Science.gov

Sample records for mice enhances healthy

  1. Running enhances spatial pattern separation in mice

    PubMed Central

    Creer, David J.; Romberg, Carola; Saksida, Lisa M.; van Praag, Henriette; Bussey, Timothy J.

    2010-01-01

    Increasing evidence suggests that regular exercise improves brain health and promotes synaptic plasticity and hippocampal neurogenesis. Exercise improves learning, but specific mechanisms of information processing influenced by physical activity are unknown. Here, we report that voluntary running enhanced the ability of adult (3 months old) male C57BL/6 mice to discriminate between the locations of two adjacent identical stimuli. Improved spatial pattern separation in adult runners was tightly correlated with increased neurogenesis. In contrast, very aged (22 months old) mice had impaired spatial discrimination and low basal cell genesis that was refractory to running. These findings suggest that the addition of newly born neurons may bolster dentate gyrus-mediated encoding of fine spatial distinctions. PMID:20133882

  2. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    PubMed

    Tang, Xuan; Zhuang, Jingjing; Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  3. Effects of Lorenzo's Oil on peroxisomes in healthy mice.

    PubMed

    De Craemer, D; Van den Branden, C; Fontaine, M; Vamecq, J

    1998-03-01

    We investigated peroxisomal alterations in mice treated with different doses of Lorenzo's Oil (a therapy for X-linked adrenoleukodystrophy patients) for up to 100 days. Hepatic erucic acid levels were already significantly increased 2.2-fold and 2.6-fold in mice treated with 10% and 20% Lorenzo's Oil for 21 days, respectively. No lipidosis was found in liver, myocardium and kidney of any of the treated mice. While hepatic catalase, lauroyl-CoA oxidase and glycolate oxidase, and renal catalase activities were not induced by either diet, myocardial catalase activity was increased in most groups. This suggests that the mechanism of the effect of Lorenzo's Oil in X-linked adrenoleukodystrophy patients may not be a direct effect on the peroxisomes.

  4. Tadalafil enhances working memory, and reduces hippocampal oxidative stress in both young and aged mice.

    PubMed

    Al-Amin, Md Mamun; Hasan, S M Nageeb; Alam, Tanzir; Hasan, Ahmed Tasdid; Hossain, Imran; Didar, Rohini Rowshan; Alam, Md Ashraful; Rahman, Md Mahbubur

    2014-12-15

    Tadalafil, a type-5 phosphodiesterase enzyme inhibitor with long half-life used to treat erectile dysfunction. Recently it has been reported that tadalafil improves cognitive function. Here, we aimed to investigate the age dependent effects of tadalafil on memory, locomotor, behavior, and oxidative stress in the hippocampus. Tadalafil was orally administered everyday (5 mg/kg) to young (2 months) and old (16 months) healthy mice for 4 weeks. Control mice from each group received equal volume of 0.9% normal saline for the same duration. Memory and locomotor activity were tested using radial arm maze and open field test respectively. The level of malondialdehyde (MDA), nitric oxide (NO), and advanced protein oxidation product (APOP) was analyzed and catalase activity was determined from the isolated hippocampus. Treatment with tadalafil in aged mice improves working memory than the corresponding tadalafil treated young mice in radial arm maze test. Tadalafil treated mice traveled less distance in the center and the mean speed of tadalafil treated aged mice was significantly lower than the tadalafil treated young mice in open field test. Tadalafil treatment elicited a decrease of MDA level in the hippocampus of aged mice than that of young mice. APOP level was decreased only in aged mice treated with tadalafil. Treatment with tadalafil decreased NO and increased catalase activity in both young and aged mice. On the basis of previous and our findings, we conclude that tadalafil treatment reduces oxidative stress while increased cGMP level in the hippocampus might be responsible for memory enhancement.

  5. Hypoxia inducible factor stabilization leads to lasting improvement of hippocampal memory in healthy mice.

    PubMed

    Adamcio, Bartosz; Sperling, Swetlana; Hagemeyer, Nora; Walkinshaw, Gail; Ehrenreich, Hannelore

    2010-03-17

    We have previously shown that high-dose erythropoietin (EPO) treatment improves hippocampal plasticity and cognitive performance in rodents and in patients suffering from neuropsychiatric diseases. It was therefore of interest to explore whether upregulation of endogenous EPO in brain by hypoxia inducible factor (HIF) stabilization would increase hippocampal memory similar to exogenous EPO. HIFs are transcription factors involved in the cellular response to low oxygen, including upregulation of transcripts like vascular endothelial growth factor (VEGF) and EPO. Under normal oxygen, prolylhydroxylases decrease HIF-alpha stability. This is banned by prolylhydroxylase inhibitors, which prevent oxygen dependent degradation and thus prolong HIF-alpha half life. In an experimental set-up identical to the one yielding strong cognitive effects with EPO, healthy male 28-day-old mice received FG-4497, a HIF prolylhydroxylase inhibitor, or placebo intraperitoneally every other day for 3 weeks. Behavioral testing and hematocrit determinations were conducted in independent cohorts at 1, 3, or 4 weeks after treatment completion. Increased EPO and VEGF mRNA expression in hippocampus or primary hippocampal neurons 6h after the application of FG-4497 confirmed its ability to stabilize HIF and upregulate HIF dependent transcription in brain. At 3 and 4 weeks after the last injection, respectively, FG-4497 treated mice compared to placebo mice had improved hippocampal memory in fear conditioning without change in hematocrit. In contrast, no improvement in memory was detected at 1 week, when the hematocrit was increased, indicating that cognitive improvement and hematocrit are not directly related. FG-4497 application for 3 weeks leads to delayed but lasting enhancement of hippocampal memory, making HIF stabilization an attractive target for pharmacological manipulation of cognition.

  6. Dealing with requests for pharmacological cognitive enhancement from healthy students.

    PubMed

    Chandramouleeswaran, Susmita; Edwin, Natasha Catherine; Rajaleelan, Wesley

    2016-01-01

    The use of drugs to enhance cognitive function and academic performance is clearly a global phenomenon, with the reported prevalence of stimulant use among medical students ranging from 15-20%. A multi-institution study from the USA reported a 6.9% lifetime prevalence of non-prescription use of cognitive enhancers among college students. A comprehensive systematic review indicates a 16-29% use of non-prescribed stimulants among all students for reasons that include increasing concentration and alertness. While mental health professionals and guidance counsellors anecdotally recall requests for pharmacological cognitive enhancement from otherwise healthy students, the exact magnitude of this problem in the Indian context is not clear. PMID:27474703

  7. Enhancement of lung tumor formation in mice

    SciTech Connect

    Witschi, H.P.

    1984-01-01

    There is now a great deal of data available to show that butylated hydroxytoluene (BHT) enhances the development of lung tumors in mice. In many ways BHT functions like a promoting agent. Interestingly, it also has tumor enhancing or promoting properties in organs other than mouse lung such as rat liver, rat bladder, possibly rat GI tract and in in vitro systems. The development of lung tumors by BHT may be influenced by comparatively low exposure regimens; the minimum dose found so far to be effective are 6 intraperitoneal injections of 50 mg/kg or a diet containing 500 ppM of BHT for 2 weeks. While these findings seem to require that the continued use of BHT as a food additive needs to be reevaluated it should be mentioned that other considerations have lead to the conclusion that BHT probably has a large margin of safety. This makes it important to establish the mechanism of action of BHT which remains unknown. 41 references, 1 figure, 3 tables.

  8. Remote limb ischemic conditioning enhances motor learning in healthy humans.

    PubMed

    Cherry-Allen, Kendra M; Gidday, Jeff M; Lee, Jin-Moo; Hershey, Tamara; Lang, Catherine E

    2015-06-01

    Brief bouts of sublethal ischemia have been shown to protect exposed tissue (ischemic conditioning) and tissues at remote sites (remote ischemic conditioning) against subsequent ischemic challenges. Given that the mechanisms of this protective phenomenon are multifactorial and epigenetic, we postulated that remote limb ischemic conditioning (RLIC) might enhance mechanisms responsible for neural plasticity, and thereby facilitate learning. Specifically, we hypothesized that conditioning of the nervous system with RLIC, achieved through brief repetitive limb ischemia prior to training, would facilitate the neurophysiological processes of learning, thus making training more effective and more long-lasting. Eighteen healthy adults participated in this study; nine were randomly allocated to RLIC and nine to sham conditioning. All subjects underwent seven consecutive weekday sessions and 2-wk and 4-wk follow-up sessions. We found that RLIC resulted in significantly greater motor learning and longer retention of motor performance gains in healthy adults. Changes in motor performance do not appear to be due to a generalized increase in muscle activation or muscle strength and were not associated with changes in serum brain-derived neurotrophic factor (BDNF) concentration. Of note, RLIC did not enhance cognitive learning on a hippocampus-dependent task. While future research is needed to establish optimal conditioning and training parameters, this inexpensive, clinically feasible paradigm might ultimately be implemented to enhance motor learning in individuals undergoing neuromuscular rehabilitation for brain injury and other pathological conditions. PMID:25867743

  9. Soy biodiesel emissions have reduced inflammatory effects compared to diesel emissions in healthy and allergic mice.

    PubMed

    Gavett, Stephen H; Wood, Charles E; Williams, Marc A; Cyphert, Jaime M; Boykin, Elizabeth H; Daniels, Mary J; Copeland, Lisa B; King, Charly; Krantz, Todd Q; Richards, Judy H; Andrews, Debora L; Jaskot, Richard H; Gilmour, M Ian

    2015-01-01

    Toxicity of exhaust from combustion of petroleum diesel (B0), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM(2.5)) concentrations of 50, 150, or 500 μg/m(3). Studies in healthy mice showed greater levels of neutrophils and MIP-2 in bronchoalveolar lavage (BAL) fluid 2 h after a single 4-h exposure to B0 compared with mice exposed to B20 or B100. No consistent differences in BAL cells and biochemistry, or hematological parameters, were observed after 5 d or 4 weeks of exposure to any of the emissions. Air-exposed HDM-allergic mice had significantly increased responsiveness to methacholine aerosol challenge compared with non-allergic mice. Exposure to any of the emissions for 4 weeks did not further increase responsiveness in either non-allergic or HDM-allergic mice, and few parameters of allergic inflammation in BAL fluid were altered. Lung and nasal pathology were not significantly different among B0-, B20-, or B100-exposed groups. In HDM-allergic mice, exposure to B0, but not B20 or B100, significantly increased resting peribronchiolar lymph node cell proliferation and production of T(H)2 cytokines (IL-4, IL-5, and IL-13) and IL-17 in comparison with air-exposed allergic mice. These results suggest that diesel exhaust at a relatively high concentration (500 μg/m(3)) can induce inflammation acutely in healthy mice and exacerbate some components of allergic responses, while comparable concentrations of B20 or B100 soy biodiesel fuels did not elicit responses different from those caused by air exposure alone.

  10. AIR PARTICULATE POLLUTION EXPOSURE INDUCES SYSTEMIC OXIDATIVE STRESS IN HEALTHY MICE

    EPA Science Inventory

    Air particulate pollution exposure induces systemic oxidative stress in healthy mice

    Elizabeth S Roberts1 and Kevin L Dreher2. 1 College or Veterinary Medicine, NC State University, Raleigh, NC , 2US Environmental Protection Agency, NHEERL, RTP, NC

    Epidemiological s...

  11. Comparative Toxicity of Soy Biodiesel and Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity from combustion of 100% soy-based biodiesel (B100) was compared to that of petrodiesel (B0) or a 20% biodiesel / 80% petrodiesel mix (B20) in healthy and house dust mite (HDM)-allergic Balb/cJ mice. Exhaust from combustion of B0, B20, or B100 was diluted to target conce...

  12. Soy Biodiesel Emissions Have Reduced Inflammatory Effects Compared to Diesel Emissions in Healthy and Allergic Mice

    EPA Science Inventory

    Toxicity of exhaust from combustion of petroleum diesel (BO), soy-based biodiesel (B100), or a 20% biodiesel/80% petrodiesel mix (B20) was compared in healthy and house dust mite (HDM)-allergic mice. Fuel emissions were diluted to target fine particulate matter (PM2.5) conrentrat...

  13. Biodistribution of Encapsulated Indocyanine Green in Healthy Mice

    PubMed Central

    Yaseen, Mohammad A.; Yu, Jie; Jung, Bongsu; Wong, Michael S.; Anvari, Bahman

    2009-01-01

    Indocyanine Green (ICG) is a fluorescent probe used in various optically-mediated diagnostic and therapeutic applications. However, utility of ICG remains limited by its unstable optical properties and non-specific localization. We have encapsulated ICG within electrostatically-assembled mesocapsules (MCs) to explore its potential for targeted optical diagnosis and therapy. In this study, we investigate how the surface coating and size of the MCs influences ICG's biodistribution in vivo. ICG was administered intravenously to Swiss Webster mice as a free solution or encapsulated within either 100 nm diameter MCs coated with dextran; 500 nm diameter MCs coated with dextran; or 100 nm diameter MCs coated with 10 nm ferromagnetic iron oxide nanoparticles, themselves coated with polyethylene glycol. ICG was extracted from harvested blood and organs at various times and its amount quantified with fluorescence measurements. MCs containing ICG accumulated in organs of the reticuloendothelial system, namely the liver and spleen, as well as the lungs. The circulation kinetics of ICG remained unaffected by encapsulation; however, the deposition within organs other than the liver suggests a different biodistribution mechanism. Results suggest that the capsules' coating influences their biodistribution to a greater extent than their size. The MC encapsulation system allows for delivery of ICG to organs other than the liver, enabling the potential development of new optical imaging and therapeutic strategies. PMID:19799463

  14. Enhanced emotional empathy after psychosocial stress in young healthy men.

    PubMed

    Wolf, Oliver T; Schulte, Judith M; Drimalla, Hanna; Hamacher-Dang, Tanja C; Knoch, Daria; Dziobek, Isabel

    2015-01-01

    Empathy is a core prerequisite for human social behavior. Relatively, little is known about how empathy is influenced by social stress and its associated neuroendocrine alterations. The current study was designed to test the impact of acute stress on emotional and cognitive empathy. Healthy male participants were exposed to a psychosocial laboratory stressor (trier social stress test, (TSST)) or a well-matched control condition (Placebo-TSST). Afterwards they participated in an empathy test measuring emotional and cognitive empathy (multifaceted empathy test, (MET)). Stress exposure caused an increase in negative affect, a rise in salivary alpha amylase and a rise in cortisol. Participants exposed to stress reported more emotional empathy in response to pictures displaying both positive and negative emotional social scenes. Cognitive empathy (emotion recognition) in contrast did not differ between the stress and the control group. The current findings provide initial evidence for enhanced emotional empathy after acute psychosocial stress.

  15. Pharmacokinetics of Polymersomes Composed of Poly(Butadiene-Ethylene Oxide); Healthy versus Tumor-Bearing Mice.

    PubMed

    Wang, G; de Kruijff, R M; Abou, D; Ramos, N; Mendes, E; Franken, L E; Wolterbeek, H T; Denkova, A G

    2016-02-01

    Vesicles composed of block copolymers (i.e., polymersomes) are one of the most versatile nano-carriers for medical purposes due to their tuneable physicochemical properties and the possibility to encapsulate simultaneously hydrophobic and hydrophilic substances, allowing, for instance, the combination of therapy and imaging. In cancer treatment, these vesicles need to remain long enough in the blood stream to be sufficiently taken up by tumors. Here, we have investigated the biodistribution and the pharmacokinetics of polymersomes, composed of poly(butadiene-b-ethylene oxide) having dimensions around 80 nm. The polymersomes have been radiolabeled with ¹¹¹In via the so-called active loading method achieving a loading efficiency of 92.9 ± 0.9% with radionuclide retention in mouse serum of more than 95% at 24 h. The optimized ¹¹¹In containing polymersomes have been intravenously administered in healthy and tumor bearing mice for pharmacokinetic determination using microSPECT (Single Photon Emission Computed Tomography). In healthy mice these polymersomes have been found to exhibit relatively long blood circulation (> 6 h), low liver uptake (6 ± 1.5%ID/g, 48 h p.i.) and elevated spleen uptake (188 ± 30%ID/g). The blood circulation in tumor bearing mice is dramatically reduced (< 1.5 h) most likely due to elevated splenic filtration, clearly indicating the importance of in vivo studies in diseased mice. Finally, the polymersomes have been injected subcutaneously in tumor bearing mice revealing retention of 77% in the mice, primarily accumulated at the site of injection, up to 48 hours after administration.

  16. Recurrent Recruitment Manoeuvres Improve Lung Mechanics and Minimize Lung Injury during Mechanical Ventilation of Healthy Mice

    PubMed Central

    Reiss, Lucy Kathleen; Kowallik, Anke; Uhlig, Stefan

    2011-01-01

    Introduction Mechanical ventilation (MV) of mice is increasingly required in experimental studies, but the conditions that allow stable ventilation of mice over several hours have not yet been fully defined. In addition, most previous studies documented vital parameters and lung mechanics only incompletely. The aim of the present study was to establish experimental conditions that keep these parameters within their physiological range over a period of 6 h. For this purpose, we also examined the effects of frequent short recruitment manoeuvres (RM) in healthy mice. Methods Mice were ventilated at low tidal volume VT = 8 mL/kg or high tidal volume VT = 16 mL/kg and a positive end-expiratory pressure (PEEP) of 2 or 6 cmH2O. RM were performed every 5 min, 60 min or not at all. Lung mechanics were followed by the forced oscillation technique. Blood pressure (BP), electrocardiogram (ECG), heart frequency (HF), oxygen saturation and body temperature were monitored. Blood gases, neutrophil-recruitment, microvascular permeability and pro-inflammatory cytokines in bronchoalveolar lavage (BAL) and blood serum as well as histopathology of the lung were examined. Results MV with repetitive RM every 5 min resulted in stable respiratory mechanics. Ventilation without RM worsened lung mechanics due to alveolar collapse, leading to impaired gas exchange. HF and BP were affected by anaesthesia, but not by ventilation. Microvascular permeability was highest in atelectatic lungs, whereas neutrophil-recruitment and structural changes were strongest in lungs ventilated with high tidal volume. The cytokines IL-6 and KC, but neither TNF nor IP-10, were elevated in the BAL and serum of all ventilated mice and were reduced by recurrent RM. Lung mechanics, oxygenation and pulmonary inflammation were improved by increased PEEP. Conclusions Recurrent RM maintain lung mechanics in their physiological range during low tidal volume ventilation of healthy mice by preventing atelectasis and

  17. Immune enhancement during chronic ethanol feeding in mice - Autoimmune phenomena

    SciTech Connect

    Honchel, R.; Rhoads, C.A.; Fitzpatrick, E.A.; McClain, C.J.; Kaplan, A.M.; Cohen, D.A. )

    1991-03-11

    Chronic alcohol abuse in humans is often associated with diminished immune reactivity and enhanced susceptibility to infections. However, many alcohol-dependent individuals display signs of autoimmunity, which has been implicated in alcohol-associated liver damage. This study demonstrates that C57Bl/6 mice placed on the Lieber-DeCarli liquid ethanol diet for up to 9 weeks displayed augmented immune reactivity as compared to mice placed on an isocaloric control diet. Spleen cells were significantly more responsive to the mitogens, LPS and ConA, as early as 3 weeks after initiation of EtOH feeding and this hyperresponsiveness persisted throughout the 9 week feeding period. Similar enhancement of the mixed lymphocyte response was also seen in EtOH fed mice. The enhancement of immune responsiveness was not related to a change in the numbers or percentages of B cells, T cells, or in the CD4/CD8 T cell ratios as determined by flow cytometry. These studies indicate that under certain conditions of ethanol feeding in mice, enhancement rather than suppression of the immune system may occur. This system may be a model to evaluate possible induction of autoimmune responses during chronic ethanol abuse. Studies are underway to measure the presence of auto-antibodies in the sera of these ethanol fed mice.

  18. Prorenin/Renin Receptor Blockade Promotes a Healthy Fat Distribution in Obese Mice

    PubMed Central

    Tan, Paul; Blais, Carolane; Nguyen, Thi M.-D.; Schiller, Peter W.; Gutkowska, Jolanta; Lavoie, Julie L.

    2016-01-01

    Objective Administration of the handle region peptide (HRP), a (pro)renin receptor blocker, decreases body weight gain and visceral adipose tissue (VAT) in high-fat/high-carbohydrate (HF/HC) diet-fed mice. The objective of this study was to elucidate potential mechanisms implicated in these observations. Methods Mice were given a normal or a HF/HC diet along with saline or HRP for 10 weeks. Results In HF/HC-fed mice, HRP increased the expression of several enzymes implicated in lipogenesis and lipolysis in subcutaneous fat (SCF) while the expression of the enzyme implicated in the last step of lipogenesis decreased in VAT. A reduction was also observed in circulating free fatty acids in these animals which was accompanied by normalized adipocyte size in VAT and increased adipocyte size in SCF. “Beiging“ is the evolution of a white adipose tissue toward a brown-like phenotype characterized by an increased mitochondrial density and small lipid droplets. HRP increased the expression of’ “beiging” markers in SCF of HF/HC diet-fed mice. Conclusions HRP treatment may favor healthy fat storage in SCF by activating a triglyceride/free fatty acid cycling and “beiging,” which could explain the body weight and fat mass reduction. PMID:27458124

  19. [Experimental oral candidiasis in healthy and immunocompromised BALB/c mice].

    PubMed

    Karaman, Meral; Kiray, Müge; Bayrakal, Vahide; Bağrıyanık, H Alper; Yılmaz, Osman; Bahar, I Hakkı

    2011-04-01

    Oral candidiasis which is the most common type of Candida infections affecting humans, is most frequently caused by C.albicans. Immune response of the host, as well as a variety of virulence factors of the causative agent, play important roles in the development of Candida infections. The colonization rate of Candida in the oral cavity of healthy individuals, is between 25-30%, however, this rate is reported to be increased in immunosuppressive subjects. In our study, we established an oral candidiasis model with C.albicans in healthy and experimentally immunocompromised mice and aimed to compare Candida colonization rates and histopathological changes occurred in the tongue and esophagus tissues of the animal groups. A total of 21 BALB/c mice were grouped as control (Group 1; n= 7), healthy (Group 2; n= 7) and immunocompromised (Group 3; n= 7) groups. Immunosuppression in mice was performed by subcutaneous injection of prednisolone. For experimental oral candidiasis, cotton swab impregnated with C.albicans strains which did not have acid proteinase and phospholipase enzyme activity, no biofilm production, and sensitive to fluconazole and amphotericin B, were used. In the control group, physiological saline solution was used instead of C.albicans strain. In the forth day of experimental oral candidiasis model swab samples taken from the dorsal tongue surface of mice were evaluated by quantitative cultivation method. No yeast colonies were detected in Group 1 while more significant number of yeast colonies were observed in Group 3 compared to Group 2 (p= 0.002). Tongue and esophagus tissues of mice were stained with hematoxylin-eosin and periodic acid schiff staining and evaluated in terms of inflammatory response, abscess formation, vascular congestion, vasodilation and for the presence of yeast and hyphae. When the inflammation in esophagus was considered, statistically significant difference was determined between group 1 and group 3 (p= 0.023), however, no

  20. Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice.

    PubMed

    Saxena, Vishal; Sadoqi, Mostafa; Shao, Jun

    2006-02-01

    The objective of this study is to investigate the biodistribution of Indocyanine green (ICG) in healthy mice, when delivered through polymeric nanoparticles. The poly(DL-lactic-co-glycolic acid) (PLGA) nanoparticles entrapping ICG were engineered and characterized. The extraction method for ICG recovery from biological samples was developed. The biodistribution of ICG was determined in healthy C57BL/6 mice (female, 10-week old) when delivered through PLGA nanoparticles in comparison to free ICG solution, using a fluorometric assay method. The extraction method for ICG shows efficiency above 80% for various organs and plasma. When nanoparticles were used to deliver ICG, 2-8 times higher concentrations of ICG was deposited in various organs, with 5-10 times higher plasma levels till 4 h, after an i.v. dose as compared to free ICG solution. In conclusion, the nanoparticle formulation significantly increased the ICG concentration and circulation time in plasma as well as the ICG uptake, accumulation and retention in various organs. Overall, this study represents the first step in exploring and establishing the potential of nanoparticles as an ICG-delivery system for use in tumor-diagnosis and photodynamic therapy.

  1. Consumption of orange fermented beverage reduces cardiovascular risk factors in healthy mice.

    PubMed

    Escudero-López, Blanca; Berná, Genoveva; Ortega, Ángeles; Herrero-Martín, Griselda; Cerrillo, Isabel; Martín, Franz; Fernández-Pachón, María-Soledad

    2015-04-01

    The consumption of fruits prevents the risk of cardiovascular diseases. Alcoholic fermentation has been carried out in fruits resulting in products which provide high concentration of bioactive compounds and variable alcohol content. The aim of this study was to assess the potential beneficial effect of an orange beverage obtained by alcoholic fermentation and pasteurization of orange juice on cardiovascular risk biomarkers. For this purpose, four mice groups (n = 8) ingested orange beverage (equivalent volume to 250 mL/day in human), orange juice, alcoholic solution (at the proportional amount of orange beverage) or water during 12 weeks. The equivalent amount to double serving of orange beverage (500 mL/day) was administered to mice in a subsequent intervention, and a control group was also evaluated. Orange beverage consumption increased levels of glutathione and uric acid, improved lipid profile, decreased oxidized LDL and maintained levels of IL-6 and C-reactive protein. Synergistic effects between the bioactive compounds and the alcohol content of orange beverage may occur. The intake of double serving also increased antioxidant enzyme activities, bilirubin content and plasma antioxidant capacity. These results suggest that orange beverage may produce greater protection against cardiovascular risk factors than orange juice in healthy mice.

  2. Enhancement of Fat Oxidation by Licorice Flavonoid Oil in Healthy Humans during Light Exercise.

    PubMed

    Mori, Noriyuki; Nakanishi, Saki; Shiomi, Seiko; Kiyokawa, Shoko; Kakimoto, Sachie; Nakagawa, Kaku; Hosoe, Kazunori; Minami, Kazuhiro; Nadamoto, Tomonori

    2015-01-01

    Licorice flavonoid oil (LFO) is a new functional food ingredient consisting of hydrophobic licorice polyphenols in medium-chain triglycerides. Recent studies reported that LFO prevented and ameliorated diet-induced obesity via the regulation of lipid metabolism-related gene expression in the livers of mice and rats, while it reduced body weight in overweight human subjects by reducing total body fat. However, the direct effects of LFO on energy metabolism have not been studied in human subjects. Therefore, we investigated the effects of ingestion of LFO on energy metabolism, including fat oxidation, by measuring body surface temperature under resting conditions and respiratory gas analysis under exercise conditions in healthy humans. We showed that ingestion of a single 600 mg dose of LFO elevated body trunk skin temperature when measured in a slightly cooled air-conditioned room, and increased oxygen consumption and decreased the respiratory exchange ratio as measured by respiratory gas analysis during 40% Vo2max exercise with a cycle ergometer. Furthermore, repeated ingestion of 300 mg of LFO for 8 d decreased respiratory exchange during the recovery period following 40 min of 30% Vo2max exercise on a treadmill. These results suggest that LFO enhances fat oxidation in humans during light exercise. PMID:26639849

  3. Enhancement of Fat Oxidation by Licorice Flavonoid Oil in Healthy Humans during Light Exercise.

    PubMed

    Mori, Noriyuki; Nakanishi, Saki; Shiomi, Seiko; Kiyokawa, Shoko; Kakimoto, Sachie; Nakagawa, Kaku; Hosoe, Kazunori; Minami, Kazuhiro; Nadamoto, Tomonori

    2015-01-01

    Licorice flavonoid oil (LFO) is a new functional food ingredient consisting of hydrophobic licorice polyphenols in medium-chain triglycerides. Recent studies reported that LFO prevented and ameliorated diet-induced obesity via the regulation of lipid metabolism-related gene expression in the livers of mice and rats, while it reduced body weight in overweight human subjects by reducing total body fat. However, the direct effects of LFO on energy metabolism have not been studied in human subjects. Therefore, we investigated the effects of ingestion of LFO on energy metabolism, including fat oxidation, by measuring body surface temperature under resting conditions and respiratory gas analysis under exercise conditions in healthy humans. We showed that ingestion of a single 600 mg dose of LFO elevated body trunk skin temperature when measured in a slightly cooled air-conditioned room, and increased oxygen consumption and decreased the respiratory exchange ratio as measured by respiratory gas analysis during 40% Vo2max exercise with a cycle ergometer. Furthermore, repeated ingestion of 300 mg of LFO for 8 d decreased respiratory exchange during the recovery period following 40 min of 30% Vo2max exercise on a treadmill. These results suggest that LFO enhances fat oxidation in humans during light exercise.

  4. 2-Deoxy-D-Glucose Enhances Anesthethic Effects in Mice

    PubMed Central

    Wang, Hui; Xu, Zhipeng; Wu, Anshi; Dong, Yuanlin; Zhang, Yiying; Yue, Yun; Xie, Zhongcong

    2014-01-01

    Background The mechanisms of general anesthesia by volatile drugs remain largely unknown. Mitochondrial dysfunction and reduction in energy levels have been suggested to be associated with general anesthesia status. 2-Deoxy-d-glucose (2-DG), an analog of glucose, inhibits hexokinase and reduces cellular levels of adenosine triphosphate (ATP). 3-Nitropropionic acid is another compound which can deplete ATP levels. In contrast, idebenone and L-carnitine could rescue deficits of energy. We therefore sought to determine whether 2-DG and/or 3-nitropropionic acid can enhance the anesthetic effects of isoflurane, and whether idebenone and L-carnitine can reverse the actions of 2-DG. Methods C57BL/6J mice (8 months old) received different concentrations of isoflurane with and without the treatments of 2-DG, 3-nitropropionic acid, idebenone, and L-carnitine. Isoflurane-induced loss of righting reflex (LORR) was determined in the mice. ATP levels in H4 human neuroglioma cells were assessed after these treatments. Finally, 31P-magnetic resonance spectroscopy was used to determine the effects of isoflurane on brain ATP levels in the mice. Results 2-DG enhanced isoflurane-induced LORR (P = 0.002, N = 15). 3-nitropropionic acid also enhanced the anesthetic effects of isoflurane (P = 0.005, N = 15). Idebenone (Idebenone + saline versus Idebenone + 2-DG: P = 0.165, N = 15), but not L-cartinine (L-carnitine + saline versus L-carnitine + 2-DG: P < 0.0001, N = 15), inhibited the effects of 2-DG on enhancing isoflurane-induced LORR in mice, as evidenced by 2-DG not enhancing isoflurane-induced LORR in mice pretreated with idebenone. Idebenone (Idebenone + saline versus Idebenone + 2-DG: P = 0.177, N = 6), but not L-cartinine (L-carnitine + saline versus L-carnitine + 2-DG: P = 0.029, N = 6), also mitigated the effects of 2-DG on reducing ATP levels in cells, as evidenced by 2-DG not decreasing ATP levels in the cell pretreated with idebenone. Finally, isoflurane decreased ATP levels

  5. An Investigation into the Immunomodulatory Activities of Sutherlandia frutescens in Healthy Mice

    PubMed Central

    Lei, Wei; Browning, Jimmy D.; Eichen, Peggy A.; Folk, William R.; Sun, Grace Y.; Lubahn, Dennis B.

    2016-01-01

    Sutherlandia frutescens is a medicinal plant that has been traditionally used in southern Africa for cancers, infections, and inflammatory conditions. We recently published experiments demonstrating that an aqueous extract of S. frutescens possessed potent immune-stimulatory activity. This work was carried out with murine macrophages, an immune cell type that plays a pivotal role in host defense from infection and in shaping host inflammatory and immune responses. Here, we conducted a series of follow-up experiments to explore the impact of consuming S. frutescens on host response to bacterial challenge using healthy mice. We found that feeding mice a diet containing S. frutescens failed to significantly alter host response to systemic infection by either a gram-positive or gram-negative bacterium (i.e., L. monocytogenes and E. coli, respectively). In contrast to the in vitro observations, we found no evidence that S. frutescens consumption stimulated in vivo inflammatory responses; instead, consumption of S. frutescens tended to diminish in vivo inflammatory responses. Several possible reasons for this are discussed. PMID:27575007

  6. An Investigation into the Immunomodulatory Activities of Sutherlandia frutescens in Healthy Mice.

    PubMed

    Lei, Wei; Browning, Jimmy D; Eichen, Peggy A; Folk, William R; Sun, Grace Y; Lubahn, Dennis B; Fritsche, Kevin L

    2016-01-01

    Sutherlandia frutescens is a medicinal plant that has been traditionally used in southern Africa for cancers, infections, and inflammatory conditions. We recently published experiments demonstrating that an aqueous extract of S. frutescens possessed potent immune-stimulatory activity. This work was carried out with murine macrophages, an immune cell type that plays a pivotal role in host defense from infection and in shaping host inflammatory and immune responses. Here, we conducted a series of follow-up experiments to explore the impact of consuming S. frutescens on host response to bacterial challenge using healthy mice. We found that feeding mice a diet containing S. frutescens failed to significantly alter host response to systemic infection by either a gram-positive or gram-negative bacterium (i.e., L. monocytogenes and E. coli, respectively). In contrast to the in vitro observations, we found no evidence that S. frutescens consumption stimulated in vivo inflammatory responses; instead, consumption of S. frutescens tended to diminish in vivo inflammatory responses. Several possible reasons for this are discussed. PMID:27575007

  7. Caspase-2 Deficiency Enhances Aging-Related Traits in Mice

    PubMed Central

    Zhang, Yingpei; Padalecki, Susan S; Chaudhuri, Asish R; Waal, Eric De; Goins, Beth A; Grubbs, Barry; Ikeno, Yuji; Richardson, Arlan; Mundy, Gregory R; Herman, Brian

    2007-01-01

    Alteration of apoptotic activity has been observed in a number of tissues in aging mammals, but it remains unclear whether and/or how apoptosis may affect aging. Caspase-2 is a member of the cysteine protease family that plays a critical role in apoptosis. To understand the impact of compromised apoptosis function on mammalian aging, we conducted a comparative study on caspase-2 deficient mice and their wild-type littermates with a specific focus on the aging-related traits at advanced ages. We found that caspase-2 deficiency enhanced a number of traits commonly seen in premature aging animals. Loss of caspase-2 was associated with shortened maximum lifespan, impaired hair growth, increased bone loss, and reduced body fat content. In addition, we found that the livers of caspase-2 deficient mice had higher levels of oxidized proteins than those of age-matched wild-type mice, suggesting that caspase-2 deficiency compromised the animal's ability to clear oxidatively damaged cells. Collectively, these results suggest that caspase-2 deficiency affects aging in the mice. This study thus demonstrates for the first time that disruption of a key apoptotic gene has a significant impact on aging. PMID:17188333

  8. 1H-NMR METABONOMICS ANALYSIS OF SERA DIFFERENTIATES BETWEEN MAMMARY TUMOR-BEARING MICE AND HEALTHY CONTROLS

    EPA Science Inventory

    Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...

