities appeared in two independent founder lines, a mutation related to the specific insertion site of the human APOC1 gene as the cause for the phenotype can be excluded. Histopathological analysis of high expressor APOC1 transgenic mice revealed a disorder of the skin consisting of epidermal hyperplasia and hyperkeratosis, and atrophic sebaceous glands lacking sebum. In line with these results, epidermal lipid analysis showed that the relative amounts of the sebum components TG and wax diesters in the epidermis of high expressor APOC1 transgenic mice were reduced by 60 and 45%, respectively. In addition to atrophic sebaceous glands, the meibomian glands were also found to be severely atrophic in APOC1 transgenic mice. High expressor APOC1 transgenic mice also exhibited diminished abdominal adipose tissue stores (a 60% decrease compared with wild-type mice) and a complete deficiency of subcutaneous fat. These results indicate that, in addition to the previously reported inhibitory role of apoC1 on hepatic remnant uptake, overexpression of apoC1 affects lipid synthesis in the sebaceous gland and/or epidermis as well as adipose tissue formation. These APOC1 transgenic mice may serve as an interesting in vivo model for the investigation of lipid homeostasis in the skin.

  9. Immune Dysfunction Associated with Abnormal Bone Marrow-Derived Mesenchymal Stroma Cells in Senescence Accelerated Mice

    PubMed Central

    Li, Ming; Guo, Kequan; Adachi, Yasushi; Ikehara, Susumu

    2016-01-01

    Senescence accelerated mice (SAM) are a group of mice that show aging-related diseases, and SAM prone 10 (SAMP10) show spontaneous brain atrophy and defects in learning and memory. Our previous report showed that the thymus and the percentage of T lymphocytes are abnormal in the SAMP10, but it was unclear whether the bone marrow-derived mesenchymal stroma cells (BMMSCs) were abnormal, and whether they played an important role in regenerative medicine. We thus compared BMMSCs from SAMP10 and their control, SAM-resistant (SAMR1), in terms of cell cycle, oxidative stress, and the expression of PI3K and mitogen-activated protein kinase (MAPK). Our cell cycle analysis showed that cell cycle arrest occurred in the G0/G1 phase in the SAMP10. We also found increased reactive oxygen stress and decreased PI3K and MAPK on the BMMSCs. These results suggested the BMMSCs were abnormal in SAMP10, and that this might be related to the immune system dysfunction in these mice. PMID:26840301

  10. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  11. Abnormal strategies during visual discrimination reversal learning in ephrin-A2(-/-) mice.

    PubMed

    Arnall, S; Cheam, L Y; Smart, C; Rengel, A; Fitzgerald, M; Thivierge, J P; Rodger, J

    2010-05-01

    Eph receptors and ephrins are involved in establishing topographic connectivity in primary sensory brain regions, but also in higher order structures including the cortex and hippocampus. Ephrin-A2(-/-) mice have abnormal topography in the primary visual system but have normal visual and learning performance on a simple visual discrimination task. Here we use signal detection theory to analyse learning behaviour of these mice. Wild-type (WT) and ephrin-A2(-/-) (KO) mice performed equally well in a two-stimulus visual discrimination task, with similar learning rates and response latencies. However, during reversal learning, when the rewarded stimulus was switched, the two genotypes exhibited differences in response strategies: while WTs favoured a win-stay strategy, KOs remained relatively neutral. KOs also exhibited a stronger lateralization bias in the initial stages of learning, choosing the same arm of the maze with high probability. In addition, use of a Bayesian "optimal observer" revealed that compared to WT, KO mice adapted their decisions less rapidly to a change in stimulus-reward relationship. We suggest that the misexpression of ephrin-A2 may lead to abnormal connectivity in regions known for their involvement in reversal learning and perseverative behaviours, including thalamic-prefrontal cortical-striatal circuitry and particularly orbitofrontal cortex. The implication is that topographic organisation of higher order brain regions may play an important role in learning and decision making.

  12. Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities

    PubMed Central

    Shi, Zheng-Tao; Afzal, Veena; Coller, Barry; Patel, Dipti; Chasis, Joel A.; Parra, Marilyn; Lee, Gloria; Paszty, Chris; Stevens, Mary; Walensky, Loren; Peters, Luanne L.; Mohandas, Narla; Rubin, Edward; Conboy, John G.

    1999-01-01

    A diverse family of protein 4.1R isoforms is encoded by a complex gene on human chromosome 1. Although the prototypical 80-kDa 4.1R in mature erythrocytes is a key component of the erythroid membrane skeleton that regulates erythrocyte morphology and mechanical stability, little is known about 4.1R function in nucleated cells. Using gene knockout technology, we have generated mice with complete deficiency of all 4.1R protein isoforms. These 4.1R-null mice were viable, with moderate hemolytic anemia but no gross abnormalities. Erythrocytes from these mice exhibited abnormal morphology, lowered membrane stability, and reduced expression of other skeletal proteins including spectrin and ankyrin, suggesting that loss of 4.1R compromises membrane skeleton assembly in erythroid progenitors. Platelet morphology and function were essentially normal, indicating that 4.1R deficiency may have less impact on other hematopoietic lineages. Nonerythroid 4.1R expression patterns, viewed using histochemical staining for lacZ reporter activity incorporated into the targeted gene, revealed focal expression in specific neurons in the brain and in select cells of other major organs, challenging the view that 4.1R expression is widespread among nonerythroid cells. The 4.1R knockout mice represent a valuable animal model for exploring 4.1R function in nonerythroid cells and for determining pathophysiological sequelae to 4.1R deficiency. PMID:9927493

  13. Behavioral abnormality and pharmacologic response in social isolation-reared mice.

    PubMed

    Koike, Hiroyuki; Ibi, Daisuke; Mizoguchi, Hiroyuki; Nagai, Taku; Nitta, Atsumi; Takuma, Kazuhiro; Nabeshima, Toshitaka; Yoneda, Yukio; Yamada, Kiyofumi

    2009-08-24

    Social isolation (SI) rearing in rodents causes a variety of behavioral changes, including hyperlocomotion, anxiety, impulsivity, aggression, and learning and memory deficits. These behavioral abnormalities in rodents may be related to the symptoms in patients with neuropsychiatric disorders, such as attention-deficit hyperactivity disorder, obsessive-compulsive disorder, autism, schizophrenia and depression. In this study, we examined the effect of long-term SI rearing after weaning on emotional behaviors and cognitive function in mice. Furthermore, the effects of methylphenidate (MPH), clozapine (CLZ) and fluoxetine (FLX) on SI-induced behavioral changes were examined to measure the predictive validity of SI-reared mice as an animal model for these neuropsychiatric disorders. MPH improved SI-induced anxiety-like behavior in the elevated-plus maze test, but had no effect on aggressive behavior. In contrast, CLZ ameliorated aggressive behavior, but not anxiety-like behavior in SI-reared mice. Repeated FLX treatment prevented SI-induced aggressive behavior and social interaction deficits. These findings suggest that SI-induced behavioral abnormality is a psychobehavioral complex relevant to various clinical symptoms observed in neuropsychiatric disorders and that SI-reared mice are a useful animal model to study the pathophysiology/pathogenesis of these diseases.

  14. High phosphate feeding promotes mineral and bone abnormalities in mice with chronic kidney disease

    PubMed Central

    Lau, Wei Ling; Linnes, Michael; Chu, Emily Y.; Foster, Brian L.; Bartley, Bryan A.; Somerman, Martha J.; Giachelli, Cecilia M.

    2013-01-01

    Background Chronic kidney disease-mineral bone disorder (CKD-MBD) is a systemic syndrome characterized by imbalances in mineral homeostasis, renal osteodystrophy (ROD) and ectopic calcification. The mechanisms underlying this syndrome in individuals with chronic kidney disease (CKD) are not yet clear. Methods We examined the effect of normal phosphate (NP) or high phosphate (HP) feeding in the setting of CKD on bone pathology, serum biochemistry and vascular calcification in calcification-prone dilute brown non-agouti (DBA/2) mice. Results In both NP and HP-fed CKD mice, elevated serum parathyroid hormone and alkaline phosphatase (ALP) levels were observed, but serum phosphorus levels were equivalent compared with sham controls. CKD mice on NP diet showed trabecular alterations in the long bone consistent with high–turnover ROD, including increased trabecular number with abundant osteoblasts and osteoclasts. Despite trabecular bone and serum biochemical changes, CKD/NP mice did not develop vascular calcification. In contrast, CKD/HP mice developed arterial medial calcification (AMC), more severe trabecular bone alterations and cortical bone abnormalities that included decreased cortical thickness and density, and increased cortical porosity. Cortical bone porosity and trabecular number strongly correlated with the degree of aortic calcification. Conclusions HP feeding was required to induce the full spectrum of CKD-MBD symptoms in CKD mice. PMID:23045434

  15. Abnormal activation of the motor cortical network in idiopathic scoliosis demonstrated by functional MRI.

    PubMed

    Domenech, Julio; García-Martí, G; Martí-Bonmatí, L; Barrios, C; Tormos, J M; Pascual-Leone, A

    2011-07-01

    The aetiology of idiopathic scoliosis (IS) remains unknown, but there is growing support for the possibility of an underlying neurological disorder. Functional magnetic resonance imaging (fMRI) can characterize the abnormal activation of the sensorimotor brain network in movement disorders and could provide further insights into the neuropathogenesis of IS. Twenty subjects were included in the study; 10 adolescents with IS (mean age of 15.2, 8 girls and 2 boys) and 10 age-matched healthy controls. The average Cobb angle of the primary curve in the IS patients was 35° (range 27°-55°). All participants underwent a block-design fMRI experiment in a 1.5-Tesla MRI scanner to explore cortical activation following a simple motor task. Rest periods alternated with activation periods during which participants were required to open and close their hand at an internally paced rate of approximately 1 Hz. Data were analyzed with Statistical Parametric Mapping (SPM5) including age, sex and laterality as nuisance variables to minimise the presence of bias in the results. Compared to controls, IS patients showed significant increases in blood oxygenation level dependent (BOLD) activity in contralateral supplementary motor area when performing the motor task with either hand. No significant differences were observed when testing between groups in the functional activation in the primary motor cortex, premotor cortex and somatosensory cortex. Additionally, the IS group showed a greater interhemispheric asymmetry index than the control group (0.30 vs. 0.13, p < 0.001). This study demonstrates an abnormal pattern of brain activation in secondary motor areas during movement execution in patients with IS. These findings support the hypothesis that a sensorimotor integration disorder underlies the pathogenesis of IS.

  16. Serotonergic involvement in the amelioration of behavioral abnormalities in dopamine transporter knockout mice by nicotine.

    PubMed

    Uchiumi, Osamu; Kasahara, Yoshiyuki; Fukui, Asami; Hall, F Scott; Uhl, George R; Sora, Ichiro

    2013-01-01

    Dopamine transporter knockout (DAT KO) mice exhibit elevated extracellular dopamine levels in brain regions that include the striatum and the nucleus accumbens, but not the prefrontal cortex. DAT KO mice model some aspects of psychiatric disorders, including schizophrenia. Smoking is more common in patients with schizophrenia, suggesting that nicotine might ameliorate aspects of the behavioral abnormalities and/or treatment side effects seen in these individuals. We report nicotine-induced normalization of effects on locomotion and prepulse inhibition of acoustic startle (PPI) in DAT KO mice that require intact serotonin 5-HT1A systems. First, we observed that the marked hyperactivity displayed by DAT KO mice was reduced by administration of nicotine. This nicotine effect was blocked by pretreatment with the non-specific nicotinic acetylcholine (nACh) receptor antagonist mecamylamine, or the 5-HT1A antagonist WAY100635. Secondly, we examined the effects of nicotine on PPI in DAT KO mice. Treatment with nicotine significantly ameliorated the PPI deficits observed in DAT KO mice. The ameliorating action of nicotine on PPI deficits in DAT KO mice was blocked by mecamylamine, the α₇ nACh receptor antagonist methyllycaconitine or WAY100635, while the α₄β₂ nACh receptor antagonist dihydro-β-erythroidinehydrobromide (DHβE) produced only a non-significant trend toward attenuation of nicotine effects. Finally, we observed that administration of the 5-HT1A receptor agonist 8-OH-DPAT also ameliorated the deficit in PPI observed in DAT KO mice. This amelioration was antagonized by pretreatment with WAY100635. These data support the idea that nicotine might ameliorate some of the cognitive dysfunctions found in schizophrenia in a 5-HT1A-dependent fashion. This article is part of a Special Issue entitled 'Cognitive Enhancers'.

  17. Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice

    PubMed Central

    Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.

    2012-01-01

    ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897

  18. Increased levels of invariant natural killer T lymphocytes worsen metabolic abnormalities and atherosclerosis in obese mice.

    PubMed

    Subramanian, Savitha; Turner, Michael S; Ding, Yilei; Goodspeed, Leela; Wang, Shari; Buckner, Jane H; O'Brien, Kevin; Getz, Godfrey S; Reardon, Catherine A; Chait, Alan

    2013-10-01

    Obesity is a chronic inflammatory state characterized by infiltration of adipose tissue by immune cell populations, including T lymphocytes. Natural killer T (NKT) cells, a specialized lymphocyte subset recognizing lipid antigens, can be pro- or anti-inflammatory. Their role in adipose inflammation continues to be inconclusive and contradictory. In obesity, the infiltration of tissues by invariant NKT (iNKT) cells is decreased. We therefore hypothesized that an excess iNKT cell complement might improve metabolic abnormalities in obesity. Vα14 transgenic (Vα14tg) mice, with increased iNKT cell numbers, on a LDL receptor-deficient (Ldlr(-/-)) background and control Ldlr(-/-) mice were placed on an obesogenic diet for 16 weeks. Vα14tg.Ldlr(-/-) mice gained 25% more weight and had increased adiposity than littermate controls. Transgenic mice also developed greater dyslipidemia, hyperinsulinemia, insulin resistance, and hepatic triglyceride accumulation. Increased macrophage Mac2 immunostaining and proinflammatory macrophage gene expression suggested worsened adipose inflammation. Concurrently, these mice had increased atherosclerotic lesion area and aortic inflammation. Thus, increasing the complement of iNKT cells surprisingly exacerbated the metabolic, inflammatory, and atherosclerotic features of obesity. These findings suggest that the reduction of iNKT cells normally observed in obesity may represent a physiological attempt to compensate for this inflammatory condition.

  19. Inhibiting Monoacylglycerol Acyltransferase 1 Ameliorates Hepatic Metabolic Abnormalities but Not Inflammation and Injury in Mice*

    PubMed Central

    Soufi, Nisreen; Hall, Angela M.; Chen, Zhouji; Yoshino, Jun; Collier, Sara L.; Mathews, James C.; Brunt, Elizabeth M.; Albert, Carolyn J.; Graham, Mark J.; Ford, David A.; Finck, Brian N.

    2014-01-01

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury. PMID:25213859

  20. Inhibiting monoacylglycerol acyltransferase 1 ameliorates hepatic metabolic abnormalities but not inflammation and injury in mice.

    PubMed

    Soufi, Nisreen; Hall, Angela M; Chen, Zhouji; Yoshino, Jun; Collier, Sara L; Mathews, James C; Brunt, Elizabeth M; Albert, Carolyn J; Graham, Mark J; Ford, David A; Finck, Brian N

    2014-10-24

    Abnormalities in hepatic lipid metabolism and insulin action are believed to play a critical role in the etiology of nonalcoholic steatohepatitis. Monoacylglycerol acyltransferase (MGAT) enzymes convert monoacylglycerol to diacylglycerol, which is the penultimate step in one pathway for triacylglycerol synthesis. Hepatic expression of Mogat1, which encodes an MGAT enzyme, is increased in the livers of mice with hepatic steatosis, and knocking down Mogat1 improves glucose metabolism and hepatic insulin signaling, but whether increased MGAT activity plays a role in the etiology of nonalcoholic steatohepatitis is unclear. To examine this issue, mice were placed on a diet containing high levels of trans fatty acids, fructose, and cholesterol (HTF-C diet) or a low fat control diet for 4 weeks. Mice were injected with antisense oligonucleotides (ASOs) to knockdown Mogat1 or a scrambled ASO control for 12 weeks while remaining on diet. The HTF-C diet caused glucose intolerance, hepatic steatosis, and induced hepatic gene expression markers of inflammation, macrophage infiltration, and stellate cell activation. Mogat1 ASO treatment, which suppressed Mogat1 expression in liver and adipose tissue, attenuated weight gain, improved glucose tolerance, improved hepatic insulin signaling, and decreased hepatic triacylglycerol content compared with control ASO-treated mice on HTF-C chow. However, Mogat1 ASO treatment did not reduce hepatic diacylglycerol, cholesterol, or free fatty acid content; improve histologic measures of liver injury; or reduce expression of markers of stellate cell activation, liver inflammation, and injury. In conclusion, inhibition of hepatic Mogat1 in HTF-C diet-fed mice improves hepatic metabolic abnormalities without attenuating liver inflammation and injury.

  1. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis.

  2. Chromosomal abnormalities in neutron-induced acute myeloid leukemias in CBA/H mice

    SciTech Connect

    Bouffler, S.D.; Meijne, E.I.M.; Huiskamp, R.

    1996-09-01

    Acute myeloid leukemias (AMLs) induced in CBA/H mice by 1 MeV fission neutrons have been examined for chromosomal abnormalities by G-band analysis. In common with X-ray- and {alpha}-particle-induced AMLs in CBA/H mice, more than 90% (16/17) of the myeloid leukemias had chromosome 2 abnormalities, in this case, all interstitial deletions. Chromosome 2 breakpoints were not wholly consistent, but clustering in three specific G-band regions was observed. Very distal (H-region) breakpoints were more common in the neutron AMLs than in X-ray- or {alpha}-particle-induced leukemias. These data indicate that neutron-induced AMLs in CBA/H mice are not characterized by a specific chromosome deletion but that a variety of chromosome 2 deletion types are associated with the disease. Trisomy of chromosome 1 (12.5% AMLs) and aneusomy of chromosomes 6 (31% AMLs) and Y (37.5% AMLs) were noted. While chromatid breakage was observed occasionally in neutron-induced AML, no clear indications of persistent chromosomal instability or high levels of stable chromosomal change were apparent. 19 refs., 1 fig., 1 tab.

  3. Trichloroethylene exposure aggravates behavioral abnormalities in mice that are deficient in superoxide dismutase.

    PubMed

    Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi

    2016-08-01

    Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. PMID:27166294

  4. Behavioral and regulatory abnormalities in mice deficient in the NPAS1 and NPAS3 transcription factors.

    PubMed

    Erbel-Sieler, Claudia; Dudley, Carol; Zhou, Yudong; Wu, Xinle; Estill, Sandi Jo; Han, Tina; Diaz-Arrastia, Ramon; Brunskill, Eric W; Potter, S Steven; McKnight, Steven L

    2004-09-14

    Laboratory mice bearing inactivating mutations in the genes encoding the NPAS1 and NPAS3 transcription factors have been shown to exhibit a spectrum of behavioral and neurochemical abnormalities. Behavioral abnormalities included diminished startle response, as measured by prepulse inhibition, and impaired social recognition. NPAS1/NPAS3-deficient mice also exhibited stereotypic darting behavior at weaning and increased locomotor activity. Immunohistochemical staining assays showed that the NPAS1 and NPAS3 proteins are expressed in inhibitory interneurons and that the viability and anatomical distribution of these neurons are unaffected by the absence of either transcription factor. Adult brain tissues from NPAS3- and NPAS1/NPAS3-deficient mice exhibited a distinct reduction in reelin, a large, secreted protein whose expression has been reported to be attenuated in the postmortem brain tissue of patients with schizophrenia. These observations raise the possibility that a regulatory program controlled in inhibitory interneurons by the NPAS1 and NPAS3 transcription factors may be either substantively or tangentially relevant to psychosis. PMID:15347806

  5. Abnormal skin, limb and craniofacial morphogenesis in mice deficient for interferon regulatory factor 6 (Irf6)

    PubMed Central

    Ingraham, Christopher R; Kinoshita, Akira; Kondo, Shinji; Yang, Baoli; Sajan, Samin; Trout, Kurt J; Malik, Margaret I; Dunnwald, Martine; Goudy, Stephen L; Lovett, Michael; Murray, Jeffrey C; Schutte, Brian C

    2007-01-01

    Transcription factor paralogs may share a common role in staged or overlapping expression in specific tissues, as in the Hox family. In other cases, family members have distinct roles in a range of embryologic, differentiation or response pathways (as in the Tbx and Pax families). For the interferon regulatory factor (IRF) family of transcription factors, mice deficient in Irf1, Irf2, Irf3, Irf4, Irf5, Irf7, Irf8 or Irf9 have defects in the immune response but show no embryologic abnormalities1–7. Mice deficient for Irf6 have not been reported, but in humans, mutations in IRF6 cause two mendelian orofacial clefting syndromes8–10, and genetic variation in IRF6 confers risk for isolated cleft lip and palate11–15. Here we report that mice deficient for Irf6 have abnormal skin, limb and craniofacial development. Histological and gene expression analyses indicate that the primary defect is in keratinocyte differentiation and proliferation. This study describes a new role for an IRF family member in epidermal development. PMID:17041601

  6. Mutant laboratory mice with abnormalities in hair follicle morphogenesis, cycling, and/or structure: an update.

    PubMed

    Nakamura, Motonobu; Schneider, Marlon R; Schmidt-Ullrich, Ruth; Paus, Ralf

    2013-01-01

    Human hair disorders comprise a number of different types of alopecia, atrichia, hypotrichosis, distinct hair shaft disorders as well as hirsutism and hypertrichosis. Their causes vary from genodermatoses (e.g. hypotrichoses) via immunological disorders (e.g. alopecia areata, autoimmune cicatrical alopecias) to hormone-dependent abnormalities (e.g. androgenetic alopecia). A large number of spontaneous mouse mutants and genetically engineered mice develop abnormalities in hair follicle morphogenesis, cycling, and/or hair shaft formation, whose analysis has proven invaluable to define the molecular regulation of hair growth, ranging from hair follicle development, and cycling to hair shaft formation and stem cell biology. Also, the accumulating reports on hair phenotypes of mouse strains provide important pointers to better understand the molecular mechanisms underlying human hair growth disorders. Since numerous new mouse mutants with a hair phenotype have been reported since the publication of our earlier review on this matter a decade ago, we present here an updated, tabulated mini-review. The updated annotated tables list a wide selection of mouse mutants with hair growth abnormalities, classified into four categories: Mutations that affect hair follicle (1) morphogenesis, (2) cycling, (3) structure, and (4) mutations that induce extrafollicular events (for example immune system defects) resulting in secondary hair growth abnormalities. This synthesis is intended to provide a useful source of reference when studying the molecular controls of hair follicle growth and differentiation, and whenever the hair phenotypes of a newly generated mouse mutant need to be compared with existing ones.

  7. Carney triad, SDH-deficient tumors, and Sdhb+/- mice share abnormal mitochondria.

    PubMed

    Szarek, Eva; Ball, Evan R; Imperiale, Alessio; Tsokos, Maria; Faucz, Fabio R; Giubellino, Alessio; Moussallieh, François-Marie; Namer, Izzie-Jacques; Abu-Asab, Mones S; Pacak, Karel; Taïeb, David; Carney, J Aidan; Stratakis, Constantine A

    2015-06-01

    Carney triad (CTr) describes the association of paragangliomas (PGL), pulmonary chondromas, and gastrointestinal (GI) stromal tumors (GISTs) with a variety of other lesions, including pheochromocytomas and adrenocortical tumors. The gene(s) that cause CTr remain(s) unknown. PGL and GISTs may be caused by loss-of-function mutations in succinate dehydrogenase (SDH) (a condition known as Carney-Stratakis syndrome (CSS)). Mitochondrial structure and function are abnormal in tissues that carry SDH defects, but they have not been studied in CTr. For the present study, we examined mitochondrial structure in human tumors and GI tissue (GIT) of mice with SDH deficiency. Tissues from 16 CTr tumors (n=12), those with isolated GIST (n=1), and those with CSS caused by SDHC (n=1) and SDHD (n=2) mutations were studied by electron microscopy (EM). Samples of GIT from mice with a heterozygous deletion in Sdhb (Sdhb(+) (/-), n=4) were also studied by EM. CTr patients presented with mostly epithelioid GISTs that were characterized by plump cells containing a centrally located, round nucleus and prominent nucleoli; these changes were almost identical to those seen in the GISTs of patients with SDH. In tumor cells from patients, regardless of diagnosis or tumor type, cytoplasm contained an increased number of mitochondria with a 'hypoxic' phenotype: mitochondria were devoid of cristae, exhibited structural abnormalities, and were of variable size. Occasionally, mitochondria were small and round; rarely, they were thin and elongated with tubular cristae. Many mitochondria exhibited amorphous fluffy material with membranous whorls or cystic structures. A similar mitochondrial hypoxic phenotype was seen in Sdhb(+) (/-) mice. We concluded that tissues from SDH-deficient tumors, those from mouse GIT, and those from CTr tumors shared identical abnormalities in mitochondrial structure and other features. Thus, the still-elusive CTr defect(s) is(are) likely to affect mitochondrial function

  8. Empirical demonstration of hybrid chromosomal races in house mice.

    PubMed

    Giménez, Mabel D; Panithanarak, Thadsin; Hauffe, Heidi C; Searle, Jeremy B

    2016-07-01

    Western house mice (Mus musculus domesticus) and common shrews (Sorex araneus) are important models for study of chromosomal speciation. Both had ancestral karyotypes consisting of telocentric chromosomes, and each is subdivided into numerous chromosomal races many of which have resulted from fixation of new mutations (Robertsonian fusions and whole-arm reciprocal translocations). However, some chromosomal races in both species may alternatively have originated through hybridization, with particular homozygous recombinant products reaching fixation. Here, we demonstrate the process of generation of hybrid chromosomal races for the first time in either species using molecular markers. Analysis of centromeric microsatellite markers show that the Mid Valtellina (IMVA) and Upper Valtellina (IUVA) chromosomal races of the house mouse are recombinant products of hybridization of the Lower Valtellina (ILVA) and Poschiavo (CHPO) chromosomal races, supporting earlier theoretical analysis. IMVA and IUVA occupy a small area of the Italian Alps where ILVA makes contact with CHPO. IUVA and CHPO have previously been shown to be reproductively isolated in one village, emphasizing that hybrid chromosomal races in small mammals, as in plants, have the potential to be part of the speciation process. PMID:27287407

  9. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome

    PubMed Central

    Wang, Yuexia; Östlund, Cecilia

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and “blinded” electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials. PMID:21326826

  10. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome.

    PubMed

    Wang, Yuexia; Ostlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and "blinded" electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials.

  11. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  12. Dido mutations trigger perinatal death and generate brain abnormalities and behavioral alterations in surviving adult mice

    PubMed Central

    Villares, Ricardo; Gutiérrez, Julio; Fütterer, Agnes; Trachana, Varvara; Gutiérrez del Burgo, Fernando; Martínez-A, Carlos

    2015-01-01

    Nearly all vertebrate cells have a single cilium protruding from their surface. This threadlike organelle, once considered vestigial, is now seen as a pivotal element for detection of extracellular signals that trigger crucial morphogenetic pathways. We recently proposed a role for Dido3, the main product of the death inducer-obliterator (dido) gene, in histone deacetylase 6 delivery to the primary cilium [Sánchez de Diego A, et al. (2014) Nat Commun 5:3500]. Here we used mice that express truncated forms of Dido proteins to determine the link with cilium-associated disorders. We describe dido mutant mice with high incidence of perinatal lethality and distinct neurodevelopmental, morphogenetic, and metabolic alterations. The anatomical abnormalities were related to brain and orofacial development, consistent with the known roles of primary cilia in brain patterning, hydrocephalus incidence, and cleft palate. Mutant mice that reached adulthood showed reduced life expectancy, brain malformations including hippocampus hypoplasia and agenesis of corpus callosum, as well as neuromuscular and behavioral alterations. These mice can be considered a model for the study of ciliopathies and provide information for assessing diagnosis and therapy of genetic disorders linked to the deregulation of primary cilia. PMID:25825751

  13. Mice lacking synapsin III show abnormalities in explicit memory and conditioned fear

    PubMed Central

    Porton, Barbara; Rodriguiz, Ramona M.; Phillips, Lindsey E.; Gilbert, John W.; Feng, Jian; Greengard, Paul; Kao, Hung-Teh; Wetsel, William C.

    2010-01-01

    Synapsin III is a neuron-specific phosphoprotein that plays an important role in synaptic transmission and neural development. While synapsin III is abundant in embryonic brain, expression of the protein in adults is reduced and limited primarily to the hippocampus, olfactory bulb, and cerebral cortex. Given the specificity of synapsin III to these brain areas and because it plays a role in neurogenesis in the dentate gyrus, we investigated whether it may affect learning and memory processes in mice. To address this point, synapsin III knockout mice were examined in a general behavioral screen, several tests to assess learning and memory function, and conditioned fear. Mutant animals displayed no anomalies in sensory and motor function or in anxiety- and depressive-like behaviors. Although mutants showed minor alterations in the Morris water maze, they were deficient in object recognition 24 hr and 10 days after training and in social transmission of food preference at 20 min and 24 hr. Additionally, mutants displayed abnormal responses in contextual and cued fear conditioning when tested 1 or 24 hr after conditioning. The synapsin III knockout mice also showed aberrant responses in fear-potentiated startle. Since synapsin III protein is decreased in schizophrenic brain and because the mutant mice do not harbor obvious anatomical deficits or neurological disorders, these mutants may represent a unique neurodevelopmental model for dissecting the molecular pathways that are related to certain aspects of schizophrenia and related disorders. PMID:20050925

  14. Abnormal expression of 8-nitroguanine in the brain of mice exposed to arsenic subchronically.

    PubMed

    Piao, Fengyuan; Li, Sheng; Li, Qiujuan; Ye, Jianxin; Liu, Shuang

    2011-01-01

    To provide molecular toxicological evidences for exploring the mechanism of arsenic-induced neurotoxicity the accumulation of arsenic (As), the formation of 8-nitroguanine (8-NO(2)-G) were examined in brain tissue of mice exposed to arsenic. And the gene expressions of inducible NOS (iNOS), superoxide dismutase 1 (SOD1) and peroxiredoxin 2 (Prdx2) were also analyzed by GeneChip. In the result, the concentration of As in the brain tissue of mice was 4.00, 13.70, 21.48 and 29.88 ng/g in the controls and experimental groups exposed to 1, 2 and 4 mg/l As(2)O(3), respectively and increased in dose-response manner. Nervous cells in the brain of mice exposed to As showed disappearances of axons, vacuolar degeneration in cytoplasm and karyolysis, whereas no such pathological changes were observed in the control group. Weak immunoreactivity against 8-NO(2)-G was observed in the brain tissue of mice given 1 or 2 ppm arsenic trioxide. More intensive immunoreactivity was found in cells at 4 ppm and it was mainly distributed in cytoplasm. The expressions of SOD1 and Prdx2 were down-regulated in the brain of mice exposed to As, but iNOS expression was not disturbed by As exposure. No the 8-NO(2)-G immunoreactivity or abnormal expressions of these genes in brain tissue were observed in controls. These results indicate that As induces high expression of 8-NO(2)-G in brain tissues of mice and that RNA in the cells may be modified by overproduced reactive nitrogen species.

  15. Abnormal behaviors and developmental disorder of hippocampus in zinc finger protein 521 (ZFP521) mutant mice.

    PubMed

    Ohkubo, Nobutaka; Matsubara, Etsuko; Yamanouchi, Jun; Akazawa, Rie; Aoto, Mamoru; Suzuki, Yoji; Sakai, Ikuya; Abe, Takaya; Kiyonari, Hiroshi; Matsuda, Seiji; Yasukawa, Masaki; Mitsuda, Noriaki

    2014-01-01

    Zinc finger protein 521 (ZFP521) regulates a number of cellular processes in a wide range of tissues, such as osteoblast formation and adipose commitment and differentiation. In the field of neurobiology, it is reported to be an essential factor for transition of epiblast stem cells into neural progenitors in vitro. However, the role of ZFP521 in the brain in vivo still remains elusive. To elucidate the role of ZFP521 in the mouse brain, we generated mice lacking exon 4 of the ZFP521 gene. The birth ratio of our ZFP521Δ/Δ mice was consistent with Mendel's laws. Although ZFP521Δ/Δ pups had no apparent defect in the body and were indistinguishable from ZFP521+/+ and ZFP521+/Δ littermates at the time of birth, ZFP521Δ/Δ mice displayed significant weight reduction as they grew, and most of them died before 10 weeks of age. They displayed abnormal behavior, such as hyper-locomotion, lower anxiety and impaired learning, which correspond to the symptoms of schizophrenia. The border of the granular cell layer of the dentate gyrus in the hippocampus of the mice was indistinct and granular neurons were reduced in number. Furthermore, Sox1-positive neural progenitor cells in the dentate gyrus and cerebellum were significantly reduced in number. Taken together, these findings indicate that ZFP521 directly or indirectly affects the formation of the neuronal cell layers of the dentate gyrus in the hippocampus, and thus ZFP521Δ/Δ mice displayed schizophrenia-relevant symptoms. ZFP521Δ/Δ mice may be a useful research tool as an animal model of schizophrenia.

  16. No obvious abnormality in mice deficient in receptor protein tyrosine phosphatase beta.

    PubMed

    Harroch, S; Palmeri, M; Rosenbluth, J; Custer, A; Okigaki, M; Shrager, P; Blum, M; Buxbaum, J D; Schlessinger, J

    2000-10-01

    The development of neurons and glia is governed by a multitude of extracellular signals that control protein tyrosine phosphorylation, a process regulated by the action of protein tyrosine kinases and protein tyrosine phosphatases (PTPs). Receptor PTPbeta (RPTPbeta; also known as PTPzeta) is expressed predominantly in the nervous system and exhibits structural features common to cell adhesion proteins, suggesting that this phosphatase participates in cell-cell communication. It has been proposed that the three isoforms of RPTPbeta play a role in regulation of neuronal migration, neurite outgrowth, and gliogenesis. To investigate the biological functions of this PTP, we have generated mice deficient in RPTPbeta. RPTPbeta-deficient mice are viable, are fertile, and showed no gross anatomical alterations in the nervous system or other organs. In contrast to results of in vitro experiments, our study demonstrates that RPTPbeta is not essential for neurite outgrowth and node formation in mice. The ultrastructure of nerves of the central nervous system in RPTPbeta-deficient mice suggests a fragility of myelin. However, conduction velocity was not altered in RPTPbeta-deficient mice. The normal development of neurons and glia in RPTPbeta-deficient mice demonstrates that RPTPbeta function is not necessary for these processes in vivo or that loss of RPTPbeta can be compensated for by other PTPs expressed in the nervous system. PMID:11003666

  17. Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.

    PubMed

    Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D

    2013-01-01

    The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593

  18. ENU-mutagenesis mice with a non-synonymous mutation in Grin1 exhibit abnormal anxiety-like behaviors, impaired fear memory, and decreased acoustic startle response

    PubMed Central

    2013-01-01

    deficits in social behaviors in three different social interaction tests. Conclusions This study demonstrated that the Grin1Rgsc174/Grin1+ mutation causes abnormal anxiety-like behaviors, a deficiency in fear memory, and a decreased startle amplitude in mice. Although Grin1Rgsc174/Grin1+ mice only partially recapitulate symptoms of patients with ADHD, schizophrenia, and bipolar disorder, they may serve as a unique animal model of a certain subpopulation of patients with these disorders. PMID:23688147

  19. Brain abnormalities, defective meiotic chromosome synapsis and female subfertility in HSF2 null mice

    PubMed Central

    Kallio, Marko; Chang, Yunhua; Manuel, Martine; Alastalo, Tero-Pekka; Rallu, Murielle; Gitton, Yorick; Pirkkala, Lila; Loones, Marie-Thérèse; Paslaru, Liliana; Larney, Severine; Hiard, Sophie; Morange, Michel; Sistonen, Lea; Mezger, Valérie

    2002-01-01

    Heat shock factor 2, one of the four vertebrate HSFs, transcriptional regulators of heat shock gene expression, is active during embryogenesis and spermatogenesis, with unknown functions and targets. By disrupting the Hsf2 gene, we show that, although the lack of HSF2 is not embryonic lethal, Hsf2–/– mice suffer from brain abnormalities, and meiotic and gameto genesis defects in both genders. The disturbances in brain are characterized by the enlargement of lateral and third ventricles and the reduction of hippocampus and striatum, in correlation with HSF2 expression in proliferative cells of the neuroepithelium and in some ependymal cells in adults. Many developing spermatocytes are eliminated via apoptosis in a stage-specific manner in Hsf2–/– males, and pachytene spermatocytes also display structural defects in the synaptonemal complexes between homologous chromosomes. Hsf2–/– females suffer from multiple fertility defects: the production of abnormal eggs, the reduction in ovarian follicle number and the presence of hemorrhagic cystic follicles are consistent with meiotic defects. Hsf2–/– females also display hormone response defects, that can be rescued by superovulation treatment, and exhibit abnormal rates of luteinizing hormone receptor mRNAs. PMID:12032072

  20. Abnormal gene expression in cerebellum of Npc1-/- mice during postnatal development

    PubMed Central

    Liao, Guanghong; Wen, Zhining; Irizarry, Kristopher; Huang, Ying; Mitsouras, Katherine; Darmani, Mariam; Leon, Terry; Shi, Leming; Bi, Xiaoning

    2010-01-01

    Niemann-Pick Type C disease is an autosomal recessive neurodegenerative disorder with abnormal lipid storage as the major cellular pathologic hallmark. Genetic analyses have identified mutations in NPC1 gene in the great majority of cases, while mutations in NPC2 account for the remainders. Yet, little is known regarding the cellular mechanisms responsible for NPC pathogenesis, especially for neurodegeneration, which is the usual cause of death. To identify critical steps that could account for the pathological manifestations of the disease in one of the most affected brain structures, we performed global gene expression analysis in the cerebellum from three-week old Npc1+/+ and Npc1-/- mice with two different microarray platforms (Agilent and Illumina). Differentially-expressed genes identified by both microarray platforms were then subjected to KEGG pathway analysis. Expression of genes in six pathways was significantly altered in Npc1-/- mice; functionally, these signaling pathways belong to the following three categories: 1) steroid and terpenoid biosynthesis, 2) immune response, and 3) cell adhesion/motility. In addition, the expression of several proteins involved in lipid transport was significantly altered in Npc1-/- mice. Our results provide novel molecular insight regarding the mechanisms of pathogenesis in NPC disease and reveal potential new therapeutic targets. PMID:20153740

  1. Neural tube defects and abnormal brain development in F52-deficient mice.

    PubMed Central

    Wu, M; Chen, D F; Sasaoka, T; Tonegawa, S

    1996-01-01

    F52 is a myristoylated, alanine-rich substrate for protein kinase C. We have generated F52-deficient mice by the gene targeting technique. These mutant mice manifest severe neural tube defects that are not associated with other complex malformations, a phenotype reminiscent of common human neural tube defects. The neural tube defects observed include both exencephaly and spina bifida, and the phenotype exhibits partial penetrance with about 60% of homozygous embryos developing neural tube defects. Exencephaly is the prominent type of defect and leads to high prenatal lethality. Neural tube defects are observed in a smaller percentage of heterozygous embryos (about 10%). Abnormal brain development and tail formation occur in homozygous mutants and are likely to be secondary to the neural tube defects. Disruption of F52 in mice therefore identifies a gene whose mutation results in isolated neural tube defects and may provide an animal model for common human neural tube defects. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8700893

  2. Prenatal exposure to phencyclidine produces abnormal behaviour and NMDA receptor expression in postpubertal mice.

    PubMed

    Lu, Lingling; Mamiya, Takayoshi; Lu, Ping; Toriumi, Kazuya; Mouri, Akihiro; Hiramatsu, Masayuki; Kim, Hyoung-Chun; Zou, Li-Bo; Nagai, Taku; Nabeshima, Toshitaka

    2010-08-01

    Several studies have shown the disruptive effects of non-competitive N-methyl-d-aspartate (NMDA) receptor antagonists on neurobehavioural development. Based on the neurodevelopment hypothesis of schizophrenia, there is growing interest in animal models treated with NMDA antagonists at developing stages to investigate the pathogenesis of psychological disturbances in humans. Previous studies have reported that perinatal treatment with phencyclidine (PCP) impairs the development of neuronal systems and induces schizophrenia-like behaviour. However, the adverse effects of prenatal exposure to PCP on behaviour and the function of NMDA receptors are not well understood. This study investigated the long-term effects of prenatal exposure to PCP in mice. The prenatal PCP-treated mice showed hypersensitivity to a low dose of PCP in locomotor activity and impairment of recognition memory in the novel object recognition test at age 7 wk. Meanwhile, the prenatal exposure reduced the phosphorylation of NR1, although it increased the expression of NR1 itself. Furthermore, these behavioural changes were attenuated by atypical antipsychotic treatment. Taken together, prenatal exposure to PCP produced long-lasting behavioural deficits, accompanied by the abnormal expression and dysfunction of NMDA receptors in postpubertal mice. It is worth investigating the influences of disrupted NMDA receptors during the prenatal period on behaviour in later life.

  3. Autism-relevant social abnormalities in mice exposed perinatally to extremely low frequency electromagnetic fields.

    PubMed

    Alsaeed, Ibrahim; Al-Somali, Faisal; Sakhnini, Lama; Aljarallah, Omar S; Hamdan, Rayan M M; Bubishate, Saleh A; Sarfaraz, Ziyab Khan; Kamal, Amer

    2014-10-01

    The incidence of autism spectrum disorders (ASD) has been rising, but the causes of ASD remain largely unidentified. Collective data have implicated the increased human exposure to electromagnetic fields (EMF) in the increasing incidence of ASD. There are established biological effects of extremely low-frequency (ELF) EMF, but the relation to ASD is not investigated enough. In this study we examined the effects of perinatal exposure to ELF EMF on some ASD-relevant behavioral parameters in mice. The EMF was delivered via a Helmholtz coil pair. Male BALB/C mice were used and divided into exposed and control groups (n=8 and n=9, respectively). Tests were used to assess sociability, preference for social novelty, locomotion, anxiety, exploratory behavior, motor coordination, and olfaction. The examined mice were all males and exposed to EMF during the last week of gestation and for 7 days after delivery. The exposed mice demonstrated a lack of normal sociability and preference for social novelty while maintaining normal anxiety-like behavior, locomotion, motor coordination, and olfaction. Exposed mice also demonstrated decreased exploratory activity. We concluded that these results are supportive of the hypothesis of a causal link between exposure to ELF-EMF and ASD; however, replications of the study with further tests are recommended.

  4. Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase

    PubMed Central

    Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana

    2014-01-01

    Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788

  5. Dietary Wolfberry Ameliorates Retinal Structure Abnormalities in db/db Mice at the Early Stage of Diabetes

    PubMed Central

    Tang, Ling; Zhang, Yunong; Jiang, Yu; Willard, Lloyd; Ortiz, Edlin; Wark, Logan; Medeiros, Denis; Lin, Dingbo

    2011-01-01

    Hyperglycemia-linked oxidative stress and/or consequent endoplasmic reticulum stress are the causative factors of pathogenesis of diabetic retinopathy. Dietary bioactive components which mitigate oxidative stress may serve as potential chemopreventative agents to prevent or slow down the disease progression. Wolfberry is a traditional Asian fruit consumed for years to prevent aging eye diseases in Asian countries. Here we report that dietary wolfberry ameliorated mouse retinal abnormality at the early stage of type 2 diabetes in db/db mice. Male mice at 6 weeks of age were fed the control diet with or without 1 % (kCal) wolfberry for 8 weeks. Dietary wolfberry restored the thickness of the whole retina, in particular the inner nuclear layer and photoreceptor layer, and the integrity of retinal pigment epithelia (RPE), and the ganglion cell number in db/db mice. Western blotting of whole retinal cell lysates revealed that addition of wolfberry lowered expression of endoplasmic reticulum (ER) stress biomarkers BiP, PERK, ATF6, and caspase-12; and restored AMPK, thioredoxin, Mn SOD, and FOXO3α activities. To determine if our observations were due to the high contents of zeaxanthin and lutein in wolfberry additional studies using these carotenoids were conducted. Using the human adult diploid RPE cell line ARPE-19 we demonstrated that both zeaxanthin and lutein could mimic wolfberry preventive effect on activation of AMPK, thioredoxin, Mn SOD, FOXO3α activities, normalize cellular reactive oxygen species, and attenuate ER stress in ARPE-19 cells exposed to a high glucose challenge. The zeaxanthin preventive effect was abolished by siRNA knockdown of AMPKα. These results suggested that AMPK activation appeared to play a key role in upregulated expression of thioredoxin and Mn SOD, and mitigation of cellular oxidative stress and/or ER stress by wolfberry and zeaxanthin and/or lutein. Taken together, dietary wolfberry on retinal protection in diabetic mice is, at least

  6. Sall1 regulates cortical neurogenesis and laminar fate specification in mice: implications for neural abnormalities in Townes-Brocks syndrome

    PubMed Central

    Harrison, Susan J.; Nishinakamura, Ryuichi; Jones, Kevin R.; Monaghan, A. Paula

    2012-01-01

    SUMMARY Progenitor cells in the cerebral cortex undergo dynamic cellular and molecular changes during development. Sall1 is a putative transcription factor that is highly expressed in progenitor cells during development. In humans, the autosomal dominant developmental disorder Townes-Brocks syndrome (TBS) is associated with mutations of the SALL1 gene. TBS is characterized by renal, anal, limb and auditory abnormalities. Although neural deficits have not been recognized as a diagnostic characteristic of the disease, ∼10% of patients exhibit neural or behavioral abnormalities. We demonstrate that, in addition to being expressed in peripheral organs, Sall1 is robustly expressed in progenitor cells of the central nervous system in mice. Both classical- and conditional-knockout mouse studies indicate that the cerebral cortex is particularly sensitive to loss of Sall1. In the absence of Sall1, both the surface area and depth of the cerebral cortex were decreased at embryonic day 18.5 (E18.5). These deficiencies are associated with changes in progenitor cell properties during development. In early cortical progenitor cells, Sall1 promotes proliferative over neurogenic division, whereas, at later developmental stages, Sall1 regulates the production and differentiation of intermediate progenitor cells. Furthermore, Sall1 influences the temporal specification of cortical laminae. These findings present novel insights into the function of Sall1 in the developing mouse cortex and provide avenues for future research into potential neural deficits in individuals with TBS. PMID:22228756

  7. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

    PubMed

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-Ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner. PMID:26869994

  8. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice

    PubMed Central

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner. PMID:26869994

  9. In Utero Bisphenol A Exposure Induces Abnormal Neuronal Migration in the Cerebral Cortex of Mice.

    PubMed

    Ling, Wenting; Endo, Toshihiro; Kubo, Ken-Ichiro; Nakajima, Kazunori; Kakeyama, Masaki; Tohyama, Chiharu

    2016-01-01

    Bisphenol A (BPA) has been known to have endocrine-disrupting activity to induce reproductive and behavioral abnormalities in offspring of laboratory animal species. However, morphological basis of this abnormality during brain development is largely unknown. Cerebral cortex plays a crucial role in higher brain function, and its precisely laminated structure is formed by neuronal migration. In the present study, transfecting a plasmid (pCAG-mCherry) by in utero electroporation (IUE), we visualized developing neurons and investigated the possible effects of in utero BPA exposure on neuronal migration. Pregnant mice were exposed to BPA by osmotic pump at estimated daily doses of 0, 40 (BPA-40), or 400 (BPA-400) μg/kg from embryonic day 14.5 (E14.5) to E18.5. IUE was performed at E14.5 and neuronal migration was analyzed at E18.5. Compared with the control group, neuronal migration in the cortical plate was significantly decreased in the BPA-40 group; however, there was no significant difference in the BPA-400 group. Among several neuronal migration-related genes and cortical layer-specific genes, TrkB in the BPA-400 group was found significantly upregulated. In conclusion, in utero exposure to low BPA dose was found to disrupt neuronal migration in the cerebral cortex in a dose-specific manner.

  10. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation.

  11. The targeted overexpression of a Claudin mutant in the epidermis of transgenic mice elicits striking epidermal and hair follicle abnormalities.

    PubMed

    Troy, Tammy-Claire; Turksen, Kursad

    2007-06-01

    Skin is one of the largest organs of the body, and is formed during development through a highly orchestrated process involving mesenchymal-epithelial interactions, cell commitment, and terminal differentiation. It protects against microorganism invasion and UV irradiation, inhibits water loss, regulates body temperature, and is an important part of the immune system. Using transgenic mouse technology, we have demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are intricately involved in cell signaling during epidermal differentiation and that an epidermal suprabasal overexpression of Cldn6 results in a perturbed epidermal terminal differentiation program with distinct phenotypic abnormalities. To delineate the role of the Cldn cytoplasmic tail domain in epidermal differentiation, we engineered transgenic mice targeting the overexpression of a Cldn6 cytoplasmic tail-truncation mutant in the epidermis. Transgenic mice were characterized by a lethal barrier dysfunction in addition to the existence of hyperproliferative squamous invaginations/cysts replacing hair follicles. Immunohistochemical analysis revealed an epidermal cytoplasmic accumulation of Cldn6, Cldn11, Cldn12, and Cldn18, downregulation of Cldn1 and aberrant expression of various classical markers of epidermal differentiation; namely the basal keratins as well as K1, involucrin, loricrin, and filaggrin. Collectively these studies suggest an important role for Cldns in epidermal/hair follicle differentiation programs likely involving cross talk to signaling pathways (e.g., Notch) directing cell fate selection and differentiation. PMID:17914196

  12. Long-Term Administration of High-Fat Diet Corrects Abnormal Bone Remodeling in the Tibiae of Interleukin-6-Deficient Mice.

    PubMed

    Feng, Wei; Liu, Bo; Liu, Di; Hasegawa, Tomoka; Wang, Wei; Han, Xiuchun; Cui, Jian; Yimin; Oda, Kimimitsu; Amizuka, Norio; Li, Minqi

    2016-01-01

    In this study, we aimed to evaluate the influence of diet-induced obesity on IL-6 deficiency-induced bone remodeling abnormality. Seven-week-old IL-6(-/-) mice and their wild type (WT) littermates were fed a standard diet (SD) or high-fat diet (HFD) for 25 weeks. Lipid formation and bone metabolism in mice tibiae were investigated by histochemical analysis. Both IL-6(-/-) and WT mice fed the HFD showed notable body weight gain, thickened cortical bones, and adipose accumulation in the bone marrow. Notably, the HFD normalized the bone phenotype of IL-6(-/-) mice to that of their WT counterpart, as characterized by a decrease in bone mass and the presence of an obliquely arranged, plate-like morphology in the trabecular bone. Alkaline phosphatase and osteocalcin expressions were attenuated in both genotypes after HFD feeding, especially for the IL-6(-/-) mice. Meanwhile, tartrate-resistant acid phosphatase staining was inhibited, osteoclast apoptosis rate down-regulated (revealed by TUNEL assay), and the proportion of cathepsin K (CK)-positive osteoclasts significantly increased in IL-6(-/-) mice on a HFD as compared with IL-6(-/-) mice on standard chow. Our results demonstrate that HFD-induced obesity reverses IL-6 deficiency-associated bone metabolic disorders by suppressing osteoblast activity, upregulating osteoclastic activity, and inhibiting osteoclast apoptosis. PMID:26416243

  13. Studies on Brahma rasayana in male swiss albino mice: Chromosomal aberrations and sperm abnormalities

    PubMed Central

    Guruprasad, K. P.; Mascarenhas, Roshan; Gopinath, P. M.; Satyamoorthy, K.

    2010-01-01

    Ayurveda, the Indian holistic healthcare system encompasses traditional medicines with a principle of creating harmony and maintaining balance within the natural rhythms of the body. Rasayana is one of the branches of Ayurveda frequently used as rejuvenant therapy to overcome many discomforts and prevent diseases. It has been reported that rasayanas have immunomodulatory, antioxidant and antitumor functions. However, the genotoxic potential of many rasayanas remains to be evaluated. The present study was undertaken to assess the role of Brahma rasayana(BR) on genotoxicity in vivo in a mouse test system. The older mice (9 months) were orally fed with rasayana for 8 weeks. The treated groups showed no signs of dose-dependent toxicity at the dosage levels tested. The body weight loss/gain and feed consumption were unaffected at tested doses. Furthermore, sperm abnormalities and chromosomal aberrations were insignificant in the treatment group when compared to controls. However, there was a marginal increase in sperm count in the BR treated animals. These findings clearly indicate that there are no observed adverse genotoxic effects elicited by BR in experimental animals such as mice. PMID:21829300

  14. Effects of dietary vitamin D on calcium and magnesium levels in mice with abnormal calcium metabolism

    SciTech Connect

    Spurlock, B.G.; West, W.L.; Knight, E.M. )

    1991-03-11

    In previous studies vitamin D has been used to induce cardiac calcium overload in laboratory animals. Interrelationships between calcium and magnesium metabolism are also documented. The authors have investigated the effect of varying vitamin D in the diet on calcium and magnesium levels in plasma, kidney and heart of DBA mice which exhibit genetic abnormalities in cardiac calcium metabolism. Weanling DBA mice were maintained for 28 days on an AIN-76 diet containing either 1,000 I.U. of vitamin D{sub 3} per kg of diet (control); 4,000 I.U. of vitamin D{sub 3} per kg of diet; or no vitamin D. When compared to controls, supplemented animals showed significantly higher plasma magnesium, kidney calcium and kidney magnesium levels; animals receiving the vitamin D-deficient diet exhibited increases in cardiac calcium levels. The authors results support previous findings that vitamin D deficiency increases cardiac calcium uptake and suggest a possible role of vitamin D in magnesium metabolism.

  15. Behavioral, Neurochemical and Neuroendocrine Effects of Abnormal Savda Munziq in the Chronic Stress Mice

    PubMed Central

    Amat, Nurmuhammat; Hoxur, Parida; Ming, Dang; Matsidik, Aynur; Kijjoa, Anake; Upur, Halmurat

    2012-01-01

    Oral administration of Abnormal Savda Munsiq (ASMq), a herbal preparation used in Traditional Uighur Medicine, was found to exert a memory-enhancing effect in the chronic stressed mice, induced by electric foot-shock. The memory improvement of the stressed mice was shown by an increase of the latency time in the step-through test and the decrease of the latency time in the Y-maze test. Treatment with ASMq was found to significantly decrease the serum levels of adrenocorticotropic hormone (ACTH), corticosterone (CORT) and β-endorphin (β-EP) as well as the brain and serum level of norepinephrine (NE). Furthermore, ASMq was able to significantly reverse the chronic stress by decreasing the brain and serum levels of the monoamine neurotransmitters dopamine (DA), 5-hydroxytryptamine (5-HT) and 3,4-dihydroxyphenylalanine (DOPAC). The results obtained from this study suggested that the memory-enhancing effect of ASMq was mediated through regulations of neurochemical and neuroendocrine systems. PMID:22919413

  16. γ-Band deficiency and abnormal thalamocortical activity in P/Q-type channel mutant mice

    PubMed Central

    Llinás, Rodolfo R.; Choi, Soonwook; Urbano, Francisco J.; Shin, Hee-Sup

    2007-01-01

    Thalamocortical in vivo and in vitro function was studied in mice lacking P/Q-type calcium channels (CaV2.1), in which N-type calcium channels (CaV2.2) supported central synaptic transmission. Unexpectedly, in vitro patch recordings from thalamic neurons demonstrated no γ-band subthreshold oscillation, and voltage-sensitive dye imaging demonstrated an absence of cortical γ-band-dependent columnar activation involving cortical inhibitory interneuron activity. In vivo electroencephalogram recordings showed persistent absence status and a dramatic reduction of γ-band activity. Pharmacological block of T-type calcium channels (CaV3), although not noticeably affecting normal control animals, left the knockout mice in a coma-like state. Hence, although N-type calcium channels can rescue P/Q-dependent synaptic transmission, P/Q calcium channels are essential in the generation of γ-band activity and resultant cognitive function. PMID:17968008

  17. Inducible Expression of Runx2 Results in Multiorgan Abnormalities in Mice

    PubMed Central

    He, Nan; Xiao, Zhousheng; Yin, Tong; Stubbs, Jason; Li, Linheng; Quarles, L. Darryl

    2016-01-01

    Runx2 is a transcription factor controlling skeletal development, and is also expressed in extraskeletal tissues where its function is not well understood. Existing Runx2 mutant and transgenic mouse models do not allow the necessary control of Runx2 expression to understand its functions in different tissues. We generated conditional, doxycyline-inducible, triple transgenic mice (CMV-Cre;ROSA26-neoflox/+-rtTA;Tet-O-Runx2) to investigate the effects of wide spread overexpression of Runx2. Osteoblasts isolated from CMV-Cre;ROSA26-neoflox/+-rtTA; Tet-O-Runx2 mice demonstrated a dose-dependent effect of doxycycline to stimulate Runx2 transgene expression. Doxycycline administration to CMV-Cre;ROSA26-neoflox/+-rtTA;Tet-O-Runx2 mice induced Runx2 transgene expression in all tissues tested, with the highest levels observed in kidney, ovary, and bone. Runx2 overexpression resulted in deceased body size and reduced viability. With regard to bone, Runx2 overexpressing mice paradoxically displayed profound osteopenia and diminished osteogenesis. Induced expression of Runx2 in extraskeletal tissues resulted in ectopic calcification and induction of the osteogenic program in a limited number of tissues, including lung and muscle. In addition, the triple transgenic mice showed evidence of a myeloproliferative disorder and an apparent inhibition of lymphocyte development. Thus, overexpression of Runx2 both within and outside of the skeleton can have diverse biological effects. Use of tissue specific Cre mice will allow this model to be used to conditionally and inducibly overexpress Runx2 in different tissues and provide a means to study the post-natal tissue- and cell context-dependent functions of Runx2. PMID:21268087

  18. Positional cloning of Kreisler, a mutation that causes deafness and segmentation abnormalities in mice

    SciTech Connect

    Cordes, S.P.; Barsh, G.S.