  9. Dietary flaxseed modulates the colonic microenvironment in healthy C57Bl/6 male mice which may alter susceptibility to gut-associated diseases.

    PubMed

    Power, Krista A; Lepp, Dion; Zarepoor, Leila; Monk, Jennifer M; Wu, Wenqing; Tsao, Rong; Liu, Ronghua

    2016-02-01

    Understanding how dietary components alter the healthy baseline colonic microenvironment is important in determining their roles in influencing gut health and gut-associated diseases. Dietary flaxseed (FS) has demonstrated anti-colon cancer effects in numerous rodent models, however, exacerbated acute colonic mucosal injury and inflammation in a colitis model. This study investigates whether FS alters critical aspects of gut health in healthy unchallenged mice, which may help explain some of the divergent effects observed following different gut-associated disease challenges. Four-week-old C57Bl/6 male mice were fed an AIN-93G basal diet (BD) or an isocaloric BD+10% ground FS diet for 3 weeks. FS enhanced colon goblet cell density, mucus production, MUC2 mRNA expression, and cecal short chain fatty acid levels, indicative of beneficial intestinal barrier integrity responses. Additionally, FS enhanced colonic regenerating islet-derived protein 3 gamma (RegIIIγ) and reduced MUC1 and resistin-like molecule beta (RELMβ) mRNA expression which may indicate altered responses in regulating microbial defense and injury repair responses. FS diet altered the fecal microbial community structure (16S rRNA gene profiling), including a 20-fold increase in Prevotella spp. and a 30-fold reduction in Akkermansia muciniphila abundance. A 10-fold reduction in A. muciniphila abundance by FS was also demonstrated in the colon tissue-associated microbiota (quantitative PCR). Furthermore, fecal branched chain fatty acids were increased by FS, indicative of increased microbial-derived putrefactive compounds. In conclusion, consumption of a FS-supplemented diet alters the baseline colonic microenvironment of healthy mice which may modify subsequent mucosal microbial defense and injury-repair responses leading to altered susceptibility to different gut-associated diseases.

  10. Pharmacokinetics of artemisinin delivered by oral consumption of Artemisia annua dried leaves in healthy vs. Plasmodium chabaudi-infected mice

    PubMed Central

    Weathers, Pamela J.; Elfawal, Mostafa A.; Towler, Melissa J.; Acquaah-Mensah, George K.; Rich, Stephen M.

    2014-01-01

    Ethnopharmacological Relevance The Chinese have used Artemisia annua as a tea infusion to treat fever for > 2,000 yrs. The active component is artemisinin. Previously we showed that when compared to mice fed an equal amount of pure artemisinin, a single oral dose of dried leaves of Artemisia annua (pACT) delivered to Plasmodium chabaudi-infected mice reduced parasitemia at least fivefold. Dried leaves also delivered >40 times more artemisinin in the blood with no toxicity. The pharmacokinetics (PK) of artemisinin delivered from dried plant material has not been adequately studied. Material and Methods Healthy and P. chabaudi-infected mice were oral gavaged with pACT to deliver a 100 mg kg−1 body weight dose of artemisinin. Concentrations of serum artemisinin and one of its liver metabolites, deoxyartemisinin, were measured over two hours by GCMS. Results The first order elimination rate constant for artemisinin in pACT-treated healthy mice was estimated to be 0.80 hr−1 with an elimination half-life (T½) of 51.6 min. The first order absorption rate constant was estimated at 1.39 hr−1. Cmax and Tmax were 4.33 mg L−1 and 60 min, respectively. The area under the curve (AUC) was 299.5 mg·min L−1. In contrast, the AUC for pACT-treated infected mice was significantly greater at 435.6 mg·min L−1. Metabolism of artemisinin to deoxyartemisinin was suppressed in infected mice over the period of observation. Serum levels of artemisinin in the infected mice continued to rise over the 120 min of the study period, and as a result, the elimination T½ was not determined; the Cmax and Tmax were estimated at ≥ 6.64 mg L−1 and ≥ 120 min, respectively. Groups of healthy mice were also fed either artemisinin or artemisinin mixed in mouse chow. When compared at 60 min, artemisinin was undetectable in the serum of mice fed 100 mg AN kg−1 body weight. When plant material was present either as mouse chow or A. annua pACT, artemisinin levels in the serum rose to 2

  11. Prohibition or coffee shops: regulation of amphetamine and methylphenidate for enhancement use by healthy adults.

    PubMed

    Dubljević, Veljko

    2013-01-01

    This article analyzes appropriate public policies for enhancement use of two most important stimulant drugs: Ritalin (methylphenidate) and Adderall (mixed amphetamine salts). The author argues that appropriate regulation of cognition enhancement drugs cannot be a result of a general discussion on cognitive enhancements as such, but has to be made on a case-by-case basis. Starting from the recently proposed taxation approach to cognition enhancement drugs, the author analyzes available, moderately permissive models of regulation. After a thorough analysis of relevant characteristics of methylphenidate and amphetamine, the author concludes that a moderately liberal permissive regulation of enhancement use by healthy adults might be appropriate for extended release forms of methylphenidate. However, due to their danger profile, amphetamine and instant release forms of methylphenidate should not be made readily available to healthy adults and would need to be prohibited. PMID:23767434

  12. Prohibition or coffee shops: regulation of amphetamine and methylphenidate for enhancement use by healthy adults.

    PubMed

    Dubljević, Veljko

    2013-01-01

    This article analyzes appropriate public policies for enhancement use of two most important stimulant drugs: Ritalin (methylphenidate) and Adderall (mixed amphetamine salts). The author argues that appropriate regulation of cognition enhancement drugs cannot be a result of a general discussion on cognitive enhancements as such, but has to be made on a case-by-case basis. Starting from the recently proposed taxation approach to cognition enhancement drugs, the author analyzes available, moderately permissive models of regulation. After a thorough analysis of relevant characteristics of methylphenidate and amphetamine, the author concludes that a moderately liberal permissive regulation of enhancement use by healthy adults might be appropriate for extended release forms of methylphenidate. However, due to their danger profile, amphetamine and instant release forms of methylphenidate should not be made readily available to healthy adults and would need to be prohibited.

  13. Quinine enhances the behavioral stimulant effect of cocaine in mice.

    PubMed

    Huertas, Adriana; Wessinger, William D; Kucheryavykh, Yuri V; Sanabria, Priscila; Eaton, Misty J; Skatchkov, Serguei N; Rojas, Legier V; Maldonado-Martínez, Gerónimo; Inyushin, Mikhail Y

    2015-02-01

    The Na(+)-dependent dopamine transporter (DAT) is primarily responsible for regulating free dopamine (DA) concentrations in the brain by participating in the majority of DA uptake; however, other DA transporters may also participate, especially if cocaine or other drugs of abuse compromise DAT. Recently, such cocaine-insensitive low-affinity mono- and poly-amine OCT transporters were described in astrocytes which use DA as a substrate. These transporters are from a different transporter family and while insensitive to cocaine, they are specifically blocked by quinine and some steroids. Quinine is inexpensive and is often found in injected street drugs as an "adulterant". The present study was designed to determine the participation of OCTs in cocaine dependent behavioral and physiological changes in mice. Using FVB mice we showed, that daily single injections of quinine (10 mg/kg, i.p.) co-administered with cocaine (15 mg/kg, i.p.) for 10 days significantly enhanced cocaine-induced locomotor behavioral sensitization. Quinine had no significant effect on the time course of behavioral activation. In astrocytes from the ventral tegmental area of mice, transporter currents of quinine-sensitive monoamine transporters were also augmented after two weeks of cocaine administration. The importance of low-affinity high-capacity transporters for DA clearance is discussed, explaining the known ability of systemically administered DAT inhibitors to anomalously increase DA clearance.

  14. Peripheral and centrally mediated effects of insulin on small intestinal transit in healthy mice.

    PubMed

    Peddyreddy, M K; Rao, K R

    2006-07-01

    1. Insulin is the drug of choice in the management of type 1 diabetes mellitus. Approximately 76% of diabetic patients suffer from gastrointestinal disorders. An important area of investigating the inherent effect of insulin on small intestinal transit (SIT) remains unexplored. Hence, the present study was planned to investigate the effects of insulin (2 x 10(-6), 2 x 10(-3) and 2 U/kg) on small intestinal transit following two different routes of administration in healthy animals. 2. Insulin or vehicle was administered subcutaneously or intracerebroventricularly in eight groups of healthy, overnight-fasted mice. Blood glucose (BG) levels were measured 2 min before insulin administration and at the time coinciding with SIT determination. Small intestinal transit was determined 50 min after insulin administration using the charcoal meal method. 3. Following subcutaneous administration, the lowest dose of insulin (2 x 10(-6) U/kg) produced a significant acceleration in SIT without altering BG levels. However, the highest dose of insulin (2 U/kg) produced an acceleration of SIT that was associated with a significant fall in BG levels. 4. Following intracerebroventricular administration, the lowest dose of insulin (2 x 10(-6) U/kg) attenuated SIT, without producing any alteration in BG levels, but the highest dose (2 U/kg) mimicked the effects seen following subcutaneous administration. Peripherally administered insulin produced significant acceleration of SIT at lower doses (2 x 10(-6) or 2 x 10(-3) mU/kg) compared with centrally administered insulin at similar doses. However, at the highest dose of insulin (2 U/kg), both routes (s.c. and i.c.v.) produced acceleration of SIT. 5. In the present study, peripherally and centrally administered insulin at 2 x 10(-6) U/kg produced contrasting effects on SIT, without any hypoglycaemia. However, 2 U/kg insulin accelerated SIT similarly following both s.c. and i.c.v. administration that was associated with hypoglycaemia in

  15. Enhanced insulin signaling in density-enhanced phosphatase-1 (DEP-1) knockout mice

    PubMed Central

    Krüger, Janine; Brachs, Sebastian; Trappiel, Manuela; Kintscher, Ulrich; Meyborg, Heike; Wellnhofer, Ernst; Thöne-Reineke, Christa; Stawowy, Philipp; Östman, Arne; Birkenfeld, Andreas L.; Böhmer, Frank D.; Kappert, Kai

    2015-01-01

    Objective Insulin resistance can be triggered by enhanced dephosphorylation of the insulin receptor or downstream components in the insulin signaling cascade through protein tyrosine phosphatases (PTPs). Downregulating density-enhanced phosphatase-1 (DEP-1) resulted in an improved metabolic status in previous analyses. This phenotype was primarily caused by hepatic DEP-1 reduction. Methods Here we further elucidated the role of DEP-1 in glucose homeostasis by employing a conventional knockout model to explore the specific contribution of DEP-1 in metabolic tissues. Ptprj−/− (DEP-1 deficient) and wild-type C57BL/6 mice were fed a low-fat or high-fat diet. Metabolic phenotyping was combined with analyses of phosphorylation patterns of insulin signaling components. Additionally, experiments with skeletal muscle cells and muscle tissue were performed to assess the role of DEP-1 for glucose uptake. Results High-fat diet fed-Ptprj−/− mice displayed enhanced insulin sensitivity and improved glucose tolerance. Furthermore, leptin levels and blood pressure were reduced in Ptprj−/− mice. DEP-1 deficiency resulted in increased phosphorylation of components of the insulin signaling cascade in liver, skeletal muscle and adipose tissue after insulin challenge. The beneficial effect on glucose homeostasis in vivo was corroborated by increased glucose uptake in skeletal muscle cells in which DEP-1 was downregulated, and in skeletal muscle of Ptprj−/− mice. Conclusion Together, these data establish DEP-1 as novel negative regulator of insulin signaling. PMID:25830095

  16. Differentiation of healthy brain tissue and tumors using surface-enhanced Raman scattering.

    PubMed

    Aydin, Omer; Altaş, Murat; Kahraman, Mehmet; Bayrak, Omer Faruk; Culha, Mustafa

    2009-10-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique for characterization of biological samples. SERS spectra from healthy brain tissue and tumors are obtained by sudden freezing of tissue in liquid nitrogen and crashing and mixing it with a concentrated silver colloidal suspension. The acquired spectra from tissues show significant spectral differences that can be used to identify whether it is from a healthy region or tumor. The most significant change on SERS spectra from the healthy/peripheral brain tissue to tumor is the increase of the ratio of the peaks at around 723 to 655 cm(-1). In addition, the spectral changes indicate that the protein content in tumors increases compared to the peripheral/healthy tissue as observed with tumor invasion. The preliminary results show that SERS spectra can be used for a quick diagnosis due to the simplicity of the sample preparation and the speed of the spectral acquisition. PMID:19843358

  17. Enhanced inflammation and immunosuppression by ultraviolet radiation in xeroderma pigmentosum group A (XPA) model mice.

    PubMed

    Miyauchi-Hashimoto, H; Tanaka, K; Horio, T

    1996-09-01

    Xeroderma pigmentosum group A (XPA) gene-deficient mice were developed by gene targeting in mouse embryonic stem cells. To examine whether these XPA-model mice display photodermatologic abnormalities similar to those in human xeroderma pigmentosum, we investigated the effects of acute ultraviolet radiation on the homozygous (-/-) mice compared to the wild type (+/+) and heterozygous (+/-) mice. A single irradiation with ultraviolet B or topical psoralen plus ultraviolet A treatment induced stronger and longer lasting ear swelling in the (-/-) mice than in the (+/+) and (+/-) mice. Histologic changes including epidermal necrosis, cell infiltration, and sunburn cell formation after ultraviolet B radiation were more prominent in the (-/-) model mice than in the control mice. The (-/-) model mice showed damage of ADPase(+)Langerhans cells at a lower ultraviolet B dose than did the control mice. Moreover, the reappearance of ADPase(+)Langerhans cells after ultraviolet B radiation was delayed in the (-/-) mice compared to the control mice. Although contact hypersensitivity was induced equally in all mice, ultraviolet B-induced local and systemic immunosuppression were greatly enhanced in the (-/-) model mice. The data suggest that the XPA gene-deficient mice may be a useful model of human XPA, because the responses to UV radiation in the mice were very similar to those in the patients with XPA. Moreover, it is possible that enhanced ultraviolet immunosuppression is involved in the development of skin cancers in xeroderma pigmentosum. PMID:8751968

  18. FAK-heterozygous mice display enhanced tumour angiogenesis

    PubMed Central

    Kostourou, Vassiliki; Lechertier, Tanguy; Reynolds, Louise E.; Lees, Delphine M.; Baker, Marianne; Jones, Dylan T.; Tavora, Bernardo; Ramjaun, Antoine R.; Birdsey, Graeme M.; Robinson, Stephen D.; Parsons, Maddy; Randi, Anna M.; Hart, Ian R; Hodivala-Dilke, Kairbaan

    2013-01-01

    Genetic ablation of endothelial Focal Adhesion Kinase (FAK) can inhibit pathological angiogenesis, suggesting that loss of endothelial FAK is sufficient to reduce neovascularisation. Here we show that reduced stromal-FAK expression in FAK-heterozygous mice unexpectedly enhances both B16F0 and CMT19T tumour growth and angiogenesis. We further demonstrate that cell proliferation and microvessel sprouting, but not migration, are increased in serum-stimulated FAK-heterozygous endothelial cells. FAK-heterozygous endothelial cells display an imbalance in FAK phosphorylation at pY397 and pY861 without changes in Pyk2 or Erk1/2 activity. By contrast, serum-stimulated phosphorylation of Akt is enhanced in FAK-heterozygous endothelial cells and these cells are more sensitive to Akt inhibition. Additionally, low doses of a pharmacological FAK inhibitor, although too low to affect FAK autophosphorylation in vitro, can enhance angiogenesis ex vivo and tumor growth in vivo. Our results highlight a potential novel role for FAK as a non-linear, dose-dependent regulator of angiogenesis where heterozygous levels of FAK enhance angiogenesis. PMID:23799510

  19. Mobile phone SMS messages can enhance healthy behaviour: a meta-analysis of randomised controlled trials.

    PubMed

    Orr, Jayne A; King, Robert J

    2015-01-01

    Healthy behaviour, such as smoking cessation and adherence to prescribed medications, mitigates illness risk factors but health behaviour change can be challenging. Mobile phone short-message service (SMS) messages are increasingly used to deliver interventions designed to enhance healthy behaviour. This meta-analysis used a random-effects model to synthesise 38 randomised controlled trials that investigated the efficacy of SMS messages to enhance healthy behaviour. Participants (N = 19,641) lived in developed and developing countries and were diverse with respect to age, ethnicity, socioeconomic background and health behaviours targeted for change. SMS messages had a small, positive, significant effect (g = 0.291) on a broad range of healthy behaviour. This effect was maximised when multiple SMS messages per day were used (g = 0.395) compared to using lower frequencies (daily, multiple per week and once-off) (g = 0.244). The low heterogeneity in this meta-analysis (I (2) = 38.619) supports reporting a summary effect size and implies that the effect of SMS messaging is robust, regardless of population characteristics or healthy behaviour targeted. SMS messaging is a simple, cost-effective intervention that can be automated and can reach any mobile phone owner. While the effect size is small, potential health benefits are well worth achieving.

  20. Mobile phone SMS messages can enhance healthy behaviour: a meta-analysis of randomised controlled trials.

    PubMed

    Orr, Jayne A; King, Robert J

    2015-01-01

    Healthy behaviour, such as smoking cessation and adherence to prescribed medications, mitigates illness risk factors but health behaviour change can be challenging. Mobile phone short-message service (SMS) messages are increasingly used to deliver interventions designed to enhance healthy behaviour. This meta-analysis used a random-effects model to synthesise 38 randomised controlled trials that investigated the efficacy of SMS messages to enhance healthy behaviour. Participants (N = 19,641) lived in developed and developing countries and were diverse with respect to age, ethnicity, socioeconomic background and health behaviours targeted for change. SMS messages had a small, positive, significant effect (g = 0.291) on a broad range of healthy behaviour. This effect was maximised when multiple SMS messages per day were used (g = 0.395) compared to using lower frequencies (daily, multiple per week and once-off) (g = 0.244). The low heterogeneity in this meta-analysis (I (2) = 38.619) supports reporting a summary effect size and implies that the effect of SMS messaging is robust, regardless of population characteristics or healthy behaviour targeted. SMS messaging is a simple, cost-effective intervention that can be automated and can reach any mobile phone owner. While the effect size is small, potential health benefits are well worth achieving. PMID:25739668

  1. Enhancing Methotrexate Tolerance with Folate Tagged Liposomes in Arthritic Mice.

    PubMed

    Nogueira, Eugénia; Lager, Franck; Le Roux, Delphine; Nogueira, Patrícia; Freitas, Jaime; Charvet, Celine; Renault, Gilles; Loureiro, Ana; Almeida, Catarina R; Ohradanova-Repic, Anna; Machacek, Christian; Bernardes, Gonçalo J L; Moreira, Alexandra; Stockinger, Hannes; Burnet, Michael; Carmo, Alexandre M; Gomes, Andreia C; Preto, Ana; Bismuth, Georges; Cavaco-Paulo, Artur

    2015-12-01

    Methotrexate is the first line of treatment of rheumatoid arthritis. Since many patients become unresponsive to methotrexate treatment, only very expensive biological therapies are effective and increased methotrexate tolerance strategies need to be identified. Here we propose the encapsulation of methotrexate in a new liposomal formulation using a hydrophobic fragment of surfactant protein conjugated to a linker and folate to enhance their tolerance and efficacy. In this study we aim to evaluate the efficiency of this system to treat rheumatoid arthritis, by targeting folate receptor β present at the surface of activated macrophages, key effector cells in this pathology. The specificity of our liposomal formulation to target folate receptor β was investigated both in vitro as in vivo using a mouse model of arthritis (collagen-induced arthritis in DBA/1J mice strain). In both systems, the liposomal constructs were shown to be highly specific and efficient in targeting folate receptor β. These liposomal formulations also significantly increase the clinical benefit of the encapsulated methotrexate in vivo in arthritic mice, together with reduced expression of CD39 and CD73 ectonucleotidases by joint-infiltrating macrophages. Thus, our formulation might be a promising cost effective way to treat rheumatoid arthritis and delay or reduce methotrexate intolerance.

  2. Cordyceps militaris Enhances Cell-Mediated Immunity in Healthy Korean Men.

    PubMed

    Kang, Ho Joon; Baik, Hyun Wook; Kim, Sang Jung; Lee, Seong Gyu; Ahn, Hong Yup; Park, Ju Sang; Park, Sang Jong; Jang, Eun Jeong; Park, Sang Woon; Choi, Jin Young; Sung, Ji Hee; Lee, Seung Min

    2015-10-01

    Cordyceps militaris is a mushroom traditionally used for diverse pharmaceutical purposes in East Asia, including China, and has been found to be effective for enhancing immunity through various types of animal testing. The aim of this study is to determine the efficacy of C. militaris for enhancing cell-mediated immunity and its safety in healthy male adults. Healthy male adults were divided into the experimental group (n = 39), given 1.5 g/day of ethanol treated C. militaris in capsules, and the control group (n = 40), given the same number of identical placebo capsules filled with microcrystalline cellulose and lactose for 4 weeks from February 13 to March 14, 2012; the natural killer (NK) cell activity, lymphocyte proliferation index (PI), and T-helper cell 1 (Th1) cytokine cluster (interferon [IFN]-γ, interleukin [IL]-12, IL-2, and tumor necrosis factor [TNF]-α) were measured, along with stability test, at weeks 0, 2, and 4. The C. militaris group showed a statistically significant greater increase in NK200 (P = .0010), lymphocyte PI (P ≤ .0001), IL-2 (P = .0096), and IFN-γ (P = .0126), compared with the basal level, than the placebo group. There was no statistically significant adverse reaction. C. militaris enhanced the NK cell activity and lymphocyte proliferation and partially increased Th1 cytokine secretion. Therefore, C. militaris is safe and effective for enhancing cell-mediated immunity of healthy male adults. PMID:26284906

  3. Factor XIII-A transglutaminase deficient mice show signs of metabolically healthy obesity on high fat diet

    PubMed Central

    Myneni, Vamsee D.; Mousa, Aisha; Kaartinen, Mari T.

    2016-01-01

    F13A1 gene, which encodes for Factor XIII-A blood clotting factor and a transglutaminase enzyme, was recently identified as a potential causative gene for obesity in humans. In our previous in vitro work, we showed that FXIII-A regulates preadipocyte differentiation and modulates insulin signaling via promoting plasma fibronectin assembly into the extracellular matrix. To understand the role of FXIII-A in whole body energy metabolism, here we have characterized the metabolic phenotype of F13a1−/− mice. F13a1−/− and F13a1+/+ type mice were fed chow or obesogenic, high fat diet for 20 weeks. Weight gain, total fat mass and fat pad mass, glucose handling, insulin sensitivity, energy expenditure and, morphological and biochemical analysis of adipose tissue was performed. We show that mice lacking FXIII-A gain weight on obesogenic diet, similarly as wild type mice, but exhibit a number of features of metabolically healthy obesity such as protection from developing diet-induced insulin resistance and hyperinsulinemia. Mice also show normal fasting glucose levels, larger adipocytes, decreased extracellular matrix accumulation and inflammation of adipose tissue, as well as decreased circulating triglycerides. This study reveals that FXIII-A transglutaminase can regulate whole body insulin sensitivity and may have a role in the development of diet-induced metabolic disturbances. PMID:27759118

  4. Enhanced glucose tolerance by intravascularly administered piceatannol in freely moving healthy rats.

    PubMed

    Oritani, Yukihiro; Okitsu, Teru; Nishimura, Eisaku; Sai, Masahiko; Ito, Tatsuhiko; Takeuchi, Shoji

    2016-02-12

    Piceatannol is a phytochemical in the seeds of passion fruit that has a hypoglycemic effect when orally administered. To elucidate the contribution of intact and metabolites of piceatannol after gastro-intestinal absorption to hypoglycemic effect, we examined the influence of piceatannol and isorhapontigenin on blood glucose concentrations during fasting and glucose tolerance tests by administering them intravascularly to freely moving healthy rats. We found that intravascularly administered piceatannol reduced the blood glucose concentrations during both fasting and glucose tolerance tests, but isorhapontigenin did not during either of them. Furthermore, we found that piceatannol increased the insulinogenic index during glucose tolerance tests and that piceatannol had no influence on insulin sensitivity by performing hyperinsulinemic euglycemic clamping tests. These results suggest that piceatannol orally intaken may enhance glucose tolerance by the effect of intact piceatannol through enhanced early-phase secretion of insulin. Therefore, oral intake of piceatannol might contribute to proper control of postprandial glycemic excursions in healthy subjects.

  5. Glucose enhancement of 24-h memory retrieval in healthy elderly humans.

    PubMed

    Manning, C A; Stone, W S; Korol, D L; Gold, P E

    1998-06-01

    When administered soon before or after training, glucose facilitates memory in rodents and in several populations of humans, including healthy elderly people. Thus, glucose appears to enhance memory formation in a time- and dose-dependent manner. By assessing the effects of glucose at the time of memory tests, the present experiment examined the role of glucose on memory retrieval in healthy elderly people. On four sessions separated by a week, glucose or saccharin were administered immediately before hearing a narrative prose passage, as in previous experiments, or immediately before being tested for recall of the passage (24 h after training). Subjects recalled significantly more information after glucose ingestion than after saccharin ingestion whether the glucose was given before acquisition or memory tests. In addition, recall was significantly better in the preacquisition glucose condition relative to recall in the retrieval glucose condition. These findings provide evidence that glucose enhances both memory storage and retrieval.

  6. Immune-enhancing effect of fermented Maesil (Prunus mume Siebold & Zucc.) with probiotics against Bordetella bronchiseptica in mice.

    PubMed

    Jung, Bock-Gie; Ko, Jae-Hyung; Cho, Sun-Ju; Koh, Hong-Bum; Yoon, So-Rah; Han, Dong-Un; Lee, Bong-Joo

    2010-09-01

    Maesil (Prunus mume) has long been used as a traditional drug and healthy food in East Asian countries. It possesses a number of beneficial biological activities including potential antimicrobial effects against pathogens. Probiotics also have antibacterial effects. Moreover, some probiotics have an important role in regulating the immune system. The present study evaluated the immune enhancing effects of fermented Maesil with probiotics (Saccharomyces cerevisiae, Bacillus subtilis and Lactobacillus acidophilus) in mice, especially against Bordetella bronchiseptica, as an initial step towards the development of feed supplements for the promotion of immune activity and prevention of disease, especially in pigs. Continuous ingestion of fermented Maesil with probiotics markedly increased the macrophage ratio in peripheral blood and the T lymphocyte ratio in the spleen. In addition, antibody production against formalin-killed B. bronchiseptica significantly increased in the mice fed fermented Maesil compared with the control group. The number of leukocytes was significantly higher in the bronchio-alveolar lavage obtained from the fermented Maesil-fed animals compared to it in the control group at day 3 (maximal peak time) after experimental B. bronchiseptica infection. Moreover, at 7 day post-infection, relative messenger RNA expression levels of tumor necrosis factor- α and interferon-γ were significantly increased in splenocytes of mice fed fermented Maesil compared with those in the control group. Taken together, these findings suggest that feed containing fermented Maesil with probiotics enhances immune activity in mice, especially against B. bronchiseptica, via the potent stimulation of non-specific immune responses.

  7. Enhancing a sustainable healthy working life: design of a clustered randomized controlled trial

    PubMed Central

    2010-01-01

    Background To improve a sustainable healthy working life, we have developed the intervention 'Staying healthy at work', which endeavours to enhance work participation of employees aged 45 years and older by increasing their problem-solving capacity and stimulating their awareness of their role and responsibility towards a healthy working life. This research study aims to evaluate the process and the effectiveness of the intervention compared with care as usual. Methods/design The study is a cluster-randomized controlled trial design (randomized at the supervisor level), with a 1-year follow-up. Workers aged 45 years and older have been enrolled in the study. Workers in the intervention group are receiving the intervention 'Staying healthy at work'. The main focus of the intervention is to promote a healthy working life of ageing workers by: (1) changing workers awareness and behaviour, by emphasizing their own decisive role in attaining goals; (2) improving the supervisors' ability to support workers in taking the necessary action, by means of enhancing knowledge and competence; and (3) enhancing the use of the human resource professionals and the occupational health tools available within the organization. The supervisors in the intervention group have been trained how to present themselves as a source of support for the worker. Workers in the control group are receiving care as usual; supervisors in the control group have not participated in the training. Measurements have been taken at baseline and will be followed up at 3, 6 and 12 months. The primary outcome measures are vitality, work ability and productivity. The secondary outcomes measures include fatigue, job strain, work attitude, self-efficacy and work engagement. A process evaluation will be conducted at both the supervisor and the worker levels, and satisfaction with the content of the intervention will be assessed. Discussion The intervention 'Staying healthy at work' has the potential to provide

  8. Biodistribution of meglumine antimoniate in healthy and Leishmania (Leishmania) infantum chagasi-infected BALB/c mice.

    PubMed

    Borborema, Samanta Etel Treiger; Osso Jr, João Alberto; Andrade Jr, Heitor Franco de; Nascimento, Nanci do

    2013-08-01

    Pentavalent antimonials such as meglumine antimoniate (MA) are the primary treatments for leishmaniasis, a complex disease caused by protozoan parasites of the genus Leishmania . Despite over 70 years of clinical use, their mechanisms of action, toxicity and pharmacokinetics have not been fully elucidated. Radiotracer studies performed on animals have the potential to play a major role in pharmaceutical development. The aims of this study were to prepare an antimony radiotracer by neutron irradiation of MA and to determine the biodistribution of MA in healthy and Leishmania (Leishmania) infantum chagasi-infected mice. MA (Glucantime®) was neutron irradiated inside the IEA-R1 nuclear reactor, producing two radioisotopes, ¹²²Sb and ¹²⁴Sb, with high radionuclidic purity and good specific activity. This irradiated compound presented anti-leishmanial activity similar to that of non-irradiated MA in both in vitro and in vivo evaluations. In the biodistribution studies, healthy mice showed higher uptake of antimony in the liver than infected mice and elimination occurred primarily through biliary excretion, with a small proportion of the drug excreted by the kidneys. The serum kinetic curve was bi-exponential, with two compartments: the central compartment and another compartment associated with drug excretion. Radiotracers, which can be easily produced by neutron irradiation, were demonstrated to be an interesting tool for answering several questions regarding antimonial pharmacokinetics and chemotherapy.

  9. Participatory research to enhance vision sharing for Healthy Town initiatives in Japan.

    PubMed

    Takano, Takehito; Nakamura, Keiko

    2004-09-01

    This paper presents the results of a participatory research project conducted by the Tokyo Citizens' Council for Health Promotion (Citizens' Council) to enhance vision sharing, thereby aiding the implementation of Healthy Town initiatives. The Citizens' Council conducted a survey to elucidate citizen interests and expectations regarding Healthy Towns. The project had three stages: (i) a survey; (ii) dissemination of the results; and (iii) evaluation of the impact of the survey's findings. The survey was conducted among ordinary citizens, community group members, health promotion practitioners and members of the Citizens' Council. Responses from 476 ordinary citizens, 400 community group members, 316 health promotion practitioners and 387 members of the Citizens' Council were received and analyzed. Major criteria that respondents required of a Healthy Town were: adequate sports facilities and walking/jogging trails (44.5%); easy access for senior citizens, small children and people with disabilities (42.2%); and parks, clean rivers and other natural features (33.1%). Prioritized criteria given by specific respondent groups were (i) a town with little crime and few traffic accidents (ordinary citizens: 37.2%) and (ii) a town where people help each other (health promotion practitioners: 36.7%; members of the Citizens' Council: 31.5%). Factor analysis revealed that the structure of citizen views on criteria for a Healthy Town had the following three dimensions: (i) health conducive physical living environment; (ii) social networks and mutual help; and (iii) societal discipline/rules and good access to services. The research results were disseminated to the general public, community groups and members of the Citizens' Council. The results substantiated citizen views, which were then incorporated into plans towards realizing Healthy Towns initiatives. This research effort generated a vision of the creation of Healthy Towns by the participation of citizens in a megacity.

  10. Angiopoietin-1 enhances skeletal muscle regeneration in mice

    PubMed Central

    Mofarrahi, Mahroo; McClung, Joseph M.; Kontos, Christopher D.; Davis, Elaine C.; Tappuni, Bassman; Moroz, Nicolay; Pickett, Amy E.; Huck, Laurent; Harel, Sharon; Danialou, Gawiyou

    2015-01-01

    Activation of muscle progenitor cell myogenesis and endothelial cell angiogenesis is critical for the recovery of skeletal muscle from injury. Angiopoietin-1 (Ang-1), a ligand of Tie-2 receptors, enhances angiogenesis and skeletal muscle satellite cell survival; however, its role in skeletal muscle regeneration after injury is unknown. We assessed the effects of Ang-1 on fiber regeneration, myogenesis, and angiogenesis in injured skeletal muscle (tibialis anterior, TA) in mice. We also assessed endogenous Ang-1 levels and localization in intact and injured TA muscles. TA fiber injury was triggered by cardiotoxin injection. Endogenous Ang-1 mRNA levels immediately decreased in response to cardiotoxin then increased during the 2 wk. Ang-1 protein was expressed in satellite cells, both in noninjured and recovering TA muscles. Positive Ang-1 staining was present in blood vessels but not in nerve fibers. Four days after the initiation of injury, injection of adenoviral Ang-1 into injured muscles resulted in significant increases in in situ TA muscle contractility, muscle fiber regeneration, and capillary density. In cultured human skeletal myoblasts, recombinant Ang-1 protein increased survival, proliferation, migration, and differentiation into myotubes. The latter effect was associated with significant upregulation of the expression of the myogenic regulatory factors MyoD and Myogenin and certain genes involved in cell cycle regulation. We conclude that Ang-1 strongly enhances skeletal muscle regeneration in response to fiber injury and that this effect is mediated through induction of the myogenesis program in muscle progenitor cells and the angiogenesis program in endothelial cells. PMID:25608750

  11. Correlation of oxygenation and perfusion sensitive MRI with invasive micro probe measurements in healthy mice brain.

    PubMed

    Sedlacik, Jan; Reitz, Matthias; Bolar, Divya S; Adalsteinsson, Elfar; Schmidt, Nils O; Fiehler, Jens

    2015-03-01

    The non-invasive assessment of (patho-)physiological parameters such as, perfusion and oxygenation, is of great importance for the characterization of pathologies e.g., tumors, which may be helpful to better predict treatment response and potential outcome. To better understand the influence of physiological parameters on the investigated oxygenation and perfusion sensitive MRI methods, MRI measurements were correlated with subsequent invasive micro probe measurements during free breathing conditions of air, air+10% CO2 and 100% O2 in healthy mice brain. MRI parameters were the irreversible (R2), reversible (R2') and effective (R2*) transverse relaxation rates, venous blood oxygenation level assessed by quantitative blood oxygenation level dependent (qBOLD) method and cerebral blood flow (CBF) assessed by arterial spin labeling (ASL) using a 7 T small animal MRI scanner. One to two days after MRI, tissue perfusion and pO2 were measured by Laser-Doppler flowmetry and fluorescence quenching micro probes, respectively. The tissue pO2 values were converted to blood oxygen saturation by using the Hill equation. The animals were anesthetized by intra peritoneal injection of ketamine-xylazine-acepromazine (10-2-0.3 mg/ml · kg). Results for normal/hypercapnia/hyperoxia conditions were: R2[s(∧)-1] = 20.7/20.4/20.1, R2*[s(∧)-1] = 31.6/29.6/25.9, R2'[s-(∧)1] = 10.9/9.2/5.7, qBOLD venous blood oxygenation level = 0.43/0.51/0.56, CBF[ml · min(∧)-1 · 100 g(∧)-1] = 70.6/105.5/81.8, Laser-Doppler flowmetry[a.u.] = 89.2/120.2/90.6 and pO2[mmHg] = 6.3/32.3/46.7. All parameters were statistically significantly different with P < 0.001 between all breathing conditions. All MRI and the corresponding micro probe measurements were also statistically significantly (P ≤ 0.03) correlated with each other. However, converting the tissue pO2 to blood oxygen saturation = 0.02/0.34/0.63, showed only very limited agreement with the qBOLD venous blood oxygenation level. We found

  12. Characterization of chemokine and chemokine receptor expression during Pneumocystis infection in healthy and immunodeficient mice

    PubMed Central

    Bishop, Lisa R.; Lionakis, Michail S.; Sassi, Monica; Murphy, Philip M.; Hu, Xiaojun; Huang, Da Wei; Sherman, Brad; Qiu, Ju; Yang, Jun; Lempicki, Richard A.; Kovacs, Joseph A.

    2015-01-01

    We examined gene expression levels of multiple chemokines and chemokine receptors during Pneumocystis murina infection in wild-type and immunosuppressed mice, using microarrays and qPCR. In wild-type mice, expression of chemokines that are ligands for Ccr2, Cxcr3, Cxcr6, and Cxcr2 increased at days 32 to 41 post-infection, with a return to baseline by day 75 to 150. Concomitant increases were seen in Ccr2 ,Cxcr3, and Cxcr6, but not in Cxcr2 expression. Induction of these same factors also occurred in CD40-ligand and CD40 knockout mice but only at a much later time-point, during uncontrolled Pneumocystis pneumonia (PCP). Expression of CD4 Th1 markers was increased in wild-type mice during clearance of infection. Ccr2 and Cx3cr1 knockout mice cleared Pneumocystis infection with kinetics similar to wild-type mice, and all animals developed anti-Pneumocystis antibodies. Upregulation of Ccr2, Cxcr3, and Cxcr6 and their ligands supports an important role for T helper cells and mononuclear phagocytes in the clearance of Pneumocystis infection. However, based on the current and prior studies, no single chemokine receptor appears to be critical to the clearance of Pneumocystis. PMID:26052064

  13. EFFECT OF SEDATION ON CONTRAST-ENHANCED ULTRASONOGRAPHY OF THE SPLEEN IN HEALTHY DOGS.

    PubMed

    Rossi, Federica; Fina, Caroline; Stock, Emmelie; Vanderperren, Katrien; Duchateau, Luc; Saunders, Jimmy H

    2016-05-01

    Contrast-enhanced ultrasound of the spleen enables the dynamic assessment of the perfusion of this organ, however, both subjective and quantitative evaluation can be strongly influenced by sedative agent administration. The purpose of this prospective, experimental study was to test effects of two sedative agents on splenic perfusion during contrast-enhanced ultrasound of the spleen in a sample of healthy dogs. Contrast-enhanced ultrasound of the spleen was repeated in six healthy Beagles following a cross-over study design comparing three protocols: awake, butorphanol 0.2 mg/Kg intramuscular (IM), and dexmedetomidine 500 μg/m(2) IM. After intravenous injection of a phospholipid stabilized sulfur hexafluoride microbubble solution (SonoVue®, Bracco Imaging, Milano, Italy), the enhancement intensity and perfusion pattern of the splenic parenchyma were assessed and perfusion parameters were calculated. Normal spleen was slightly heterogeneous in the early phase, but the parenchyma was homogeneous at a later phase. Sedation with butorphanol did not modify perfusion of the spleen. Dexmedetomidine significantly reduced splenic enhancement, providing diffuse parenchymal hypoechogenicity during the entire examination. Measured parameters were significantly modified, with increased arrival time (AT; (< 0.0001) and time to peak (TTP; P < 0.0001), and decreased peak intensity (PI; P = 0.0108), wash-in (P = 0.0014), and area under the curve (AUC; P = 0.0421). Findings supported the use of butorphanol and contraindicated the use of dexmedetomidine as sedatives for splenic contrast ultrasound procedures in dogs. Short-term and diffuse heterogeneity of the spleen in the early venous phase was determined to be a normal finding. PMID:26777031

  14. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people.

    PubMed

    Sahakian, Barbara J; Bruhl, Annette B; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B

    2015-09-19

    In addition to causing distress and disability to the individual, neuropsychiatric disorders are also extremely expensive to society and governments. These disorders are both common and debilitating and impact on cognition, functionality and wellbeing. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used to treat cognitive dysfunction in Alzheimer's disease and attention deficit hyperactivity disorder, respectively. Other cognitive enhancers include specific computerized cognitive training and devices. An example of a novel form of cognitive enhancement using the technological advancement of a game on an iPad that also acts to increase motivation is presented. Cognitive enhancing drugs, such as methylphenidate and modafinil, which were developed as treatments, are increasingly being used by healthy people. Modafinil not only affects 'cold' cognition, but also improves 'hot' cognition, such as emotion recognition and task-related motivation. The lifestyle use of 'smart drugs' raises both safety concerns as well as ethical issues, including coercion and increasing disparity in society. As a society, we need to consider which forms of cognitive enhancement (e.g. pharmacological, exercise, lifelong learning) are acceptable and for which groups (e.g. military, doctors) under what conditions (e.g. war, shift work) and by what methods we would wish to improve and flourish.

  15. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people.

    PubMed

    Sahakian, Barbara J; Bruhl, Annette B; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B

    2015-09-19

    In addition to causing distress and disability to the individual, neuropsychiatric disorders are also extremely expensive to society and governments. These disorders are both common and debilitating and impact on cognition, functionality and wellbeing. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used to treat cognitive dysfunction in Alzheimer's disease and attention deficit hyperactivity disorder, respectively. Other cognitive enhancers include specific computerized cognitive training and devices. An example of a novel form of cognitive enhancement using the technological advancement of a game on an iPad that also acts to increase motivation is presented. Cognitive enhancing drugs, such as methylphenidate and modafinil, which were developed as treatments, are increasingly being used by healthy people. Modafinil not only affects 'cold' cognition, but also improves 'hot' cognition, such as emotion recognition and task-related motivation. The lifestyle use of 'smart drugs' raises both safety concerns as well as ethical issues, including coercion and increasing disparity in society. As a society, we need to consider which forms of cognitive enhancement (e.g. pharmacological, exercise, lifelong learning) are acceptable and for which groups (e.g. military, doctors) under what conditions (e.g. war, shift work) and by what methods we would wish to improve and flourish. PMID:26240429

  16. The impact of neuroscience on society: cognitive enhancement in neuropsychiatric disorders and in healthy people

    PubMed Central

    Sahakian, Barbara J.; Bruhl, Annette B.; Cook, Jennifer; Killikelly, Clare; Savulich, George; Piercy, Thomas; Hafizi, Sepehr; Perez, Jesus; Fernandez-Egea, Emilio; Suckling, John; Jones, Peter B.

    2015-01-01

    In addition to causing distress and disability to the individual, neuropsychiatric disorders are also extremely expensive to society and governments. These disorders are both common and debilitating and impact on cognition, functionality and wellbeing. Cognitive enhancing drugs, such as cholinesterase inhibitors and methylphenidate, are used to treat cognitive dysfunction in Alzheimer's disease and attention deficit hyperactivity disorder, respectively. Other cognitive enhancers include specific computerized cognitive training and devices. An example of a novel form of cognitive enhancement using the technological advancement of a game on an iPad that also acts to increase motivation is presented. Cognitive enhancing drugs, such as methylphenidate and modafinil, which were developed as treatments, are increasingly being used by healthy people. Modafinil not only affects ‘cold’ cognition, but also improves ‘hot’ cognition, such as emotion recognition and task-related motivation. The lifestyle use of ‘smart drugs' raises both safety concerns as well as ethical issues, including coercion and increasing disparity in society. As a society, we need to consider which forms of cognitive enhancement (e.g. pharmacological, exercise, lifelong learning) are acceptable and for which groups (e.g. military, doctors) under what conditions (e.g. war, shift work) and by what methods we would wish to improve and flourish. PMID:26240429

  17. Large Gliadin Peptides Detected in the Pancreas of NOD and Healthy Mice following Oral Administration

    PubMed Central

    Sidenius, Ulrik; Heegaard, Niels H.

    2016-01-01

    Gluten promotes type 1 diabetes in nonobese diabetic (NOD) mice and likely also in humans. In NOD mice and in non-diabetes-prone mice, it induces inflammation in the pancreatic lymph nodes, suggesting that gluten can initiate inflammation locally. Further, gliadin fragments stimulate insulin secretion from beta cells directly. We hypothesized that gluten fragments may cross the intestinal barrier to be distributed to organs other than the gut. If present in pancreas, gliadin could interact directly with the immune system and the beta cells to initiate diabetes development. We orally and intravenously administered 33-mer and 19-mer gliadin peptide to NOD, BALB/c, and C57BL/6 mice and found that the peptides readily crossed the intestinal barrier in all strains. Several degradation products were found in the pancreas by mass spectroscopy. Notably, the exocrine pancreas incorporated large amounts of radioactive label shortly after administration of the peptides. The study demonstrates that, even in normal animals, large gliadin fragments can reach the pancreas. If applicable to humans, the increased gut permeability in prediabetes and type 1 diabetes patients could expose beta cells directly to gliadin fragments. Here they could initiate inflammation and induce beta cell stress and thus contribute to the development of type 1 diabetes. PMID:27795959

  18. Memory-enhancing effects of Cuscuta japonica Choisy via enhancement of adult hippocampal neurogenesis in mice.

    PubMed

    Moon, Minho; Jeong, Hyun Uk; Choi, Jin Gyu; Jeon, Seong Gak; Song, Eun Ji; Hong, Seon-Pyo; Oh, Myung Sook

    2016-09-15

    It is generally accepted that functional and structural changes within the hippocampus are involved in learning and memory and that adult neurogenesis in this region may modulate cognition. The extract of Cuscuta japonica Choisy (CJ) is a well-known traditional Chinese herbal medicine that has been used since ancient times as a rejuvenation remedy. The systemic effects of this herb are widely known and can be applied for the treatment of a number of physiological diseases, but there is a lack of evidence describing its effects on brain function. Thus, the present study investigated whether CJ would enhance memory function and/or increase hippocampal neurogenesis using mice orally administered with CJ water extract or vehicle for 21days. Performance on the novel object recognition and passive avoidance tests revealed that treatment with CJ dose-dependently improved the cognitive function of mice. Additionally, CJ increased the Ki-67-positive proliferating cells and the number of doublecortin-stained neuroblasts in the dentate gyrus (DG) of the hippocampus, and double labeling with 5-bromo-2-deoxyuridine and neuronal specific nuclear protein showed that CJ increased the number of mature neurons in the DG. Finally, CJ resulted in the upregulated expression of neurogenic differentiation factor, which is essential for the maturation and differentiation of granule cells in the hippocampus. Taken together, the present findings indicate that CJ stimulated neuronal cell proliferation, differentiation, and maturation, which are all processes associated with neurogenesis. Additionally, these findings suggest that CJ may improve learning and memory via the enhancement of adult hippocampal neurogenesis.

  19. Enhanced malignant tumorigenesis in Cdk4 transgenic mice.

    PubMed

    Miliani de Marval, Paula L; Macias, Everardo; Conti, Claudio J; Rodriguez-Puebla, Marcelo L

    2004-03-11

    In a previous study, we reported that overexpression of cyclin-dependent kinase-4 (CDK4) in mouse epidermis results in epidermal hyperplasia, hypertrophy and severe dermal fibrosis. In this study, we have investigated the susceptibility to skin tumor formation by forced expression of CDK4. Skin tumors from transgenic mice showed a dramatic increase in the rate of malignant progression to squamous cell carcinomas (SCC) in an initiation-promotion protocol. Histopathological analysis of papillomas from transgenic mice showed an elevated number of premalignant lesions characterized by dysplasia and marked atypia. Interestingly, transgenic mice also developed tumors in initiated but not promoted skin, demonstrating that CDK4 replaced the action of tumor promoters. These results suggest that expression of cyclin D1 upon ras activation synergizes with CDK4 overexpression. However, cyclin D1 transgenic mice and double transgenic mice for cyclin D1 and CDK4 did not show increased malignant progression in comparison to CDK4 transgenic mice. Biochemical analysis of tumors showed that CDK4 sequesters the CDK2 inhibitors p27Kip1 and p21Cip1, suggesting that indirect activation of CDK2 plays an important role in tumor development. These results indicate that, contrary to the general assumption, the catalytic subunit, CDK4, has higher oncogenic activity than cyclin D1, revealing a potential use of CDK4 as therapeutic target.

  20. Enhanced Malignant Tumorigenesis in Cdk4-Transgenic Mice

    PubMed Central

    Miliani de Marval, Paula L.; Macias, Everardo; Conti, Claudio J.; Rodriguez-Puebla, Marcelo L.

    2010-01-01

    In a previous study, we reported that overexpression of CDK4 in mouse epidermis results in epidermal hyperplasia, hypertrophy and severe dermal fibrosis. In this study, we have investigated the susceptibility to skin tumor formation by forced expression of CDK4. Skin tumors from transgenic mice showed a dramatic increase in the rate of malignant progression to squamous cell carcinomas (SCC) in an initiation-promotion protocol. Histopathological analysis of papillomas from transgenic mice showed an elevated number of premalignant lesions characterized by dysplasia and marked atypia. Interestingly, transgenic mice also developed tumors in initiated but not promoted skin, demonstrating that CDK4 replaced the action of tumor promoters. These results suggest that expression of cyclin D1 upon ras activation synergizes with CDK4 overexpression. However, cyclin D1 transgenic mice and double transgenic mice for cyclin D1 and CDK4 did not show increased malignant progression in comparison to CDK4 transgenic mice. Biochemical analysis of tumors showed that CDK4 sequesters the CDK2 inhibitors p27Kip1 and p21Cip1 suggesting that indirect activation of CDK2 plays an important role in tumor development. These results indicate that, contrary to the general assumption, the catalytic subunit, CDK4, has higher oncogenic activity than cyclin D1, revealing a potential use of CDK4 as therapeutic target. PMID:14647432

  1. Pharmacological Cognitive Enhancement in Healthy Individuals: A Compensation for Cognitive Deficits or a Question of Personality?

    PubMed Central

    Maier, Larissa J.; Wunderli, Michael D.; Vonmoos, Matthias; Römmelt, Andreas T.; Baumgartner, Markus R.; Seifritz, Erich

    2015-01-01

    The ongoing bioethical debate on pharmacological cognitive enhancement (PCE) in healthy individuals is often legitimated by the assumption that PCE will widely spread and become desirable for the general public in the near future. This assumption was questioned as PCE is not equally save and effective in everyone. Additionally, it was supposed that the willingness to use PCE is strongly personality-dependent likely preventing a broad PCE epidemic. Thus, we investigated whether the cognitive performance and personality of healthy individuals with regular nonmedical methylphenidate (MPH) use for PCE differ from stimulant-naïve controls. Twenty-five healthy individuals using MPH for PCE were compared with 39 age-, sex-, and education-matched healthy controls regarding cognitive performance and personality assessed by a comprehensive neuropsychological test battery including social cognition, prosocial behavior, decision-making, impulsivity, and personality questionnaires. Substance use was assessed through self-report in an interview and quantitative hair and urine analyses. Recently abstinent PCE users showed no cognitive impairment but superior strategic thinking and decision-making. Furthermore, PCE users displayed higher levels of trait impulsivity, novelty seeking, and Machiavellianism combined with lower levels of social reward dependence and cognitive empathy. Finally, PCE users reported a smaller social network and exhibited less prosocial behavior in social interaction tasks. In conclusion, the assumption that PCE use will soon become epidemic is not supported by the present findings as PCE users showed a highly specific personality profile that shares a number of features with illegal stimulant users. Lastly, regular MPH use for PCE is not necessarily associated with cognitive deficits. PMID:26107846

  2. Hepatic NAD salvage pathway is enhanced in mice on a high-fat diet.

    PubMed

    Penke, Melanie; Larsen, Per S; Schuster, Susanne; Dall, Morten; Jensen, Benjamin A H; Gorski, Theresa; Meusel, Andrej; Richter, Sandy; Vienberg, Sara G; Treebak, Jonas T; Kiess, Wieland; Garten, Antje

    2015-09-01

    Nicotinamide phosphoribosyltransferase (Nampt) is the rate-limiting enzyme for NAD salvage and the abundance of Nampt has been shown to be altered in non-alcoholic fatty liver disease. It is, however, unknown how hepatic Nampt is regulated in response to accumulation of lipids in the liver of mice fed a high-fat diet (HFD). HFD mice gained more weight, stored more hepatic lipids and had an impaired glucose tolerance compared with control mice. NAD levels as well as Nampt mRNA expression, protein abundance and activity were significantly increased in HFD mice. Enhanced NAD levels were associated with deacetylation of p53 and Nfκb indicating increased activation of Sirt1. Despite impaired glucose tolerance and increased hepatic lipid levels in HFD mice, NAD metabolism was significantly enhanced. Thus, improved NAD metabolism may be a compensatory mechanism to protect against negative impact of hepatic lipid accumulation.

  3. Angiography reveals novel features of the retinal vasculature in healthy and diabetic mice.

    PubMed

    McLenachan, Samuel; Magno, Aaron Len; Ramos, David; Catita, Joana; McMenamin, Paul G; Chen, Fred Kuanfu; Rakoczy, Elizabeth Piroska; Ruberte, Jesus

    2015-09-01

    The mouse retina is a commonly used animal model for the study of pathogenesis and treatment of blinding retinal vascular diseases such as diabetic retinopathy. In this study, we aimed to characterize normal and pathological variations in vascular anatomy in the mouse retina using fluorescein angiography visualized with scanning laser ophthalmoscopy and optical coherence tomography (SLO-OCT). We examined eyes from C57BL/6J wild type mice as well as the Ins2(Akita) and Akimba mouse models of diabetic retinopathy using the Heidelberg Retinal Angiography (HRA) and OCT system. Angiography was performed on three focal planes to examine distinct vascular layers. For comparison with angiographic data, ex vivo analyses, including Indian ink angiography, histology and 3D confocal scanning laser microscopy were performed in parallel. All layers of the mouse retinal vasculature could be readily visualized during fluorescein angiography by SLO-OCT. Blood vessel density was increased in the deep vascular plexus (DVP) compared with the superficial vascular plexus (SVP). Arteriolar and venular typologies were established and structural differences were observed between venular types. Unexpectedly, the hyaloid artery was found to persist in 15% of C57BL/6 mice, forming anastomoses with peripheral retinal capillaries. Fluorescein leakage was easily detected in Akimba retinae by angiography, but was not observed in Ins2(Akita) mice. Blood vessel density was increased in the DVP of 6 month old Ins2(Akita) mice, while the SVP displayed reduced branching in precapillary arterioles. In summary, we present the first comprehensive characterization of the mouse retinal vasculature by SLO-OCT fluorescein angiography. Using this clinical imaging technique, we report previously unrecognized variations in C57BL/6J vascular anatomy and novel features of vascular retinopathy in the Ins2(Akita) mouse model of diabetes.

  4. Enhanced conditioned approach responses in transgenic mice with impaired glucocorticoid receptor function.

    PubMed

    Steckler, T; Holsboer, F

    1999-07-01

    The long-term consequences of impaired glucocorticoid receptor (GR) function on reward-related learning were studied in transgenic mice with impaired GR function in a series of experiments taxing conditioned and unconditioned approach responses to stimuli predictive of food. There was a double-dissociation in that transgenic mice with impaired GR activity showed enhanced conditioned exploration in situations when stimuli predicted reward, while free-feeding food consumption over 24 h was reduced. Previous experiments have shown altered accumbens dopaminergic activity in these animals. In line with these findings, we observed an enhanced behavioural stimulation of transgenic mice following administration of d-amphetamine (2 mg/kg). This suggests that the increase in preparatory responses in transgenic mice may be mediated via an enhanced accumbens dopaminergic activity, possibly secondary to alterations in other brain systems. PMID:10403023

  5. Exercise Enhances Learning and Hippocampal Neurogenesis in Aged Mice

    PubMed Central

    Praag, Henriette van; Shubert, Tiffany; Zhao, Chunmei; Gage, Fred H.

    2005-01-01

    Aging causes changes in the hippocampus that may lead to cognitive decline in older adults. In young animals, exercise increases hippocampal neurogenesis and improves learning. We investigated whether voluntary wheel running would benefit mice that were sedentary until 19 months of age. Specifically, young and aged mice were housed with or without a running wheel and injected with bromodeoxyuridine or retrovirus to label newborn cells. After 1 month, learning was tested in the Morris water maze. Aged runners showed faster acquisition and better retention of the maze than age-matched controls. The decline in neurogenesis in aged mice was reversed to 50% of young control levels by running. Moreover, fine morphology of new neurons did not differ between young and aged runners, indicating that the initial maturation of newborn neurons was not affected by aging. Thus, voluntary exercise ameliorates some of the deleterious morphological and behavioral consequences of aging. PMID:16177036

  6. Substances used and prevalence rates of pharmacological cognitive enhancement among healthy subjects.

    PubMed

    Franke, Andreas G; Bagusat, Christiana; Rust, Sebastian; Engel, Alice; Lieb, Klaus

    2014-11-01

    Pharmacological "cognitive enhancement" (CE) is defined as the use of any psychoactive drug with the purpose of enhancing cognition, e.g. regarding attention, concentration or memory by healthy subjects. Substances commonly used as CE drugs can be categorized into three groups of drugs: (1) over-the-counter (OTC) drugs such as coffee, caffeinated drinks/energy drinks, caffeine tablets or Ginkgo biloba; (2) drugs being approved for the treatment of certain disorders and being misused for CE: drugs to treat attention-deficit/hyperactivity disorder (ADHD) such as the stimulants methylphenidate (MPH, e.g. Ritalin(®)) or amphetamines (AMPH, e.g. Attentin(®) or Adderall(®)), to treat sleep disorders such as modafinil or to treat Alzheimer's disease such as acetylcholinesterase inhibitors; (3) illicit drugs such as illicit AMPH, e.g. "speed", ecstasy, methamphetamine (crystal meth) or others. Evidence from randomized placebo-controlled trials shows that the abovementioned substances have limited pro-cognitive effects as demonstrated, e.g. regarding increased attention, increased cognitive speed or shortening of reaction times, but on the same time poses considerable safety risks on the consumers. Prevalence rates for the use of CE drugs among healthy subjects show a broad range from less than 1 % up to more than 20 %. The range in prevalence rates estimates results from several factors which are chosen differently in the available survey studies: type of subjects (students, pupils, special professions, etc.), degree of anonymity in the survey (online, face-to-face, etc.), definition of CE and substances used/misused for CE, which are assessed (OTC drugs, prescription, illicit drugs) as well as time periods of use (e.g. ever, during the past year/month/week, etc.). A clear and comprehensive picture of the drugs used for CE by healthy subjects and their adverse events and safety risks as well as comprehensive and comparable international data on the prevalence rates of

  7. Both core and F proteins of hepatitis C virus could enhance cell proliferation in transgenic mice

    SciTech Connect

    Hu, Wen-Ta; Li, Hui-Chun; Lee, Shen-Kao; Ma, Hsin-Chieh; Yang, Chee-Hing; Chen, Hung-Ling; Lo, Shih-Yen

    2013-05-24

    Highlights: •HCV core and F proteins could induce hepatocyte proliferation in the transgenic mice. •β-Catenin signaling pathway was activated by core protein in the transgenic mice. •β-Catenin signaling pathway was activated by myc-F protein in the transgenic mice. •Expression of SMA protein was enhanced by core but not myc-F protein. -- Abstract: The role of the protein encoded by the alternative open reading frame (ARF/F/core+1) of the Hepatitis C virus (HCV) genome in viral pathogenesis remains unknown. The different forms of ARF/F/core+1 protein were labile in cultured cells, a myc-tag fused at the N-terminus of the F protein made it more stable. To determine the role of core and F proteins in HCV pathogenesis, transgenic mice with either protein expression under the control of Albumin promoter were generated. Expression of core protein and F protein with myc tag (myc-F) could be detected by Western blotting analysis in the livers of these mice. The ratio of liver to body weight is increased for both core and myc-F transgenic mice compared to that of wild type mice. Indeed, the proliferating cell nuclear antigen protein, a proliferation marker, was up-regulated in the transgenic mice with core or myc-F protein. Further analyses by microarray and Western blotting suggested that β-catenin signaling pathway was activated by either core or myc-F protein in the transgenic mice. These transgenic mice were further treated with either Diethynitrosamine (a tumor initiator) or Phenobarbital (a tumor promoter). Phenobarbital but not Diethynitrosamine treatment could increase the liver/body weight ratio of these mice. However, no tumor formation was observed in these mice. In conclusion, HCV core and myc-F proteins could induce hepatocyte proliferation in the transgenic mice possibly through β-catenin signaling pathway.

  8. Enhanced Generalization of Auditory Conditioned Fear in Juvenile Mice

    ERIC Educational Resources Information Center

    Ito, Wataru; Pan, Bing-Xing; Yang, Chao; Thakur, Siddarth; Morozov, Alexei

    2009-01-01

    Increased emotionality is a characteristic of human adolescence, but its animal models are limited. Here we report that generalization of auditory conditioned fear between a conditional stimulus (CS+) and a novel auditory stimulus is stronger in 4-5-wk-old mice (juveniles) than in their 9-10-wk-old counterparts (adults), whereas nonassociative…

  9. ENHANCED PRODUCTION OF CRYPTOSPORIDIUM PARVUM OOCYSTS IN IMMUNOSUPPRESSED MICE

    EPA Science Inventory

    Recently there has been an increase in the need for fresh C. parvum oocysts for engineering and biomedical research applications. In our laboratory the emphsis has shifted from the use of dairy calves to inbred C57BL/67n mice, primarily for reasons of ease of collection and proce...

  10. Dietary chromium and nickel enhance UV-carcinogenesis in skin of hairless mice

    SciTech Connect

    Uddin, Ahmed N.; Burns, Fredric J.; Rossman, Toby G.; Chen, Haobin; Kluz, Thomas; Costa, Max . E-mail: costam01@nyu.edu

    2007-06-15

    The skin cancer enhancing effect of chromium (in male mice) and nickel in UVR-irradiated female Skh1 mice was investigated. The dietary vitamin E and selenomethionine were tested for prevention of chromium-enhanced skin carcinogenesis. The mice were exposed to UVR (1.0 kJ/m{sup 2} 3x weekly) for 26 weeks either alone, or combined with 2.5 or 5.0 ppm potassium chromate, or with 20, 100 or 500 ppm nickel chloride in drinking water. Vitamin E or selenomethionine was added to the lab chow for 29 weeks beginning 3 weeks before the start of UVR exposure. Both chromium and nickel significantly increased the UVR-induced skin cancer yield in mice. In male Skh1 mice, UVR alone induced 1.9 {+-} 0.4 cancers/mouse, and 2.5 or 5.0 ppm potassium chromate added to drinking water increased the yields to 5.9 {+-} 0.8 and 8.6 {+-} 0.9 cancers/mouse, respectively. In female Skh1 mice, UVR alone induced 1.7 {+-} 0.4 cancers/mouse, and the addition of 20, 100 or 500 ppm nickel chloride increased the yields to 2.8 {+-} 0.9, 5.6 {+-} 0.7 and 4.2 {+-} 1.0 cancers/mouse, respectively. Neither vitamin E nor selenomethionine reduced the cancer yield enhancement by chromium. These results confirm that chromium and nickel, while not good skin carcinogens per se, are enhancers of UVR-induced skin cancers in Skh1 mice. Data also suggest that the enhancement of UVR-induced skin cancers by chromate may not be oxidatively mediated since the antioxidant vitamin E as well as selenomethionine, found to prevent arsenite-enhanced skin carcinogenesis, failed to suppress enhancement by chromate.

  11. Allergens induce enhanced bronchoconstriction and leukotriene production in C5 deficient mice

    PubMed Central

    McKinley, Laura; Kim, Jiyoun; Bolgos, Gerald L; Siddiqui, Javed; Remick, Daniel G

    2006-01-01

    Background Previous genetic analysis has shown that a deletion in the complement component 5 gene-coding region renders mice more susceptible to allergen-induced airway hyperresponsiveness (AHR) due to reduced IL-12 production. We investigated the role of complement in a murine model of asthma-like pulmonary inflammation. Methods In order to evaluate the role of complement B10 mice either sufficient or deficient in C5 were studied. Both groups of mice immunized and challenged with a house dust extract (HDE) containing high levels of cockroach allergens. Airways hyper-reactivity was determined with whole-body plesthysmography. Bronchoalveolar lavage (BAL) was performed to determine pulmonary cellular recruitment and measure inflammatory mediators. Lung homogenates were assayed for mediators and plasma levels of IgE determined. Pulmonary histology was also evaluated. Results C5-deficient mice showed enhanced AHR to methylcholine challenge, 474% and 91% increase above baseline Penh in C5-deficient and C5-sufficient mice respectively, p < 0.001. IL-12 levels in the lung homogenate (LH) were only slightly reduced and BAL IL-12 was comparable in C5-sufficient and C5-deficient mice. However, C5-deficient mice had significantly higher cysteinyl-leukotriene levels in the BAL fluid, 1913 +/- 246 pg/ml in C5d and 756 +/- 232 pg/ml in C5-sufficient, p = 0.003. Conclusion These data demonstrate that C5-deficient mice show enhanced AHR due to increased production of cysteinyl-leukotrienes. PMID:17044927

  12. Enhancement of antibacterial resistance of neutropenic, bone marrow-suppressed mice by interleukin-1 alpha.

    PubMed Central

    McIntyre, K W; Unowsky, J; DeLorenzo, W; Benjamin, W

    1989-01-01

    The effect of recombinant human interleukin-1 alpha (IL-1) on the resistance of normal and bone marrow-suppressed mice against bacterial infection was evaluated. IL-1 induced neutrophilia and enhanced the resistance of normal mice against acute, systemic intraperitoneal infection with Klebsiella pneumoniae and methicillin-resistant Staphylococcus aureus. Mice with cyclophosphamide-induced bone marrow suppression were neutropenic and exhibited increased susceptibility to infection. Treatment of neutropenic C57BL/6 and C3H/HeJ mice with IL-1 before infection accelerated recovery of peripheral neutrophil counts and stimulated resistance against infection. Increases in neutrophils and enhancement of resistance induced by IL-1 were both dose and time dependent. Both neutrophilia and augmented resistance to infection were eliminated by a second dose of cyclophosphamide administered during the IL-1 treatments. Bone marrow-suppressed mice treated with IL-1 showed, at 4 h postinfection, greater increases in peripheral blood neutrophils and in numbers of peritoneal exudate neutrophils than suppressed mice treated with vehicle. The data suggest that the IL-1-stimulated recovery of myelopoiesis is an important factor in the enhancement of antibacterial resistance in bone marrow-suppressed, neutropenic mice. These findings indicate that IL-1 may be efficacious in limiting the duration of the neutropenia and of the increased risk for the development of bacterial infection associated with bone marrow suppression. PMID:2783314

  13. Comparison of cerebral microcirculation of alloxan diabetes and healthy mice using laser speckle contrast imaging

    NASA Astrophysics Data System (ADS)

    Timoshina, Polina A.; Shi, Rui; Zhang, Yang; Zhu, Dan; Semyachkina-Glushkovskaya, Oxana V.; Tuchin, Valery V.; Luo, Qingming

    2015-03-01

    The study of blood microcirculation is one of the most important problems of the medicine. This paper presents results of experimental study of cerebral blood flow microcirculation in mice with alloxan-induced diabetes using Temporal Laser Speckle Imaging (TLSI). Additionally, a direct effect of glucose water solution (concentration 20% and 45%) on blood flow microcirculation was studied. In the research, 20 white laboratory mice weighing 20-30 g were used. The TLSI method allows one to investigate time dependent scattering from the objects with complex dynamics, since it possesses greater temporal resolution. Results show that in brain of animal diabetic group diameter of sagittal vein is increased and the speed of blood flow reduced relative to the control group. Topical application of 20%- or 45%-glucose solutions also causes increase of diameter of blood vessels and slows down blood circulation. The results obtained show that diabetes development causes changes in the cerebral microcirculatory system and TLSI techniques can be effectively used to quantify these alterations.