    1994-09-01

    The identification and analysis of mouse deafness mutations is of great interest to human geneticists, not only because deafness is a common problem in clinical genetics, but also because the molecular mechanisms leading to deafness can underly fundamental aspects of mammalian development. Approximately 10 to 20 genes when mutated can lead to deafness in mice or in humans, but none have yet been identified at the molecular level. In mice homozygous for the kreisler (kr) mutation, abnormal development of the hindbrain and otic vesicle leads to neurosensory deafness and loss of vestibular function. Using the techniques of positional cloning combined with ENU mutagenesis, we have now cloned the kr gene and find that it predicts a transcription factor whose absence leads to defects in Hox gene expression and hindbrain segmentation. We used a backcross between different strains of laboratory mice to sublocalize kr on the meiotic map close to the Src gene on mouse chromosome 2. A probe from the Src gene detected high molecular weight restriction fragments of altered size in kr/kr DNA, suggesting that kr was due to a chromosomal rearrangement. Based on the meiotic map location of kr{sup ENU}, a new kr allele that we generated by ENU mutagenesis, cDNAs were selected from 8.5 day mouse embryos using genomic clones that spanned the distal inversion breakpoint. One cDNA that predicted a basic domain leucine zipper (bZIP) transcription factor was found to be expressed in the caudal hindbrain, and was confirmed to encode the kr gene by analysis of the kr{sup ENU} allele, in which a Ser was substituted for an Asn residue conserved in the DNA binding domain of all known bZip family members. kr is not expressed in the otic vesicle, suggesting that abnormal otic development is a consequence of defects in hindbrain segmentation. kr is the first mammalian deafness gene to be isolated, and should provide insights into embryologic mechanisms that underly hindbrain and otic development.

  19. 55-week treatment of mice with the unani and ayurvedic medicine pomegranate flower ameliorates ageing-associated insulin resistance and skin abnormalities.

    PubMed

    Wang, Jianwei; Rong, Xianglu; Um, Irene S I; Yamahara, Johji; Li, Yuhao

    2012-01-01

    PPARs play a pivotal role in regulating lipid and glucose homeostasis and are involved in diverse biological activities in skin. Pomegranate flower (PGF, an antidiabetic therapy in Unani and Ayurvedic medicines) has been previously demonstrated to activate both PPARalpha/gamma. Here, we found that treatment of mice with the diet containing PGF powder over 55 weeks attenuated ageing-induced abnormal increases in the homeostasis model assessment of insulin resistance, glucose concentrations during oral glucose tolerance test, and adipose insulin resistance index. The diet tended to decrease the excessive peri-ovary fat mass. It, however, increased the thinned subcutaneous fat thickness. In addition, the diet restored decreases in skin water content, epidermis thickness, and collagen density in corium. Thus, our results demonstrate that long-term treatment with the Unani and Ayurvedic therapy ameliorates ageing-induced insulin resistance, which is associated with reversal of ageing-induced fat redistribution. Further, PGF attenuates ageing-mediated undesirable skin abnormalities. PMID:22253646

  20. The selective metabotropic glutamate 2/3 receptor agonist MGS0028 reverses isolation rearing-induced abnormal behaviors in mice.

    PubMed

    Ago, Yukio; Araki, Ryota; Yano, Koji; Kawasaki, Toshiyuki; Chaki, Shigeyuki; Nakazato, Atsuro; Onoe, Hirotaka; Hashimoto, Hitoshi; Baba, Akemichi; Takuma, Kazuhiro; Matsuda, Toshio

    2012-01-01

    Isolation-induced abnormal behaviors are useful animal models for assessing potential anti-psychotic drugs. This study examined the effect of MGS0028, a selective metabotropic glutamate 2/3 receptor agonist, on abnormal behaviors such as hyperactivity, aggression, and deficits of prepulse inhibition in isolation-reared mice. MGS0028 attenuated hyperactivity and aggressive behaviors in isolation-reared mice. The agonist also reversed isolation rearing-induced deficits of prepulse inhibition. On the other hand, MGS0028 did not affect locomotor activity and prepulse inhibition in group-reared mice. These results suggest that the metabotropic glutamate 2/3 receptor agonist, MGS0028, is a potential compound for the treatment of psychiatric disorders.

  1. Molecular detection of chromosomal abnormalities in germ and somatic cells of aged male mice

    SciTech Connect

    Lowe, X.; Baulch, J.; Quintana, L.; Ramsey, M.; Breneman, J.; Tucker, J.; Wyrobek, A.; Collins, B.; Allen, J.; Holland, N.

    1994-12-31

    Three cytogenetic methods were applied to eight B6C3F1 male mice aged 22.5 - 30.5mo to determine if advanced age was associated with an elevated risk of producing chromosomally defective germinal and somatic cells; sperm aneuploidy analysis by multi-color fluorescence in situ hybridization for three chromosomes, spermatid micronucleus analysis with anti-kinetochore antibodies, and translocation analysis of somatic metaphases by {open_quotes}painting{close_quotes} for two chromosomes. Eight mice aged 2.4mo served as controls. Sperm aneuploidy was measured by multi-color fluorescence in situ co-hybridization with DNA probes specific for chromosomes X, Y and 8, scoring 10,000 cells per animal. The aged group showed significant 1.5 - 2.0 fold increases in the hyperhaploidy phenotypes X-X-8, Y-Y-8, 8-8-Y, and 8-8-X with the greater effects appearing in animals aged >29mo. The aged group also showed significantly increased frequencies of micronucleated spermatids (2.0 vs 0.4 per 1000; all were kinetochore negative). Analysis of metaphase chromosomes from blood by {open_quotes}painting{close_quotes} of chromosomes 2 and 8 yielded 4 translocation per 858 cell-equivalents in the aged group which was a non-significant elevation over 0/202 in controls. Although interpretation must be cautious due to the small number of animals analyzed, these findings suggest that advanced paternal age may be a risk factor for chromosomal abnormalities of reproductive and somatic importance.

  2. A lack of functional NK1 receptors explains most, but not all, abnormal behaviours of NK1R-/- mice1

    PubMed Central

    Porter, A J; Pillidge, K; Tsai, Y C; Dudley, J A; Hunt, S P; Peirson, S N; Brown, L A; Stanford, S C

    2015-01-01

    Mice lacking functional neurokinin-1 receptors (NK1R-/-) display abnormal behaviours seen in Attention Deficit Hyperactivity Disorder (hyperactivity, impulsivity and inattentiveness). These abnormalities were evident when comparing the behaviour of separate (inbred: ‘Hom’) wildtype and NK1R-/- mouse strains. Here, we investigated whether the inbreeding protocol could influence their phenotype by comparing the behaviour of these mice with that of wildtype (NK1R+/+) and NK1R-/- progeny of heterozygous parents (‘Het’, derived from the same inbred strains). First, we recorded the spontaneous motor activity of the two colonies/genotypes, over 7 days. This continuous monitoring also enabled us to investigate whether the diurnal rhythm in motor activity differs in the two colonies/genotypes. NK1R-/- mice from both colonies were hyperactive compared with their wildtypes and their diurnal rhythm was also disrupted. Next, we evaluated the performance of the four groups of mice in the 5-Choice Serial Reaction-Time Task (5-CSRTT). During training, NK1R-/- mice from both colonies expressed more impulsive and perseverative behaviour than their wildtypes. During testing, only NK1R-/- mice from the Hom colony were more impulsive than their wildtypes, but NK1R-/- mice from both colonies were more perseverative. There were no colony differences in inattentiveness. Moreover, a genotype difference in this measure depended on time of day. We conclude that the hyperactivity, perseveration and, possibly, inattentiveness of NK1R-/- mice is a direct consequence of a lack of functional NK1R. However, the greater impulsivity of NK1R-/- mice depended on an interaction between a functional deficit of NK1R and other (possibly environmental and/or epigenetic) factors. PMID:25558794

  3. Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice

    PubMed Central

    Lee, Kristie; Tan, Jacqueline; Morris, Michael B.; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q.

    2012-01-01

    Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885

  4. Immunomodulatory and antitumour effects of abnormal Savda Munziq on S180 tumour-bearing mice

    PubMed Central

    2012-01-01

    Background Abnormal Savda Munziq (ASMq), a traditional uyghur medicine, has shown anti-tumour properties in vitro. This study attempts to confirm these effects in vivo and measure effects on the immune system. Methods Kunming mice transplanted with Sarcoma 180 cells were treated with ASMq (2–8 g/kg/day) by intra-gastric administration compared to model and cyclophosphamide (20 mg/kg/day). After the 14th day post tumour implant, thymus, liver, spleen and tumours were removed, weighed, and processed for histopathological analysis. Blood samples were also taken for haematological and biochemical analyses including TNF-α , IL-1 β and IL-2. Splenic lymphocyte function was measured with MTT; lymphocyte subpopulations were measured by flow cytometry. Results ASMq treated animals had reduced tumour volume compared to model and increased concentrations of TNF-α, IL-1β and IL-2 compared to untreated and to cyclophosphamide-treated animals. No histopathological alterations were observed. The absence of viable S180 cells and the presence of necrotic cells and granulation tissue were observed in tumour tissue of treated animals. The effect on T lymphocytes was unclear. Conclusions ASMq confirmed in vivo anti-tumour effects observed in vitro, which may be at least in part mediated by increased immune activity. PMID:22978453

  5. Abnormal differentiation, hyperplasia and embryonic/perinatal lethality in BK5-T/t transgenic mice

    PubMed Central

    Chen, Xin; Schneider-Broussard, Robin; Hollowell, Debra; McArthur, Mark; Jeter, Collene R.; Benavides, Fernando; DiGiovanni, John; Tang, Dean G.

    2009-01-01

    The cell-of-origin has a great impact on the types of tumors that develop and the stem/progenitor cells have long been considered main targets of malignant transformation. The SV40 large T and small t antigens (T/t), have been targeted to multiple differentiated cellular compartments in transgenic mice. In most of these studies, transgenic animals develop tumors without apparent defects in animal development. In this study, we used the bovine keratin 5 (BK5) promoter to target the T/t antigens to stem/progenitor cell-containing cytokeratin 5 (CK5) cellular compartment. A transgene construct, BK5-T/t, was made and microinjected into the male pronucleus of FVB/N mouse oocytes. After implanting ∼1700 embryos, only 7 transgenics were obtained, including 4 embryos (E9.5, E13, E15, and E20) and 3 postnatal animals, which died at P1, P2, and P18, respectively. Immunohistological analysis revealed aberrant differentiation and prominent hyperplasia in several transgenic CK5 tissues, especially the upper digestive organs (tongue, oral mucosa, esophagus, and forestomach) and epidermis, the latter of which also showed focal dysplasia. Altogether, these results indicate that constitutive expression of the T/t antigens in CK5 cellular compartment results in abnormal epithelial differentiation and leads to embryonic/perinatal animal lethality. PMID:19272531

  6. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  7. Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics.

    PubMed

    Nahrendorf, Matthias; Streif, Jörg U; Hiller, Karl-Heinz; Hu, Kai; Nordbeck, Peter; Ritter, Oliver; Sosnovik, David; Bauer, Lisa; Neubauer, Stefan; Jakob, Peter M; Ertl, Georg; Spindler, Matthias; Bauer, Wolfgang R

    2006-06-01

    A decrease in the supply of ATP from the creatine kinase (CK) system is thought to contribute to the evolution of heart failure. However, previous studies on mice with a combined knockout of the mitochondrial and cytosolic CK (CK(-/-)) have not revealed overt left ventricular dysfunction. The aim of this study was to employ novel MRI techniques to measure maximal myocardial velocity (V(max)) and myocardial perfusion and thus determine whether abnormalities in the myocardial phenotype existed in CK(-/-) mice, both at baseline and 4 wk after myocardial infarction (MI). As a result, myocardial hypertrophy was seen in all CK(-/-) mice, but ejection fraction (EF) remained normal. V(max), however, was significantly reduced in the CK(-/-) mice [wild-type, 2.32 +/- 0.09 vs. CK(-/-), 1.43 +/- 0.16 cm/s, P < 0.05; and wild-type MI, 1.53 +/- 0.11 vs. CK(-/-) MI, 1.26 +/- 0.11 cm/s, P = not significant (NS), P < 0.05 vs. baseline]. Myocardial perfusion was also lower in the CK(-/-) mice (wild-type, 6.68 +/- 0.27 vs. CK(-/-), 4.12 +/- 0.63 ml/g.min, P < 0.05; and wild-type MI, 3.97 +/- 0.65 vs. CK(-/-) MI, 3.71 +/- 0.57 ml/g.min, P = NS, P < 0.05 vs. baseline), paralleled by a significantly reduced capillary density (histology). In conclusion, myocardial function in transgenic mice may appear normal when only gross indexes of performance such as EF are assessed. However, the use of a combination of novel MRI techniques to measure myocardial perfusion and mechanics allowed the abnormalities in the CK(-/-) phenotype to be detected. The myocardium in CK-deficient mice is characterized by reduced perfusion and reduced maximal contraction velocity, suggesting that the myocardial hypertrophy seen in these mice cannot fully compensate for the absence of the CK system.

  8. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  9. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma.

  10. Basal behavioral characterization of hsf1 deficient mice and its cellular and behavioral abnormalities underlying chronic unpredictable stressors.

    PubMed

    Zhu, Xiongzhao; Cheng, Ming; Peng, Min; Xiao, Xianzhong; Yao, Shuqiao; Zhang, Xiuwu

    2008-11-21

    The heat shock factor 1 (HSF1) is a major transcriptional factor that controls the rapid induction of heat shock proteins in response to various environmental stressors. In this study, we globally investigated the effect of HSF1 deficiency on animal behaviors during postnatal growth, and abnormalities in hippocampal neurons and behavior in response to chronic unpredictable stressors (CUS). Mouse behaviors were measured in several behavioral paradigms, including elevated plus maze, open field, closed field, T-maze continuous alternation task (T-CAT), bridge-walking, and wire suspension tests. The hsf1-null mice exhibited reduction in basal anxiety levels and exploratory behavior, and working memory deficits, but normal motor coordination abilities. Chronic unpredictable stressors significantly increased apoptosis in hippocampal CA3 cells in both the hsf1-null and wild-type (WT) mice in the in situ TUNEL staining and induced more anxiety-like behavior in the hsf1-null mice than WT mice in the plus T-maze paradigm. We conclude that hsf1 gene deficiency results in significant abnormalities in mouse basal behaviors and sensitization to chronic unpredictable stressors. PMID:18601956

  11. Wholemount imaging reveals abnormalities of the aqueous outflow pathway and corneal vascularity in Foxc1 and Bmp4 heterozygous mice.

    PubMed

    van der Merwe, Elizabeth L; Kidson, Susan H

    2016-05-01

    Mutations in the FOXC1/Foxc1 gene in humans and mice and Bmp4 in mice are associated with congenital anterior segment dysgenesis (ASD) and the development of the aqueous outflow structures throughout the limbus. The aim of this study was to advance our understanding of anterior segment abnormalities in mouse models of ASD using a 3-D imaging approach. Holistic imaging information combined with quantitative measurements were carried out on PECAM-1 stained individual components of the aqueous outflow vessels and corneal vasculature of Foxc1(+/-) on the C57BL/6Jx129 and ICR backgrounds, Bmp4(+/-) ICR mice, and wildtype mice from each background. In both wildtype and heterozygotes, singular, bifurcated and plexus forms of Schlemm's canal were noted. Of note, missing portions of the canal were seen in the heterozygous groups but not in wildtype animals. In general, we found the number of collector channels to be reduced in both heterozygotes. Lastly, we found a significant increase in the complexity of the corneal arcades and their penetration into the cornea in heterozygotes as compared with wild types. In conclusion, our 3-D imaging studies have revealed a more complex arrangement of both the aqueous vessels and corneal arcades in Foxc1(+/-) and Bmp4(+/-) heterozygotes, and further advance our understanding of how such abnormalities could impact on IOP and the aetiology of glaucoma. PMID:27068508

  12. Developmental Abnormalities of Neuronal Structure and Function in Prenatal Mice Lacking the Prader-Willi Syndrome Gene Necdin

    PubMed Central

    Pagliardini, Silvia; Ren, Jun; Wevrick, Rachel; Greer, John J.

    2005-01-01

    Necdin (Ndn) is one of a cluster of genes deleted in the neurodevelopmental disorder Prader-Willi syndrome (PWS). Ndntm2Stw mutant mice die shortly after birth because of abnormal respiratory rhythmogenesis generated by a key medullary nucleus, the pre-Bötzinger complex (preBötC). Here, we address two fundamental issues relevant to its pathogenesis. First, we performed a detailed anatomical study of the developing medulla to determine whether there were defects within the preBötC or synaptic inputs that regulate respiratory rhythmogenesis. Second, in vitro studies determined if the unstable respiratory rhythm in Ndntm2Stw mice could be normalized by neuromodulators. Anatomical defects in Ndntm2Stw mice included defasciculation and irregular projections of axonal tracts, aberrant neuronal migration, and a major defect in the cytoarchitecture of the cuneate/gracile nuclei, including dystrophic axons. Exogenous application of neuromodulators alleviated the long periods of slow respiratory rhythms and apnea, but some instability of rhythmogenesis persisted. We conclude that deficiencies in the neuromodulatory drive necessary for preBötC function contribute to respiratory dysfunction of Ndntm2Stw mice. These abnormalities are part of a more widespread deficit in neuronal migration and the extension, arborization, and fasciculation of axons during early stages of central nervous system development that may account for respiratory, sensory, motor, and behavioral problems associated with PWS. PMID:15972963

  13. Prodynorphin knockout mice demonstrate diminished age-associated impairment in spatial water maze performance.

    PubMed

    Nguyen, Xuan V; Masse, James; Kumar, Ashok; Vijitruth, Rattanavijit; Kulik, Cynthia; Liu, Mei; Choi, Dong-Young; Foster, Thomas C; Usynin, Ivan; Bakalkin, Georgy; Bing, Guoying

    2005-06-20

    Dynorphins, endogenous kappa-opioid agonists widely expressed in the central nervous system, have been reported to increase following diverse pathophysiological processes, including excitotoxicity, chronic inflammation, and traumatic injury. These peptides have been implicated in cognitive impairment, especially that associated with aging. To determine whether absence of dynorphin confers any beneficial effect on spatial learning and memory, knockout mice lacking the coding exons of the gene encoding its precursor prodynorphin (Pdyn) were tested in a water maze task. Learning and memory assessment using a 3-day water maze protocol demonstrated that aged Pdyn knockout mice (13-17 months) perform comparatively better than similarly aged wild-type (WT) mice, based on acquisition and retention probe trial indices. There was no genotype effect on performance in the cued version of the swim task nor on average swim speed, suggesting the observed genotype effects are likely attributable to differences in cognitive rather than motor function. Young (3-6 months) mice performed significantly better than aged mice, but in young mice, no genotype difference was observed. To investigate the relationship between aging and brain dynorphin expression in mice, we examined dynorphin peptide levels at varying ages in hippocampus and frontal cortex of WT 129SvEv mice. Quantitative radioimmunoassay demonstrated that dynorphin A levels in frontal cortex, but not hippocampus, of 12- and 24-month mice were significantly elevated compared to 3-month mice. Although the underlying mechanisms have yet to be elucidated, the results suggest that chronic increases in endogenous dynorphin expression with age, especially in frontal cortex, may adversely affect learning and memory.

  14. Ames hypopituitary dwarf mice demonstrate imbalanced myelopoiesis between bone marrow and spleen.

    PubMed

    Capitano, Maegan L; Chitteti, Brahmananda R; Cooper, Scott; Srour, Edward F; Bartke, Andrzej; Broxmeyer, Hal E

    2015-06-01

    Ames hypopituitary dwarf mice are deficient in growth hormone, thyroid-stimulating hormone, and prolactin. The phenotype of these mice demonstrates irregularities in the immune system with skewing of the normal cytokine milieu towards a more anti-inflammatory environment. However, the hematopoietic stem and progenitor cell composition of the bone marrow (BM) and spleen in Ames dwarf mice has not been well characterized. We found that there was a significant decrease in overall cell count when comparing the BM and spleen of 4-5 month old dwarf mice to their littermate controls. Upon adjusting counts to differences in body weight between the dwarf and control mice, the number of granulocyte-macrophage progenitors, confirmed by immunophenotyping and colony-formation assay was increased in the BM. In contrast, the numbers of all myeloid progenitor populations in the spleen were greatly reduced, as confirmed by colony-formation assays. This suggests that there is a shift of myelopoiesis from the spleen to the BM of Ames dwarf mice; however, this shift does not appear to involve erythropoiesis. The reasons for this unusual shift in spleen to marrow hematopoiesis in Ames dwarf mice are yet to be determined but may relate to the decreased hormone levels in these mice.

  15. Expression of human complement factor H prevents age-related macular degeneration-like retina damage and kidney abnormalities in aged Cfh knockout mice.

    PubMed

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M; Bowes Rickman, Catherine

    2015-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh(-/-)) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh(-/-) mice, and transgenics had a thicker outer nuclear layer and less sub-retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets.

  16. Expression of Human Complement Factor H Prevents Age-Related Macular Degeneration–Like Retina Damage and Kidney Abnormalities in Aged Cfh Knockout Mice

    PubMed Central

    Ding, Jin-Dong; Kelly, Una; Landowski, Michael; Toomey, Christopher B.; Groelle, Marybeth; Miller, Chelsey; Smith, Stephanie G.; Klingeborn, Mikael; Singhapricha, Terry; Jiang, Haixiang; Frank, Michael M.; Bowes Rickman, Catherine

    2016-01-01

    Complement factor H (CFH) is an important regulatory protein in the alternative pathway of the complement system, and CFH polymorphisms increase the genetic risk of age-related macular degeneration dramatically. These same human CFH variants have also been associated with dense deposit disease. To mechanistically study the function of CFH in the pathogenesis of these diseases, we created transgenic mouse lines using human CFH bacterial artificial chromosomes expressing full-length human CFH variants and crossed these to Cfh knockout (Cfh−/−) mice. Human CFH protein inhibited cleavage of mouse complement component 3 and factor B in plasma and in retinal pigment epithelium/choroid/sclera, establishing that human CFH regulates activation of the mouse alternative pathway. One of the mouse lines, which express relatively higher levels of CFH, demonstrated functional and structural protection of the retina owing to the Cfh deletion. Impaired visual function, detected as a deficit in the scotopic electroretinographic response, was improved in this transgenic mouse line compared with Cfh−/− mice, and transgenics had a thicker outer nuclear layer and less sub–retinal pigment epithelium deposit accumulation. In addition, expression of human CFH also completely protected the mice from developing kidney abnormalities associated with loss of CFH. These humanized CFH mice present a valuable model for study of the molecular mechanisms of age-related macular degeneration and dense deposit disease and for testing therapeutic targets. PMID:25447048

  17. Black Hoof Medicinal Mushroom Phellinus linteus (Agaricomycetes) Extracts Protect Against Radiation-Induced Hematopoietic Abnormality in Mice.

    PubMed

    Huang, Shu-Ming; Chen, Jen-Yin; Chen, Chin-Chu; Su, Chih-Chung; Hu, Miao-Lin

    2016-01-01

    We investigated the effects of Phellinus linteus extracts (PLEs) against radiation damage in mice. First, BALB/c mice were irradiated once with γ-rays at 4, 5, 6, or 8 Gy and allowed to recover for 20 days. Results reveal that 8-Gy radiation caused death in 100% of mice on day 13, and 6-Gy radiation caused death in 86.7% of mice (13/15) at the end of the experiment, whereas 4- and 5-Gy radiation did not result in any death. We then used 5-Gy γ-ray radiation to examine the protective effects of PLEs. Mice were orally administered a PLE (500, 1000, and 1500 mg/kg) daily for 2 weeks before radiation and for 6 weeks after radiation. γ-Ray radiation significantly decreased body weight starting from week 2 after radiation. Supplementation with a median and high dose of PLE significantly restored body weights starting at weeks 5 and 3, respectively. The radiation-protective agent WR2721 (200 mg/kg intraperitoneally) restored body weights starting at week 4. White blood cells, platelets, red blood cells, and hemoglobin were significantly decreased by radiation, and PLEs (primarily at high doses) and WR2721 significantly prevented hematologic abnormality. These results suggest that PLE has potential as a radioprotective agent. PMID:27649604

  18. Abnormal albumin gene expression is associated with weight loss in immunodeficient/DNA-repair-impaired wasted mice.

    SciTech Connect

    Libertin, C.; Weaver, P.; Mobarhan, S.; Woloschak, G.; Center for Mechanistic Biology and Biotechnology; Loyola Univ.; Loyola Univ.

    1994-01-01

    OBJECTIVE: Mice bearing the autosomal recessive mutation wst express a disease syndrome of immunodeficiency, neurologic dysfunction, increased sensitivity to the killing effects of ionizing radiation, and dramatic weight loss that begins at 21 days of age and progresses until death at 28-32 days of age. Because of the reported association between abnormal liver status and weight loss, we designed experiments to examine expression of a variety of liver-specific genes in wst/wst mice relative to littermates (wst/.) and parental strain (BCF1) controls. METHOD: Animals were individually weighed from ages 21-28 days to determine relative weight comparisons between wst/wst mice and controls. Dot blot hybridizations were set up to quantitate the accumulation of transcripts specific for alpha-fetoprotein, albumin and other liver-specific gene products. RESULTS: These results showed a 67% reduction in albumin mRNA expression in livers derived from wst/wst mice relative to both controls. Expression of alpha-fetoprotein, as well as a variety of other liver-specific genes [secretory component (SC), metallothionein (MT-2), cytochrome P1-450 (Cyt P1-450), transferrin receptor (Tf Rec), tumor necrosis factor (TNF), and immune-associated antigen (Ia)], was unaffected. CONCLUSIONS: These results suggest a relationship between low albumin expression and wasting syndromes in mice. In addition, our data suggest that the wasted mouse may serve as a unique model for subnormal albumin expression.

  19. Mice Haploinsufficient for Ets1 and Fli1 Display Middle Ear Abnormalities and Model Aspects of Jacobsen Syndrome.

    PubMed

    Carpinelli, Marina R; Kruse, Elizabeth A; Arhatari, Benedicta D; Debrincat, Marlyse A; Ogier, Jacqueline M; Bories, Jean-Christophe; Kile, Benjamin T; Burt, Rachel A

    2015-07-01

    E26 transformation-specific 1 (ETS1) and friend leukemia integration 1 (FLI1) are members of the ETS family of transcription factors, of which there are 28 in humans. Both genes are hemizygous in Jacobsen syndrome, an 11q contiguous gene deletion disorder involving thrombocytopenia, facial dysmorphism, growth and mental retardation, malformation of the heart and other organs, and hearing impairment associated with recurrent ear infections. To determine whether any of these defects are because of hemizygosity for ETS1 and FLI1, we characterized the phenotype of mice heterozygous for mutant alleles of Ets1 and Fli1. Fli1(+/-) mice displayed mild thrombocytopenia, as did Ets1(+/-)Fli1(+/-) animals. Fli1(+/-) and Ets1(+/-)Fli1(+/-) mice also displayed craniofacial abnormalities, including a small middle ear cavity, short nasal bone, and malformed interface between the nasal bone process and cartilaginous nasal septum. They exhibited hearing impairment, otitis media, fusions of ossicles to the middle ear wall, and deformed stapes. Hearing impairment was more penetrant and stapes malformations were more severe in Ets1(+/-)Fli1(+/-) mice than in Fli1(+/-) mice, indicating partial functional redundancy of these transcription factors during auditory development. Our findings indicate that the short nose, otitis media, and hearing impairment in Jacobsen syndrome are likely because of hemizygosity for ETS1 and FLI1.

  20. Aberrant IgG isotype generation in mice with abnormal behaviors.

    PubMed

    Kim, So-Nam; Jo, Gwang-Ho; Kim, Hyoung-Ah; Heo, Yong

    2016-01-01

    BTBR T+tf/J (BTBR) mice were recently cited as a suitable animal model for the study of autism because of their behavioral characteristics and immunological changes similar to those reported from autistic subjects. The BTBR mouse was reported to have significantly higher levels of serum IgG, brain IgG deposits and anti-brain IgG than highly social C57BL/6 mice, suggesting involvement of aberrant immune responses in the occurrence of autism. Up-regulation of IgG production was investigated here, with a focus on the pattern of IgG isotype distribution compared with that in FVB/NJ (FVB) mice, another highly social control strain. The results indicated that levels of serum IgG1, IgG2b and IgG3 in post-natal day 21 BTBR mice was significantly higher than FVB mice, regardless of sex, resulting in higher IgG1:IgG2a ratios in BTBR mice than in FVB mice (statistical significance in males). A similar outcome regarding the IgG1:IgG2a ratio was observed in culture supernatants of bone marrow cells from these hosts. A presence of brain-reactive IgG in the sera of BTBR was higher than in FVB mice; levels of brain-reactive IgG against whole brain homogenates were higher in BTBR than in FVB mice, with significant differences seen in the striatum and substantia nigra regions. Levels of IgG1 deposited in the cerebellum, cortex, hippocampus or striatum of both BTBR male and female mice were significantly higher than in FVB counterparts. Overall, these results suggest that alterations in IgG isotype production or deposition in the brain could be implicated in the aberrant immune reactivities of BTBR mice.

  1. Abnormal Patterns of Lipoprotein Lipase Release into the Plasma in GPIHBP1-deficient Mice*

    PubMed Central

    Weinstein, Michael M.; Yin, Liya; Beigneux, Anne P.; Davies, Brandon S. J.; Gin, Peter; Estrada, Kristine; Melford, Kristan; Bishop, Joseph R.; Esko, Jeffrey D.; Dallinga-Thie, Geesje M.; Fong, Loren G.; Bensadoun, André; Young, Stephen G.

    2008-01-01

    GPIHBP1-deficient mice (Gpihbp1–/–) exhibit severe chylomicronemia. GPIHBP1 is located within capillaries of muscle and adipose tissue, and expression of GPIHBP1 in Chinese hamster ovary cells confers upon those cells the ability to bind lipoprotein lipase (LPL). However, there has been absolutely no evidence that GPIHBP1 actually interacts with LPL in vivo. Heparin is known to release LPL from its in vivo binding sites, allowing it to enter the plasma. After an injection of heparin, we reasoned that LPL bound to GPIHBP1 in capillaries would be released very quickly, and we hypothesized that the kinetics of LPL entry into the plasma would differ in Gpihbp1–/– and control mice. Indeed, plasma LPL levels peaked very rapidly (within 1 min) after heparin in control mice. In contrast, plasma LPL levels in Gpihbp1–/– mice were much lower 1 min after heparin and increased slowly over 15 min. In keeping with that result, plasma triglycerides fell sharply within 10 min after heparin in wild-type mice, but were negligibly altered in the first 15 min after heparin in Gpihbp1–/– mice. Also, an injection of Intralipid released LPL into the plasma of wild-type mice but was ineffective in releasing LPL in Gpihbp1–/– mice. The observed differences in LPL release cannot be ascribed to different tissue stores of LPL, as LPL mass levels in tissues were similar in Gpihbp1–/– and control mice. The differences in LPL release after intravenous heparin and Intralipid strongly suggest that GPIHBP1 represents an important binding site for LPL in vivo. PMID:18845532

  2. Autism-associated gene Dlgap2 mutant mice demonstrate exacerbated aggressive behaviors and orbitofrontal cortex deficits

    PubMed Central

    2014-01-01

    Background As elegant structures designed for neural communication, synapses are the building bricks of our mental functions. Recently, many studies have pointed out that synaptic protein-associated mutations may lead to dysfunctions of social cognition. Dlgap2, which encodes one of the main components of scaffold proteins in postsynaptic density (PSD), has been addressed as a candidate gene in autism spectrum disorders. To elucidate the disturbance of synaptic balance arising from Dlgap2 loss-of-function in vivo, we thus generated Dlgap2 −/− mice to investigate their phenotypes of synaptic function and social behaviors. Methods The creation of Dlgap2 −/− mice was facilitated by the recombineering-based method, Cre-loxP system and serial backcross. Reversal learning in a water T-maze was used to determine repetitive behaviors. The three-chamber approach task, resident–intruder test and tube task were performed to characterize the social behaviors of mutant mice. Cortical synaptosomal fraction, Golgi-Cox staining, whole-cell patch electrophysiology and transmission electron microscopy were all applied to investigate the function and structure of synapses in the orbitofrontal cortex (OFC) of Dlgap2 −/− mice. Results Dlgap2 −/− mice displayed exacerbated aggressive behaviors in the resident–intruder task, and elevated social dominance in the tube test. In addition, Dlgap2 −/− mice exhibited a clear reduction of receptors and scaffold proteins in cortical synapses. Dlgap2 −/− mice also demonstrated lower spine density, decreased peak amplitude of miniature excitatory postsynaptic current and ultra-structural deficits of PSD in the OFC. Conclusions Our findings clearly demonstrate that Dlgap2 plays a vital role in social behaviors and proper synaptic functions of the OFC. Moreover, these results may provide valuable insights into the neuropathology of autism. PMID:25071926

  3. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities

    PubMed Central

    Wöhr, M; Orduz, D; Gregory, P; Moreno, H; Khan, U; Vörckel, K J; Wolfer, D P; Welzl, H; Gall, D; Schiffmann, S N; Schwaller, B

    2015-01-01

    Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV−/−) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV+/−) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV−/− and PV+/− mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus

  4. Oral supplements of aqueous extract of tomato seeds alleviate motor abnormality, oxidative impairments and neurotoxicity induced by rotenone in mice: relevance to Parkinson's disease.

    PubMed

    Gokul, Krishna; Muralidhara

    2014-07-01

    Although tomato seeds (an industrial by-product) are known to contain several bioactive compounds, studies describing their health effects are limited. Previously, we evidenced that aqueous extract of tomato seeds (TSE) markedly attenuated rotenone (ROT)-induced oxidative stress and neurotoxicity in Drosophila system. This study investigated the neuroprotective effect of TSE in a chronic ROT model of neurotoxicity in mice. Initially, we assessed the potential of oral supplements of TSE to modulate the levels of endogenous markers of oxidative stress in brain regions of mice. Subsequently, employing a co-exposure paradigm, the propensity of TSE (100 mg/kg bw, 3 weeks) to attenuate ROT-induced behavioral phenotype (gait abnormalities, anxiety-like state), oxidative dysfunctions and neurotoxicity was examined. We found that mice provided with TSE supplements exhibited progressive improvement in gait pattern and exploratory behavior. TSE markedly offset ROT-induced oxidative impairments, restored reduced glutathione levels, antioxidant defenses (superoxide dismutase, glutathione peroxidase) and protein carbonyls content in brain regions. Specifically, TSE effectively diminished ROT induced elevation in the activity levels of acetylcholinesterase and restored the dopamine levels in striatum. Interestingly, in mitochondria, TSE was able to restore the activity of mitochondrial complexes and redox state. Collectively, our findings in the chronic ROT model demonstrate the ability of TSE to alleviate behavioral phenotype, oxidative stress, mitochondrial dysfunction and neurotoxicity. Further studies in dopaminergic cell models are necessary to understand the precise molecular mechanism/s by which tomato seed bioactives offer significant neuroprotection. PMID:24831121

  5. Cartilage Abnormalities Associated with Defects of Chondrocytic Primary Cilia in Bardet-Biedl Syndrome Mutant Mice

    PubMed Central

    Kaushik, Anjan P.; Martin, James A.; Zhang, Qihong; Sheffield, Val C.; Morcuende, Jose A.

    2013-01-01

    SUMMARY Primary cilia are found on nearly every mammalian cell, including osteocytes, fibroblasts, and chondrocytes. However, the functions of primary cilia have not been extensively studied in these cells, particularly chondrocytes. Interestingly, defects in the primary cilium result in skeletal defects such as polydactyly in Bardet-Biedl Syndrome (BBS), a ciliary disorder that also results in obesity, retinopathy, and cognitive impairments (1–4). Wild-type mice and mutant mice of the ciliary proteins Bbs1, Bbs2, and Bbs6 were evaluated with respect to histological and biochemical differences in chondrocytes from articular cartilage and xiphoid processes. Using immunofluorescence microscopy, chondrocytic cilia were visualized from the load-bearing joints and non-load-bearing xiphoid processes. Significant differences in ciliary morphology were not identified between mutant and wild-type mice. However, after expanding chondrocytes in cell culture and implanting them in solid agarose matrix, it was seen that the fraction of ciliated cells in cultures from mutant mice was significantly lower than in the wild-type cultures (p<.05). In addition, in Safranin-O-stained whole joint sections, Bbs mutant mice had significantly lower articular joint thickness (p<.05) and lower proteoglycan content saturation (p<.05) than wild-type mice. Moreover, there were statistically significant differences of cell distribution between Bbs mutant and wild-type mice (p<.05), indicating that mutant articular cartilage had changes consistent with early signs of osteoarthritis. These data indicate that Bbs genes and their functions in the chondrocytic primary cilium are important for normal articular cartilage maintenance. PMID:19195025

  6. Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels.

    PubMed

    Heyden, Alexandra; Ionescu, Mihai-Constantin S; Romorini, Stefano; Kracht, Bettina; Ghiglieri, Veronica; Calabresi, Paolo; Seidenbecher, Constanze; Angenstein, Frank; Gundelfinger, Eckart D

    2011-10-01

    Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.

  7. Quantitative Gait Analysis Using a Motorized Treadmill System Sensitively Detects Motor Abnormalities in Mice Expressing ATPase Defective Spastin.

    PubMed

    Connell, James W; Allison, Rachel; Reid, Evan

    2016-01-01

    The hereditary spastic paraplegias (HSPs) are genetic conditions in which there is progressive axonal degeneration in the corticospinal tract. Autosomal dominant mutations, including nonsense, frameshift and missense changes, in the gene encoding the microtubule severing ATPase spastin are the most common cause of HSP in North America and northern Europe. In this study we report quantitative gait analysis using a motorized treadmill system, carried out on mice knocked-in for a disease-associated mutation affecting a critical residue in the Walker A motif of the spastin ATPase domain. At 4 months and at one year of age homozygous mutant mice had a number of abnormal gait parameters, including in stride length and stride duration, compared to heterozygous and wild-type littermates. Gait parameters in heterozygous animals did not differ from wild-type littermates. We conclude that quantitative gait analysis using the DigiGait system sensitively detects motor abnormalities in a hereditary spastic paraplegia model, and would be a useful method for analyzing the effects of pharmacological treatments for HSP.

  8. Abnormalities in brain structure and behavior in GSK-3alpha mutant mice

    PubMed Central

    2009-01-01

    Background Glycogen synthase kinase-3 (GSK-3) is a widely expressed and highly conserved serine/threonine protein kinase encoded by two genes that generate two related proteins: GSK-3α and GSK-3β. Mice lacking a functional GSK-3α gene were engineered in our laboratory; they are viable and display insulin sensitivity. In this study, we have characterized brain functions of GSK-3α KO mice by using a well-established battery of behavioral tests together with neurochemical and neuroanatomical analysis. Results Similar to the previously described behaviours of GSK-3β+/-mice, GSK-3α mutants display decreased exploratory activity, decreased immobility time and reduced aggressive behavior. However, genetic inactivation of the GSK-3α gene was associated with: decreased locomotion and impaired motor coordination, increased grooming activity, loss of social motivation and novelty; enhanced sensorimotor gating and impaired associated memory and coordination. GSK-3α KO mice exhibited a deficit in fear conditioning, however memory formation as assessed by a passive avoidance test was normal, suggesting that the animals are sensitized for active avoidance of a highly aversive stimulus in the fear-conditioning paradigm. Changes in cerebellar structure and function were observed in mutant mice along with a significant decrease of the number and size of Purkinje cells. Conclusion Taken together, these data support a role for the GSK-3α gene in CNS functioning and possible involvement in the development of psychiatric disorders. PMID:19925672

  9. Mice with Dab1 or Vldlr insufficiency exhibit abnormal neonatal vocalization patterns

    PubMed Central

    Fraley, E. R.; Burkett, Z. D.; Day, N. F.; Schwartz, B. A.; Phelps, P. E.; White, S. A.

    2016-01-01

    Genetic and epigenetic changes in components of the Reelin-signaling pathway (RELN, DAB1) are associated with autism spectrum disorder (ASD) risk. Social communication deficits are a key component of the ASD diagnostic criteria, but the underlying neurogenetic mechanisms remain unknown. Reln insufficient mice exhibit ASD-like behavioral phenotypes including altered neonatal vocalization patterns. Reelin affects multiple pathways including through the receptors, Very low-density lipoprotein receptor (Vldlr), Apolipoprotein receptor 2 (Apoer2), and intracellular signaling molecule Disabled-1 (Dab1). As Vldlr was previously implicated in avian vocalization, here we investigate vocalizations of neonatal mice with a reduction or absence of these components of the Reelin-signaling pathway. Mice with low or no Dab1 expression exhibited reduced calling rates, altered call-type usage, and differential vocal development trajectories. Mice lacking Vldlr expression also had altered call repertoires, and this effect was exacerbated by deficiency in Apoer2. Together with previous findings, these observations 1) solidify a role for Reelin in vocal communication of multiple species, 2) point to the canonical Reelin-signaling pathway as critical for development of normal neonatal calling patterns in mice, and 3) suggest that mutants in this pathway could be used as murine models for Reelin-associated vocal deficits in humans. PMID:27184477

  10. Neuronal and behavioural abnormalities in striatal function in DARPP-32-mutant mice.

    PubMed

    Hiroi, N; Fienberg, A A; Haile, C N; Alburges, M; Hanson, G R; Greengard, P; Nestler, E J

    1999-03-01

    We investigated the role of the protein phosphatase inhibitor, dopamine- and cAMP-regulated phosphoprotein of 32 kDa (DARPP-32), in the expression of striatal neuropeptides and in biochemical and behavioural responses to repeated cocaine administration, using DARPP-32 knock-out mice. The striatum of DARPP-32-mutant mice showed heightened substance-P-like immunoreactivity, but normal levels of other neuropeptides. Repeated cocaine administration increased levels of DeltaFosB, a Fos family transcription factor, in the striatum of wild-type mice, and this increase was abolished in DARPP-32-mutant mice. Cocaine (20 mg/kg) acutely induced the same level of locomotor activity in the mutant and wild-type mice, but the mutants showed a higher rate of locomotor sensitization to repeated cocaine exposures. These data show that DARPP-32 is involved in regulating substance P expression in the striatonigral pathway, and in biochemical and behavioural plasticity with chronic administration of cocaine. PMID:10103106

  11. Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice.

    PubMed

    Schmouth, J-F; Banks, K G; Mathelier, A; Gregory-Evans, C Y; Castellarin, M; Holt, R A; Gregory-Evans, K; Wasserman, W W; Simpson, E M

    2012-04-01

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.

  12. Short-Term Treatment with Bisphenol-A Leads to Metabolic Abnormalities in Adult Male Mice

    PubMed Central

    Batista, Thiago M.; Alonso-Magdalena, Paloma; Vieira, Elaine; Amaral, Maria Esmeria C.; Cederroth, Christopher R.; Nef, Serge; Quesada, Ivan; Carneiro, Everardo M.; Nadal, Angel

    2012-01-01

    Bisphenol-A (BPA) is one of the most widespread endocrine disrupting chemicals (EDC) used as the base compound in the manufacture of polycarbonate plastics. Although evidence points to consider exposure to BPA as a risk factor for insulin resistance, its actions on whole body metabolism and on insulin-sensitive tissues are still unclear. The aim of the present work was to study the effects of low doses of BPA in insulin-sensitive peripheral tissues and whole body metabolism in adult mice. Adult mice were treated with subcutaneous injection of 100 µg/kg BPA or vehicle for 8 days. Whole body energy homeostasis was assessed with in vivo indirect calorimetry. Insulin signaling assays were conducted by western blot analysis. Mice treated with BPA were insulin resistant and had increased glucose-stimulated insulin release. BPA-treated mice had decreased food intake, lower body temperature and locomotor activity compared to control. In skeletal muscle, insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit was impaired in BPA-treated mice. This impairment was associated with a reduced insulin-stimulated Akt phosphorylation in the Thr308 residue. Both skeletal muscle and liver displayed an upregulation of IRS-1 protein by BPA. The mitogen-activated protein kinase (MAPK) signaling pathway was also impaired in the skeletal muscle from BPA-treated mice. In the liver, BPA effects were of lesser intensity with decreased insulin-stimulated tyrosine phosphorylation of the insulin receptor β subunit. In conclusion, short-term treatment with low doses of BPA slows down whole body energy metabolism and disrupts insulin signaling in peripheral tissues. Thus, our findings support the notion that BPA can be considered a risk factor for the development of type 2 diabetes. PMID:22470480

  13. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice

    PubMed Central

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  14. Understanding normal and abnormal development of the Wolffian/epididymal duct by using transgenic mice.

    PubMed

    Murashima, Aki; Xu, Bingfang; Hinton, Barry T

    2015-01-01

    The development of the Wolffian/epididymal duct is crucial for proper function and, therefore, male fertility. The development of the epididymis is complex; the initial stages form as a transient embryonic kidney; then the mesonephros is formed, which in turn undergoes extensive morphogenesis under the influence of androgens and growth factors. Thus, understanding of its full development requires a wide and multidisciplinary view. This review focuses on mouse models that display abnormalities of the Wolffian duct and mesonephric development, the importance of these mouse models toward understanding male reproductive tract development, and how these models contribute to our understanding of clinical abnormalities in humans such as congenital anomalies of the kidney and urinary tract (CAKUT). PMID:26112482

  15. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8.

    PubMed

    Trajkovic, Marija; Visser, Theo J; Mittag, Jens; Horn, Sigrun; Lukas, Jan; Darras, Veerle M; Raivich, Genadij; Bauer, Karl; Heuer, Heike

    2007-03-01

    In humans, inactivating mutations in the gene of the thyroid hormone transporter monocarboxylate transporter 8 (MCT8; SLC16A2) lead to severe forms of psychomotor retardation combined with imbalanced thyroid hormone serum levels. The MCT8-null mice described here, however, developed without overt deficits but also exhibited distorted 3,5,3'-triiodothyronine (T3) and thyroxine (T4) serum levels, resulting in increased hepatic activity of type 1 deiodinase (D1). In the mutants' brains, entry of T4 was not affected, but uptake of T3 was diminished. Moreover, the T4 and T3 content in the brain of MCT8-null mice was decreased, the activity of D2 was increased, and D3 activity was decreased, indicating the hypothyroid state of this tissue. In the CNS, analysis of T3 target genes revealed that in the mutants, the neuronal T3 uptake was impaired in an area-specific manner, with strongly elevated thyrotropin-releasing hormone transcript levels in the hypothalamic paraventricular nucleus and slightly decreased RC3 mRNA expression in striatal neurons; however, cerebellar Purkinje cells appeared unaffected, since they did not exhibit dendritic outgrowth defects and responded normally to T3 treatment in vitro. In conclusion, the circulating thyroid hormone levels of MCT8-null mice closely resemble those of humans with MCT8 mutations, yet in the mice, CNS development is only partially affected. PMID:17318265

  16. Abnormal development of glomerular endothelial and mesangial cells in mice with targeted disruption of the lama3 gene.

    PubMed

    Abrass, C K; Berfield, A K; Ryan, M C; Carter, W G; Hansen, K M

    2006-09-01

    Mice with targeted disruption of the lama3 gene, which encodes the alpha3 chain of laminin-5 (alpha3beta3gamma2, 332), develop a blistering skin disease similar to junctional epidermolysis bullosa in humans. These animals also develop abnormalities in glomerulogenesis. In both wild-type and mutant animals (lama3(-/-)), podocytes secrete glomerular basement membrane and develop foot processes. Endothelial cells migrate into this scaffolding and secrete a layer of basement membrane that fuses with the one formed by the podocyte. In lama3(-/-) animals, glomerular maturation arrests at this stage. Endothelial cells do not attenuate, develop fenestrae, or form typical lumens, and mesangial cells (MCs) were not identified. LN alpha3 subunit (LAMA3) protein was identified in the basement membrane adjacent to glomerular endothelial cells (GEnCs) in normal rats and mice. In developing rat glomeruli, the LAMA3 subunit was first detectable in the early capillary loop stage, which corresponds to the stage at which maturation arrest was observed in the mutant mice. Lama3 mRNA and protein were identified in isolated rat and mouse glomeruli and cultured rat GEnCs, but not MC. These data document expression of LAMA3 in glomeruli and support a critical role for it in GEnC differentiation. Furthermore, LAMA3 chain expression and/or another product of endothelial cells are required for MC migration into the developing glomerulus. PMID:16850021

  17. BubR1 Insufficiency Impairs Liver Regeneration in Aged Mice after Hepatectomy through Intercalated Disc Abnormality.

    PubMed

    Ikawa-Yoshida, Ayae; Matsumoto, Takuya; Okano, Shinji; Aoyagi, Yukihiko; Matsubara, Yutaka; Furuyama, Tadashi; Nakatsu, Yoshimichi; Tsuzuki, Teruhisa; Onimaru, Mitsuho; Ohkusa, Tomoko; Nomura, Masatoshi; Maehara, Yoshihiko

    2016-01-01

    A delay in liver regeneration after partial hepatectomy (PHx) leads to acute liver injury, and such delays are frequently observed in aged patients. BubR1 (budding uninhibited by benzimidazole-related 1) controls chromosome mitotic segregation through the spindle assembly checkpoint, and BubR1 down-regulation promotes aging-associated phenotypes. In this study we investigated the effects of BubR1 insufficiency on liver regeneration in mice. Low-BubR1-expressing mutant (BubR1(L/L)) mice had a delayed recovery of the liver weight-to-body weight ratio and increased liver deviation enzyme levels after PHx. Microscopic observation of BubR1(L/L) mouse liver showed an increased number of necrotic hepatocytes and intercalated disc anomalies, resulting in widened inter-hepatocyte and perisinusoidal spaces, smaller hepatocytes and early-stage microvilli atrophy. Up-regulation of desmocollin-1 (DSC1) was observed in wild-type, but not BubR1(L/L), mice after PHx. In addition, knockdown of BubR1 expression caused down-regulation of DSC1 in a human keratinocyte cell line. BubR1 insufficiency results in the impaired liver regeneration through weakened microstructural adaptation against PHx, enhanced transient liver failure and delayed hepatocyte proliferation. Thus, our data suggest that a reduction in BubR1 levels causes failure of liver regeneration through the DSC1 abnormality. PMID:27561386

  18. BubR1 Insufficiency Impairs Liver Regeneration in Aged Mice after Hepatectomy through Intercalated Disc Abnormality

    PubMed Central

    Ikawa-Yoshida, Ayae; Matsumoto, Takuya; Okano, Shinji; Aoyagi, Yukihiko; Matsubara, Yutaka; Furuyama, Tadashi; Nakatsu, Yoshimichi; Tsuzuki, Teruhisa; Onimaru, Mitsuho; Ohkusa, Tomoko; Nomura, Masatoshi; Maehara, Yoshihiko

    2016-01-01

    A delay in liver regeneration after partial hepatectomy (PHx) leads to acute liver injury, and such delays are frequently observed in aged patients. BubR1 (budding uninhibited by benzimidazole-related 1) controls chromosome mitotic segregation through the spindle assembly checkpoint, and BubR1 down-regulation promotes aging-associated phenotypes. In this study we investigated the effects of BubR1 insufficiency on liver regeneration in mice. Low-BubR1-expressing mutant (BubR1L/L) mice had a delayed recovery of the liver weight-to-body weight ratio and increased liver deviation enzyme levels after PHx. Microscopic observation of BubR1L/L mouse liver showed an increased number of necrotic hepatocytes and intercalated disc anomalies, resulting in widened inter-hepatocyte and perisinusoidal spaces, smaller hepatocytes and early-stage microvilli atrophy. Up-regulation of desmocollin-1 (DSC1) was observed in wild-type, but not BubR1L/L, mice after PHx. In addition, knockdown of BubR1 expression caused down-regulation of DSC1 in a human keratinocyte cell line. BubR1 insufficiency results in the impaired liver regeneration through weakened microstructural adaptation against PHx, enhanced transient liver failure and delayed hepatocyte proliferation. Thus, our data suggest that a reduction in BubR1 levels causes failure of liver regeneration through the DSC1 abnormality. PMID:27561386

  19. Influence of abnormally high leptin levels during pregnancy on metabolic phenotypes in progeny mice.

    PubMed

    Makarova, Elena N; Chepeleva, Elena V; Panchenko, Polina E; Bazhan, Nadezhda M

    2013-12-01

    Maternal obesity increases the risk of obesity in offspring, and obesity is accompanied by an increase in blood leptin levels. The "yellow" mutation at the mouse agouti locus (A(y)) increases blood leptin levels in C57BL preobese pregnant mice without affecting other metabolic characteristics. We investigated the influence of the A(y) mutation or leptin injection at the end of pregnancy in C57BL mice on metabolic phenotypes and the susceptibility to diet-induced obesity (DIO) in offspring. In both C57BL-A(y) and leptin-treated mice, the maternal effect was more pronounced in male offspring. Compared with males born to control mothers, males born to A(y) mothers displayed equal food intake (FI) but decreased body weight (BW) gain after weaning, equal glucose tolerance, and enhanced FI-to-BW ratios on the standard diet but the same FI and BW on the high-fat diet. Males born to A(y) mothers were less responsive to the anorectic effect of exogenous leptin and less resistant to fasting (were not hyperphagic and gained less weight during refeeding after food deprivation) compared with males born to control mothers. However, all progeny displayed equal hypothalamic expression of Agouti gene-related protein (AgRP), neuropeptide Y (NPY), and proopiomelanocortin (POMC) and equal plasma leptin and glucose levels after food deprivation. Leptin injections in C57BL mice on day 17 of pregnancy decreased BW in both male and female offspring but inhibited FI and DIO only in male offspring. Our results show that hyperleptinemia during pregnancy has sex-specific long-term effects on energy balance regulation in progeny and does not predispose offspring to developing obesity.

  20. Complement factor H deficiency in aged mice causes retinal abnormalities and visual dysfunction.

    PubMed

    Coffey, Peter J; Gias, Carlos; McDermott, Caroline J; Lundh, Peter; Pickering, Matthew C; Sethi, Charanjit; Bird, Alan; Fitzke, Fred W; Maass, Annelie; Chen, Li Li; Holder, Graham E; Luthert, Philip J; Salt, Thomas E; Moss, Stephen E; Greenwood, John

    2007-10-16

    Age-related macular degeneration is the most common form of legal blindness in westernized societies, and polymorphisms in the gene encoding complement factor H (CFH) are associated with susceptibility to age-related macular degeneration in more than half of affected individuals. To investigate the relationship between complement factor H (CFH) and retinal disease, we performed functional and anatomical analysis in 2-year-old CFH-deficient (cfh(-/-)) mice. cfh(-/-) animals exhibited significantly reduced visual acuity and rod response amplitudes on electroretinography compared with age-matched controls. Retinal imaging by confocal scanning laser ophthalmoscopy revealed an increase in autofluorescent subretinal deposits in the cfh(-/-) mice, whereas the fundus and vasculature appeared normal. Examination of tissue sections showed an accumulation of complement C3 in the neural retina of the cfh(-/-) mice, together with a decrease in electron-dense material, thinning of Bruch's membrane, changes in the cellular distribution of retinal pigment epithelial cell organelles, and disorganization of rod photoreceptor outer segments. Collectively, these data show that, in the absence of any specific exogenous challenge to the innate immune system, CFH is critically required for the long-term functional health of the retina.

  1. Abnormal gastric morphology and function in CCK-B/gastrin receptor-deficient mice.

    PubMed Central

    Rindi, G.; Langhans, N.; Rehfeld, J. F.; Beinborn, M.; Kopin, A. S.

    1998-01-01

    Mice lacking the cholecystokinin (CCK)-B/gastrin receptor have been generated by targeted gene disruption. The roles of this receptor in controlling gastric acid secretion and gastric mucosal growth have been assessed. The analysis of homozygous mutant mice vs. wild type included measurement of basal gastric pH, plasma gastrin concentrations as well as quantification of gastric mucosal cell types by immunohistochemistry. Mutant mice exhibited a marked increase in basal gastric pH (from 3.2 to 5.2) and about a 10-fold elevation in circulating carboxyamidated gastrin compared with wild-type controls. Histologic analysis revealed a decrease in both parietal and enterochromaffin-like (ECL) cells, thus explaining the reduction in acid output. Consistent with the elevation in circulating gastrin, antral gastrin cells were increased in number while somatostatin cells were decreased. These data support the importance of the CCK-B/gastrin receptor in maintaining the normal cellular composition and function of the gastric mucosa. Images Figure 1 Figure 2 Figure 3 PMID:10461365

  2. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice.

    PubMed

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life.

  3. Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1

    PubMed Central

    Zhu, Hongyan; Mingler, Melissa K.; McBride, Melissa L.; Murphy, Andrew J.; Valenzuela, David M.; Yancopoulos, George D.; Williams, Michael T.; Vorhees, Charles V.; Rothenberg, Marc E.