  14. DIETARY FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED MICRONUCLEUS FORMATION IN MICE

    EPA Science Inventory


    Dietary folate deficiency enhances arsenic-induced micronucleus formation in mice.

    Folate deficiency increases background levels ofDNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary...

  15. Assessment of right and left ventricular function in healthy mice by blood-pool pinhole gated SPECT.

    PubMed

    Goetz, Christian; Monassier, Laurent; Choquet, Philippe; Constantinesco, André

    2008-09-01

    The feasibility of blood-pool pinhole ECG gated SPECT was investigated in healthy mice to assess right and left ventricular function analysis. Anaesthetized (isoflurane 1-1.5%) adult CD1 mice (n=11) were analyzed after intravenous administration of 0.2 ml of 550 MBq of (99m)Tc human albumin. For blood-pool gated SPECT imaging, 48 ventral step and shoot projections with eight time bins per RR over 180 degrees with 64 x 64 word images were acquired with a small animal gamma camera equipped with a pinhole collimator of 12 cm in focal length and 1.5 mm in diameter. For appropriate segmentation of right and left ventricular volumes, a 4D Fourier analysis was performed after reconstruction and reorientation of blood-pool images with a voxel size of 0.55 x 0.55 x 0.55 mm(3). Average right and left ejection fractions were respectively 52+/-4.7% and 65+/-5.2%. Right end diastolic and end systolic volumes were significantly higher compared with the corresponding left ventricular volumes (P<0.0001 each). A linear correlation between right and left stroke volumes (r=0.9, P<0.0001) was obtained and right and left cardiac outputs were not significantly different 14.2+/-1.9 and 14.1+/-2 ml/min, respectively.

  16. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study.

    PubMed

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings. PMID:25566518

  17. Adaptation to Leftward-shifting Prisms Enhances Local Processing in Healthy Individuals

    PubMed Central

    Reed, Scott A.; Dassonville, Paul

    2014-01-01

    In healthy individuals, adaptation to left-shifting prisms has been shown to simulate the symptoms of hemispatial neglect, including a reduction in global processing that approximates the local bias observed in neglect patients. The current study tested whether leftward prism adaptation can more specifically enhance local processing abilities. In three experiments, the impact of local and global processing was assessed through tasks that measure susceptibility to illusions that are known to be driven by local or global contextual effects. Susceptibility to the rod-and-frame illusion – an illusion disproportionately driven by both local and global effects depending on frame size – was measured before and after adaptation to left- and right-shifting prisms. A significant increase in rod-and-frame susceptibility was found for the left-shifting prism group, suggesting that adaptation caused an increase in local processing effects. The results of a second experiment confirmed that leftward prism adaptation enhances local processing, as assessed with susceptibility to the simultaneous-tilt illusion. A final experiment employed a more specific measure of the global effect typically associated with the rod-andframe illusion, and found that although the global effect was somewhat diminished after leftward prism adaptation, the trend failed to reach significance (p = .078). Rightward prism adaptation had no significant effects on performance in any of the experiments. Combined, these findings indicate that leftward prism adaptation in healthy individuals can simulate the local processing bias of neglect patients primarily through an increased sensitivity to local visual cues, and confirm that prism adaptation not only modulates lateral shifts of attention, but also prompts shifts from one level of processing to another. PMID:24560913

  18. Adaptation to leftward-shifting prisms enhances local processing in healthy individuals.

    PubMed

    Reed, Scott A; Dassonville, Paul

    2014-04-01

    In healthy individuals, adaptation to left-shifting prisms has been shown to simulate the symptoms of hemispatial neglect, including a reduction in global processing that approximates the local bias observed in neglect patients. The current study tested whether leftward prism adaptation can more specifically enhance local processing abilities. In three experiments, the impact of local and global processing was assessed through tasks that measure susceptibility to illusions that are known to be driven by local or global contextual effects. Susceptibility to the rod-and-frame illusion - an illusion disproportionately driven by both local and global effects depending on frame size - was measured before and after adaptation to left- and right-shifting prisms. A significant increase in rod-and-frame susceptibility was found for the left-shifting prism group, suggesting that adaptation caused an increase in local processing effects. The results of a second experiment confirmed that leftward prism adaptation enhances local processing, as assessed with susceptibility to the simultaneous-tilt illusion. A final experiment employed a more specific measure of the global effect typically associated with the rod-and-frame illusion, and found that although the global effect was somewhat diminished after leftward prism adaptation, the trend failed to reach significance (p=.078). Rightward prism adaptation had no significant effects on performance in any of the experiments. Combined, these findings indicate that leftward prism adaptation in healthy individuals can simulate the local processing bias of neglect patients primarily through an increased sensitivity to local visual cues, and confirm that prism adaptation not only modulates lateral shifts of attention, but also prompts shifts from one level of processing to another.

  19. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study

    PubMed Central

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings. PMID:25566518

  20. Pomegranate Juice Enhances Healthy Lifespan in Drosophila melanogaster: An Exploratory Study.

    PubMed

    Balasubramani, Subramani Paranthaman; Mohan, Jayaram; Chatterjee, Arunita; Patnaik, Esha; Kukkupuni, Subrahmanya Kumar; Nongthomba, Upendra; Venkatasubramanian, Padmavathy

    2014-01-01

    Exploring innovative ways to ensure healthy aging of populations is a pre-requisite to contain rising healthcare costs. Scientific research into the principles and practices of traditional medicines can provide new insights and simple solutions to lead a healthy life. Rasayana is a dedicated branch of Ayurveda (an Indian medicine) that deals with methods to increase vitality and delay aging through the use of diet, herbal supplements, and other lifestyle practices. The life-span and health-span enhancing actions of the fruits of pomegranate (Punica granatum L.), a well-known Rasayana, were tested on Drosophila melanogaster (fruitfly) model. Supplementation of standard corn meal with 10% (v/v) pomegranate juice (PJ) extended the life-span of male and female flies by 18 and 8%, respectively. When male and female flies were mixed and reared together, there was 19% increase in the longevity of PJ fed flies, as assessed by MSD, the median survival day (24.8). MSD for control and resveratrol (RV) groups was at 20.8 and 23.1 days, respectively. A two-fold enhancement in fecundity, improved resistance to oxidative stress (H2O2 and paraquat induced) and to Candida albicans infection were observed in PJ fed flies. Further, the flies in the PJ fed group were physically active over an extended period of time, as assessed by the climbing assay. PJ thus outperformed both control and RV groups in the life-span and health-span parameters tested. This study provides the scope to explore the potential of PJ as a nutraceutical to improve health span and lifespan in human beings.

  1. Enhanced Tumor Formation in Mice Heterozygous for Blm Mutation

    NASA Astrophysics Data System (ADS)

    Heppner Goss, Kathleen; Risinger, Mary A.; Kordich, Jennifer J.; Sanz, Maureen M.; Straughen, Joel E.; Slovek, Lisa E.; Capobianco, Anthony J.; German, James; Boivin, Gregory P.; Groden, Joanna

    2002-09-01

    Persons with the autosomal recessive disorder Bloom syndrome are predisposed to cancers of many types due to loss-of-function mutations in the BLM gene, which encodes a recQ-like helicase. Here we show that mice heterozygous for a targeted null mutation of Blm, the murine homolog of BLM, develop lymphoma earlier than wild-type littermates in response to challenge with murine leukemia virus and develop twice the number of intestinal tumors when crossed with mice carrying a mutation in the Apctumor suppressor. These observations indicate that Blm is a modifier of tumor formation in the mouse and that Blm haploinsufficiency is associated with tumor predisposition, a finding with important implications for cancer risk in humans.

  2. Immune enhancement of yellow fever virus neurovirulence for mice: studies of mechanisms involved.

    PubMed

    Gould, E A; Buckley, A; Groeger, B K; Cane, P A; Doenhoff, M

    1987-12-01

    Enhancement of yellow fever virus neurovirulence for mice by specific antibody was studied with the French neurotropic vaccine strain. Experimental conditions for enhancement required mice between 14 and 40 days old and intraperitoneal administration of a selected monoclonal antibody 24 h before or up to 72 h after intracerebral virus challenge. Virus infectivity titrations were similar in brains of antibody-treated and untreated mice. Virus recovered from brains of mice with enhanced viral infections was neither qualitatively nor quantitatively different from standard virus. Humoral immune responses in enhanced infections were normal, macrophages did not become infected and viraemia was not significant. Both hydrocortisone treatment and complement depletion with cobra venom resulted in prolongation of mouse survival times but virulence enhancement persisted. Antithymocyte serum had no effect on enhancement although it reduced the humoral immune response. It is proposed that virulence enhancement is due to the combined effects of virus-specific antibody on infected cells, complement-mediated cytolysis and resultant host anti-cellular activity. There is no analogy between mechanisms effecting increased arbovirus growth in vitro in the presence of specific antibody and increased yellow fever virus neurovirulence in vivo after parenteral administration of antibody.

  3. Experimental gastritis in mice enhances anxiety in a gender-related manner.

    PubMed

    Painsipp, E; Wultsch, T; Shahbazian, A; Edelsbrunner, M; Kreissl, M C; Schirbel, A; Bock, E; Pabst, M A; Thoeringer, C K; Huber, H P; Holzer, P

    2007-12-12

    There is a gender-related comorbidity of pain-related and inflammatory bowel diseases with psychiatric diseases. Since the impact of experimental gastrointestinal inflammation on the emotional-affective behavior is little known, we examined whether experimental gastritis modifies anxiety, stress coping and circulating corticosterone in male and female Him:OF1 mice. Gastritis was induced by adding iodoacetamide (0.1%) to the drinking water for at least 7 days. Inflammation was assessed by gastric histology and myeloperoxidase activity, circulating corticosterone determined by enzyme immunoassay, anxiety-related behavior evaluated with the elevated plus maze and stress-induced hyperthermia tests, and depression-like behavior estimated with the tail suspension test. Iodoacetamide-induced gastritis was associated with gastric mucosal surface damage and an increase in gastric myeloperoxidase activity, this increase being significantly larger in female mice than in male mice. The rectal temperature of male mice treated with iodoacetamide was enhanced, whereas that of female mice was diminished. The circulating levels of corticosterone were reduced by 65% in female mice treated with iodoacetamide but did not significantly change in male mice. On the behavioral level, iodoacetamide treatment caused a decrease in nocturnal home-cage activity, drinking and feeding. While depression-related behavior remained unaltered following induction of gastritis, behavioral indices of anxiety were significantly enhanced in female but not male mice. There was no correlation between the estrous cycle and anxiety as well as circulating corticosterone. Radiotracer experiments revealed that iodoacetamide did not readily enter the brain, the blood-brain ratio being 20:1. Collectively, these data show that iodoacetamide treatment causes gastritis in a gender-related manner, its severity being significantly greater in female than in male mice. The induction of gastritis in female mice is

  4. Running enhances neurogenesis, learning, and long-term potentiation in mice

    PubMed Central

    van Praag, Henriette; Christie, Brian R.; Sejnowski, Terrence J.; Gage, Fred H.

    1999-01-01

    Running increases neurogenesis in the dentate gyrus of the hippocampus, a brain structure that is important for memory function. Consequently, spatial learning and long-term potentiation (LTP) were tested in groups of mice housed either with a running wheel (runners) or under standard conditions (controls). Mice were injected with bromodeoxyuridine to label dividing cells and trained in the Morris water maze. LTP was studied in the dentate gyrus and area CA1 in hippocampal slices from these mice. Running improved water maze performance, increased bromodeoxyuridine-positive cell numbers, and selectively enhanced dentate gyrus LTP. Our results indicate that physical activity can regulate hippocampal neurogenesis, synaptic plasticity, and learning. PMID:10557337

  5. Enhanced Functional Recovery in MRL/MpJ Mice after Spinal Cord Dorsal Hemisection

    PubMed Central

    Thuret, Sandrine; Thallmair, Michaela; Horky, Laura L.; Gage, Fred H.

    2012-01-01

    Adult MRL/MpJ mice have been shown to possess unique regeneration capabilities. They are able to heal an ear-punched hole or an injured heart with normal tissue architecture and without scar formation. Here we present functional and histological evidence for enhanced recovery following spinal cord injury (SCI) in MRL/MpJ mice. A control group (C57BL/6 mice) and MRL/MpJ mice underwent a dorsal hemisection at T9 (thoracic vertebra 9). Our data show that MRL/MpJ mice recovered motor function significantly faster and more completely. We observed enhanced regeneration of the corticospinal tract (CST). Furthermore, we observed a reduced astrocytic response and fewer micro-cavities at the injury site, which appear to create a more growth-permissive environment for the injured axons. Our data suggest that the reduced astrocytic response is in part due to a lower lesion-induced increase of cell proliferation post-SCI, and a reduced astrocytic differentiation of the proliferating cells. Interestingly, we also found an increased number of proliferating microglia, which could be involved in the MRL/MpJ spinal cord repair mechanisms. Finally, to evaluate the molecular basis of faster spinal cord repair, we examined the difference in gene expression changes in MRL/MpJ and C57BL/6 mice after SCI. Our microarray data support our histological findings and reveal a transcriptional profile associated with a more efficient spinal cord repair in MRL/MpJ mice. PMID:22348029

  6. Intervention-induced enhancement in intrinsic brain activity in healthy older adults

    PubMed Central

    Yin, Shufei; Zhu, Xinyi; Li, Rui; Niu, Yanan; Wang, Baoxi; Zheng, Zhiwei; Huang, Xin; Huo, Lijuan; Li, Juan

    2014-01-01

    This study examined the effects of a multimodal intervention on spontaneous brain activity in healthy older adults. Seventeen older adults received a six-week intervention that consisted of cognitive training, Tai Chi exercise, and group counseling, while 17 older adults in a control group attended health knowledge lectures. The intervention group demonstrated enhanced memory and social support compared to the control group. The amplitude of low frequency fluctuations (ALFF) in the middle frontal gyrus, superior frontal gyrus, and anterior cerebellum lobe was enhanced for the intervention group, while the control group showed reduced ALFF in these three regions. Moreover, changes in trail-making performance and well-being could be predicted by the intervention-induced changes in ALFF. Additionally, individual differences in the baseline ALFF were correlated with intervention-related changes in behavioral performance. These findings suggest that a multimodal intervention is effective in improving cognitive functions and well-being and can induce functional changes in the aging brain. The study extended previous training studies by suggesting resting-state ALFF as a marker of intervention-induced plasticity in older adults. PMID:25472002

  7. Enhancement of Microbiota in Healthy Macaques Results in Beneficial Modulation of Mucosal and Systemic Immune Function.

    PubMed

    Manuzak, Jennifer A; Hensley-McBain, Tiffany; Zevin, Alexander S; Miller, Charlene; Cubas, Rafael; Agricola, Brian; Gile, Jill; Richert-Spuhler, Laura; Patilea, Gabriela; Estes, Jacob D; Langevin, Stanley; Reeves, R Keith; Haddad, Elias K; Klatt, Nichole R

    2016-03-01

    Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely because of significantly increased LN T follicular helper cell frequencies and LN follicles. Increased frequencies of IL-23(+) APCs in the colon were found post-PBio treatment, which correlated with LN T follicular helper cells. Finally, VSL#3 significantly downmodulated the response of TLR2-, TLR3-, TLR4-, and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry.

  8. Enhancement of Microbiota in Healthy Macaques Results in Beneficial Modulation of Mucosal and Systemic Immune Function.

    PubMed

    Manuzak, Jennifer A; Hensley-McBain, Tiffany; Zevin, Alexander S; Miller, Charlene; Cubas, Rafael; Agricola, Brian; Gile, Jill; Richert-Spuhler, Laura; Patilea, Gabriela; Estes, Jacob D; Langevin, Stanley; Reeves, R Keith; Haddad, Elias K; Klatt, Nichole R

    2016-03-01

    Given the critical role of mucosal surfaces in susceptibility to infection, it is imperative that effective mucosal responses are induced when developing efficacious vaccines and prevention strategies for infection. Modulating the microbiota in the gastrointestinal (GI) tract through the use of probiotics (PBio) is a safe and well-tolerated approach to enhance mucosal and overall health. We assessed the longitudinal impact of daily treatment with the VSL#3 probiotic on cellular and humoral immunity and inflammation in healthy macaques. PBio therapy resulted in significantly increased frequencies of B cells expressing IgA in the colon and lymph node (LN), likely because of significantly increased LN T follicular helper cell frequencies and LN follicles. Increased frequencies of IL-23(+) APCs in the colon were found post-PBio treatment, which correlated with LN T follicular helper cells. Finally, VSL#3 significantly downmodulated the response of TLR2-, TLR3-, TLR4-, and TLR9-expressing HEK293 cells to stimulation with Pam3CSK4, polyinosinic-polycytidylic acid, LPS, and ODN2006, respectively. These data provide a mechanism for the beneficial impact of PBio on mucosal health and implicates the use of PBio therapy in the context of vaccination or preventative approaches to enhance protection from mucosal infection by improving immune defenses at the mucosal portal of entry. PMID:26826246

  9. Acute stress blocks the caffeine-induced enhancement of contextual memory retrieval in mice.

    PubMed

    Pierard, Chistophe; Krazem, Ali; Henkous, Nadia; Decorte, Laurence; Béracochéa, Daniel

    2015-08-15

    This study investigated in mice the dose-effect of caffeine on memory retrieval in non-stress and stress conditions. C57 Bl/6 Jico mice learned two consecutive discriminations (D1 and D2) in a four-hole board which involved either distinct contextual (CSD) or similar contextual (SSD) cues. All mice received an i.p. injection of vehicle or caffeine (8, 16 or 32mg/kg) 30min before the test session. Results showed that in non-stress conditions, the 16mg/kg caffeine dose induced a significant enhancement of D1 performance in CSD but not in SSD. Hence, we studied the effect of an acute stress (electric footshocks) administered 15min before the test session on D1 performance in caffeine-treated mice. Results showed that stress significantly decreased D1 performance in vehicle-treated controls and the memory-enhancing effect induced by the 16mg/kg caffeine dose in non-stress condition is no longer observed. Interestingly, whereas caffeine-treated mice exhibited weaker concentrations of plasma corticosterone as compared to vehicles in non-stress condition, stress significantly increased plasma corticosterone concentrations in caffeine-treated mice which reached similar level to that of controls. Overall, the acute stress blocked both the endocrinological and memory retrieval enhancing effects of caffeine.

  10. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    PubMed

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P < 0.05) before ablation, perhaps accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  11. Enhanced differentiation of intraepithelial lymphocytes in the intestine of polymeric immunoglobulin receptor-deficient mice.

    PubMed

    Kato-Nagaoka, Noriko; Shimada, Shin-Ichiro; Yamakawa, Yoko; Tsujibe, Satoshi; Naito, Tomoaki; Setoyama, Hiromi; Watanabe, Yohei; Shida, Kan; Matsumoto, Satoshi; Nanno, Masanobu

    2015-09-01

    To clarify the effect of secretory IgA (sIgA) deficiency on gut homeostasis, we examined intraepithelial lymphocytes (IELs) in the small intestine (SI) of polymeric immunoglobulin receptor-deficient (pIgR(-/-) ) mice. The pIgR(-/-) mice exhibited the accumulation of CD8αβ(+) T-cell receptor (TCR)-αβ(+) IELs (CD8αβ(+) αβ-IELs) after weaning, but no increase of CD8αβ(+) γδ-IELs was detected in pIgR(-/-) TCR-β(-/-) mice compared with pIgR(+/+) TCR-β(-/-) mice. When 5-bromo-2'-deoxyuridine (BrdU) was given for 14 days, the proportion of BrdU-labelled cells in SI-IELs was not different between pIgR(+/+) mice and pIgR(-/-) mice. However, the proportion of BrdU-labelled CD8αβ(+) -IELs became higher in pIgR(-/-) mice than pIgR(+/+) mice 10 days after discontinuing BrdU-labelling. Intravenously transferred splenic T cells migrated into the intraepithelial compartments of pIgR(+/+) TCR-β(-/-) mice and pIgR(-/-) TCR-β(-/-) mice to a similar extent. In contrast, in the case of injection of immature bone marrow cells, CD8αβ(+) αβ-IELs increased much more in the SI of pIgR(-/-) TCR-β(-/-) mice than pIgR(+/+) TCR-β(-/-) mice 8 weeks after the transfer. αβ-IELs from pIgR(-/-) mice could produce more interferon-γ and interleukin-17 than those of pIgR(+/+) mice, and intestinal permeability tended to increase in the SI of pIgR(-/-) mice with aging. Taken together, these results indicate that activated CD8αβ(+) αβ-IELs preferentially accumulate in pIgR(-/-) mice through the enhanced differentiation of immature haematopoietic precursor cells, which may subsequently result in the disruption of epithelial integrity.

  12. Increased callus mass and enhanced strength during fracture healing in mice lacking the sclerostin gene.

    PubMed

    Li, Chaoyang; Ominsky, Michael S; Tan, Hong-Lin; Barrero, Mauricio; Niu, Qing-Tian; Asuncion, Franklin J; Lee, Edward; Liu, Min; Simonet, William S; Paszty, Chris; Ke, Hua Zhu

    2011-12-01

    Humans with inherited sclerostin deficiency have high bone mass. Targeted deletion of the sclerostin gene in mice (SOST-KO) causes increases in bone formation, bone mass and bone strength. Inhibition of sclerostin by a monoclonal antibody increases bone formation and enhances fracture healing in rodent and primate models. In this study, we describe the temporal progression of femoral fracture healing in SOST-KO mice compared with wild type (WT) control mice to further characterize the role of sclerostin in fracture healing. Sixty-seven male 9-10 week-old SOST-KO (N=37) and WT (N=30) mice underwent a closed femoral fracture. Weekly radiography was used to monitor the progress of healing. Histologic sections were used to characterize callus composition, evaluate callus bridging, and quantify lamellar bone formation on days 14 and 28. Densitometry and biomechanical testing were utilized to characterize bone mass and strength at the fractured and contralateral femurs on day 45. A significant improvement in time to radiographic healing (no discernible fracture line) was observed in SOST-KO mice, which corresponded to an increase in histologic bony bridging at 14 days (38% versus 0% in WT). Both genotypes appeared to be nearly fully bridged at 28 days post-fracture. The increased bridging at 14 days was associated with 97% greater bone area and 40% lower cartilage area in the callus of SOST-KO mice as compared to WT mice. Bone formation-related endpoints were higher in SOST-KO mice at both 14 and 28 days. At 45 days post-fracture, peak load and bone mass were significantly greater in the fractured femurs of SOST-KO mice as compared to WT mice. In conclusion, fractures in mice lacking sclerostin showed accelerated bridging, greater callus maturation, and increased bone formation and strength in the callus.

  13. Performance enhancement at the cost of potential brain plasticity: neural ramifications of nootropic drugs in the healthy developing brain

    PubMed Central

    Urban, Kimberly R.; Gao, Wen-Jun

    2014-01-01

    Cognitive enhancement is perhaps one of the most intriguing and controversial topics in neuroscience today. Currently, the main classes of drugs used as potential cognitive enhancers include psychostimulants (methylphenidate (MPH), amphetamine), but wakefulness-promoting agents (modafinil) and glutamate activators (ampakine) are also frequently used. Pharmacologically, substances that enhance the components of the memory/learning circuits—dopamine, glutamate (neuronal excitation), and/or norepinephrine—stand to improve brain function in healthy individuals beyond their baseline functioning. In particular, non-medical use of prescription stimulants such as MPH and illicit use of psychostimulants for cognitive enhancement have seen a recent rise among teens and young adults in schools and college campuses. However, this enhancement likely comes with a neuronal, as well as ethical, cost. Altering glutamate function via the use of psychostimulants may impair behavioral flexibility, leading to the development and/or potentiation of addictive behaviors. Furthermore, dopamine and norepinephrine do not display linear effects; instead, their modulation of cognitive and neuronal function maps on an inverted-U curve. Healthy individuals run the risk of pushing themselves beyond optimal levels into hyperdopaminergic and hypernoradrenergic states, thus vitiating the very behaviors they are striving to improve. Finally, recent studies have begun to highlight potential damaging effects of stimulant exposure in healthy juveniles. This review explains how the main classes of cognitive enhancing drugs affect the learning and memory circuits, and highlights the potential risks and concerns in healthy individuals, particularly juveniles and adolescents. We emphasize the performance enhancement at the potential cost of brain plasticity that is associated with the neural ramifications of nootropic drugs in the healthy developing brain. PMID:24860437

  14. Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially Isolated Mice.

    PubMed

    Liu, Jia; Dupree, Jeffrey L; Gacias, Mar; Frawley, Rebecca; Sikder, Tamjeed; Naik, Payal; Casaccia, Patrizia

    2016-01-20

    Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior. Significance statement: Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under

  15. Clemastine Enhances Myelination in the Prefrontal Cortex and Rescues Behavioral Changes in Socially Isolated Mice

    PubMed Central

    Dupree, Jeffrey L.; Gacias, Mar; Frawley, Rebecca; Sikder, Tamjeed; Naik, Payal; Casaccia, Patrizia

    2016-01-01

    Altered myelin structure and oligodendrocyte function have been shown to correlate with cognitive and motor dysfunction and deficits in social behavior. We and others have previously demonstrated that social isolation in mice induced behavioral, transcriptional, and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC). However, whether enhancing myelination and oligodendrocyte differentiation could be beneficial in reversing such changes remains unexplored. To test this hypothesis, we orally administered clemastine, an antimuscarinic compound that has been shown to enhance oligodendrocyte differentiation and myelination in vitro, for 2 weeks in adult mice following social isolation. Clemastine successfully reversed social avoidance behavior in mice undergoing prolonged social isolation. Impaired myelination was rescued by oral clemastine treatment, and was associated with enhanced oligodendrocyte progenitor differentiation and epigenetic changes. Clemastine induced higher levels of repressive histone methylation (H3K9me3), a marker for heterochromatin, in oligodendrocytes, but not neurons, of the PFC. This was consistent with the capability of clemastine in elevating H3K9 histone methyltransferases activity in cultured primary mouse oligodendrocytes, an effect that could be antagonized by cotreatment with muscarine. Our data suggest that promoting adult myelination is a potential strategy for reversing depressive-like social behavior. SIGNIFICANCE STATEMENT Oligodendrocyte development and myelination are highly dynamic processes influenced by experience and neuronal activity. However, whether enhancing myelination and oligodendrocyte differentiation is beneficial to treat depressive-like behavior has been unexplored. Mice undergoing prolonged social isolation display impaired myelination in the prefrontal cortex. Clemastine, a Food and Drug Administration-approved antimuscarinic compound that has been shown to enhance myelination under

  16. Memory-Enhancing Effects of the Crude Extract of Polygala tenuifolia on Aged Mice.

    PubMed

    Li, Zongyang; Liu, Yamin; Wang, Liwei; Liu, Xinmin; Chang, Qi; Guo, Zhi; Liao, Yonghong; Pan, Ruile; Fan, Tai-Ping

    2014-01-01

    Learning and memory disorders arise from distinct age-associated processes, and aging animals are often used as a model of memory impairment. The root of Polygala tenuifolia has been commonly used in some Asian countries as memory enhancer and its memory improvement has been reported in various animal models. However, there is less research to verify its effect on memory functions in aged animals. Herein, the memory-enhancing effects of the crude extract of Polygala tenuifolia (EPT) on normal aged mice were assessed by Morris water maze (MWM) and step-down passive avoidance tests. In MWM tests, the impaired spatial memory of the aged mice was partly reversed by EPT (100 and 200 mg/kg; P < 0.05) as compared with the aged control mice. In step-down tests, the nonspatial memory of the aged mice was improved by EPT (100 and 200 mg/kg; P < 0.05). Additionally, EPT could increase superoxide dismutase (SOD) and catalase (CAT) activities, inhibit monoamine oxidase (MAO) and acetyl cholinesterase (AChE) activities, and decrease the levels of malondialdehyde (MDA) in the brain tissue of the aged mice. The results showed that EPT improved memory functions of the aged mice probably via its antioxidant properties and via decreasing the activities of MAO and AChE.

  17. Environmental enrichment improves novel object recognition and enhances agonistic behavior in male mice.

    PubMed

    Mesa-Gresa, Patricia; Pérez-Martinez, Asunción; Redolat, Rosa

    2013-01-01

    Environmental enrichment (EE) is an experimental paradigm in which rodents are housed in complex environments containing objects that provide stimulation, the effects of which are expected to improve the welfare of these subjects. EE has been shown to considerably improve learning and memory in rodents. However, knowledge about the effects of EE on social interaction is generally limited and rather controversial. Thus, our aim was to evaluate both novel object recognition and agonistic behavior in NMRI mice receiving EE, hypothesizing enhanced cognition and slightly enhanced agonistic interaction upon EE rearing. During a 4-week period half the mice (n = 16) were exposed to EE and the other half (n = 16) remained in a standard environment (SE). On PND 56-57, animals performed the object recognition test, in which recognition memory was measured using a discrimination index. The social interaction test consisted of an encounter between an experimental animal and a standard opponent. Results indicated that EE mice explored the new object for longer periods than SE animals (P < .05). During social encounters, EE mice devoted more time to sociability and agonistic behavior (P < .05) than their non-EE counterparts. In conclusion, EE has been shown to improve object recognition and increase agonistic behavior in adolescent/early adulthood mice. In the future we intend to extend this study on a longitudinal basis in order to assess in more depth the effect of EE and the consistency of the above-mentioned observations in NMRI mice.

  18. Cognitive-enhancing effects of hydrolysate of polygalasaponin in SAMP8 mice*

    PubMed Central

    Xu, Pan; Xu, Shu-ping; Wang, Ke-zhu; Lu, Cong; Zhang, Hong-xia; Pan, Rui-le; Qi, Chang; Yang, Yan-yan; Li, Ying-hui; Liu, Xin-min

    2016-01-01

    Objectives: The aim of the study is to evaluate the cognitive-enhancing effects of hydrolysate of polygalasaponin (HPS) on senescence accelerate mouse P8 (SAMP8) mice, an effective Alzheimer’s disease (AD) model, and to research the relevant mechanisms. Methods: The cognitive-enhancing effects of HPS on SAMP8 mice were assessed using Morris water maze (MWM) and step-through passive avoidance tests. Then N-methyl-D-aspartate (NMDA) receptor subunit expression for both the cortex and hippocampus of mice was observed using Western blotting. Results: HPS (25 and 50 mg/kg) improved the escape rate and decreased the escape latency and time spent in the target quadrant for the SAMP8 mice in the MWM after oral administration of HPS for 10 d. Moreover, it decreased error times in the passive avoidance tests. Western blotting showed that HPS was able to reverse the levels of NMDAR1 and NMDAR2B expression in the cortex or hippocampus of model mice. Conclusions: The present study suggested that HPS can improve cognitive deficits in SAMP8 mice, and this mechanism might be associated with NMDA receptor (NMDAR)-related pathways. PMID:27381727

  19. Dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory memory tasks in mice.

    PubMed

    Vignisse, Julie; Steinbusch, Harry W M; Bolkunov, Alexei; Nunes, Joao; Santos, Ana Isabel; Grandfils, Christian; Bachurin, Sergei; Strekalova, Tatyana

    2011-03-30

    Pre-clinical and clinical studies on dimebon (dimebolin or latrepirdine) have demonstrated its use as a cognitive enhancer. Here, we show that dimebon administered to 3-month-old C57BL6N mice 15 min prior to training in both appetitive and inhibitory learning tasks via repeated (0.1 mg/kg) and acute (0.5 mg/kg) i.p. injections, respectively, increases memory scores. Acute treatment with dimebon was found to enhance inhibitory learning, as also shown in the step-down avoidance paradigm in 7-month-old mice. Bolus administration of dimebon did not affect the animals' locomotion, exploration or anxiety-like behaviour, with the exception of exploratory behaviour in older mice in the novel cage test. In a model of appetitive learning, a spatial version of the Y-maze, dimebon increased the rate of correct choices and decreased the latency of accessing a water reward after water deprivation, and increased the duration of drinking behaviour during training/testing procedures. Repeated treatment with dimebon did not alter the behaviours in other tests or water consumption. Acute treatment of water-deprived and non-water-deprived mice with dimebon also did not affect their water intake. Our data suggest that dimebon enhances hippocampus-dependent learning in both appetitive and inhibitory tasks in mice.

  20. FOLATE DEFICIENCY ENHANCES ARSENIC-INDUCED GENOTOXICITY IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the mutagenicity of chemical agents. Duplicate experiments were performed to investigate the effect of dietary folate deficiency on arsenic induction of micronuclei (MN) in peripheral blood cells. Male C5...

  1. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice

    PubMed Central

    Ozanic, Mateja; Gobin, Ivana; Brezovec, Martin; Marecic, Valentina; Trobonjaca, Zlatko; Abu Kwaik, Yousef; Santic, Marina

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia. PMID:27242974

  2. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice.

    PubMed

    Ozanic, Mateja; Gobin, Ivana; Brezovec, Martin; Marecic, Valentina; Trobonjaca, Zlatko; Abu Kwaik, Yousef; Santic, Marina

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia.

  3. F. novicida-Infected A. castellanii Does Not Enhance Bacterial Virulence in Mice.

    PubMed

    Ozanic, Mateja; Gobin, Ivana; Brezovec, Martin; Marecic, Valentina; Trobonjaca, Zlatko; Abu Kwaik, Yousef; Santic, Marina

    2016-01-01

    Francisella tularensis is a facultative intracellular bacterium that causes tularemia in humans and animals. Epidemiology of tularemia worldwide is often associated with water-borne transmission, which includes mosquitoes and amoebae as the potential host reservoirs of the bacteria in water environment. In vitro studies showed intracellular replication of F. tularensis within Acanthamoeba castellanii and Hartmanella vermiformis cells. While infection of amoeba by Legionella pneumophila has been shown to enhance infectivity of L. pneumophila the role of F. tularensis-infected protozoa in the pathogenesis of tularemia is not known. We used 6 h coculture of A. castellanii and F. novicida for investigation of the effect of inhaled amoeba on the pathogenesis of tularemia on in vivo model. Balb/c mice were infected intratracheally with F. novicida or with F. novicida-infected A. castellanii. Surprisingly, infection with F. novicida-infected A. castellanii did not lead to bronchopneumonia in Balb/c mice, and Francisella did not disseminate into the liver and spleen. Upon inhalation, F. novicida infects a variety of host cells, though neutrophils are the predominant cells early during infection in the lung infiltrates of pulmonary tularemia. The numbers of neutrophils in the lungs of Balb/c mice were significantly lower in the infection of mice with F. novicida-infected A. castellanii in comparison to group of mice infected only with F. novicida. These results demonstrate that following inoculation of mice with F. novicida-infected A. castellanii, mice did not develop tularemia. PMID:27242974

  4. Lymphocytes from wasted mice express enhanced spontaneous and {gamma}-ray-induced apoptosis

    SciTech Connect

    Woloschak, G.E. |; Chang-Liu, Chin-Mei; Chung, Jen; Libertin, C.R.

    1993-09-01

    Mice bearing the autosomal recessive mutation wasted (wst/wst) display a disease pattern including faulty repair of DNA damage in lymphocytes after radiation exposure, neurologic abnormalities, and immunodeficiency. Many of the features of this mouse model have suggested a premature or increased spontaneous frequency of apoptosis in thymocytes; past work has shown an inability to establish cultured T cell lines, an abnormally high death rate of stimulated T cells in culture, and an increased sensitivity of T cells to the killing effects of ionizing radiations in wst/wst mice relative to controls. The experiments reported here were designed to examine splenic and thymic lymphocytes from wasted and control mice for signs of early apoptosis. Our results revealed enhanced expression of Rp-8 mRNA (associated with apoptosis) in thymic lymphocytes and reduced expression in splenic lymphocytes of wst/wst mice relative to controls; expression of Rp-2 and Td-30 mRNA (induced during apoptosis) were not detectable in spleen or thymus. Higher spontaneous DNA fragmentation was observed in wasted mice than in controls; however, {gamma}-ray-induced DNA fragmentation peaked at a lower dose and occurred to a greater extent in wasted mice relative to controls. These results provide evidence for high spontaneous and {gamma}-ray-induced apoptosis in T cells of wasted mice as a mechanism underlying the observed lymphocyte and DNA repair abnormalities.

  5. Resistance to Malaria by Enhanced Phagocytosis of Erythrocytes in LMP7-deficient Mice

    PubMed Central

    Duan, Xuefeng; Imai, Takashi; Chou, Bin; Tu, Liping; Himeno, Kunisuke; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Okada, Hiroko; Shimokawa, Chikako; Hisaeda, Hajime

    2013-01-01

    General cellular functions of proteasomes occur through protein degradation, whereas the specific function of immunoproteasomes is the optimization of antigen processing associated with MHC class I. We and others previously reported that deficiency in subunits of immunoproteasomes impaired the activation of antigen-specific CD8+ T cells, resulting in higher susceptibility to tumor and infections. We demonstrated that CD8+ T cells contributed to protection against malaria parasites. In this study, we evaluated the role of immunoproteasomes in the course of infection with rodent malaria parasites. Unexpectedly, Plasmodium yoelii infection of mice deficient in LMP7, a catalytic subunit of immunoproteasomes, showed lower parasite growth in the early phase of infection and lower lethality compared with control mice. The protective characteristics of LMP7-deficient mice were not associated with enhanced immune responses, as the mutant mice showed comparable or diminished activation of innate and acquired immunity. The remarkable difference was observed in erythrocytes instead of immune responses. Parasitized red blood cells (pRBCs) purified from LMP7-deficient mice were more susceptible to phagocytosis by macrophages compared with those from wild-type mice. The susceptibility of pRBC to phagocytosis appeared to correlate with deformity of the membrane structures that were only observed after infection. Our results suggest that RBCs of LMP7-deficient mice were more likely to deform in response to infection with malaria parasites, presumably resulting in higher susceptibility to phagocytosis and in the partial resistance to malaria. PMID:23527234

  6. Simple Coating with Fibronectin Fragment Enhances Stainless Steel Screw Osseointegration in Healthy and Osteoporotic Rats

    PubMed Central

    Agarwal, Rachit; González-García, Cristina; Torstrick, Brennan; Guldberg, Robert E.; Salmerón-Sánchez, Manuel; García, Andrés J.

    2015-01-01

    Metal implants are widely used to provide structural support and stability in current surgical treatments for bone fractures, spinal fusions, and joint arthroplasties as well as craniofacial and dental applications. Early implant-bone mechanical fixation is an important requirement for the successful performance of such implants. However, adequate osseointegration has been difficult to achieve especially in challenging disease states like osteoporosis due to reduced bone mass and strength. Here, we present a simple coating strategy based on passive adsorption of FN7-10, a recombinant fragment of human fibronectin encompassing the major cell adhesive, integrin-binding site, onto 316-grade stainless steel (SS). FN7-10 coating on SS surfaces promoted α5β1 integrin-dependent adhesion and osteogenic differentiation of human mesenchymal stem cells. FN7-10-coated SS screws increased bone-implant mechanical fixation compared to uncoated screws by 30% and 45% at 1 and 3 months, respectively, in healthy rats. Importantly, FN7-10 coating significantly enhanced bone-screw fixation by 57% and 32% at 1 and 3 months, respectively, and bone-implant ingrowth by 30% at 3 months compared to uncoated screws in osteoporotic rats. These coatings are easy to apply intra-operatively, even to implants with complex geometries and structures, facilitating the potential for rapid translation to clinical settings. PMID:26100343

  7. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults

    PubMed Central

    Xie, Zhuohong; Sintara, Marsha; Chang, Tony; Ou, Boxin

    2015-01-01

    This study was to investigate the absorption and antioxidant effect of a mangosteen-based functional beverage in humans. The beverage contained mangosteen, aloe vera, green tea, and multivitamins. A randomized, double-blind, placebo-controlled clinical trial was conducted with generally healthy male and female subjects between 18 and 60 years of age. Ten men and 10 women participated in this study. Participants were randomly divided into two groups, treatment and placebo group. Participants received either a daily single dose (245 mL) of the beverage or a placebo. Blood samples were collected from each participant at time points 0, 1, 2, 4, and 6 h. The plasma samples were analyzed by LC/MS for α-mangostin and vitamins B2 and B5. Results indicated that the three analytes were bioavailable, with observed Cmax at around 1 h. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 60% after 1 h, and the elevated antioxidant level lasted at least 6 h. This study demonstrated the bioavailability of α-mangostin and B vitamins from a xanthone-rich beverage and the mechanisms of the increase in plasma antioxidant may be direct effects from antioxidants, enhancement of endogenous antioxidant activity through activation of Nrf2 pathway, and synergism of the antioxidants. PMID:25649891

  8. Functional beverage of Garcinia mangostana (mangosteen) enhances plasma antioxidant capacity in healthy adults.

    PubMed

    Xie, Zhuohong; Sintara, Marsha; Chang, Tony; Ou, Boxin

    2015-01-01

    This study was to investigate the absorption and antioxidant effect of a mangosteen-based functional beverage in humans. The beverage contained mangosteen, aloe vera, green tea, and multivitamins. A randomized, double-blind, placebo-controlled clinical trial was conducted with generally healthy male and female subjects between 18 and 60 years of age. Ten men and 10 women participated in this study. Participants were randomly divided into two groups, treatment and placebo group. Participants received either a daily single dose (245 mL) of the beverage or a placebo. Blood samples were collected from each participant at time points 0, 1, 2, 4, and 6 h. The plasma samples were analyzed by LC/MS for α-mangostin and vitamins B2 and B5. Results indicated that the three analytes were bioavailable, with observed C max at around 1 h. The antioxidant capacity measured with the oxygen radical absorbance capacity (ORAC) assay was increased with a maximum effect of 60% after 1 h, and the elevated antioxidant level lasted at least 6 h. This study demonstrated the bioavailability of α-mangostin and B vitamins from a xanthone-rich beverage and the mechanisms of the increase in plasma antioxidant may be direct effects from antioxidants, enhancement of endogenous antioxidant activity through activation of Nrf2 pathway, and synergism of the antioxidants.

  9. Glucose enhancement of memory is modulated by trait anxiety in healthy adolescent males.

    PubMed

    Smith, Michael A; Hii, Hilary L; Foster, Jonathan K; van Eekelen, J A M

    2011-01-01

    Glucose administration is associated with memory enhancement in healthy young individuals under conditions of divided attention at encoding. While the specific neurocognitive mechanisms underlying this 'glucose memory facilitation effect' are currently uncertain, it is thought that individual differences in glucoregulatory efficiency may alter an individual's sensitivity to the glucose memory facilitation effect. In the present study, we sought to investigate whether basal hypothalamic-pituitary-adrenal axis function (itself a modulator of glucoregulatory efficiency), baseline self-reported stress and trait anxiety influence the glucose memory facilitation effect. Adolescent males (age range = 14-17 years) were administered glucose and placebo prior to completing a verbal episodic memory task on two separate testing days in a counter-balanced, within-subjects design. Glucose ingestion improved verbal episodic memory performance when memory recall was tested (i) within an hour of glucose ingestion and encoding, and (ii) one week subsequent to glucose ingestion and encoding. Basal hypothalamic-pituitary-adrenal axis function did not appear to influence the glucose memory facilitation effect; however, glucose ingestion only improved memory in participants reporting relatively higher trait anxiety. These findings suggest that the glucose memory facilitation effect may be mediated by biological mechanisms associated with trait anxiety.

  10. Simple coating with fibronectin fragment enhances stainless steel screw osseointegration in healthy and osteoporotic rats.

    PubMed

    Agarwal, Rachit; González-García, Cristina; Torstrick, Brennan; Guldberg, Robert E; Salmerón-Sánchez, Manuel; García, Andrés J

    2015-09-01

    Metal implants are widely used to provide structural support and stability in current surgical treatments for bone fractures, spinal fusions, and joint arthroplasties as well as craniofacial and dental applications. Early implant-bone mechanical fixation is an important requirement for the successful performance of such implants. However, adequate osseointegration has been difficult to achieve especially in challenging disease states like osteoporosis due to reduced bone mass and strength. Here, we present a simple coating strategy based on passive adsorption of FN7-10, a recombinant fragment of human fibronectin encompassing the major cell adhesive, integrin-binding site, onto 316-grade stainless steel (SS). FN7-10 coating on SS surfaces promoted α5β1 integrin-dependent adhesion and osteogenic differentiation of human mesenchymal stem cells. FN7-10-coated SS screws increased bone-implant mechanical fixation compared to uncoated screws by 30% and 45% at 1 and 3 months, respectively, in healthy rats. Importantly, FN7-10 coating significantly enhanced bone-screw fixation by 57% and 32% at 1 and 3 months, respectively, and bone-implant ingrowth by 30% at 3 months compared to uncoated screws in osteoporotic rats. These coatings are easy to apply intra-operatively, even to implants with complex geometries and structures, facilitating the potential for rapid translation to clinical settings. PMID:26100343

  11. Pilot Enhancement of the Arthritis Foundation Exercise Program with a Healthy Aging Program.

    PubMed

    Schlenk, Elizabeth A; Bilt, Joni Vander; Lo-Ciganic, Wei-Hsuan; Jacob, Mini E; Woody, Sarah E; Conroy, Molly B; Kwoh, C Kent; Albert, Steven M; Boudreau, Robert; Newman, Anne B; Zgibor, Janice C

    2016-05-01

    Older adults with arthritis or joint pain were targeted for a pilot program enhancing the Arthritis Foundation Exercise Program with the 10 Keys™ to Healthy Aging Program. Using a one-group, pre-post design, feasibility was examined and improvements in preventive behaviors, arthritis outcomes, and cardiometabolic outcomes were explored. A 10-week program was developed, instructors were recruited and trained, and four sites and 51 participants were recruited. Measures included attendance, adherence, satisfaction, preventive behaviors, Western Ontario and McMaster Universities Osteoarthritis Index (pain and stiffness), glucose, and cholesterol. Three fourths of participants attended >50% of the sessions. At 6 and 12 months, more than one half performed the exercises 1 to 2 days per week, whereas 28% and 14% exercised 3 to 7 days per week, respectively. Participants (92%) rated the program as excellent/very good. Nonsignificant changes were observed in expected directions. Effect sizes were small for arthritis and cardiometabolic outcomes. This program engaged community partners, demonstrated feasibility, and showed improvements in some preventive behaviors and health risk profiles. [Res Gerontol Nurs. 2016; 9(3):123-132.].

  12. Enhancing Quality Interventions Promoting Healthy Sexuality (EQUIPS): a novel application of translational research methods.

    PubMed

    Chinman, Matthew; Acosta, Joie; Ebener, Patricia; Driver, Jennifer; Keith, Jamie; Peebles, Dana

    2013-06-01

    Translational research is expanding, in part, because Evidence-Based Programs or Practices (EBPs) are not adopted in many medical domains. However, little translational research exists on EBPs that are prevention programs delivered in nonclinical, community-based settings. These organizations often have low capacity, which undermines implementation quality and outcomes. Rigorous translational research is needed in these settings so within a single study, capacity, implementation quality, and outcomes are measured and links between them tested. This paper overviews the study Enhancing Quality Interventions Promoting Healthy Sexuality (EQUIPS), which tests how well a community-based setting (Boys & Girls Clubs) conducts an EBP called Making Proud Choices that aims to prevent teen pregnancy and sexually transmitted infections, with and without an implementation support intervention called Getting To Outcomes. The study design is novel as it assesses: Getting To Outcomes' impact on capacity, implementation quality, and outcomes simultaneously and in both study conditions; will assess sustainability by measuring capacity and fidelity a year after the Getting To Outcomes support ends; and will operate on a large scale similar to many national initiatives. Many studies have not incorporated all these elements and thus EQUIPS could serve as a model for translational research in many domains.

  13. Effects of Orally Administered Pyrroloquinoline Quinone Disodium Salt on Dry Skin Conditions in Mice and Healthy Female Subjects.

    PubMed

    Nakano, Masahiko; Kamimura, Ayako; Watanabe, Fumiko; Kamiya, Toshikazu; Watanabe, Daisuke; Yamamoto, Etsushi; Fukagawa, Mitsuhiko; Hasumi, Keiji; Suzuki, Eriko

    2015-01-01

    Pyrroloquinoline quinone (PQQ) is a coenzyme involved in the redox-cycling system. The supplemental use of PQQ has been examined based on its properties as an antioxidant and redox modulator. Although an animal study on deficiency of PQQ suggested that PQQ contributes to skin conditions, its efficacy in humans has not been reported. The present study aimed to investigate the effects of orally administered PQQ on skin moisture, viscoelasticity, and transepidermal water loss (TEWL) both in dry skin mouse models and in healthy female subjects with a subjective symptom of dry skin. In our dry skin mouse model study, oral intake of PQQ (0.0089%, w/w, in the diet for 6 wk) significantly decreased the number of mast cells in the dermis and the number of CD3⁺ T-cells in the epidermis. In our human study, oral intake of PQQ (20 mg/d for 8 wk) significantly inhibited the increase in TEWL on the forearm. Finally, subject questionnaires showed positive impressions for the improvement of skin conditions. These results suggest that oral intake of PQQ improves skin conditions both in female subjects with dry skin and in mice with a compromised skin barrier function.

  14. Effects of nanoencapsulation and PEGylation on biodistribution of indocyanine green in healthy mice: quantitative fluorescence imaging and analysis of organs.

    PubMed

    Bahmani, Baharak; Lytle, Christian Y; Walker, Ameae M; Gupta, Sharad; Vullev, Valentine I; Anvari, Bahman

    2013-01-01

    Near-infrared nanoconstructs present a potentially effective platform for site-specific and deep tissue optical imaging and phototherapy. We have engineered a polymeric nanocapsule composed of polyallylamine hydrochloride (PAH) chains cross-linked with sodium phosphate and doped with indocyanine green (ICG) toward such endeavors. The ICG-doped nanocapsules were coated covalently with polyethylene glycol (5000 daltons) through reductive amination. We administrated the constructs by tail vein injection to healthy mice. To characterize the biodistribution of the constructs, we performed in vivo quantitative fluorescence imaging and subsequently analyzed the various extracted organs. Our results suggest that encapsulation of ICG in these PEGylated constructs is an effective approach to prolong the circulation time of ICG and delay its hepatic accumulation. Increased bioavailability of ICG, due to encapsulation, offers the potential of extending the clinical applications of ICG, which are currently limited due to rapid elimination of ICG from the vasculature. Our results also indicate that PAH and ICG-doped nanocapsules (ICG-NCs) are not cytotoxic at the levels used in this study.

  15. Effects of Orally Administered Pyrroloquinoline Quinone Disodium Salt on Dry Skin Conditions in Mice and Healthy Female Subjects.

    PubMed

    Nakano, Masahiko; Kamimura, Ayako; Watanabe, Fumiko; Kamiya, Toshikazu; Watanabe, Daisuke; Yamamoto, Etsushi; Fukagawa, Mitsuhiko; Hasumi, Keiji; Suzuki, Eriko

    2015-01-01

    Pyrroloquinoline quinone (PQQ) is a coenzyme involved in the redox-cycling system. The supplemental use of PQQ has been examined based on its properties as an antioxidant and redox modulator. Although an animal study on deficiency of PQQ suggested that PQQ contributes to skin conditions, its efficacy in humans has not been reported. The present study aimed to investigate the effects of orally administered PQQ on skin moisture, viscoelasticity, and transepidermal water loss (TEWL) both in dry skin mouse models and in healthy female subjects with a subjective symptom of dry skin. In our dry skin mouse model study, oral intake of PQQ (0.0089%, w/w, in the diet for 6 wk) significantly decreased the number of mast cells in the dermis and the number of CD3⁺ T-cells in the epidermis. In our human study, oral intake of PQQ (20 mg/d for 8 wk) significantly inhibited the increase in TEWL on the forearm. Finally, subject questionnaires showed positive impressions for the improvement of skin conditions. These results suggest that oral intake of PQQ improves skin conditions both in female subjects with dry skin and in mice with a compromised skin barrier function. PMID:26226961

  16. Reconciling depressed Ca2+ sparks occurrence with enhanced RyR2 activity in failing mice cardiomyocytes.

    PubMed

    Ruiz-Hurtado, Gema; Li, Linwei; Fernández-Velasco, María; Rueda, Angélica; Lefebvre, Florence; Wang, Yueyi; Mateo, Philippe; Cassan, Cécile; Gellen, Barnabas; Benitah, Jean Pierre; Gómez, Ana María

    2015-10-01

    Abnormalities in cardiomyocyte Ca2+ handling contribute to impaired contractile function in heart failure (HF). Experiments on single ryanodine receptors (RyRs) incorporated into lipid bilayers have indicated that RyRs from failing hearts are more active than those from healthy hearts. Here, we analyzed spontaneous Ca2+ sparks (brief, localized increased in [Ca2+]i) to evaluate RyR cluster activity in situ in a mouse post-myocardial infarction (PMI) model of HF. The cardiac ejection fraction of PMI mice was reduced to ∼30% of that of sham-operated (sham) mice, and their cardiomyocytes were hypertrophied. The [Ca2+]i transient amplitude and sarcoplasmic reticulum (SR) Ca2+ load were decreased in intact PMI cardiomyocytes compared with those from sham mice, and spontaneous Ca2+ sparks were less frequent, whereas the fractional release and the frequency of Ca2+ waves were both increased, suggesting higher RyR activity. In permeabilized cardiomyocytes, in which the internal solution can be controlled, Ca2+ sparks were more frequent in PMI cells (under conditions of similar SR Ca2+ load), confirming the enhanced RyR activity. However, in intact cells from PMI mice, the Ca2+ sparks frequency normalized by the SR Ca2+ load in that cell were reduced compared with those in sham mice, indicating that the cytosolic environment in intact cells contributes to the decrease in Ca2+ spark frequency. Indeed, using an internal "failing solution" with less ATP (as found in HF), we observed a dramatic decrease in Ca2+ spark frequency in permeabilized PMI and sham myocytes. In conclusion, our data show that, even if isolated RyR channels show more activity in HF, concomitant alterations in intracellular media composition and SR Ca2+ load may mask these effects at the Ca2+ spark level in intact cells. Nonetheless, in this scenario, the probability of arrhythmogenic Ca2+ waves is enhanced, and they play a potential role in the increase in arrhythmia events in HF patients.

  17. Ursolic acid enhances pentobarbital-induced sleeping behaviors via GABAergic neurotransmission in mice.

    PubMed

    Jeon, Se Jin; Park, Ho Jae; Gao, Qingtao; Pena, Irene Joy Dela; Park, Se Jin; Lee, Hyung Eun; Woo, Hyun; Kim, Hee Jin; Cheong, Jae Hoon; Hong, Eunyoung; Ryu, Jong Hoon

    2015-09-01

    Prunella vulgaris is widely used as a herbal medicine for cancers, inflammatory diseases, and other infections. Although it has long been used, few studies have examined its effects on central nervous system function. Here, we first observed that ethanolic extracts of P. vulgaris (EEPV) prolonged pentobarbital-induced sleep duration in mice. It is known that EEPV consists of many active components including triterpenoid (ursolic acid and oleanolic acid), which have many biological activities. Therefore, we evaluated which EEPV components induced sleep extension in pentobarbital-mediated sleeping model in mice. Surprisingly, despite their structural similarity and other common functions such as anti-inflammation, anti-cancer, and tissue protection, only ursolic acid enhanced sleep duration in pentobarbital-treated mice. These results were attenuated by bicuculline treatment, which is a GABAA receptor antagonist. The present results suggest that ursolic acid from P. vulgaris enhances sleep duration through GABAA receptor activation and could be a therapeutic candidate for insomnia treatment.

  18. SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE

    EPA Science Inventory

    SYNTHETIC COPPER-CONTAINING PARTICLES ENHANCE ALLERGIC AIRWAY RESPONSES IN MICE. SH Gavett, MI Gilmour, and N Haykal-Coates. National Health and Environ Effects Research Lab, USEPA, Res Triangle Park, NC USA
    Respiratory morbidity and mortality associated with increases in ...

  19. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    PubMed

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P < .03). In the melanoma-bearing mice treated with IR, HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy. PMID:20136435

  20. HemoHIM enhances the therapeutic efficacy of ionizing radiation treatment in tumor-bearing mice.

    PubMed

    Park, Hae-Ran; Ju, Eun-Jin; Jo, Sung-Kee; Jung, Uhee; Kim, Sung-Ho

    2010-02-01

    Although radiotherapy is commonly used for a variety of cancers, radiotherapy alone does not achieve a satisfactory therapeutic outcome. In this study, we examined the possibility that HemoHIM can enhance the anticancer effects of ionizing radiation (IR) in melanoma-bearing mice. The HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of three edible herbs-Angelica Radix, Cnidium Rhizoma, and Paeonia Radix. Anticancer effects of HemoHIM were evaluated in melanoma-bearing mice exposed to IR. IR treatment (5 Gy at 7 days after melanoma cell injection) reduced the weight of the solid tumors, and HemoHIM supplementation with IR enhanced the decreases in tumor weight (P < .03). In the melanoma-bearing mice treated with IR, HemoHIM administration also increased the activity of natural killer cells and cytotoxic T cells, although the proportions of these cells in spleen were not different. In addition, HemoHIM administration increased the interleukin-2 and tumor necrosis factor-alpha secretion from lymphocytes stimulated with concanavalin A, which seemed to contribute to the enhanced efficacy of HemoHIM in tumor-bearing mice treated with IR. In conclusion, HemoHIM may be a beneficial supplement during radiotherapy for enhancing the antitumor efficacy.

  1. Enhanced antitumor efficacy of cisplatin in combination with HemoHIM in tumor-bearing mice

    PubMed Central

    2009-01-01

    Background Although cisplatin is one of the most effective chemotherapeutic agents, cisplatin alone does not achieve a satisfactory therapeutic outcome. Also cisplatin accumulation shows toxicity to normal tissues. In this study, we examined the possibility of HemoHIM both to enhance anticancer effect with cisplatin and to reduce the side effects of cisplatin in melanoma-bearing mice. Methods HemoHIM was prepared by adding the ethanol-insoluble fraction to the total water extract of a mixture of 3 edible herbs, Angelica Radix, Cnidium Rhizoma and Paeonia Radix. Anticancer effects of HemoHIM with cisplatin were evaluated in melanoma-bearing mice. We used a Cr51-release assay to measure the activity of NK/Tc cell and ELISA to evaluate the production of cytokines. Results In melanoma-bearing mice, cisplatin (4 mg/kg B.W.) reduced the size and weight of the solid tumors, and HemoHIM supplementation with cisplatin enhanced the decrease of both the tumor size (p < 0.1) and weight (p < 0.1). HemoHIM itself did not inhibit melanoma cell growth in vitro, and did not disturb the effects of cisplatin in vitro. However HemoHIM administration enhanced both NK cell and Tc cell activity in mice. Interestingly, HemoHIM increased the proportion of NK cells in the spleen. In melanoma-bearing mice treated with cisplatin, HemoHIM administration also increased the activity of NK cells and Tc cells and the IL-2 and IFN-γ secretion from splenocytes, which seemed to contribute to the enhanced efficacy of cisplatin by HemoHIM. Also, HemoHIM reduced nephrotoxicity as seen by tubular cell of kidney destruction. Conclusion HemoHIM may be a beneficial supplement during cisplatin chemotherapy for enhancing the anti-tumor efficacy and reducing the toxicity of cisplatin. PMID:19292900

  2. Enhanced expression of three monocarboxylate transporter isoforms in the brain of obese mice

    PubMed Central

    Pierre, Karin; Parent, Annabelle; Jayet, Pierre-Yves; Halestrap, Andrew P; Scherrer, Urs; Pellerin, Luc

    2007-01-01

    Monocarboxylate transporters (MCTs) are membrane carriers for lactate and ketone bodies. Three isoforms, MCT1, MCT2 and MCT4, have been described in the central nervous system but little information is available about the regulation of their expression in relation to altered metabolic and/or nutritional conditions. We show here that brains of mice fed on a high fat diet (HFD) up to 12 weeks as well as brains of genetically obese (ob/ob) or diabetic (db/db) mice exhibit an increase of MCT1, MCT2 and MCT4 expression as compared to brains of control mice fed a standard diet. Enhanced expression of each transporter was visible throughout the brain but most prominently in the cortex and in the hippocampus. Using immunohistochemistry, we observed that neurons (expressing mainly MCT2 but also sometimes low levels of MCT1 under normal conditions) were immunolabelled for all three transporters in HFD mice as well as in ob/ob and db/db mice. At the subcellular level, changes were most remarkable in neuronal cell bodies. Western blotting performed on brain structure extracts allowed us to confirm quantitatively the enhancement of MCT1 and MCT2 expression. Our data demonstrate that the expression of cerebral MCT isoforms can be modulated by alterations of peripheral metabolism, suggesting that the adult brain is sensitive and adapts to new metabolic states. This observation could be relevant in the context of obesity development and its consequences for brain function. PMID:17599960

  3. Manganese-enhanced MRI reveals structural and functional changes in the cortex of Bassoon mutant mice.

    PubMed

    Angenstein, Frank; Niessen, Heiko G; Goldschmidt, Jürgen; Lison, Holger; Altrock, Wilko D; Gundelfinger, Eckart D; Scheich, Henning

    2007-01-01

    Manganese-enhanced magnetic resonance imaging (ME-MRI) was used to analyze the brain architecture in mice lacking the functional presynaptic active zone protein Bassoon. Anatomical characterization revealed a significant increase in the total brain volume in Bassoon mutants as compared with wild-type mice, which is mainly caused by changes in cortex and hippocampus volume. The measured enlargement in cortical volume coincides with an altered Mn2+ distribution within cortical layers as visualized by T1-weighted magnetic resonance imaging. Two days after manganese application, the cortex of Bassoon mutant mice appeared more laminated in ME-MRI, with an enhanced accumulation of manganese in deep, central, and superficial cortical cell layers. Whereas morphologically the cortical lamination is not affected by the absence of a functional Bassoon, an altered basal activation pattern was found in the cortex of the mutant mice both by metabolic labeling with [14C]-2-deoxyglucose and histochemical detection of the potassium analogue thallium uptake. Consequently, the results indicate that the absence of the functional presynaptic protein Bassoon causes disturbance in the formation of normal basal cortical activation patterns and thereby in the functional cortical architecture. Furthermore, this study shows that ME-MRI can become a valuable tool for a structural characterization of genetically modified mice.

  4. Basal Bone Phenotype and Increased Anabolic Responses to Intermittent Parathyroid Hormone in Healthy Male COX-2 Knockout Mice

    PubMed Central

    Xu, Manshan; Choudhary, Shilpa; Voznesensky, Olga; Gao, Qi; Adams, Douglas; Diaz-Doran, Vilmaris; Wu, Qian; Goltzman, David; Raisz, Lawrence G.; Pilbeam, Carol C.

    2011-01-01

    Cyclooxygenase-2 (COX-2) knockout (KO) mice in inbred strains can have renal dysfunction with secondary hyperparathyroidism (HPTH), making direct effects of COX-2 KO on bone difficult to assess. COX-2 KO mice in an outbred CD-1 background did not have renal dysfunction but still had two-fold elevated PTH compared to wild type (WT) mice. Compared to WT mice, KO mice had increased serum markers of bone turnover, decreased femoral bone mineral density (BMD) and cortical bone thickness, but no differences in trabecular bone volume by μCT or dynamic histomorphometry. Because PTH is a potent inducer of COX-2 and prostaglandin (PG) production, we examined effects of COX-2 KO on bone responses after three weeks of intermittent PTH. Intermittent PTH increased femoral BMD and cortical bone area more in KO mice than in WT mice and increased trabecular bone volume in the distal femur in both WT and KO mice. Although not statistically significant, PTH-stimulated increases in trabecular bone tended to be greater in KO mice than in WT mice. PTH increased serum markers of bone formation and resorption more in KO than in WT mice but increased the ratio of osteoblastic surface to osteoclastic surface only in KO mice. PTH also increased femoral mineral apposition rates and bone formation rates in KO mice more than in WT mice. Acute mRNA responses to PTH of genes that might mediate some anabolic and catabolic effects of PTH tended to be greater in KO than WT mice. We conclude that (1) the basal bone phenotype in male COX-2 KO mice might reflect HPTH, COX-2 deficiency or both, and (2) increased responses to intermittent PTH in COX-2 KO mice, despite the presence of chronic HPTH, suggest that absence of COX-2 increased sensitivity to PTH. It is possible that manipulation of endogenous PGs could have important clinical implications for anabolic therapy with PTH. PMID:20471507

  5. Fasting activated histaminergic neurons and enhanced arousal effect of caffeine in mice.

    PubMed

    Wang, Yi-Qun; Li, Rui; Wu, Xu; Zhu, Fen; Takata, Yohko; Zhang, Ze; Zhang, Meng-Qi; Li, Shan-Qun; Qu, Wei-Min

    2015-06-01

    Caffeine, a popular psychoactive compound, promotes wakefulness via blocking adenosine A2A receptors in the shell of the nucleus accumbens, which projects to the arousal histaminergic tuberomammillary nucleus (TMN). The TMN controls several behaviors such as wakefulness and feeding. Fasting has been reported to activate the TMN histaminergic neurons to increase arousal. Therefore, we propose that caffeine may promote greater arousal under fasting rather than normal feeding conditions. In the current study, locomotor activity recording, electroencephalogram (EEG) and electromyogram recording and c-Fos expression were used in wild type (WT) and histamine H1 receptor (H1R) knockout (KO) mice to investigate the arousal effects of caffeine under fasting conditions. Caffeine (15mg/kg) enhanced locomotor activity in fasted mice for 5h, but only did so for 3h in normally fed animals. Pretreatment with the H1R antagonist pyrilamine abolished caffeine-induced stimulation on locomotor activity in fasted mice. EEG recordings confirmed that caffeine-induced wakefulness for 3h in fed WT mice, and for 5h in fasted ones. A stimulatory effect of caffeine was not observed in fasted H1R KO mice. Furthermore, c-Fos expression was increased in the TMN under fasting conditions. These results indicate that caffeine had greater wakefulness-promoting effects in fasted mice through the mediation of H1R.

  6. Loss of Blm enhances basal cell carcinoma and rhabdomyosarcoma tumorigenesis in Ptch1+/- mice.

    PubMed

    Davari, Parastoo; Hebert, Jennifer L; Albertson, Donna G; Huey, Bing; Roy, Ritu; Mancianti, Maria L; Horvai, Andrew E; McDaniel, Lisa D; Schultz, Roger A; Epstein, Ervin H

    2010-06-01

    Basal cell carcinomas (BCCs) have relative genomic stability and relatively benign clinical behavior but whether these two are related causally is unknown. To investigate the effects of introducing genomic instability into murine BCCs, we have compared ionizing radiation-induced tumorigenesis in Ptch1(+/-) mice versus that in Ptch1(+/-) mice carrying mutant Blm alleles. We found that BCCs in Ptch1(+/-) Blm(tm3Brd/tm3Brd) mice had a trend toward greater genomic instability as measured by array comprehensive genomic hybridization and that these mice developed significantly more microscopic BCCs than did Ptch1(+/-) Blm(+/tm3Brd) or Ptch1(+/-) Blm(+/+) mice. The mutant Blm alleles also markedly enhanced the formation of rhabdomyosarcomas (RMSs), another cancer to which Ptch1(+/)(-) mice and PTCH1(+/)(-) (basal cell nevus syndrome) patients are susceptible. Highly recurrent but different copy number changes were associated with the two tumor types and included losses of chromosomes 4 and 10 in all BCCs and gain of chromosome 10 in 80% of RMSs. Loss of chromosome 11 and 13, including the Trp53 and Ptch1 loci, respectively, occurred frequently in BCCs, suggesting tissue-specific selection for genes or pathways that collaborate with Ptch deficiency in tumorigenesis. Despite the quantitative differences, there was no dramatic qualititative difference in the BCC or RMS tumors associated with the mutant Blm genotype.