    2010-01-01

    Summary NPSR1 is a G protein coupled receptor expressed in multiple brain regions involved in modulation of stress. Central administration of NPS, the putative endogenous ligand of NPSR1, can induce hyperlocomotion, anxiolytic effects and activation of the HPA axis. The role of NPSR1 in the brain remains unsettled. Here we used NPSR1 gene-targeted mice to define the functional role of NPSR1 under basal conditions on locomotion, anxiety- and/or depression-like behavior, corticosterone levels, acoustic startle with prepulse inhibition, learning and memory, and under NPS-induced locomotor activation, anxiolysis, and corticosterone release. Male, but not female, NPSR1-deficient mice exhibited enhanced depression-like behavior in a forced swim test, reduced acoustic startle response, and minor changes in the Morris water maze. Neither male nor female NPSR1-deficient mice showed alterations of baseline locomotion, anxiety-like behavior, or corticosterone release after exposure to a forced swim test or methamphetamine challenge in an open-field. After intracerebroventricular (ICV) administration of NPS, NPSR1-deficient mice failed to show normal NPS-induced increases in locomotion, anxiolysis, or corticosterone release compared with WT NPS-treated mice. These findings demonstrate that NPSR1 is essential in mediating NPS effects on behavior. PMID:20171785

  4. Abnormal response to stress and impaired NPS-induced hyperlocomotion, anxiolytic effect and corticosterone increase in mice lacking NPSR1.

    PubMed

    Zhu, Hongyan; Mingler, Melissa K; McBride, Melissa L; Murphy, Andrew J; Valenzuela, David M; Yancopoulos, George D; Williams, Michael T; Vorhees, Charles V; Rothenberg, Marc E

    2010-09-01

    NPSR1 is a G protein coupled receptor expressed in multiple brain regions involved in modulation of stress. Central administration of NPS, the putative endogenous ligand of NPSR1, can induce hyperlocomotion, anxiolytic effects and activation of the HPA axis. The role of NPSR1 in the brain remains unsettled. Here we used NPSR1 gene-targeted mice to define the functional role of NPSR1 under basal conditions on locomotion, anxiety- and/or depression-like behavior, corticosterone levels, acoustic startle with prepulse inhibition, learning and memory, and under NPS-induced locomotor activation, anxiolysis, and corticosterone release. Male, but not female, NPSR1-deficient mice exhibited enhanced depression-like behavior in a forced swim test, reduced acoustic startle response, and minor changes in the Morris water maze. Neither male nor female NPSR1-deficient mice showed alterations of baseline locomotion, anxiety-like behavior, or corticosterone release after exposure to a forced swim test or methamphetamine challenge in an open-field. After intracerebroventricular (ICV) administration of NPS, NPSR1-deficient mice failed to show normal NPS-induced increases in locomotion, anxiolysis, or corticosterone release compared with WT NPS-treated mice. These findings demonstrate that NPSR1 is essential in mediating NPS effects on behavior.

  5. Early Behavioral Abnormalities and Perinatal Alterations of PTEN/AKT Pathway in Valproic Acid Autism Model Mice

    PubMed Central

    Yang, Eun-Jeong; Ahn, Sangzin; Lee, Kihwan; Mahmood, Usman; Kim, Hye-Sun

    2016-01-01

    Exposure to valproic acid (VPA) during pregnancy has been linked with increased incidence of autism, and has repeatedly been demonstrated as a useful autism mouse model. We examined the early behavioral and anatomical changes as well as molecular changes in mice prenatally exposed to VPA (VPA mice). In this study, we first showed that VPA mice showed developmental delays as assessed with self-righting, eye opening tests and impaired social recognition. In addition, we provide the first evidence that primary cultured neurons from VPA-treated embryos present an increase in dendritic spines, compared with those from control mice. Mutations in phosphatase and tensin homolog (PTEN) gene are also known to be associated with autism, and mice with PTEN knockout show autistic characteristics. Protein expression of PTEN was decreased and the ratio of p-AKT/AKT was increased in the cerebral cortex and the hippocampus, and a distinctive anatomical change in the CA1 region of the hippocampus was observed. Taken together, our study suggests that prenatal exposure to VPA induces developmental delays and neuroanatomical changes via the reduction of PTEN level and these changes were detectable in the early days of life. PMID:27071011

  6. R6/2 Huntington’s disease Mice Develop Early and Progressive Abnormal Brain Metabolism and Seizures

    PubMed Central

    Cepeda-Prado, E; Popp, S; Khan, U; Stefanov, D; Rodriguez, J; Menalled, L; Dow-Edwards, D; Small, SA; Moreno, H

    2012-01-01

    A hallmark feature of Huntington's disease pathology is the atrophy of brain regions including, but not limited to, the striatum. Though MRI studies have identified structural CNS changes in several HD mouse models, the functional consequences of HD pathology during the progression of the disease have yet to be investigated using in vivo functional magnetic resonance imaging (fMRI). To address this issue, we first established the structural and functional MRI phenotype of juvenile HD mouse model R6/2 at early and advanced stages of disease. Significantly higher fMRI-signals (relative cerebral blood volumes-rCBV) and atrophy were observed in both age groups in specific brain regions. Next, fMRI results were correlated with electrophysiological analysis, which showed abnormal increases in neuronal activity in affected brain regions- thus identifying a mechanism accounting for the abnormal fMRI findings. [14C] deoxyglucose (2DG) maps to investigate patterns of glucose utilization were also generated. An interesting mismatch between increases in rCBV and decreases in glucose uptake was observed. Finally, we evaluated the sensitivity of this mouse line to audiogenic seizures early in the disease course. We found that R6/2 mice had an increased susceptibility to develop seizures. Together, these findings identified seizure activity in R6/2 mice, and show that neuroimaging measures sensitive to oxygen metabolism can be used as in vivo biomarkers, preceding the onset of an overt behavioral phenotype. Since fMRI-rCBV can also be obtained in patients, we propose that it may serve as a translational tool to evaluate therapeutic responses in humans and HD mouse models. PMID:22573668

  7. Exposure to enriched environments during adolescence prevents abnormal behaviours associated with histone deacetylation in phencyclidine-treated mice.

    PubMed

    Koseki, Takenao; Mouri, Akihiro; Mamiya, Takayoshi; Aoyama, Yuki; Toriumi, Kazuya; Suzuki, Shizuka; Nakajima, Azusa; Yamada, Takuma; Nagai, Taku; Nabeshima, Toshitaka

    2012-11-01

    Enriched environments (EEs) during development have been shown to influence adult behaviour. Environmental conditions during childhood may contribute to the onset and/or pathology of schizophrenia; however, it remains unclear whether EE might prevent the development of schizophrenia. Herein, we investigated the effects of EE during adolescence on phencyclidine (PCP)-induced abnormal behaviour, a proposed schizophrenic endophenotype. Male ICR mice (3 wk old) were exposed to an EE for 4 wk and then treated with PCP for 2 wk. The EE potentiated the acute PCP treatment-induced hyperlocomotion in the locomotor test and prevented chronic PCP treatment-induced impairments of social behaviour and recognition memory in the social interaction and novel object recognition tests. It also prevented the PCP-induced decrease of acetylated Lys9 in histone H3-positive cells and increase of the histone deacetylase (HDAC)5 level in the prefrontal cortex. To investigate whether the histone modification during adolescence might be critical for the effect of EE, 3-wk-old mice were first treated with sodium butyrate (SB; an HDAC inhibitor) for 4 wk and then treated with PCP for 2 wk. Chronic SB treatment during adolescence mimicked the effects of EE, including potentiation of hyperlocomotion induced by acute PCP treatment and prevention of social and cognitive impairments, decrease of acetylated Lys9 in histone H3-positive cells and increase of the HDAC5 level in the prefrontal cortex associated with chronic PCP treatment. Our results suggest that EEs prevent PCP-induced abnormal behaviour associated with histone deacetylation. EEs during childhood might prove to be a novel strategy for prophylaxis against schizophrenia.

  8. Abnormal Skeletal Muscle Regeneration plus Mild Alterations in Mature Fiber Type Specification in Fktn-Deficient Dystroglycanopathy Muscular Dystrophy Mice

    PubMed Central

    Foltz, Steven J.; Modi, Jill N.; Melick, Garrett A.; Abousaud, Marin I.; Luan, Junna; Fortunato, Marisa J.; Beedle, Aaron M.

    2016-01-01

    Glycosylated α-dystroglycan provides an essential link between extracellular matrix proteins, like laminin, and the cellular cytoskeleton via the dystrophin-glycoprotein complex. In secondary dystroglycanopathy muscular dystrophy, glycosylation abnormalities disrupt a complex O-mannose glycan necessary for muscle structural integrity and signaling. Fktn-deficient dystroglycanopathy mice develop moderate to severe muscular dystrophy with skeletal muscle developmental and/or regeneration defects. To gain insight into the role of glycosylated α-dystroglycan in these processes, we performed muscle fiber typing in young (2, 4 and 8 week old) and regenerated muscle. In mice with Fktn disruption during skeletal muscle specification (Myf5/Fktn KO), newly regenerated fibers (embryonic myosin heavy chain positive) peaked at 4 weeks old, while total regenerated fibers (centrally nucleated) were highest at 8 weeks old in tibialis anterior (TA) and iliopsoas, indicating peak degeneration/regeneration activity around 4 weeks of age. In contrast, mature fiber type specification at 2, 4 and 8 weeks old was relatively unchanged. Fourteen days after necrotic toxin-induced injury, there was a divergence in muscle fiber types between Myf5/Fktn KO (skeletal-muscle specific) and whole animal knockout induced with tamoxifen post-development (Tam/Fktn KO) despite equivalent time after gene deletion. Notably, Tam/Fktn KO retained higher levels of embryonic myosin heavy chain expression after injury, suggesting a delay or abnormality in differentiation programs. In mature fiber type specification post-injury, there were significant interactions between genotype and toxin parameters for type 1, 2a, and 2x fibers, and a difference between Myf5/Fktn and Tam/Fktn study groups in type 2b fibers. These data suggest that functionally glycosylated α-dystroglycan has a unique role in muscle regeneration and may influence fiber type specification post-injury. PMID:26751696

  9. Aromatase Deficient Female Mice Demonstrate Altered Expression of Molecules Critical for Renal Calcium Reabsorption

    NASA Astrophysics Data System (ADS)

    Öz, Orhan K.; Hajibeigi, Asghar; Cummins, Carolyn; van Abel, Monique; Bindels, René J.; Kuro-o, Makoto; Pak, Charles Y. C.; Zerwekh, Joseph E.

    2007-04-01

    The incidence of kidney stones increases in women after the menopause, suggesting a role for estrogen deficiency. In order to determine if estrogen may be exerting an effect on renal calcium reabsorption, we measured urinary calcium excretion in the aromatase-deficient female mouse (ArKO) before and following estrogen therapy. ArKO mice had hypercalciuria that corrected during estrogen administration. To evaluate the mechanism by which estrogen deficiency leads to hypercalciuria, we examined the expression of several proteins involved in distal tubule renal calcium reabsorption, both at the message and protein levels. Messenger RNA levels of TRPV5, TRPV6, calbindin-D28K, the Na+/Ca++ exchanger (NCX1), and the plasma membrane calcium ATPase (PMCA1b) were significantly decreased in kidneys of ArKO mice. On the other hand, klotho mRNA levels were elevated in kidneys of ArKO mice. ArKO renal protein extracts had lower levels of calbindin-D28K but higher levels of the klotho protein. Immunochemistry demonstrated increased klotho expression in ArKO kidneys. Estradiol therapy normalized the expression of TRPV5, calbindin-D28K, PMCA1b and klotho. Taken together, these results demonstrate that estrogen deficiency produced by aromatase inactivation is sufficient to produce a renal leak of calcium and consequent hypercalciuria. This may represent one mechanism leading to the increased incidence of kidney stones following the menopause in women.

  10. Conditional knockout mice demonstrate function of Klf5 as a myeloid transcription factor.

    PubMed

    Shahrin, Nur Hezrin; Diakiw, Sonya; Dent, Lindsay A; Brown, Anna L; D'Andrea, Richard J

    2016-07-01

    Krüppel-like factor 5 (Klf5) encodes a zinc-finger transcription factor and has been reported to be a direct target of C/EBPα, a master transcription factor critical for formation of granulocyte-macrophage progenitors (GMP) and leukemic GMP. Using an in vivo hematopoietic-specific gene ablation model, we demonstrate that loss of Klf5 function leads to a progressive increase in peripheral white blood cells, associated with increasing splenomegaly. Long-term hematopoietic stem cells (HSCs), short-term HSCs (ST-HSCs), and multipotent progenitors (MPPs) were all significantly reduced in Klf5(Δ/Δ) mice, and knockdown of KLF5 in human CD34(+) cells suppressed colony-forming potential. ST-HSCs, MPPs, and total numbers of committed progenitors were increased in the spleen of Klf5(Δ/Δ) mice, and reduced β1- and β2-integrin expression on hematopoietic progenitors suggests that increased splenic hematopoiesis results from increased stem and progenitor mobilization. Klf5(Δ/Δ) mice show a significant reduction in the fraction of Gr1(+)Mac1(+) cells (neutrophils) in peripheral blood and bone marrow and increased frequency of eosinophils in the peripheral blood, bone marrow, and lung. Thus, these studies demonstrate dual functions of Klf5 in regulating hematopoietic stem and progenitor proliferation and localization in the bone marrow, as well as lineage choice after GMP, promoting increased neutrophil output at the expense of eosinophil production.

  11. X-linked Christianson syndrome: heterozygous female Slc9a6 knockout mice develop mosaic neuropathological changes and related behavioral abnormalities

    PubMed Central

    Sikora, Jakub; Leddy, Jennifer; Gulinello, Maria; Walkley, Steven U.

    2016-01-01

    ABSTRACT Christianson syndrome (CS) is an X-linked neurodevelopmental and neurological disorder characterized in males by core symptoms that include non-verbal status, intellectual disability, epilepsy, truncal ataxia, postnatal microcephaly and hyperkinesis. CS is caused by mutations in the SLC9A6 gene, which encodes a multipass transmembrane sodium (potassium)-hydrogen exchanger 6 (NHE6) protein, functional in early recycling endosomes. The extent and variability of the CS phenotype in female heterozygotes, who presumably express the wild-type and mutant SLC9A6 alleles mosaically as a result of X-chromosome inactivation (XCI), have not yet been systematically characterized. Slc9a6 knockout mice (Slc9a6 KO) were generated by insertion of the bacterial lacZ/β-galactosidase (β-Gal) reporter into exon 6 of the X-linked gene. Mutant Slc9a6 KO male mice have been shown to develop late endosomal/lysosomal dysfunction associated with glycolipid accumulation in selected neuronal populations and patterned degeneration of Purkinje cells (PCs). In heterozygous female Slc9a6 KO mice, β-Gal serves as a transcriptional/XCI reporter and thus facilitates testing of effects of mosaic expression of the mutant allele on penetrance of the abnormal phenotype. Using β-Gal, we demonstrated mosaic expression of the mutant Slc9a6 allele and mosaically distributed lysosomal glycolipid accumulation and PC pathology in the brains of heterozygous Slc9a6 KO female mice. At the behavioral level, we showed that heterozygous female mice suffer from visuospatial memory and motor coordination deficits similar to but less severe than those observed in X-chromosome hemizygous mutant males. Our studies in heterozygous Slc9a6 KO female mice provide important clues for understanding the likely phenotypic range of Christianson syndrome among females heterozygous for SLC9A6 mutations and might improve diagnostic practice and genetic counseling by helping to characterize this presumably

  12. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    PubMed

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment.

  13. Pre-administration of curcumin prevents neonatal sevoflurane exposure-induced neurobehavioral abnormalities in mice.

    PubMed

    Ji, Mu-Huo; Qiu, Li-Li; Yang, Jiao-Jiao; Zhang, Hui; Sun, Xiao-Ru; Zhu, Si-Hai; Li, Wei-Yan; Yang, Jian-Jun

    2015-01-01

    Sevoflurane, a commonly used inhaled anesthetic, can induce neuronal apoptosis in the developing rodent brain and correlate with functional neurological impairment later in life. However, the mechanisms underlying these deleterious effects of sevoflurane remain unclear and no effective treatment is currently available. Herein, the authors investigated whether curcumin can prevent the sevoflurane anesthesia-induced cognitive impairment in mice. Six-day-old C57BL/6 mice were exposed to 3% sevoflurane 2h daily for 3 consecutive days and were treated with curcumin at the dose of 20 mg/kg or vehicle 30 min before the sevoflurane anesthesia from postnatal days 6 (P6) to P8. Cognitive functions were evaluated by open field, Morris water maze, and fear conditioning tests on P61, P63-69, and P77-78, respectively. In another separate experiment, mice were killed on day P8 or P78, and the brain tissues were harvested and then subjected to biochemistry studies. Our results showed that repeated neonatal sevoflurane exposure led to significant cognitive impairment later in life, which was associated with increased neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, and decreased memory related proteins. By contrast, pre-administration of curcumin ameliorated early neuronal apoptosis, neuroinflammation, oxidative nitrosative stress, memory related proteins, and later cognitive dysfunction. In conclusion, our data suggested that curcumin pre-administration can prevent the sevoflurane exposure-induced cognitive impairment later in life, which may be partly attributed to its ability to attenuate the neural apoptosis, inflammation, and oxidative nitrosative stress in mouse brain. PMID:25447320

  14. Expression of the human PAC1 receptor leads to dose-dependent hydrocephalus-related abnormalities in mice

    PubMed Central

    Lang, Bing; Song, Bing; Davidson, Wendy; MacKenzie, Alastair; Smith, Norman; McCaig, Colin D.; Harmar, Anthony J.; Shen, Sanbing

    2006-01-01

    Hydrocephalus is a common and potentially devastating birth defect affecting the CNS, and its relationship with G protein–coupled receptors (GPCRs) is unknown. We have expressed 2, 4, or 6 copies of a GPCR — the human PAC1 receptor with a 130-kb transgene in the mouse nervous system in a pattern closely resembling that of the endogenous gene. Consistent with PAC1 actions, PKA and PKC activity were elevated in the brains of Tg mice. Remarkably, Tg mice developed dose-dependent hydrocephalus-like characteristics, including enlarged third and lateral ventricles and reduced cerebral cortex, corpus callosum, and subcommissural organ (SCO). Neuronal proliferation and apoptosis were implicated in hydrocephalus, and we observed significantly reduced neuronal proliferation and massively increased neuronal apoptosis in the developing cortex and SCO of Tg embryos, while neurite outgrowth and neuronal migration in vitro remain uncompromised. Ventricular ependymal cilia are crucial for directing cerebrospinal fluid flow, and ependyma of Tg mice exhibited disrupted cilia with increased phospho-CREB immunoreactivity. These data demonstrate that altered neuronal proliferation/apoptosis and disrupted ependymal cilia are the main factors contributing to hydrocephalus in PAC1-overexpressing mice. This is the first report to our knowledge demonstrating that misregulation of GPCRs can be involved in hydrocephalus-related neurodevelopmental disorders. PMID:16823490

  15. Reproductive abnormalities in adult male mice following preimplantation exposures to estradiol or pesticide methoxychlor.

    PubMed

    Amstislavsky, Sergei Ya; Amstislavskaya, Tamara G; Amstislavsky, Vjacheslav S; Tibeikina, Marina A; Osipov, Kiril V; Eroschenko, Victor P

    2006-02-01

    Adult females of ICR strain of mice were bred, separated into different experimental groups, and treated as follows. On Days 2-4 of pregnancy, the mice received daily subcutaneous injections of either 0.05 ml sesame oil (vehicle) or same volume of 5.0mg of purified methoxychlor (MXC) suspended in the vehicle. Another group received a single subcutaneous injection of 1.0 microg of estradiol-17beta (E) on Day 2 of pregnancy only. Male offspring were tested at 3 and 6 months of age. At 3 months, E or MXC did not alter the weights of seminal vesicles, preputial glands, or testes, although after exposure for 30 min to a female in estrus behind a partition, testosterone levels were significantly reduced in treated males in comparison to control males exposed to the same partition test. At 6 months, the preputial glands and testes weight remained unchanged, while the seminal vesicles were significantly heavier in E- and MXC-treated males. Same partition tests again revealed that in E and MXC groups, testosterone levels remained significantly lower in comparison to control males. MXC or E exposures during preimplantation appear to induce long-term effects on the sexual development in 3 and 6 month-old-males by compromising their sexual arousal and altering seminal vesicles weights in the older group.

  16. Blocking Endogenous Leukemia Inhibitory Factor During Placental Development in Mice Leads to Abnormal Placentation and Pregnancy Loss

    PubMed Central

    Winship, Amy; Correia, Jeanne; Krishnan, Tara; Menkhorst, Ellen; Cuman, Carly; Zhang, Jian-Guo; Nicola, Nicos A.; Dimitriadis, Evdokia

    2015-01-01

    The placenta forms the interface between the maternal and fetal circulation and is critical for the establishment of a healthy pregnancy. Specialized trophoblast cells derived from the embryonic trophectoderm play a pivotal role in the establishment of the placenta. Leukemia inhibitory factor (LIF) is one of the predominant cytokines present in the placenta during early pregnancy. LIF has been shown to regulate trophoblast adhesion and invasion in vitro, however its precise role in vivo is unknown. We hypothesized that LIF would be required for normal placental development in mice. LIF and LIFRα were immunolocalized to placental trophoblasts and fetal vessels in mouse implantation sites during mid-gestation. Temporally blocking LIF action during specific periods of placental development via intraperitoneal administration of our specific LIFRα antagonist, PEGLA, resulted in abnormal placental trophoblast and vascular morphology and reduced activated STAT3 but not ERK. Numerous genes regulating angiogenesis and oxidative stress were altered in the placenta in response to LIF inhibition. Pregnancy viability was also significantly compromised in PEGLA treated mice. Our data suggest that LIF plays an important role in placentation in vivo and the maintenance of healthy pregnancy. PMID:26272398

  17. Meiosis I arrest abnormalities lead to severe oligozoospermia in meiosis 1 arresting protein (M1ap)-deficient mice.

    PubMed

    Arango, Nelson Alexander; Li, Li; Dabir, Deepa; Nicolau, Fotini; Pieretti-Vanmarcke, Rafael; Koehler, Carla; McCarrey, John R; Lu, Naifang; Donahoe, Patricia K

    2013-03-01

    Meiosis 1 arresting protein (M1ap) is a novel vertebrate gene expressed exclusively in germ cells of the embryonic ovary and the adult testis. In male mice, M1ap expression, which is present from spermatogonia to secondary spermatocytes, is evolutionarily conserved and has a specific spatial and temporal pattern suggestive of a role during germ cell development. To test its function, mice deficient in M1ap were created. Whereas females had histologically normal ovaries, males exhibited reduced testicular size and a myriad of tubular defects, which led to severe oligozoospermia and infertility. Although some germ cells arrested at the zygotene/pachytene stages, most cells advanced to metaphase I before arresting and entering apoptosis. Cells that reached metaphase I were unable to properly align their chromosomes at the metaphase plate due to abnormal chromosome synapses and failure to form crossover foci. Depending on the state of tubular degeneration, all germ cells, with the exemption of spermatogonia, disappeared; with further deterioration, tubules displaying only Sertoli cells reminiscent of Sertoli cell-only syndrome in humans were observed. Our results uncovered an essential role for M1ap as a novel germ cell gene not previously implicated in male germ cell development and suggest that mutations in M1AP could account for some cases of nonobstructive oligozoospermia in men.

  18. Pituitary and ovarian abnormalities demonstrated by CT and ultrasound in children with features of the McCune-Albright syndrome

    SciTech Connect

    Rieth, K.G.; Comite, F.; Shawker, T.H.; Cutler, G.B. Jr.

    1984-11-01

    In a random series of 97 children referred to the National Institutes of Health with a presumptive diagnosis of precocious puberty, eight girls were found to have features of the McCune-Albright syndrome, including fibrous dysplasia of bone and/or skin lesions resembling cafe au lait spots. Radiographic evaluation of these patients included computed tomography of the head and pelvic ultrasound. The pituitary glands were suspicious for abnormality in five of the eight girls. Seven girls underwent pelvic ultrasound, and in all of them the ovaries were considered to be abnormal for their chronological age; in addition, two had functional ovarian cysts. The role of diagnostic radiological studies in the diagnosis of this syndrome is discussed.

  19. Strain background influences neurotoxicity and behavioral abnormalities in mice expressing the tetracycline transactivator.

    PubMed

    Han, Harry J; Allen, Carolyn C; Buchovecky, Christie M; Yetman, Michael J; Born, Heather A; Marin, Miguel A; Rodgers, Shaefali P; Song, Bryan J; Lu, Hui-Chen; Justice, Monica J; Probst, Frank J; Jankowsky, Joanna L

    2012-08-01

    The tet-off system has been widely used to create transgenic models of neurological disorders including Alzheimer's, Parkinson's, Huntington's, and prion disease. The utility of this system lies in the assumption that the tetracycline transactivator (TTA) acts as an inert control element and does not contribute to phenotypes under study. Here we report that neuronal expression of TTA can affect hippocampal cytoarchitecture and behavior in a strain-dependent manner. While studying neurodegeneration in two tet-off Alzheimer's disease models, we unexpectedly discovered neuronal loss within the dentate gyrus of single transgenic TTA controls. Granule neurons appeared most sensitive to TTA exposure during postnatal development, and doxycycline treatment during this period was neuroprotective. TTA-induced degeneration could be rescued by moving the transgene onto a congenic C57BL/6J background and recurred on reintroduction of either CBA or C3H/He backgrounds. Quantitative trait analysis of B6C3 F2 TTA mice identified a region on Chromosome 14 that contains a major modifier of the neurodegenerative phenotype. Although B6 mice were resistant to degeneration, they were not ideal for cognitive testing. F1 offspring of TTA C57BL/6J and 129X1/SvJ, FVB/NJ, or DBA/1J showed improved spatial learning, but TTA expression caused subtle differences in contextual fear conditioning on two of these backgrounds, indicating that strain and genotype can interact independently under different behavioral settings. All model systems have limitations that should be recognized and mitigated where possible; our findings stress the importance of mapping the effects caused by TTA alone when working with tet-off models.

  20. In vivo treatment with interleukin 12 protects mice from immune abnormalities observed during murine acquired immunodeficiency syndrome (MAIDS)

    PubMed Central

    1994-01-01

    Lymphoproliferation, chronic B cell activation resulting in hypergammaglobulinemia, and profound immunodeficiency are prominent features of a retrovirus-induced syndrome designated murine acquired immunodeficiency syndrome (MAIDS). In vivo treatment of infected mice with recombinant interleukin 12 (IL-12) beginning at the time of infection or up to 9 wk after virus inoculation markedly inhibited the development of splenomegaly and lymphadenopathy, as well as B cell activation and Ig secretion. Treatment with IL-12 also had major effects in preventing induction of several immune defects including impaired production of interferon gamma (IFN-gamma) and IL-2 and depressed proliferative responses to various stimuli. The therapeutic effects of IL-12 on the immune system of mice with MAIDS were also associated with reduced expression of the retrovirus that causes this disease (BM5def), with lesser effects on expression of ecotropic MuLV. IL-12 treatment was not effective in IFN-gamma knockout mice or in infected mice treated simultaneously with IL-12 and anti-IFN-gamma. These results demonstrate that induction and progression of MAIDS are antagonized by IL-12 through high-level expression of IFN-gamma and may provide an experimental basis for developing treatments of retrovirus- induced immune disorders with similar immunopathogenic mechanisms. PMID:7964495

  1. Neural tube opening and abnormal extraembryonic membrane development in SEC23A deficient mice

    PubMed Central

    Zhu, Min; Tao, Jiayi; Vasievich, Matthew P.; Wei, Wei; Zhu, Guojing; Khoriaty, Rami N.; Zhang, Bin

    2015-01-01

    COPII (coat protein complex-II) vesicles transport proteins from the endoplasmic reticulum (ER) to the Golgi. Higher eukaryotes have two or more paralogs of most COPII components. Here we characterize mice deficient for SEC23A and studied interactions of Sec23a null allele with the previously reported Sec23b null allele. SEC23A deficiency leads to mid-embryonic lethality associated with defective development of extraembryonic membranes and neural tube opening in midbrain. Secretion defects of multiple collagen types are observed in different connective tissues, suggesting that collagens are primarily transported in SEC23A-containing vesicles in these cells. Other extracellular matrix proteins, such as fibronectin, are not affected by SEC23A deficiency. Intracellular accumulation of unsecreted proteins leads to strong induction of the unfolded protein response in collagen-producing cells. No collagen secretion defects are observed in SEC23B deficient embryos. We report that E-cadherin is a cargo that accumulates in acini of SEC23B deficient pancreas and salivary glands. Compensatory increase of one paralog is observed in the absence of the second paralog. Haploinsufficiency of the remaining Sec23 paralog on top of homozygous inactivation of the first paralog leads to earlier lethality of embryos. Our results suggest that mammalian SEC23A and SEC23B transport overlapping yet distinct spectra of cargo in vivo. PMID:26494538

  2. Thymic abnormalities and enhanced apoptosis of thymocytes and bone marrow cells in transgenic mice overexpressing Cu/Zn-superoxide dismutase: implications for Down syndrome.

    PubMed Central

    Peled-Kamar, M; Lotem, J; Okon, E; Sachs, L; Groner, Y

    1995-01-01

    The copper-zinc superoxide dismutase (CuZnSOD) gene resides on chromosome 21 and is overexpressed in Down syndrome (DS) patients. Transgenic CuZnSOD mice with elevated levels of CuZnSOD were used to determine whether, as in DS, overexpression of CuZnSOD was also associated with thymus and bone marrow abnormalities. Three independently derived transgenic CuZnSOD strains had abnormal thymi showing diminution of the cortex and loss of corticomedullary demarcation, resembling thymic defects in children with DS. Transgenic CuZnSOD mice were also more sensitive than control mice to in vivo injection of lipopolysaccharide (LPS), reflected by an earlier onset and enhanced apoptotic cell death in the thymus. This higher susceptibility to LPS-induced apoptosis was associated with an increased production of hydrogen peroxide and a higher degree of lipid peroxidation. When cultured under suboptimal concentrations of interleukin 3 or in the presence of tumour necrosis factor, bone marrow cells from transgenic CuZnSOD mice produced 2- to 3-fold less granulocyte and macrophage colonies than control. The results indicate that transgenic CuZnSOD mice have certain thymus and bone marrow abnormalities which are similar to those found in DS patients, and that the defects are presumably due to an increased oxidative damage resulting in enhanced cell death by apoptosis. Images PMID:7588627

  3. Demonstration of Nondeclarative Sequence Learning in Mice: Development of an Animal Analog of the Human Serial Reaction Time Task

    ERIC Educational Resources Information Center

    Christie, Michael A.; Hersch, Steven M.

    2004-01-01

    In this paper, we demonstrate nondeclarative sequence learning in mice using an animal analog of the human serial reaction time task (SRT) that uses a within-group comparison of behavior in response to a repeating sequence versus a random sequence. Ten female B6CBA mice performed eleven 96-trial sessions containing 24 repetitions of a 4-trial…

  4. Epiphyseal abnormalities, trabecular bone loss and articular chondrocyte hypertrophy develop in the long bones of postnatal Ext1-deficient mice.

    PubMed

    Sgariglia, Federica; Candela, Maria Elena; Huegel, Julianne; Jacenko, Olena; Koyama, Eiki; Yamaguchi, Yu; Pacifici, Maurizio; Enomoto-Iwamoto, Motomi

    2013-11-01

    Long bones are integral components of the limb skeleton. Recent studies have indicated that embryonic long bone development is altered by mutations in Ext genes and consequent heparan sulfate (HS) deficiency, possibly due to changes in activity and distribution of HS-binding/growth plate-associated signaling proteins. Here we asked whether Ext function is continuously required after birth to sustain growth plate function and long bone growth and organization. Compound transgenic Ext1(f/f);Col2CreERT mice were injected with tamoxifen at postnatal day 5 (P5) to ablate Ext1 in cartilage and monitored over time. The Ext1-deficient mice exhibited growth retardation already by 2weeks post-injection, as did their long bones. Mutant growth plates displayed a severe disorganization of chondrocyte columnar organization, a shortened hypertrophic zone with low expression of collagen X and MMP-13, and reduced primary spongiosa accompanied, however, by increased numbers of TRAP-positive osteoclasts at the chondro-osseous border. The mutant epiphyses were abnormal as well. Formation of a secondary ossification center was significantly delayed but interestingly, hypertrophic-like chondrocytes emerged within articular cartilage, similar to those often seen in osteoarthritic joints. Indeed, the cells displayed a large size and round shape, expressed collagen X and MMP-13 and were surrounded by an abundant Perlecan-rich pericellular matrix not seen in control articular chondrocytes. In addition, ectopic cartilaginous outgrowths developed on the lateral side of mutant growth plates over time that resembled exostotic characteristic of children with Hereditary Multiple Exostoses, a syndrome caused by Ext mutations and HS deficiency. In sum, the data do show that Ext1 is continuously required for postnatal growth and organization of long bones as well as their adjacent joints. Ext1 deficiency elicits defects that can occur in human skeletal conditions including trabecular bone loss

  5. Epigenetic regulation of dorsal raphe GABA(B1a) associated with isolation-induced abnormal responses to social stimulation in mice.

    PubMed

    Araki, Ryota; Hiraki, Yosuke; Nishida, Shoji; Kuramoto, Nobuyuki; Matsumoto, Kinzo; Yabe, Takeshi

    2016-02-01

    In isolation-reared mice, social encounter stimulation induces locomotor hyperactivity and activation of the dorsal raphe nucleus (DRN), suggesting that dysregulation of dorsal raphe function may be involved in abnormal behaviors. In this study, we examined the involvement of dorsal raphe GABAergic dysregulation in the abnormal behaviors of isolation-reared mice. We also studied an epigenetic mechanism underlying abnormalities of the dorsal raphe GABAergic system. Both mRNA and protein levels of GABA(B1a), a GABA(B) receptor subunit, were increased in the DRN of isolation-reared mice, compared with these levels in group-reared mice. In contrast, mRNA levels for other GABAergic system-related genes (GABA(A) receptor α1, β2 and γ2 subunits, GABA(B) receptor 1b and 2 subunits, and glutamate decarboxylase 67 and 65) were unchanged. Intra-DRN microinjection of 0.06 nmol baclofen (a GABA(B) receptor agonist) exacerbated encounter-induced hyperactivity and aggressive behavior, while microinjection of 0.3 nmol phaclofen (a GABA(B) receptor antagonist) attenuated encounter-induced hyperactivity and aggressive behavior in isolation-reared mice. Furthermore, microinjection of 0.06 nmol baclofen elicited encounter-induced hyperactivity in group-reared mice. Neither baclofen nor phaclofen affected immobility time in the forced swim test and hyperactivity in a novel environment of isolation reared mice. Bisulfite sequence analyses revealed that the DNA methylation level of the CpG island around the transcription start site (TSS) of GABA(B1a) was decreased in the DRN of isolation-reared mice. Chromatin immunoprecipitation analysis showed that histone H3 was hyperacetylated around the TSS of GABA(B1a) in the DRN of isolation-reared mice. These findings indicate that an increase in dorsal raphe GABA(B1a) expression via epigenetic regulation is associated with abnormal responses to social stimulation such as encounter-induced hyperactivity and aggressive behavior in isolation

  6. Early ALS-type gait abnormalities in AMP-dependent protein kinase-deficient mice suggest a role for this metabolic sensor in early stages of the disease.

    PubMed

    Vergouts, Maxime; Marinangeli, Claudia; Ingelbrecht, Caroline; Genard, Geraldine; Schakman, Olivier; Sternotte, Anthony; Calas, André-Guilhem; Hermans, Emmanuel

    2015-12-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motoneurons. While the principal cause of the disease remains so far unknown, the onset and progression of the pathology are increasingly associated with alterations in the control of cell metabolism. On the basis of the well-known key roles of 5'-adenosine monophosphate-activated protein kinase (AMPK) in sensing and regulating the intracellular energy status, we hypothesized that mice with a genetic deletion of AMPK would develop locomotor abnormalities that bear similarity with those detected in the very early disease stage of mice carrying the ALS-associated mutated gene hSOD1(G93A). Using an automated gait analysis system (CatWalk), we here show that hSOD1(G93A) mice and age-matched mice lacking the neuronal and skeletal muscle predominant α2 catalytic subunit of AMPK showed an altered gait, clearly different from wild type control mice. Double mutant mice lacking AMPK α2 and carrying hSOD1(G93A) showed the same early gait abnormalities as hSOD1(G93A) mice over an age span of 8 to 16 weeks. Taken together, these data support the concept that altered AMPK function and associated bioenergetic abnormalities could constitute an important component in the early pathogenesis of ALS. Therapeutic interventions acting on metabolic pathways could prove beneficial on early locomotor deficits, which are sensitively detectable in rodent models using the CatWalk system. PMID:26152932

  7. Ovariectomy and 17β-estradiol replacement in rats and mice: a visual demonstration.

    PubMed

    Ström, Jakob O; Theodorsson, Annette; Ingberg, Edvin; Isaksson, Ida-Maria; Theodorsson, Elvar

    2012-01-01

    Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures. PMID:22710371

  8. Ovariectomy and 17β-estradiol Replacement in Rats and Mice: A Visual Demonstration

    PubMed Central

    Ström, Jakob O.; Theodorsson, Annette; Ingberg, Edvin; Isaksson, Ida-Maria; Theodorsson, Elvar

    2012-01-01

    Estrogens are a family of female sexual hormones with an exceptionally wide spectrum of effects. When rats and mice are used in estrogen research they are commonly ovariectomized in order to ablate the rapidly cycling hormone production, replacing the 17β-estradiol exogenously. There is, however, lack of consensus regarding how the hormone should be administered to obtain physiological serum concentrations. This is crucial since the 17β-estradiol level/administration method profoundly influences the experimental results1-3. We have in a series of studies characterized the different modes of 17β-estradiol administration, finding that subcutaneous silastic capsules and per-oral nut-cream Nutella are superior to commercially available slow-release pellets (produced by the company Innovative Research of America) and daily injections in terms of producing physiological serum concentrations of 17β-estradiol4-6. Amongst the advantages of the nut-cream method, that previously has been used for buprenorphine administration7, is that when used for estrogen administration it resembles peroral hormone replacement therapy and is non-invasive. The subcutaneous silastic capsules are convenient and produce the most stable serum concentrations. This video article contains step-by-step demonstrations of ovariectomy and 17β-estradiol hormone replacement by silastic capsules and peroral Nutella in rats and mice, followed by a discussion of important aspects of the administration procedures. PMID:22710371

  9. Pericentrin Is Related to Abnormal β-Cell Insulin Secretion through F-Actin Regulation in Mice

    PubMed Central

    Wan, Lijuan; Lv, Yang; Cui, Shaoyuan; Jin, Xinye; Li, Chunlin; Chen, Xiangmei

    2015-01-01

    The aim of this study was to investigate the regulating effect of pericentrin (PCNT) on insulin secretion in the development of insulin resistance and to determine the underlying mechanism. PCNT expression was studied in different tissues of C57/B6 mice by reverse transcriptase-PCR and immunofluorescence. PCNT was highly expressed in organs involved in the regulation of metabolism, while cytoplasmic expression was only enriched in islet cells. PCNT expression was significantly lower in the central regions of insulin resistance (IR) mouse islets than in those of control mouse islets. PCNT expression was further studied in mouse MIN6 cells exposed to glucose stimulation, small interfering RNA (siRNA) against PCNT, and an ERK inhibitor (PD98095). The results revealed that PCNT expression in glucose-stimulated MIN6 cells reduced linearly with cytoplasmic insulin levels. MIN6 cells transfected with PCNT siRNA showed significantly decreased intracellular insulin and F-actin expression. The change in F-actin expression in MIN6 cells during PCNT siRNA interference showed a linear relationship with PCNT expression at different time points. The ERK inhibitor affected PCNT expression and F-actin expression linearly. The abnormal insulin secretion observed both in vivo and in vitro was associated with decreased PCNT expression, and F-actin was found to be the target of PCNT regulation. PMID:26083368

  10. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions

    PubMed Central

    Grammer, Amrie C.; Slota, Rebecca; Fischer, Randy; Gur, Hanan; Girschick, Hermann; Yarboro, Cheryl; Illei, Gabor G.; Lipsky, Peter E.

    2003-01-01

    To determine the role of CD154-CD40 interactions in the B cell overactivity exhibited by patients with active systemic lupus erythematosus (SLE), CD19+ peripheral B cells were examined before and after treatment with humanized anti-CD154 mAb (BG9588, 5c8). Before treatment, SLE patients manifested activated B cells that expressed CD154, CD69, CD38, CD5, and CD27. Cells expressing CD38, CD5, or CD27 disappeared from the periphery during treatment with anti-CD154 mAb, and cells expressing CD69 and CD154 disappeared from the periphery during the post-treatment period. Before treatment, active-SLE patients had circulating CD38bright Ig-secreting cells that were not found in normal individuals. Disappearance of this plasma cell subset during treatment was associated with decreases in anti–double-stranded DNA (anti-dsDNA) Ab levels, proteinuria, and SLE disease activity index. Consistent with this finding, peripheral B cells cultured in vitro spontaneously proliferated and secreted Ig in a manner that was inhibited by anti-CD154 mAb. Finally, the CD38+/++IgD+, CD38+++, and CD38+IgD– B cell subsets present in the peripheral blood also disappeared following treatment with humanized anti-CD154. Together, these results indicate that patients with active lupus nephritis exhibit abnormalities in the peripheral B cell compartment that are consistent with intensive germinal center activity, are driven via CD154-CD40 interactions, and may reflect or contribute to the propensity of these patients to produce autoantibodies. PMID:14617752

  11. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions.

    PubMed

    Grammer, Amrie C; Slota, Rebecca; Fischer, Randy; Gur, Hanan; Girschick, Hermann; Yarboro, Cheryl; Illei, Gabor G; Lipsky, Peter E

    2003-11-01

    To determine the role of CD154-CD40 interactions in the B cell overactivity exhibited by patients with active systemic lupus erythematosus (SLE), CD19+ peripheral B cells were examined before and after treatment with humanized anti-CD154 mAb (BG9588, 5c8). Before treatment, SLE patients manifested activated B cells that expressed CD154, CD69, CD38, CD5, and CD27. Cells expressing CD38, CD5, or CD27 disappeared from the periphery during treatment with anti-CD154 mAb, and cells expressing CD69 and CD154 disappeared from the periphery during the post-treatment period. Before treatment, active-SLE patients had circulating CD38 (bright) Ig-secreting cells that were not found in normal individuals. Disappearance of this plasma cell subset during treatment was associated with decreases in anti-double-stranded DNA (anti-dsDNA) Ab levels, proteinuria, and SLE disease activity index. Consistent with this finding, peripheral B cells cultured in vitro spontaneously proliferated and secreted Ig in a manner that was inhibited by anti-CD154 mAb. Finally, the CD38(+/++)IgD(+), CD38(+++), and CD38(+)IgD(-) B cell subsets present in the peripheral blood also disappeared following treatment with humanized anti-CD154. Together, these results indicate that patients with active lupus nephritis exhibit abnormalities in the peripheral B cell compartment that are consistent with intensive germinal center activity, are driven via CD154-CD40 interactions, and may reflect or contribute to the propensity of these patients to produce autoantibodies.

  12. Conditional Expression of Parkinson's Disease-Related R1441C LRRK2 in Midbrain Dopaminergic Neurons of Mice Causes Nuclear Abnormalities without Neurodegeneration

    PubMed Central

    Tsika, Elpida; Kannan, Meghna; Foo, Caroline Shi-Yan; Dikeman, Dustin; Glauser, Liliane; Gellhaar, Sandra; Galter, Dagmar; Knott, Graham W.; Dawson, Ted M.; Dawson, Valina L.; Moore, Darren J.

    2015-01-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene cause late-onset, autosomal dominant Parkinson's disease (PD). The clinical and neurochemical features of LRRK2-linked PD are similar to idiopathic disease although neuropathology is somewhat heterogeneous. Dominant mutations in LRRK2 precipitate neurodegeneration through a toxic gain-of-function mechanism which can be modeled in transgenic mice overexpressing human LRRK2 variants. A number of LRRK2 transgenic mouse models have been developed that display abnormalities in dopaminergic neurotransmission and alterations in tau metabolism yet without consistently inducing dopaminergic neurodegeneration. To directly explore the impact of mutant LRRK2 on the nigrostriatal dopaminergic pathway, we developed conditional transgenic mice that selectively express human R1441C LRRK2 in dopaminergic neurons from the endogenous murine ROSA26 promoter. The expression of R1441C LRRK2 does not induce the degeneration of substantia nigra dopaminergic neurons or striatal dopamine deficits in mice up to 2 years of age, and fails to precipitate abnormal protein inclusions containing alpha-synuclein, tau, ubiquitin or autophagy markers (LC3 and p62). Furthermore, mice expressing R1441C LRRK2 exhibit normal motor activity and olfactory function with increasing age. Intriguingly, the expression of R1441C LRRK2 induces age-dependent abnormalities of the nuclear envelope in nigral dopaminergic neurons including reduced nuclear circularity and increased invaginations of the nuclear envelope. In addition, R1441C LRRK2 mice display increased neurite complexity of cultured midbrain dopaminergic neurons. Collectively, these novel R1441C LRRK2 conditional transgenic mice reveal altered dopaminergic neuronal morphology with advancing age, and provide a useful tool for exploring the pathogenic mechanisms underlying the R1441C LRRK2 mutation in PD. PMID:25174890

  13. Cyclic Alopecia and Abnormal Epidermal Cornification in Zdhhc13-Deficient Mice Reveal the Importance of Palmitoylation in Hair and Skin Differentiation.

    PubMed

    Liu, Kai-Ming; Chen, Yi-Ju; Shen, Li-Fen; Haddad, Amir N S; Song, I-Wen; Chen, Li-Ying; Chen, Yu-Ju; Wu, Jer-Yuarn; Yen, Jeffrey J Y; Chen, Yuan-Tsong

    2015-11-01

    Many biochemical pathways involved in hair and skin development have not been investigated. Here, we reported on the lesions and investigated the mechanism underlying hair and skin abnormalities in Zdhhc13(skc4) mice with a deficiency in DHHC13, a palmitoyl-acyl transferase encoded by Zdhhc13. Homozygous affected mice showed ragged and dilapidated cuticle of the hair shaft (CUH, a hair anchoring structure), poor hair anchoring ability, and premature hair loss at early telogen phase of the hair cycle, resulting in cyclic alopecia. Furthermore, the homozygous affected mice exhibited hyperproliferation of the epidermis, disturbed cornification, fragile cornified envelope (CE, a skin barrier structure), and impaired skin barrier function. Biochemical investigations revealed that cornifelin, which contains five palmitoylation sites at cysteine residues (C58, C59, C60, C95, and C101), was a specific substrate of DHHC13 and that it was absent in the CUH and CE structures of the affected mice. Furthermore, cornifelin levels were markedly reduced when two palmitoylated cysteines were replaced with serine (C95S and C101S). Taken together, our results suggest that DHHC13 is important for hair anchoring and skin barrier function and that cornifelin deficiency contributes to cyclic alopecia and skin abnormalities in Zdhhc13(skc4) mice.

  14. Reverse-translational biomarker validation of Abnormal Repetitive Behaviors in mice: an illustration of the 4P's modeling approach.

    PubMed

    Garner, Joseph P; Thogerson, Collette M; Dufour, Brett D; Würbel, Hanno; Murray, James D; Mench, Joy A

    2011-06-01

    The NIMH's new strategic plan, with its emphasis on the "4P's" (Prediction, Pre-emption, Personalization, and Populations) and biomarker-based medicine requires a radical shift in animal modeling methodology. In particular 4P's models will be non-determinant (i.e. disease severity will depend on secondary environmental and genetic factors); and validated by reverse-translation of animal homologues to human biomarkers. A powerful consequence of the biomarker approach is that different closely related disorders have a unique fingerprint of biomarkers. Animals can be validated as a highly specific model of a single disorder by matching this 'fingerprint'; or as a model of a symptom seen in multiple disorders by matching common biomarkers. Here we illustrate this approach with two Abnormal Repetitive Behaviors (ARBs) in mice: stereotypies and barbering (hair pulling). We developed animal versions of the neuropsychological biomarkers that distinguish human ARBs, and tested the fingerprint of the different mouse ARBs. As predicted, the two mouse ARBs were associated with different biomarkers. Both barbering and stereotypy could be discounted as models of OCD (even though they are widely used as such), due to the absence of limbic biomarkers which are characteristic of OCD and hence are necessary for a valid model. Conversely barbering matched the fingerprint of trichotillomania (i.e. selective deficits in set-shifting), suggesting it may be a highly specific model of this disorder. In contrast stereotypies were correlated only with a biomarker (deficits in response shifting) correlated with stereotypies in multiple disorders, suggesting that animal stereotypies model stereotypies in multiple disorders.

  15. Ectopic Cerebellar Cell Migration Causes Maldevelopment of Purkinje Cells and Abnormal Motor Behaviour in Cxcr4 Null Mice

    PubMed Central

    Huang, Guo-Jen; Edwards, Andrew; Tsai, Cheng-Yu; Lee, Yi-Shin; Peng, Lei; Era, Takumi; Hirabayashi, Yoshio; Tsai, Ching-Yen; Nishikawa, Shin-Ichi; Iwakura, Yoichiro; Chen, Shu-Jen; Flint, Jonathan

    2014-01-01

    SDF-1/CXCR4 signalling plays an important role in neuronal cell migration and brain development. However, the impact of CXCR4 deficiency in the postnatal mouse brain is still poorly understood. Here, we demonstrate the importance of CXCR4 on cerebellar development and motor behaviour by conditional inactivation of Cxcr4 in the central nervous system. We found CXCR4 plays a key role in cerebellar development. Its loss leads to defects in Purkinje cell dentritogenesis and axonal projection in vivo but not in cell culture. Transcriptome analysis revealed the most significantly affected pathways in the Cxcr4 deficient developing cerebellum are involved in extra cellular matrix receptor interactions and focal adhesion. Consistent with functional impairment of the cerebellum, Cxcr4 knockout mice have poor coordination and balance performance in skilled motor tests. Together, these results suggest ectopic the migration of granule cells impairs development of Purkinje cells, causes gross cerebellar anatomical disruption and leads to behavioural motor defects in Cxcr4 null mice. PMID:24516532

  16. Rescue of the abnormal skeletal phenotype in Ts65Dn Down syndrome mice using genetic and therapeutic modulation of trisomic Dyrk1a.

    PubMed

    Blazek, Joshua D; Abeysekera, Irushi; Li, Jiliang; Roper, Randall J

    2015-10-15

    Trisomy 21 causes skeletal alterations in individuals with Down syndrome (DS), but the causative trisomic gene and a therapeutic approach to rescue these abnormalities are unknown. Individuals with DS display skeletal alterations including reduced bone mineral density, modified bone structure and distinctive facial features. Due to peripheral skeletal anomalies and extended longevity, individuals with DS are increasingly more susceptible to bone fractures. Understanding the genetic and developmental origin of DS skeletal abnormalities would facilitate the development of therapies to rescue these and other deficiencies associated with DS. DYRK1A is found in three copies in individuals with DS and Ts65Dn DS mice and has been hypothesized to be involved in many Trisomy 21 phenotypes including skeletal abnormalities. Return of Dyrk1a copy number to normal levels in Ts65Dn mice rescued the appendicular bone abnormalities, suggesting that appropriate levels of DYRK1A expression are critical for the development and maintenance of the DS appendicular skeleton. Therapy using the DYRK1A inhibitor epigallocatechin-3-gallate improved Ts65Dn skeletal phenotypes. These outcomes suggest that the osteopenic phenotype associated with DS may be rescued postnatally by targeting trisomic Dyrk1a. PMID:26206885

  17. Human COL2A1-directed SV40 T antigen expression in transgenic and chimeric mice results in abnormal skeletal development

    PubMed Central

    1995-01-01

    The ability of SV40 T antigen to cause abnormalities in cartilage development in transgenic mice and chimeras has been tested. The cis- regulatory elements of the COL2A1 gene were used to target expression of SV40 T antigen to differentiating chondrocytes in transgenic mice and chimeras derived from embryonal stem (ES) cells bearing the same transgene. The major phenotypic consequences of transgenic (pAL21) expression are malformed skeleton, disproportionate dwarfism, and perinatal/neonatal death. Expression of T antigen was tissue specific and in the main characteristic of the mouse alpha 1(II) collagen gene. Chondrocyte densities and levels of alpha 1(II) collagen mRNAs were reduced in the transgenic mice. Islands of cells which express cartilage characteristic genes such as type IIB procollagen, long form alpha 1(IX) collagen, alpha 2(XI) collagen, and aggrecan were found in the articular and growth cartilages of pAL21 chimeric fetuses and neonates. But these cells, which were expressing T antigen, were not properly organized into columns of proliferating chondrocytes. Levels of alpha 1(II) collagen mRNA were reduced in these chondrocytes. In addition, these cells did not express type X collagen, a marker for hypertrophic chondrocytes. The skeletal abnormality in pAL21 mice may therefore be due to a retardation of chondrocyte maturation or an impaired ability of chondrocytes to complete terminal differentiation and an associated paucity of some cartilage matrix components. PMID:7822417

  18. Immunohistochemical demonstration of epidermal growth factor in human gastric cancer xenografts of nude mice.

    PubMed

    Yoshiyuki, T; Shimizu, Y; Onda, M; Tokunaga, A; Kiyama, T; Nishi, K; Mizutani, T; Matsukura, N; Tanaka, N; Akimoto, M

    1990-02-15

    Thirty-two surgical specimens and three cell lines of human gastric cancers were used for subcutaneous transplantation into nude mice, resulting in the establishment of eight (25%) xenografts from the surgical specimens and two (67%) from the cell lines. The localization of epidermal growth factor (EGF) in the surgical specimens and cell lines of the gastric cancers and their xenografts in nude mice was then investigated immunohistochemically. Epidermal growth factor was stained in the cytoplasm of the cancer cells, being detected in 16 (50%) of the 32 surgical specimens and in all of the cell lines. Seven (44%) of the sixteen EGF-positive surgical specimens and one (6%) of the 16 EGF-negative ones were tumorigenic in nude mice. All of the xenografts in nude mice were positive for EGF. The tumorigenicity of human gastric cancer xenografts in nude mice may, therefore, be correlated with the presence of EGF in cancer cells.

  19. Compared with DBA/2J mice, C57BL/6J mice demonstrate greater preference for saccharin and less avoidance of a cocaine-paired saccharin cue.

    PubMed

    Freet, Christopher S; Arndt, Amanda; Grigson, Patricia S

    2013-06-01

    Rats avoid intake of a saccharin cue when paired with a drug of abuse. While this is true for most subjects, the degree of avoidance of the drug-paired cue depends upon many factors including an individual rat's preference for rewards. That said, the direction of this effect is complex. For example, reward-preferring Lewis rats exhibit greater cocaine-induced avoidance of a saccharin cue relative to Fischer 344 rats; while reward-preferring mice that overexpress ΔFosB (NSE-tTA × TetOp-ΔFosB) exhibit less avoidance of the drug-paired taste cue compared to controls. The aim here was to use two strains of commonly used mice, C57BL/6J and DBA/2J, to determine whether known differences in sensitivity to rewards will facilitate or attenuate drug-induced suppression of intake of a drug-paired taste cue. The results of Experiment 1 demonstrate that C57BL/6J mice, compared with DBA/2J mice, exhibit attenuated suppression of saccharin intake when it is paired with cocaine. The results of Experiment 2 demonstrate that strain differences in impulsivity are not likely to account for these differences. It is proposed that, while the C57BL/6J mice typically are more responsive to drug, they also are more responsive to natural rewards (in this case saccharin), and the stronger preference for saccharin serves to militate against drug.

  20. Neurofilament light polypeptide gene N98S mutation in mice leads to neurofilament network abnormalities and a Charcot-Marie-Tooth Type 2E phenotype.

    PubMed

    Adebola, Adijat A; Di Castri, Theo; He, Chui-Zhen; Salvatierra, Laura A; Zhao, Jian; Brown, Kristy; Lin, Chyuan-Sheng; Worman, Howard J; Liem, Ronald K H

    2015-04-15

    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited neurological disorder with a prevalence of 1 in 2500 people worldwide. Patients suffer from degeneration of the peripheral nerves that control sensory information of the foot/leg and hand/arm. Multiple mutations in the neurofilament light polypeptide gene, NEFL, cause CMT2E. Previous studies in transfected cells showed that expression of disease-associated neurofilament light chain variants results in abnormal intermediate filament networks associated with defects in axonal transport. We have now generated knock-in mice with two different point mutations in Nefl: P8R that has been reported in multiple families with variable age of onset and N98S that has been described as an early-onset, sporadic mutation in multiple individuals. Nefl(P8R/+) and Nefl(P8R/P8R) mice were indistinguishable from Nefl(+/+) in terms of behavioral phenotype. In contrast, Nefl(N98S/+) mice had a noticeable tremor, and most animals showed a hindlimb clasping phenotype. Immunohistochemical analysis revealed multiple inclusions in the cell bodies and proximal axons of spinal cord neurons, disorganized processes in the cerebellum and abnormal processes in the cerebral cortex and pons. Abnormal processes were observed as early as post-natal day 7. Electron microscopic analysis of sciatic nerves showed a reduction in the number of neurofilaments, an increase in the number of microtubules and a decrease in the axonal diameters. The Nefl(N98S/+) mice provide an excellent model to study the pathogenesis of CMT2E and should prove useful for testing potential therapies.