  7. Enhanced pelvic responses to stressors in female CRF-overexpressing mice.

    PubMed

    Million, M; Wang, L; Stenzel-Poore, M P; Coste, S C; Yuan, P Q; Lamy, C; Rivier, J; Buffington, T; Taché, Y

    2007-04-01

    Acute stress affects gut functions through the activation of corticotropin-releasing factor (CRF) receptors. The impact of acute stress on pelvic viscera in the context of chronic stress is not well characterized. We investigated the colonic, urinary, and locomotor responses monitored as fecal pellet output (FPO), urine voiding, and ambulatory activity, respectively, in female and male CRF-overexpressing (CRF-OE) mice, a chronic stress model, and their wild-type littermates (WTL). Female CRF-OE mice, compared with WTL, had enhanced FPO to 2-min handling (150%) and 60-min novel environment (155%) but displayed a similar response to a 60-min partial restraint stress. Female CRF-OE mice, compared with WTL, also had a significantly increased number of urine spots (7.3 +/- 1.4 vs. 1.3 +/- 0.8 spots/h) and lower locomotor activity (246.8 +/- 47.8 vs. 388.2 +/- 31.9 entries/h) to a novel environment. Male CRF-OE mice and WTL both responded to a novel environment but failed to show differences between them in colonic and locomotor responses. Male WTL, compared with female WTL, had higher FPO (113%). In female CRF-OE mice, the CRF(1)/CRF(2) receptor antagonist astressin B and the selective CRF(2) receptor agonist mouse urocortin 2 (injected peripherally) prevented the enhanced defecation without affecting urine or locomotor responses to novel environment. RT-PCR showed that CRF(1) and CRF(2) receptors are expressed in the mouse colonic tissues. The data show that chronic stress, due to continuous central CRF overdrive, renders female CRF-OE mice to have enhanced pelvic and altered behavioral responses to superimposed mild stressors and that CRF(1)-initiated colonic response is counteracted by selective activation of CRF(2) receptor.

  8. Correlation between the enhancement of flunitrazepam binding by GABA and seizure susceptibility in mice

    SciTech Connect

    Marley, R.J.; Wehner, J.M.

    1987-06-08

    Various populations of mice exhibit differential sensitivity to seizure-inducing agents. The relationship of seizure susceptibility to alterations in the GABA receptor complex was investigated in six different populations of mice consisting of four inbred strains (C57BL, DBA, C3H, and BALB) and two selected lines (long sleep and short sleep). Seizure activity was induced by intraperitoneal administration of the GAD inhibitor, 3-mercaptopropionic acid, and latencies to seizure onset and tonus were measured. In naive mice of the same populations, GABA enhancement of TH-flunitrazepam binding was measured in extensively washed whole brain membranes at several GABA concentrations. Both differential seizure sensitivity to 3-mercaptopropionic acid and differential enhancement of TH-flunitrazepam binding by GABA were observed in these six populations of mice. Correlational analyses indicated a positive correlation between the degree of GABA enhancement of TH-flunitrazepam binding and resistance to the seizure-inducing properties of 3-mercaptopropionic acid. These data suggest that genetic differences in sensitivity to seizure-inducing agents that disrupt the GABAergic system may be related to differences in coupling between the various receptors associated with the GABA receptor complex.

  9. Gastric carcinogenesis by N-Methyl-N-nitrosourea is enhanced in db/db diabetic mice.

    PubMed

    Yoshizawa, Nao; Yamaguchi, Hirokazu; Yamamoto, Masami; Shimizu, Nobuyuki; Furihata, Chie; Tatematsu, Masae; Seto, Yasuyuki; Kaminishi, Michio

    2009-07-01

    In 2005, a Japanese epidemiological study showed that increase in plasma glucose levels is a risk factor for gastric cancer. However, no animal model has hitherto shown any association between diabetes mellitus and neoplasia in the stomach. Diabetic (db/db) mice have obese and diabetic phenotypes, including hyperglycemia, because of disruption of the leptin receptor. In the present study, effects of hyperglycemia and/or hyperinsulinemia on the development of proliferative lesions were therefore examined in db/db mice given N-methyl-N-nitrosourea (MNU). A total of 120 mice were assigned to four groups: Group A, 40 db/db mice with MNU; Group B, 40 + /db mice with MNU; Group C, 30 misty (wild-type) mice with MNU; Group D, 10 db/db mice without MNU. MNU was given at 60 ppm in drinking water for 20 weeks. Subgroups of animals were sacrificed at weeks 21 and 30 and blood samples were collected to measure glucose, insulin, leptin, and adiponectin concentrations. The removed stomachs were fixed in formalin, and embedded in paraffin for histological examination and immunohistochemistry. At week 30 in Groups A, B, C and D, hyperplasia was observed in 100, 79, 57, and 0%, and dysplasia in 91, 43, 71, and 0%, respectively. Adenocarcinomas and pepsinogen-altered pyloric glands (PAPG), putative preneoplastic lesions, were observed only in Group A, at an incidence of 45%. The serum levels of insulin and leptin were also elevated in Group A. Gastric carcinogenesis by MNU was enhanced in db/db mice, possibly in association with hyperinsulinemia and hyperleptinemia. PMID:19432903

  10. Dietary trans fats enhance doxorubicin-induced cardiotoxicity in mice.

    PubMed

    Mong, Mei-chin; Hsia, Te-chun; Yin, Mei-chin

    2013-10-01

    This study investigated the combined effects of trans fat diet (TFD) and doxorubicin upon cardiac oxidative, inflammatory, and coagulatory stress. TFD increased trans fatty acid deposit in heart (P < 0.05), and decreased protein C and antithrombin-III activities in circulation (P < 0.05). TFD plus doxorubicin treatment elevated activities of plasminogen activator inhibitor-1, lactate dehydrogenase, and creatine phosphokinase (P < 0.05). This combination also raised xanthine oxidase activity, and enhanced cardiac levels of reactive oxygen species, interleukin (IL)-6, IL-10, tumor necrosis factor-alpha, and monocyte chemoattractant protein-1 than TFD or doxorubicin treatment alone (P < 0.05). TFD alone increased cardiac nuclear factor kappa B (NF-κB) activity (P < 0.05), but failed to affect expression of NF-κB and mitogen-activated protein kinase (MAPK) (P > 0.05). Doxorubicin treatment alone augmented cardiac activity, mRNA expression, and protein production of NF-κB and MAPK (P < 0.05). TFD plus doxorubicin treatment further upregulated cardiac expression of NF-κB p65, p-p38, and p-ERK1/2 (P < 0.05). These findings suggest that TFD exacerbates doxorubicin-induced cardiotoxicity.

  11. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine.

    PubMed

    Ip, Joanna Y; Sone, Masamitsu; Nashiki, Chieko; Pan, Qun; Kitaichi, Kiyoyuki; Yanaka, Kaori; Abe, Takaya; Takao, Keizo; Miyakawa, Tsuyoshi; Blencowe, Benjamin J; Nakagawa, Shinichi

    2016-01-01

    The long noncoding RNA Gomafu/MIAT/Rncr2 is thought to function in retinal cell specification, stem cell differentiation and the control of alternative splicing. To further investigate physiological functions of Gomafu, we created mouse knockout (KO) model that completely lacks the Gomafu gene. The KO mice did not exhibit any developmental deficits. However, behavioral tests revealed that the KO mice are hyperactive. This hyperactive behavior was enhanced when the KO mice were treated with the psychostimulant methamphetamine, which was associated with an increase in dopamine release in the nucleus accumbens. RNA sequencing analyses identified a small number of genes affected by the deficiency of Gomafu, a subset of which are known to have important neurobiological functions. These observations suggest that Gomafu modifies mouse behavior thorough a mild modulation of gene expression and/or alternative splicing of target genes. PMID:27251103

  12. Rhes Suppression Enhances Disease Phenotypes in Huntington’s Disease Mice

    PubMed Central

    Lee, John H.; Sowada, Matthew J.; Boudreau, Ryan L.; Aerts, Andrea M.; Thedens, Daniel R.; Nopoulos, Peg; Davidson, Beverly L.

    2014-01-01

    In Huntington’s disease (HD) mutant HTT is ubiquitously expressed yet the striatum undergoes profound early degeneration. Cell culture studies suggest that a striatal-enriched protein, Rhes, may account for this vulnerability. We investigated the therapeutic potential of silencing Rhes in vivo using inhibitory RNAs (miRhes). While Rhes suppression was tolerated in wildtype mice, it failed to improve rotarod function in two distinct HD mouse models. Additionally, miRhes treated HD mice had increased anxiety-like behaviors and enhanced striatal atrophy as measured by longitudinal MRI when compared to control treated mice. These findings raise caution regarding the long-term implementation of inhibiting Rhes as a therapy for HD. PMID:25062765

  13. The disorganized visual cortex in reelin-deficient mice is functional and allows for enhanced plasticity.

    PubMed

    Pielecka-Fortuna, Justyna; Wagener, Robin Jan; Martens, Ann-Kristin; Goetze, Bianka; Schmidt, Karl-Friedrich; Staiger, Jochen F; Löwel, Siegrid

    2015-11-01

    A hallmark of neocortical circuits is the segregation of processing streams into six distinct layers. The importance of this layered organization for cortical processing and plasticity is little understood. We investigated the structure, function and plasticity of primary visual cortex (V1) of adult mice deficient for the glycoprotein reelin and their wild-type littermates. In V1 of rl-/- mice, cells with different laminar fates are present at all cortical depths. Surprisingly, the (vertically) disorganized cortex maintains a precise retinotopic (horizontal) organization. Rl-/- mice have normal basic visual capabilities, but are compromised in more challenging perceptual tasks, such as orientation discrimination. Additionally, rl-/- animals learn and memorize a visual task as well as their wild-type littermates. Interestingly, reelin deficiency enhances visual cortical plasticity: juvenile-like ocular dominance plasticity is preserved into late adulthood. The present data offer an important insight into the capabilities of a disorganized cortical system to maintain basic functional properties.

  14. Gomafu lncRNA knockout mice exhibit mild hyperactivity with enhanced responsiveness to the psychostimulant methamphetamine

    PubMed Central

    Ip, Joanna Y.; Sone, Masamitsu; Nashiki, Chieko; Pan, Qun; Kitaichi, Kiyoyuki; Yanaka, Kaori; Abe, Takaya; Takao, Keizo; Miyakawa, Tsuyoshi; Blencowe, Benjamin J.; Nakagawa, Shinichi

    2016-01-01

    The long noncoding RNA Gomafu/MIAT/Rncr2 is thought to function in retinal cell specification, stem cell differentiation and the control of alternative splicing. To further investigate physiological functions of Gomafu, we created mouse knockout (KO) model that completely lacks the Gomafu gene. The KO mice did not exhibit any developmental deficits. However, behavioral tests revealed that the KO mice are hyperactive. This hyperactive behavior was enhanced when the KO mice were treated with the psychostimulant methamphetamine, which was associated with an increase in dopamine release in the nucleus accumbens. RNA sequencing analyses identified a small number of genes affected by the deficiency of Gomafu, a subset of which are known to have important neurobiological functions. These observations suggest that Gomafu modifies mouse behavior thorough a mild modulation of gene expression and/or alternative splicing of target genes. PMID:27251103

  15. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage

    PubMed Central

    Lam, Jian Hang; Binte Aman, Siti Amanlina; Libau, Eshele Anak; Lee, Pei Xuan; St. John, Ashley L.; Alonso, Sylvie

    2016-01-01

    Epidemiological studies have reported that most of the severe dengue cases occur upon a secondary heterologous infection. Furthermore, babies born to dengue immune mothers are at greater risk of developing severe disease upon primary infection with a heterologous or homologous dengue virus (DENV) serotype when maternal antibodies reach sub-neutralizing concentrations. These observations have been explained by the antibody mediated disease enhancement (ADE) phenomenon whereby heterologous antibodies or sub-neutralizing homologous antibodies bind to but fail to neutralize DENV particles, allowing Fc-receptor mediated entry of the virus-antibody complexes into host cells. This eventually results in enhanced viral replication and heightened inflammatory responses. In an attempt to replicate this ADE phenomenon in a mouse model, we previously reported that upon DENV2 infection 5-week old type I and II interferon (IFN) receptors-deficient mice (AG129) born to DENV1-immune mothers displayed enhancement of disease severity characterized by increased virus titers and extensive vascular leakage which eventually led to the animals’ death. However, as dengue occurs in immune competent individuals, we sought to reproduce this mouse model in a less immunocompromised background. Here, we report an ADE model that is mediated by maternal antibodies in type I IFN receptor-deficient A129 mice. We show that 5-week old A129 mice born to DENV1-immune mothers succumbed to a DENV2 infection within 4 days that was sub-lethal in mice born to naïve mothers. Clinical manifestations included extensive hepatocyte vacuolation, moderate vascular leakage, lymphopenia, and thrombocytopenia. Anti-TNFα therapy totally protected the mice and correlated with healthy hepatocytes. In contrast, blocking IL-6 did not impact the virus titers or disease outcome. This A129 mouse model of ADE may help dissecting the mechanisms involved in dengue pathogenesis and evaluate the efficacy of vaccine and

  16. Maternal Antibody-Mediated Disease Enhancement in Type I Interferon-Deficient Mice Leads to Lethal Disease Associated with Liver Damage.

    PubMed

    Martínez Gómez, Julia María; Ong, Li Ching; Lam, Jian Hang; Binte Aman, Siti Amanlina; Libau, Eshele Anak; Lee, Pei Xuan; St John, Ashley L; Alonso, Sylvie

    2016-03-01

    Epidemiological studies have reported that most of the severe dengue cases occur upon a secondary heterologous infection. Furthermore, babies born to dengue immune mothers are at greater risk of developing severe disease upon primary infection with a heterologous or homologous dengue virus (DENV) serotype when maternal antibodies reach sub-neutralizing concentrations. These observations have been explained by the antibody mediated disease enhancement (ADE) phenomenon whereby heterologous antibodies or sub-neutralizing homologous antibodies bind to but fail to neutralize DENV particles, allowing Fc-receptor mediated entry of the virus-antibody complexes into host cells. This eventually results in enhanced viral replication and heightened inflammatory responses. In an attempt to replicate this ADE phenomenon in a mouse model, we previously reported that upon DENV2 infection 5-week old type I and II interferon (IFN) receptors-deficient mice (AG129) born to DENV1-immune mothers displayed enhancement of disease severity characterized by increased virus titers and extensive vascular leakage which eventually led to the animals' death. However, as dengue occurs in immune competent individuals, we sought to reproduce this mouse model in a less immunocompromised background. Here, we report an ADE model that is mediated by maternal antibodies in type I IFN receptor-deficient A129 mice. We show that 5-week old A129 mice born to DENV1-immune mothers succumbed to a DENV2 infection within 4 days that was sub-lethal in mice born to naïve mothers. Clinical manifestations included extensive hepatocyte vacuolation, moderate vascular leakage, lymphopenia, and thrombocytopenia. Anti-TNFα therapy totally protected the mice and correlated with healthy hepatocytes. In contrast, blocking IL-6 did not impact the virus titers or disease outcome. This A129 mouse model of ADE may help dissecting the mechanisms involved in dengue pathogenesis and evaluate the efficacy of vaccine and

  17. Regulatory changes contribute to the adaptive enhancement of thermogenic capacity in high-altitude deer mice.

    PubMed

    Cheviron, Zachary A; Bachman, Gwendolyn C; Connaty, Alex D; McClelland, Grant B; Storz, Jay F

    2012-05-29

    In response to hypoxic stress, many animals compensate for a reduced cellular O(2) supply by suppressing total metabolism, thereby reducing O(2) demand. For small endotherms that are native to high-altitude environments, this is not always a viable strategy, as the capacity for sustained aerobic thermogenesis is critical for survival during periods of prolonged cold stress. For example, survivorship studies of deer mice (Peromyscus maniculatus) have demonstrated that thermogenic capacity is under strong directional selection at high altitude. Here, we integrate measures of whole-organism thermogenic performance with measures of metabolic enzyme activities and genomic transcriptional profiles to examine the mechanistic underpinnings of adaptive variation in this complex trait in deer mice that are native to different elevations. We demonstrate that highland deer mice have an enhanced thermogenic capacity under hypoxia compared with lowland conspecifics and a closely related lowland species, Peromyscus leucopus. Our findings suggest that the enhanced thermogenic performance of highland deer mice is largely attributable to an increased capacity to oxidize lipids as a primary metabolic fuel source. This enhanced capacity for aerobic thermogenesis is associated with elevated activities of muscle metabolic enzymes that influence flux through fatty-acid oxidation and oxidative phosphorylation pathways in high-altitude deer mice and by concomitant changes in the expression of genes in these same pathways. Contrary to predictions derived from studies of humans at high altitude, our results suggest that selection to sustain prolonged thermogenesis under hypoxia promotes a shift in metabolic fuel use in favor of lipids over carbohydrates. PMID:22586089

  18. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI. PMID:26726878

  19. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.

  20. Enhanced penetration of exogenous EPCs into brains of APP/PS1 transgenic mice

    PubMed Central

    Yuan, Xiaoyang; Mei, Bin; Zhang, Le; Zhang, Cuntai; Zheng, Miao; Liang, Huifang; Wang, Wei; Zheng, Jie; Ding, Ling; Zheng, Kai

    2016-01-01

    The aim of this study was to investigate the repair function of exogenous Endothelial progenitor cells (EPCs) for brain microvascular damage of the APP/PS1 transgenic mouse model of Alzheimer’s disease (AD). This study used a density-gradient centrifugation method to isolate mononuclear cells (MNCs) from mouse bone marrow, which were subsequently seeded and cultured. Cells were characterized by morphology and detection of the surface markers CD34 and CD133 at different time points by immunofluorescence (IF) and flow cytometry (FCM). Then, EPCs were transfected with GFP adenoviral vectors (GFP-EPCs). Wild-type (WT) and APP/PS1 transgenic mice both received GFP-EPCs injection through the tail vein, and using a PBS buffer injection as the control. Seven days later, the animals’ brain tissue was isolated. Expression of GFP was detected by quantitative polymerase chain reaction (qPCR) and western-blot (WB), while the fluorescence of GFP within the brains of mice was observed under a fluorescence microscope. Higher mRNA and protein expression of GFP, accompanied with increased green fluorescence, were detected in the brain of GFP-EPCs-injected APP/PS1 mice, as compared with GFP-EPCs-injected WT mice. The results show that the APP/PS1 transgenic mouse model of AD exhibited enhanced penetration of exogenous EPCs into brains than the WT mice. PMID:27186272

  1. Meta-chlorophenylpiperazine enhances leptin sensitivity in diet-induced obese mice

    PubMed Central

    Yan, Chunling; Yang, Yongjie; Saito, Kenji; Xu, Pingwen; Wang, Chunmei; Hinton Jr, Antentor Othrell; Yan, Xiaofeng; Wu, Qi; Tong, Qingchun; Elmquist, Joel K; Fukuda, Makoto; Xu, Yong

    2015-01-01

    Background and Purpose Most forms of human obesity are characterized by impaired leptin sensitivity and, therefore, the effectiveness of anti-obesity leptin therapy in these leptin-resistant obese patients is marginal. Hence, the development of strategies to increase leptin sensitivity is of high priority in the field of obesity research. Experimental Approach We first examined the effects of co-administration of leptin and meta-chlorophenylpiperazine (mCPP), an agonist of 5-HT2C and 5-HT1B receptors, on energy balance in leptin-resistant diet-induced obese (DIO) mice. We further assessed leptin-induced phosphorylation of the STAT-3 (pSTAT3) in various brain regions of DIO mice pretreated with mCPP or in mice genetically lacking 5-HT2C receptors. Results Co-administration of mCPP with leptin had an additive effect on reducing body weight in DIO mice. Furthermore, mCPP pretreatment in DIO mice enhanced leptin-induced pSTAT3 in the arcuate nucleus, the ventromedial hypothalamic nucleus, and the ventral premammillary nucleus. Finally, deletion of 5-HT2C receptors significantly blunted leptin-induced pSTAT3 in these same hypothalamic regions. Conclusions and Implications Our study provides evidence that drugs, which activate 5-HT2C receptors, could function as leptin sensitizers and be used in combination with leptin to provide additional weight loss in DIO. PMID:25817043

  2. Nck2 Deficiency in Mice Results in Increased Adiposity Associated With Adipocyte Hypertrophy and Enhanced Adipogenesis.

    PubMed

    Dusseault, Julie; Li, Bing; Haider, Nida; Goyette, Marie-Anne; Côté, Jean-François; Larose, Louise

    2016-09-01

    Obesity results from an excessive expansion of white adipose tissue (WAT) from hypertrophy of preexisting adipocytes and enhancement of precursor differentiation into mature adipocytes. We report that Nck2-deficient mice display progressive increased adiposity associated with adipocyte hypertrophy. A negative relationship between the expression of Nck2 and WAT expansion was recapitulated in humans such that reduced Nck2 protein and mRNA levels in human visceral WAT significantly correlate with the degree of obesity. Accordingly, Nck2 deficiency promotes an adipogenic program that not only enhances adipocyte differentiation and lipid droplet formation but also results in dysfunctional elevated lipogenesis and lipolysis activities in mouse WAT as well as in stromal vascular fraction and 3T3-L1 preadipocytes. We provide strong evidence to support that through a mechanism involving primed PERK activation and signaling, Nck2 deficiency in adipocyte precursors is associated with enhanced adipogenesis in vitro and adiposity in vivo. Finally, in agreement with elevated circulating lipids, Nck2-deficient mice develop glucose intolerance, insulin resistance, and hepatic steatosis. Taken together, these findings reveal that Nck2 is a novel regulator of adiposity and suggest that Nck2 is important in limiting WAT expansion and dysfunction in mice and humans. PMID:27325288

  3. Topical calcitriol enhances normal hair regrowth but does not prevent chemotherapy-induced alopecia in mice.

    PubMed

    Paus, R; Schilli, M B; Handjiski, B; Menrad, A; Henz, B M; Plonka, P

    1996-10-01

    Using a murine model that mimics chemotherapy-induced alopecia (CIA) in humans particularly well, we show here that in contrast to previously reported CIA-protective effects in neonatal rats, topical calcitriol does not prevent CIA in adolescent mice but enhances the regrowth of normally pigmented hair shafts. When, prior to injecting 1 X 120 mg/kg cyclophosphamide i.p., 0.2 microg calcitriol or vehicle alone were administered topically to the back skin of C57BL/6 mice with all hair follicles in anagen, no significant macroscopic differences in the onset and severity of CIA were seen. However, hair shaft regrowth after CIA, which is often retarded and patchy, thus displaying severe and sometimes persistent pigmentation disorders, was significantly accelerated, enhanced, and qualitatively improved in test compared with control mice. Histomorphometric analysis suggests that this is related to the fact that calcitriol-pretreated follicles favor the "dystrophic catagen pathway" of response to chemical injury, ie., a follicular repair strategy allowing for the unusually fast reconstruction of a new, undamaged anagen hair bulb. Thus, it may be unrealistic to expect that topical calcitriol can prevent human CIA, but topical calcitriols may well enhance the regrowth of a normal hair coat.

  4. Intestinal barrier analysis by assessment of mucins, tight junctions, and α-defensins in healthy C57BL/6J and BALB/cJ mice.

    PubMed

    Volynets, Valentina; Rings, Andreas; Bárdos, Gyöngyi; Ostaff, Maureen J; Wehkamp, Jan; Bischoff, Stephan C

    2016-01-01

    The intestinal barrier is gaining increasing attention because it is related to intestinal homeostasis and disease. Different parameters have been used in the past to assess intestinal barrier functions in experimental studies; however most of them are poorly defined in healthy mice. Here, we compared a number of barrier markers in healthy mice, established normal values and correlations. In 48 mice (24 C57BL/6J, 24 BALB/cJ background), we measured mucus thickness, and expression of mucin-2, α-defensin-1 and -4, zonula occludens-1, occludin, junctional adhesion molecule-A, claudin-1, 2 and -5. We also analyzed claudin-3 and fatty acid binding protein-2 in urine and plasma, respectively. A higher expression of mucin-2 protein was found in the colon compared to the ileum. In contrast, the α-defensins-1 and -4 were expressed almost exclusively in the ileum. The protein expression of the tight junction molecules claudin-1, occludin and zonula occludens-1 did not differ between colon and ileum, although some differences occurred at the mRNA level. No age- or gender-related differences were found. Differences between C57BL/6J and BALB/cJ mice were found for α-defensin-1 and -4 mRNA expression, and for urine and plasma marker concentrations. The α-defensin-1 mRNA correlated with claudin-5 mRNA, whereas α-defensin-4 mRNA correlated with claudin-3 concentrations in urine. In conclusion, we identified a number of murine intestinal barrier markers requiring tissue analyses or measurable in urine or plasma. We provide normal values for these markers in mice of different genetic background. Such data might be helpful for future animal studies in which the intestinal barrier is of interest. PMID:27583194

  5. Enhancing effects of trichloroethylene and tetrachloroethylene on type I allergic responses in mice.

    PubMed

    Seo, Makoto; Kobayashi, Ryo; Okamura, Tetsunori; Ikeda, Koji; Satoh, Masahiko; Inagaki, Naoki; Nagai, Hiroichi; Nagase, Hisamitsu

    2012-01-01

    Trichloroethylene (TCE) and tetrachloroethylene (perchloroethylene; PCE) are commonly identified as environmental contaminants of groundwater. Previously, we investigated the enhancing effects of TCE and PCE on antigen-induced histamine release and inflammatory mediator production in rat mast cells. In this study, to examine the potential effect of TCE and PCE on antigen-induced histamine release from mouse mast cells, mouse bone marrow-derived mast cells (BMMC) were sensitized with anti-dinitrophenol (DNP) monoclonal IgE antibody and then stimulated with DNP-BSA containing with TCE or PCE. Both TCE and PCE significantly enhanced antigen-induced histamine release from BMMC. Next we investigated the effects of TCE and PCE on the passive cutaneous anaphylaxis (PCA) reaction in vivo using ICR mice. TCE and PCE significantly enhanced the PCA reaction in a dose-dependent manner. In addition, we examined the enhancing effects of ingesting small amount of TCE and PCE in drinking water on antigen-stimulated allergic responses. After the ICR mice had ingested TCE or PCE in their drinking water for 2 or 4 weeks, we performed the PCA reaction. Both TCE and PCE ingestion enhanced the PCA reaction in a dose-dependent manner for 4 weeks. These results suggest that exposure to TCE and PCE leads to the augmentation of type I allergic responses in many species.

  6. Neurochemical, behavioral and physiological effects of pharmacologically enhanced serotonin levels in serotonin transporter (SERT)-deficient mice

    PubMed Central

    Fox, Meredith A.; Jensen, Catherine L.; French, Helen T.; Stein, Alison R.; Huang, Su-Jan; Tolliver, Teresa J.; Murphy, Dennis L.

    2008-01-01

    Rationale Serotonin transporter (SERT) knockout (−/−) mice have an altered phenotype in adulthood, including high baseline anxiety and depressive-like behaviors, associated with increased baseline extracellular serotonin levels throughout life. Objectives To examine the effects of increases in serotonin following administration of the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) in SERT wildtype (+/+), heterozygous (+/−) and −/− mice. Results 5-HTP increased serotonin in all five brain areas examined, with ~2–5-fold increases in SERT +/+ and +/− mice, and greater 4.5–11.7-fold increases in SERT −/− mice. Behaviorally, 5-HTP induced exaggerated serotonin syndrome behaviors in SERT −/− mice, with similar effects in male and female mice. Studies suggest promiscuous serotonin uptake by the dopamine transporter (DAT) in SERT −/− mice, and here, the DAT blocker GBR 12909 enhanced 5-HTP-induced behaviors in SERT −/− mice. Physiologically, 5-HTP induced exaggerated temperature effects in SERT-deficient mice. The 5-HT1A antagonist WAY 100635 decreased 5-HTP-induced hypothermia in SERT +/+ and +/− mice, with no effect in SERT −/− mice, whereas the 5-HT7 antagonist SB 269970 decreased this exaggerated response in SERT −/− mice only. WAY 100635 and SB 269970 together completely blocked 5-HTP-induced hypothermia in SERT +/− and −/− mice. Conclusions These studies demonstrate that SERT −/− mice have exaggerated neurochemical, behavioral and physiological responses to further increases in serotonin, and provide the first evidence of intact 5-HT7 receptor function in SERT −/− mice, with interesting interactions between 5-HT1A and 5-HT7 receptors. As roles for 5-HT7 receptors in anxiety and depression were recently established, the current findings have implications for understanding the high anxiety and depressive-like phenotype of SERT-deficient mice. PMID:18712364

  7. Respiratory Syncytial Virus Infections Enhance Cigarette Smoke Induced COPD in Mice

    PubMed Central

    Foronjy, Robert F.; Dabo, Abdoulaye J.; Taggart, Clifford C.; Weldon, Sinead; Geraghty, Patrick

    2014-01-01

    Respiratory syncytial viral (RSV) infections are a frequent cause of chronic obstructive pulmonary disease (COPD) exacerbations, which are a major factor in disease progression and mortality. RSV is able to evade antiviral defenses to persist in the lungs of COPD patients. Though RSV infection has been identified in COPD, its contribution to cigarette smoke-induced airway inflammation and lung tissue destruction has not been established. Here we examine the long-term effects of cigarette smoke exposure, in combination with monthly RSV infections, on pulmonary inflammation, protease production and remodeling in mice. RSV exposures enhanced the influx of macrophages, neutrophils and lymphocytes to the airways of cigarette smoke exposed C57BL/6J mice. This infiltration of cells was most pronounced around the vasculature and bronchial airways. By itself, RSV caused significant airspace enlargement and fibrosis in mice and these effects were accentuated with concomitant smoke exposure. Combined stimulation with both smoke and RSV synergistically induced cytokine (IL-1α, IL-17, IFN-γ, KC, IL-13, CXCL9, RANTES, MIF and GM-CSF) and protease (MMP-2, -8, -12, -13, -16 and cathepsins E, S, W and Z) expression. In addition, RSV exposure caused marked apoptosis within the airways of infected mice, which was augmented by cigarette smoke exposure. RSV and smoke exposure also reduced protein phosphatase 2A (PP2A) and protein tyrosine phosphates (PTP1B) expression and activity. This is significant as these phosphatases counter smoke-induced inflammation and protease expression. Together, these findings show for the first time that recurrent RSV infection markedly enhances inflammation, apoptosis and tissue destruction in smoke-exposed mice. Indeed, these results indicate that preventing RSV transmission and infection has the potential to significantly impact on COPD severity and progression. PMID:24587397

  8. Dietary energy restriction reduces high-fat diet-enhanced metastasis of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Obesity is a risk factor for cancer. The objective of this study was to determine the effects of dietary energy restriction on high-fat diet-enhanced spontaneous metastasis of Lewis lung carcinoma (LLC) in mice. Male C57BL/6 mice were fed an AIN93G diet or a high-fat diet (16% or 45% of energy fro...

  9. Chronic caffeine treatment enhances the resilience to social defeat stress in mice.

    PubMed

    Yin, Yong-Qin; Zhang, Chun; Wang, Jian-Xin; Hou, Jia; Yang, Xu; Qin, Jing

    2015-02-01

    Strong evidence has shown that caffeine exerts antidepressant-like effects in chronic stress situations by increasing dopamine levels. However, whether caffeine mediates the dopaminergic system and interferes with the resilience to social defeat stress in mice is unknown. The aim of this study is to investigate the role of caffeine in the behavioral responses to social defeat stress and the possible regulatory role of the dopaminergic system. Mice experienced chronic social defeat stress for 10 days. Caffeine was administered intraperitoneally before, during and after social defeat stress. The time spent in interaction zone, social interaction ratio and sucrose preference test was used to measure the social avoidance and anhedonia in mice. The results showed that chronic pretreatment with caffeine for 14 days and for 10 days during stress reversed the avoidance of social behavior and anhedonia induced by social defeat stress in mice, suggesting the enhancement of the resilience to social defeat stress induced by caffeine. However, neither the treatment with caffeine only during the social defeat stress for 10 days nor the treatment with acute caffeine after defeat stress altered the resilience to stress. Furthermore, chronic caffeine treatment did not affect the normal locomotor activity and the desperate behavior in naïve mice. Moreover, the antagonism of dopamine D1 receptor and not D2 receptor reversed the effect of caffeine on the social avoidance and depressive-like behavior. Finally, pretreatment with higher doses of caffeine did not affect the behavioral response to social defeat stress. Taken together, our findings provide new insight into the effects of caffeine on social avoidance and anhedonia in mice. In addition, our results illustrated the value of measuring changes in depressive-like behavior before and after social defeat stress to determine the potential treatment of caffeine on depression through the regulation of dopaminergic system. PMID

  10. Healthy Pokes: After-School Education and Mentoring to Enhance Child Health

    ERIC Educational Resources Information Center

    Gaudreault, Karen Lux; Shiver, Victoria; Kinder, Christopher; Guseman, Emily

    2016-01-01

    Childhood obesity and related health consequences are currently considered some of the most important health challenges in our nation today. Early intervention programs designed to teach healthy lifestyle choices and behaviors are imperative to addressing this issue. Evidence suggests that intervention programs offered at an earlier age may reduce…

  11. Sustained attention in traumatic brain injury (TBI) and healthy controls: enhanced sensitivity with dual-task load.

    PubMed

    Dockree, Paul M; Bellgrove, Mark A; O'Keeffe, Fiadhnait M; Moloney, Pauline; Aimola, Lina; Carton, Simone; Robertson, Ian H

    2006-01-01

    Poor sustained attention or alertness is a common consequence of traumatic brain injury (TBI) and has a considerable impact on the recovery and adjustment of TBI patients. Here, we describe the development of a sensitive laboratory task in healthy subjects (Experiment 1) and its enhanced sensitivity to sustained attention errors in TBI patients (Experiment 2). The task involves withholding a key press to an infrequent no-go target embedded within a predictable sequence of numbers (primary goal) and detecting grey-coloured targets within the sequence (secondary goal). In Experiment 1, we report that neurologically healthy subjects are more likely to experience a lapse of attention and neglect the primary task goal, despite ceiling performance on the secondary task. Further, attentional lapses on the task correlated with everyday attentional failures and variability of response time. In Experiment 2, the task discriminates between TBI patients and controls with a large effect size. The dual-task yields more errors in both groups than a simple task involving only the primary goal that is commonly used to detect sustained attention deficits in neurologically impaired groups. TBI patients' errors also correlated with everyday cognitive failures and variability of response time. This was not the case in the simple version of the task. We conclude that the dual-task demand associated with this task enhances its sensitivity as a measure of sustained attention in TBI patients and neurologically healthy controls that relates to everyday slips of attention.

  12. 2-deoxy-D-glucose-induced metabolic stress enhances resistance to Listeria monocytogenes infection in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Fuchs, B. B.; Sonnenfeld, G.

    1998-01-01

    Exposure to different forms of psychological and physiological stress can elicit a host stress response, which alters normal parameters of neuroendocrine homeostasis. The present study evaluated the influence of the metabolic stressor 2-deoxy-D-glucose (2-DG; a glucose analog, which when administered to rodents, induces acute periods of metabolic stress) on the capacity of mice to resist infection with the facultative intracellular bacterial pathogen Listeria monocytogenes. Female BDF1 mice were injected with 2-DG (500 mg/kg b. wt.) once every 48 h prior to, concurrent with, or after the onset of a sublethal dose of virulent L. monocytogenes. Kinetics of bacterial growth in mice were not altered if 2-DG was applied concurrently or after the start of the infection. In contrast, mice exposed to 2-DG prior to infection demonstrated an enhanced resistance to the listeria challenge. The enhanced bacterial clearance in vivo could not be explained by 2-DG exerting a toxic effect on the listeria, based on the results of two experiments. First, 2-DG did not inhibit listeria replication in trypticase soy broth. Second, replication of L. monocytogenes was not inhibited in bone marrow-derived macrophage cultures exposed to 2-DG. Production of neopterin and lysozyme, indicators of macrophage activation, were enhanced following exposure to 2-DG, which correlated with the increased resistance to L. monocytogenes. These results support the contention that the host response to 2-DG-induced metabolic stress can influence the capacity of the immune system to resist infection by certain classes of microbial pathogens.

  13. Engineered silica nanoparticles act as adjuvants to enhance allergic airway disease in mice

    PubMed Central

    2013-01-01

    Background With the increase in production and use of engineered nanoparticles (NP; ≤ 100 nm), safety concerns have risen about the potential health effects of occupational or environmental NP exposure. Results of animal toxicology studies suggest that inhalation of NP may cause pulmonary injury with subsequent acute or chronic inflammation. People with chronic respiratory diseases like asthma or allergic rhinitis may be even more susceptible to toxic effects of inhaled NP. Few studies, however, have investigated adverse effects of inhaled NP that may enhance the development of allergic airway disease. Methods We investigated the potential of polyethylene glycol coated amorphous silica NP (SNP; 90 nm diameter) to promote allergic airway disease when co-exposed during sensitization with an allergen. BALB/c mice were sensitized by intranasal instillation with 0.02% ovalbumin (OVA; allergen) or saline (control), and co-exposed to 0, 10, 100, or 400 μg of SNP. OVA-sensitized mice were then challenged intranasally with 0.5% OVA 14 and 15 days after sensitization, and all animals were sacrificed a day after the last OVA challenge. Blood and bronchoalveolar lavage fluid (BALF) were collected, and pulmonary tissue was processed for histopathology and biochemical and molecular analyses. Results Co-exposure to SNP during OVA sensitization caused a dose-dependent enhancement of allergic airway disease upon challenge with OVA alone. This adjuvant-like effect was manifested by significantly greater OVA-specific serum IgE, airway eosinophil infiltration, mucous cell metaplasia, and Th2 and Th17 cytokine gene and protein expression, as compared to mice that were sensitized to OVA without SNP. In saline controls, SNP exposure did cause a moderate increase in airway neutrophils at the highest doses. Conclusions These results suggest that airway exposure to engineered SNP could enhance allergen sensitization and foster greater manifestation of allergic airway disease upon

  14. PMC-12, a traditional herbal medicine, enhances learning memory and hippocampal neurogenesis in mice.

    PubMed

    Park, Hee Ra; Kim, Ju Yeon; Lee, Yujeong; Chun, Hye Jeong; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae; Kim, Cheol Min; Lee, Jaewon

    2016-03-23

    The beneficial effects of traditional Korean medicine are recognized during the treatment of neurodegenerative conditions, such as, Alzheimer's disease and neurocognitive dysfunction, and recently, hippocampal neurogenesis has been reported to be associated with memory function. In this study, the authors investigated the beneficial effects of polygonum multiflorum Thunberg complex composition-12 (PMC-12), which is a mixture of four medicinal herbs, that is, Polygonum multiflorum, Polygala tenuifolia, Rehmannia glutinosa, and Acorus gramineus, on hippocampal neurogenesis, learning, and memory in mice. PMC-12 was orally administered to male C57BL/6 mice (5 weeks old) at 100 or 500 mg/kg daily for 2 weeks. PMC-12 administration significantly was found to increase the proliferation of neural progenitor cells and the survival of newly-generated cells in the dentate gyrus. In the Morris water maze test, the latency times of PMC-12 treated mice (100 or 500 mg/kg) were shorter than those of vehicle-control mice. In addition, PMC-12 increased the levels of BDNF, p-CREB, and synaptophysin, which are known to be associated with neural plasticity and hippocampal neurogenesis. These findings suggest PMC-12 enhances hippocampal neurogenesis and neurocognitive function and imply that PMC-12 ameliorates memory impairment and cognitive deficits. PMID:26917101

  15. Complement-enhanced immunity to infection with Neisseria gonorrhoeae in mice.

    PubMed

    Arko, R J; Wong, K H; Steurer, F J; Schalla, W O

    1979-05-01

    Subcutaneous chambers were implanted in mice, injected with Neisseria gonorrhoeae, and supplemented with complement as a model for studying the immunogenicity and strain diversity of N. gonorrhoeae. Immunotypic resistance to N. gonorrhoeae in immunized mice was significantly (P less than 0.01) increased by injection of exogenous guinea pig complement into the host before challenge with gonococci. By using this model to test gonococcal isolates from various geographical areas, two highly immunogenic but immunotypically different gonococcal strains were identified. The piliated cells of these strains induced both complement-enhanced immunity and a degree of exogenous complement-independent immunity. The immunity in mice not treated with complement developed more slowly, was less effective, and waned earlier than that which was complement-dependent. Pretreatment with complement, although highly effective in preventing infection in immunized mice, was much less beneficial in terminating already established infections, even though bactericidal antibodies were present at the time of complement treatment. The mouse chamber model in which both complement-mediated and complement-independent mechanisms of protection can be evaluated may provide an additional tool for elucidating the immunology of gonococcal or other microbial infections.

  16. MiR-155 Enhances Insulin Sensitivity by Coordinated Regulation of Multiple Genes in Mice

    PubMed Central

    Lin, Taoyan; Lin, Xia; Chen, Li; Zeng, Hui; Han, Yanjiang; Wu, Lihong; Huang, Shun; Wang, Meng; Huang, Shenhao; Xie, Raoying; Liang, Liqi; Liu, Yu; Liu, Ruiyu; Zhang, Tingting; Li, Jing; Wang, Shengchun; Sun, Penghui; Huang, Wenhua; Yao, Kaitai; Xu, Kang; Du, Tao; Xiao, Dong

    2016-01-01

    miR-155 plays critical roles in numerous physiological and pathological processes, however, its function in the regulation of blood glucose homeostasis and insulin sensitivity and underlying mechanisms remain unknown. Here, we reveal that miR-155 levels are downregulated in serum from type 2 diabetes (T2D) patients, suggesting that miR-155 might be involved in blood glucose control and diabetes. Gain-of-function and loss-of-function studies in mice demonstrate that miR-155 has no effects on the pancreatic β-cell proliferation and function. Global transgenic overexpression of miR-155 in mice leads to hypoglycaemia, improved glucose tolerance and insulin sensitivity. Conversely, miR-155 deficiency in mice causes hyperglycemia, impaired glucose tolerance and insulin resistance. In addition, consistent with a positive regulatory role of miR-155 in glucose metabolism, miR-155 positively modulates glucose uptake in all cell types examined, while mice overexpressing miR-155 transgene show enhanced glycolysis, and insulin-stimulated AKT and IRS-1 phosphorylation in liver, adipose tissue or skeletal muscle. Furthermore, we reveal these aforementioned phenomena occur, at least partially, through miR-155-mediated repression of important negative regulators (i.e. C/EBPβ, HDAC4 and SOCS1) of insulin signaling. Taken together, these findings demonstrate, for the first time, that miR-155 is a positive regulator of insulin sensitivity with potential applications for diabetes treatment. PMID:27711113

  17. PMC-12, a traditional herbal medicine, enhances learning memory and hippocampal neurogenesis in mice.

    PubMed

    Park, Hee Ra; Kim, Ju Yeon; Lee, Yujeong; Chun, Hye Jeong; Choi, Young Whan; Shin, Hwa Kyoung; Choi, Byung Tae; Kim, Cheol Min; Lee, Jaewon

    2016-03-23

    The beneficial effects of traditional Korean medicine are recognized during the treatment of neurodegenerative conditions, such as, Alzheimer's disease and neurocognitive dysfunction, and recently, hippocampal neurogenesis has been reported to be associated with memory function. In this study, the authors investigated the beneficial effects of polygonum multiflorum Thunberg complex composition-12 (PMC-12), which is a mixture of four medicinal herbs, that is, Polygonum multiflorum, Polygala tenuifolia, Rehmannia glutinosa, and Acorus gramineus, on hippocampal neurogenesis, learning, and memory in mice. PMC-12 was orally administered to male C57BL/6 mice (5 weeks old) at 100 or 500 mg/kg daily for 2 weeks. PMC-12 administration significantly was found to increase the proliferation of neural progenitor cells and the survival of newly-generated cells in the dentate gyrus. In the Morris water maze test, the latency times of PMC-12 treated mice (100 or 500 mg/kg) were shorter than those of vehicle-control mice. In addition, PMC-12 increased the levels of BDNF, p-CREB, and synaptophysin, which are known to be associated with neural plasticity and hippocampal neurogenesis. These findings suggest PMC-12 enhances hippocampal neurogenesis and neurocognitive function and imply that PMC-12 ameliorates memory impairment and cognitive deficits.

  18. Crude dietary polysaccharide fraction isolated from jackfruit enhances immune system activity in mice.

    PubMed

    Tan, Yin-Feng; Li, Hai-Long; Lai, Wei-Yong; Zhang, Jun-Qing

    2013-07-01

    Crude polysaccharides (PSs) were isolated from the fruit pulp of jackfruit, and their chemical composition determined and evaluated for an immune regulatory activity in mice. The PSs were isolated from water extracts of jackfruit pulp (JFP) using the ethanol precipitation method. The resulting precipitates were further purified by dialysis and protein depletion by the Sevage method. The phenol-sulfuric method was used to determine the content of the PSs. The composition of PSs was determined by the Sephadex-G200 column chromatography and high-performance liquid chromatography methods. The thymus index and macrophage phagocytic function methods in mice were used to evaluate the immune regulatory activity of JFP-PSs. The JFP-PSs content in jackfruit was about 21% (w/w) and the yield of crude PSs was 3.91%. The single molecular mass weight PS was the main constituent of JFP-PSs. The major monosaccharide residues were rhamnose, glucose, galactose, and arabinose. The JFP-PSs enhanced the thymus weight index and the phagocytic rate after 30 days of subchronic p.o. administration to mice at 4.5 mg/kg. The JFP contains single molecular PS and JFP-PS has immune-stimulating activities in mice. These data suggest that at least some of the traditional uses of JFP can be ascribed to its immunomodulatory effects.

  19. Cocaine supersensitivity and enhanced motivation for reward in mice lacking dopamine D2 autoreceptors

    PubMed Central

    Bello, Estefanía P; Mateo, Yolanda; Gelman, Diego M; Noaín, Daniela; Shin, Jung H; Low, Malcolm J; Alvarez, Verónica A; Lovinger, David M; Rubinstein, Marcelo

    2011-01-01

    Dopamine (DA) D2 receptors expressed in DA neurons (D2 autoreceptors) exert a negative feedback regulation that reduces DA neuron firing, DA synthesis and DA release. As D2 receptors are mostly expressed in postsynaptic neurons, pharmacological and genetic approaches have been unable to definitively address the in vivo contribution of D2 autoreceptors to DA-mediated behaviors. We found that midbrain DA neurons from mice deficient in D2 autoreceptors (Drd2loxP/loxP; Dat+/IRES-cre, referred to as autoDrd2KO mice) lacked DA-mediated somatodendritic synaptic responses and inhibition of DA release. AutoDrd2KO mice displayed elevated DA synthesis and release, hyperlocomotion and supersensitivity to the psychomotor effects of cocaine. The mice also exhibited increased place preference for cocaine and enhanced motivation for food reward. Our results highlight the importance of D2 autoreceptors in the regulation of DA neurotransmission and demonstrate that D2 autoreceptors are important for normal motor function, food-seeking behavior, and sensitivity to the locomotor and rewarding properties of cocaine. PMID:21743470

  20. 16Oxygen irradiation enhances cued fear memory in B6D2F1 mice

    NASA Astrophysics Data System (ADS)

    Raber, Jacob; Marzulla, Tessa; Kronenberg, Amy; Turker, Mitchell S.

    2015-11-01

    The space radiation environment includes energetic charged particles that may impact cognitive performance. We assessed the effects of 16O ion irradiation on cognitive performance of C57BL/6J × DBA/2J F1 (B6D2F1) mice at OHSU (Portland, OR) one month following irradiation at Brookhaven National Laboratory (BNL, Upton, NY). Hippocampus-dependent contextual fear memory and hippocampus-independent cued fear memory of B6D2F1 mice were tested. 16O ion exposure enhanced cued fear memory. This effect showed a bell-shaped dose response curve. Cued fear memory was significantly stronger in mice irradiated with 16O ions at a dose of 0.4 or 0.8 Gy than in sham-irradiated mice or following irradiation at 1.6 Gy. In contrast to cued fear memory, contextual fear memory was not affected following 16O ion irradiation at the doses used in this study. These data indicate that the amygdala might be particularly susceptible to effects of 16O ion exposure.

  1. Crude dietary polysaccharide fraction isolated from jackfruit enhances immune system activity in mice.

    PubMed

    Tan, Yin-Feng; Li, Hai-Long; Lai, Wei-Yong; Zhang, Jun-Qing

    2013-07-01

    Crude polysaccharides (PSs) were isolated from the fruit pulp of jackfruit, and their chemical composition determined and evaluated for an immune regulatory activity in mice. The PSs were isolated from water extracts of jackfruit pulp (JFP) using the ethanol precipitation method. The resulting precipitates were further purified by dialysis and protein depletion by the Sevage method. The phenol-sulfuric method was used to determine the content of the PSs. The composition of PSs was determined by the Sephadex-G200 column chromatography and high-performance liquid chromatography methods. The thymus index and macrophage phagocytic function methods in mice were used to evaluate the immune regulatory activity of JFP-PSs. The JFP-PSs content in jackfruit was about 21% (w/w) and the yield of crude PSs was 3.91%. The single molecular mass weight PS was the main constituent of JFP-PSs. The major monosaccharide residues were rhamnose, glucose, galactose, and arabinose. The JFP-PSs enhanced the thymus weight index and the phagocytic rate after 30 days of subchronic p.o. administration to mice at 4.5 mg/kg. The JFP contains single molecular PS and JFP-PS has immune-stimulating activities in mice. These data suggest that at least some of the traditional uses of JFP can be ascribed to its immunomodulatory effects. PMID:23875906

  2. Promoting healthy lifestyles with aging: development and validation of the Health Enhancement Lifestyle Profile (HELP) using the Rasch measurement model.

    PubMed

    Hwang, Jengliang Eric

    2010-01-01

    This study was conducted to develop and validate the Health Enhancement Lifestyle Profile (HELP), a self-report measure for examining various aspects of health-related lifestyle in older adults. Data derived from 253 community-dwelling older adults were analyzed through the Rasch measurement model. Unidimensionality and data-model fit of HELP were largely supported through the analyses of principal components of residuals, fit statistics, local dependency, and differential item functioning. The item hierarchy formed through logits provided an expected pattern of healthy lifestyle behaviors. Acceptable to good person separation and reliability statistics supported the clinical applicability and consistency of the HELP scores. Finally, analysis of the rating scale structure confirmed the functioning of the 0- to 5-point rating scale used. HELP can assist in monitoring lifestyle risk factors and measuring the outcome of services aimed at promoting healthy lifestyles among older adults.

  3. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice

    PubMed Central

    Dziarski, Roman; Dowd, Scot E.; Gupta, Dipika

    2016-01-01

    Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species. PMID

  4. Pglyrp-Regulated Gut Microflora Prevotella falsenii, Parabacteroides distasonis and Bacteroides eggerthii Enhance and Alistipes finegoldii Attenuates Colitis in Mice.

    PubMed

    Dziarski, Roman; Park, Shin Yong; Kashyap, Des Raj; Dowd, Scot E; Gupta, Dipika

    2016-01-01

    Dysbiosis is a hallmark of inflammatory bowel disease (IBD), but it is unclear which specific intestinal bacteria predispose to and which protect from IBD and how they are regulated. Peptidoglycan recognition proteins (Pglyrps) are antibacterial, participate in maintaining intestinal microflora, and modulate inflammatory responses. Mice deficient in any one of the four Pglyrp genes are more sensitive to dextran sulfate sodium (DSS)-induced colitis, and stools from Pglyrp-deficient mice transferred to wild type (WT) germ-free mice predispose them to much more severe colitis than stools from WT mice. However, the identities of these Pglyrp-regulated bacteria that predispose Pglyrp-deficient mice to colitis or protect WT mice from colitis are not known. Here we identified significant changes in β-diversity of stool bacteria in Pglyrp-deficient mice compared with WT mice. The most consistent changes in microbiome in all Pglyrp-deficient mice were in Bacteroidales, from which we selected four species, two with increased abundance (Prevotella falsenii and Parabacteroides distasonis) and two with decreased abundance (Bacteroides eggerthii and Alistipes finegoldii). We then gavaged WT mice with stock type strains of these species to test the hypothesis that they predispose to or protect from DSS-induced colitis. P. falsenii, P. distasonis, and B. eggerthii all enhanced DSS-induced colitis in both WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora. By contrast, A. finegoldii (which is the most abundant species in WT mice) attenuated DSS-induced colitis both in WT mice with otherwise undisturbed intestinal microflora and in WT mice with antibiotic-depleted intestinal microflora, similar to the colitis protective effect of the entire normal microflora. These results identify P. falsenii, P. distasonis, and B. eggerthii as colitis-promoting species and A. finegoldii as colitis-protective species.

  5. Recipient leukocyte infusion enhances the local and systemic graft-versus-neuroblastoma effect of allogeneic bone marrow transplantation in mice.

    PubMed

    Willems, Leen; Fevery, Sabien; Sprangers, Ben; Rutgeerts, Omer; Lenaerts, Caroline; Ibrahimi, Abdelilah; Gijsbers, Rik; Van Gool, Stefaan; Waer, Mark; Billiau, An D

    2013-11-01

    Allogeneic hematopoietic stem cell transplantation and donor leukocyte infusion (DLI) may hold potential as a novel form of immunotherapy for high-risk neuroblastoma. DLI, however, carries the risk of graft-versus-host disease (GvHD). Recipient leukocyte infusion (RLI) induces graft-versus-leukemia responses without GvHD in mice and is currently being explored clinically. Here, we demonstrate that both DLI and RLI, when given to mixed C57BL/6→A/J radiation chimeras carrying subcutaneous Neuro2A neuroblastoma implants, can slow the local growth of such tumors. DLI provoked full donor chimerism and GvHD; RLI produced graft rejection but left mice healthy. Flow cytometric studies showed that the chimerism of intratumoral leukocytes paralleled the systemic chimerism. This was associated with increased CD8/CD4 ratios, CD8+ T-cell IFN-γ expression and NK-cell Granzyme B expression within the tumor, following both DLI and RLI. The clinically safe anti-tumor effect of RLI was further enhanced by adoptively transferred naïve recipient-type NK cells. In models of intravenous Neuro2A tumor challenge, allogeneic chimeras showed superior overall survival over syngeneic chimeras. Bioluminescence imaging in allogeneic chimeras challenged with luciferase-transduced Neuro2A cells showed both DLI and RLI to prolong metastasis-free survival. This is the first experimental evidence that RLI can safely produce a local and systemic anti-tumor effect against a solid tumor. Our data indicate that RLI may provide combined T-cell and NK-cell reactivity effectively targeting Neuro2A neuroblastoma.

  6. A metabolomic study of the PPARδ agonist GW501516 for enhancing running endurance in Kunming mice

    PubMed Central

    Chen, Wei; Gao, Rong; Xie, Xinni; Zheng, Zhibing; Li, Haijing; Li, Song; Dong, Fangting; Wang, Lili

    2015-01-01

    Exercise can increase peroxisome proliferator-activated receptor-δ (PPARδ) expression in skeletal muscle. PPARδ regulates muscle metabolism and reprograms muscle fibre types to enhance running endurance. This study utilized metabolomic profiling to examine the effects of GW501516, a PPARδ agonist, on running endurance in mice. While training alone increased the exhaustive running performance, GW501516 treatment enhanced running endurance and the proportion of succinate dehydrogenase (SDH)-positive muscle fibres in both trained and untrained mice. Furthermore, increased levels of intermediate metabolites and key enzymes in fatty acid oxidation pathways were observed following training and/or treatment. Training alone increased serum inositol, glucogenic amino acids, and branch chain amino acids. However, GW501516 increased serum galactose and β-hydroxybutyrate, independent of training. Additionally, GW501516 alone raised serum unsaturated fatty acid levels, especially polyunsaturated fatty acids, but levels increased even more when combined with training. These findings suggest that mechanisms behind enhanced running capacity are not identical for GW501516 and training. Training increases energy availability by promoting catabolism of proteins, and gluconeogenesis, whereas GW501516 enhances specific consumption of fatty acids and reducing glucose utilization. PMID:25943561

  7. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice.

    PubMed

    Cui, Hai-Yan; Wang, Chang-Lu; Wang, Yu-Rong; Li, Zhen-Jing; Chen, Mian-Hua; Li, Feng-Juan; Sun, Yan-Ping

    2015-10-01

    In the present study, the effects of Pleurotus nebrodensis polysaccharide (PN-S) on the immune functions of immunosuppressed mice were determined. The immunosuppressed mouse model was established by treating the mice with cyclophosphamide (40 mg/kg/2d, CY) through intraperitoneal injection. The results showed that PN-S administration significantly reversed the CY-induced weight loss, increased the thymic and splenic indices, and promoted proliferation of T lymphocyte, B lymphocyte, and macrophages. PN-S also enhanced the activity of natural killer cells and increased the immunoglobulin M (IgM) and immunoglobulin G (IgG) levels in the serum. In addition, PN-S treatment significantly increased the phagocytic activity of mouse peritoneal macrophages. PN-S also increased the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), and nitric oxide (NOS) in splenocytes. qRT-PCR results also indicated that PN-S increased the mRNA expression of IL-6, TNF-α, INF-γ, and nitric oxide synthase (iNOS) in the splenocytes. These results suggest that PN-S treatment enhances the immune function of immunosuppressed mice. This study may provide a basis for the application of this fungus in adjacent immunopotentiating therapy against cancer and in the treatment of chemotherapy-induced immunosuppression.

  8. C/EBPε mediates nicotinamide-enhanced clearance of Staphylococcus aureus in mice.

    PubMed

    Kyme, Pierre; Thoennissen, Nils H; Tseng, Ching Wen; Thoennissen, Gabriela B; Wolf, Andrea J; Shimada, Kenichi; Krug, Utz O; Lee, Kunik; Müller-Tidow, Carsten; Berdel, Wolfgang E; Hardy, W David; Gombart, Adrian F; Koeffler, H Phillip; Liu, George Y

    2012-09-01

    The myeloid-specific transcription factor, CCAAT/enhancer-binding protein ε (C/EBPε) is a critical mediator of myelopoiesis. Mutation of this gene is responsible for neutrophil-specific granule deficiency in humans, a condition that confers susceptibility to Staphylococcus aureus infection. We found that C/EBPε-deficient mice are severely affected by infection with S. aureus, and C/EBPε deficiency in neutrophils contributes to the infectious phenotype. Conversely, exposure to the epigenetic modulator nicotinamide (vitamin B3) increased expression of C/EBPε in WT myeloid cells. Further, nicotinamide increased the activity of C/EBPε and select downstream antimicrobial targets, particularly in neutrophils. In a systemic murine infection model as well as in murine and human peripheral blood, nicotinamide enhanced killing of S. aureus by up to 1,000 fold but had no effect when administered to either C/EBPε-deficient mice or mice depleted of neutrophils. Nicotinamide was efficacious in both prophylactic and therapeutic settings. Our findings suggest that C/EBPε is an important target to boost killing of bacteria by the innate immune system.

  9. Life Extension Factor Klotho Prevents Mortality and Enhances Cognition in hAPP Transgenic Mice

    PubMed Central

    Zhu, Lei; Sanchez, Pascal E.; Worden, Kurtresha; Broestl, Lauren; Johnson, Erik; Ho, Kaitlyn; Yu, Gui-Qiu; Kim, Daniel; Betourne, Alexander; Kuro-o, Makoto; Masliah, Eliezer; Abraham, Carmela R.

    2015-01-01

    Aging is the principal demographic risk factor for Alzheimer disease (AD), the most common neurodegenerative disorder. Klotho is a key modulator of the aging process and, when overexpressed, extends mammalian lifespan, increases synaptic plasticity, and enhances cognition. Whether klotho can counteract deficits related to neurodegenerative diseases, such as AD, is unknown. Here we show that elevating klotho expression decreases premature mortality and network dysfunction in human amyloid precursor protein (hAPP) transgenic mice, which simulate key aspects of AD. Increasing klotho levels prevented depletion of NMDA receptor (NMDAR) subunits in the hippocampus and enhanced spatial learning and memory in hAPP mice. Klotho elevation in hAPP mice increased the abundance of the GluN2B subunit of NMDAR in postsynaptic densities and NMDAR-dependent long-term potentiation, which is critical for learning and memory. Thus, increasing wild-type klotho levels or activities improves synaptic and cognitive functions, and may be of therapeutic benefit in AD and other cognitive disorders. PMID:25673831

  10. Enhanced resistance against Listeria monocytogenes at an early phase of primary infection in pregnant mice: activation of macrophages during pregnancy.

    PubMed Central

    Watanabe, Y; Mitsuyama, M; Sano, M; Nakano, H; Nomoto, K

    1986-01-01

    We investigated the pregnancy-induced changes in macrophage activity which are important in the expression of host defense against infections. Several macrophage functions were examined by using Listeria monocytogenes. In pregnant mice, prolonged survival and enhanced in vivo elimination of bacteria were observed in the early phase of primary infection. Functions of peritoneal macrophages, including in vitro phagocytosis intracellular killing, glucose consumption, generation of superoxide anion, and intracellular beta-glucuronidase activity were shown to be enhanced in pregnant mice. These findings indicate that pregnancy enhances macrophage functions qualitatively. Possible mechanisms for this enhancement and the significance of macrophage activation for pregnant hosts are discussed. PMID:3011673

  11. Optogenetic activation of serotonergic neurons enhances anxiety-like behaviour in mice.

    PubMed

    Ohmura, Yu; Tanaka, Kenji F; Tsunematsu, Tomomi; Yamanaka, Akihiro; Yoshioka, Mitsuhiro

    2014-11-01

    Whether increased serotonin (5-HT) release in the forebrain attenuates or enhances anxiety has been controversial for over 25 yr. Although there is considerable indirect evidence, there is no direct evidence that indicates a relationship between acute 5-HT release and anxiety. In particular, there is no known method that can reversibly, selectively, and temporally control serotonergic activity. To address this issue, we generated transgenic animals to manipulate the firing rates of central 5-HT neurons by optogenetic methods. Activation of serotonergic neurons in the median raphe nucleus was correlated to enhanced anxiety-like behaviour in mice, whereas activation of serotonergic neurons in the dorsal raphe nucleus had no effect on anxiety-like behaviour. These results indicate that an acute increase in 5-HT release from the median raphe nucleus enhances anxiety.

  12. Enhancement of Neuromuscular Activity by Natural Specimens and Cultured Mycelia of Cordyceps sinensis in Mice.

    PubMed

    Singh, K P; Meena, H S; Negi, P S

    2014-09-01

    The present study was aimed to evaluate the effect of natural specimen and laboratory cultured mycelia of Cordyceps sinensis on neuromuscular activity in mice. The powder of natural specimen and laboratory cultured Cordyceps sinensis was orally administered at the dose rate of 100, 300 and 500 mg/kg for 30 days. Natural specimen and in vitro propagated Cordyceps sinensis showed significant (P<0.05) enhancement in neuromuscular endurance and antidepressant activity at 300 and 500 mg/kg as compared to the control group. However, the fungus did not proved to be as effective as fluoxetine in exhibiting antidepressant action. Muscular endurance was determined on a Rota rod apparatus while antidepressant (mood elevating) activity was measured on a photoactometer in Swiss albino mice. The effects produced by both natural specimens and laboratory cultured Cordyceps sinensis were comparable and showed almost equal potency.

  13. Recombinant porcine lactoferrin expressed in the milk of transgenic mice enhances offspring growth performance.

    PubMed

    Wu, Shinn-Chih; Chen, Hsiao-Ling; Yen, Chih-Ching; Kuo, Meng-Fu; Yang, Tien-Shuh; Wang, Shih-Rong; Weng, Chung-Nan; Chen, Chuan-Mu; Cheng, Winston T K

    2007-06-13

    The European Commission has proposed a permanent ban on the use of antibiotics as an ingredient in animal feed to promote growth. Lactoferrin is a globular multifunctional protein that has been shown to play a role in iron absorption and to have antimicrobial and anti-inflammatory activities. Therefore, lactoferrin may serve as a nontherapeutic alternative to antibiotics in livestock husbandry. As a pilot study toward this goal, transgenic mice have been generated harboring a porcine lactoferrin (pLF) gene driven by the mammary gland-specific promoter of the bovine alpha-lactalbumin (alphaLA) gene. The alphaLA-pLF hybrid gene was confirmed to have been successfully integrated and transmitted stably through the germ-line in 9 (5 females and 4 males) of 14 transgenic founders. In the female progenies of six lines analyzed, the transgene copy numbers ranged from 1 to 20 with 1-4 integration sites. Significant levels of pLF protein in milk ranging from 40 to 106 microg/mL with physical characteristics similar to those of native pLF in sow's milk were achieved in three of the transgenic lines obtained. Tissue- and stage-specific pLF expressions were restricted to the mammary gland of the transgenic female mice during lactation. It was further demonstrated that the growth performance of animal pups is enhanced by directly feeding the genetically engineered milk containing enriched pLF protein in transgenic mice. Furthermore, this enhanced growth performance in suckling mice was proportional to the concentration of pLF present in milk. PMID:17489602

  14. Mitochondrial Genome Instability and ROS Enhance Intestinal Tumorigenesis in APCMin/+ Mice

    PubMed Central

    Woo, Dong Kyun; Green, Paula D.; Santos, Janine H.; D'Souza, Anthony D.; Walther, Zenta; Martin, W. David; Christian, Brooke E.; Chandel, Navdeep S.; Shadel, Gerald S.