  1. Augmented Indian hedgehog signaling in cranial neural crest cells leads to craniofacial abnormalities and dysplastic temporomandibular joint in mice

    PubMed Central

    Yang, Ling; Gu, Shuping; Ye, Wenduo; Song, Yingnan; Chen, YiPing

    2016-01-01

    Extensive studies have pinpointed the crucial role of Indian hedgehog (Ihh) signaling in the development of the appendicular skeleton and the essential function of Ihh in the formation of the temporomandibular joint (TMJ). In this study, we have investigated the effect of augmented Ihh signaling in TMJ development. We took a transgenic gain-of-function approach by overexpressing Ihh in the cranial neural crest (CNC) cells using a conditional Ihh transgenic allele and the Wnt1-Cre allele. We found that Wnt1-Cre-mediated tissue-specific overexpression of Ihh in the CNC lineage caused severe craniofacial abnormalities, including cleft lip/palate, encephalocele, anophthalmos, micrognathia, and defective TMJ development. In the mutant TMJ, the glenoid fossa was completely absent, whereas the condyle and the articular disc appeared relatively normal with slightly delayed chondrocyte differentiation. Our findings thus demonstrate that augmented Ihh signaling is detrimental to craniofacial development, and that finely tuned Ihh signaling is critical for TMJ formation. Our results also provide additional evidence that the development of the condyle and articular disc is independent of the glenoid fossa. PMID:26553654

  2. Psychiatric disorder-related abnormal behavior and habenulointerpeduncular pathway defects in Wnt1-cre and Wnt1-GAL4 double transgenic mice.

    PubMed

    Nakajima, Mitsunari; Mori, Hisamichi; Nishikawa, Chisa; Tsuruta, Momoko; Okuyama, Satoshi; Furukawa, Yoshiko

    2013-01-01

    The neural crest is a unique structure in vertebrates. Wnt1-cre and Wnt1-GAL4 double transgenic (dTg) mice have been used in a variety of studies concerning neural crest cell lineages in which the Cre/loxP or GAL4/UAS system was applied. Here, we show psychiatric disorder-related behavioral abnormalities and histologic alterations in a neural crest-derived brain region in dTg mice. The dTg mice exhibited increased locomotor activity, decreased social interaction, and impaired short-term spatial memory and nesting behavior. The choline acetyltransferase- and vesicular glutamate transporter 2-immunoreactive habenulointerpeduncular fiber tracts that project from the medial habenular nucleus of the epithalamus to the interpeduncular nucleus of the midbrain tegmentum appeared irregular in the dTg mice. Both the medial habenula nucleus and the interpeduncular nucleus were confirmed to be derived from the neural crest. The findings of this study suggest that neural crest-derived cells have pathogenic roles in the development of psychiatric disorders and that the dTg mouse could be a useful animal model for studying the pathophysiology of mental illness such as autism and schizophrenia. Scientists that use the dTg mice as a cre-transgenic deleter line should be cautious in its possible toxicity, especially if behavioral analyses are to be performed.

  3. B cell–intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice

    PubMed Central

    Recher, Mike; Burns, Siobhan O.; de la Fuente, Miguel A.; Volpi, Stefano; Dahlberg, Carin; Walter, Jolan E.; Moffitt, Kristin; Mathew, Divij; Honke, Nadine; Lang, Philipp A.; Patrizi, Laura; Falet, Hervé; Keszei, Marton; Mizui, Masayuki; Csizmadia, Eva; Candotti, Fabio; Nadeau, Kari; Bouma, Gerben; Delmonte, Ottavia M.; Frugoni, Francesco; Fomin, Angela B. Ferraz; Buchbinder, David; Lundequist, Emma Maria; Massaad, Michel J.; Tsokos, George C.; Hartwig, John; Manis, John; Terhorst, Cox; Geha, Raif S.; Snapper, Scott; Lang, Karl S.; Malley, Richard; Westerberg, Lisa

    2012-01-01

    Wiskott Aldrich syndrome (WAS) is caused by mutations in the WAS gene that encodes for a protein (WASp) involved in cytoskeleton organization in hematopoietic cells. Several distinctive abnormalities of T, B, and natural killer lymphocytes; dendritic cells; and phagocytes have been found in WASp-deficient patients and mice; however, the in vivo consequence of WASp deficiency within individual blood cell lineages has not been definitively evaluated. By conditional gene deletion we have generated mice with selective deficiency of WASp in the B-cell lineage (B/WcKO mice). We show that this is sufficient to cause a severe reduction of marginal zone B cells and inability to respond to type II T-independent Ags, thereby recapitulating phenotypic features of complete WASp deficiency. In addition, B/WcKO mice showed prominent signs of B-cell dysregulation, as indicated by an increase in serum IgM levels, expansion of germinal center B cells and plasma cells, and elevated autoantibody production. These findings are accompanied by hyperproliferation of WASp-deficient follicular and germinal center B cells in heterozygous B/WcKO mice in vivo and excessive differentiation of WASp-deficient B cells into class-switched plasmablasts in vitro, suggesting that WASp-dependent B cell–intrinsic mechanisms critically contribute to WAS-associated autoimmunity. PMID:22302739

  4. Executive Function Deficits and Social-Behavioral Abnormality in Mice Exposed to a Low Dose of Dioxin In Utero and via Lactation

    PubMed Central

    Endo, Toshihiro; Kakeyama, Masaki; Uemura, Yukari; Haijima, Asahi; Okuno, Hiroyuki; Bito, Haruhiko; Tohyama, Chiharu

    2012-01-01

    An increasing prevalence of mental health problems has been partly ascribed to abnormal brain development that is induced upon exposure to environmental chemicals. However, it has been extremely difficult to detect and assess such causality particularly at low exposure levels. To address this question, we here investigated higher brain function in mice exposed to dioxin in utero and via lactation by using our recently developed automated behavioral flexibility test and immunohistochemistry of neuronal activation markers Arc, at the 14 brain areas. Pregnant C57BL/6 mice were given orally a low dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) at a dose of either 0, 0.6 or 3.0 µg/kg on gestation day 12.5. When the pups reached adulthood, they were group-housed in IntelliCage to assess their behavior. As a result, the offspring born to dams exposed to 0.6 µg TCDD/kg were shown to have behavioral inflexibility, compulsive repetitive behavior, and dramatically lowered competitive dominance. In these mice, immunohistochemistry of Arc exhibited the signs of hypoactivation of the medial prefrontal cortex (mPFC) and hyperactivation of the amygdala. Intriguingly, mice exposed to 3.0 µg/kg were hardly affected in both the behavioral and neuronal activation indices, indicating that the robust, non-monotonic dose-response relationship. In conclusion, this study showed for the first time that perinatal exposure to a low dose of TCDD in mice develops executive function deficits and social behavioral abnormality accompanied with the signs of imbalanced mPFC-amygdala activation. PMID:23251380

  5. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  6. Existing plaques and neuritic abnormalities in APP:PS1 mice are not affected by administration of the gamma-secretase inhibitor LY-411575

    PubMed Central

    Garcia-Alloza, Monica; Subramanian, Meenakshi; Thyssen, Diana; Borrelli, Laura A; Fauq, Abdul; Das, Pritam; Golde, Todd E; Hyman, Bradley T; Bacskai, Brian J

    2009-01-01

    The γ-secretase complex is a major therapeutic target for the prevention and treatment of Alzheimer's disease. Previous studies have shown that treatment of young APP mice with specific inhibitors of γ-secretase prevented formation of new plaques. It has not yet been shown directly whether existing plaques would be affected by γ-secretase inhibitor treatment. Similarly, alterations in neuronal morphology in the immediate vicinity of plaques represent a plaque-specific neurotoxic effect. Reversal of these alterations is an important endpoint of successful therapy whether or not a treatment affects plaque size. In the present study we used longitudinal imaging in vivo with multiphoton microscopy to study the effects of the orally active γ-secretase inhibitor LY-411575 in 10–11 month old APP:PS1 mice with established amyloid pathology and neuritic abnormalities. Neurons expressed YFP allowing fluorescent detection of morphology whereas plaques were labelled with methoxy-XO4. The same identified neurites and plaques were followed in weekly imaging sessions in living mice treated daily (5 mg/kg) for 3 weeks with the compound. Although LY-411575 reduced Aβ levels in plasma and brain, it did not have an effect on the size of existing plaques. There was also no effect on the abnormal neuritic curvature near plaques, or the dystrophies in very close proximity to senile plaques. Our results suggest that therapeutics aimed at inhibition of Aβ generation are less effective for reversal of existing plaques than for prevention of new plaque formation and have no effect on the plaque-mediated neuritic abnormalities, at least under these conditions where Aβ production is suppressed but not completely blocked. Therefore, a combination therapy of Aβ suppression with agents that increase clearance of amyloid and/or prevent neurotoxicity might be needed for a more effective treatment in patients with pre-existing pathology. PMID:19419556

  7. Molecular phenotyping of immune cells from young NOD mice reveals abnormal metabolic pathways in the early induction phase of autoimmune diabetes.

    PubMed

    Wu, Jian; Kakoola, Dorothy N; Lenchik, Nataliya I; Desiderio, Dominic M; Marshall, Dana R; Gerling, Ivan C

    2012-01-01

    Islet leukocytic infiltration (insulitis) is first obvious at around 4 weeks of age in the NOD mouse--a model for human type 1 diabetes (T1D). The molecular events that lead to insulitis and initiate autoimmune diabetes are poorly understood. Since TID is caused by numerous genes, we hypothesized that multiple molecular pathways are altered and interact to initiate this disease. We evaluated the molecular phenotype (mRNA and protein expression) and molecular networks of ex vivo unfractionated spleen leukocytes from 2 and 4 week-old NOD mice in comparison to two control strains. Analysis of the global gene expression profiles and hierarchical clustering revealed that the majority (~90%) of the differentially expressed genes in NOD mice were repressed. Furthermore, analysis using a modern suite of multiple bioinformatics approaches identified abnormal molecular pathways that can be divided broadly into 2 categories: metabolic pathways, which were predominant at 2 weeks, and immune response pathways, which were predominant at 4 weeks. Network analysis by Ingenuity pathway analysis identified key genes/molecules that may play a role in regulating these pathways. These included five that were common to both ages (TNF, HNF4A, IL15, Progesterone, and YWHAZ), and others that were unique to 2 weeks (e.g. MYC/MYCN, TGFB1, and IL2) and to 4 weeks (e.g. IFNG, beta-estradiol, p53, NFKB, AKT, PRKCA, IL12, and HLA-C). Based on the literature, genes that may play a role in regulating metabolic pathways at 2 weeks include Myc and HNF4A, and at 4 weeks, beta-estradiol, p53, Akt, HNF4A and AR. Our data suggest that abnormalities in regulation of metabolic pathways in the immune cells of young NOD mice lead to abnormalities in the immune response pathways and as such may play a role in the initiation of autoimmune diabetes. Thus, targeting metabolism may provide novel approaches to preventing and/or treating autoimmune diabetes.

  8. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders.

    PubMed

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  9. Mice that lack the C-terminal region of Reelin exhibit behavioral abnormalities related to neuropsychiatric disorders

    PubMed Central

    Sakai, Kaori; Shoji, Hirotaka; Kohno, Takao; Miyakawa, Tsuyoshi; Hattori, Mitsuharu

    2016-01-01

    The secreted glycoprotein Reelin is believed to play critical roles in the pathogenesis of several neuropsychiatric disorders. The highly basic C-terminal region (CTR) of Reelin is necessary for efficient activation of its downstream signaling, and the brain structure of knock-in mice that lack the CTR (ΔC-KI mice) is impaired. Here, we performed a comprehensive behavioral test battery on ΔC-KI mice, in order to evaluate the effects of partial loss-of-function of Reelin on brain functions. The ΔC-KI mice were hyperactive and exhibited reduced anxiety-like and social behaviors. The working memory in ΔC-KI mice was impaired in a T-maze test. There was little difference in spatial reference memory, depression-like behavior, prepulse inhibition, or fear memory between ΔC-KI and wild-type mice. These results suggest that CTR-dependent Reelin functions are required for some specific normal brain functions and that ΔC-KI mice recapitulate some aspects of neuropsychiatric disorders, such as schizophrenia, bipolar disorder, and autism spectrum disorder. PMID:27346785

  10. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection

    PubMed Central

    Hermes, Gretchen; Ajioka, James W; Kelly, Krystyna A; Mui, Ernest; Roberts, Fiona; Kasza, Kristen; Mayr, Thomas; Kirisits, Michael J; Wollmann, Robert; Ferguson, David JP; Roberts, Craig W; Hwang, Jong-Hee; Trendler, Toria; Kennan, Richard P; Suzuki, Yasuhiro; Reardon, Catherine; Hickey, William F; Chen, Lieping; McLeod, Rima

    2008-01-01

    Background Worldwide, approximately two billion people are chronically infected with Toxoplasma gondii with largely unknown consequences. Methods To better understand long-term effects and pathogenesis of this common, persistent brain infection, mice were infected at a time in human years equivalent to early to mid adulthood and studied 5–12 months later. Appearance, behavior, neurologic function and brain MRIs were studied. Additional analyses of pathogenesis included: correlation of brain weight and neurologic findings; histopathology focusing on brain regions; full genome microarrays; immunohistochemistry characterizing inflammatory cells; determination of presence of tachyzoites and bradyzoites; electron microscopy; and study of markers of inflammation in serum. Histopathology in genetically resistant mice and cytokine and NRAMP knockout mice, effects of inoculation of isolated parasites, and treatment with sulfadiazine or αPD1 ligand were studied. Results Twelve months after infection, a time equivalent to middle to early elderly ages, mice had behavioral and neurological deficits, and brain MRIs showed mild to moderate ventricular dilatation. Lower brain weight correlated with greater magnitude of neurologic abnormalities and inflammation. Full genome microarrays of brains reflected inflammation causing neuronal damage (Gfap), effects on host cell protein processing (ubiquitin ligase), synapse remodeling (Complement 1q), and also increased expression of PD-1L (a ligand that allows persistent LCMV brain infection) and CD 36 (a fatty acid translocase and oxidized LDL receptor that mediates innate immune response to beta amyloid which is associated with pro-inflammation in Alzheimer's disease). Immunostaining detected no inflammation around intra-neuronal cysts, practically no free tachyzoites, and only rare bradyzoites. Nonetheless, there were perivascular, leptomeningeal inflammatory cells, particularly contiguous to the aqueduct of Sylvius and hippocampus

  11. Abnormal anxiety- and depression-like behaviors in mice lacking both central serotonergic neurons and pancreatic islet cells.

    PubMed

    Jia, Yun-Fang; Song, Ning-Ning; Mao, Rong-Rong; Li, Jin-Nan; Zhang, Qiong; Huang, Ying; Zhang, Lei; Han, Hui-Li; Ding, Yu-Qiang; Xu, Lin

    2014-01-01

    Dysfunction of central serotonin (5-HT) system has been proposed to be one of the underlying mechanisms for anxiety and depression, and the association of diabetes mellitus and psychiatric disorders has been noticed by the high prevalence of anxiety/depression in patients with diabetes mellitus. This promoted us to examine these behaviors in central 5-HT-deficient mice and those also suffering with diabetes mellitus. Mice lacking either 5-HT or central serotonergic neurons were generated by conditional deletion of Tph2 or Lmx1b respectively. Simultaneous depletion of both central serotonergic neurons and pancreatic islet cells was achieved by administration of diphtheria toxin (DT) in Pet1-Cre;Rosa26-DT receptor (DTR) mice. The central 5-HT-deficient mice showed reduced anxiety-like behaviors as they spent more time in and entered more often into the light box in the light/dark box test compared with controls; similar results were observed in the elevated plus maze test. However, they displayed no differences in the immobility time of the forced swimming and tail suspension tests suggesting normal depression-like behaviors in central 5-HT-deficient mice. As expected, DT-treated Pet1-Cre;Rosa26-DTR mice lacking both central serotonergic neurons and pancreatic islet endocrine cells exhibited several classic diabetic symptoms. Interestingly, they displayed increased anxiety-like behaviors but reduced immobility time in the forced swimming and tail suspension tests. Furthermore, the hippocampal neurogenesis was dramatically enhanced in these mice. These results suggest that the deficiency of central 5-HT may not be sufficient to induce anxiety/depression-like behaviors in mice, and the enhanced hippocampal neurogenesis may contribute to the altered depression-like behaviors in the 5-HT-deficient mice with diabetes. Our current investigation provides understanding the relationship between diabetes mellitus and psychiatric disorders.

  12. Urokinase plasminogen activator receptor-deficient mice demonstrate reduced hyperoxia-induced lung injury.

    PubMed

    van Zoelen, Marieke A D; Florquin, Sandrine; de Beer, Regina; Pater, Jennie M; Verstege, Marleen I; Meijers, Joost C M; van der Poll, Tom

    2009-06-01

    Patients with respiratory failure often require supplemental oxygen therapy and mechanical ventilation. Although both supportive measures are necessary to guarantee adequate oxygen uptake, they can also cause or worsen lung inflammation and injury. Hyperoxia-induced lung injury is characterized by neutrophil infiltration into the lungs. The urokinase plasminogen activator receptor (uPAR) has been deemed important for leukocyte trafficking. To determine the expression and function of neutrophil uPAR during hyperoxia-induced lung injury, uPAR expression was determined on pulmonary neutrophils of mice exposed to hyperoxia. Hyperoxia exposure (O2>80%) for 4 days elicited a pulmonary inflammatory response as reflected by a profound rise in the number of neutrophils that were recovered from bronchoalveolar lavage fluid and lung cell suspensions, as well as increased bronchoalveolar keratinocyte-derived chemokine, interleukin-6, total protein, and alkaline phosphatase levels. In addition, hyperoxia induced the migration of uPAR-positive granulocytes into lungs from wild-type mice compared with healthy control mice (exposed to room air). uPAR deficiency was associated with diminished neutrophil influx into both lung tissues and bronchoalveolar spaces, which was accompanied by a strong reduction in lung injury. Furthermore, in uPAR(-/-) mice, activation of coagulation was diminished. These data suggest that uPAR plays a detrimental role in hyperoxia-induced lung injury and that uPAR deficiency is associated with diminished neutrophil influx into both lung tissues and bronchoalveolar spaces, accompanied by decreased pulmonary injury. PMID:19435793

  13. Combination of neonatal PolyI:C and adolescent phencyclidine treatments is required to induce behavioral abnormalities with overexpression of GLAST in adult mice.

    PubMed

    Hida, Hirotake; Mouri, Akihiro; Ando, Yu; Mori, Kentaro; Mamiya, Takayoshi; Iwamoto, Kunihiro; Ozaki, Norio; Yamada, Kiyofumi; Nabeshima, Toshitaka; Noda, Yukihiro

    2014-01-01

    Cumulative incidences of multiple risk factors are related to pathology of psychiatric disorders. The present study was designed to examine combinative effects of a neonatal immune challenge with adolescent abused substance treatment on the psychological behaviors and molecular expressions in the adult. C57BL/6J mice were neonatally treated, with polyriboinosinic-polyribocytidylic acid (PolyI:C: 5mg/kg) during postnatal days (PD) 2-6, then with phencyclidine (PCP: 10mg/kg) during adolescence (PD35-41). Locomotor activity was analyzed to evaluate sensitivity to PCP on PD35 and PD41. Emotional and cognitive tests were carried out on PD42-48. Neonatal PolyI:C treatment markedly enhanced sensitivity to PCP- and methamphetamine-induced hyperactivity in the adolescent. Mice treated with both neonatal PolyI:C and adolescent PCP (PolyI:C/PCP) showed social deficit and object recognition memory impairment. The expression of glutamate/aspartate transporter (GLAST) in the prefrontal cortex (PFC) was significantly increased in the (PolyI:C/PCP)-treated mice. Infusion of glutamate transporter inhibitor (DL-TBOA: 1 nmol/bilaterally) into the PFC reversed the object recognition impairment in the (PolyI:C/PCP)-treated mice. These results indicate that the combined treatment of neonatal PolyI:C with adolescent PCP leads to behavioral abnormalities, which were associated with increase of GLAST expression in the adult PFC.

  14. Severe Extracellular Matrix Abnormalities and Chondrodysplasia in Mice Lacking Collagen Prolyl 4-Hydroxylase Isoenzyme II in Combination with a Reduced Amount of Isoenzyme I*

    PubMed Central

    Aro, Ellinoora; Salo, Antti M.; Khatri, Richa; Finnilä, Mikko; Miinalainen, Ilkka; Sormunen, Raija; Pakkanen, Outi; Holster, Tiina; Soininen, Raija; Prein, Carina; Clausen-Schaumann, Hauke; Aszódi, Attila; Tuukkanen, Juha; Kivirikko, Kari I.; Schipani, Ernestina; Myllyharju, Johanna

    2015-01-01

    Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2β2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1−/−) leads to embryonic lethality in mouse, whereas P4ha1+/− mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2−/− mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1+/−;P4ha2−/− mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1+/−;P4ha2−/− mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2−/− mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype. PMID:26001784

  15. Targeted disruption of the LAMA3 gene in mice reveals abnormalities in survival and late stage differentiation of epithelial cells.

    PubMed

    Ryan, M C; Lee, K; Miyashita, Y; Carter, W G

    1999-06-14

    Laminin 5 regulates anchorage and motility of epithelial cells through integrins alpha6beta4 and alpha3beta1, respectively. We used targeted disruption of the LAMA3 gene, which encodes the alpha3 subunit of laminin 5 and other isoforms, to examine developmental functions that are regulated by adhesion to the basement membrane (BM). In homozygous null animals, profound epithelial abnormalities were detected that resulted in neonatal lethality, consistent with removal of all alpha3-laminin isoforms from epithelial BMs. Alterations in three different cellular functions were identified. First, using a novel tissue adhesion assay, we found that the mutant BM could not induce stable adhesion by integrin alpha6beta4, consistent with the presence of junctional blisters and abnormal hemidesmosomes. In the absence of laminin 5 function, we were able to detect a new ligand for integrin alpha3beta1 in the epidermal BM, suggesting that basal keratinocytes can utilize integrin alpha3beta1 to interact with an alternative ligand. Second, we identified a survival defect in mutant epithelial cells that could be rescued by exogenous laminin 5, collagen, or an antibody against integrin alpha6beta4, suggesting that signaling through beta1 or beta4 integrins is sufficient for survival. Third, we detected abnormalities in ameloblast differentiation in developing mutant incisors indicating that events downstream of adhesion are affected in mutant animals. These results indicate that laminin 5 has an important role in regulating tissue organization, gene expression, and survival of epithelium. PMID:10366601

  16. Abnormal Brain Iron Metabolism in Irp2 Deficient Mice Is Associated with Mild Neurological and Behavioral Impairments

    PubMed Central

    Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637

  17. Abnormal brain iron metabolism in Irp2 deficient mice is associated with mild neurological and behavioral impairments.

    PubMed

    Zumbrennen-Bullough, Kimberly B; Becker, Lore; Garrett, Lillian; Hölter, Sabine M; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J; Leibold, Elizabeth A

    2014-01-01

    Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2-/- mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2-/- mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments.

  18. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  19. Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice.

    PubMed

    Geetha, Rajagopalan; Yogalakshmi, Baskaran; Sreeja, S; Bhavani, K; Anuradha, Carani Venkatraman

    2014-02-01

    The reversal effect of troxerutin (TX) on obesity, insulin resistance, lipid accumulation, oxidative damage, and hypertension induced in the high-fat-high-fructose diet (HFFD)-fed mice model of metabolic syndrome was investigated. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD. Each group was divided into two and treated or untreated with TX (150 mg/kg bw, p.o.) from the 16th day. Assays were done in plasma and heart after 30 and 60 days of the experimental period. Significant increase in the levels of glucose and insulin, blood pressure (BP), and oxidative stress were observed after 30 days of HFFD feeding as compared to control. Animals fed HFFD for 60 days developed more severe changes in the above parameters compared to those fed for 30 days. Hearts of HFFD-fed mice registered downregulation of peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor gamma coactivator-1α, carnitine palmitoyl transferse-1b and AMP-activated protein kinase; and upregulation of cluster of differentiation 36, fatty acid-binding protein-1, and sterol regulatory element-binding protein-1c after 60 days. TX administration restricted obesity (as seen by Lee's index); improved whole body insulin sensitivity; reduced BP, lipid accumulation, and oxidative damage; upregulated fatty acid (FA) oxidation; and downregulated FA transport and lipogenesis. Histology of heart revealed that TX diminishes inflammatory cell infiltration and fatty degeneration in HFFD-fed mice. The antioxidant property of TX and its ability to influence lipid regulatory genes could be the underlying mechanisms for its beneficial effects. PMID:24173620

  20. Early pre- and postsynaptic calcium signaling abnormalities mask underlying synaptic depression in presymptomatic Alzheimer’s disease mice

    PubMed Central

    Chakroborty, Shreaya; Kim, Joyce; Schneider, Corinne; Jacobson, Christopher; Molgó, Jordi; Stutzmann, Grace E.

    2012-01-01

    Alzheimer’s disease (AD)-linked presenilin mutations result in pronounced endoplasmic reticulum (ER) calcium disruptions that occur prior to detectable histopathology and cognitive deficits. More subtly, these early AD-linked calcium alterations also reset neurophysiological homeostasis, such that calcium-dependent pre- and postsynaptic signaling appear functionally normal yet are actually operating under aberrant calcium signaling systems. In these 3xTg-AD mouse brains, upregulated RyR activity is associated with a shift towards synaptic depression, likely through a reduction in presynaptic vesicle stores and increased postsynaptic outward currents through SK2 channels. The deviant RyR-calcium involvement in the 3xTg-AD mice also compensates for an intrinsic predisposition for hippocampal LTD and reduced LTP. In this study we detail the impact of disrupted ryanodine receptor (RyR)-mediated calcium stores on synaptic transmission properties, long term depression (LTD) and calcium-activated membrane channels of hippocampal CA1 pyramidal neurons in presymptomatic 3xTg-AD mice. Using electrophysiological recordings in young 3xTg-AD and NonTg hippocampal slices, we show that increased RyR-evoked calcium release in 3xTg-AD mice ‘normalizes’ an altered synaptic transmission system operating under a shifted homeostatic state that is not present in NonTg mice. In the process, we uncover compensatory signaling mechanisms recruited early in the disease process which counterbalance the disrupted RyR-calcium dynamics, namely increases in presynaptic spontaneous vesicle release, altered probability of vesicle release, and upregulated postsynaptic SK channel activity. As AD is increasingly recognized as a ‘synaptic disease’, calcium-mediated signaling alterations may serve as a proximal trigger for the synaptic degradation driving the cognitive loss in AD. PMID:22699914

  1. Troxerutin suppresses lipid abnormalities in the heart of high-fat-high-fructose diet-fed mice.

    PubMed

    Geetha, Rajagopalan; Yogalakshmi, Baskaran; Sreeja, S; Bhavani, K; Anuradha, Carani Venkatraman

    2014-02-01

    The reversal effect of troxerutin (TX) on obesity, insulin resistance, lipid accumulation, oxidative damage, and hypertension induced in the high-fat-high-fructose diet (HFFD)-fed mice model of metabolic syndrome was investigated. Adult male Mus musculus mice of body weight 25-30 g were fed either control diet or HFFD. Each group was divided into two and treated or untreated with TX (150 mg/kg bw, p.o.) from the 16th day. Assays were done in plasma and heart after 30 and 60 days of the experimental period. Significant increase in the levels of glucose and insulin, blood pressure (BP), and oxidative stress were observed after 30 days of HFFD feeding as compared to control. Animals fed HFFD for 60 days developed more severe changes in the above parameters compared to those fed for 30 days. Hearts of HFFD-fed mice registered downregulation of peroxisome proliferator-activated receptor-α and peroxisome proliferator-activated receptor gamma coactivator-1α, carnitine palmitoyl transferse-1b and AMP-activated protein kinase; and upregulation of cluster of differentiation 36, fatty acid-binding protein-1, and sterol regulatory element-binding protein-1c after 60 days. TX administration restricted obesity (as seen by Lee's index); improved whole body insulin sensitivity; reduced BP, lipid accumulation, and oxidative damage; upregulated fatty acid (FA) oxidation; and downregulated FA transport and lipogenesis. Histology of heart revealed that TX diminishes inflammatory cell infiltration and fatty degeneration in HFFD-fed mice. The antioxidant property of TX and its ability to influence lipid regulatory genes could be the underlying mechanisms for its beneficial effects.

  2. Expression of the B cell repertoire in lpr mice; abnormal expansion of a few VHJ558 germ-line genes.

    PubMed Central

    Alarcón-Riquelme, M E; Fernández, C

    1995-01-01

    Analysis of the VH gene repertoire of the J558 family was done in lipopolysaccharide (LPS)-stimulated resting cells and in vivo activated cells derived from C57Bl/6-lpr mice (IghCb). Using a restriction fragment length polymorphism (RFLP) based on digestion with the restriction enzyme Pstl, the expression of the subfamilies of the J558 family of VH genes could be determined. The J558 subfamily repertoire of resting B cells of the lpr mice was similar to that of the normal mice, while the J558 repertoire of the in vivo-activated cells was altered: analysis and sequencing of the IgM-expressed J558 repertoire of a sick female mouse showed that 50% of the J558 genes were represented by a single VH gene rearrangement, showing that its expansion was monoclonal. Furthermore, this same rearrangement made up to 90% of the J558 repertoire in the IgG2a+ population, showing that it had been preferentially selected, expanded and switched. However, compared with its IgM counterpart, it showed no evidence of somatic hypermutation. PMID:7851020

  3. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration.

    PubMed

    Karan, G; Lillo, C; Yang, Z; Cameron, D J; Locke, K G; Zhao, Y; Thirumalaichary, S; Li, C; Birch, D G; Vollmer-Snarr, H R; Williams, D S; Zhang, K

    2005-03-15

    Macular degeneration is a heterogeneous group of disorders characterized by photoreceptor degeneration and atrophy of the retinal pigment epithelium (RPE) in the central retina. An autosomal dominant form of Stargardt macular degeneration (STGD) is caused by mutations in ELOVL4, which is predicted to encode an enzyme involved in the elongation of long-chain fatty acids. We generated transgenic mice expressing a mutant form of human ELOVL4 that causes STGD. In these mice, we show that accumulation by the RPE of undigested phagosomes and lipofuscin, including the fluorophore, 2-[2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E,7E-octatetraenyl]-1-(2-hyydroxyethyl)-4-[4-methyl-6-(2,6,6,-trimethyl-1-cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2E) is followed by RPE atrophy. Subsequently, photoreceptor degeneration occurs in the central retina in a pattern closely resembling that of human STGD and age-related macular degeneration. The ELOVL4 transgenic mice thus provide a good model for both STGD and dry age-related macular degeneration, and represent a valuable tool for studies on therapeutic intervention in these forms of blindness. PMID:15749821

  4. [DEMONSTRATION OF LIKELIHOOD OF THE NEGATIVE EFFECT OF PHYSICAL PROTECTION DURING TOTAL PROTON IRRADIATION OF MICE].

    PubMed

    Ivanov, A A; Bulynina, T M; Molokanov, A G; Vorozhtsova, S V; Utina, D M; Severyukhin, Yu S; Ushakov, I B

    2015-01-01

    The experiments were performed with outbred CD-1 male mice (SPF category). Total irradiation at 1.0; 2.5 and 5.0 Gy by protons with the average energy of 170 MeV was conducted in a level medical beam of the phasotron at the Joint Institute of Nuclear Investigations. Targets were 2 points of in-depth dose distribution, i.e. beam entrance of the object, and modified Bragg peak. As a physical protector, the comb filter increases linear energy transfer (LET) of 170 MeV entrance protons from 0.49 keV/μm to 1.6 keV/μm and, according to the bone marrow test, doubles the biological effectiveness of protons when comparing radiation doses that cause 37% inhibition of blood cell formation in the bone marrow. Physical protection increases dose rate from 0.37 Gy/min for entrance protons to 0.8 Gy/min for moderated protons which more than in thrice reduces time of irradiation needed to reach an equal radiobiological effect.

  5. [DEMONSTRATION OF LIKELIHOOD OF THE NEGATIVE EFFECT OF PHYSICAL PROTECTION DURING TOTAL PROTON IRRADIATION OF MICE].

    PubMed

    Ivanov, A A; Bulynina, T M; Molokanov, A G; Vorozhtsova, S V; Utina, D M; Severyukhin, Yu S; Ushakov, I B

    2015-01-01

    The experiments were performed with outbred CD-1 male mice (SPF category). Total irradiation at 1.0; 2.5 and 5.0 Gy by protons with the average energy of 170 MeV was conducted in a level medical beam of the phasotron at the Joint Institute of Nuclear Investigations. Targets were 2 points of in-depth dose distribution, i.e. beam entrance of the object, and modified Bragg peak. As a physical protector, the comb filter increases linear energy transfer (LET) of 170 MeV entrance protons from 0.49 keV/μm to 1.6 keV/μm and, according to the bone marrow test, doubles the biological effectiveness of protons when comparing radiation doses that cause 37% inhibition of blood cell formation in the bone marrow. Physical protection increases dose rate from 0.37 Gy/min for entrance protons to 0.8 Gy/min for moderated protons which more than in thrice reduces time of irradiation needed to reach an equal radiobiological effect. PMID:26554131

  6. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model. PMID:25990651

  7. Abnormalities in myo-inositol metabolism associated with type 2 diabetes in mice fed a high-fat diet: benefits of a dietary myo-inositol supplementation.

    PubMed

    Croze, Marine L; Géloën, Alain; Soulage, Christophe O

    2015-06-28

    We previously reported that a chronic supplementation with myo-inositol (MI) improved insulin sensitivity and reduced fat accretion in mice. We then tested the potency of such dietary intervention in the prevention of insulin resistance in C57BL/6 male mouse fed a high-fat diet (HFD). In addition, some abnormalities in inositol metabolism were reported to be associated with insulin resistance in several animal and human studies. We then investigated the presence of such anomalies (i.e. inosituria and an inositol intra-tissue depletion) in this diet-induced obesity (DIO) mouse model, as well as the potential benefit of a MI supplementation for inositol intra-tissue deficiency correction. HFD (60 % energy from fat) feeding was associated with inosituria and inositol intra-tissue depletion in the liver and kidneys. MI supplementation (0·58 mg/g per d) restored inositol pools in kidneys (partially) and liver (fully). HFD feeding for 4 months induced ectopic lipid redistribution to liver and muscles, fasting hyperglycaemia and hyperinsulinaemia, insulin resistance and obesity that were not prevented by MI supplementation, despite a significant improvement in insulin sensitivity parameter K insulin tolerance test and a reduction in white adipose tissue (WAT) mass ( - 17 %, P< 0·05). MI supplementation significantly reduced fatty acid synthase activity in epididymal WAT, which might explain its beneficial, but modest, effect on WAT accretion in HFD-fed mice. Finally, we found some abnormalities in inositol metabolism in association with a diabetic phenotype (i.e. insulin resistance and fasting hyperglycaemia) in a DIO mouse model. Dietary MI supplementation was efficient in the prevention of inositol intra-tissue depletion, but did not prevent insulin resistance or obesity efficiently in this mouse model.

  8. Developmental delay in motor skill acquisition in Niemann-Pick C1 mice reveals abnormal cerebellar morphogenesis.

    PubMed

    Caporali, Paola; Bruno, Francesco; Palladino, Giampiero; Dragotto, Jessica; Petrosini, Laura; Mangia, Franco; Erickson, Robert P; Canterini, Sonia; Fiorenza, Maria Teresa

    2016-01-01

    Niemann-Pick type C1 (NPC1) disease is a lysosomal storage disorder caused by defective intracellular trafficking of exogenous cholesterol. Purkinje cell (PC) degeneration is the main sign of cerebellar dysfunction in both NPC1 patients and animal models. It has been recently shown that a significant decrease in Sonic hedgehog (Shh) expression reduces the proliferative potential of granule neuron precursors in the developing cerebellum of Npc1 (-/-) mice. Pursuing the hypothesis that this developmental defect translates into functional impairments, we have assayed Npc1-deficient pups belonging to the milder mutant mouse strain Npc1 (nmf164) for sensorimotor development from postnatal day (PN) 3 to PN21. Npc1 (nmf164) / Npc1 (nmf164) pups displayed a 2.5-day delay in the acquisition of complex motor abilities compared to wild-type (wt) littermates, in agreement with the significant disorganization of cerebellar cortex cytoarchitecture observed between PN11 and PN15. Compared to wt, Npc1 (nmf164) homozygous mice exhibited a poorer morphological differentiation of Bergmann glia (BG), as indicated by thicker radial shafts and less elaborate reticular pattern of lateral processes. Also BG functional development was defective, as indicated by the significant reduction in GLAST and Glutamine synthetase expression. A reduced VGluT2 and GAD65 expression also indicated an overall derangement of the glutamatergic/GABAergic stimulation that PCs receive by climbing/parallel fibers and basket/stellate cells, respectively. Lastly, Npc1-deficiency also affected oligodendrocyte differentiation as indicated by the strong reduction of myelin basic protein. Two sequential 2-hydroxypropyl-β-cyclodextrin administrations at PN4 and PN7 counteract these defects, partially preventing functional impairment of BG and fully restoring the normal patterns of glutamatergic/GABAergic stimulation to PCs.These findings indicate that in Npc1 (nmf164) homozygous mice the derangement of synaptic

  9. Chronic exposure of mutant DISC1 mice to lead produces sex-dependent abnormalities consistent with schizophrenia and related mental disorders: a gene-environment interaction study.

    PubMed

    Abazyan, Bagrat; Dziedzic, Jenifer; Hua, Kegang; Abazyan, Sofya; Yang, Chunxia; Mori, Susumu; Pletnikov, Mikhail V; Guilarte, Tomas R

    2014-05-01

    The glutamatergic hypothesis of schizophrenia suggests that hypoactivity of the N-methyl-D-aspartate receptor (NMDAR) is an important factor in the pathophysiology of schizophrenia and related mental disorders. The environmental neurotoxicant, lead (Pb(2+)), is a potent and selective antagonist of the NMDAR. Recent human studies have suggested an association between prenatal Pb(2+) exposure and the increased likelihood of schizophrenia later in life, possibly via interacting with genetic risk factors. In order to test this hypothesis, we examined the neurobehavioral consequences of interaction between Pb(2+) exposure and mutant disrupted in schizophrenia 1 (mDISC1), a risk factor for major psychiatric disorders. Mutant DISC1 and control mice born by the same dams were raised and maintained on a regular diet or a diet containing moderate levels of Pb(2+). Chronic, lifelong exposure of mDISC1 mice to Pb(2+) was not associated with gross developmental abnormalities but produced sex-dependent hyperactivity, exaggerated responses to the NMDAR antagonist, MK-801, mildly impaired prepulse inhibition of the acoustic startle, and enlarged lateral ventricles. Together, these findings support the hypothesis that environmental toxins could contribute to the pathogenesis of mental disease in susceptible individuals.

  10. Cocaine Hydrolase Gene Transfer Demonstrates Cardiac Safety and Efficacy against Cocaine-Induced QT Prolongation in Mice.

    PubMed

    Murthy, Vishakantha; Reyes, Santiago; Geng, Liyi; Gao, Yang; Brimijoin, Stephen

    2016-03-01

    Cocaine addiction is associated with devastating medical consequences, including cardiotoxicity and risk-conferring prolongation of the QT interval. Viral gene transfer of cocaine hydrolase engineered from butyrylcholinesterase offers therapeutic promise for treatment-seeking drug users. Although previous preclinical studies have demonstrated benefits of this strategy without signs of toxicity, the specific cardiac safety and efficacy of engineered butyrylcholinesterase viral delivery remains unknown. Here, telemetric recording of electrocardiograms from awake, unrestrained mice receiving a course of moderately large cocaine doses (30 mg/kg, twice daily for 3 weeks) revealed protection against a 2-fold prolongation of the QT interval conferred by pretreatment with cocaine hydrolase vector. By itself, this prophylactic treatment did not affect QT interval duration or cardiac structure, demonstrating that viral delivery of cocaine hydrolase has no intrinsic cardiac toxicity and, on the contrary, actively protects against cocaine-induced QT prolongation.

  11. Loss of NCB5OR in the cerebellum disturbs iron pathways, potentiates behavioral abnormalities, and exacerbates harmaline-induced tremor in mice.

    PubMed

    Stroh, Matthew A; Winter, Michelle K; Swerdlow, Russell H; McCarson, Kenneth E; Zhu, Hao

    2016-08-01

    Iron dyshomeostasis has been implicated in many diseases, including a number of neurological conditions. Cytosolic NADH cytochrome b5 oxidoreductase (NCB5OR) is ubiquitously expressed in animal tissues and is capable of reducing ferric iron in vitro. We previously reported that global gene ablation of NCB5OR resulted in early-onset diabetes and altered iron homeostasis in mice. To further investigate the specific effects of NCB5OR deficiency on neural tissue without contributions from known phenotypes, we generated a conditional knockout (CKO) mouse that lacks NCB5OR only in the cerebellum and midbrain. Assessment of molecular markers in the cerebellum of CKO mice revealed changes in pathways associated with cellular and mitochondrial iron homeostasis. (59)Fe pulse-feeding experiments revealed cerebellum-specific increased or decreased uptake of iron by 7 and 16 weeks of age, respectively. Additionally, we characterized behavioral changes associated with loss of NCB5OR in the cerebellum and midbrain in the context of dietary iron deprivation-evoked generalized iron deficiency. Locomotor activity was reduced and complex motor task execution was altered in CKO mice treated with an iron deficient diet. A sucrose preference test revealed that the reward response was intact in CKO mice, but that iron deficient diet consumption altered sucrose preference in all mice. Detailed gait analysis revealed locomotor changes in CKO mice associated with dysfunctional proprioception and locomotor activation independent of dietary iron deficiency. Finally, we demonstrate that loss of NCB5OR in the cerebellum and midbrain exacerbated harmaline-induced tremor activity. Our findings suggest an essential role for NCB5OR in maintaining both iron homeostasis and the proper functioning of various locomotor pathways in the mouse cerebellum and midbrain. PMID:27188291

  12. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice.

    PubMed

    Stöhr, Andrea; Friedrich, Felix W; Flenner, Frederik; Geertz, Birgit; Eder, Alexandra; Schaaf, Sebastian; Hirt, Marc N; Uebeler, June; Schlossarek, Saskia; Carrier, Lucie; Hansen, Arne; Eschenhagen, Thomas

    2013-10-01

    Myosin-binding protein C (Mybpc3)-targeted knock-in mice (KI) recapitulate typical aspects of human hypertrophic cardiomyopathy. We evaluated whether these functional alterations can be reproduced in engineered heart tissue (EHT) and yield novel mechanistic information on the function of cMyBP-C. EHTs were generated from cardiac cells of neonatal KI, heterozygous (HET) or wild-type controls (WT) and developed without apparent morphological differences. KI had 70% and HET 20% lower total cMyBP-C levels than WT, accompanied by elevated fetal gene expression. Under standard culture conditions and spontaneous beating, KI EHTs showed more frequent burst beating than WT and occasional tetanic contractions (14/96). Under electrical stimulation (6Hz, 37°C) KI EHTs exhibited shorter contraction and relaxation times and a twofold higher sensitivity to external [Ca(2+)]. Accordingly, the sensitivity to verapamil was 4-fold lower and the response to isoprenaline or the Ca(2+) sensitizer EMD 57033 2- to 4-fold smaller. The loss of EMD effect was verified in 6-week-old KI mice in vivo. HET EHTs were apparently normal under basal conditions, but showed similarly altered contractile responses to [Ca(2+)], verapamil, isoprenaline and EMD. In contrast, drug-induced changes in intracellular Ca(2+) transients (Fura-2) were essentially normal. In conclusion, the present findings in auxotonically contracting EHTs support the idea that cMyBP-C's normal role is to suppress force generation at low intracellular Ca(2+) and stabilize the power-stroke step of the cross bridge cycle. Pharmacological testing in EHT unmasked a disease phenotype in HET. The altered drug response may be clinically relevant.

  13. Effects of dietary fat energy restriction and fish oil feeding on hepatic metabolic abnormalities and insulin resistance in KK mice with high-fat diet-induced obesity.

    PubMed

    Arai, Takeshi; Kim, Hyoun-ju; Hirako, Satoshi; Nakasatomi, Maki; Chiba, Hiroshige; Matsumoto, Akiyo

    2013-01-01

    We investigated the effects of dietary fat energy restriction and fish oil intake on glucose and lipid metabolism in female KK mice with high-fat (HF) diet-induced obesity. Mice were fed a lard/safflower oil (LSO50) diet consisting of 50 energy% (en%) lard/safflower oil as the fat source for 12 weeks. Then, the mice were fed various fat energy restriction (25 en% fat) diets - LSO, FO2.5, FO12.5 or FO25 - containing 0, 2.5, 12.5, or 25 en% fish oil, respectively, for 9 weeks. Conversion from a HF diet to each fat energy restriction diet significantly decreased final body weights and visceral and subcutaneous fat mass in all fat energy restriction groups, regardless of fish oil contents. Hepatic triglyceride and cholesterol levels markedly decreased in the FO12.5 and FO25 groups, but not in the LSO group. Although plasma insulin levels did not differ among groups, the blood glucose areas under the curve in the oral glucose tolerance test were significantly lower in the FO12.5 and FO25 groups. Real-time polymerase chain reaction analysis showed fatty acid synthase mRNA levels significantly decreased in the FO25 group, and stearoyl-CoA desaturase 1 mRNA levels markedly decreased in the FO12.5 and FO25 groups. These results demonstrate that body weight gains were suppressed by dietary fat energy restriction even in KK mice with HF diet-induced obesity. We also suggested that the combination of fat energy restriction and fish oil feeding decreased fat droplets and ameliorated hepatic hypertrophy and insulin resistance with suppression of de novo lipogenesis in these mice.

  14. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice.

    PubMed

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-09-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca(2+)]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  15. Involvement of Potassium and Cation Channels in Hippocampal Abnormalities of Embryonic Ts65Dn and Tc1 Trisomic Mice

    PubMed Central

    Stern, Shani; Segal, Menahem; Moses, Elisha

    2015-01-01

    Down syndrome (DS) mouse models exhibit cognitive deficits, and are used for studying the neuronal basis of DS pathology. To understand the differences in the physiology of DS model neurons, we used dissociated neuronal cultures from the hippocampi of Ts65Dn and Tc1 DS mice. Imaging of [Ca2+]i and whole cell patch clamp recordings were used to analyze network activity and single neuron properties, respectively. We found a decrease of ~ 30% in both fast (A-type) and slow (delayed rectifier) outward potassium currents. Depolarization of Ts65Dn and Tc1 cells produced fewer spikes than diploid cells. Their network bursts were smaller and slower than diploids, displaying a 40% reduction in Δf / f0 of the calcium signals, and a 30% reduction in propagation velocity. Additionally, Ts65Dn and Tc1 neurons exhibited changes in the action potential shape compared to diploid neurons, with an increase in the amplitude of the action potential, a lower threshold for spiking, and a sharp decrease of about 65% in the after-hyperpolarization amplitude. Numerical simulations reproduced the DS measured phenotype by variations in the conductance of the delayed rectifier and A-type, but necessitated also changes in inward rectifying and M-type potassium channels and in the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. We therefore conducted whole cell patch clamp measurements of M-type potassium currents, which showed a ~ 90% decrease in Ts65Dn neurons, while HCN measurements displayed an increase of ~ 65% in Ts65Dn cells. Quantitative real-time PCR analysis indicates overexpression of 40% of KCNJ15, an inward rectifying potassium channel, contributing to the increased inhibition. We thus find that changes in several types of potassium channels dominate the observed DS model phenotype. PMID:26501103

  16. Structural abnormalities of the myenteric (Auerbach's) plexus in familial dysautonomia (Riley-Day syndrome) as demonstrated by flat-mount preparation of the esophagus and stomach.

    PubMed

    Ariel, I; Wells, T R

    1985-01-01

    The esophageal and gastric myenteric (Auerbach's) plexus were studied by a flat-mount preparation in 3 patients with familial dysautonomia. In 1 patient a typical esophageal network was found in the stomach. In another patient both esophageal and gastric plexus patterns were significantly different from normal. These changes, by producing abnormal nervous stimulation, may explain disturbed motility of the esophagus and stomach in familial dysautonomia.

  17. Post-translationally Abnormal Collagens of Prolyl 3-Hydroxylase-2 Null Mice Offer a Pathobiological Mechanism for the High Myopia Linked to Human LEPREL1 Mutations*

    PubMed Central

    Hudson, David M.; Joeng, Kyu Sang; Werther, Rachel; Rajagopal, Abbhirami; Weis, MaryAnn; Lee, Brendan H.; Eyre, David R.

    2015-01-01

    Myopia, the leading cause of visual impairment worldwide, results from an increase in the axial length of the eyeball. Mutations in LEPREL1, the gene encoding prolyl 3-hydroxylase-2 (P3H2), have recently been identified in individuals with recessively inherited nonsyndromic severe myopia. P3H2 is a member of a family of genes that includes three isoenzymes of prolyl 3-hydroxylase (P3H), P3H1, P3H2, and P3H3. Fundamentally, it is understood that P3H1 is responsible for converting proline to 3-hydroxyproline. This limited additional knowledge also suggests that each isoenzyme has evolved different collagen sequence-preferred substrate specificities. In this study, differences in prolyl 3-hydroxylation were screened in eye tissues from P3h2-null (P3h2n/n) and wild-type mice to seek tissue-specific effects due the lack of P3H2 activity on post-translational collagen chemistry that could explain myopia. The mice were viable and had no gross musculoskeletal phenotypes. Tissues from sclera and cornea (type I collagen) and lens capsule (type IV collagen) were dissected from mouse eyes, and multiple sites of prolyl 3-hydroxylation were identified by mass spectrometry. The level of prolyl 3-hydroxylation at multiple substrate sites from type I collagen chains was high in sclera, similar to tendon. Almost every known site of prolyl 3-hydroxylation in types I and IV collagen from P3h2n/n mouse eye tissues was significantly under-hydroxylated compared with their wild-type littermates. We conclude that altered collagen prolyl 3-hydroxylation is caused by loss of P3H2. We hypothesize that this leads to structural abnormalities in multiple eye tissues, but particularly sclera, causing progressive myopia. PMID:25645914

  18. Targeted Mutations in the Na,K-ATPase Alpha 2 Isoform Confer Ouabain Resistance and Result in Abnormal Behavior in Mice

    PubMed Central

    Schaefer, Tori L.; Lingrel, Jerry B; Moseley, Amy E.; Vorhees, Charles V.; Williams, Michael T.

    2011-01-01

    Sodium and potassium-activated adenosine triphosphatases (Na,K-ATPase) are ubiquitous, participate in osmotic balance and membrane potential, and are composed of α, β, and γ subunits. The α subunit is required for the catalytic and transport properties of the enzyme and contains binding sites for cations, ATP, and digitalis-like compounds including ouabain. There are four known α isoforms; three that are expressed in the CNS in a regional and cell-specific manner. The α2 isoform is most commonly found in astrocytes, pyramidal cells of the hippocampus in adults, and developmentally in several other neuronal types. Ouabain-like compounds are thought to be produced endogenously in mammals, bind the Na,K-ATPase, and function as a stress-related hormone, however, the impact of the Na,K-ATPase ouabain binding site on neurobehavioral function is largely unknown. To determine if the ouabain binding site of the α2 isoform plays a physiological role in CNS function, we examined knock-in mice in which the normally ouabain-sensitive α2 isoform was made resistant (α2R/R) while still retaining basal Na,K-ATPase enzymatic function. Egocentric learning (Cincinnati water maze) was impaired in adult α2R/R mice compared to wild type (WT) mice. They also exhibited decreased locomotor activity in a novel environment and increased responsiveness to a challenge with an indirect sympathomimetic agonist (methamphetamine) relative to WT mice. The α2R/R mice also demonstrated a blunted acoustic startle reflex and a failure to habituate to repeated acoustic stimuli. The α2R/R mice showed no evidence of altered anxiety (elevated zero maze) nor were they impaired in spatial learning or memory in the Morris water maze and neither group could learn in a large Morris maze. These results suggest that the ouabain binding site is involved in specific types of learning and the modulation of dopamine-mediated locomotor behavior. PMID:20936682

  19. Expression of B-RAF V600E in Type II Pneumocytes Causes Abnormalities in Alveolar Formation, Airspace Enlargement and Tumor Formation in Mice

    PubMed Central

    Zanucco, Emanuele; Götz, Rudolf; Potapenko, Tamara; Carraretto, Irene; Ceteci, Semra; Ceteci, Fatih; Seeger, Werner; Savai, Rajkumar; Rapp, Ulf R.

    2011-01-01

    Growth factor induced signaling cascades are key regulatory elements in tissue development, maintenance and regeneration. Perturbations of these cascades have severe consequences, leading to developmental disorders and neoplastic diseases. As a major function in signal transduction, activating mutations in RAF family kinases are the cause of human tumorigenesis, where B-RAF V600E has been identified as the prevalent mutant. In order to address the oncogenic function of B-RAF V600E, we have generated transgenic mice expressing the activated oncogene specifically in lung alveolar epithelial type II cells. Constitutive expression of B-RAF V600E caused abnormalities in alveolar epithelium formation that led to airspace enlargements. These lung lesions showed signs of tissue remodeling and were often associated with chronic inflammation and low incidence of lung tumors. The inflammatory cell infiltration did not precede the formation of the lung lesions but was rather accompanied with late tumor development. These data support a model where the continuous regenerative process initiated by oncogenic B-RAF-driven alveolar disruption provides a tumor-promoting environment associated with chronic inflammation. PMID:22194995

  20. The effect of kefir on glutathione (GSH), malondialdehyde (MDA) and nitric oxide (NO) levels in mice with colonic abnormal crypt formation (ACF) induced by azoxymethane (AOM).

    PubMed

    Cenesiz, S; Devrim, A K; Kamber, U; Sozmen, M

    2008-01-01

    In this study we investigated the effect of kefir on the levels of glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) in the liver, stomach, spleen and colon of mice with colonic aberrant crypts formed by azoxymethane (AOM). Thirty 12 weeks old Swiss Albino mice averaging 31.5 g weight were used as experimental animals. The mice were separated into 3 groups. The first group was the control group, second group was the AOM and third group was the AOM+kefir group. We applied AOM to the second and third groups. Mice were fed ad libitum by laboratory rodent chow during the experiment period. Water was given to the first and second groups and third group received only kefir diluted with water (50%). AOM was injected subcutaneously to the second and third groups for 7 weeks (two times a week, 5 mg/kg). Six weeks after the final AOM treatment the animals were sacrificed and liver, stomach, spleen and colon samples were collected from all the groups. MDA level demonstrated an increase only in stomach for the third group (p < 0.001), while an elevation was observed for all of the four organs for the second group (spleen p < 0.001, liver p < 0.001, colon p < 0.01). GSH level showed an increase in the second group at stomach (p < 0.01) and colon (p < 0.001), while in the third group, a small increase was determined only at the colon (p < 0.05). NO level increased at all of the organs in the second group (spleen, liver, colon p < 0.001, stomach p < 0.05), but only at liver and colon in the third group 3 (p < 0.001). In conclusion these results showed that kefir plays an antioxidant role.

  1. Calcilytic Ameliorates Abnormalities of Mutant Calcium-Sensing Receptor (CaSR) Knock-In Mice Mimicking Autosomal Dominant Hypocalcemia (ADH).

    PubMed

    Dong, Bingzi; Endo, Itsuro; Ohnishi, Yukiyo; Kondo, Takeshi; Hasegawa, Tomoka; Amizuka, Norio; Kiyonari, Hiroshi; Shioi, Go; Abe, Masahiro; Fukumoto, Seiji; Matsumoto, Toshio

    2015-11-01

    Activating mutations of calcium-sensing receptor (CaSR) cause autosomal dominant hypocalcemia (ADH). ADH patients develop hypocalcemia, hyperphosphatemia, and hypercalciuria, similar to the clinical features of hypoparathyroidism. The current treatment of ADH is similar to the other forms of hypoparathyroidism, using active vitamin D3 or parathyroid hormone (PTH). However, these treatments aggravate hypercalciuria and renal calcification. Thus, new therapeutic strategies for ADH are needed. Calcilytics are allosteric antagonists of CaSR, and may be effective for the treatment of ADH caused by activating mutations of CaSR. In order to examine the effect of calcilytic JTT-305/MK-5442 on CaSR harboring activating mutations in the extracellular and transmembrane domains in vitro, we first transfected a mutated CaSR gene into HEK cells. JTT-305/MK-5442 suppressed the hypersensitivity to extracellular Ca(2+) of HEK cells transfected with the CaSR gene with activating mutations in the extracellular and transmembrane domains. We then selected two activating mutations locating in the extracellular (C129S) and transmembrane (A843E) domains, and generated two strains of CaSR knock-in mice to build an ADH mouse model. Both mutant mice mimicked almost all the clinical features of human ADH. JTT-305/MK-5442 treatment in vivo increased urinary cAMP excretion, improved serum and urinary calcium and phosphate levels by stimulating endogenous PTH secretion, and prevented renal calcification. In contrast, PTH(1-34) treatment normalized serum calcium and phosphate but could not reduce hypercalciuria or renal calcification. CaSR knock-in mice exhibited low bone turnover due to the deficiency of PTH, and JTT-305/MK-5442 as well as PTH(1-34) increased bone turnover and bone mineral density (BMD) in these mice. These results demonstrate that calcilytics can reverse almost all the phenotypes of ADH including hypercalciuria and renal calcification, and suggest that calcilytics can become a

  2. Expansion of natural killer cells in mice transgenic for IgM antibody to ganglioside GD2: demonstration of prolonged survival after challenge with syngeneic tumor cells.

    PubMed

    Kawashima, Ikuo; Yoshida, Yukiko; Taya, Chouji; Shitara, Hiroshi; Yonekawa, Hiromichi; Karasuyama, Hajime; Tada, Nobuhiko; Furukawa, Koichi; Tai, Tadashi

    2003-08-01

    IgM antibodies to gangliosides, sialic acid-containing glycosphingolipids, have been shown to mediate anti-tumor effects in cancer patients with melanoma and neuroblastoma and to correlate with survival. Mechanisms by which the antibodies induce tumor suppression, however, have not been systematically studied. To investigate this point, we produced and characterized C57BL/6 mice transgenic for IgM antibody to ganglioside GD2. The transgenic (TG) mice showed high IgM, but not IgG antibody titers against GD2 in their sera. No significant clinical symptoms were observed. When EL4 cells, syngeneic T lymphoma that express ganglioside GD2, were injected into TG mice, prolonged survival was observed. Complement-dependent cytotoxicity (CDC) of EL4 cells was mediated with TG mice sera. Neither antibody-dependent cellular cytotoxicity with their sera nor cytotoxic T lymphocyte activity to EL4 cells was shown in TG mice. Spleen lymphocytes from TG mice had increased numbers of natural killer (NK) cells, but not T cells, B cells, or macrophages compared with wild-type mice. Depletion of NK cells with anti-asialo GM1 rabbit serum reduced or abrogated the observed anti-tumor effects, suggesting that NK cells play a major role in tumor eradication or suppression. NK cell activity in TG mice was much higher than wild-type mice. Moreover, TG mice showed prolonged survival after injection with syngeneic B16 melanoma cells, which express GM3, but not GD2 or GD3. Taking these results together, our studies demonstrate that the TG mice have significant anti-tumor characteristics, probably due to CDC and NK cell expansion and activation with anti-ganglioside GD2 antibody.

  3. Transgenic mice with cardiac-specific expression of activating transcription factor 3, a stress-inducible gene, have conduction abnormalities and contractile dysfunction.

    PubMed

    Okamoto, Y; Chaves, A; Chen, J; Kelley, R; Jones, K; Weed, H G; Gardner, K L; Gangi, L; Yamaguchi, M; Klomkleaw, W; Nakayama, T; Hamlin, R L; Carnes, C; Altschuld, R; Bauer, J; Hai, T

    2001-08-01

    Activating transcription factor 3 (ATF3) is a member of the CREB/ATF family of transcription factors. Previously, we demonstrated that the expression of the ATF3 gene is induced by many stress signals. In this report, we demonstrate that expression of ATF3 is induced by cardiac ischemia coupled with reperfusion (ischemia-reperfusion) in both cultured cells and an animal model. Transgenic mice expressing ATF3 under the control of the alpha-myosin heavy chain promoter have atrial enlargement, and atrial and ventricular hypertrophy. Microscopic examination showed myocyte degeneration and fibrosis. Functionally, the transgenic heart has reduced contractility and aberrant conduction. Interestingly, expression of sorcin, a gene whose product inhibits the release of calcium from sarcoplasmic reticulum, is increased in these transgenic hearts. Taken together, our results indicate that expression of ATF3, a stress-inducible gene, in the heart leads to altered gene expression and impaired cardiac function. PMID:11485922

  4. α2-Null mutant mice have altered levels of neuronal activity in restricted midbrain and limbic brain regions during nicotine withdrawal as demonstrated by cfos expression.

    PubMed

    Upton, Montana; Lotfipour, Shahrdad

    2015-10-15

    Neuronal nicotinic acetylcholine receptors (nAChRs) are the primary binding sites for nicotine within the brain. Using alpha(α)2 nAChR subunit-null mutant mice, the current study evaluates whether the absence of this gene product during mecamylamine-precipitated nicotine withdrawal eliminates neuronal activity within selective midbrain and limbic brain regions, as determined by the expression of the immediate early gene, cfos. Our results demonstrate that nicotine withdrawal enhances neuronal activity within the interpeduncular nucleus and dorsal hippocampus, which is absent in mice null for α2-containing nAChRs. In contrast, we observe that α2-null mutant mice exhibit a suppression of neuronal activity in the dentate gyrus in mice undergoing nicotine withdrawal. Interestingly, α2-null mutant mice display potentiated neuronal activity specifically within the stratum lacunosum moleculare layer of the hippocampus, independent of nicotine withdrawal. Overall, our findings demonstrate that α2-null mutant mice have altered cfos expression in distinct populations of neurons within selective midbrain and limbic brain structures that mediate baseline and nicotine withdrawal-induced neuronal activity.

  5. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  6. Narp knockout mice show normal reactivity to novelty but attenuated recovery from neophobia.

    PubMed

    Blouin, Ashley M; Lee, Jongah J; Tao, Bo; Smith, Dani R; Johnson, Alexander W; Baraban, Jay M; Reti, Irving M

    2013-11-15

    Narp knockout (KO) mice demonstrate cognitive inflexibility and addictive behavior, which are associated with abnormal reactivity to a novel stimulus. To assess reactivity to novelty, we tested Narp KO and wild-type (WT) mice on a neophobia procedure. Both Narp KO and WT mice showed a similar decrease in consumption upon initial exposure to a novel flavor, but Narp KO mice did not increase consumption with subsequent exposures to the novel flavor like the WT mice. Therefore, Narp KO mice do not have abnormal reactivity to novelty but show deficits in adapting behavior to reflect the updated value of a stimulus.

  7. Huntingtons Disease Mice Infected with Toxoplasma gondii Demonstrate Early Kynurenine Pathway Activation, Altered CD8+ T-Cell Responses, and Premature Mortality

    PubMed Central

    Donley, David W.; Olson, Andrew R.; Raisbeck, Merl F.; Fox, Jonathan H.; Gigley, Jason P.

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early–advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD. PMID:27611938

  8. Huntingtons Disease Mice Infected with Toxoplasma gondii Demonstrate Early Kynurenine Pathway Activation, Altered CD8+ T-Cell Responses, and Premature Mortality.

    PubMed

    Donley, David W; Olson, Andrew R; Raisbeck, Merl F; Fox, Jonathan H; Gigley, Jason P

    2016-01-01

    Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a polyglutamine-repeat expansion in the huntingtin protein. Activation of the kynurenine pathway of tryptophan degradation is implicated in the pathogenesis of HD. Indoleamine-2,3-dioxygenase (IDO) catalyzes the oxidation of tryptophan to kynurenine, the first step in this pathway. The prevalent, neuroinvasive protozoal pathogen Toxoplasma gondii (T. gondii) results in clinically silent life-long infection in immune-competent individuals. T. gondii infection results in activation of IDO which provides some protection against the parasite by depleting tryptophan which the parasite cannot synthesize. The kynurenine pathway may therefore represent a point of synergism between HD and T. gondii infection. We show here that IDO activity is elevated at least four-fold in frontal cortex and striata of non-infected N171-82Q HD mice at 14-weeks corresponding to early-advanced HD. T. gondii infection at 5 weeks resulted in elevation of cortical IDO activity in HD mice. HD-infected mice died significantly earlier than wild-type infected and HD control mice. Prior to death, infected HD mice demonstrated decreased CD8+ T-lymphocyte proliferation in brain and spleen compared to wild-type infected mice. We demonstrate for the first time that HD mice have an altered response to an infectious agent that is characterized by premature mortality, altered immune responses and early activation of IDO. Findings are relevant to understanding how T. gondii infection may interact with pathways mediating neurodegeneration in HD. PMID:27611938

  9. The Effects of Sesquiterpenes-Rich Extract of Alpinia oxyphylla Miq. on Amyloid-β-Induced Cognitive Impairment and Neuronal Abnormalities in the Cortex and Hippocampus of Mice

    PubMed Central

    Shi, Shao-Huai; Zhao, Xu; Liu, Bing; Li, Huan; Liu, Ai-Jing; Wu, Bo; Bi, Kai-Shun

    2014-01-01

    As a kind of medicine which can also be used as food, Alpinia oxyphylla Miq. has a long clinical history in China. A variety of studies demonstrated the significant neuroprotective activity effects of chloroform (CF) extract from the fruits of Alpinia oxyphylla. In order to further elucidate the possible mechanisms of CF extract which mainly contains sesquiterpenes with neuroprotection on the cognitive ability, mice were injected with Aβ1−42 and later with CF in this study. The results showed that the long-term treatment of CF enhanced the cognitive performances in behavior tests, increased activities of glutathione peroxidase (GSH-px) and decreased the level of malondialdehyde (MDA), acetylcholinesterase (AChE), and amyloid-β (Aβ), and reversed the activation of microglia, degeneration of neuronal acidophilia, and nuclear condensation in the cortex and hippocampus. These results demonstrate that CF ameliorates learning and memory deficits by attenuating oxidative stress and regulating the activation of microglia and degeneration of neuronal acidophilia to reinforce cholinergic functions. PMID:25180067

  10. The effects of sesquiterpenes-rich extract of Alpinia oxyphylla Miq. on amyloid-β-induced cognitive impairment and neuronal abnormalities in the cortex and hippocampus of mice.

    PubMed

    Shi, Shao-Huai; Zhao, Xu; Liu, Bing; Li, Huan; Liu, Ai-Jing; Wu, Bo; Bi, Kai-Shun; Jia, Ying

    2014-01-01

    As a kind of medicine which can also be used as food, Alpinia oxyphylla Miq. has a long clinical history in China. A variety of studies demonstrated the significant neuroprotective activity effects of chloroform (CF) extract from the fruits of Alpinia oxyphylla. In order to further elucidate the possible mechanisms of CF extract which mainly contains sesquiterpenes with neuroprotection on the cognitive ability, mice were injected with Aβ(1-42) and later with CF in this study. The results showed that the long-term treatment of CF enhanced the cognitive performances in behavior tests, increased activities of glutathione peroxidase (GSH-px) and decreased the level of malondialdehyde (MDA), acetylcholinesterase (AChE), and amyloid-β (Aβ), and reversed the activation of microglia, degeneration of neuronal acidophilia, and nuclear condensation in the cortex and hippocampus. These results demonstrate that CF ameliorates learning and memory deficits by attenuating oxidative stress and regulating the activation of microglia and degeneration of neuronal acidophilia to reinforce cholinergic functions.

  11. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  12. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  13. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  14. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... Just like the skin, the fingernails tell a lot about your health: ... the fingernail. These lines can occur after illness, injury to ...

  15. Abnormal essential fatty acid composition of tissue lipids in genetically diabetic mice is partially corrected by dietary linoleic and gamma-linolenic acids.

    PubMed

    Cunnane, S C; Manku, M S; Horrobin, D F

    1985-05-01

    Genetically diabetic mice (db/db) and their non-diabetic litter-mates were maintained for 15 weeks on diets supplemented with safflower oil or evening primrose (Oenothera bienis) oil, both essential fatty acid (EFA)-rich sources, or hydrogenated coconut oil (devoid of EFA). Plasma glucose was higher in the diabetic mice supplemented with the oils than in the unsupplemented diabetic mice. In the oil-supplemented non-diabetic mice, plasma glucose did not differ compared with the unsupplemented non-diabetic mice. The proportional content of arachidonic acid in the phospholipids of the pancreas was significantly decreased in diabetic mice, an effect which was completely prevented by supplementation with safflower or evening primrose oil but not hydrogenated coconut oil. In the liver phospholipids of the diabetic mice, dihomo-gamma-linolenic acid was proportionally increased, an effect reduced by supplementation with safflower oil but not evening primrose or hydrogenated coconut oils. In the liver triglycerides of the diabetic mice, gamma-linolenic acid, dihomo-gamma-linolenic acid and arachidonic acid were all proportionally decreased, effects which were also prevented by safflower or evening primrose oil but not hydrogenated coconut oil. Alopecia and dry scaly skin were prominent in the diabetic mice but less extensive in the diabetic mice supplemented with EFA.

  16. Boron neutron capture therapy demonstrated in mice bearing EMT6 tumors following selective delivery of boron by rationally designed liposomes

    PubMed Central

    Kueffer, Peter J.; Maitz, Charles A.; Khan, Aslam A.; Schuster, Seth A.; Shlyakhtina, Natalia I.; Jalisatgi, Satish S.; Brockman, John D.; Nigg, David W.; Hawthorne, M. Frederick

    2013-01-01

    The application of boron neutron capture therapy (BNCT) following liposomal delivery of a 10B-enriched polyhedral borane and a carborane against mouse mammary adenocarcinoma solid tumors was investigated. Unilamellar liposomes with a mean diameter of 134 nm or less, composed of an equimolar mixture of cholesterol and 1,2-distearoyl-sn-glycero-3-phosphocholine and incorporating Na3[1-(2′-B10H9)-2-NH3B10H8] in the aqueous interior and K[nido-7-CH3(CH2)15-7,8-C2B9H11] in the bilayer, were injected into the tail veins of female BALB/c mice bearing right flank EMT6 tumors. Biodistribution studies indicated that two identical injections given 24 h apart resulted in tumor boron levels exceeding 67 µg/g tumor at 54 h—with tumor/blood boron ratios being greatest at 96 h (5.68:1; 43 µg boron/g tumor)—following the initial injection. For BNCT experiments, tumor-bearing mice were irradiated 54 h after the initial injection for 30 min with thermal neutrons, resulting in a total fluence of 1.6 × 1012 neutrons per cm2 (±7%). Significant suppression of tumor growth was observed in mice given BNCT vs. control mice (only 424% increase in tumor volume at 14 d post irradiation vs. 1551% in untreated controls). In a separate experiment in which mice were given a second injection/irradiation treatment 7 d after the first, the tumor growth was vastly diminished (186% tumor volume increase at 14 d). A similar response was obtained for mice irradiated for 60 min (169% increase at 14 d), suggesting that neutron fluence was the limiting factor controlling BNCT efficacy in this study. PMID:23536304

  17. Characterization of the ovarian and reproductive abnormalities in prepubertal and adult estrogen non-responsive estrogen receptor alpha knock-in (ENERKI) mice.

    PubMed

    Sinkevicius, K W; Woloszyn, K; Laine, M; Jackson, K S; Greene, G L; Woodruff, T K; Burdette, J E

    2009-11-01

    Estrogen non-responsive estrogen receptor alpha (ERalpha) knock-in (ENERKI) mice have a mutation (glycine 525 to leucine, G525L) in the ligand-binding domain of ERalpha. The mutant ERalpha protein has a significantly lower affinity and response to endogenous estrogens, while not altering growth factor activated ligand-independent pathways. ENERKI females demonstrated signs of early follicle development as determined by a significant increase in antral follicle formation by 20 days of age. Adult ENERKI females were infertile, had hemorrhagic ovarian follicular cysts, and failed to develop corpora lutea in response to a superovulation regimen. These results illustrate the importance of ERalpha ligand-induced signaling for ovarian development and for estrogen feedback on the hypothalamus and pituitary. Although ERalpha ligand-induced signaling by endogenous estrogens is lost in ENERKI females, the ERalpha selective agonist propyl pyrazole triol (PPT), a synthetic nonsteroidal compound, is still able to activate G525L ERalphain vivo to increase uterine weight. To test whether PPT could restore ligand-dependent receptor activation, ENERKI females were treated with PPT and evaluated for spontaneous ovulation, ovarian hemorrhagic cysts, and LH serum levels. Daily PPT treatments beginning on day 4 of life prevented formation of ovarian hemorrhagic cysts in adult ENERKI animals. In accordance with this result, preputial gland weight and LH levels were also lowered in these animals, indicating PPT treatments most likely led to restoration of ERalpha negative feedback of the hypothalamic-pituitary axis.

  18. A surge of late-occurring meiotic double-strand breaks rescues synapsis abnormalities in spermatocytes of mice with hypomorphic expression of SPO11.

    PubMed

    Faieta, Monica; Di Cecca, Stefano; de Rooij, Dirk G; Luchetti, Andrea; Murdocca, Michela; Di Giacomo, Monica; Di Siena, Sara; Pellegrini, Manuela; Rossi, Pellegrino; Barchi, Marco

    2016-06-01

    Meiosis is the biological process that, after a cycle of DNA replication, halves the cellular chromosome complement, leading to the formation of haploid gametes. Haploidization is achieved via two successive rounds of chromosome segregation, meiosis I and II. In mammals, during prophase of meiosis I, homologous chromosomes align and synapse through a recombination-mediated mechanism initiated by the introduction of DNA double-strand breaks (DSBs) by the SPO11 protein. In male mice, if SPO11 expression and DSB number are reduced below heterozygosity levels, chromosome synapsis is delayed, chromosome tangles form at pachynema, and defective cells are eliminated by apoptosis at epithelial stage IV at a spermatogenesis-specific endpoint. Whether DSB levels produced in Spo11 (+/-) spermatocytes represent, or approximate, the threshold level required to guarantee successful homologous chromosome pairing is unknown. Using a mouse model that expresses Spo11 from a bacterial artificial chromosome, within a Spo11 (-/-) background, we demonstrate that when SPO11 expression is reduced and DSBs at zygonema are decreased (approximately 40 % below wild-type level), meiotic chromosome pairing is normal. Conversely, DMC1 foci number is increased at pachynema, suggesting that under these experimental conditions, DSBs are likely made with delayed kinetics at zygonema. In addition, we provide evidences that when zygotene-like cells receive enough DSBs before chromosome tangles develop, chromosome synapsis can be completed in most cells, preventing their apoptotic elimination.

  19. A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice

    PubMed Central

    Ioakeimidis, Fotis; Ott, Christine; Kozjak-Pavlovic, Vera; Violitzi, Foteini; Rinotas, Vagelis; Makrinou, Eleni; Eliopoulos, Elias; Fasseas, Costas; Kollias, George; Douni, Eleni

    2014-01-01

    Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases. PMID:25111180

  20. Continuous exposure to a novel stressor based on water aversion induces abnormal circadian locomotor rhythms and sleep-wake cycles in mice.

    PubMed

    Miyazaki, Koyomi; Itoh, Nanako; Ohyama, Sumika; Kadota, Koji; Oishi, Katsutaka

    2013-01-01

    Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact. PMID:23383193

  1. Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA(-/-) mice.

    PubMed

    Dobson, Philip F; Rocha, Mariana C; Grady, John P; Chrysostomou, Alexia; Hipps, Daniel; Watson, Sharon; Greaves, Laura C; Deehan, David J; Turnbull, Doug M

    2016-01-01

    Fragility fractures caused by osteoporosis affect millions of people worldwide every year with significant levels of associated morbidity, mortality and costs to the healthcare economy. The pathogenesis of declining bone mineral density is poorly understood but it is inherently related to increasing age. Growing evidence in recent years, especially that provided by mouse models, suggest that accumulating somatic mitochondrial DNA mutations may cause the phenotypic changes associated with the ageing process including osteoporosis. Methods to study mitochondrial abnormalities in individual osteoblasts, osteoclasts and osteocytes are limited and impair our ability to assess the changes seen with age and in animal models of ageing. To enable the assessment of mitochondrial protein levels, we have developed a quadruple immunofluorescence method to accurately quantify the presence of mitochondrial respiratory chain components within individual bone cells. We have applied this technique to a well-established mouse model of ageing and osteoporosis and show respiratory chain deficiency. PMID:27553587

  2. Unique quadruple immunofluorescence assay demonstrates mitochondrial respiratory chain dysfunction in osteoblasts of aged and PolgA−/− mice

    PubMed Central

    Dobson, Philip F.; Rocha, Mariana C.; Grady, John P.; Chrysostomou, Alexia; Hipps, Daniel; Watson, Sharon; Greaves, Laura C.; Deehan, David J.; Turnbull, Doug M.

    2016-01-01

    Fragility fractures caused by osteoporosis affect millions of people worldwide every year with significant levels of associated morbidity, mortality and costs to the healthcare economy. The pathogenesis of declining bone mineral density is poorly understood but it is inherently related to increasing age. Growing evidence in recent years, especially that provided by mouse models, suggest that accumulating somatic mitochondrial DNA mutations may cause the phenotypic changes associated with the ageing process including osteoporosis. Methods to study mitochondrial abnormalities in individual osteoblasts, osteoclasts and osteocytes are limited and impair our ability to assess the changes seen with age and in animal models of ageing. To enable the assessment of mitochondrial protein levels, we have developed a quadruple immunofluorescence method to accurately quantify the presence of mitochondrial respiratory chain components within individual bone cells. We have applied this technique to a well-established mouse model of ageing and osteoporosis and show respiratory chain deficiency. PMID:27553587

  3. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*

    PubMed Central

    Bancroft, Tara; Bouaouina, Mohamed; Roberts, Sophia; Lee, Monica; Calderwood, David A.; Schwartz, Martin; Simons, Michael; Sessa, William C.; Kyriakides, Themis R.

    2015-01-01

    Vascular remodeling is essential for tissue repair and is regulated by multiple factors, including thrombospondin-2 (TSP2) and hypoxia/VEGF-induced activation of Akt. In contrast to TSP2 knock-out (KO) mice, Akt1 KO mice have elevated TSP2 expression and delayed tissue repair. To investigate the contribution of increased TSP2 to Akt1 KO mice phenotypes, we generated Akt1/TSP2 double KO (DKO) mice. Full-thickness excisional wounds in DKO mice healed at an accelerated rate when compared with Akt1 KO mice. Isolated dermal Akt1 KO fibroblasts expressed increased TSP2 and displayed altered morphology and defects in migration and adhesion. These defects were rescued in DKO fibroblasts or after TSP2 knockdown. Conversely, the addition of exogenous TSP2 to WT cells induced cell morphology and migration rates that were similar to those of Akt1 KO cells. Akt1 KO fibroblasts displayed reduced adhesion to fibronectin with manganese stimulation when compared with WT and DKO cells, revealing an Akt1-dependent role for TSP2 in regulating integrin-mediated adhesions; however, this effect was not due to changes in β1 integrin surface expression or activation. Consistent with these results, Akt1 KO fibroblasts displayed reduced Rac1 activation that was dependent upon expression of TSP2 and could be rescued by a constitutively active Rac mutant. Our observations show that repression of TSP2 expression is a critical aspect of Akt1 function in tissue repair. PMID:25389299

  4. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice

    SciTech Connect

    Woolbright, Benjamin L.; Antoine, Daniel J.; Jenkins, Rosalind E.; Bajt, Mary Lynn; Park, B. Kevin; Jaeschke, Hartmut

    2013-12-15

    Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6–72 h, or sham operation. Another group of mice were given D-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48–72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6 h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis. - Highlights: • The mechanism of cell death during cholestasis remains a controversial topic. • Plasma biomarkers offer new insight into cell death after bile duct ligation. • Cytokeratin-18, microRNA-122 and HMGB

  5. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    PubMed Central

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a, cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  6. Treatment with N- and C-terminal peptides of parathyroid hormone-related protein partly compensate the skeletal abnormalities in IGF-I deficient mice.

    PubMed

    Rodríguez-de la Rosa, Lourdes; López-Herradón, Ana; Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Varela-Nieto, Isabel; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.

  7. Synergistic interactions between XPC and p53 mutations in double-mutant mice: neural tube abnormalities and accelerated UV radiation-induced skin cancer.

    PubMed

    Cheo, D L; Meira, L B; Hammer, R E; Burns, D K; Doughty, A T; Friedberg, E C

    1996-12-01

    The significance of DNA repair to human health has been well documented by studies on xeroderma pigmentosum (XP) patients, who suffer a dramatically increased risk of cancer in sun-exposed areas of their skin [1,2]. This autosomal recessive disorder has been directly associated with a defect in nucleotide excision-repair (NER) [1,2]. Like human XP individuals, mice carrying homozygous mutations in XP genes manifest a predisposition to skin carcinogenesis following exposure to ultraviolet (UV) radiation [3-5]. Recent studies have suggested that, in addition to roles in apoptosis [6] and cell-cycle checkpoint control [7] in response to DNA damage, p53 protein may modulate NER [8]. Mutations in the p53 gene have been observed in 50% of all human tumors [9] and have been implicated in both the early [10] and late [11] stages of skin cancer. To examine the consequences of a combined deficiency of the XPC and the p53 proteins in mice, we generated double-mutant animals. We document a spectrum of neural tube defects in XPC p53 mutant embryos. Additionally, we show that, following exposure to UV-B radiation, XPC p53 mutant mice have more severe solar keratosis and suffer accelerated skin cancer compared with XPC mutant mice that are wild-type with respect to p53. PMID:8994835

  8. PrP0\\0 mice show behavioral abnormalities that suggest PrPC has a role in maintaining the cytoskeleton.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background/Introduction. PrPC is highly conserved among mammals, but its natural function is unclear. Prnp ablated mice (PrP0/0) appear to develop normally and are able to reproduce. These observations seem to indicate that the gene is not essential for viability, in spite of it being highly conse...

  9. Thioacetamide-induced cirrhosis in selenium-adequate mice displays rapid and persistent abnormity of hepatic selenoenzymes which are mute to selenium supplementation

    SciTech Connect

    Zhang Jinsong Wang Huali; Yu Hanqing

    2007-10-01

    Selenium reduction in cirrhosis is frequently reported. The known beneficial effect of selenium supplementation on cirrhosis is probably obtained from nutritionally selenium-deficient subjects. Whether selenium supplementation truly improves cirrhosis in general needs additional experimental investigation. Thioacetamide was used to induce cirrhosis in selenium-adequate and -deficient mice. Selenoenzyme activity and selenium content were measured and the influence of selenium supplementation was evaluated. In Se-adequate mice, thioacetamide-mediated rapid onset of hepatic oxidative stress resulted in an increase in thioredoxin reductase activity and a decrease in both glutathione peroxidase activity and selenium content. The inverse activity of selenoenzymes (i.e. TrxR activity goes up and GPx activity goes down) was persistent and mute to selenium supplementation during the progress of cirrhosis; accordingly, cirrhosis was not improved by selenium supplementation in any period. On the other hand, selenium supplementation to selenium-deficient mice always more efficiently increased hepatic glutathione peroxidase activity and selenium content compared with those treated with thioacetamide, indicating that thioacetamide impairs the liver bioavailability of selenium. Although thioacetamide profoundly affects hepatic selenium status in selenium-adequate mice, selenium supplementation does not modify the changes. Selenium supplementation to cirrhotic subjects with a background of nutritional selenium deficiency can improve selenium status but cannot restore hepatic glutathione peroxidase and selenium to normal levels.

  10. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B.

  11. Disruption of Mbd5 in mice causes neuronal functional deficits and neurobehavioral abnormalities consistent with 2q23.1 microdeletion syndrome

    PubMed Central

    Camarena, Vladimir; Cao, Lei; Abad, Clemer; Abrams, Alexander; Toledo, Yaima; Araki, Kimi; Araki, Masatake; Walz, Katherina; Young, Juan I

    2014-01-01

    2q23.1 microdeletion syndrome is characterized by intellectual disability, motor delay, autistic-like behaviors, and a distinctive craniofacial phenotype. All patients carry a partial or total deletion of methyl-CpG-binding domain protein 5 (MBD5), suggesting that haploinsufficiency of this gene is responsible for the phenotype. To confirm this hypothesis and to examine the role of MBD5 in vivo, we have generated and characterized an Mbd5 gene-trap mouse model. Our study indicates that the Mbd5+/GT mouse model recapitulates most of the hallmark phenotypes observed in 2q23.1 deletion carriers including abnormal social behavior, cognitive impairment, and motor and craniofacial abnormalities. In addition, neuronal cultures uncovered a deficiency in neurite outgrowth. These findings support a causal role of MBD5 in 2q23.1 microdeletion syndrome and suggest a role for MBD5 in neuronal processes. The Mbd5+/GT mouse model will advance our understanding of the abnormal brain development underlying the emergence of 2q23.1 deletion-associated behavioral and cognitive symptoms. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:25001218

  12. Disruption of Mbd5 in mice causes neuronal functional deficits and neurobehavioral abnormalities consistent with 2q23.1 microdeletion syndrome.

    PubMed

    Camarena, Vladimir; Cao, Lei; Abad, Clemer; Abrams, Alexander; Toledo, Yaima; Araki, Kimi; Araki, Masatake; Walz, Katherina; Young, Juan I

    2014-01-01

    2q23.1 microdeletion syndrome is characterized by intellectual disability, motor delay, autistic-like behaviors, and a distinctive craniofacial phenotype. All patients carry a partial or total deletion of methyl-CpG-binding domain protein 5 (MBD5), suggesting that haploinsufficiency of this gene is responsible for the phenotype. To confirm this hypothesis and to examine the role of MBD5 in vivo, we have generated and characterized an Mbd5 gene-trap mouse model. Our study indicates that the Mbd5(+/) (GT) mouse model recapitulates most of the hallmark phenotypes observed in 2q23.1 deletion carriers including abnormal social behavior, cognitive impairment, and motor and craniofacial abnormalities. In addition, neuronal cultures uncovered a deficiency in neurite outgrowth. These findings support a causal role of MBD5 in 2q23.1 microdeletion syndrome and suggest a role for MBD5 in neuronal processes. The Mbd5(+/) (GT) mouse model will advance our understanding of the abnormal brain development underlying the emergence of 2q23.1 deletion-associated behavioral and cognitive symptoms.

  13. High expression of human beta S- and alpha-globins in transgenic mice: erythrocyte abnormalities, organ damage, and the effect of hypoxia.

    PubMed Central

    Fabry, M E; Costantini, F; Pachnis, A; Suzuka, S M; Bank, N; Aynedjian, H S; Factor, S M; Nagel, R L

    1992-01-01

    A line of transgenic mice with two cointegrated transgenes, the human beta S- and alpha 2-globin genes, linked to the beta-globin locus control region was produced and bred with mice carrying a deletion of the mouse beta major-globin gene. In transgenic mice homozygous for the beta major deletion (alpha H beta S[beta MDD]; where alpha H is human alpha-globin and MD is mouse deletion), 72.5 +/- 2.4% (mean +/- SD) of the beta-chains are beta S and the ratio of alpha H- to beta S-globin was 0.73. Introduction of a heterozygous mouse alpha-globin deletion into mice homozygous for the beta major deletion (alpha H beta S[alpha MD beta MDD]) resulted in 65.1 +/- 8.5% beta S and a human alpha/beta ratio of 0.89 +/- 0.2. Sickling occurs in 95% of erythrocytes from alpha H beta S[beta MDD] mice after slow deoxygenation. Transmission electron microscopy revealed polymer fiber formation but not fascicles of fiber. Increased organ weight was noted in lung, spleen, and kidney of transgenic mice vs. controls that may be due to hypertrophy or increased blood volume in the lungs and/or increased tissue water content. The hemoglobin content of lung, spleen, and kidney was also elevated in transgenic animals due to trapped hemoglobin and/or increased blood volume. When transgenic and control mice were examined by magnetic resonance imaging at 9.4 tesla, some transgenic animals had enlarged kidneys with prolonged relaxation time, consistent with increased organ weight and water content. The glomerular filtration rate was elevated in transgenic animals, which is characteristic of young sickle cell patients. Furthermore, exposure to hypoxia resulted in significantly decreased hematocrit, increased erythrocyte density, and induced a urine-concentrating defect. We conclude that the transgenic mouse line reported here has chronic organ damage and further hematological and organ dysfunction can be induced by hypoxia. Images PMID:1465455

  14. Housing under abnormal light-dark cycles attenuates day/night expression rhythms of the clock genes Per1, Per2, and Bmal1 in the amygdala and hippocampus of mice.

    PubMed

    Moriya, Shunpei; Tahara, Yu; Sasaki, Hiroyuki; Ishigooka, Jun; Shibata, Shigenobu

    2015-10-01

    Although the results of previous studies have suggested that disruptions in circadian rhythms are involved in the pathogenesis of depression, no studies have examined the interaction of clock gene expression deficit and depression state. In this study, we examined clock gene expression levels and depressive-like behavior in mice housed under 3.5h light, 3.5h dark (T = 7) conditions to investigate the association between clock gene expression and depressive state. C57BL/6J mice were housed under a T = 24 cycle (12h light, 12h dark) or a T = 7 cycle and clock gene expression levels in the hippocampus and the amygdala were measured by real-time RT-PCR. Depressive state was evaluated by the forced swim test (FST). Although circadian rhythms of Per1 and Per2 clock gene expression in the hippocampus and amygdala were still detected under T = 7 conditions, rhythmicity and expression levels of both significantly decreased. Mice housed with a T = 7 cycle showed increased immobile time in the FST than those with a T = 24 cycle. The present results suggest that the presence of a depressive state around the early active phase of activity may be related to impairment of rhythmicity and expression levels of Per1 and Per2 genes under abnormal light-dark conditions.

  15. Meta-Analysis Identifies Gene-by-Environment Interactions as Demonstrated in a Study of 4,965 Mice

    PubMed Central

    Joo, Jong Wha J.; Shih, Diana; Davis, Richard C.; Lusis, Aldons J.; Eskin, Eleazar

    2014-01-01

    Identifying environmentally-specific genetic effects is a key challenge in understanding the structure of complex traits. Model organisms play a crucial role in the identification of such gene-by-environment interactions, as a result of the unique ability to observe genetically similar individuals across multiple distinct environments. Many model organism studies examine the same traits but under varying environmental conditions. For example, knock-out or diet-controlled studies are often used to examine cholesterol in mice. These studies, when examined in aggregate, provide an opportunity to identify genomic loci exhibiting environmentally-dependent effects. However, the straightforward application of traditional methodologies to aggregate separate studies suffers from several problems. First, environmental conditions are often variable and do not fit the standard univariate model for interactions. Additionally, applying a multivariate model results in increased degrees of freedom and low statistical power. In this paper, we jointly analyze multiple studies with varying environmental conditions using a meta-analytic approach based on a random effects model to identify loci involved in gene-by-environment interactions. Our approach is motivated by the observation that methods for discovering gene-by-environment interactions are closely related to random effects models for meta-analysis. We show that interactions can be interpreted as heterogeneity and can be detected without utilizing the traditional uni- or multi-variate approaches for discovery of gene-by-environment interactions. We apply our new method to combine 17 mouse studies containing in aggregate 4,965 distinct animals. We identify 26 significant loci involved in High-density lipoprotein (HDL) cholesterol, many of which are consistent with previous findings. Several of these loci show significant evidence of involvement in gene-by-environment interactions. An additional advantage of our meta

  16. Prenatal diethylstilbestrol induces malformation of the external genitalia of male and female mice and persistent second-generation developmental abnormalities of the external genitalia in two mouse strains

    PubMed Central

    Mahawong, Phitsanu; Sinclair, Adriane; Li, Yi; Schlomer, Bruce; Rodriguez, Esequiel; Max, Ferretti M.; Liu, Baomei; Baskin, Laurence S.; Cunha, Gerald R.

    2014-01-01

    Potential trans-generational influence of diethylstilbestrol (DES) exposure emerged with reports of effects in grandchildren of DES-treated pregnant women and of reproductive tract tumors in offspring of mice exposed in utero to DES. Accordingly, we examined the trans-generational influence of DES on development of external genitalia (ExG) and compared effects of in utero DES exposure in CD-1 and C57BL/6 mice injected with oil or DES every other day from gestational days 12 to 18. Mice were examined at birth, and on 5 to 120 days postnatal to evaluate ExG malformations. Of 23 adult (≥60 days) prenatally DES-exposed males, features indicative of urethral meatal hypospadias (see text for definitions) ranged from 18 to 100% in prenatally DES-exposed CD-1 males and 31 to 100% in prenatally DES-exposed C57BL/6 males. Thus, the strains differed in the incidence of male urethral hypospadias. Ninety-one percent of DES-exposed CD-1 females and 100% of DES-exposed C57BL/6 females had urethral-vaginal fistula. All DES-exposed CD-1 and C57BL/6 females lacked an os clitoris. None of the prenatally oil-treated CD-1 and C57BL/6 male and female mice had ExG malformations. For the second-generation study, 10 adult CD-1 males and females, from oil- and DES-exposed groups, respectively, were paired with untreated CD-1 mice for 30 days, and their offspring evaluated for ExG malformations. None of the F1 DES-treated females were fertile. Nine of 10 prenatally DES-exposed CD-1 males sired offspring with untreated females, producing 55 male and 42 female pups. Of the F2 DES-lineage adult males, 20% had exposed urethral flaps, a criterion of urethral meatal hypospadias. Five of 42 (11.9%) F2 DES lineage females had urethral-vaginal fistula. In contrast, all F2 oil-lineage males and all oil-lineage females were normal. Thus, prenatal DES exposure induces malformations of ExG in both sexes and strains of mice, and certain malformations are transmitted to the second-generation. PMID

  17. In utero and Lactational Exposure to Acetamiprid Induces Abnormalities in Socio-Sexual and Anxiety-Related Behaviors of Male Mice

    PubMed Central

    Sano, Kazuhiro; Isobe, Tomohiko; Yang, Jiaxin; Win-Shwe, Tin-Tin; Yoshikane, Mitsuha; Nakayama, Shoji F.; Kawashima, Takaharu; Suzuki, Go; Hashimoto, Shunji; Nohara, Keiko; Tohyama, Chiharu; Maekawa, Fumihiko

    2016-01-01

    Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically. PMID:27375407

  18. In utero and Lactational Exposure to Acetamiprid Induces Abnormalities in Socio-Sexual and Anxiety-Related Behaviors of Male Mice.

    PubMed

    Sano, Kazuhiro; Isobe, Tomohiko; Yang, Jiaxin; Win-Shwe, Tin-Tin; Yoshikane, Mitsuha; Nakayama, Shoji F; Kawashima, Takaharu; Suzuki, Go; Hashimoto, Shunji; Nohara, Keiko; Tohyama, Chiharu; Maekawa, Fumihiko

    2016-01-01

    Neonicotinoids, a widely used group of pesticides designed to selectively bind to insect nicotinic acetylcholine receptors, were considered relatively safe for mammalian species. However, they have been found to activate vertebrate nicotinic acetylcholine receptors and could be toxic to the mammalian brain. In the present study, we evaluated the developmental neurotoxicity of acetamiprid (ACE), one of the most widely used neonicotinoids, in C57BL/6J mice whose mothers were administered ACE via gavage at doses of either 0 mg/kg (control group), 1.0 mg/kg (low-dose group), or 10.0 mg/kg (high-dose group) from gestational day 6 to lactation day 21. The results of a battery of behavior tests for socio-sexual and anxiety-related behaviors, the numbers of vasopressin-immunoreactive cells in the paraventricular nucleus of the hypothalamus, and testosterone levels were used as endpoints. In addition, behavioral flexibility in mice was assessed in a group-housed environment using the IntelliCage, a fully automated mouse behavioral analysis system. In adult male mice exposed to ACE at both low and high doses, a significant reduction of anxiety level was found in the light-dark transition test. Males in the low-dose group also showed a significant increase in sexual and aggressive behaviors. In contrast, neither the anxiety levels nor the sexual behaviors of females were altered. No reductions in the testosterone level, the number of vasopressin-immunoreactive cells, or behavioral flexibility were detected in either sex. These results suggest the possibility that in utero and lactational ACE exposure interferes with the development of the neural circuits required for executing socio-sexual and anxiety-related behaviors in male mice specifically. PMID:27375407

  19. Abnormal immune complex processing and spontaneous glomerulonephritis in complement factor H-deficient mice with human complement receptor 1 on erythrocytes.

    PubMed

    Alexander, Jessy J; Hack, Bradley K; Jacob, Alexander; Chang, Anthony; Haas, Mark; Finberg, Robert W; Quigg, Richard J

    2010-09-15

    Complement receptor 1 (CR1) on human erythrocytes (Es) and complement factor H (CFH) on rodent platelets perform immune adherence, which is a function that allows the processing of immune complexes (ICs) bearing C3 by the mononuclear phagocyte system. Similar immune adherence occurs in the glomerular podocyte by CR1 in humans and CFH in rodents. As a model for human IC processing, we studied transgenic mice lacking CFH systemically but with human CR1 on Es. These CR1(hu)Tg/CFH(-/-) mice spontaneously developed proliferative glomerulonephritis, which was accelerated in a chronic serum sickness model by active immunization with heterologous apoferritin. ICs containing Ag, IgG and C3 bound to Es in CR1(hu)Tg/CFH(-/-) mice. In this setting, there was increased IC deposition in glomeruli, attributable to the presence of CR1 on Es, together with the absence of CFH on platelets and podocytes. In the absence of plasma CFH, the accumulated ICs activated complement, which led to spontaneous and chronic serum sickness-induced proliferative glomerulonephritis. These findings illustrate the complexities of complement-dependent IC processing by blood cells and in the glomerulus, and the importance of CFH as a plasma complement regulator.

  20. Repeated stress-induced expression pattern alterations of the hippocampal chloride transporters KCC2 and NKCC1 associated with behavioral abnormalities in female mice.

    PubMed

    Tsukahara, Takao; Masuhara, Masaaki; Iwai, Haruki; Sonomura, Takahiro; Sato, Tomoaki

    2015-09-11

    The balance of cation-chloride co-transporters, particularly KCC2 and NKCC1, is critical for GABAergic inhibitory signaling. However, KCC2/NKCC1 balance is disrupted in many neurodegenerative diseases. Moreover, correlations between chronic stress, KCC2 and NKCC1 in the hippocampus remain poorly understood. Despite the fact that emotional disorders in humans are far more prevalent in women, there have been relatively few studies about female subjects. Here we investigated behaviors and expression patterns of KCC2 and NKCC1 in the hippocampi of female mice under chronic stress. Repeated stress (RS) was induced in experimental mice by repeated forced water administration. Then, expression patterns of GABAergic signaling molecules were identified by immunohistochemical analysis and performance was assessed using several behavioral tests. The results of semi-quantitative analysis showed that RS decreased KCC2 expression and increased NKCC1 expression in membranes of granular and pyramidal cells in the hippocampus. The novel object recognition (NOR) test and sociability test revealed that RS induced cognitive and sociability deficits, whereas RS increased the time spent in the open arms of the elevated plus maze test and induced attention deficits in other tests. In summary, RS induced alterations in membrane KCC2/NKCC1 balance in the hippocampus of female mice, which may contribute to GABAergic disinhibition associated with cognitional, sociability and attention deficits. PMID:26239662

  1. Knockout of Foxp2 disrupts vocal development in mice.

    PubMed

    Castellucci, Gregg A; McGinley, Matthew J; McCormick, David A

    2016-03-16

    The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/-) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/- mice. In comparison to their WT littermates, Foxp2+/- mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/- song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene's role in general vocal motor control.

  2. Tysnd1 Deficiency in Mice Interferes with the Peroxisomal Localization of PTS2 Enzymes, Causing Lipid Metabolic Abnormalities and Male Infertility

    PubMed Central

    Mizuno, Yumi; Ninomiya, Yuichi; Nakachi, Yutaka; Iseki, Mioko; Iwasa, Hiroyasu; Akita, Masumi; Tsukui, Tohru; Shimozawa, Nobuyuki; Ito, Chizuru; Toshimori, Kiyotaka; Nishimukai, Megumi; Hara, Hiroshi; Maeba, Ryouta; Okazaki, Tomoki; Alodaib, Ali Nasser Ali; Amoudi, Mohammed Al; Jacob, Minnie; Alkuraya, Fowzan S.; Horai, Yasushi; Watanabe, Mitsuhiro; Motegi, Hiromi; Wakana, Shigeharu; Noda, Tetsuo; Kurochkin, Igor V.; Mizuno, Yosuke; Schönbach, Christian; Okazaki, Yasushi

    2013-01-01

    Peroxisomes are subcellular organelles involved in lipid metabolic processes, including those of very-long-chain fatty acids and branched-chain fatty acids, among others. Peroxisome matrix proteins are synthesized in the cytoplasm. Targeting signals (PTS or peroxisomal targeting signal) at the C-terminus (PTS1) or N-terminus (PTS2) of peroxisomal matrix proteins mediate their import into the organelle. In the case of PTS2-containing proteins, the PTS2 signal is cleaved from the protein when transported into peroxisomes. The functional mechanism of PTS2 processing, however, is poorly understood. Previously we identified Tysnd1 (Trypsin domain containing 1) and biochemically characterized it as a peroxisomal cysteine endopeptidase that directly processes PTS2-containing prethiolase Acaa1 and PTS1-containing Acox1, Hsd17b4, and ScpX. The latter three enzymes are crucial components of the very-long-chain fatty acids β-oxidation pathway. To clarify the in vivo functions and physiological role of Tysnd1, we analyzed the phenotype of Tysnd1−/− mice. Male Tysnd1−/− mice are infertile, and the epididymal sperms lack the acrosomal cap. These phenotypic features are most likely the result of changes in the molecular species composition of choline and ethanolamine plasmalogens. Tysnd1−/− mice also developed liver dysfunctions when the phytanic acid precursor phytol was orally administered. Phyh and Agps are known PTS2-containing proteins, but were identified as novel Tysnd1 substrates. Loss of Tysnd1 interferes with the peroxisomal localization of Acaa1, Phyh, and Agps, which might cause the mild Zellweger syndrome spectrum-resembling phenotypes. Our data established that peroxisomal processing protease Tysnd1 is necessary to mediate the physiological functions of PTS2-containing substrates. PMID:23459139

  3. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    PubMed

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  4. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice

    PubMed Central

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  5. Modulation of Specific Sensory Cortical Areas by Segregated Basal Forebrain Cholinergic Neurons Demonstrated by Neuronal Tracing and Optogenetic Stimulation in Mice.

    PubMed

    Chaves-Coira, Irene; Barros-Zulaica, Natali; Rodrigo-Angulo, Margarita; Núñez, Ángel

    2016-01-01

    Neocortical cholinergic activity plays a fundamental role in sensory processing and cognitive functions. Previous results have suggested a refined anatomical and functional topographical organization of basal forebrain (BF) projections that may control cortical sensory processing in a specific manner. We have used retrograde anatomical procedures to demonstrate the existence of specific neuronal groups in the BF involved in the control of specific sensory cortices. Fluoro-Gold (FlGo) and Fast Blue (FB) fluorescent retrograde tracers were deposited into the primary somatosensory (S1) and primary auditory (A1) cortices in mice. Our results revealed that the BF is a heterogeneous area in which neurons projecting to different cortical areas are segregated into different neuronal groups. Most of the neurons located in the horizontal limb of the diagonal band of Broca (HDB) projected to the S1 cortex, indicating that this area is specialized in the sensory processing of tactile stimuli. However, the nucleus basalis magnocellularis (B) nucleus shows a similar number of cells projecting to the S1 as to the A1 cortices. In addition, we analyzed the cholinergic effects on the S1 and A1 cortical sensory responses by optogenetic stimulation of the BF neurons in urethane-anesthetized transgenic mice. We used transgenic mice expressing the light-activated cation channel, channelrhodopsin-2, tagged with a fluorescent protein (ChR2-YFP) under the control of the choline-acetyl transferase promoter (ChAT). Cortical evoked potentials were induced by whisker deflections or by auditory clicks. According to the anatomical results, optogenetic HDB stimulation induced more extensive facilitation of tactile evoked potentials in S1 than auditory evoked potentials in A1, while optogenetic stimulation of the B nucleus facilitated either tactile or auditory evoked potentials equally. Consequently, our results suggest that cholinergic projections to the cortex are organized into segregated

  6. FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss.

    PubMed

    Ho, Maria K; Li, Xin; Wang, Juemei; Ohmen, Jeffrey D; Friedman, Rick A

    2014-01-01

    The hybrid mouse diversity panel (HMDP), a panel of 100 strains, has been employed in genome wide association studies (GWAS) to study complex traits in mice. Hearing is a complex trait and the CBA/CaJ mouse strain is a widely used model for age-related hearing loss (ARHI) and noise induced hearing loss (NIHL). The CBA/CaJ strain's youthful sensitivity to noise and limited age-related loss led us to attempt to identify additional strains segregating a similar phenotype for our panel. FVB/NJ is part of the HMDP and has been previously described as having a similar ARHI phenotype to CBA/CaJ. For these reasons, we have studied the FVB/NJ mouse for ARHI and NIHL phenotypes in hopes of incorporating its phenotype into HMDP studies. We demonstrate that FVB/NJ exhibits ARHI at an earlier age than CBA/CaJ and young FVB/NJ mice are vulnerable to NIHL up until 10 to 12 weeks. This suggests that FVB/NJ may be used as an additional genetic model for neural forms of progressive hearing loss and for the study of youthful sensitivity to noise.

  7. FVB/NJ mice demonstrate a youthful sensitivity to noise-induced hearing loss and provide a useful genetic model for the study of neural hearing loss

    PubMed Central

    Ho, Maria K.; Li, Xin; Wang, Juemei; Ohmen, Jeffrey D.; Friedman, Rick A.

    2014-01-01

    The hybrid mouse diversity panel (HMDP), a panel of 100 strains, has been employed in genome wide association studies (GWAS) to study complex traits in mice. Hearing is a complex trait and the CBA/CaJ mouse strain is a widely used model for age-related hearing loss (ARHI) and noise induced hearing loss (NIHL). The CBA/CaJ strain's youthful sensitivity to noise and limited age-related loss led us to attempt to identify additional strains segregating a similar phenotype for our panel. FVB/NJ is part of the HMDP and has been previously described as having a similar ARHI phenotype to CBA/CaJ. For these reasons, we have studied the FVB/NJ mouse for ARHI and NIHL phenotypes in hopes of incorporating its phenotype into HMDP studies. We demonstrate that FVB/NJ exhibits ARHI at an earlier age than CBA/CaJ and young FVB/NJ mice are vulnerable to NIHL up until 10 to 12 weeks. This suggests that FVB/NJ may be used as an additional genetic model for neural forms of progressive hearing loss and for the study of youthful sensitivity to noise. PMID:24707282

  8. Early postnatal ataxia and abnormal cerebellar development in mice lacking Xeroderma pigmentosum Group A and Cockayne syndrome Group B DNA repair genes.

    PubMed

    Murai, M; Enokido, Y; Inamura, N; Yoshino, M; Nakatsu, Y; van der Horst, G T; Hoeijmakers, J H; Tanaka, K; Hatanaka, H

    2001-11-01

    Xeroderma pigmentosum (XP) and Cockayne syndrome (CS) are rare autosomal recessive disorders associated with a defect in the nucleotide excision repair (NER) pathway required for the removal of DNA damage induced by UV light and distorting chemical adducts. Although progressive neurological dysfunction is one of the hallmarks of CS and of some groups of XP patients, the causative mechanisms are largely unknown. Here we show that mice lacking both the XPA (XP-group A) and CSB (CS-group B) genes in contrast to the single mutants display severe growth retardation, ataxia, and motor dysfunction during early postnatal development. Their cerebella are hypoplastic and showed impaired foliation and stunted Purkinje cell dendrites. Reduced neurogenesis and increased apoptotic cell death occur in the cerebellar external granular layer. These findings suggest that XPA and CSB have additive roles in the mouse nervous system and support a crucial role for these genes in normal brain development. PMID:11687625

  9. Lack of transfer of lpr-type abnormalities (lymphoproliferation or lymphoid aplasia) in double congenic nude beige mice engrafted with lpr haematopoietic cells.

    PubMed Central

    Tiberghien, F; Pflumio, F; Kuntz, L; Loor, F

    1993-01-01

    The aetiology of the autoimmune and lymphoproliferative syndrome caused by the murine lpr (lymphoproliferation) mutation was studied by the adoptive transfer methodology using non-irradiated athymic and natural killer (NK)-deficient C57BL/6 nude beige mice (B6 nubg) as recipients. The [lpr-->nubg] chimeras did not display the severe lymphoid organ aplasia shown by irradiated non-lpr recipients of lpr haematopoietic cells. However, nor did they either express the typical lpr phenotype features (hyperglobulinaemia, autoimmunity and lymphoid hyperplasia). Nevertheless, engraftment of lpr cells in the nubg recipients was shown by their much increased survival, the recovery of T-cell mitogen responsiveness in the spleen, and the presence of T-dependent immunoglobulin isotypes in their serum. The host of donor origin of serum immunoglobulin was studied by measuring IgG2a allotypes in the serum of [lpr-->nubg] chimeras made with different lgh-congenic mice. Interestingly, several months after grafting, the serum IgG2a was found to be mainly of lpr graft origin, suggesting that only lpr B cells could function in such chimeras. In conclusion, a lpr spleen cell graft reconstituted non-irradiated nubg recipients and induced neither a typical lpr syndrome nor a lpr-type graft-versus-host (GVH)-like disease. These features of the lpr syndrome are at variance with those of the phenotypically similar gld syndrome, since this mutation allows the transfer of a generalized lymphadenopathy disease by grafting gld spleen cells in nubg or irradiated recipients. Unlike the gld syndrome, the lpr gene might not only affect haematopoietic cells but also cells of the environment, which would interact in the same impaired process. PMID:8099566

  10. Disordered purinergic signaling and abnormal cellular metabolism are associated with development of liver cancer in Cd39/Entpd1 null mice

    PubMed Central

    Sun, Xiaofeng; Han, Lihui; Seth, Pankaj; Bian, Shu; Li, Linglin; Csizmadia, Eva; Junger, Wolfgang G.; Schmelzle, Moritz; Usheva, Anny; Tapper, Elliot B.; Baffy, Gyorgy; Sukhatme, Vikas P.; Wu, Yan; Robson, Simon C.

    2012-01-01

    Liver cancer is associated with chronic inflammation, which is linked to immune dysregulation, disordered metabolism and aberrant cell proliferation. CD39/ENTPD1 is an ectonucleotidase that regulates extracellular nucleotide/nucleoside concentrations by scavenging nucleotides to ultimately generate adenosine. These properties inhibit anti tumor immune responses and promote angiogenesis, being permissive for the growth of transplanted tumors. Here, we show Cd39 deletion promotes development of both induced and spontaneous autochthonous liver cancer in mice. Loss of Cd39 results in higher concentrations of extracellular nucleotides, which stimulate proliferation of hepatocytes, abrogate autophagy and disrupt glycolytic metabolism. Constitutive activation of Ras-MAPK and mTOR-S6K1 pathways occurs in both quiescent Cd39 null hepatocytes in vitro and liver tissues in vivo. Exogenous ATP boosts these signaling pathways, while rapamycin inhibits such aberrant responses in hepatocytes. Conclusions Deletion of Cd39 and resulting changes in disordered purinergic signaling perturb hepatocellular metabolic/proliferative responses, paradoxically resulting in malignant transformation. These findings might impact adjunctive therapies for cancer. Lastly, our studies indicate that the biology of autochthonous and transplanted tumors is quite distinct. PMID:22859060

  11. Carbohydrate-remodelled acid α-glucosidase with higher affinity for the cation-independent mannose 6-phosphate receptor demonstrates improved delivery to muscles of Pompe mice

    PubMed Central

    2005-01-01

    To enhance the delivery of rhGAA (recombinant GAA, where GAA stands for acid α-glucosidase) to the affected muscles in Pompe disease, the carbohydrate moieties on the enzyme were remodelled to exhibit a high affinity ligand for the CI-MPR (cation-independent M6P receptor, where M6P stands for mannose 6-phosphate). This was achieved by chemically conjugating on to rhGAA, a synthetic oligosaccharide ligand bearing M6P residues in the optimal configuration for binding the receptor. The carbonyl chemistry used resulted in the conjugation of approx. six synthetic ligands on to each enzyme. The resulting modified enzyme [neo-rhGAA (modified recombinant human GAA harbouring synthetic oligosaccharide ligands)] displayed near-normal specific activity and significantly increased affinity for the CI-MPR. However, binding to the mannose receptor was unaffected despite the introduction of additional mannose residues in neo-rhGAA. Uptake studies using L6 myoblasts showed neo-rhGAA was internalized approx. 20-fold more efficiently than the unmodified enzyme. Administration of neo-rhGAA into Pompe mice also resulted in greater clearance of glycogen from all the affected muscles when compared with the unmodified rhGAA. Comparable reductions in tissue glycogen levels in the Pompe mice were realized using an approx. 8-fold lower dose of neo-rhGAA in the heart and diaphragm and an approx. 4-fold lower dose in the skeletal muscles. Treatment of older Pompe mice, which are more refractory to enzyme therapy, with 40 mg/kg neo-rhGAA resulted in near-complete clearance of glycogen from all the affected muscles as opposed to only partial correction with the unmodified rhGAA. These results demonstrate that remodelling the carbohydrate of rhGAA to improve its affinity for the CI-MPR represents a feasible approach to enhance the efficacy of enzyme replacement therapy for Pompe disease. PMID:15839836

  12. THE PATHOGENESIS OF HERPES VIRUS ENCEPHALITIS. I. VIRUS PATHWAYS TO THE NERVOUS SYSTEM OF SUCKLING MICE DEMONSTRATED BY FLUORESCENT ANTIBODY STAINING.

    PubMed

    JOHNSON, R T

    1964-02-01

    The pathogenesis of herpes simplex virus encephalitis and myelitis was studied in suckling mice using routine titration procedures and fluorescent antibody staining for the identification of infected cells. After intracerebral inoculation virus was shown to disperse rapidly in the cerebrospinal fluid (CSF), multiply in meninges and ependyma, and then invade the underlying parenchyma infecting both neurons and glia. Following extraneural inoculation virus gained access to the central nervous system (CNS) by both hematogenous and neural pathways. After intraperitoneal and intranasal inoculation virus was found to multiply in viscera and produce viremia; foci of CNS infection then developed around small cerebral vessels. After subcutaneous and intranasal inoculation neural spread of virus was demonstrated along corresponding peripheral and cranial nerves. This spread resulted from the centripetal infection of endoneural cells (Schwann cells and fibroblasts). Antigen was not found in axons even after infection of the corresponding ganglion cell perikaryon. Subsequent spread within the CNS was unrelated to neural tracts, and there was no evidence of axonal spread of virus in the host-virus system studied. These findings are discussed in relation to previous and current theories of the viral "blood-brain barrier" and neural pathways of infection.

  13. [11C]-Labeled Metformin Distribution in the Liver and Small Intestine Using Dynamic Positron Emission Tomography in Mice Demonstrates Tissue-Specific Transporter Dependency.

    PubMed

    Jensen, Jonas B; Sundelin, Elias I; Jakobsen, Steen; Gormsen, Lars C; Munk, Ole L; Frøkiær, Jørgen; Jessen, Niels

    2016-06-01

    Metformin is the most commonly prescribed oral antidiabetic drug, with well-documented beneficial preventive effects on diabetic complications. Despite being in clinical use for almost 60 years, the underlying mechanisms for metformin action remain elusive. Organic cation transporters (OCT), including multidrug and toxin extrusion proteins (MATE), are essential for transport of metformin across membranes, but tissue-specific activity of these transporters in vivo is incompletely understood. Here, we use dynamic positron emission tomography with [(11)C]-labeled metformin ([(11)C]-metformin) in mice to investigate the role of OCT and MATE in a well-established target tissue, the liver, and a putative target of metformin, the small intestine. Ablation of OCT1 and OCT2 significantly reduced the distribution of metformin in the liver and small intestine. In contrast, inhibition of MATE1 with pyrimethamine caused accumulation of metformin in the liver but did not affect distribution in the small intestine. The demonstration of OCT-mediated transport into the small intestine provides evidence of direct effects of metformin in this tissue. OCT and MATE have important but separate roles in uptake and elimination of metformin in the liver, but this is not due to changes in biliary secretion. [(11)C]-Metformin holds great potential as a tool to determine the pharmacokinetic properties of metformin in clinical studies.

  14. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  15. Cartilage tissue engineering identifies abnormal human induced pluripotent stem cells.

    PubMed

    Yamashita, Akihiro; Liu, Shiying; Woltjen, Knut; Thomas, Bradley; Meng, Guoliang; Hotta, Akitsu; Takahashi, Kazutoshi; Ellis, James; Yamanaka, Shinya; Rancourt, Derrick E

    2013-01-01

    Safety is the foremost issue in all human cell therapies, but human induced pluripotent stem cells (iPSCs) currently lack a useful safety indicator. Studies in chimeric mice have demonstrated that certain lines of iPSCs are tumorigenic; however a similar screen has not been developed for human iPSCs. Here, we show that in vitro cartilage tissue engineering is an excellent tool for screening human iPSC lines for tumorigenic potential. Although all human embryonic stem cells (ESCs) and most iPSC lines tested formed cartilage safely, certain human iPSCs displayed a pro-oncogenic state, as indicated by the presence of secretory tumors during cartilage differentiation in vitro. We observed five abnormal iPSC clones amoungst 21 lines derived from five different reprogramming methods using three cellular origins. We conclude that in vitro cartilage tissue engineering is a useful approach to identify abnormal human iPSC lines.

  16. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders.

    PubMed

    Hsiao, Elaine Y; McBride, Sara W; Hsien, Sophia; Sharon, Gil; Hyde, Embriette R; McCue, Tyler; Codelli, Julian A; Chow, Janet; Reisman, Sarah E; Petrosino, Joseph F; Patterson, Paul H; Mazmanian, Sarkis K

    2013-12-19

    Neurodevelopmental disorders, including autism spectrum disorder (ASD), are defined by core behavioral impairments; however, subsets of individuals display a spectrum of gastrointestinal (GI) abnormalities. We demonstrate GI barrier defects and microbiota alterations in the maternal immune activation (MIA) mouse model that is known to display features of ASD. Oral treatment of MIA offspring with the human commensal Bacteroides fragilis corrects gut permeability, alters microbial composition, and ameliorates defects in communicative, stereotypic, anxiety-like and sensorimotor behaviors. MIA offspring display an altered serum metabolomic profile, and B. fragilis modulates levels of several metabolites. Treating naive mice with a metabolite that is increased by MIA and restored by B. fragilis causes certain behavioral abnormalities, suggesting that gut bacterial effects on the host metabolome impact behavior. Taken together, these findings support a gut-microbiome-brain connection in a mouse model of ASD and identify a potential probiotic therapy for GI and particular behavioral symptoms in human neurodevelopmental disorders.

  17. HINT1 is involved in the behavioral abnormalities induced by social isolation rearing.

    PubMed

    Dang, Yong-hui; Liu, Peng; Ma, Rui; Chu, Zheng; Liu, You-ping; Wang, Jia-bei; Ma, Xian-cang; Gao, Cheng-ge

    2015-10-21

    Social isolation (SI) rearing has been demonstrated to induce behavioral abnormalities like anxiety, impulsivity, aggression, and learning and memory deficits which are relevant to core symptoms in patients with some certain neuropsychiatric disorders. But the underlying pathophysiological mechanisms remain unclear. Recent studies have revealed HINT1 has close relation with diverse neuropsychiatric diseases. In this present study, the SI rearing mice exhibited depression-like and aggressive behavior. Besides, HINT1 protein levels decreased in PFC but increased in HIP. Based on the data obtained, we concluded that HINT1 is involved in the behavioral abnormalities induced by social isolation and exerts distinct roles in different encephalic regions.

  18. HINT1 is involved in the behavioral abnormalities induced by social isolation rearing.

    PubMed

    Dang, Yong-hui; Liu, Peng; Ma, Rui; Chu, Zheng; Liu, You-ping; Wang, Jia-bei; Ma, Xian-cang; Gao, Cheng-ge

    2015-10-21

    Social isolation (SI) rearing has been demonstrated to induce behavioral abnormalities like anxiety, impulsivity, aggression, and learning and memory deficits which are relevant to core symptoms in patients with some certain neuropsychiatric disorders. But the underlying pathophysiological mechanisms remain unclear. Recent studies have revealed HINT1 has close relation with diverse neuropsychiatric diseases. In this present study, the SI rearing mice exhibited depression-like and aggressive behavior. Besides, HINT1 protein levels decreased in PFC but increased in HIP. Based on the data obtained, we concluded that HINT1 is involved in the behavioral abnormalities induced by social isolation and exerts distinct roles in different encephalic regions. PMID:26300541

  19. An Intradermal Inoculation Model of Scrub Typhus in Swiss CD-1 Mice Demonstrates More Rapid Dissemination of Virulent Strains of Orientia tsutsugamushi

    PubMed Central

    Sunyakumthorn, Piyanate; Paris, Daniel H.; Chan, Teik-Chye; Jones, Margaret; Luce-Fedrow, Alison; Chattopadhyay, Suchismita; Jiang, Ju; Anantatat, Tippawan; Turner, Gareth D. H.; Day, Nicholas P. J.; Richards, Allen L.

    2013-01-01

    Scrub typhus is an important endemic disease of the Asia-Pacific region caused by Orientia tsutsugamushi. To develop an effective vaccine to prevent scrub typhus infection, a better understanding of the initial host-pathogen interaction is needed. The objective of this study was to investigate early bacterial dissemination in a CD-1 Swiss outbred mouse model after intradermal injection of O. tsutsugamushi. Three human pathogenic strains of O. tsutsugamushi (Karp, Gilliam, and Woods) were chosen to investigate the early infection characteristics associated with bacterial virulence. Tissue biopsies of the intradermal injection site and draining lymph nodes were examined using histology and immunohistochemistry to characterize bacterial dissemination, and correlated with quantitative real-time PCR for O. tsutsugamushi in blood and tissue from major organs. Soluble adhesion molecules were measured to examine cellular activation in response to infection. No eschar formation was seen at the inoculation site and no clinical disease developed within the 7 day period of observation. However, O. tsutsugamushi was localized at the injection site and in the draining lymph nodes by day 7 post inoculation. Evidence of leukocyte and endothelial activation was present by day 7 with significantly raised levels of sL-selectin, sICAM-1 and sVCAM-1. Infection with the Karp strain was associated with earlier and higher bacterial loads and more extensive dissemination in various tissues than the less pathogenic Gilliam and Woods strains. The bacterial loads of O. tsutsugamushi were highest in the lungs and spleens of mice inoculated with Karp and Gilliam, but not Woods strains. Strains of higher virulence resulted in more rapid systemic infection and dissemination in this model. The CD-1 mouse intradermal inoculation model demonstrates features relevant to early scrub typhus infection in humans, including the development of regional lymphadenopathy, leukocyte activation and distant

  20. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo.

    PubMed Central

    Williams, Z; Hertogs, C F; Pluznik, D H

    1983-01-01

    Injection of lipopolysaccharide (LPS) into mice was followed by a rapid elevation of colony-stimulating factor (CSF) in the serum. A second, challenging injection of LPS given 3 to 4 days later failed to induce elevated levels of CSF in the serum. Such mice tolerant to LPS were used as an experimental tool to identify the CSF-producing cells which respond to LPS. We observed that generation of LPS-induced CSF in mice tolerant to LPS could be restored by an intraperitoneal injection of spleen cells 24 h before the challenging injection of LPS. Depletion of the adherent cells from the spleen cells reduced the ability of the splenic lymphocytes to restore the capacity of the mice tolerant to LPS to generate serum CSF. Reconstitution of the splenic lymphocytes with 5% thioglycolate-elicited peritoneal macrophages, however, reestablished the restorative capacity of these cells, whereas almost no restoration was observed after direct injection of elicited peritoneal macrophages. These data suggest that the spleen cells are active in generating CSF, provided that macrophages are present and can interact with the splenic lymphocytes to generate LPS-induced CSF in the serum. PMID:6602767

  1. Direct demonstration of P-selectin- and VCAM-1-dependent mononuclear cell rolling in early atherosclerotic lesions of apolipoprotein E-deficient mice.

    PubMed

    Ramos, C L; Huo, Y; Jung, U; Ghosh, S; Manka, D R; Sarembock, I J; Ley, K

    1999-06-11

    Apolipoprotein E-deficient (ApoE-/-) mice develop atherosclerotic lesions throughout the arterial tree, including the carotid bifurcation. Although the expression of adhesion molecules such as ICAM-1, vascular cell adhesion molecule-1 (VCAM-1), and P-selectin on endothelium that overlie atherosclerotic plaques has been implicated in monocyte recruitment to developing lesions, monocyte adhesion in atherosclerotic vessels has not been observed directly. To investigate which adhesion molecules may be important in monocyte adhesion to atherosclerotic lesions, an isolated mouse carotid artery preparation was developed and perfused with mononuclear cells. We show rolling and attachment of the human monocytic cell line U937 and the mouse monocyte-macrophage cell line P388D1 in carotid arteries from 10- to 12-week-old ApoE-/- and C57BL/6 wild-type mice fed a Western-type diet (21% fat wt/wt) for 4 to 5 weeks. No rolling was observed in carotid arteries from C57BL/6 or BALB/c wild-type mice fed a chow diet and little was observed in BALB/c mice fed a Western-type diet. This model represents early lesion development as shown by minimal macrophage infiltration in the intima of carotid arteries from ApoE-/- mice fed a Western-type diet. Rolling was observed at shear stresses that were characteristic of the low-shear recirculation zone near the carotid bifurcation. Mononuclear cell attachment and rolling were significantly inhibited by monoclonal antibody blockade of P-selectin or its leukocyte ligand P-selectin glycoprotein ligand-1. Rolling velocities increased after monoclonal antibody blockade of mononuclear cell alpha4-integrin or VCAM-1, which indicates that alpha4-integrin interacting with VCAM-1 stabilizes rolling interactions and prolongs monocyte transit times.

  2. Near infrared lymphatic imaging demonstrates the dynamics of lymph flow and lymphangiogenesis during the acute vs. chronic phases of arthritis in mice

    PubMed Central

    Zhou, Quan; Wood, Ronald; Schwarz, Edward M.; Wang, Yong-Jun; Xing, Lianping

    2010-01-01

    Objective Development of an in vivo imaging method to assess lymphatic draining function in the K/B×N mouse model of inflammatory arthritis. Methods Indocyanine green (ICG), a near-infrared (NIR) fluorescent dye, was injected intradermally into the footpad of wild-type mice, the limb was illuminated with an 806 nm NIR laser, and the movement of ICG from the injection site to the draining popliteal lymph node (PLN) was recorded with a CCD camera. ICG-NIR images were analyzed to obtain 5 measures of lymphatic function across time. K/B×N arthritic mice and control non-arthritic littermates were imaged at one-month of age when acute joint inflammation commenced, and repeated at 3 months when joint inflammation became chronic. Lymphangiogenesis in PLNs was assessed by immunochemistry. Results ICG and its transport within lymphatic vessels were readily visualized and quantitative measures derived. During the acute phase of arthritis, the lymphatic vessels were dilated with increased ICG signal intensity and lymphatic pulses, and PLNs became fluorescent quickly. During the chronic phase, new lymphatic vessels were present near the foot. However, ICG appearance in lymphatic vessels was delayed. The size and area of PLN lymphatic sinuses progressively increased in the K/B×N mice. Conclusion ICG-NIR lymphatic imaging is a valuable method to assess the lymphatic draining function in mice with inflammatory arthritis. ICG-NIR imaging of K/B×N mice identified two distinct lymphatic phenotypes during the acute and chronic phase of inflammation. This technique can be used to assess new therapies for lymphatic disorders. PMID:20309866

  3. Electrocardiograph abnormalities in intracerebral hemorrhage.

    PubMed

    Takeuchi, Satoru; Nagatani, Kimihiro; Otani, Naoki; Wada, Kojiro; Mori, Kentaro

    2015-12-01

    This study investigated the prevalence and type of electrocardiography (ECG) abnormalities, and their possible association with the clinical/radiological findings in 118 consecutive patients with non-traumatic, non-neoplastic intracerebral hemorrhage (ICH). ECG frequently demonstrates abnormalities in patients with ischemic stroke and subarachnoid hemorrhage, but little is known of ECG changes in ICH patients. Clinical and radiological information was retrospectively reviewed. ECG recordings that were obtained within 24 hours of the initial hemorrhage were analyzed. Sixty-six patients (56%) had one or more ECG abnormalities. The most frequent was ST depression (24%), followed by left ventricular hypertrophy (20%), corrected QT interval (QTc) prolongation (19%), and T wave inversion (19%). The logistic regression analysis demonstrated the following: insular involvement was an independent predictive factor of ST depression (p<0.001; odds ratio OR 10.18; 95% confidence interval [CI] 2.84-36.57); insular involvement (p<0.001; OR 23.98; 95% CI 4.91-117.11) and presence of intraventricular hemorrhage (p<0.001; OR 8.72; 95% CI 2.69-28.29) were independent predictive factors of QTc prolongation; deep hematoma location (p<0.001; OR 19.12; 95% CI 3.82-95.81) and hematoma volume >30 ml (p=0.001; OR 6.58; 95% CI 2.11-20.46) were independent predictive factors of T wave inversion. We demonstrate associations between ECG abnormalities and detailed characteristics of ICH.

  4. Hepatic immunophenotyping for streptozotocin-induced hyperglycemia in mice

    PubMed Central

    Lee, Young-Sun; Eun, Hyuk Soo; Kim, So Yeon; Jeong, Jong-Min; Seo, Wonhyo; Byun, Jin-Seok; Jeong, Won-Il; Yi, Hyon-Seung

    2016-01-01

    Emerging evidence revealed that diabetes induces abnormal immune responses that result in serious complications in organs. However, the effect of hyperglycemia on hepatic immunity remains obscure. We evaluated the population and function of hepatic immune cells in streptozotocin (STZ)-induced hyperglycemic mice. CC chemokine receptor 2 (CCR2)-knockout mice and mice with a depletion of regulatory T cells (DEREG) were used to investigate the migration and role of regulatory T cells (Tregs) in hyperglycemic mice. The inflammatory cytokines and hepatic transaminase levels were significantly increased in the hyperglycemic mice. The population and number of infiltrating monocytes, granulocytes, and Tregs were enhanced in the livers of the hyperglycemic mice. Hepatic monocytes other than macrophages showed the increased expression of inflammatory cytokines and chemokines in the hyperglycemic mice. The CCR2 knockout and DEREG chimeric mice exhibited increased populations of activated T cells and neutrophils compared to the WT chimeric mice, which promoted hepatic inflammation in the hyperglycemic mice. The migration of CCR2 knockout Tregs into the liver was significantly reduced compared to the WT Tregs. We demonstrated that hyperglycemia contributes to increase in infiltrating monocytes and Tregs, which are associated with hepatic immune dysfunction in mice. CCR2-mediated migration of Tregs regulates hyperglycemia-induced hepatic inflammation. PMID:27464894

  5. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  6. Cloning and sequencing of yajC and secD homologs of Brucella abortus and demonstration of immune responses to YajC in mice vaccinated with B. abortus RB51.

    PubMed

    Vemulapalli, R; Duncan, A J; Boyle, S M; Sriranganathan, N; Toth, T E; Schurig, G G

    1998-12-01

    To identify Brucella antigens that are potentially involved in stimulating a protective cell-mediated immune response, a gene library of Brucella abortus 2308 was screened for the expression of antigens reacting with immunoglobulin G2a antibodies from BALB/c mice vaccinated with B. abortus RB51. One selected positive clone (clone MCB68) contained an insert of 2.6 kb; nucleotide sequence analysis of this insert revealed two open reading frames (ORFs). The deduced amino acid sequences of the first and second ORFs had significant similarities with the YajC and SecD proteins, respectively, of several bacterial species. Both the YajC and SecD proteins were expressed in Escherichia coli as fusion proteins with maltose binding protein (MBP). In Western blots, sera from mice vaccinated with B. abortus RB51 recognized YajC but not SecD. Further Western blot analysis with purified recombinant YajC protein indicated that mice inoculated with B. abortus 19 or 2308 or B. melitensis RM1 also produced antibodies to YajC. In response to in vitro stimulation with recombinant MBP-YajC fusion protein, splenocytes from mice vaccinated with B. abortus RB51 were able to proliferate and produce gamma interferon but not interleukin-4. This study demonstrates, for the first time, the involvement of YajC protein in an immune response to an infectious agent.

  7. Breathing abnormalities in a female mouse model of Rett syndrome.

    PubMed

    Johnson, Christopher M; Cui, Ningren; Zhong, Weiwei; Oginsky, Max F; Jiang, Chun

    2015-09-01

    Rett syndrome (RTT) is a female neurodevelopmental disease with breathing abnormalities. To understand whether breathing defects occur in the early lives of a group of female Mecp2(+/-) mice, a mouse model of RTT, and what percentage of mice shows RTT-like breathing abnormality, breathing activity was measured by plethysmography in conscious mice. Breathing frequency variation and central apnea in a group of Mecp2(+/-) females displayed a distribution pattern similar to Mecp2(-/Y) males, while the rest resembled the wild-type mice. Similar results were obtained using the k-mean clustering statistics analysis. With two independent methods, about 20% of female Mecp2(+/-) mice showed RTT-like breathing abnormalities that began as early as 3 weeks of age in the Mecp2(+/-) mice, and were suppressed with 3% CO2. The finding that only a small proportion of Mecp2(+/-) mice develops RTT-like breathing abnormalities suggests incomplete allele inactivation in the RTT-model Mecp2(+/-) mice.

  8. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  9. Decreased lung compliance and air trapping in heterozygous SP-B-deficient mice.

    PubMed

    Clark, J C; Weaver, T E; Iwamoto, H S; Ikegami, M; Jobe, A H; Hull, W M; Whitsett, J A

    1997-01-01

    Genetic ablation of the murine SP-B gene in transgenic mice caused lethal perinatal respiratory distress in homozygous offspring, whereas heterozygous SP-B (+/-) mice survived postnatally. In adult SP-B(+/-) mice, surfactant protein B mRNA and the alveolar lavage SP-B protein were reduced by 50% compared with wild-type littermates, consistent with the inactivation of a single SP-B allele. Expression of SP-A, SP-C, and SP-D proteins was not affected in SP-B(+/-) mice. Heterozygous SP-B(+/-) mice reached maturity in numbers expected by Mendelian inheritance of a recessive gene. Lung morphology and both intracellular and extracellular phospholipid pool size and composition were unaltered in the SP-B(+/-) mice. Despite normal survival, pulmonary function studies demonstrated a consistent decrease in lung compliance in SP-B(+/-) mice. Abnormalities of inflation/deflation curves demonstrated airway collapse at low deflation pressures. Residual volumes were increased in the SP-B(+/-) mice. In summary, SP-B mRNA and SP-B protein were reduced by 50% in SP-B(+/-) mice, resulting in abnormalities of lung compliance and air trapping, suggesting a potential susceptibility to pulmonary dysfunction associated with SP-B deficiency.

  10. Abnormal morphology of myelin and axon pathology in murine models of multiple sclerosis.

    PubMed

    Bando, Yoshio; Nomura, Taichi; Bochimoto, Hiroki; Murakami, Koichi; Tanaka, Tatsuhide; Watanabe, Tsuyoshi; Yoshida, Shigetaka

    2015-02-01

    Demyelination and axonal damage are responsible for neurological deficits in multiple sclerosis (MS), an inflammatory demyelinating disease of the central nervous system. However, the pathology of axonal damage in MS is not fully understood. In this study, histological analysis of morphological changes of axonal organelles during demyelination in murine models was investigated by scanning electron microscopy (SEM) using an osmium-maceration method. In cuprizone-induced demyelination, SEM showed typical morphology of demyelination in the corpus callosum of mouse brain. In contrast, SEM displayed variations in ultrastructural abnormalities of myelin structures and axonal organelles in spinal cord white matter of experimental autoimmune encephalomyelitis (EAE) mice, an animal model of MS. Myelin detachment and excessive myelin formation were observed as typical morphological myelin abnormalities in EAE. In addition, well-developed axoplasmic reticulum-like structures and accumulated mitochondria were observed in tortuous degenerating/degenerated axons and the length of mitochondria in axons of EAE spinal cord was shorter compared with naïve spinal cord. Immunohistochemistry also revealed dysfunction of mitochondrial fusion/fission machinery in EAE spinal cord axons. Moreover, the number of Y-shaped mitochondria was significantly increased in axons of the EAE spinal cord. Axonal morphologies in myelin basic protein-deficient shiverer mice were similar to those in EAE. However, shiverer mice had "tortuous" (S-curve shaped mitochondria) and larger mitochondria compared with wild-type and EAE mice. Lastly, analysis of human MS patient autopsied brains also demonstrated abnormal myelin structures in demyelinating lesions. These results indicate that morphological abnormalities of myelin and axonal organelles play important role on the pathogenesis of axonal injury in demyelinating diseases.

  11. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  12. Abortion for fetal abnormality.

    PubMed

    Maclean, N E

    1979-07-25

    I wish to thank Dr. Pauline Bennett for her reply (NZ Med J, 13 June). She has demonstrated well that in dealing with sensitive difficult issues such as abortion for fetal abnormality, the one thing the doctor is not recommended to do is to speak the truth] I am prompted to write this letter for 2 reasons. Firstly, the excellent letter written by Dr. A. M. Rutherford (NZ Med J, 13 June) on the subject of abortion stated, "The most disturbing feature about the whole controversy is the 'blunting of our conscience'." When the doctors are not encouraged to be honest with patients then indeed our conscience has been blunted. Secondly, I watched Holocaust last night, and cannot refrain from stating that I see frightening parallels between our liberal abortion policy and the activities of the Nazis. As I watched the "mental patients" being herded into the shed for gassing by the polite, tidy, white coated medical staff, and then heard the compassionate, sensitive, letter of the hospital authorities to the relatives of the deceased, the parallel became obvious. The mental patients were weak, defenseless, burdensome, and uneconomic; the unborn are weak, defenseless, burdensome, and uneconomic. The hospital authority's letter was acceptable in many ways, acceptable except that its words bore no relation to the truth. It is said that the "first casualty of war is the truth". Whether that war involves the Jews, or the insane, or the unborn, the statement would seem correct.

  13. Effects of tea, decaffeinated tea, and caffeine on UVB light-induced complete carcinogenesis in SKH-1 mice: demonstration of caffeine as a biologically important constituent of tea.

    PubMed

    Huang, M T; Xie, J G; Wang, Z Y; Ho, C T; Lou, Y R; Wang, C X; Hard, G C; Conney, A H

    1997-07-01

    Oral administration of green or black tea inhibited UVB light-induced complete carcinogenesis in the skin of SKH-1 mice. Green tea was a more effective inhibitor than black tea. Oral administration of decaffeinated green or black tea resulted in substantially less inhibitory activity than did administration of the regular teas, and in one experiment, administration of a high-dose level of the decaffeinated teas enhanced the tumorigenic effect of UVB. Oral administration of caffeine alone had a substantial inhibitory effect on UVB-induced carcinogenesis, and adding caffeine to the decaffeinated teas restored the inhibitory effects of these teas on UVB-induced carcinogenesis. In additional studies, topical application of a green tea polyphenol fraction after each UVB application inhibited UVB-induced tumorigenesis. The results indicate that caffeine contributes in an important way to the inhibitory effects of green and black tea on UVB-induced complete carcinogenesis.

  14. Abnormal uterine bleeding.

    PubMed

    Jennings, J C

    1995-11-01

    Physicians who care for female patients cannot avoid the frequent complaint of abnormal uterine bleeding. Knowledge of the disorders that cause this problem can prevent serious consequences in many patients and improve the quality of life for many others. The availability of noninvasive and minimally invasive diagnostic studies and minimally invasive surgical treatment has revolutionized management of abnormal uterine bleeding. Similar to any other disorder, the extent to which a physician manages abnormal uterine bleeding depends on his or her own level of comfort. When limitations of either diagnostic or therapeutic capability are encountered, consultation and referral should be used to the best interest of patients.

  15. Constitutive Notch Signaling Causes Abnormal Development of the Oviducts, Abnormal Angiogenesis, and Cyst Formation in Mouse Female Reproductive Tract.

    PubMed

    Ferguson, Lydia; Kaftanovskaya, Elena M; Manresa, Carmen; Barbara, Agustin M; Poppiti, Robert J; Tan, Yingchun; Agoulnik, Alexander I

    2016-03-01

    The Notch signaling pathway is critical for the differentiation of many tissues and organs in the embryo. To study the consequences of Notch1 gain-of-function signaling on female reproductive tract development, we used a cre-loxP strategy and Amhr2-cre transgene to generate mice with conditionally activated Notch1 (Rosa(Notch1)). The Amhr2-cre transgene is expressed in the mesenchyme of developing female reproductive tract and in granulosa cells in the ovary. Double transgenic Amhr2-cre, Rosa(Notch1) females were infertile, whereas control Rosa(Notch1) mice had normal fertility. All female reproductive organs in mutants showed hemorrhaging of blood vessels progressing with age. The mutant oviducts did not develop coiling, and were instead looped around the ovary. There were multiple blockages in the lumen along the oviduct length, creating a barrier for sperm or oocyte passage. Mutant females demonstrated inflamed uteri with increased vascularization and an influx of inflammatory cells. Additionally, older females developed ovarian, oviductal, and uterine cysts. The significant change in gene expression was detected in the mutant oviduct expression of Wnt4, essential for female reproductive tract development. Similar oviductal phenotypes have been detected previously in mice with activated Smo and in beta-catenin, Wnt4, Wnt7a, and Dicer conditional knockouts, indicating a common regulatory pathway disrupted by these genetic abnormalities. PMID:26843448

  16. Skeletal Muscle Abnormalities in Heart Failure.

    PubMed

    Kinugawa, Shintaro; Takada, Shingo; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2015-01-01

    Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure. PMID:26346520

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Procedures for two demonstrations are presented. The first is a demonstration of chemiluminescence. The second is a demonstration using a secondary battery constructed from common household articles. (JN)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents the following chemistry lecture demonstrations and experiments: (1) a versatile kinetic demonstration; (2) the Bakelite Demonstration; (3) applying Beer's law; and (4) entropy calculations. (HM)

  19. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  20. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  1. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  2. Abnormal cortical synaptic transmission in CaV2.1 knockin mice with the S218L missense mutation which causes a severe familial hemiplegic migraine syndrome in humans.

    PubMed

    Vecchia, Dania; Tottene, Angelita; van den Maagdenberg, Arn M J M; Pietrobon, Daniela

    2015-01-01

    Familial hemiplegic migraine type 1 (FHM1) is caused by gain-of-function mutations in CaV2.1 (P/Q-type) Ca(2+) channels. Knockin (KI) mice carrying the FHM1 R192Q missense mutation show enhanced cortical excitatory synaptic transmission at pyramidal cell synapses but unaltered cortical inhibitory neurotransmission at fast-spiking interneuron synapses. Enhanced cortical glutamate release was shown to cause the facilitation of cortical spreading depression (CSD) in R192Q KI mice. It, however, remains unknown how other FHM1 mutations affect cortical synaptic transmission. Here, we studied neurotransmission in cortical neurons in microculture from KI mice carrying the S218L mutation, which causes a severe FHM syndrome in humans and an allele-dosage dependent facilitation of experimental CSD in KI mice, which is larger than that caused by the R192Q mutation. We show gain-of-function of excitatory neurotransmission, due to increased action-potential evoked Ca(2+) influx and increased probability of glutamate release at pyramidal cell synapses, but unaltered inhibitory neurotransmission at multipolar interneuron synapses in S218L KI mice. In contrast with the larger gain-of-function of neuronal CaV2.1 current in homozygous than heterozygous S218L KI mice, the gain-of-function of evoked glutamate release, the paired-pulse ratio and the Ca(2+) dependence of the excitatory postsynaptic current were similar in homozygous and heterozygous S218L KI mice, suggesting compensatory changes in the homozygous mice. Furthermore, we reveal a unique feature of S218L KI cortical synapses which is the presence of a fraction of mutant CaV2.1 channels being open at resting potential. Our data suggest that, while the gain-of-function of evoked glutamate release may explain the facilitation of CSD in heterozygous S218L KI mice, the further facilitation of CSD in homozygous S218L KI mice is due to other CaV2.1-dependent mechanisms, that likely include Ca(2+) influx at voltages sub

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Details three demonstrations for use in chemistry classrooms. Includes: "A Demonstration of Corrosion by Differential Aeration"; "A Simple Demonstration of the Activation Energy Concept"; and "A Boiling Demonstration at Room Temperature." Each description includes equipment, materials, and methods. (CW)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two chemistry demonstrations including a demonstration of chemical inhibition and "The Rayleigh Fountain" which demonstrates the polarity of the water molecule. Provides instructions and explanations for each demonstration. (CW)

  5. Cell volume control in phospholemman (PLM) knockout mice: do cardiac myocytes demonstrate a regulatory volume decrease and is this influenced by deletion of PLM?

    PubMed

    Bell, James R; Lloyd, David; Curl, Claire L; Delbridge, Lea M D; Shattock, Michael J

    2009-03-01

    In addition to modulatory actions on Na+-K+-ATPase, phospholemman (PLM) has been proposed to play a role in cell volume regulation. Overexpression of PLM induces ionic conductances, with 'PLM channels' exhibiting selectivity for taurine. Osmotic challenge of host cells overexpressing PLM increases taurine efflux and augments the cellular regulatory volume decrease (RVD) response, though a link between PLM and cell volume regulation has not been studied in the heart. We recently reported a depressed cardiac contractile function in PLM knockout mice in vivo, which was exacerbated in crystalloid-perfused isolated hearts, indicating that these hearts were osmotically challenged. To address this, the present study investigated the role of PLM in osmoregulation in the heart. Isolated PLM wild-type and knockout hearts were perfused with a crystalloid buffer supplemented with mannitol in a bid to prevent perfusate-induced cell swelling and maintain function. Accordingly, and in contrast to wild-type control hearts, contractile function was improved in PLM knockout hearts with 30 mM mannitol. To investigate further, isolated PLM wild-type and knockout cardiomyocytes were subjected to increasing hyposmotic challenges. Initial validation studies showed the IonOptix video edge-detection system to be a simple and accurate 'real-time' method for tracking cell width as a marker of cell size. Myocytes swelled equally in both genotypes, indicating that PLM, when expressed at physiological levels in cardiomyocytes, is not essential to limit water accumulation in response to a hyposmotic challenge. Interestingly, freshly isolated adult cardiomyocytes consistently failed to mount RVDs in response to cell swelling, adding to conflicting reports in the literature. A proposed perturbation of the RVD response as a result of the cell isolation process was not restored, however, with short-term culture in either adult or neonatal cardiomyocytes.

  6. Thrombotic thrombocytopenic purpura: MR demonstration of reversible brain abnormalities

    SciTech Connect

    D'Aprile, P.; Carella, A.; Pagliarulo, R. ); Farchi, G. )

    1994-01-01

    We report a case of thrombotic thrombocytopenic purpura evaluated by MR, Multiple hyperintense foci on the TS-weighted images, observed principally in the brain stem and in the region of the basal nuclei, and neurologic signs disappeared after 15 days of therapy. 6 refs., 2 figs.

  7. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes three flame test demonstrations including "Student-Presented Demonstrations on the Colors of Transition Metal Complexes,""A Flame Test Demonstration Device," and "Vivid Flame Tests." Preparation and procedures are discussed. Included in the first demonstration is an evaluation scheme for grading student demonstrations. (CW)

  8. Epididymal Hypo-Osmolality Induces Abnormal Sperm Morphology and Function in the Estrogen Receptor Alpha Knockout Mouse1

    PubMed Central

    Joseph, Avenel; Shur, Barry D.; Ko, CheMyong; Chambon, Pierre; Hess, Rex A.

    2010-01-01

    Estrogen receptor-alpha (ESR1) is highly expressed in the efferent ductules of all species studied as well as in the epididymal epithelium in mice and other select species. Male mice lacking ESR1 (Esr1KO) are infertile, but transplantation studies demonstrated that Esr1KO germ cells are capable of fertilization when placed in a wild-type reproductive tract. These results suggest that extratesticular regions, such as the efferent ductules and epididymis, are the major source of pathological changes in Esr1KO males. Previous studies have shown alterations in ion and fluid transporters in the efferent duct and epididymal epithelia of Esr1KO males, leading to misregulation of luminal fluid pH. To determine the effect of an altered epididymal milieu on Esr1KO sperm, we assayed sperm morphology in the different regions of the epididymis. Sperm recovered from the epididymis exhibited abnormal flagellar coiling and increased incidence of spontaneous acrosome reactions, both of which are consistent with exposure to abnormal epididymal fluid. Analysis of the epididymal fluid revealed that the osmolality of the Esr1KO fluid was reduced relative to wild type, consistent with prior reports of inappropriate fluid absorption from the efferent ductules. This, along with the finding that morphological defects increased with transit through the epididymal duct, suggests that the anomalies in sperm are a consequence of the abnormal luminal environment. Consistent with this, incubating Esr1KO sperm in a more wild-type-like osmotic environment significantly rescued the abnormal flagellar coiling. This work demonstrates that Esr1KO mice exhibit an abnormal fluid environment in the lumen of the efferent ducts and epididymis, precluding normal sperm maturation and instead resulting in progressive deterioration of sperm that contributes to infertility. PMID:20130266

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) partition coefficients; (2) Rutherford simulation experiment; and (3) demonstration of the powerful oxidizing property of dimanganeseheptoxide. Background information, materials needed, and procedures are provided for each demonstration. (JN)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presented are three demonstrations for chemical education. The activities include: (1) demonstration of vapor pressure; (2) a multicolored luminol-based chemiluminescence demonstration; and (3) a Charles's Law/Vapor pressure apparatus. (RH)

  11. Reflectance Demonstration.

    ERIC Educational Resources Information Center

    Kowalski, Frank

    1993-01-01

    Presents a demonstration in which a mirror "disappears" upon rotation. The author has used the demonstration with students from fourth grade up through college. Suggestions are given for making the demonstration into a permanent hallway display. (MVL)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)

  13. Knockout of Foxp2 disrupts vocal development in mice

    PubMed Central

    Castellucci, Gregg A.; McGinley, Matthew J.; McCormick, David A.

    2016-01-01

    The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/−) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/− mice. In comparison to their WT littermates, Foxp2+/− mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/− song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene’s role in general vocal motor control. PMID:26980647

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    This article details two demonstrations involving color changes. Included are "Manganese Color Reactions" and "Flame Colors Demonstration." Include a list of materials needed, procedures, cautions, and results. (CW)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information (including chemical reactions) and procedures used are provided for (1) three buffer demonstrations and (2) a demonstration of phase transfer catalysis and carbanion formation. (JN)

  16. [Hair shaft abnormalities].

    PubMed

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  17. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Three demonstrations are described: paramagnetic properties of Fe(11) and Fe(111), the preparation of polyurethane foam: a lecture demonstration and the electrolysis of water-fuel cell reactions. A small discussion of the concepts demonstrated is included in each demonstration's description. (MR)

  18. Induction of lymphomas on implantation of human oral squamous cell carcinomas in nude mice.

    PubMed

    Teni, T R; Saranath, D; Mahale, A M; Pai, S A; Ahire, S D; Ingle, A D

    2001-02-01

    Cancer cells from five oral cancer patients and pleomorphic adenoma cells from one individual were inoculated as single cell suspension into subcutis of 30 Swiss nude mice and tail vein of additional 30 mice. Further, tumor tissue pieces from three oral cancer patients were xenografted s.c. in 18 nude mice, and 10 mice were kept as controls. In animals implanted with tumor pieces, 7/18 (39%) mice, developed squamous cell carcinoma at the site of inoculation within 8-15 days, while tumors were not observed in mice inoculated with single cell suspension, up to 60/90 days. In 8/68 (12%) mice, white foci were observed in several tissues, with hepatomegaly and splenomegaly noted in 27/68 (39%) mice. Histopathological examination of various tissues revealed presence of large cell lymphoma in several organs in 14/68 (21%) mice. No regional or distant metastasis of the implanted oral tumor cells was detected. Mice injected with cells from pleomorphic adenoma, also demonstrated large cell lymphoma in 2/10 (20%) mice, whereas none of the 10 control animals showed any gross abnormalities or microscopic abnormalities in several organs. 2/16 (12%) lymphomas exhibited positive reaction with mouse B cell antibodies illustrating the murine origin of the lymphomas, and these were immunophenotyed as B cell lymphomas. The lymphomas were also examined with mouse T cell antibodies and none reacted positively with the mouse T cell antibodies. The lymphomas also failed to react with human T cell, B cell and human Leucocyte common antigen (LCA) antibodies, indicating that the induced lymphomas were not of human origin. The tumor specimens from seven of eight oral cancer patients and the pleomorphic adenoma patient induced lymphomas in nude mice. Thus it appears that xenografting oral tumor cells into nude mice may cause induction of the murine lymphomas, and this needs further investigation.

  19. Long-term effects of ovariectomy on osteoporosis and obesity in estrogen-receptor-β-deleted mice.

    PubMed

    Seidlova-Wuttke, Dana; Nguyen, Ba Tiep; Wuttke, Wolfgang

    2012-02-01

    Untreated BERKO mice demonstrate few abnormalities in bone phenotype and recent ovariectomy has few effects on various bone characteristics in these mice. Long-term studies on the bone phenotype of intact and ovariectomized mice are unavailable. Using quantitative computed tomography (qCT), we determined various parameters of the metaphysis of the tibia in sham-ovariectomized (intact) and ovariectomized BERKO and wildtype mice. Body weight and estrogen-regulated fat were also measured. Mice underwent surgery (ovariectomy or sham) at 3 mo of age, and qCT analysis was performed every 2 to 4 mo until mice were 12 mo old. Ovariectomized wildtype mice gained body weight and their fat depot increased in size within 2 mo after ovariectomy. Obesity developed later in ovariectomized BERKO mice, which became significantly heavier than their wildtype counterparts. Ovariectomized wildtype mice lost trabecular density more rapidly than did ovariectomized BERKO mice, which did not show similar loss in trabecular density until at least 7 mo after ovariectomy. At the latest studied time point (9 mo after surgery), cortical area was significantly larger in ovariectomized BERKO mice than ovariectomized wildtype mice. The absence of ERβ in ovariectomized BERKO mice during the first 3 to 5 mo after ovariectomy had protective effects against obesity and trabecular rarification; this protective effect disappeared at later time points.

  20. Asymmetric cell-matrix and biomechanical abnormalities in elastin insufficiency induced aortopathy.

    PubMed

    Krishnamurthy, Varun K; Evans, Ashlie N; Wansapura, Janaka P; Osinska, Hanna; Maddy, Kelsey E; Biechler, Stefanie V; Narmoneva, Daria A; Goodwin, Richard L; Hinton, Robert B

    2014-10-01

    Aortopathy is characterized by vascular smooth muscle cell (VSMC) abnormalities and elastic fiber fragmentation. Elastin insufficient (Eln (+/-)) mice demonstrate latent aortopathy similar to human disease. We hypothesized that aortopathy manifests primarily in the aorto-pulmonary septal (APS) side of the thoracic aorta due to asymmetric cardiac neural crest (CNC) distribution. Anatomic (aortic root vs. ascending aorta) and molecular (APS vs. non-APS) regions of proximal aorta tissue were examined in adult and aged wild type (WT) and mutant (Eln (+/-)) mice. CNC, VSMCs, elastic fiber architecture, proteoglycan expression, morphometrics and biomechanical properties were examined using histology, 3D reconstruction, micropipette aspiration and in vivo magnetic resonance imaging (MRI). In the APS side of Eln (+/-) aorta, Sonic Hedgehog (SHH) is decreased while SM22 is increased. Elastic fiber architecture abnormalities are present in the Eln (+/-) aortic root and APS ascending aorta, and biglycan is increased in the aortic root while aggrecan is increased in the APS aorta. The Eln (+/-) ascending aorta is stiffer than the aortic root, the APS side is thicker and stiffer than the non-APS side, and significant differences in the individual aortic root sinuses are observed. Asymmetric structure-function abnormalities implicate regional CNC dysregulation in the development and progression of aortopathy.

  1. Gait abnormalities, ADHD, and environmental exposure to nitrous oxide.

    PubMed

    Fluegge, Keith

    2016-08-30

    Papadopoulos et al. (2014) investigated gait profiles of children with attention-deficit hyperactivity disorder-combined type (ADHD-CT) compared to typical developing (TD) controls. The authors reported differences in the gait profile of ADHD-CT in the self-selected fast speed category. Additionally, others have proposed a maturational delay hypothesis in gait, demonstrating that gait variability decreases with age in ADHD children. It has been previously suggested that the cognitive impairment seen in conditions like ADHD may result from chronic, environmental exposure to the air pollutant, nitrous oxide (N2O). Exposure to N2O is thought to exert its antinociceptive properties by stimulating release of dynorphin peptides in the central nervous system which act upon kappa opioid receptors (KOR). Opioid-mediated gait abnormalities in ADHD are supported with evidence that prodynorphin mutations in mice lead to cytotoxic levels of dynorphin A (DYN A) and contribute to abnormal gait profiles and gradual loss of motor coordination. Interestingly, constitutive activity of the KOR receptor in rat brain has been recently shown to undergo maturational alterations, suggesting that while altered gait profiles in ADHD may be a function of the enhanced opioidergic activity attributable to chronic exposure to the environmental air pollutant, N2O, age-attenuated constitutive activity of KOR in brain may explain the normalization of these altered gait profiles in older ADHD subjects. PMID:27285951

  2. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function

    PubMed Central

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Anderson, George M.; Snyder, Isaac; Blakely, Randy D.; Gershon, Michael D.

    2016-01-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4–mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  3. Serotonin transporter variant drives preventable gastrointestinal abnormalities in development and function.

    PubMed

    Margolis, Kara Gross; Li, Zhishan; Stevanovic, Korey; Saurman, Virginia; Israelyan, Narek; Anderson, George M; Snyder, Isaac; Veenstra-VanderWeele, Jeremy; Blakely, Randy D; Gershon, Michael D

    2016-06-01

    Autism spectrum disorder (ASD) is an increasingly common behavioral condition that frequently presents with gastrointestinal (GI) disturbances. It is not clear, however, how gut dysfunction relates to core ASD features. Multiple, rare hyperfunctional coding variants of the serotonin (5-HT) transporter (SERT, encoded by SLC6A4) have been identified in ASD. Expression of the most common SERT variant (Ala56) in mice increases 5-HT clearance and causes ASD-like behaviors. Here, we demonstrated that Ala56-expressing mice display GI defects that resemble those seen in mice lacking neuronal 5-HT. These defects included enteric nervous system hypoplasia, slow GI transit, diminished peristaltic reflex activity, and proliferation of crypt epithelial cells. An opposite phenotype was seen in SERT-deficient mice and in progeny of WT dams given the SERT antagonist fluoxetine. The reciprocal phenotypes that resulted from increased or decreased SERT activity support the idea that 5-HT signaling regulates enteric neuronal development and can, when disturbed, cause long-lasting abnormalities of GI function. Administration of a 5-HT4 agonist to Ala56 mice during development prevented Ala56-associated GI perturbations, suggesting that excessive SERT activity leads to inadequate 5-HT4-mediated neurogenesis. We propose that deficient 5-HT signaling during development may contribute to GI and behavioral features of ASD. The consequences of therapies targeting SERT during pregnancy warrant further evaluation. PMID:27111230

  4. Motivational disturbances and effects of L-dopa administration in neurofibromatosis-1 model mice.

    PubMed

    Wozniak, David F; Diggs-Andrews, Kelly A; Conyers, Sara; Yuede, Carla M; Dearborn, Joshua T; Brown, Jacquelyn A; Tokuda, Kazuhiro; Izumi, Yukitoshi; Zorumski, Charles F; Gutmann, David H

    2013-01-01

    Children with neurofibromatosis type 1 (NF1) frequently have cognitive and behavioral deficits. Some of these deficits have been successfully modeled in Nf1 genetically-engineered mice that develop optic gliomas (Nf1 OPG mice). In the current study, we show that abnormal motivational influences affect the behavior of Nf1 OPG mice, particularly with regard to their response to novel environmental stimuli. For example, Nf1 OPG mice made fewer spontaneous alternations in a Y-maze and fewer arm entries relative to WT controls. However, analysis of normalized alternation data demonstrated that these differences were not due to a spatial working memory deficit. Other reported behavioral results (e.g., open-field test, below) suggest that differential responses to novelty and/or other motivational influences may be more important determinants of these kinds of behavior than simple differences in locomotor activity/spontaneous movements. Importantly, normal long-term depression was observed in hippocampal slices from Nf1 OPG mice. Results from elevated plus maze testing showed that differences in exploratory activity between Nf1 OPG and WT control mice may be dependent on the environmental context (e.g., threatening or non-threatening) under which exploration is being measured. Nf1 OPG mice also exhibited decreased exploratory hole poking in a novel holeboard and showed abnormal olfactory preferences, although L-dopa (50 mg/kg) administration resolved the abnormal olfactory preference behaviors. Nf1 OPG mice displayed an attenuated response to a novel open field in terms of decreased ambulatory activity and rearing but only during the first 10 min of the session. Importantly, Nf1 OPG mice demonstrated investigative rearing deficits with regard to a novel hanging object suspended on one side of the field which were not rescued by L-dopa administration. Collectively, our results provide new data important for evaluating therapeutic treatments aimed at ameliorating NF1

  5. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP.

  6. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP

    PubMed Central

    Hu, Bo; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-01-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it “functional demyelination”, a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  7. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  8. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for college level chemistry courses including: "Electrochemical Cells Using Sodium Silicate" and "A Simple, Vivid Demonstration of Selective Precipitation." Lists materials, preparation, procedures, and precautions. (CW)

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Two demonstrations are described: (1) red cabbage and electrolysis of water to bring together acid/base and electrochemical concepts; and (2) a model to demonstrate acid/base conjugate pairs utilizing magnets. (SK)

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Presents: (1) a simple demonstration which illustrates the driving force of entropy using the familiar effects of the negative thermal expansion coefficient of rubber; and (2) a demonstration of tetrahedral bonding using soap films. (CS)

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two demonstrations including a variation of the iodine clock reaction, and a simple demonstration of refractive index. The materials, procedures, and a discussion of probable results are given for each. (CW)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are two demonstrations; "Heat of Solution and Colligative Properties: An Illustration of Enthalpy and Entropy," and "A Vapor Pressure Demonstration." Included are lists of materials and experimental procedures. Apparatus needed are illustrated. (CW)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Presents two demonstrations; one on Boyle's Law, to illustrate the gas law and serve as a challenging problem for the students; the other is a modified Color Blind Traffic Light demonstration in which the oscillating reactions were speeded up. (GA)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Provides instructions on conducting four demonstrations for the chemistry classroom. Outlines procedures for demonstrations dealing with coupled oscillations, the evaporation of liquids, thioxanthone sulfone radical anion, and the control of variables and conservation of matter. (TW)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1978-01-01

    Two demonstrations are described which are suitable for introductory chemistry classes. The first involves the precipitation of silver, and the second is a demonstration of the relationship between rate constants and equilibrium constants using water and beakers. (BB)

  16. tmie Is required for gentamicin uptake by the hair cells of mice.

    PubMed

    Park, Seojin; Lee, Jeong-Han; Cho, Hyun-Ju; Lee, Kyu-yup; Kim, Myoung Ok; Yun, Byung-Wook; Ryoo, ZaeYoung

    2013-04-01

    The circling (cir/cir) mouse is a spontaneous model of deafness due to deletion of a 40-kb genomic region that includes the transmembrane inner ear (tmie) gene. In addition to being deaf, cir/cir mice exhibit abnormal behaviors including circling and hyperactivity. Here we investigated differences between 3-d-old (that is, before hair-cell degeneration) cir/cir and phenotypically normal (+/cir) mice and the reason underlying the degeneration of the inner ear structure of cir/cir mice. To this end, we used gentamicin, gentamicin-Texas red conjugate, and FM1-43 to investigate mechanotransducer channel activity in the hair cells of cir/cir mice; these compounds are presumed to enter hair cells through the mechanotransducer channel. Although the structure of the inner ear of +/cir mice was equivalent to that of cir/cir mice, the hair cells of cir/cir mice (unlike +/cir) did not take up gentamicin, gentamicin-Texas red conjugate, or FM1-43. These findings suggest that hair cells in cir/cir mice demonstrate abnormal maturation and mechanotransduction. In addition, our current results indicate that tmie is required for maturation and maintenance of hair cells. PMID:23582420

  17. Demonstrating Diffusion

    ERIC Educational Resources Information Center

    Foy, Barry G.

    1977-01-01

    Two demonstrations are described. Materials and instructions for demonstrating movement of molecules into cytoplasm using agar blocks, phenolphthalein, and sodium hydroxide are given. A simple method for demonstrating that the rate of diffusion of a gas is inversely proportional to its molecular weight is also presented. (AJ)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes a demonstration involving the controlled combustion of a mixture of metals with black and smokeless powder in a small Erlenmeyer flask. Also describes demonstrations using a device that precludes breathing of hazardous vapors during class demonstrations; the device is easy to transport and use in rooms without sinks. (JN)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations used in laboratory chemistry courses. Discusses a "pH-activated" display used to chemically and visually supplement lecture demonstrations. Outlines another demonstration designed to show that copper(II) chloride is made of two ions, blue and yellow, which are combined to produce green. (TW)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Sands, Robert; And Others

    1982-01-01

    Procedures for two demonstrations are provided. The solubility of ammonia gas in water is demonstrated by introducing water into a closed can filled with the gas, collapsing the can. The second demonstration relates scale of standard reduction potentials to observed behavior of metals in reactions with hydrogen to produce hydrogen gas. (Author/JN)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two classroom chemistry demonstrations which focus on the descriptive chemistry of bromine and iodine. Outlines the chemicals and equipment needed, experimental procedures, and discussion of one demonstration of the oxidation states of bromine and iodine, and another demonstration of the oxidation states of iodine. (TW)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    List of materials needed, procedures used, and results obtained are provided for two demonstrations. The first is an inexpensive and quick method for demonstrating column chromatography of plant pigments of spinach extract. The second is a demonstration of cathodic protection by impressed current. (JN)

  3. Genetic Deletion of Cadm4 Results in Myelin Abnormalities Resembling Charcot-Marie-Tooth Neuropathy

    PubMed Central

    Golan, Neev; Kartvelishvily, Elena; Spiegel, Ivo; Salomon, Daniela; Sabanay, Helena; Rechav, Katya; Vainshtein, Anya; Frechter, Shahar; Maik-Rachline, Galia; Eshed-Eisenbach, Yael; Momoi, Takashi

    2013-01-01

    The interaction between myelinating Schwann cells and the axons they ensheath is mediated by cell adhesion molecules of the Cadm/Necl/SynCAM family. This family consists of four members: Cadm4/Necl4 and Cadm1/Necl2 are found in both glia and axons, whereas Cadm2/Necl3 and Cadm3/Necl1 are expressed by sensory and motor neurons. By generating mice lacking each of the Cadm genes, we now demonstrate that Cadm4 plays a role in the establishment of the myelin unit in the peripheral nervous system. Mice lacking Cadm4 (PGK-Cre/Cadm4fl/fl), but not Cadm1, Cadm2, or Cadm3, develop focal hypermyelination characterized by tomacula and myelin outfoldings, which are the hallmark of several Charcot-Marie-Tooth neuropathies. The absence of Cadm4 also resulted in abnormal axon–glial contact and redistribution of ion channels along the axon. These neuropathological features were also found in transgenic mice expressing a dominant-negative mutant of Cadm4 lacking its cytoplasmic domain in myelinating glia Tg(mbp-Cadm4dCT), as well as in mice lacking Cadm4 specifically in Schwann cells (DHH-Cre/Cadm4fl/fl). Consistent with these abnormalities, both PGK-Cre/Cadm4fl/fl and Tg(mbp-Cadm4dCT) mice exhibit impaired motor function and slower nerve conduction velocity. These findings indicate that Cadm4 regulates the growth of the myelin unit and the organization of the underlying axonal membrane. PMID:23825401

  4. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  5. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  6. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  7. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  8. Mice Expressing Mutant Trpv4 Recapitulate the Human TRPV4 Disorders††

    PubMed Central

    Chen, Yuqing; Lee, Brendan; Cohn, Daniel H.

    2014-01-01

    Activating mutations in TRPV4 are known to cause a spectrum of skeletal dysplasias ranging from autosomal dominant brachyolmia to lethal metatropic dysplasia. To develop an animal model of these disorders, we created transgenic mice expressing either wild-type or mutant TRPV4. Mice transgenic for wild-type Trpv4 showed no morphological changes at embryonic day 16.5, but did have a delay in bone mineralization. Overexpression of a mutant TRPV4 caused a lethal skeletal dysplasia that phenocopied many abnormalities associated with metatropic dysplasia in humans, including dumbbell-shaped long bones, a small ribcage, abnormalities in the autopod, and abnormal ossification in the vertebrae. The difference in phenotype between embryos transgenic for wild-type or mutant Trpv4 demonstrates that an increased amount of wild-type protein can be tolerated and that an activating mutation of this protein is required to produce a skeletal dysplasia phenotype. PMID:24644033

  9. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Free radical chlorination of methane is used in organic chemistry to introduce free radical/chain reactions. In spite of its common occurrence, demonstrations of the reaction are uncommon. Therefore, such a demonstration is provided, including background information, preparation of reactants/reaction vessel, introduction of reactants, irradiation,…

  10. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Provides three descriptions of demonstrations used in various chemistry courses. Includes the use of a simple demonstration model to illustrate principles of chromatography, techniques for using balloons to teach about the behavior of gases, and the use of small concentrations of synthetic polyelectrolytes to induce the flocculation hydrophobic…

  11. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Outlines a simple, inexpensive way of demonstrating electroplating using the reaction between nickel ions and copper metal. Explains how to conduct a demonstration of the electrolysis of water by using a colored Na2SO4 solution as the electrolyte so that students can observe the pH changes. (TW)

  12. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Presented are three demonstrations: "The Construction and Use of Commercial Voltaic Cell Displays in Freshman Chemistry"; Dramatizing Isotopes: Deuterated Ice Cubes Sink"; and "A Simple Apparatus to Demonstrate Differing Gas Diffusion Rates (Graham's Law)." Materials, procedures, and safety considerations are discussed. (CW)

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Described is a demonstration utilized to measure the heat of vaporization using the Clausius-Clapeyron equation. Explained is that when measurement is made as part of a demonstration, it raises student's consciousness that chemistry is experimentally based. (Author/DS)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1982-01-01

    Three chemistry demonstrations are described: (1) modification of copper catalysis demonstration apparatus; (2) experiments in gas-liquid chromatography with simple gas chromatography at room temperature; and (3) equilibria in silver arsenate-arsenic acid and silver phosphate-phosphoric acid systems. Procedures and materials needed are provided.…

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Presented are two chemistry demonstrations: (1) an alternative method for the demonstration of the properties of alkali metals, water is added to small amounts of metal; (2) an exploration of the properties of hydrogen, helium, propane, and carbon dioxide using an open trough and candle. (MVL)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1990-01-01

    Described are demonstrations designed to reveal the important "nonsolvent" properties of water through its interaction with a toy called "Magic Sand" and other synthetic silica derivatives, especially those bonded with organic moities. The procedures for seven demonstrations along with a discussion of the effects are presented. (CW)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Two demonstrations are described: (1) a variant of preparing purple benzene by phase transfer catalysis with quaternary ammonium salts and potassium permanganate in which crown ethers are used; (2) a corridor or "hallway" demonstration in which unknown molecular models are displayed and prizes awarded to students correctly identifying the…

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Describes a lecture demonstration of a solid state phase transition using a thermodynamic material which changes state at room temperature. Also describes a demonstration on kinetics using a "Big Bang" (trade mark) calcium carbide cannon. Indicates that the cannon is safe to use. (JN)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Provides directions for setup and performance of two demonstrations. The first demonstrates the principles of Raoult's Law; using a simple apparatus designed to measure vapor pressure. The second illustrates the energy available from alcohol combustion (includes safety precautions) using an alcohol-fueled missile. (JM)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents two demonstrations for classroom use related to precipitation of ferrous hydroxide and to variation of vapor pressure with temperature. The former demonstration is simple and useful when discussing solubility of ionic compounds electrode potential of transition elements, and mixed valence compounds. (Author/SA)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1983-01-01

    Discusses a supplement to the "water to rose" demonstration in which a pink color is produced. Also discusses blood buffer demonstrations, including hydrolysis of sodium bicarbonate, simulated blood buffer, metabolic acidosis, natural compensation of metabolic acidosis, metabolic alkalosis, acidosis treatment, and alkalosis treatment. Procedures…

  2. Complete Demonstration.

    ERIC Educational Resources Information Center

    Yelon, Stephen; Maddocks, Peg

    1986-01-01

    Describes four-step approach to educational demonstration: tell learners they will have to perform; what they should notice; describe each step before doing it; and require memorization of steps. Examples illustrate use of this process to demonstrate a general mental strategy, and industrial design, supervisory, fine motor, and specific…

  3. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two laboratory demonstrations in chemistry. One uses dry ice, freon, and freezer bags to demonstrate volume changes, vapor-liquid equilibrium, a simulation of a rain forest, and vaporization. The other uses the clock reaction technique to illustrate fast reactions and kinetic problems in releasing carbon dioxide during respiration. (TW)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Background information and procedures are provided for a second part to the dichromate volcano demonstration. The green ash produced during the demonstration is reduced to metal using aluminothermy (Goldschmide process). Also describes suitable light sources and spectroscopes for student observation of emission spectra in lecture halls. (JN)

  5. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Describes two demonstrations designed to help chemistry students visualize certain chemical properties. One experiment uses balloons to illustrate the behavior of gases under varying temperatures and pressures. The other uses a makeshift pea shooter and a commercial model to demonstrate atomic structure and the behavior of high-speed particles.…

  6. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1989-01-01

    Provided are two demonstrations for an introductory course in chemistry. The first one emphasizes the observation and the interpretation of facts to form hypotheses during the heating of a beaker of water. The second demonstration shows the liquid phase of carbon dioxide using dry ice and a pressure gauge. (YP)

  7. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  8. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  9. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  10. Abnormal Web Usage Control by Proxy Strategies.

    ERIC Educational Resources Information Center

    Yu, Hsiang-Fu; Tseng, Li-Ming

    2002-01-01

    Approaches to designing a proxy server with Web usage control and to making the proxy server effective on local area networks are proposed to prevent abnormal Web access and to prioritize Web usage. A system is implemented to demonstrate the approaches. The implementation reveals that the proposed approaches are effective, such that the abnormal…

  11. Complexin 1 knockout mice exhibit marked deficits in social behaviours but appear to be cognitively normal.

    PubMed

    Drew, Cheney J G; Kyd, Rachel J; Morton, A Jennifer

    2007-10-01

    Complexins are presynaptic proteins that modulate neurotransmitter release. Abnormal expression of complexin 1 (Cplx1) is seen in several neurodegenerative and psychiatric disorders in which disturbed social behaviour is commonplace. These include Parkinsons's disease, Alzheimer's disease, schizophrenia, major depressive illness and bipolar disorder. We wondered whether changes in Cplx1 expression contribute to the psychiatric components of the diseases in which Cplx1 is dysregulated. To investigate this, we examined the cognitive and social behaviours of complexin 1 knockout mice (Cplx1(-/-)) mice. Cplx1(-/-) mice have a profound ataxia that limits their ability to perform co-ordinated motor tasks. Nevertheless, when we taught juvenile Cplx1(-/-) mice to swim, they showed no evidence of cognitive impairment in the two-choice swim tank. In contrast, although olfactory discrimination in Cplx1(-/-) mice was normal, Cplx1(-/-) mice failed in the social transmission of food preference task, another cognitive paradigm. This was due to abnormal social interactions rather than cognitive impairments, increased anxiety or neophobia. When we tested social behaviour directly, Cplx1(-/-) mice failed to demonstrate a preference for social novelty. Further, in a resident-intruder paradigm, male Cplx1(-/-) mice failed to show the aggressive behaviour that is typical of wild-type males towards an intruder mouse. Together our results show that in addition to the severe motor and exploratory deficits already described, Cplx1(-/-) mice have pronounced deficits in social behaviours. Abnormalities in complexin 1 levels in the brain may therefore contribute to the psycho-social aspects of human diseases in which this protein is dysregulated.

  12. Comprehensive behavioral analysis of pituitary adenylate cyclase-activating polypeptide (PACAP) knockout mice

    PubMed Central

    Hattori, Satoko; Takao, Keizo; Tanda, Koichi; Toyama, Keiko; Shintani, Norihito; Baba, Akemichi; Hashimoto, Hitoshi; Miyakawa, Tsuyoshi

    2012-01-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide acting as a neurotransmitter, neuromodulator, or neurotrophic factor. PACAP is widely expressed throughout the brain and exerts its functions through the PACAP-specific receptor (PAC1). Recent studies reveal that genetic variants of the PACAP and PAC1 genes are associated with mental disorders, and several behavioral abnormalities of PACAP knockout (KO) mice are reported. However, an insufficient number of backcrosses was made using PACAP KO mice on the C57BL/6J background due to their postnatal mortality. To elucidate the effects of PACAP on neuropsychiatric function, the PACAP gene was knocked out in F1 hybrid mice (C57BL/6J × 129SvEv) for appropriate control of the genetic background. The PACAP KO mice were then subjected to a behavioral test battery. PACAP deficiency had no significant effects on neurological screen. As shown previously, the mice exhibited significantly increased locomotor activity in a novel environment and abnormal anxiety-like behavior, while no obvious differences between genotypes were shown in home cage (HC) activity. In contrast to previous reports, the PACAP KO mice showed normal prepulse inhibition (PPI) and slightly decreased depression-like behavior. Previous study demonstrates that the social interaction (SI) in a resident-intruder test was decreased in PACAP KO mice. On the other hand, we showed that PACAP KO mice exhibited increased SI in Crawley's three-chamber social approach test, although PACAP KO had no significant impact on SI in a HC. PACAP KO mice also exhibited mild performance deficit in working memory in an eight-arm radial maze (RM) and the T-maze (TM), while they did not show any significant abnormalities in the left-right discrimination task in the TM. These results suggest that PACAP has an important role in the regulation of locomotor activity, social behavior, anxiety-like behavior and, potentially, working memory. PMID:23060763

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Presents a recipe for the Nylon Rope Trick, which is considered to be one of the most spectacular demonstrations in chemistry. Materials for growing the polymer and some safety precautions are given. (SA)

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1990-01-01

    Included are three demonstrations that include the phase change of ice when under pressure, viscoelasticity and colloid systems, and flame tests for metal ions. The materials, procedures, probable results, and applications to real life situations are included. (KR)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations suitable for chemistry instruction. One involves fractal structures obtained by electrodeposition of silver at an air-water interface and the other deals with molecular weights and music. (TW)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1986-01-01

    Background information, list of materials needed, and procedures used are provided for a demonstration involving the transformation of a hydrophobic liquid to a partially hydrophobic semisolid. Safety considerations are noted. (JN)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Roffia, Sergio; And Others

    1988-01-01

    Reports two electrochemical demonstrations. Uses a hydrogen-oxygen fuel cell to power a clock. Includes description of methods and materials. Investigates the "potato clock" used with different fruits. Lists emf and current for various fruit and electrode combinations. (ML)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1980-01-01

    Presented is a Corridor Demonstration which can be set up in readily accessible areas such as hallways or lobbies. Equipment is listed for a display of three cells (solar cells, fuel cells, and storage cells) which develop electrical energy. (CS)

  19. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Rehfeld, D. W.; And Others

    1988-01-01

    Describes two demonstrations (1) a dust explosion using a coffee can, candle, rubber tubing, and cornstarch and (2) forming a silicate-polyvinyl alcohol polymer which can be pressed into plastic sheets or molded. Gives specific instructions. (MVL)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1979-01-01

    Two demonstrations are presented: a verification of the discontinuity of matter based on the law of definite proportions, and a series of consecutive chemical reactions featuring reversible equilibria. (BB)

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Presents three demonstrations suitable for undergraduate chemistry classes. Focuses on experiments with calcium carbide, the induction by iron of the oxidation of iodide by dichromate, and the classical iodine clock reaction. (ML)

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1982-01-01

    Two demonstrations are described: (1) a sunset effect using a gooseneck lamp and 20 sheets of paper and (2) the preparation and determination of structural features of dimethyl sulfoxide (DMSO) by infrared spectroscopy. (SK)

  3. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1977-01-01

    Describes a room-temperature method for demonstrating phosphorescence by including samples in a polymer matrix. Also discusses the Old Nassau Reaction, a clock reaction which turns orange then black. (MLH)

  4. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1988-01-01

    Describes two demonstrations for use in college chemistry classes. Includes "Spectroscopy in Large Lecture Halls" and "The Endothermic Dissolution of Ammonium Nitrate." Gives materials lists and procedures as well as a discussion of the results. (CW)

  5. Lead acetate induced cytotoxicity in male germinal cells of Swiss mice.

    PubMed

    Acharya, U R; Acharya, S; Mishra, M

    2003-07-01

    Single intraperitoneal injection of lead acetate (200 mg/kg b.w) to Swiss mice stimulated testicular weight loss with a constant increase in the incidence of abnormal sperm population and decrease in the total sperm count. Testicular ascorbic acid also declined significantly during the post-treatment phase with significant rise in Lipid Peroxidation Potential (LPP) of the tissue. Elevated LPP is indicative of oxidative stress in treated mice testes. The possible role of lead-induced oxidative stress in culminating increased sperm abnormality and decreased sperm count have been discussed. Further, possible antioxidative role of testicular ascorbic acid in minimizing oxidative stress in lead-treated mice has been demonstrated. PMID:12916762

  6. Abnormal ionization in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Juan; An, Yu

    2015-04-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  7. p21 is associated with the proliferation and apoptosis of bone marrow-derived mesenchymal stem cells from non-obese diabetic mice.

    PubMed

    Gu, Z; Jiang, J; Xia, Y; Yue, X; Yan, M; Tao, T; Cao, X; Da, Z; Liu, H; Liu, H; Miao, Y; Li, L; Wang, Z

    2013-11-01

    Recent studies have shown that autologous and allogeneic transplantation of the BM-MSCs had therapeutic effects on T1DM, whereas the BM-MSCs from the NOD mice itself did not have this therapeutic effect. We previously demonstrated that Bone Marrow (BM) -MSCs from the non-obese diabetic (NOD) mice had the abnormal migration and adhesion. So we hypothesized that the proliferation and apoptosis of the BM-MSCs from the NOD mice were dysregulated. Our team compared the proliferation and apoptosis between NOD mice and imprinting control region (ICR) mice. Then we assessed whether the NF-κB-p53/p21 pathway was involved in the process. The cell proliferation ability of the BM-MSCs from the NOD mice were significantly decreased, while the percent of apoptotic cells was increased compared to those from the ICR mice. The p21 expression was significantly increased in the NOD-MSCs. The p65 level was enhanced in the BM-MSCs from the NOD mice when compared to the ICR mice, coincided with the expression of p21. Expressions of p65 and p21 were significantly decreased in the -BM-MSCs treated with p65 inhibitor. The knockdown p21 expression reversed the abnormal proliferation, colony formation and apoptosis of the BM-MSCs from the NOD mice. These data provide important preclinical references supporting the basis for further development of autologous MSC-based therapies for type1 diabetes mellitus (T1DM).

  8. Abnormal hematological indices in cirrhosis

    PubMed Central

    Qamar, Amir A; Grace, Norman D

    2009-01-01

    Abnormalities in hematological indices are frequently encountered in cirrhosis. Multiple causes contribute to the occurrence of hematological abnormalities. Recent studies suggest that the presence of hematological cytopenias is associated with a poor prognosis in cirrhosis. The present article reviews the pathogenesis, incidence, prevalence, clinical significance and treatment of abnormal hematological indices in cirrhosis. PMID:19543577

  9. Manufacture of diploid/tetraploid chimeric mice.

    PubMed Central

    Lu, T Y; Markert, C L

    1980-01-01

    Tetraploid mouse embryos were produced by cytochalasin B treatment. These embryos usually die before completion of embryonic development and are abnormal morphologically and physiologically. The tetraploid embryos can be rescued to develop to maturity by aggregating them with normal diploid embryos to produce diploid/tetraploid chimeric mice. The diploid/tetraploid chimeric embryos are frequently abnormal: the larger the proportion of tetraploid cells, the greater the abnormality. By karyotype analysis and by the use of appropriate pigment cell markers, we have demonstrated that two of our surviving chimeras are in fact diploid/tetraploid chimeras. One surviving chimera is retarded in growth and displays neurological abnormalities. The coat color chimerism suggests that this chimera is about 50% tetraploid. Another chimera with about 10% tetraploid pigment cells in the coat is only slightly retarded in growth and is a fertile male. Tetraploid cells are distributed in many, if not all, tissues of embryos but evidently are physiologically inadequate to support completely normal development and function in the absence of substantial numbers of normal diploid cells. Images PMID:6934528

  10. Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes.

    PubMed

    Dorà, Natalie J; Crookshanks, Aaron J F; Leung, Karen K Y; Simpson, T Ian; Mason, John O; Price, David J; West, John D

    2016-10-01

    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 (tm1Ued) (Pax6 (fl) ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 (fl/fl) and heterozygous Pax6 (fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 (fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 (Sey-Neu) (Pax6 (-)) null allele. Pax6 (fl/-) compound heterozygotes had more severe eye abnormalities than Pax6 (+/-) heterozygotes, implying that Pax6 (fl) differs from the wild-type Pax6 (+) allele. Immunohistochemistry showed that the Pax6 (fl/-) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 (fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles.

  11. Analysis of compound heterozygotes reveals that the mouse floxed Pax6 (tm1Ued) allele produces abnormal eye phenotypes.

    PubMed

    Dorà, Natalie J; Crookshanks, Aaron J F; Leung, Karen K Y; Simpson, T Ian; Mason, John O; Price, David J; West, John D

    2016-10-01

    Analysis of abnormal phenotypes produced by different types of mutations has been crucial for our understanding of gene function. Some floxed alleles that retain a neomycin-resistance selection cassette (neo cassette) are not equivalent to wild-type alleles and provide useful experimental resources. Pax6 is an important developmental gene and the aim of this study was to determine whether the floxed Pax6 (tm1Ued) (Pax6 (fl) ) allele, which has a retained neo cassette, produced any abnormal eye phenotypes that would imply that it differs from the wild-type allele. Homozygous Pax6 (fl/fl) and heterozygous Pax6 (fl/+) mice had no overt qualitative eye abnormalities but morphometric analysis showed that Pax6 (fl/fl) corneas tended be thicker and smaller in diameter. To aid identification of weak effects, we produced compound heterozygotes with the Pax6 (Sey-Neu) (Pax6 (-)) null allele. Pax6 (fl/-) compound heterozygotes had more severe eye abnormalities than Pax6 (+/-) heterozygotes, implying that Pax6 (fl) differs from the wild-type Pax6 (+) allele. Immunohistochemistry showed that the Pax6 (fl/-) corneal epithelium was positive for keratin 19 and negative for keratin 12, indicating that it was abnormally differentiated. This Pax6 (fl) allele provides a useful addition to the existing Pax6 allelic series and this study demonstrates the utility of using compound heterozygotes with null alleles to unmask cryptic effects of floxed alleles. PMID:27240603

  12. Abnormal glutamate release in aged BTBR mouse model of autism.

    PubMed

    Wei, Hongen; Ding, Caiyun; Jin, Guorong; Yin, Haizhen; Liu, Jianrong; Hu, Fengyun

    2015-01-01

    Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Most of the available research on autism is focused on children and young adults and little is known about the pathological alternation of autism in older adults. In order to investigate the neurobiological alternation of autism in old age stage, we compared the morphology and synaptic function of excitatory synapses between the BTBR mice with low level sociability and B6 mice with high level sociability. The results revealed that the number of excitatory synapse colocalized with pre- and post-synaptic marker was not different between aged BTBR and B6 mice. The aged BTBR mice had a normal structure of dendritic spine and the expression of Shank3 protein in the brain as well as that in B6 mice. The baseline and KCl-evoked glutamate release from the cortical synaptoneurosome in aged BTBR mice was lower than that in aged B6 mice. Overall, the data indicate that there is a link between disturbances of the glutamate transmission and autism. These findings provide new evidences for the hypothesis of excitation/inhibition imbalance in autism. Further work is required to determine the cause of this putative abnormality.

  13. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  14. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations for use in chemistry instruction. The first illustrates the preparation of a less common oxide of iron, showing why this oxide is rare. The second is an explosion reaction of hydrogen and oxygen that is recommended for use as an attention-getting device. (TW)

  15. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides instructions and a list of materials needed to demonstrate: (1) a model of the quantum mechanical atom; (2) principles involved in metal corrosion and in the prevention of this destructive process by electrochemical means; and (3) a Thermit reaction, modified to make it more dramatic and interesting for students. (SK)

  16. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Background information, procedures, and typical results obtained are provided for two demonstrations. The first involves the colorful complexes of copper(II). The second involves reverse-phase separation of Food, Drug, and Cosmetic (FD & C) dyes using a solvent gradient. (JN)

  17. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Cliche, Jean-Marie; And Others

    1988-01-01

    Describes two demonstrations: 1) the effect of polarity on solubility using sodium dichromate, TTE, ligroin, and water to form nonpolar-polar-nonpolar layers with the polar layer being colored; 2) determination of egg whites to be yellow by determining the content of yellow colored riboflavin in the egg white. (MVL)

  18. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1987-01-01

    Describes two demonstrations to illustrate characteristics of substances. Outlines a method to detect the changes in pH levels during the electrolysis of water. Uses water pistols, one filled with methane gas and the other filled with water, to illustrate the differences in these two substances. (TW)

  19. Tested Demonstrations

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1976-01-01

    Describes two demonstrations: one that illustrates the attainment of equilibrium in first-order reactions by changing the volumes of two beakers of water at a specified rate, and another that illustrates the role of indicators in showing pH changes in buffer solutions. (MLH)

  20. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1985-01-01

    Describes two demonstrations that require almost no preparation time, are visually stimulating, and present a variety of material for class discussion (with sample questions provided). The first involves a sodium bicarbonate hydrochloric acid volcano; the second involves a dissolving polystyrene cup. Procedures used and information on…

  1. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L.

    1983-01-01

    An apparatus is described in which effects of pressure, volume, and temperature changes on a gas can be observed simultaneously. Includes use of the apparatus in demonstrating Boyle's, Gay-Lussac's, and Charles' Laws, attractive forces, Dalton's Law of Partial pressures, and in illustrating measurable vapor pressures of liquids and some solids.…

  2. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1984-01-01

    Two demonstrations are described. The first shows the effect of polarity on solubility. The second is based on the unexpected formation of a precipitate of barium nitrate when barium carbonate or barium phosphate is treated with dilute nitric acid. List of materials needed and procedures used are included. (JN)

  3. Disruption of muscle architecture and myocardial degeneration in mice lacking desmin

    PubMed Central

    1996-01-01

    Desmin, the muscle specific intermediate filament (IF) protein encoded by a single gene, is expressed in all muscle tissues. In mature striated muscle, desmin IFs surround the Z-discs, interlink them together and integrate the contractile apparatus with the sarcolemma and the nucleus. To investigate the function of desmin in all three muscle types in vivo, we generated desmin null mice through homologous recombination. Surprisingly, desmin null mice are viable and fertile. However, these mice demonstrated a multisystem disorder involving cardiac, skeletal, and smooth muscle. Histological and electron microscopic analysis in both heart and skeletal muscle tissues revealed severe disruption of muscle architecture and degeneration. Structural abnormalities included loss of lateral alignment of myofibrils and abnormal mitochondrial organization. The consequences of these abnormalities were most severe in the heart, which exhibited progressive degeneration and necrosis of the myocardium accompanied by extensive calcification. Abnormalities of smooth muscle included hypoplasia and degeneration. The present data demonstrate the essential role of desmin in the maintenance of myofibril, myofiber, and whole muscle tissue structural and functional integrity, and show that the absence of desmin leads to muscle degeneration. PMID:8794866

  4. A Rare Stapes Abnormality

    PubMed Central

    Kanona, Hala; Virk, Jagdeep Singh; Kumar, Gaurav; Chawda, Sanjiv; Khalil, Sherif

    2015-01-01

    The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively. PMID:25628909

  5. Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata.

    PubMed

    Brites, Pedro; Motley, Alison M; Gressens, Pierre; Mooyer, Petra A W; Ploegaert, Ingrid; Everts, Vincent; Evrard, Philippe; Carmeliet, Peter; Dewerchin, Mieke; Schoonjans, Luc; Duran, Marinus; Waterham, Hans R; Wanders, Ronald J A; Baes, Myriam

    2003-09-15

    Rhizomelic chondrodysplasia punctata is a human autosomal recessive disorder characterized by skeletal, eye and brain abnormalities. The disorder is caused by mutations in the PEX7 gene, which encodes the receptor for a class of peroxisomal matrix enzymes. We describe the generation and characterization of a Pex7 mouse knockout (Pex7(-/-)). Pex7(-/-) mice are born severely hypotonic and have a growth impairment. Mortality in Pex7(-/-) mice is highest in the perinatal period although some Pex7(-/-) mice survived beyond 18 months. Biochemically Pex7(-/-) mice display the abnormalities related to a Pex7 deficiency, i.e. a severe depletion of plasmalogens, impaired alpha-oxidation of phytanic acid and impaired beta-oxidation of very-long-chain fatty acids. In the intermediate zone of the developing cerebral cortex Pex7(-/-) mice have an increase in neuronal density. In vivo neuronal birthdating revealed that Pex7(-/-) mice have a delay in neuronal migration. Analysis of bone ossification in newborn Pex7(-/-) mice revealed a defect in ossification of distal bone elements of the limbs as well as parts of the skull and vertebrae. These findings demonstrate that Pex7 knockout mice provide an important model to study the role of peroxisomal functioning in the pathogenesis of the human disorder.

  6. Neuregulin 3 Knockout Mice Exhibit Behaviors Consistent with Psychotic Disorders.

    PubMed

    Hayes, Lindsay N; Shevelkin, Alexey; Zeledon, Mariela; Steel, Gary; Chen, Pei-Lung; Obie, Cassandra; Pulver, Ann; Avramopoulos, Dimitrios; Valle, David; Sawa, Akira; Pletnikov, Mikhail V

    2016-07-01

    Neuregulin 3 (NRG3) is a paralog of NRG1. Genetic studies in schizophrenia demonstrate that risk variants in NRG3 are associated with cognitive and psychotic symptom severity, and several intronic single nucleotide polymorphisms in NRG3 are associated with delusions in patients with schizophrenia. In order to gain insights into the biological function of the gene, we generated a novel Nrg3 knockout (KO) mouse model and tested for neurobehavioral phenotypes relevant to psychotic disorders. KO mice displayed novelty-induced hyperactivity, impaired prepulse inhibition of the acoustic startle response, and deficient fear conditioning. No gross cytoarchitectonic or layer abnormalities were noted in the brain of KO mice. Our findings suggest that deletion of the Nrg3 gene leads to alterations consistent with aspects of schizophrenia. We propose that KO mice will provide a valuable animal model to determine the role of the NRG3 in the molecular pathogenesis of schizophrenia and other psychotic disorders. PMID:27606322

  7. Dysmorphometrics: the modelling of morphological abnormalities

    PubMed Central

    2012-01-01

    Background The study of typical morphological variations using quantitative, morphometric descriptors has always interested biologists in general. However, unusual examples of form, such as abnormalities are often encountered in biomedical sciences. Despite the long history of morphometrics, the means to identify and quantify such unusual form differences remains limited. Methods A theoretical concept, called dysmorphometrics, is introduced augmenting current geometric morphometrics with a focus on identifying and modelling form abnormalities. Dysmorphometrics applies the paradigm of detecting form differences as outliers compared to an appropriate norm. To achieve this, the likelihood formulation of landmark superimpositions is extended with outlier processes explicitly introducing a latent variable coding for abnormalities. A tractable solution to this augmented superimposition problem is obtained using Expectation-Maximization. The topography of detected abnormalities is encoded in a dysmorphogram. Results We demonstrate the use of dysmorphometrics to measure abrupt changes in time, asymmetry and discordancy in a set of human faces presenting with facial abnormalities. Conclusion The results clearly illustrate the unique power to reveal unusual form differences given only normative data with clear applications in both biomedical practice & research. PMID:22309623

  8. Androgens Attenuate Vitamin D Production Induced by UVB Irradiation of the Skin of Male Mice by an Enzymatic Mechanism.

    PubMed

    Xue, Yingben; Ying, Lee; Horst, Ronald L; Watson, Gordon; Goltzman, David

    2015-12-01

    Cutaneous exposure to UVB irradiation is an important source of vitamin D. Here, we examined sex-specific differences in cutaneous vitamin D production in mice. Both male and female mice on a vitamin D-deficient diet manifested vitamin D deficiency, with mineral abnormalities, secondary hyperparathyroidism, and osteomalacia. UVB irradiation significantly increased vitamin D levels in the skin of female mice and normalized serum 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 levels, as well as mineral and skeletal abnormalities. However, in male mice, the vitamin D response to UVB was attenuated and mineral and skeletal abnormalities were not normalized. The vitamin D precursor, 7-dehydrocholesterol (7DHC), was significantly lower in the skin of male than female mice. This reduction was due to local androgen action in the skin as demonstrated by castration studies and skin-specific androgen receptor deletion in male mice, both of which reversed the male phenotype. Local androgen regulation in the skin of the CYP11A1 gene, which encodes a crucial enzyme that metabolizes cholesterol, 7DHC, and vitamin D, appeared to contribute to the gender differences in UVB-induced vitamin D production and to its reversal of vitamin D deficiency. Sex-specific, enzymatically regulated differences in cutaneous production of vitamin D may therefore be of importance to ensure vitamin D sufficiency.

  9. Structural abnormalities at neuromuscular synapses lacking multiple syntrophin isoforms.

    PubMed

    Adams, Marvin E; Kramarcy, Neal; Fukuda, Taku; Engel, Andrew G; Sealock, Robert; Froehner, Stanley C

    2004-11-17

    The syntrophins are modular adapter proteins that function by recruiting signaling molecules to the cytoskeleton via their direct association with proteins of the dystrophin protein family. We investigated the physiological function of beta2-syntrophin by generating a line of mice lacking this syntrophin isoform. The beta2-syntrophin null mice show no overt phenotype, or muscular dystrophy, and form structurally normal neuromuscular junctions (NMJs). To determine whether physiological consequences caused by the lack of beta2-syntrophin were masked by compensation from the alpha-syntrophin isoform, we crossed these mice with our previously described alpha-syntrophin null mice to produce mice lacking both isoforms. The alpha/beta2-syntrophin null mice have NMJs that are structurally more aberrant than those lacking only alpha-syntrophin. The NMJs of the alpha/beta2-syntrophin null mice have fewer junctional folds than either parent strain, and the remaining folds are abnormally shaped with few openings to the synaptic space. The levels of acetylcholine receptors are reduced to 23% of wild type in mice lacking both syntrophin isoforms. Furthermore, the alpha/beta2-syntrophin null mice ran significantly shorter distances on voluntary exercise wheels despite having normal neuromuscular junction transmission as determined by micro-electrode recording of endplate potentials. We conclude that both alpha-syntrophin and beta2-syntrophin play distinct roles in forming and maintaining NMJ structure and that each syntrophin can partially compensate for the loss of the other.

  10. Forebrain deletion of the vesicular acetylcholine transporter results in deficits in executive function, metabolic, and RNA splicing abnormalities in the prefrontal cortex.

    PubMed

    Kolisnyk, Benjamin; Al-Onaizi, Mohammed A; Hirata, Pedro H F; Guzman, Monica S; Nikolova, Simona; Barbash, Shahar; Soreq, Hermona; Bartha, Robert; Prado, Marco A M; Prado, Vania F

    2013-09-11

    One of the key brain regions in cognitive processing and executive function is the prefrontal cortex (PFC), which receives cholinergic input from basal forebrain cholinergic neurons. We evaluated the contribution of synaptically released acetylcholine (ACh) to executive function by genetically targeting the vesicular acetylcholine transporter (VAChT) in the mouse forebrain. Executive function was assessed using a pairwise visual discrimination paradigm and the 5-choice serial reaction time task (5-CSRT). In the pairwise test, VAChT-deficient mice were able to learn, but were impaired in reversal learning, suggesting that these mice present cognitive inflexibility. Interestingly, VAChT-targeted mice took longer to reach criteria in the 5-CSRT. Although their performance was indistinguishable from that of control mice during low attentional demand, increased attentional demand revealed striking deficits in VAChT-deleted mice. Galantamine, a cholinesterase inhibitor used in Alzheimer's disease, significantly improved the performance of control mice, but not of VAChT-deficient mice on the 5-CSRT. In vivo magnetic resonance spectroscopy showed altered levels of two neurochemical markers of neuronal function, taurine and lactate, suggesting altered PFC metabolism in VAChT-deficient mice. The PFC of these mice displayed a drastic reduction in the splicing factor heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2/B1), whose cholinergic-mediated reduction was previously demonstrated in Alzheimer's disease. Consequently, several key hnRNPA2/B1 target transcripts involved in neuronal function present changes in alternative splicing in VAChT-deficient mice, including pyruvate kinase M, a key enzyme involved in lactate metabolism. We propose that VAChT-targeted mice can be used to model and to dissect the neurochemical basis of executive abnormalities. PMID:24027290

  11. Chronic Pseudomonas aeruginosa infection-induced chronic bronchitis and emphysematous changes in CCSP-deficient mice

    PubMed Central

    Matsumoto, Takemasa; Fujita, Masaki; Hirano, Ryosuke; Uchino, Junji; Tajiri, Yukari; Fukuyama, Satoru; Morimoto, Yasuo; Watanabe, Kentaro

    2016-01-01

    The club cell secretory protein (CCSP) is a regulator of lung inflammation following acute respiratory infection or lung injury. Recently, the relationship between CCSP and COPD has been reported. Since COPD results from an abnormal inflammatory response, we hypothesized that CCSP could have a protective role against chronic inflammation-induced lung damage. To address this issue, the pathophysiology of chronic lung inflammation induced by Pseudomonas aeruginosa in CCSP-deficient mice was determined. A tube of 5 mm in length was soaked in a fluid containing P. aeruginosa (PAO01 strain) for 1 week and inserted into the trachea of CCSP-deficient mice. One week later, P. aeruginosa was administered into the trachea. Five weeks after insertion of tube, the mice were sacrificed. Bronchoalveolar lavage fluids were collected to determine the bacterial growth, and the lung histology and physiology were also examined. P. aeruginosa was continuously detected in bronchoalveolar lavage fluids during the study. Neutrophils were increased in the bronchoalveolar lavage fluids from the CCSP-deficient mice in comparison to wild-type mice. A histological study demonstrated chronic inflammation around bronchus, serious bronchial stenosis, and alveolar enlargement in the CCSP-deficient mice. The lung physiology study demonstrated an increase in the lung compliance of the CCSP-deficient mice. Chronic P. aeruginosa inflammation resulted in chronic bronchitis and emphysematous changes in the CCSP-deficient mice. CCSP could play an important role in protecting the host from the chronic inflammation-induced lung damage. PMID:27703342

  12. Failure to process dentin sialophosphoprotein into fragments leads to periodontal defects in mice.

    PubMed

    Gibson, Monica P; Jani, Priyam; Liu, Ying; Wang, Xiaofang; Lu, Yongbo; Feng, Jian Q; Qin, Chunlin

    2013-12-01

    Dentin sialophosphoprotein (DSPP) plays a vital role in dentinogenesis. Previously, we showed that, in addition to dentin, DSPP is also highly expressed in alveolar bone and cellular cementum, and plays a crucial role in maintaining periodontal integrity; Dspp-deficient mice demonstrate severe periodontal defects, including alveolar bone loss, decreased cementum deposition, abnormal osteocyte morphology in the alveolar bone, and apical migration of periodontal ligament. Dentin sialophosphoprotein in dentin and bone is cleaved into NH₂ -terminal and COOH-terminal fragments. Whilst our previous study showed that the proteolytic processing of DSPP is critical for dentinogenesis, it is unclear whether the post-translational cleavage of DSPP also plays an essential role in maintaining a healthy periodontium. In this study, we analyzed the periodontal tissues from transgenic mice expressing the uncleavable full-length DSPP in the Dspp knockout (Dspp-KO) background (named 'Dspp-KO/D452A-Tg mice'), in comparison with those from wild-type mice, Dspp-KO mice, and mice expressing the normal Dspp transgene in the Dspp-KO background (designated 'Dspp-KO/normal-Tg mice'). We found that transgenic expression of the normal DSPP fully rescued the periodontal defects of the Dspp-KO mice, whereas this was not the case in Dspp-KO/D452A-Tg mice. These results indicate that proteolytic processing of DSPP is essential to periodontal integrity.

  13. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation.

    PubMed

    Imai, Rika; Asai, Kanae; Hanai, Jun-ichi; Takenaka, Masaru

    2015-07-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosisin vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A.

  14. Transgenic mice overexpressing glia maturation factor-β, an oxidative stress inducible gene, show premature aging due to Zmpste24 down-regulation

    PubMed Central

    Hanai, Jun-ichi; Takenaka, Masaru

    2015-01-01

    Glia Maturation Factor-β (GMF), a brain specific protein, is induced by proteinuria in renal tubules. Ectopic GMF overexpression causes apoptosis in vitro via cellular vulnerability to oxidative stress. In order to examine the roles of GMF in non-brain tissue, we constructed transgenic mice overexpressing GMF (GMF-TG). The GMF-TG mice exhibited appearance phenotypes associated with premature aging. The GMF-TG mice also demonstrated short lifespans and reduced hair regrowth, suggesting an accelerated aging process. The production of an abnormal lamin A, a nuclear envelope protein, plays a causal role in both normal aging and accelerated aging diseases, known as laminopathies. Importantly, we identified the abnormal lamin A (prelamin A), accompanied by a down-regulation of a lamin A processing enzyme (Zmpste24) in the kidney of the GMF-TG mice. The GMF-TG mice showed accelerated aging in the kidney, compared with wild-type mice, showing increased TGF-β1, CTGF gene and serum creatinine. The gene expression of p21/waf1 was increased at an earlier stage of life, at 10 weeks, which was in turn down-regulated at a later stage, at 60 weeks. In conclusion, we propose that GMF-TG mice might be a novel mouse model of accelerated aging, due to the abnormal lamin A. PMID:26232943

  15. Calorie Restriction Prevents Metabolic Aging Caused by Abnormal SIRT1 Function in Adipose Tissues.

    PubMed

    Xu, Cheng; Cai, Yu; Fan, Pengcheng; Bai, Bo; Chen, Jie; Deng, Han-Bing; Che, Chi-Ming; Xu, Aimin; Vanhoutte, Paul M; Wang, Yu

    2015-05-01

    Adipose tissue is a pivotal organ determining longevity, due largely to its role in maintaining whole-body energy homeostasis and insulin sensitivity. SIRT1 is a NAD-dependent protein deacetylase possessing antiaging activities in a wide range of organisms. The current study demonstrates that mice with adipose tissue-selective overexpression of hSIRT1(H363Y), a dominant-negative mutant that disrupts endogenous SIRT1 activity, show accelerated development of metabolic aging. These mice, referred to as Adipo-H363Y, exhibit hyperglycemia, dyslipidemia, ectopic lipid deposition, insulin resistance, and glucose intolerance at a much younger age than their wild-type littermates. The metabolic defects of Adipo-H363Y are associated with abnormal epigenetic modifications and chromatin remodeling in their adipose tissues, as a result of excess accumulation of biotin, which inhibits endogenous SIRT1 activity, leading to increased inflammation, cellularity, and collagen deposition. The enzyme acetyl-CoA carboxylase 2 plays an important role in biotin accumulation within adipose tissues of Adipo-H363Y. Calorie restriction prevents biotin accumulation, abolishes abnormal histone biotinylation, and completely restores the metabolic and adipose functions of Adipo-H363Y. The effects are mimicked by short-term restriction of biotin intake, an approach potentially translatable to humans for maintaining the epigenetic and chromatin remodeling capacity of adipose tissues and preventing aging-associated metabolic disorders.

  16. Abnormal High-Frequency Burst Firing of Cerebellar Neurons in Rapid-Onset Dystonia-Parkinsonism

    PubMed Central

    Fremont, Rachel; Calderon, D. Paola; Maleki, Sara

    2014-01-01

    Loss-of-function mutations in the α3 isoform of the Na+/K+ ATPase (sodium pump) are responsible for rapid-onset dystonia parkinsonism (DYT12). Recently, a pharmacological model of DYT12 was generated implicating both the cerebellum and basal ganglia in the disorder. Notably, partially blocking sodium pumps in the cerebellum was necessary and sufficient for induction of dystonia. Thus, a key question that remains is how partially blocking sodium pumps in the cerebellum induces dystonia. In vivo recordings from dystonic mice revealed abnormal high-frequency bursting activity in neurons of the deep cerebellar nuclei (DCN), which comprise the bulk of cerebellar output. In the same mice, Purkinje cells, which provide strong inhibitory drive to DCN cells, also fired in a similarly erratic manner. In vitro studies demonstrated that Purkinje cells are highly sensitive to sodium pump dysfunction that alters the intrinsic pacemaking of these neurons, resulting in erratic burst firing similar to that identified in vivo. This abnormal firing abates when sodium pump function is restored and dystonia caused by partial block of sodium pumps can be similarly alleviated. These findings suggest that persistent high-frequency burst firing of cerebellar neurons caused by sodium pump dysfunction underlies dystonia in this model of DYT12. PMID:25164667

  17. Immunopathogenesis of environmentally induced lupus in mice.

    PubMed Central

    Shaheen, V M; Satoh, M; Richards, H B; Yoshida, H; Shaw, M; Jennette, J C; Reeves, W H

    1999-01-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune syndrome defined by clinical and serologic features, including arthritis, glomerulonephritis, and certain autoantibodies such as anti-nuclear ribonucleoprotein (nRNP)/Smith antigen (Sm), DNA, and ribosomal P. Although lupus is considered primarily a genetic disorder, we recently demonstrated the induction of a syndrome strikingly similar to spontaneous lupus in many nonautoimmune strains of mice exposed to the isoprenoid alkane pristane (2,6,10,14-tetramethylpentadecane), a component of mineral oil. Intraperitoneal injection of pristane leads to the formation of lipogranulomas consisting of phagocytic cells that have engulfed the oil and collections of lymphocytes. Subsequently, pristane-treated BALB/c and SJL mice develop autoantibodies characteristic of SLE, including anti-nRNP/Sm, antiribosomal P, anti-Su, antichromatin, anti-single-stranded DNA, and anti-double-stranded DNA. This is accompanied by a severe glomerulonephritis with immune complex deposition, mesangial or mesangiocapillary proliferation, and proteinuria. All inbred mice examined appear to be susceptible to this novel form of chemically induced lupus. Pristane-induced lupus is the only inducible model of autoimmunity associated with the clinical syndrome as well as with the characteristic serologic abnormalities of SLE. Defining the immunopathogenesis of pristane-induced lupus in mice may provide insight into the causes of spontaneous (idiopathic) lupus and also may lead to information concerning possible risks associated with the ingestion or inhalation of mineral oil and exposure to hydrocarbons in the environment. Images Figure 1 Figure 2 Figure 3 PMID:10502537

  18. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  19. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  20. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  1. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  2. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  3. Deficiency of Ube3a in Huntington's disease mice brain increases aggregate load and accelerates disease pathology.

    PubMed

    Maheshwari, Megha; Shekhar, Shashi; Singh, Brijesh Kumar; Jamal, Imran; Vatsa, Naman; Kumar, Vipendra; Sharma, Ankit; Jana, Nihar Ranjan

    2014-12-01

    Huntington's disease (HD) is an inherited neurodegenerative disorder caused by abnormal expansion of CAG repeats in the gene encoding huntingtin. Mutant huntingtin undergoes proteolytic processing and its N-terminal fragment containing polyglutamine repeat accumulates as inclusion not only in nucleus but also in cytoplasm and neuronal processes. Here, we demonstrate that removal of ubiquitin ligase Ube3a selectively from HD mice brain resulted in accelerated disease phenotype and shorter lifespan in comparison with HD mice. The deficiency of Ube3a in HD mice brain also caused significant increase in global aggregates load, and these aggregates were less ubiquitinated when compared with age-matched HD mice. These Ube3a-maternal deficient HD mice also showed drastic reduction of DARPP-32, a dopamine-regulated phoshphoprotein in their striatum. These results emphasize the crucial role of Ube3a in the progression of HD and its immense potential as therapeutic target. PMID:25027318

  4. Neurobiological Sequelae of Witnessing Stressful Events in Adult Mice

    PubMed Central

    Warren, Brandon L.; Vialou, Vincent F.; Iñiguez, Sergio D.; Alcantara, Lyonna F.; Wright, Katherine N.; Feng, Jiang; Kennedy, Pamela J.; LaPlant, Quincey; Shen, Li; Nestler, Eric J.; Bolaños-Guzmán, Carlos A.

    2012-01-01

    Background It is well known that exposure to severe stress increases the risk for developing mood disorders. However, most chronic stress models in rodents involve at least some form of physically experiencing traumatic events. Methods This study assessed the effects of a novel social stress paradigm that is insulated from the effects of physical stress. Specifically, adult male C57BL/6J mice were exposed to either emotional (ES) or physical stress (PS) for ten minutes per day for ten days. ES mice were exposed to the social defeat of a PS mouse by a larger more aggressive CD-1 mouse from the safety of an adjacent compartment. Results Like PS mice, ES mice exhibited a range of depression- and anxiety-like behaviors both 24 hr and 1 month after the stress. Increased levels of serum corticosterone, part of the stress response, accompanied these behavioral deficits. Based on prior work which implicated gene expression changes in the ventral tegmental area (a key brain reward region) in the PS phenotype, we compared genome-wide mRNA expression patterns in this brain region of ES and PS mice using RNA-seq. We found significant overlap between these conditions, which suggests several potential gene targets for mediating the behavioral abnormalities observed. Conclusions Together, these findings demonstrate that witnessing traumatic events is a potent stress in adult male mice capable of inducing long-lasting neurobiological perturbations. PMID:22795644

  5. GASIS demonstration

    SciTech Connect

    Vidas, E.H.

    1995-04-01

    A prototype of the GASIS database and retrieval software has been developed and is the subject of this poster session and computer demonstration. The prototype consists of test or preliminary versions of the GASIS Reservoir Data System and Source Directory datasets and the software for query and retrieval. The prototype reservoir database covers the Rocky Mountain region and contains the full GASIS data matrix (all GASIS data elements) that will eventually be included on the CD-ROM. It is populated for development purposes primarily by the information included in the Rocky Mountain Gas Atlas. The software has been developed specifically for GASIS using Foxpro for Windows. The application is an executable file that does not require Foxpro to run. The reservoir database software includes query and retrieval, screen display, report generation, and data export functions. Basic queries by state, basin, or field name will be assisted by scrolling selection lists. A detailed query screen will allow record selection on the basis of any data field, such as depth, cumulative production, or geological age. Logical operators can be applied to any-numeric data element or combination of elements. Screen display includes a {open_quotes}browse{close_quotes} display with one record per row and a detailed single record display. Datasets can be exported in standard formats for manipulation with other software packages. The Source Directory software will allow record retrieval by database type or subject area.

  6. Autonomic, locomotor and cardiac abnormalities in a mouse model of muscular dystrophy: targeting the renin-angiotensin system.

    PubMed

    Sabharwal, Rasna; Chapleau, Mark W

    2014-04-01

    New Findings What is the topic of this review? This symposium report summarizes autonomic, cardiac and skeletal muscle abnormalities in sarcoglycan-δ-deficient mice (Sgcd-/-), a mouse model of limb girdle muscular dystrophy, with emphasis on the roles of autonomic dysregulation and activation of the renin-angiotensin system at a young age. What advances does it highlight? The contributions of the autonomic nervous system and the renin-angiotensin system to the pathogenesis of muscular dystrophy are highlighted. Results demonstrate that autonomic dysregulation precedes and predicts later development of cardiac dysfunction in Sgcd-/- mice and that treatment of young Sgcd-/- mice with the angiotensin type 1 receptor antagonist losartan or with angiotensin-(1-7) abrogates the autonomic dysregulation, attenuates skeletal muscle pathology and increases spontaneous locomotor activity. Muscular dystrophies are a heterogeneous group of genetic muscle diseases characterized by muscle weakness and atrophy. Mutations in sarcoglycans and other subunits of the dystrophin-glycoprotein complex cause muscular dystrophy and dilated cardiomyopathy in animals and humans. Aberrant autonomic signalling is recognized in a variety of neuromuscular disorders. We hypothesized that activation of the renin-angiotensin system contributes to skeletal muscle and autonomic dysfunction in mice deficient in the sarcoglycan-δ (Sgcd) gene at a young age and that this early autonomic dysfunction contributes to the later development of left ventricular (LV) dysfunction and increased mortality. We demonstrated that young Sgcd-/- mice exhibit histopathological features of skeletal muscle dystrophy, decreased locomotor activity and severe autonomic dysregulation, but normal LV function. Autonomic regulation continued to deteriorate in Sgcd-/- mice with age and was accompanied by LV dysfunction and dilated cardiomyopathy at older ages. Autonomic dysregulation at a young age predicted later development of

  7. Testicular microlithiasis in two boys with a chromosomal abnormality.

    PubMed

    Goede, Joery; Hack, W W M; Pierik, F H

    2012-04-01

    A nine and 13-year-old boy, previously diagnosed with 18q syndrome and an 11q deletion, respectively were diagnosed with testicular microlithiasis (TM). Both cases demonstrate that TM occurs in patients with various chromosomal abnormalities.

  8. Evidence of a progressive motor dysfunction in Mucopolysaccharidosis type I mice.

    PubMed

    Baldo, Guilherme; Mayer, Fabiana Quoos; Martinelli, Barbara; Dilda, Anna; Meyer, Fabiola; Ponder, Katherine P; Giugliani, Roberto; Matte, Ursula

    2012-07-15

    Mucopolysaccharidosis (MPS) type I (Hurler syndrome) is a lysosomal storage disorder characterized by deficiency of alpha-L-iduronidase (IDUA), intracellular storage of glycosaminoglycans (GAGs) and progressive neurological pathology. The MPS I mouse model provides an opportunity to study the pathophysiology of this disorder and to determine the efficacy of novel therapies. Previous work has demonstrated a series of abnormalities in MPS I mice behavior, but so far some important brain functions have not been addressed. Therefore, in the present study we aimed to determine if MPS I mice have motor abnormalities, and at what age they become detectable. MPS I and normal male mice from 2 to 8 months of age were tested in open-field for locomotor activity, hindlimb gait analysis and hang wire performance. We were able to detect a progressive reduction in the crossings and rearings in the open field test and in the hang wire test in MPS I mice from 4 months, as well as a reduction in the gait length at 8 months. Histological examination of 8-month old mice cortex and cerebellum revealed storage of GAGs in Purkinje cells and neuroinflammation, evidenced by GFAP immunostaining. However TUNEL staining was negative, suggesting that death does not occur. Our findings suggest that MPS I mice have a progressive motor dysfunction, which is not caused by loss of neuron cells but might be related to a neuroinflammatory process. PMID:22580166

  9. Chromosomal abnormalities in a psychiatric population

    SciTech Connect

    Lewis, K.E.; Lubetsky, M.J.; Wenger, S.L.; Steele, M.W.

    1995-02-27

    Over a 3.5 year period of time, 345 patients hospitalized for psychiatric problems were evaluated cytogenetically. The patient population included 76% males and 94% children with a mean age of 12 years. The criteria for testing was an undiagnosed etiology for mental retardation and/or autism. Cytogenetic studies identified 11, or 3%, with abnormal karyotypes, including 4 fragile X positive individuals (2 males, 2 females), and 8 with chromosomal aneuploidy, rearrangements, or deletions. While individuals with chromosomal abnormalities do not demonstrate specific behavioral, psychiatric, or developmental problems relative to other psychiatric patients, our results demonstrate the need for an increased awareness to order chromosomal analysis and fragile X testing in those individuals who have combinations of behavioral/psychiatric, learning, communication, or cognitive disturbance. 5 refs., 1 fig., 2 tabs.

  10. A foreign dihydrofolate reductase gene in transgenic mice acts as a dominant mutation.

    PubMed Central

    Gordon, J W

    1986-01-01

    We have produced 17 lines of transgenic mice by microinjecting a full-length cDNA clone of an altered dihydrofolate reductase (dhfr) gene. The protein specified by this gene carries a point mutation which triples its Km for dihydrofolate and reduces substrate turnover 20-fold relative to the wild-type enzyme. Transgenic mice from different pedigrees, several of which carry a single copy of this gene in different integration sites, manifest an array of similar developmental abnormalities including growth stunting, reduced fertility, pigmentation changes, and skeletal defects. These defects appear in animals heterozygous for the foreign gene. RNA analyses demonstrate significant expression of the cDNA in newborn mice and adult tissues. These findings show that the additional dhfr gene exerts its mutational effects in a dominant fashion, and therefore the data indicate that transgenic mice can serve as models for elucidating mechanisms of dominant mutagenesis. Images PMID:3785192

  11. Reversal of behavioral deficits and synaptic dysfunction in mice overexpressing neuregulin 1.

    PubMed

    Yin, Dong-Min; Chen, Yong-Jun; Lu, Yi-Sheng; Bean, Jonathan C; Sathyamurthy, Anupama; Shen, Chengyong; Liu, Xihui; Lin, Thiri W; Smith, Clifford A; Xiong, Wen-Cheng; Mei, Lin

    2013-05-22

    Neuregulin 1 (Nrg1) is a susceptibility gene of schizophrenia, a disabling mental illness that affects 1% of the general population. Here, we show that ctoNrg1 mice, which mimic high levels of NRG1 observed in forebrain regions of schizophrenic patients, exhibit behavioral deficits and hypofunction of glutamatergic and GABAergic pathways. Intriguingly, these deficits were diminished when NRG1 expression returned to normal in adult mice, suggesting that damage which occurred during development is recoverable. Conversely, increase of NRG1 in adulthood was sufficient to cause glutamatergic impairment and behavioral deficits. We found that the glutamatergic impairment by NRG1 overexpression required LIM domain kinase 1 (LIMK1), which was activated in mutant mice, identifying a pathological mechanism. These observations demonstrate that synaptic dysfunction and behavioral deficits in ctoNrg1 mice require continuous NRG1 abnormality in adulthood, suggesting that relevant schizophrenia may benefit from therapeutic intervention to restore NRG1 signaling. PMID:23719163

  12. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  13. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  14. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  15. Electrocardiograph abnormalities revealed during laparoscopy.

    PubMed

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner.

  16. Altered Striatal Synaptic Function and Abnormal Behaviour in Shank3 Exon4-9 Deletion Mouse Model of Autism.

    PubMed

    Jaramillo, Thomas C; Speed, Haley E; Xuan, Zhong; Reimers, Jeremy M; Liu, Shunan; Powell, Craig M

    2016-03-01

    Shank3 is a multi-domain, synaptic scaffolding protein that organizes proteins in the postsynaptic density of excitatory synapses. Clinical studies suggest that ∼ 0.5% of autism spectrum disorder (ASD) cases may involve SHANK3 mutation/deletion. Patients with SHANK3 mutations exhibit deficits in cognition along with delayed/impaired speech/language and repetitive and obsessive/compulsive-like (OCD-like) behaviors. To examine how mutation/deletion of SHANK3 might alter brain function leading to ASD, we have independently created mice with deletion of Shank3 exons 4-9, a region implicated in ASD patients. We find that homozygous deletion of exons 4-9 (Shank3(e4-9) KO) results in loss of the two highest molecular weight isoforms of Shank3 and a significant reduction in other isoforms. Behaviorally, both Shank3(e4-9) heterozygous (HET) and Shank3(e4-9) KO mice display increased repetitive grooming, deficits in novel and spatial object recognition learning and memory, and abnormal ultrasonic vocalizations. Shank3(e4-9) KO mice also display abnormal social interaction when paired with one another. Analysis of synaptosome fractions from striata of Shank3(e4-9) KO mice reveals decreased Homer1b/c, GluA2, and GluA3 expression. Both Shank3(e4-9) HET and KO demonstrated a significant reduction in NMDA/AMPA ratio at excitatory synapses onto striatal medium spiny neurons. Furthermore, Shank3(e4-9) KO mice displayed reduced hippocampal LTP despite normal baseline synaptic transmission. Collectively these behavioral, biochemical and physiological changes suggest Shank3 isoforms have region-specific roles in regulation of AMPAR subunit localization and NMDAR function in the Shank3(e4-9) mutant mouse model of autism. PMID:26559786

  17. Abnormal behavior in caged birds kept as pets.

    PubMed

    van Hoek, C S; ten Cate, C

    1998-01-01

    There are a limited number of studies dealing with abnormal behavior in caged birds kept as pets. However, these studies demonstrate the presence of abnormal behavior in both songbirds and parrots. Ethological studies on these birds, as well as studies on domestic and zoo birds, indicate that inappropriate rearing and housing conditions may lead to behavioral abnormalities. Together these data indicate that behavioral abnormalities occur among both wild-caught and domesticated pet birds. The severity and magnitude of these abnormalities is probably underestimated, and there is a need for systematic studies on the nature, origin, variability, species-specificity, and reversibility of behavioral problems in pet birds. Abnormal behavior in caged birds may to some extent be prevented and reduced by environmental enrichment. However, most enrichment studies are anecdotal and not based on a thorough analysis of the behavioral abnormalities, which may lead to measures resulting in a reduction of symptoms rather than the underlying causes. Although it is likely that several of these problems could be reduced by modifying rearing and housing conditions, the current insights into the causal mechanisms underlying abnormal behavior of domesticated and wild-caught pet birds are limited, as are the insights into the possibilities of preventing or curing abnormal behavior.

  18. ETOPOSIDE INDUCES CHROMOSOMAL ABNORMALITIES IN SPERMATOCYTES AND SPERMATOGONIAL STEM CELLS

    SciTech Connect

    Marchetti, F; Pearson, F S; Bishop, J B; Wyrobek, A J

    2005-07-15

    Etoposide (ET) is a chemotherapeutic agent widely used in the treatment of leukemia, lymphomas and many solid tumors, such as testicular and ovarian cancers, that affect patients in their reproductive years. The purpose of the study was to use sperm FISH analyses to characterize the long-term effects of ET on male germ cells. We used a mouse model to characterize the induction of chromosomal aberrations (partial duplications and deletions) and whole chromosomal aneuploidies in sperm of mice treated with a clinical dose of ET. Semen samples were collected at 25 and 49 days after dosing to investigate the effects of ET on meiotic pachytene cells and spermatogonial stem-cells, respectively. ET treatment resulted in major increases in the frequencies of sperm carrying chromosomal aberrations in both meiotic pachytene (27- to 578-fold) and spermatogonial stem-cells (8- to 16-fold), but aneuploid sperm were induced only after treatment of meiotic cells (27-fold) with no persistent effects in stem cells. These results demonstrate that male meiotic germ cells are considerably more sensitive to ET than spermatogonial stem-cell and that increased frequencies of sperm with structural aberrations persist after spermatogonial stem-cell treatment. These findings predict that patients who undergo chemotherapy with ET may have transient elevations in the frequencies of aneuploid sperm, but more importantly, may have persistent elevations in the frequencies of sperm with chromosomal aberrations, placing them at higher risk for abnormal reproductive outcomes long after the end of their chemotherapy.

  19. Slc4a11 Gene Disruption in Mice

    PubMed Central

    Lopez, Ivan A.; Rosenblatt, Mark I.; Kim, Charles; Galbraith, Gary C.; Jones, Sherri M.; Kao, Liyo; Newman, Debra; Liu, Weixin; Yeh, Stacey; Pushkin, Alexander; Abuladze, Natalia; Kurtz, Ira

    2009-01-01

    NaBC1 (the SLC4A11 gene) belongs to the SLC4 family of sodium-coupled bicarbonate (carbonate) transporter proteins and functions as an electrogenic sodium borate cotransporter. Mutations in SLC4A11 cause either corneal abnormalities (corneal hereditary dystrophy type 2) or a combined auditory and visual impairment (Harboyan syndrome). The role of NaBC1 in sensory systems is poorly understood, given the difficulty of studying patients with NaBC1 mutations. We report our findings in Slc4a11−/− mice generated to investigate the role of NaBC1 in sensorineural systems. In wild-type mice, specific NaBC1 immunoreactivity was detected in fibrocytes of the spiral ligament, from the basal to the apical portion of the cochlea. NaBC1 immunoreactivity was present in the vestibular labyrinth, in stromal cells underneath the non-immunoreactive sensory epithelia of the macula utricle, sacule, and crista ampullaris, and the membranous vestibular labyrinth was collapsed. Both auditory brain response and vestibular evoked potential waveforms were significantly abnormal in Slc4a11−/− mice. In the cornea, NaBC1 was highly expressed in the endothelial cell layer with less staining in epithelial cells. However, unlike humans, the corneal phenotype was mild with a normal slit lamp evaluation. Corneal endothelial cells were morphologically normal; however, both the absolute height of the corneal basal epithelial cells and the relative basal epithelial cell/total corneal thickness were significantly increased in Slc4a11−/− mice. Our results demonstrate for the first time the importance of NaBC1 in the audio-vestibular system and provide support for the hypothesis that SLC4A11 should be considered a potential candidate gene in patients with isolated sensorineural vestibular hearing abnormalities. PMID:19586905

  20. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    PubMed

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. PMID:27213486

  1. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    PubMed

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior.

  2. Mitochondrial DNA mutations in mutator mice confer respiration defects and B-cell lymphoma development.

    PubMed

    Mito, Takayuki; Kikkawa, Yoshiaki; Shimizu, Akinori; Hashizume, Osamu; Katada, Shun; Imanishi, Hirotake; Ota, Azusa; Kato, Yukina; Nakada, Kazuto; Hayashi, Jun-Ichi

    2013-01-01

    Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ(0)) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.

  3. Effect of chrysotile asbestos fibers on germ cells of mice

    SciTech Connect

    Rita, P.; Reddy, P.P.

    1986-10-01

    An Indian form of chrysotile asbestos procured from a local asbestos factory (Hyderabad) was tested for its toxic effects on spermatocytes and sperm of mice. Swiss albino male mice were fed orally with chrysotile asbestos suspended in water. The concentration tested was 20 mg/kg/day. Chronic oral administration of chrysotile failed to induce chromosomal aberrations and abnormal sperms in mice.

  4. Cytoskeletal abnormalities in amyotrophic lateral sclerosis: beneficial or detrimental effects?

    PubMed

    Julien, J P; Beaulieu, J M

    2000-11-01

    Cytoskeletal abnormalities have been reported in cases of amyotrophic lateral sclerosis (ALS) including abnormal inclusions containing neurofilaments (NFs) and/or peripherin, reduced mRNA levels for the NF light (NF-L) protein and mutations in the NF heavy (NF-H) gene. Recently, transgenic mouse approaches have been used to address whether cytoskeletal changes may contribute to motor neuron disease. Mice lacking one of the three NF subunits are viable and do not develop motor neuron disease. Nonetheless, mice with null mutations for NF-L or for both NF-M and NF-H genes developed severe atrophy of ventral and dorsal root axons. The atrophic process is associated with hind limb paralysis during aging in mice deficient for both NF-M and NF-H proteins. The overexpression in mice of transgenes coding for wild-type or mutant NF proteins can provoke abnormal NF accumulations, axonal atrophy and sometimes motor dysfunction. However, the perikaryal NF accumulations are generally well tolerated by motor neurons and, except for expression of a mutant NF-L transgene, they did not provoke massive motor neuron death. Increasing the levels of perikaryal NF proteins may even confer protection in motor neuron disease caused by ALS-linked mutations in the superoxide dismutase (SOD1). In contrast, the overexpression of wild-type peripherin, a type of IF gene upregulated by inflammatory cytokines, provoked the formation of toxic IF inclusions with the high-molecular-weight NF proteins resulting in the death of motor neurons during aging. These results together with the detection of peripherin inclusions at early stage of disease in mice expressing mutant SOD1 suggest that IF inclusions containing peripherin may play a contributory role in ALS pathogenesis.

  5. Clinicopathologic abnormalities associated with snake envenomation in domestic animals.

    PubMed

    Goddard, Amelia; Schoeman, Johan P; Leisewitz, Andrew L; Nagel, Salome S; Aroch, Itamar

    2011-09-01

    Envenomation of domestic animals by snakes occurs frequently in certain geographic areas. However, reports describing clinical signs, clinicopathologic abnormalities, therapeutic approaches, and outcomes are sparse. This review summarizes various snake families, venom types associated with harmful snakes, and the significant hematologic, hemostatic, and biochemical abnormalities associated with envenomation. Hematologic abnormalities include RBC membrane abnormalities, hemolysis, hemoconcentration, leukogram changes, and platelet abnormalities, specifically thrombocytopenia. Coagulopathies associated with snake envenomation are well described in human medicine, and many studies have demonstrated properties of venoms that lead to both procoagulation and anticoagulation. As expected, similar abnormalities have been described in domestic animals. Biochemical abnormalities are associated with the effects of venom on tissues such as liver, skeletal and cardiac muscle, vascular endothelium, and kidney as well as effects on protein components and cholesterol. This comprehensive review of clinicopathologic abnormalities associated with envenomation and their relationships to characterized venom constituents should be useful both in the diagnosis and management of envenomation and should serve as a foundation for future research in this field.

  6. Transgenic Mice Expressing MCP-1 by the Urothelium Demonstrate Bladder Hypersensitivity, Pelvic Pain and Voiding Dysfunction: A Multidisciplinary Approach to the Study of Chronic Pelvic Pain Research Network Animal Model Study

    PubMed Central

    Wang, Yaoqin; Lutgendorf, Susan; Bradley, Catherine; Schrepf, Andrew; Kreder, Karl; O'Donnell, Michael; Luo, Yi

    2016-01-01

    Monocyte chemoattractant protein-1 (MCP-1) is one of the key chemokines that play important roles in diverse inflammatory and chronic pain conditions. Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic and debilitating inflammatory condition of the urinary bladder characterized by the hallmark symptoms of pelvic pain and voiding dysfunction. To facilitate IC/BPS research, we used transgenic technology to develop a novel urothelial MCP-1 secretion mouse model (URO-MCP-1). A transgene consisting of the uroplakin II gene promoter and the mouse MCP-1 coding sequence with a secretory element was constructed and microinjected. URO-MCP-1 mice were found to express MCP-1 mRNA in the bladder epithelium and MCP-1 protein in the urine, and developed bladder inflammation 24 hours after intravesical administration of a single sub-noxious dose of lipopolysaccharide (LPS). The inflamed bladders of URO-MCP-1 mice exhibited elevated mRNAs for interleukin (IL)-1ß, IL-6, substance P precursor, and nerve growth factor as well as increased macrophage infiltration. In parallel with these phenotypic changes, URO-MCP-1 mice manifested significant functional changes at days 1 and 3 after cystitis induction. These functional changes included pelvic pain as measured by von Frey filament stimulation and voiding dysfunction (increased urinary frequency, reduced average volume voided per micturition, and reduced maximum volume voided per micturition) as measured by micturition cages. Micturition changes remained evident at day 7 after cystitis induction, although these changes were not statistically significant. Control wild-type C57BL/6 mice manifested no clear changes in histological, biochemical and behavioral features after similar cystitis induction with LPS. Taken together, our results indicate that URO-MCP-1 mice are hypersensitive to bladder irritants such as LPS and develop pelvic pain and voiding dysfunction upon cystitis induction, providing a novel model for IC

  7. FGF23 deficiency leads to mixed hearing loss and middle ear malformation in mice.

    PubMed

    Lysaght, Andrew C; Yuan, Quan; Fan, Yi; Kalwani, Neil; Caruso, Paul; Cunnane, MaryBeth; Lanske, Beate; Stanković, Konstantina M

    2014-01-01

    Fibroblast growth factor 23 (FGF23) is a circulating hormone important in phosphate homeostasis. Abnormal serum levels of FGF23 result in systemic pathologies in humans and mice, including renal phosphate wasting diseases and hyperphosphatemia. We sought to uncover the role FGF23 plays in the auditory system due to shared molecular mechanisms and genetic pathways between ear and kidney development, the critical roles multiple FGFs play in auditory development and the known hearing phenotype in mice deficient in klotho (KL), a critical co-factor for FGF23 signaling. Using functional assessments of hearing, we demonstrate that Fgf[Formula: see text] mice are profoundly deaf. Fgf[Formula: see text] mice have moderate hearing loss above 20 kHz, consistent with mixed conductive and sensorineural pathology of both middle and inner ear origin. Histology and high-voltage X-ray computed tomography of Fgf[Formula: see text] mice demonstrate dysplastic bulla and ossicles; Fgf[Formula: see text] mice have near-normal morphology. The cochleae of mutant mice appear nearly normal on gross and microscopic inspection. In wild type mice, FGF23 is ubiquitously expressed throughout the cochlea. Measurements from Fgf[Formula: see text] mice do not match the auditory phenotype of Kl-/- mice, suggesting that loss of FGF23 activity impacts the auditory system via mechanisms at least partially independent of KL. Given the extensive middle ear malformations and the overlap of initiation of FGF23 activity and Eustachian tube development, this work suggests a possible role for FGF23 in otitis media.

  8. Abnormalities of sex differentiation.

    PubMed

    Nawata, H; Takayanagi, R; Yanase, T; Ikuyama, S; Okabe, T

    1996-01-01

    Sex differentiation is determined by a cascade of events proceeding from chromosomal sex to the completion of sexual maturation at puberty. Many factors involved in this cascade have been identified. Here we focus on DAX-1, androgen receptor and cytochrome P450c17, and discuss their functions in sex differentiation. We analyzed the DAX-1 genes of two unrelated Japanese patients with congenital adrenal hypoplasia and hypogonadotropic hypogonadism using PCR amplification of genomic DNA and complete exonic sequencing, and established that congenital adrenal hypoplasia and hypogonadotropic hypogonadism result from not only inherited but also de novo mutation in the DAX-1 gene. Androgen insensitivity syndrome (AIS) is a good model to clarify the relationship between the structure and function of androgen receptor, the androgen receptor gene mutation and clinical phenotype. We analyzed 15 cases of AIS and demonstrate the structural and functional relationships of the androgen receptor. We have sequenced the CYP17 (P450c17) gene in DNA from several patients with 17 alpha-hydroxylase deficiency, reconstructed the mutations in a human P450c17 cDNA and expressed the mutant P450c17 in COSl cells to characterize the kinetic properties of 17 alpha-hydroxylase and 17,20-lyase activities. The molecular bases of cases clinically reported as 17 alpha-hydroxylase deficiency have turned out to be complete or partial combined deficiencies of 17 alpha-hydroxylase/17,20-lyase. PMID:8864743

  9. Sperm DNA and RNA abnormalities in fertile and oligoasthenoteratozoospermic smokers.

    PubMed

    Selit, I; Basha, M; Maraee, A; El-Naby, S H; Nazeef, N; El-Mehrath, R; Mostafa, T

    2013-02-01

    This study aimed to assess sperm DNA and RNA abnormalities in fertile and oligoasthenoteratozoospermic (OAT) smokers. In all, 140 subjects were included and classified into fertile nonsmokers, fertile smokers, OAT nonsmokers and OAT smokers. They were subjected to history taking, clinical examination, semen analysis, assessment of sperm DNA and RNA abnormalities. The results showed that an increased percentage of abnormal sperm DNA and RNA was demonstrated in fertile smokers compared with fertile nonsmokers and in OAT smokers compared with OAT nonsmokers. Increased percentage of severe, moderate sperm DNA and RNA damage was demonstrated in fertile heavy smokers compared with fertile light smokers and in OAT heavy smokers compared with OAT light smokers. It is concluded that smoking has a negative impact on sperm DNA and RNA abnormalities that is accentuated in heavy smokers compared with light smokers.

  10. Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus

    PubMed Central

    Denis, Cécile; Germain, Johanne; Dinh Tuy, Françoise Phan; Verstraeten, Soraya; Alvarez, Chantal; Métin, Christine; Chelly, Jamel; Giros, Bruno; Miles, Richard; Depaulis, Antoine; Francis, Fiona

    2008-01-01

    Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities. PMID:18575605

  11. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation

    PubMed Central

    Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.

    2016-01-01

    The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor–binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA. PMID:27275015

  12. Abnormal PTPN11 enhancer methylation promotes rheumatoid arthritis fibroblast-like synoviocyte aggressiveness and joint inflammation

    PubMed Central

    Maeshima, Keisuke; Stanford, Stephanie M.; Hammaker, Deepa; Sacchetti, Cristiano; Zeng, Li-fan; Ai, Rizi; Zhang, Vida; Boyle, David L.; Aleman Muench, German R.; Feng, Gen-Sheng; Whitaker, John W.; Zhang, Zhong-Yin; Wang, Wei; Bottini, Nunzio; Firestein, Gary S.

    2016-01-01

    The PTPN11 gene, encoding the tyrosine phosphatase SHP-2, is overexpressed in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) compared with osteoarthritis (OA) FLS and promotes RA FLS invasiveness. Here, we explored the molecular basis for PTPN11 overexpression in RA FLS and the role of SHP-2 in RA pathogenesis. Using computational methods, we identified a putative enhancer in PTPN11 intron 1, which contained a glucocorticoid receptor– binding (GR-binding) motif. This region displayed enhancer function in RA FLS and contained 2 hypermethylation sites in RA compared with OA FLS. RA FLS stimulation with the glucocorticoid dexamethasone induced GR binding to the enhancer and PTPN11 expression. Glucocorticoid responsiveness of PTPN11 was significantly higher in RA FLS than OA FLS and required the differentially methylated CpGs for full enhancer function. SHP-2 expression was enriched in the RA synovial lining, and heterozygous Ptpn11 deletion in radioresistant or innate immune cells attenuated K/BxN serum transfer arthritis in mice. Treatment with SHP-2 inhibitor 11a-1 reduced RA FLS migration and responsiveness to TNF and IL-1β stimulation and reduced arthritis severity in mice. Our findings demonstrate how abnormal epigenetic regulation of a pathogenic gene determines FLS behavior and demonstrate that targeting SHP-2 or the SHP-2 pathway could be a therapeutic strategy for RA. PMID:27275015

  13. Suberoylanilide Hydroxamic Acid Restores Estrogen Reduced-cTnI Expression in Neonatal Hearts of Mice.

    PubMed

    Peng, Chang; Luo, Xiaomei; Xing, Qianlu; Sun, Huichao; Huang, Xupei

    2016-10-01

    Diastolic cardiac dysfunction can be caused by abnormality in cTnI expression during cardiogenesis. In this study, we investigated the effects of estrogen on the abnormal expression of cTnI in the hearts of neonatal mice and its potential epigenetic mechanisms. We then evaluated suberoylanilide hydroxamic acid (SAHA), a HDAC inhibitor, as a new target treatment of diastolic cardiac dysfunction. Postnatal day 0.5 C57BL/6 mice were injected with estrogen for 1 week, then the hearts of 7-day-old neonatal mice were retrieved for examination. The activities of HDAC and HAT were assayed by colorimetry, and the interaction of cTnI with HDAC5 in mice hearts were examined using chromatin immunoprecipitation assays. The expression of cTnI was tested by quantitative real-time RT-PCR and Western blot. Estrogen treated groups displayed a significantly increased HDAC activity in the hearts of neonatal mice while HAT activity remained unchanged. Additionally, HDAC5 was higher at the cTnI promoter, as compared to the saline treated control groups. The acetylation of histone H3K9ac on cTnI promoter significantly decreased in the hearts of neonatal mice treated with estrogen, and the expression of cTnI at transcriptional and protein levels also decreased. SAHA was shown to increase the acetylation of histone H3K9ac and upregulate the expression of cTnI. The data demonstrated that SAHA can correct cTnI expression abnormality caused by estrogen through inhibiting the binding of HDAC5 to the promoter of cTnI. J. Cell. Biochem. 117: 2377-2384, 2016. © 2016 Wiley Periodicals, Inc. PMID:27379430

  14. A mouse model for eukaryotic translation initiation factor 2B-leucodystrophy reveals abnormal development of brain white matter.

    PubMed

    Geva, Michal; Cabilly, Yuval; Assaf, Yaniv; Mindroul, Nina; Marom, Liraz; Raini, Gali; Pinchasi, Dalia; Elroy-Stein, Orna

    2010-08-01

    Eukaryotic translation initiation factor 2B is a major housekeeping complex that governs the rate of global protein synthesis under normal and stress conditions. Mutations in any of its five subunits lead to leucoencephalopathy with vanishing white matter, an inherited chronic-progressive fatal brain disease with unknown aetiology, which is among the most prevalent childhood white matter disorders. We generated the first animal model for the disease by introducing a point mutation into the mouse Eif2b5 gene locus, leading to R132H replacement corresponding to the clinically significant human R136H mutation in the catalytic subunit. In contrast to human patients, mice homozygous for the mutant Eif2b5 allele (Eif2b5(R132H/R132H) mice) enable multiple analyses under a defined genetic background during the pre-symptomatic stages and during recovery from a defined brain insult. Time-course magnetic resonance imaging revealed for the first time the delayed development of the brain white matter due to the mutation. Electron microscopy demonstrated a higher proportion of small-calibre nerve fibres. Immunohistochemistry detected an abnormal abundance of oligodendrocytes and astrocytes in the brain of younger animals, as well as an abnormal level of major myelin proteins. Most importantly, mutant mice failed to recover from cuprizone-induced demyelination, reflecting an increased sensitivity to brain insults. The anomalous development of white matter in Eif2b5(R132H/R132H) mice underscores the importance of tight translational control to normal myelin formation and maintenance.

  15. Kidney transplantation in abnormal bladder

    PubMed Central

    Mishra, Shashi K.; Muthu, V.; Rajapurkar, Mohan M.; Desai, Mahesh R.

    2007-01-01

    Structural urologic abnormalities resulting in dysfunctional lower urinary tract leading to end stage renal disease may constitute 15% patients in the adult population and up to 20-30% in the pediatric population. A patient with an abnormal bladder, who is approaching end stage renal disease, needs careful evaluation of the lower urinary tract to plan the most satisfactory technical approach to the transplant procedure. Past experience of different authors can give an insight into the management and outcome of these patients. This review revisits the current literature available on transplantation in abnormal bladder and summarizes the clinical approach towards handling this group of difficult transplant patients. We add on our experience as we discuss the various issues. The outcome of renal transplant in abnormal bladder is not adversely affected when done in a reconstructed bladder. Correct preoperative evaluation, certain technical modification during transplant and postoperative care is mandatory to avoid complications. Knowledge of the abnormal bladder should allow successful transplantation with good outcome. PMID:19718334

  16. Interleukin-11 alters placentation and causes preeclampsia features in mice

    PubMed Central

    Winship, Amy L.; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J.; Dimitriadis, Evdokia

    2015-01-01

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal–fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  17. Interleukin-11 alters placentation and causes preeclampsia features in mice.

    PubMed

    Winship, Amy L; Koga, Kaori; Menkhorst, Ellen; Van Sinderen, Michelle; Rainczuk, Katarzyna; Nagai, Miwako; Cuman, Carly; Yap, Joanne; Zhang, Jian-Guo; Simmons, David; Young, Morag J; Dimitriadis, Evdokia

    2015-12-29

    Preeclampsia (PE) is a pregnancy-specific disorder characterized by hypertension and proteinuria after 20 wk gestation. Abnormal extravillous trophoblast (EVT) invasion and remodeling of uterine spiral arterioles is thought to contribute to PE development. Interleukin-11 (IL11) impedes human EVT invasion in vitro and is elevated in PE decidua in women. We demonstrate that IL11 administered to mice causes development of PE features. Immunohistochemistry shows IL11 compromises trophoblast invasion, spiral artery remodeling, and placentation, leading to increased systolic blood pressure (SBP), proteinuria, and intrauterine growth restriction, although nonpregnant mice were unaffected. Real-time PCR array analysis identified pregnancy-associated plasma protein A2 (PAPPA2), associated with PE in women, as an IL11 regulated target. IL11 increased PAPPA2 serum and placental tissue levels in mice. In vitro, IL11 compromised primary human EVT invasion, whereas siRNA knockdown of PAPPA2 alleviated the effect. Genes regulating uterine natural killer (uNK) recruitment and differentiation were down-regulated and uNK cells were reduced after IL11 treatment in mice. IL11 withdrawal in mice at onset of PE features reduced SBP and proteinuria to control levels and alleviated placental labyrinth defects. In women, placental IL11 immunostaining levels increased in PE pregnancies and in serum collected from women before development of early-onset PE, shown by ELISA. These results indicate that elevated IL11 levels result in physiological changes at the maternal-fetal interface, contribute to abnormal placentation, and lead to the development of PE. Targeting placental IL11 may provide a new treatment option for PE. PMID:26655736

  18. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury. PMID:25650776

  19. Restoration of lymphatic function rescues obesity in Prox1-haploinsufficient mice

    PubMed Central

    Proulx, Steven T.; Dillard, Miriam E.; Johnson, Nicole; Detmar, Michael

    2016-01-01

    Prox1 heterozygous mice have a defective lymphatic vasculature and develop late-onset obesity. Chyle abnormally leaks from those vessels, accumulates in the surrounding tissues, and causes an increase in adipose tissue. We characterized the lymphatics of Prox1+/– mice to determine whether the extent of obesity correlated with the severity of lymphatic defects. The lymphatic vasculature in Prox1+/– mice exhibited reduced tracer clearance from the ear skin, dysfunctional perfusion of the lower legs, and reduced tracer uptake into the deep lymphatic collectors during mechanostimulation prior to the onset of obesity. Ear lymphatic vessels and leg collectors in Prox1+/– mice were disorganized and irregular, further confirming that defective lymphatic vessels are associated with obesity in Prox1+/– mice. We now provide conclusive in vivo evidence that demonstrates that leaky lymphatics mediate obesity in Prox1+/– mice, as restoration of lymphatic vasculature function was sufficient to rescue the obesity features in Prox1+/– mice. Finally, depth-lipomic profiling of lymph contents showed that free fatty acids induce adipogenesis in vitro. PMID:26973883

  20. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  1. Ocular abnormalities in thin basement membrane disease

    PubMed Central

    Colville, D.; Savige, J.; Branley, P.; Wilson, D.

    1997-01-01

    AIM/BACKGROUND—Alport syndrome is an X linked disease that results in renal failure, deafness, and ocular abnormalities including a dot and fleck retinopathy and anterior lenticonus. The ultrastructural appearance of the glomerular basement membrane in thin basement membrane disease (TBMD) resembles that seen in some patients with Alport syndrome, and in some cases this disease is inherited too. The aim of this study was to determine whether patients with TBMD have any ocular abnormalities.
METHODS—The eyes of 17 unrelated individuals with TBMD were studied by slit-lamp, including biomicroscopic fundus examination with a 78 D lens, by direct ophthalmoscopy, and by fundal photographs. The findings were compared with those in patients with IgA glomerulonephritis or Alport syndrome, and in normals.
RESULTS—No patient with TBMD had a dot and fleck retinopathy or anterior lenticonus. A corneal dystrophy (n = 2) or pigmentation (n = 1), and retinal pigment epithelial clumping and maculopathy (n = 1) were noted. Corneal, lens, and retinal dots were found in five (29%), three (18%), and 16 (94%) patients, respectively, but these were also demonstrated in individuals with other renal diseases and in normal individuals.
CONCLUSIONS—The dot and fleck retinopathy and anterior lenticonus typical of Alport syndrome do not occur in TBMD. The protein abnormality and genetic defect in TBMD are not known, but the lack of ocular lesions suggests that the abnormal protein in this disease is more sparsely distributed or less important in the basement membranes of the eye than of the kidney. Alternatively, the protein may be less affected by the mutations responsible for TBMD.

 PMID:9227202

  2. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  3. Residual gait abnormalities in surgically treated spondylolisthesis.

    PubMed

    Shelokov, A; Haideri, N; Roach, J

    1993-11-01

    The authors retrospectively studied seven patients who had in situ fusion as adolescents for high-grade (IV, V) spondylolisthesis unresponsive to more conservative means. All patients achieved solid bony union; their pain was relieved; and hamstring spasm had resolved. The authors sought to determine whether crouch gait or any other abnormalities could be demonstrated in patients exhibiting clinical parameters of success. Each patient underwent gait analysis, radiographic analysis, and a physical examination. Four of seven patients demonstrated slight degrees of forward trunk lean during varying phases of gait accompanied by increased hip flexion. One patient demonstrated increased trunk extension accompanied by limited hip flexion. Two patients were essentially normal. The authors were unable to quantify residual crouch in these patients with solidly fused high-grade spondylolisthesis.

  4. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass.

    PubMed

    Gennero, Isabelle; Laurencin-Dalicieux, Sara; Conte-Auriol, Françoise; Briand-Mésange, Fabienne; Laurencin, Danielle; Rue, Jackie; Beton, Nicolas; Malet, Nicole; Mus, Marianne; Tokumura, Akira; Bourin, Philippe; Vico, Laurence; Brunel, Gérard; Oreffo, Richard O C; Chun, Jerold; Salles, Jean Pierre

    2011-09-01

    Lysophosphatidic acid (LPA) is a lipid mediator that acts in paracrine systems via interaction with a subset of G protein-coupled receptors (GPCRs). LPA promotes cell growth and differentiation, and has been shown to be implicated in a variety of developmental and pathophysiological processes. At least 6 LPA GPCRs have been identified to date: LPA1-LPA6. Several studies have suggested that local production of LPA by tissues and cells contributes to paracrine regulation, and a complex interplay between LPA and its receptors, LPA1 and LPA4, is believed to be involved in the regulation of bone cell activity. In particular, LPA1 may activate both osteoblasts and osteoclasts. However, its role has not as yet been examined with regard to the overall status of bone in vivo. We attempted to clarify this role by defining the bone phenotype of LPA1((-/-)) mice. These mice demonstrated significant bone defects and low bone mass, indicating that LPA1 plays an important role in osteogenesis. The LPA1((-/-)) mice also presented growth and sternal and costal abnormalities, which highlights the specific roles of LPA1 during bone development. Microcomputed tomography and histological analysis demonstrated osteoporosis in the trabecular and cortical bone of LPA1((-/-)) mice. Finally, bone marrow mesenchymal progenitors from these mice displayed decreased osteoblastic differentiation. These results suggest that LPA1 strongly influences bone development both qualitatively and quantitatively and that, in vivo, its absence results in decreased osteogenesis with no clear modification of osteoclasis. They open perspectives for a better understanding of the role of the LPA/LPA1 paracrine pathway in bone pathophysiology.

  5. Absence of the lysophosphatidic acid receptor LPA1 results in abnormal bone development and decreased bone mass☆,☆☆

    PubMed Central

    Gennero, Isabelle; Laurencin-Dalicieux, Sara; Conte-Auriol, Françoise; Briand-Mésange, Fabienne; Laurencin, Danielle; Rue, Jackie; Beton, Nicolas; Malet, Nicole; Mus, Marianne; Tokumura, Akira; Bourin, Philippe; Vico, Laurence; Brunel, Gérard; Oreffo, Richard O. C.; Chun, Jerold; Salles, Jean Pierre

    2013-01-01

    Lysophosphatidic acid (LPA) is a lipid mediator that acts in paracrine systems via interaction with a subset of G protein-coupled receptors (GPCRs). LPA promotes cell growth and differentiation, and has been shown to be implicated in a variety of developmental and pathophysiological processes. At least 6 LPA GPCRs have been identified to date: LPA1–LPA6. Several studies have suggested that local production of LPA by tissues and cells contributes to paracrine regulation, and a complex interplay between LPA and its receptors, LPA1 and LPA4, is believed to be involved in the regulation of bone cell activity. In particular, LPA1may activate both osteoblasts and osteoclasts. However, its role has not as yet been examined with regard to the overall status of bone in vivo. We attempted to clarify this role by defining the bone phenotype of LPA1(−/−) mice. These mice demonstrated significant bone defects and low bone mass, indicating that LPA1 plays an important role in osteogenesis. The LPA1(−/−) mice also presented growth and sternal and costal abnormalities, which highlights the specific roles of LPA1 during bone development. Microcomputed tomography and histological analysis demonstrated osteoporosis in the trabecular and cortical bone of LPA1(−/−) mice. Finally, bone marrow mesenchymal progenitors from these mice displayed decreased osteoblastic differentiation. These results suggest that LPA1 strongly influences bone development both qualitatively and quantitatively and that, in vivo, its absence results in decreased osteogenesis with no clear modification of osteoclasis. They open perspectives for a better understanding of the role of the LPA/LPA1 paracrine pathway in bone pathophysiology. PMID:21569876

  6. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817

  7. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed.

  8. Effect of leptin infusion on insulin sensitivity and lipid metabolism in diet-induced lipodystrophy model mice

    PubMed Central

    Nagao, Koji; Inoue, Nao; Ujino, Yoko; Higa, Kouki; Shirouchi, Bungo; Wang, Yu-Ming; Yanagita, Teruyoshi

    2008-01-01

    Background Lipodystrophies are rare acquired and genetic disorders characterized by the complete or partial absence of body fat with a line of metabolic disorders. Previous studies demonstrated that dietary conjugated linoleic acid (CLA) induces hepatic steatosis and hyperinsulinemia through the drastic reduction of adipocytokine levels due to a paucity of adipose tissue in mice and the pathogenesis of these metabolic abnormalities in CLA-fed mice is similar to that in human lipodystrophy. The present study explores the effect of leptin infusion on the pathogenesis of diet-induced lipodystrophy in mice. C57BL/6N mice were assigned to three groups: (1) mice were fed a semisynthetic diet supplemented with 6% corn oil and infused PBS intraperitoneally (normal group), (2) mice were fed a semisynthetic diet supplemented with 4% corn oil plus 2% CLA and infused PBS intraperitoneally (lipodystrophy-control group), and (3) mice were fed a semisynthetic diet supplemented with 4% corn oil plus 2% CLA and infused recombinant murine leptin intraperitoneally (lipodystrophy-leptin group). All mice were fed normal or lipodystrophy model diets for 4 weeks and were infused intrapeneally 0 or 5 μg of leptin per day from third week of the feeding period for 1 week. Results The results indicate that leptin infusion can attenuate hepatic steatosis and hyperinsulinemia through the reduction of hepatic triglyceride synthesis and the improvement of insulin sensitivity in diet-induced lipodystrophy model mice. Conclusion We expect the use of this model for clarifying the pathophysiology of lipodystrophy-induced metabolic abnormalities and evaluating the efficacy and safety of drug and dietary treatment. PMID:18348717

  9. Interferon-gamma as an adjuvant in immunocompromised mice.

    PubMed Central

    Heath, A W; Devey, M E; Brown, I N; Richards, C E; Playfair, J H

    1989-01-01

    We have compared interferon-gamma (IFN-gamma) with saponin and interleukin-1 (IL-1) as adjuvants for a blood-stage malaria vaccine in mice with various immunological abnormalities. IFN-gamma was particularly effective in Biozzi low antibody responder mice, mice selectively bred to produce antibody of low affinity, and mice depleted of CD4+ T cells. IFN-gamma and other cytokines may be safe adjuvants for use in human immunodeficiency states. PMID:2504662

  10. Origin and course of the coronary arteries in normal mice and in iv/iv mice

    PubMed Central

    ICARDO, JOSÉ M.; COLVEE, ELVIRA

    2001-01-01

    This paper reports on the origin and distribution of the coronary arteries in normal mice and in mice of the iv/iv strain, which show situs inversus and heterotaxia. The coronary arteries were studied by direct observation of the aortic sinuses with the scanning electron microscope, and by examination of vascular corrosion casts. In the normal mouse, the left and right coronaries (LC, RC) arise from the respective Valsalva sinus and course along the ventricular borders to reach the heart apex. Along this course the coronary arteries give off small branches at perpendicular or acute angles to supply the ventricles. The ventricular septum is supplied by the septal artery, which arises as a main branch from the right coronary. Conus arteries arise from the main coronary trunks, from the septal artery and/or directly from the Valsalva sinus. The vascular casts demonstrate the presence of intercoronary anastomoses. The origin of the coronary arteries was found to be abnormal in 84% of the iv/iv mice. These anomalies included double origin, high take-off, slit-like openings and the presence of a single coronary orifice. These anomalies occurred singly or in any combination, and were independent of heart situs. The septal artery originated from RC in most cases of situs solitus but originated predominantly from LC in situs inversus hearts. Except for this anomalous origin no statistical correlation was found between the coronary anomalies and heart situs or a particular mode of heterotaxia. The coronary anomalies observed in the iv/iv mice are similar to those found in human hearts. Most coronary anomalies appear to be due to defective connections between the aortic root and the developing coronaries. iv/iv mice may therefore constitute a good model to study the development of similar anomalies in the human heart. PMID:11693308

  11. Fetal MR Imaging of Gastrointestinal Abnormalities.

    PubMed

    Furey, Elizabeth A; Bailey, April A; Twickler, Diane M

    2016-01-01

    Fetal magnetic resonance (MR) imaging plays an increasing and valuable role in antenatal diagnosis and perinatal management of fetal gastrointestinal (GI) abnormalities. Advances in MR imaging data acquisition and use of motion-insensitive techniques have established MR imaging as an important adjunct to obstetric ultrasonography (US) for fetal diagnosis. In this regard, MR imaging provides high diagnostic accuracy for antenatal diagnosis of common and uncommon GI pathologic conditions. In the setting of fetal GI disease, T1-weighted images demonstrate the amount and distribution of meconium, which is crucial to the diagnostic capability of fetal MR imaging. Specifically, knowledge of the T1 signal intensity characteristics of fetal meconium, the normal pattern of meconium with advancing gestational age, and the expected caliber of small and large bowel in the fetus is key to diagnosis of abnormalities of the GI tract. Use of ultrafast T2-weighted sequences for evaluation of the expected location and morphology of fluid-containing structures, including the stomach and small bowel, in the fetal abdomen further aids in diagnostic confidence. Uncommonly encountered fetal GI pathologic conditions, especially cloacal dysmorphology, may demonstrate characteristic MR imaging patterns, which may add additional information to that from fetal US, allowing improved fetal and neonatal management. This article discusses common indications for fetal MR imaging of the GI tract, imaging protocols for fetal GI MR imaging, the normal appearance of the fetal GI tract with advancing gestational age, and the imaging appearances of common fetal GI abnormalities, as well as uncommon fetal GI conditions with characteristic appearances. (©)RSNA, 2016. PMID:27163598

  12. Mice with reduced NMDA receptor expression: more consistent with autism than schizophrenia?

    PubMed Central

    Gandal, Michael J.; Anderson, Rachel L.; Billingslea, Eddie N.; Carlson, Gregory C.; Roberts, Timothy P.L.; Siegel, Steven J.

    2012-01-01

    Reduced NMDA-receptor (NMDAR) function has been implicated in the pathophysiology of neuropsychiatric disease, most strongly in schizophrenia but also recently in autism spectrum disorders (ASD). To determine the direct contribution of NMDAR dysfunction to disease phenotypes, a mouse model with constitutively reduced expression of the obligatory NR1 subunit has been developed and extensively investigated. Adult NR1neo−/− mice show multiple abnormal behaviors, including reduced social interactions, locomotor hyperactivity, self-injury, deficits in prepulse inhibition, and sensory hypersensitivity, among others. Whereas such phenotypes have largely been interpreted in the context of schizophrenia, these behavioral abnormalities are rather non-specific and are frequently present across models of diseases characterized by negative symptom domains. This study investigated auditory electrophysiological and behavioral paradigms relevant to autism, to determine whether NMDAR hypofunction may be more consistent with adult ASD-like phenotypes. Indeed, transgenic mice demonstrated behavioral deficits relevant to all core ASD symptoms, including decreased social interactions, altered ultrasonic vocalizations, and increased repetitive behaviors. NMDAR disruption recapitulated clinical endophenotypes including reduced prepulse inhibition, auditory-evoked response N1 latency delay, and reduced gamma synchrony. Auditory electrophysiological abnormalities more closely resembled those seen in clinical studies of autism than schizophrenia. These results suggest that NMDA-receptor hypofunction may be associated with a continuum of neuropsychiatric diseases, including schizophrenia and autism. Neural synchrony abnormalities suggest an imbalance of glutamatergic and GABAergic coupling and may provide a target, along with behavioral phenotypes, for preclinical screening of novel therapeutics. PMID:22726567

  13. The effect of abnormal cell proportion on specimen classifier performance

    NASA Technical Reports Server (NTRS)

    Castleman, K. R.; White, B. S.

    1981-01-01

    An analysis is presented of the results obtained from a cell classifier which is confronted with an abnormal/normal cell ratio which is different from the ratio assumed in the calibration of the classifier. False negative and false positive error rates are determined in advance for classifier operation, along with the necessary sample size in order to validate the predicted distributions. Changes are demonstrated to happen only regarding the false negative rate, where reductions in the abnormal cell rate below the expected rates would cause totally unreliable data. Substantial overproduction of abnormal cells would be quickly noticeable, while production rates beyond, but close to, the expected rates would only require more extensive sampling. Classifier systems for 10% proportions of abnormal cells are concluded to be possible, but difficulties are present with much lower rates

  14. Metabolomics reveals significant impairments in the immune system of the APP/PS1 transgenic mice of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Vitorica, Javier; Gómez-Ariza, José Luis

    2015-02-01

    Inflammatory processes and other failures related to the immune system are common features associated with Alzheimer's disease (AD), in both brain and the peripheral system. Thus, the study of the main organs of the immune system may have a great potential for the elucidation of pathological mechanisms underlying these abnormalities. This is the first metabolomic investigation performed in spleen and thymus from transgenic mice of AD. Tissues were fingerprinted using a metabolomic platform comprising GC-MS and ultra-HPLC-MS. Multivariate statistics demonstrated significant differences in numerous metabolites between the APP/PS1 mice and wild-type controls, and it was proven that multiple biochemical pathways are disturbed in these organs including abnormal metabolism of phospholipids, energy deficiencies, altered homeostasis of amino acids, oxidative stress, and others. Therefore, these findings highlight the importance of the proper metabolic functioning of peripheral immune system in the development of neurodegenerative disorders such as AD.

  15. Pathogenesis of Lethal Cardiac Arrhythmias in Mecp2 Mutant Mice: Implication for Therapy in Rett Syndrome

    PubMed Central

    McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.

    2013-01-01

    Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313

  16. Enzyme replacement prevents enamel defects in hypophosphatasia mice.

    PubMed

    Yadav, Manisha C; de Oliveira, Rodrigo Cardoso; Foster, Brian L; Fong, Hanson; Cory, Esther; Narisawa, Sonoko; Sah, Robert L; Somerman, Martha; Whyte, Michael P; Millán, José Luis

    2012-08-01

    Hypophosphatasia (HPP) is the inborn error of metabolism characterized by deficiency of alkaline phosphatase activity, leading to rickets or osteomalacia and to dental defects. HPP occurs from loss-of-function mutations within the gene that encodes the tissue-nonspecific isozyme of alkaline phosphatase (TNAP). TNAP knockout (Alpl(-/-), aka Akp2(-/-)) mice closely phenocopy infantile HPP, including the rickets, vitamin B6-responsive seizures, improper dentin mineralization, and lack of acellular cementum. Here, we report that lack of TNAP in Alpl(-/-) mice also causes severe enamel defects, which are preventable by enzyme replacement with mineral-targeted TNAP (ENB-0040). Immunohistochemistry was used to map the spatiotemporal expression of TNAP in the tissues of the developing enamel organ of healthy mouse molars and incisors. We found strong, stage-specific expression of TNAP in ameloblasts. In the Alpl(-/-) mice, histological, µCT, and scanning electron microscopy analysis showed reduced mineralization and disrupted organization of the rods and inter-rod structures in enamel of both the molars and incisors. All of these abnormalities were prevented in mice receiving from birth daily subcutaneous injections of mineral-targeting, human TNAP at 8.2 mg/kg/day for up to 44 days. These data reveal an important role for TNAP in enamel mineralization and demonstrate the efficacy of mineral-targeted TNAP to prevent enamel defects in HPP. PMID:22461224

  17. [Transient abnormal Q-waves].

    PubMed

    Godballe, C; Hoeck, H C; Sørensen, J A

    1990-01-01

    We present a case of transient abnormal Q-waves (TAQ) and a review of the literature. TAQ are defined as abnormal Q-waves, which disappear within ten days. They are most often seen in patients with ischemic heart disease (IHD) but are also seen in other conditions. Brief episodes of myocardial ischemia giving rise to reversible biochemical and ultrastructural myocardial changes, resulting in transient ECG changes, provide an accepted theory for the pathogenesis of TAO. Investigations have shown that the occurrence of exercise-induced TAQ may be a symptom of IHD. It is impossible to distinguish TAQ from Q-waves induced by myocardial infarction. Appearance of TAQ during exercise-testing frequently indicates IHD. PMID:2301045

  18. [Chromosome abnormalities in human cancer].

    PubMed

    Salamanca-Gómez, F

    1995-01-01

    Recent investigation on the presence of chromosome abnormalities in neoplasias has allowed outstanding advances in the knowledge of malignant transformation mechanisms and important applications in the clinical diagnosis and prognosis of leukaemias, lymphomas and solid tumors. The purpose of the present paper is to discuss the most relevant cytogenetic aberrations, some of them described at the Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social, and to correlate these abnormalities with recent achievements in the knowledge of oncogenes, suppressor genes or antioncogenes, their chromosome localization, and their mutations in human neoplasia; as well as their perspectives in prevention and treatment of cancer that such findings permit to anticipate.

  19. Ultrasound screening for fetal abnormalities.

    PubMed

    Chitty, L S

    1995-12-01

    Ultrasound screening for fetal abnormalities is increasingly becoming part of routine antenatal care in Europe and the UK. However, there has been very little formal evaluation of this practice. In this article reports of routine ultrasound screening are reviewed and the advantages and disadvantages discussed. The majority of routine anomaly scanning is done in the second trimester but there may be a case for screening at other times in pregnancy and alternative anomaly screening policies are discussed. PMID:8710765

  20. [Endocrine abnormalities in HIV infections].

    PubMed

    Verges, B; Chavanet, P; Desgres, J; Kisterman, J P; Waldner, A; Vaillant, G; Portier, H; Brun, J M; Putelat, R

    The finding of endocrine gland lesions at pathological examination in AIDS and reports of several cases of endocrine disease in patients with this syndrome have prompted us to study endocrine functions in 63 patients (51 men, 12 women) with HIV-1 infection. According to the Center for Disease Control (CDC) classification system, 13 of these patients were stage CDC II, 27 stage CDC III and 23 stage CDC IV. We explored the adrenocortical function (ACTH, immediate tetracosactrin test) and the thyroid function (free T3 and T4 levels, TRH on TSH test) in all 63 patients. The hypothalamic-pituitary-gonadal axis (testosterone levels, LHRH test) and prolactin secretion (THR test) were explored in the 51 men. The results obtained showed early peripheral testicular insufficiency at stage CDC II and early pituitary gland abnormalities with hypersecretion of ACTH and prolactin also at stage CDC II. On the other hand, adrenocortical and pituitary abnormalities were not frequently found. The physiopathology of the endocrine abnormalities observed in HIV-1-infected patients remains unclear, but one may suspect that it involves interleukin-1 since this protein factor has recently been shown to stimulate the corticotropin-releasing hormone secretion and to act directly on the glycoprotein capsule of the virus (gp 120) whose structure is similar to that of some neurohormones.

  1. Aberrant Development of the Suprachiasmatic Nucleus and Circadian Rhythms in Mice Lacking the Homeodomain Protein Six6

    PubMed Central

    Clark, Daniel D.; Gorman, Michael R.; Hatori, Megumi; Meadows, Jason D.; Panda, Satchidananda; Mellon, Pamela L.

    2013-01-01

    The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus is the central pacemaker for peripheral and organismal circadian rhythms. The development of this hypothalamic structure depends on genetic programs throughout embryogenesis. We have investigated the role of the homeodomain transcription factor Six6 in the development of the SCN. We first showed that Six6 mRNA has circadian regulation in the mouse SCN. We then characterized the behavioral activity patterns of Six6-null mice under various photoperiod manipulations and stained their hypothalami using SCN-specific markers. Six6-null mice display abnormal patterns of circadian behavior indicative of SCN abnormalities. The ability of light exposure to reset rhythms correlates with the presence or absence of optic nerves, but all Six6-null mice show irregular rhythms. In contrast, wild-type mice with crushed optic nerves maintain regular rhythms regardless of light exposure. Using immunohistochemistry for arginine vasopressin (AVP), vasoactive intestinal polypeptide (VIP), and β-galactosidase, we demonstrated the lack of these SCN markers in all Six6- null mice regardless of the presence of optic nerve or partial circadian rhythms. Therefore, Six6 is required for the normal development of the SCN, and the Six6-null mouse can mount independent, although irregular, circadian rhythms despite the apparent absence of a histochemically defined SCN. PMID:23382588

  2. Impairment of Oligodendroglia Maturation Leads to Aberrantly Increased Cortical Glutamate and Anxiety-Like Behaviors in Juvenile Mice

    PubMed Central

    Chen, Xianjun; Zhang, Weiguo; Li, Tao; Guo, Yu; Tian, Yanping; Wang, Fei; Liu, Shubao; Shen, Hai-Ying; Feng, Yue; Xiao, Lan

    2015-01-01

    Adolescence is the critical time for developing proper oligodendrocyte (OL)-neuron interaction and the peak of onset for many cognitive diseases, among which anxiety disorders display the highest prevalence. However, whether impairment of de novo OL development causes neuronal abnormalities and contributes to the early onset of anxiety phenotype in childhood still remains unexplored. In this study, we tested the hypothesis that defects in OL maturation manifests cortical neuron function and leads to anxiety-like behaviors in juvenile mice. We report here that conditional knockout of the Olig2 gene (Olig2 cKO) specifically in differentiating OLs in the mouse brain preferentially impaired OL maturation in the gray matter of cerebral cortex. Interestingly, localized proton magnetic resonance spectroscopy revealed that Olig2 cKO mice displayed abnormally elevated cortical glutamate levels. In addition, transmission electron microscopy demonstrated increased vesicle density in excitatory glutamatergic synapses in the cortex of the Olig2 cKO mice. Moreover, juvenile Olig2 cKO mice exhibited anxiety-like behaviors and impairment in behavioral inhibition. Taken together, our results suggest that impaired OL development affects glutamatergic neuron function in the cortex and causes anxiety-related behaviors in juvenile mice. These discoveries raise an intriguing possibility that OL defects may be a contributing mechanism for the onset of anxiety in childhood. PMID:26696827

  3. Partial Return Yoke for MICE

    SciTech Connect

    Witte H.; Plate, S

    2013-05-03

    The international Muon Ionization Cooling Experiment (MICE) is a large scale experiment which is presently assembled at the Rutherford Appleton Laboratory in Didcot, UK. The purpose of MICE is to demonstrate the concept of ionization cooling experimentally. Ionization cooling is an important accelerator concept which will be essential for future HEP experiments such as a potential Muon Collider or a Neutrino Factory. The MICE experiment will house up to 18 superconducting solenoids, all of which produce a substantial amount of magnetic flux. Recently it was realized that this magnetic flux leads to a considerable stray magnetic field in the MICE hall. This is a concern as technical equipment in the MICE hall may may be compromised by this. In July 2012 a concept called partial return yoke was presented to the MICE community, which reduces the stray field in the MICE hall to a safe level. This report summarizes the general concept, engineering considerations and the expected shielding performance.

  4. Prognostic Impact of Cytogenetic Abnormalities in Multiple Myeloma

    PubMed Central

    Jian, Yuan; Chen, Xiaolei; Zhou, Huixing; Zhu, Wanqiu; Liu, Nian; Geng, Chuanying; Chen, Wenming

    2016-01-01

    Abstract The identification of specific cytogenetic abnormalities by interphase fluorescence in situ hybridization (i-FISH) has become a routine procedure for prognostic stratification of multiple myeloma (MM) patients. In this study, the prognostic significance of cytogenetic abnormalities detected by interphase fluorescence in situ hybridization (iFISH) in 229 newly diagnosed multiple myeloma patients was retrospectively analyzed. Results showed that del (17p), t(4;14), and 1q21 gain were adverse predictors of progression-free survival (PFS). Patients who carried these cytogenetic abnormalities were more likely to have more adverse biological parameters and lower response rate. Multivariate analysis showed that del (17p), t(4;14), and 1q21 gain were statistically independent predictors of PFS, whereas del (17p) was also adverse predictor of overall survival. Multiple coexisting cytogenetic abnormalities also had a negative correlation with PFS. Bortezomib-based therapy could improve the rate and depth of response in patients with t(4;14) translocation and 1q21 gain. Autologous stem cell transplantation could improve, but not overcome the adverse prognostic effect of high-risk cytogenetic abnormalities. These results demonstrate that MM patients with iFISH abnormalities, especially del (17p), are more likely to have a poor prognosis. PMID:27175647

  5. Abnormal Cerebral Microstructure in Premature Neonates with Congenital Heart Disease

    PubMed Central

    Paquette, Lisa B.; Wisnowski, Jessica L.; Ceschin, Rafael; Pruetz, Jay D.; Detterich, Jon A.; Del Castillo, Sylvia; Nagasunder, Arabhi C.; Kim, Richard; Painter, Michael J.; Gilles, Floyd H.; Nelson, Marvin D.; Williams, Roberta G.; Blüml, Stefan; Panigrahy, Ashok

    2013-01-01

    Background and Purpose Abnormal cerebral microstructure has been documented in term neonates with congenital heart disease (CHD) portending risk for injury and poor neurodevelopmental outcome. Our hypothesis was that preterm neonates with CHD would demonstrate diffuse cerebral microstructural abnormalities when compared to critically ill neonates without CHD. A secondary aim was to identify any association between microstructural abnormalities, white matter injury (e.g., punctate white matter lesions, pWMLs) and other clinical variables, including heart lesion. Material and Methods Using Tract-Based-Spatial-Statistics (TBSS), an unbiased, voxel-wise method for analyzing diffusion tensor imaging data, we compared 21 preterm neonates with CHD to two cohorts of neonates without CHD: 28 term and 27 preterm neonates, identified from the same neonatal intensive care unit. Results Compared to term neonates without CHD, preterm neonates with CHD had microstructural abnormalities in widespread regions of the central white matter. However, 42% of the preterm CHD neonates had pWMLs. When neonates with pWMLs were excluded, microstructural abnormalities remained only in the splenium. Preterms with CHD had similar microstructure to preterms without CHD. Conclusion Diffuse microstructural abnormalities were observed in preterm neonates with CHD, strongly associated with pWMLs. Independently, regional vulnerability of the splenium, a structure associated with visual spatial function, was observed in all preterm CHD neonates. PMID:23703146

  6. Biological effects of targeted inactivation of hepatocyte growth factor-like protein in mice.

    PubMed Central

    Bezerra, J A; Carrick, T L; Degen, J L; Witte, D; Degen, S J

    1998-01-01

    Hepatocyte growth factor-like protein (HGFL) is a liver-derived serum glycoprotein involved in cell proliferation and differentiation, and is proposed to have a fundamental role in embryogenesis, fertility, hematopoiesis, macrophage activation, and tissue repair. To assess the in vivo effects of total loss of HGFL, we generated mice with targeted disruption of the gene resulting in loss of the protein. Disruption of the HGFL gene allowed for normal embryogenesis, and followed a Mendelian pattern of genetic transmission. Mice homozygous for the targeted allele (HGFL-/- mice) are fertile, and grow to adulthood without obvious phenotypic abnormalities in unchallenged animals, except for development of lipid-containing cytoplasmic vacuoles in hepatocytes throughout the liver lobules. These histologic changes are not accompanied by discernible changes in synthetic or excretory hepatic functions. Hematopoiesis appears unaltered, and although macrophage activation is delayed in the absence of HGFL, migration to the peritoneal cavity upon challenge with thioglycollate was similar in HGFL-/- and wild-type mice. Challenged with incision to skin, HGFL-/- mice display normal wound healing. These data demonstrate that HGFL is not essential for embryogenesis, fertility, or wound healing. HGFL-deficient mice will provide a valuable means to assess the role of HGFL in hepatic and systemic responses to inflammatory and infectious stimuli in vivo. PMID:9486989

  7. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation

    PubMed Central

    Keleku-Lukwete, Nadine; Suzuki, Mikiko; Otsuki, Akihito; Tsuchida, Kouhei; Katayama, Saori; Hayashi, Makiko; Naganuma, Eriko; Moriguchi, Takashi; Tanabe, Osamu; Engel, James Douglas; Imaizumi, Masue; Yamamoto, Masayuki

    2015-01-01

    Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β-globin gene, leading to the production of abnormally shaped red blood cells. Sickle cells are prone to hemolysis and thereby release free heme into plasma, causing oxidative stress and inflammation that in turn result in damage to multiple organs. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a master regulator of the antioxidant cell-defense system. Here we show that constitutive Nrf2 activation by ablation of its negative regulator Keap1 (kelch-like ECH-associated protein 1) significantly improves symptoms in SCD model mice. SCD mice exhibit severe liver damage and lung inflammation associated with high expression levels of proinflammatory cytokines and adhesion molecules compared with normal mice. Importantly, these symptoms subsided after Nrf2 activation. Although hemolysis and stress erythropoiesis did not change substantially in the Nrf2-activated SCD mice, Nrf2 promoted the elimination of plasma heme released by sickle cells’ hemolysis and thereby reduced oxidative stress and inflammation, demonstrating that Nrf2 activation reduces organ damage and segregates inflammation from prevention of hemolysis in SCD mice. Furthermore, administration of the Nrf2 inducer CDDO-Im (2-cyano-3, 12 dioxooleana-1, 9 diene-28-imidazolide) also relieved inflammation and organ failure in SCD mice. These results support the contention that Nrf2 induction may be an important means to protect organs from the pathophysiology of sickle cell-induced damage. PMID:26371321

  8. Sensory Stimulation Prior to Spinal Cord Injury Induces Post-Injury Dysesthesia in Mice

    PubMed Central

    Hoschouer, Emily L.; Finseth, Taylor; Flinn, Sharon; Basso, D. Michele

    2010-01-01

    Abstract Chronic pain and dysesthesias are debilitating conditions that can arise following spinal cord injury (SCI). Research studies frequently employ rodent models of SCI to better understand the underlying mechanisms and develop better treatments for these phenomena. While evoked withdrawal tests can assess hypersensitivity in these SCI models, there is little consensus over how to evaluate spontaneous sensory abnormalities that are seen in clinical SCI subjects. Overgrooming (OG) and biting after peripheral nerve injury or spinal cord excitotoxic lesions are thought to be one behavioral demonstration of spontaneous neuropathic pain or dysesthesia. However, reports of OG after contusion SCI are largely anecdotal and conditions causing this response are poorly understood. The present study investigated whether repeated application of sensory stimuli to the trunk prior to mid-thoracic contusion SCI would induce OG after SCI in mice. One week prior to SCI or laminectomy, mice were subjected either to nociceptive and mechanical stimulation, mechanical stimulation only, the testing situation without stimulation, or no treatment. They were then examined for 14 days after surgery and the sizes and locations of OG sites were recorded on anatomical maps. Mice subjected to either stimulus paradigm showed increased OG compared with unstimulated or uninjured mice. Histological analysis showed no difference in spinal cord lesion size due to sensory stimulation, or between mice that overgroomed or did not overgroom. The relationship between prior stimulation and contusion injury in mice that display OG indicates a critical interaction that may underlie one facet of spontaneous neuropathic symptoms after SCI. PMID:20121420

  9. Amelioration of inflammation and tissue damage in sickle cell model mice by Nrf2 activation.

    PubMed

    Keleku-Lukwete, Nadine; Suzuki, Mikiko; Otsuki, Akihito; Tsuchida, Kouhei; Katayama, Saori; Hayashi, Makiko; Naganuma, Eriko; Moriguchi, Takashi; Tanabe, Osamu; Engel, James Douglas; Imaizumi, Masue; Yamamoto, Masayuki

    2015-09-29

    Sickle cell disease (SCD) is an inherited disorder caused by a point mutation in the β-globin gene, leading to the production of abnormally shaped red blood cells. Sickle cells are prone to hemolysis and thereby release free heme into plasma, causing oxidative stress and inflammation that in turn result in damage to multiple organs. The transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) is a master regulator of the antioxidant cell-defense system. Here we show that constitutive Nrf2 activation by ablation of its negative regulator Keap1 (kelch-like ECH-associated protein 1) significantly improves symptoms in SCD model mice. SCD mice exhibit severe liver damage and lung inflammation associated with high expression levels of proinflammatory cytokines and adhesion molecules compared with normal mice. Importantly, these symptoms subsided after Nrf2 activation. Although hemolysis and stress erythropoiesis did not change substantially in the Nrf2-activated SCD mice, Nrf2 promoted the elimination of plasma heme released by sickle cells' hemolysis and thereby reduced oxidative stress and inflammation, demonstrating that Nrf2 activation reduces organ damage and segregates inflammation from prevention of hemolysis in SCD mice. Furthermore, administration of the Nrf2 inducer CDDO-Im (2-cyano-3, 12 dioxooleana-1, 9 diene-28-imidazolide) also relieved inflammation and organ failure in SCD mice. These results support the contention that Nrf2 induction may be an important means to protect organs from the pathophysiology of sickle cell-induced damage.

  10. Lactation Is a Risk Factor of Postpartum Heart Failure in Mice with Cardiomyocyte-specific Apelin Receptor (APJ) Overexpression.

    PubMed

    Murata, Kazuya; Ishida, Junji; Ishimaru, Tomohiro; Mizukami, Hayase; Hamada, Juri; Saito, Chiaki; Fukamizu, Akiyoshi

    2016-05-20

    The G protein-coupled receptor APJ and its ligand apelin are highly expressed in cardiovascular tissues and are associated with the regulation of blood pressure and cardiac function. Although accumulating evidence suggests that APJ plays a crucial role in the heart, it remains unclear whether up-regulation of APJ affects cardiac function. Here we generated cardiomyocyte-specific APJ-overexpressing (APJ-TG) mice and investigated the cardiac phenotype in APJ-TG mice. Male and non-pregnant APJ-TG mice showed cardiac hypertrophy, contractile dysfunction, and elevation of B-type natriuretic peptide gene expression in the heart but not cardiac fibrosis and symptoms of heart failure, including breathing abnormality and pleural ef