    2012-01-01

    Alterations in mitochondrial oxidative phosphorylation have long been documented in tumors. Other types of mitochondrial dysfunction, including altered reactive oxygen species (ROS) production and apoptosis, also can contribute to tumorigenesis and cancer phenotypes. Furthermore, mutation and altered amounts of mitochondrial DNA (mtDNA) have been observed in cancer cells. However, how mtDNA instability per se contributes to cancer remains largely undetermined. Mitochondrial transcription factor A (TFAM) is required for expression and maintenance of mtDNA. Tfam heterozygous knock-out (Tfam+/−) mice show mild mtDNA depletion, but have no overt phenotypes. We show that Tfam+/− mouse cells and tissues not only possess less mtDNA but also increased oxidative mtDNA damage. Crossing Tfam+/− mice to the adenomatous polyposis coli multiple intestinal neoplasia (APCMin/+) mouse cancer model revealed that mtDNA instability increases tumor number and growth in the small intestine. This was not a result of enhancement of Wnt/β-catenin signaling, but rather appears to involve a propensity for increased mitochondrial ROS production. Direct involvement of mitochondrial ROS in intestinal tumorigenesis was shown by crossing APCMin/+ mice to those that have catalase targeted to mitochondria, which resulted in a significant reduction in tumorigenesis in the colon. Thus, mitochondrial genome instability and ROS enhance intestinal tumorigenesis and Tfam+/− mice are a relevant model to address the role of mtDNA instability in disease states in which mitochondrial dysfunction is implicated, such as cancer, neurodegeneration, and aging. PMID:22056359

  15. Role of oxidative stress on diesel-enhanced influenza infection in mice

    PubMed Central

    2010-01-01

    Numerous studies have shown that air pollutants, including diesel exhaust (DE), reduce host defenses, resulting in decreased resistance to respiratory infections. This study sought to determine if DE exposure could affect the severity of an ongoing influenza infection in mice, and examine if this could be modulated with antioxidants. BALB/c mice were treated by oropharyngeal aspiration with 50 plaque forming units of influenza A/HongKong/8/68 and immediately exposed to air or 0.5 mg/m3 DE (4 hrs/day, 14 days). Mice were necropsied on days 1, 4, 8 and 14 post-infection and lungs were assessed for virus titers, lung inflammation, immune cytokine expression and pulmonary responsiveness (PR) to inhaled methacholine. Exposure to DE during the course of infection caused an increase in viral titers at days 4 and 8 post-infection, which was associated with increased neutrophils and protein in the BAL, and an early increase in PR. Increased virus load was not caused by decreased interferon levels, since IFN-β levels were enhanced in these mice. Expression and production of IL-4 was significantly increased on day 1 and 4 p.i. while expression of the Th1 cytokines, IFN-γ and IL-12p40 was decreased. Treatment with the antioxidant N-acetylcysteine did not affect diesel-enhanced virus titers but blocked the DE-induced changes in cytokine profiles and lung inflammation. We conclude that exposure to DE during an influenza infection polarizes the local immune responses to an IL-4 dominated profile in association with increased viral disease, and some aspects of this effect can be reversed with antioxidants. PMID:21092162

  16. In vivo imaging of optic nerve fiber integrity by contrast-enhanced MRI in mice.

    PubMed

    Fischer, Stefanie; Engelmann, Christian; Herrmann, Karl-Heinz; Reichenbach, Jürgen R; Witte, Otto W; Weih, Falk; Kretz, Alexandra; Haenold, Ronny

    2014-01-01

    The rodent visual system encompasses retinal ganglion cells and their axons that form the optic nerve to enter thalamic and midbrain centers, and postsynaptic projections to the visual cortex. Based on its distinct anatomical structure and convenient accessibility, it has become the favored structure for studies on neuronal survival, axonal regeneration, and synaptic plasticity. Recent advancements in MR imaging have enabled the in vivo visualization of the retino-tectal part of this projection using manganese mediated contrast enhancement (MEMRI). Here, we present a MEMRI protocol for illustration of the visual projection in mice, by which resolutions of (200 µm)3 can be achieved using common 3 Tesla scanners. We demonstrate how intravitreal injection of a single dosage of 15 nmol MnCl2 leads to a saturated enhancement of the intact projection within 24 hr. With exception of the retina, changes in signal intensity are independent of coincided visual stimulation or physiological aging. We further apply this technique to longitudinally monitor axonal degeneration in response to acute optic nerve injury, a paradigm by which Mn2+ transport completely arrests at the lesion site. Conversely, active Mn2+ transport is quantitatively proportionate to the viability, number, and electrical activity of axon fibers. For such an analysis, we exemplify Mn2+ transport kinetics along the visual path in a transgenic mouse model (NF-κB p50KO) displaying spontaneous atrophy of sensory, including visual, projections. In these mice, MEMRI indicates reduced but not delayed Mn2+ transport as compared to wild type mice, thus revealing signs of structural and/or functional impairments by NF-κB mutations. In summary, MEMRI conveniently bridges in vivo assays and post mortem histology for the characterization of nerve fiber integrity and activity. It is highly useful for longitudinal studies on axonal degeneration and regeneration, and investigations of mutant mice for genuine or

  17. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice.

    PubMed

    Vemulapalli, Ramesh; Contreras, Andrea; Sanakkayala, Neelima; Sriranganathan, Nammalwar; Boyle, Stephen M; Schurig, Gerhardt G

    2004-09-01

    Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.

  18. Muscle-specific transgenic expression of porcine myostatin propeptide enhances muscle growth in mice.

    PubMed

    Wang, Kaiyun; Li, Zicong; Li, Yang; Zeng, Jinyong; He, Chang; Yang, Jinzeng; Liu, Dewu; Wu, Zhenfang

    2013-10-01

    Myostatin is a well-known negative regulator of skeletal muscle growth. Inhibition of myostatin activity results in increased muscle mass. Myostatin propeptide, as a myostatin antagonist, could be applied to promote meat production in livestock such as pigs. In this study, we generated a transgenic mouse model expressing porcine myostatin propeptide under the control of muscle-specific regulatory elements. The mean body weight of transgenic mice from a line expressing the highest level of porcine myostatin propeptide was increased by 5.4 % (P = 0.023) and 3.2 % (P = 0.031) in males and females, respectively, at 8 weeks of age. Weight of carcass, fore limb and hind limb was respectively increased by 6.0 % (P = 0.038), 9.0 % (P = 0.014), 8.7 % (P = 0.036) in transgenic male mice, compared to wild-type male controls at the age of 9 weeks. Similarly, carcass, fore limb and hind limb of transgenic female mice was 11.4 % (P = 0.002), 14.5 % (P = 0.006) and 14.5 % (P = 0.03) respectively heavier than that of wild-type female mice. The mean cross-section area of muscle fiber was increased by 17 % (P = 0.002) in transgenic mice, in comparison with wild-type controls. These results demonstrated that porcine myostatin propeptide is effective in enhancement of muscle growth. The present study provided useful information for future study on generation of transgenic pigs overexpressing porcine myostatin propeptide for improvement of muscle mass.

  19. Genetically Determined Susceptibility to Tuberculosis in Mice Causally Involves Accelerated and Enhanced Recruitment of Granulocytes

    PubMed Central

    Keller, Christine; Hoffmann, Reinhard; Lang, Roland; Brandau, Sven; Hermann, Corinna; Ehlers, Stefan

    2006-01-01

    Classical twin studies and recent linkage analyses of African populations have revealed a potential involvement of host genetic factors in susceptibility or resistance to Mycobacterium tuberculosis infection. In order to identify the candidate genes involved and test their causal implication, we capitalized on the mouse model of tuberculosis, since inbred mouse strains also differ substantially in their susceptibility to infection. Two susceptible and two resistant mouse strains were aerogenically infected with 1,000 CFU of M. tuberculosis, and the regulation of gene expression was examined by Affymetrix GeneChip U74A array with total lung RNA 2 and 4 weeks postinfection. Four weeks after infection, 96 genes, many of which are involved in inflammatory cell recruitment and activation, were regulated in common. One hundred seven genes were differentially regulated in susceptible mouse strains, whereas 43 genes were differentially expressed only in resistant mice. Data mining revealed a bias towards the expression of genes involved in granulocyte pathophysiology in susceptible mice, such as an upregulation of those for the neutrophil chemoattractant LIX (CXCL5), interleukin 17 receptor, phosphoinositide kinase 3 delta, or gamma interferon-inducible protein 10. Following M. tuberculosis challenge in both airways or peritoneum, granulocytes were recruited significantly faster and at higher numbers in susceptible than in resistant mice. When granulocytes were efficiently depleted by either of two regimens at the onset of infection, only susceptible mice survived aerosol challenge with M. tuberculosis significantly longer than control mice. We conclude that initially enhanced recruitment of granulocytes contributes to susceptibility to tuberculosis. PMID:16790804

  20. Artemisia extracts activate PPARγ, promote adipogenesis, and enhance insulin sensitivity in adipose tissue of obese mice

    PubMed Central

    Richard, Allison J.; Burris, Thomas P.; Sanchez-Infantes, David; Wang, Yongjun; Ribnicky, David M.; Stephens, Jacqueline M.

    2014-01-01

    Objective Studies have shown that the inability of adipose tissue to properly expand during the obese state or respond to insulin can lead to metabolic dysfunction. Artemisia is a diverse group of plants that has a history of medicinal use. This study examines the ability of ethanolic extracts of Artemisia scoparia (SCO) and Artemisia santolinifolia (SAN) to modulate adipocyte development in cultured adipocytes and white adipose tissue (WAT) function in vivo using a mouse model of diet-induced obesity. Research Design & Procedures Adipogenesis was assessed using Oil Red O staining and immunoblotting. A nuclear receptor specificity assay was used to examine the specificity of SCO- and SAN-induced PPARγ activation. C57BL/6J mice, fed a high-fat diet, were gavaged with saline, SCO, or SAN for 2 weeks. Whole-body insulin sensitivity was examined using insulin tolerance tests. WAT depots were assessed via immunoblotting for markers of insulin action and adipokine production. Results We established that SCO and SAN were highly specific activators of PPARγ and did not activate other nuclear receptors. After a one-week daily gavage, SCO- and SAN-treated mice had lower insulin-induced glucose disposal rates than control mice. At the end of the 2-week treatment period, SCO- and SAN-treated mice had enhanced insulin-responsive Akt serine-473 phosphorylation and significantly decreased MCP-1 levels in visceral WAT relative to control mice; these differences were depot specific. Moreover, plasma adiponectin levels were increased following SCO treatment. Conclusion Overall, these studies demonstrate that extracts from two Artemisia species can have metabolically favorable effects on adipocytes and WAT. PMID:24985103

  1. The memory-enhancing effect of erucic acid on scopolamine-induced cognitive impairment in mice.

    PubMed

    Kim, Eunji; Ko, Hae Ju; Jeon, Se Jin; Lee, Sunhee; Lee, Hyung Eun; Kim, Ha Neul; Woo, Eun-Rhan; Ryu, Jong Hoon

    2016-03-01

    Erucic acid is a monounsaturated omega-9 fatty acid isolated from the seed of Raphanus sativus L. that is known to normalize the accumulation of very long chain fatty acids in the brains of patients suffering from X-linked adrenoleukodystrophy. Here, we investigated whether erucic acid enhanced cognitive function or ameliorated scopolamine-induced memory impairment using the passive avoidance, Y-maze and Morris water maze tasks. Erucic acid (3mg/kg, p.o.) enhanced memory performance in normal naïve mice. In addition, erucic acid (3mg/kg, p.o.) ameliorated scopolamine-induced memory impairment, as assessed via the behavioral tasks. We then investigated the underlying mechanism of the memory-enhancing effect of erucic acid. The administration of erucic acid increased the phosphorylation levels of phosphatidylinositide 3-kinase (PI3K), protein kinase C zeta (PKCζ), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB) and additional protein kinase B (Akt) in the hippocampus. These results suggest that erucic acid has an ameliorative effect in mice with scopolamine-induced memory deficits and that the effect of erucic acid is partially due to the activation of PI3K-PKCζ-ERK-CREB signaling as well as an increase in phosphorylated Akt in the hippocampus. Therefore, erucic acid may be a novel therapeutic agent for diseases associated with cognitive deficits, such as Alzheimer's disease. PMID:26780350

  2. Healthy shiftwork, healthy shiftworks.

    PubMed

    Kogi, K

    2001-12-01

    Reflecting diversifying shift systems, extensive effort is put into managing shiftwork and reducing safety and health risks. It is accepted that shiftworkers are exposed to particular risks inherent in their irregular work schedules. This raises the question of how and to what extent we can ensure healthy work life for shiftworkers. In answering the question, we need to identify effective measures to improve both shiftworking conditions and the health of shiftworkers. Based on recent experiences in managing shiftwork, we note three directions of such measures: (a) comprehensive action to avoid risk-enhancing conditions based on general guidelines, (b) risk control as to workload, worksite ergonomics and risk reduction, and (c) support for flexible and restful working life. International standards are obviously relevant to these three aspects. Our own experiences in applying a set of ergonomic checkpoints to plant maintenance shiftwork demonstrate the usefulness of focusing on flexible work schedules and on multiple job-related factors such as night workload, ergonomic environment, resting conditions and training. There is a strong need for participatory planning and implementation of multi-area improvements as well as for relying on flexible schedules and autonomic teamwork. We may conclude that healthy shiftwork and healthy shiftworkers are compatible with each other only when certain conditions are met. In achieving this end, we need to combine (a) comprehensive measures to improve work schedules and job life, (b) strict risk management and (c) locally adjusted participatory steps for continual improvement.

  3. Citalopram Enhances Neurovascular Regeneration and Sensorimotor Functional Recovery after Ischemic Stroke in Mice

    PubMed Central

    Espinera, Alyssa R.; Ogle, Molly E.; Gu, Xiaohuan; Wei, Ling

    2013-01-01

    Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors (SSRIs) after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. Citalopram (10 mg/kg, i.p.) was injected 24 hrs after stroke and daily thereafter. To label proliferating cells, bromo-deoxyuridine was injected daily beginning 3 days after stroke. Immunohistochemical and functional assays were performed to elucidate citalopram-mediated cellular and sensorimotor changes after stroke. Citalopram treatment had no significant effect on infarct formation or edema 3 days after stroke; however, citalopram-treated mice had better functional recovery than saline-treated controls 3 and 14 days after stroke in the adhesive removal test. Increased expression of brain derived neurotrophic factor was detected in the peri-infarct region 7 days after stroke in citalopram-treated animals. The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone towards the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of

  4. Thromboxane prostanoid receptors enhance contractions, endothelin-1 and oxidative stress in microvessels from mice with CKD

    PubMed Central

    Wang, Cheng; Luo, Zaiming; Kohan, Donald; Wellstein, Anton; Jose, Pedro A.; Welch, William J.; Wilcox, Christopher S.; Wang, Dan

    2015-01-01

    Cardiovascular disease (CVD) is frequent in chronic kidney disease (CKD) and has been related to angiotensin II (ANG II), endothelin-1 (ET-1), thromboxane A2 (TxA2) and reactive oxygen species (ROS). Since activation of thromboxane prostanoid receptors (TP-Rs) can generate ROS which can generate ET-1, we tested the hypothesis that CKD induces cyclooxygenase (COX)-2 whose products activate TP-Rs to enhance ET-1 and ROS generation and contractions. Mesenteric resistance arterioles were isolated from C57/BL6, or TP-R +/+ and TP-R −/− mice 3 months after SHAM-operation (SHAM) or surgical reduced renal mass (RRM, n=6/group). Microvascular contractions were studied on a wire myograph. Cellular (ethidium: dihydroethidium) and mitochondrial (mitoSOX) ROS were measured by fluorescence microscopy. Mice with RRM had increased excretion of markers of oxidative stress, thromboxane, and microalbumin, increased plasma ET-1 and increased microvascular expression of p22phox, COX-2, TP-Rs, preproendothelin and endothelin-A receptors and increased arteriolar remodeling. They had increased contractions to U-46,619 (118±3 vs. 87±6, P<0.05) and ET-1 (108±5 vs. 89±4, P<0.05), which were dependent on cellular and mitochondrial ROS, COX-2, and TP-Rs. RRM doubled the ET-1-induced cellular and mitochondrial ROS generation (P<0.05). TP-R −/− mice with RRM lacked these abnormal structural and functional microvascular responses and lacked the increased systemic and the increased microvascular oxidative stress and circulating ET-1. In conclusion, RRM leads to microvascular remodeling and enhanced ET-1-induced cellular and mitochondrial ROS and contractions that are mediated by COX-2 products activating TP-Rs. Thus, TP-Rs can be upstream from enhanced ROS, ET-1, microvascular remodeling and contractility and may thereby coordinate vascular dysfunction in CKD. PMID:25733239

  5. The PKD Inhibitor CID755673 Enhances Cardiac Function in Diabetic db/db Mice

    PubMed Central

    Venardos, Kylie; De Jong, Kirstie A.; Elkamie, Mansour; Connor, Timothy; McGee, Sean L.

    2015-01-01

    The development of diabetic cardiomyopathy is a key contributor to heart failure and mortality in obesity and type 2 diabetes (T2D). Current therapeutic interventions for T2D have limited impact on the development of diabetic cardiomyopathy. Clearly, new therapies are urgently needed. A potential therapeutic target is protein kinase D (PKD), which is activated by metabolic insults and implicated in the regulation of cardiac metabolism, contractility and hypertrophy. We therefore hypothesised that PKD inhibition would enhance cardiac function in T2D mice. We first validated the obese and T2D db/db mouse as a model of early stage diabetic cardiomyopathy, which was characterised by both diastolic and systolic dysfunction, without overt alterations in left ventricular morphology. These functional characteristics were also associated with increased PKD2 phosphorylation in the fed state and a gene expression signature characteristic of PKD activation. Acute administration of the PKD inhibitor CID755673 to normal mice reduced both PKD1 and 2 phosphorylation in a time and dose-dependent manner. Chronic CID755673 administration to T2D db/db mice for two weeks reduced expression of the gene expression signature of PKD activation, enhanced indices of both diastolic and systolic left ventricular function and was associated with reduced heart weight. These alterations in cardiac function were independent of changes in glucose homeostasis, insulin action and body composition. These findings suggest that PKD inhibition could be an effective strategy to enhance heart function in obese and diabetic patients and provide an impetus for further mechanistic investigations into the role of PKD in diabetic cardiomyopathy. PMID:25798941

  6. Traumatic brain injury enhances neuroinflammation and lesion volume in caveolin deficient mice

    PubMed Central

    2014-01-01

    Background Traumatic brain injury (TBI) enhances pro-inflammatory responses, neuronal loss and long-term behavioral deficits. Caveolins (Cavs) are regulators of neuronal and glial survival signaling. Previously we showed that astrocyte and microglial activation is increased in Cav-1 knock-out (KO) mice and that Cav-1 and Cav-3 modulate microglial morphology. We hypothesized that Cavs may regulate cytokine production after TBI. Methods Controlled cortical impact (CCI) model of TBI (3 m/second; 1.0 mm depth; parietal cortex) was performed on wild-type (WT; C57Bl/6), Cav-1 KO, and Cav-3 KO mice. Histology and immunofluorescence microscopy (lesion volume, glia activation), behavioral tests (open field, balance beam, wire grip, T-maze), electrophysiology, electron paramagnetic resonance, membrane fractionation, and multiplex assays were performed. Data were analyzed by unpaired t tests or analysis of variance (ANOVA) with post-hoc Bonferroni’s multiple comparison. Results CCI increased cortical and hippocampal injury and decreased expression of MLR-localized synaptic proteins (24 hours), enhanced NADPH oxidase (Nox) activity (24 hours and 1 week), enhanced polysynaptic responses (1 week), and caused hippocampal-dependent learning deficits (3 months). CCI increased brain lesion volume in both Cav-3 and Cav-1 KO mice after 24 hours (P < 0.0001, n = 4; one-way ANOVA). Multiplex array revealed a significant increase in expression of IL-1β, IL-9, IL-10, KC (keratinocyte chemoattractant), and monocyte chemoattractant protein 1 (MCP-1) in ipsilateral hemisphere and IL-9, IL-10, IL-17, and macrophage inflammatory protein 1 alpha (MIP-1α) in contralateral hemisphere of WT mice after 4 hours. CCI increased IL-2, IL-6, KC and MCP-1 in ipsilateral and IL-6, IL-9, IL-17 and KC in contralateral hemispheres in Cav-1 KO and increased all 10 cytokines/chemokines in both hemispheres except for IL-17 (ipsilateral) and MIP-1α (contralateral) in Cav-3 KO (versus WT CCI). Cav-3 KO CCI

  7. Enhancement of intestinal IgA production by Ajoene in mice.

    PubMed

    Washiya, Yuki; Nishikawa, Tomoaki; Fujino, Tsuchiyoshi

    2013-01-01

    We investigated the effects of ajoene on intestinal IgA production. Ajoene (1.35, 4.5, and 13.5 µg/kg/d) was administered to mice for 4 weeks. The fecal IgA level in the 13.5 µg/kg/d group increased after 3 weeks. The intestinal IgA level also increased in a dose-dependent manner upon ajoene administration. An oil-macerated garlic extract, with 1500 µg/g of ajoene, enhanced the intestinal IgA production.

  8. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    SciTech Connect

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet ({+-} arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. -- Highlights: Black-Right-Pointing-Pointer Characterizes a mouse model of arsenic enhanced NAFLD. Black-Right-Pointing-Pointer Arsenic synergistically enhances experimental fatty liver disease at concentrations that cause no overt hepatotoxicity alone. Black-Right-Pointing-Pointer This effect is associated with increased inflammation.

  9. Leucine supplementation does not affect protein turnover and impairs the beneficial effects of endurance training on glucose homeostasis in healthy mice.

    PubMed

    Costa Júnior, José M; Rosa, Morgana R; Protzek, André O; de Paula, Flávia M; Ferreira, Sandra M; Rezende, Luiz F; Vanzela, Emerielle C; Zoppi, Cláudio C; Silveira, Leonardo R; Kettelhut, Isis C; Boschero, Antonio C; de Oliveira, Camila A M; Carneiro, Everardo M

    2015-04-01

    Endurance exercise training as well as leucine supplementation modulates glucose homeostasis and protein turnover in mammals. Here, we analyze whether leucine supplementation alters the effects of endurance exercise on these parameters in healthy mice. Mice were distributed into sedentary (C) and exercise (T) groups. The exercise group performed a 12-week swimming protocol. Half of the C and T mice, designated as the CL and TL groups, were supplemented with leucine (1.5 % dissolved in the drinking water) throughout the experiment. As well known, endurance exercise training reduced body weight and the retroperitoneal fat pad, increased soleus mass, increased VO2max, decreased muscle proteolysis, and ameliorated peripheral insulin sensitivity. Leucine supplementation had no effect on any of these parameters and worsened glucose tolerance in both CL and TL mice. In the soleus muscle of the T group, AS-160(Thr-642) (AKT substrate of 160 kDa) and AMPK(Thr-172) (AMP-Activated Protein Kinase) phosphorylation was increased by exercise in both basal and insulin-stimulated conditions, but it was reduced in TL mice with insulin stimulation compared with the T group. Akt phosphorylation was not affected by exercise but was lower in the CL group compared with the other groups. Leucine supplementation increased mTOR phosphorylation at basal conditions, whereas exercise reduced it in the presence of insulin, despite no alterations in protein synthesis. In trained groups, the total FoxO3a protein content and the mRNA for the specific isoforms E2 and E3 ligases were reduced. In conclusion, leucine supplementation did not potentiate the effects of endurance training on protein turnover, and it also reduced its positive effects on glucose homeostasis.

  10. Performance enhancement in the workplace: why and when healthy individuals should disclose their reliance on pharmaceutical cognitive enhancers

    PubMed Central

    Garasic, Mirko D.; Lavazza, Andrea

    2015-01-01

    The use of pharmaceuticals cognitive enhancers (PCE) has been stirring growing interest, not only in the scientific domain but also in the popular media, and has probably had some increase recently in academic, professional and military quarters. So this phenomenon is deemed as a normal procedure aimed at improving the performance of an individual as well as the overall standards of an organization. Although the vast majority of countries have some kind of restrictions to reduce the wide non-medical usage of PCE, these can be overcome quite easily. In arguing for our explicit claim that, in many contexts, the use of cognitive enhancers should be disclosed—as a moral and socially relevant duty—we maintain that PCE present typical, or at least not rare, properties. The features are the following: (a) the enhancer has acute and/or chronic effects. In the first case, shortly after taking the drug the performance is significantly better than average; in the second case, there is a growing or lasting effect, which, however, is poised to diminish when one stops taking the drug; (b) those effects are significant (there is a difference in the outcome considered between taking and not taking the drug) and sometimes dramatic; and (c) a third feature, not directly related to enhancers as such, is their varying safety, availability, and legal permissibility, which might either induce people to take them or refrain them from doing so. We will consider the issue of fairness due to “unenhanced” people as well as the potentially dysfunctional social consequences of an undisclosed PCE use. PMID:25762902

  11. Unraveling the biomolecular snapshots of mitosis in healthy and cancer cells using plasmonically-enhanced Raman spectroscopy.

    PubMed

    Panikkanvalappil, Sajanlal R; Hira, Steven M; Mahmoud, Mahmoud A; El-Sayed, Mostafa A

    2014-11-12

    Owing to the dynamic and complex nature of mitosis, precise and timely executions of biomolecular events are critical for high fidelity cell division. In this context, visualization of such complex events at the molecular level can provide vital information on the biomolecular processes in abnormal cells. Here, we explored the plasmonically enhanced light scattering properties of functionalized gold nanocubes (AuNCs) together with surface-enhanced Raman spectroscopy (SERS) to unravel the complex and dynamic biological processes involved in mitosis of healthy and cancerous cells from its molecular perspectives. By monitoring various stages of mitosis using SERS, we noticed that relatively high rate of conversion of mitotic proteins from their α-helix structure to β-sheet conformation is likely in the cancer cells during meta-, ana-, and telophases. Unique biochemical modifications to the lipid and amino acid moieties, associated with the observed protein conformational modifications, were also identified. However, in healthy cells, the existence of proteins in their β conformation was momentary and was largely in the α-helix form. The role of abnormal conformational modifications of mitotic proteins on the development of anomalous mitotic activities was further confirmed by looking at plasmonic nanoparticle-induced cytokinesis failure in cancer cells. Our findings illustrate the vast possibilities of SERS in real-time tracking of complex, subtle, and momentary modifications of biomolecules in live cells, which could provide new insights to the role of protein conformation dynamics during mitosis on the development of cancer and many other diseases.

  12. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice.

    PubMed

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract.

  13. Cognitive-Enhancing Effect of Aronia melanocarpa Extract against Memory Impairment Induced by Scopolamine in Mice

    PubMed Central

    Lee, Hyeon Yong; Weon, Jin Bae; Jung, Youn Sik; Kim, Nam Young; Kim, Myong Ki; Ma, Choong Je

    2016-01-01

    Aronia melanocarpa (A. melanocarpa) berries are a fruit with a marked antioxidant effect. The objective of this study was to confirm the effect of A. melanocarpa berries extract against scopolamine-induced memory impairment in mice using the Morris water maze and passive avoidance test. Moreover, we determined a possible mechanism of the cognitive-enhancing effect involving AChE activity and BDNF and p-CREB expression in the hippocampus of mice. A. melanocarpa berries extract attenuated the learning and memory impairment induced by scopolamine in the Morris water maze (79.3 ± 0.8 s of 200 mg/kg and 64.4 ± 10.7 s of 400 mg/kg on day 4) and passive avoidance tests (46.0 ± 41.1 s of 200 mg/kg and 25.6 ± 18.7 s of 400 mg/kg). A. melanocarpa berries extract reduced the acetylcholinesterase level in the hippocampus of scopolamine-injected mice and increased BDNF and p-CREB expression in the hippocampus. The major compound, cyanidin-3-O-galactoside, also reversed memory impairment. These results showed that A. melanocarpa berries extract improved memory impairment by inhibiting AChE and increasing BDNF and p-CREB expression, and cyanidin-3-O-galactoside may be responsible for the effect of A. melanocarpa berries extract. PMID:27239211

  14. A myostatin and activin decoy receptor enhances bone formation in mice.

    PubMed

    Bialek, P; Parkington, J; Li, X; Gavin, D; Wallace, C; Zhang, J; Root, A; Yan, G; Warner, L; Seeherman, H J; Yaworsky, P J

    2014-03-01

    Myostatin is a member of the bone morphogenetic protein/transforming growth factor-β (BMP/TGFβ) super-family of secreted differentiation factors. Myostatin is a negative regulator of muscle mass as shown by increased muscle mass in myostatin deficient mice. Interestingly, these mice also exhibit increased bone mass suggesting that myostatin may also play a role in regulating bone mass. To investigate the role of myostatin in bone, young adult mice were administered with either a myostatin neutralizing antibody (Mstn-mAb), a soluble myostatin decoy receptor (ActRIIB-Fc) or vehicle. While both myostatin inhibitors increased muscle mass, only ActRIIB-Fc increased bone mass. Bone volume fraction (BV/TV), as determined by microCT, was increased by 132% and 27% in the distal femur and lumbar vertebrae, respectively. Histological evaluation demonstrated that increased BV/TV in both locations was attributed to increased trabecular thickness, trabecular number and bone formation rate. Increased BV/TV resulted in enhanced vertebral maximum compressive force compared to untreated animals. The fact that ActRIIB-Fc, but not Mstn-mAb, increased bone volume suggested that this soluble decoy receptor may be binding a ligand other than myostatin, that plays a role in regulating bone mass. This was confirmed by the significant increase in BV/TV in myostatin deficient mice treated with ActRIIB-Fc. Of the other known ActRIIB-Fc ligands, BMP3 has been identified as a negative regulator of bone mass. However, BMP3 deficient mice treated with ActRIIB-Fc showed similar increases in BV/TV as wild type (WT) littermates treated with ActRIIB-Fc. This result suggests that BMP3 neutralization is not the mechanism responsible for increased bone mass. The results of this study demonstrate that ActRIIB-Fc increases both muscle and bone mass in mice. Therefore, a therapeutic that has this dual activity represents a potential approach for the treatment of frailty. PMID:24333131

  15. Susceptibility to T cell-mediated liver injury is enhanced in asialoglycoprotein receptor-deficient mice.

    PubMed

    McVicker, Benita L; Thiele, Geoffrey M; Casey, Carol A; Osna, Natalia A; Tuma, Dean J

    2013-05-01

    T cell activation and associated pro-inflammatory cytokine production is a pathological feature of inflammatory liver disease. It is also known that liver injury is associated with marked impairments in the function of many hepatic proteins including a hepatocyte-specific binding protein, the asialoglycoprotein receptor (ASGPR). Recently, it has been suggested that hepatic ASGPRs may play an important role in the physiological regulation of T lymphocytes, leading to our hypothesis that ASGPR defects correlate with inflammatory-mediated events in liver diseases. Therefore, in this study we investigated whether changes in hepatocellular ASGPR expression were related to the dysregulation of intrahepatic T lymphocytes and correlate with the development of T-cell mediated hepatitis. Mice lacking functional ASGPRs (receptor-deficient, RD), and wild-type (WT) controls were intravenously injected with T-cell mitogens, Concanavalin A (Con A) or anti-CD3 antibody. As a result of T cell mitogen treatment, RD mice lacking hepatic ASGPRs displayed enhancements in liver pathology, transaminase activities, proinflammatory cytokine expression, and caspase activation compared to that observed in normal WT mice. Furthermore, FACS analysis demonstrated that T-cell mitogen administration resulted in a significant rise in the percentage of CD8+ lymphocytes present in the livers of RD animals versus WT mice. Since these two mouse strains differ only in whether they express the hepatic ASGPR, it can be concluded that proper ASGPR function exerts a protective effect against T cell mediated hepatitis and that impairments to this hepatic receptor could be related to the accumulation of cytotoxic T cells that are observed in inflammatory liver diseases.

  16. Estradiol enhances retention but not organization of hippocampus-dependent memory in intact male mice.

    PubMed

    Al Abed, Alice Shaam; Sellami, Azza; Brayda-Bruno, Laurent; Lamothe, Valérie; Noguès, Xavier; Potier, Mylène; Bennetau-Pelissero, Catherine; Marighetto, Aline

    2016-07-01

    Because estrogens have mostly been studied in gonadectomized females, effects of chronic exposure to environmental estrogens in the general population are underestimated. Estrogens can enhance hippocampus-dependent memory through the modulation of information storage. However, declarative memory, the hippocampus-dependent memory of facts and events, demands more than abilities to retain information. Specifically, memory of repetitive events of everyday life such as "where I parked" requires abilities to organize/update memories to prevent proactive interference from similar memories of previous "parking events". Whether such organizational processes are estrogen-sensitive is unknown. We here studied, in intact young and aged adult mice, drinking-water (1μM) estradiol effects on both retention and organizational components of hippocampus-dependent memory, using a radial-maze task of everyday-like memory. Demand on retention vs organization was manipulated by varying the time-interval separating repetitions of similar events. Estradiol increased performance in young and aged mice under minimized organizational demand, but failed to improve the age-associated memory impairment and diminished performance in young mice under high organizational demand. In fact, estradiol prolonged mnemonic retention of successive events without improving organization abilities, hence resulted in more proactive interference from irrelevant memories. c-Fos imaging of testing-induced brain activations showed that the deterioration of young memory was associated with dentate gyrus dysconnectivity, reminiscent of that seen in aged mice. Our findings support the view that estradiol is promnesic but also reveal that such property can paradoxically impair memory. These findings have important outcomes regarding health issues relative to the impact of environmental estrogens in the general population.

  17. CCAAT/enhancer binding protein alpha regulates p21 protein and hepatocyte proliferation in newborn mice.

    PubMed Central

    Timchenko, N A; Harris, T E; Wilde, M; Bilyeu, T A; Burgess-Beusse, B L; Finegold, M J; Darlington, G J

    1997-01-01

    CCAAT/enhancer binding protein alpha (C/EBP alpha) is expressed at high levels in quiescent hepatocytes and in differentiated adipocytes. In cultured cells, C/EBP alpha inhibits cell proliferation in part via stabilization of the p21 protein. The role of C/EBP alpha in regulating hepatocyte proliferation in vivo is presented herein. In C/EBP alpha knockout newborn mice, p21 protein levels are reduced in the liver, and the fraction of hepatocytes synthesizing DNA is increased. Greater than 30% of the hepatocytes in C/EBP alpha knockout animals continue to proliferate at day 17 of postnatal life when cell division in wild-type littermates is low (3%). p21 protein levels are relatively high in wild-type neonates but undetectable in C/EBP alpha knockout mice. The reduction of p21 protein in the highly proliferating livers that lack C/EBP alpha suggests that p21 is responsible for C/EBP alpha-mediated control of liver proliferation in newborn mice. During rat liver regeneration, the amounts of both C/EBP alpha and p21 proteins are decreased before DNA synthesis (6 to 12 h) and then return to presurgery levels at 48 h. Although C/EBP alpha controls p21 protein levels, p21 mRNA is not influenced by C/EBP alpha in liver. Using coimmunoprecipitation and a mammalian two-hybrid assay system, we have shown the interaction of C/EBP alpha and p21 proteins. Study of p21 stability in liver nuclear extracts showed that C/EBP alpha blocks proteolytic degradation of p21. Our data demonstrate that C/EBP alpha regulates hepatocyte proliferation in newborn mice and that in liver, the level of p21 protein is under posttranscriptional control, consistent with the hypothesis that protein-protein interaction with C/EBP alpha determines p21 levels. PMID:9372966

  18. Enhancement of leptin receptor signaling by SOCS3 deficiency induces development of gastric tumors in mice.

    PubMed

    Inagaki-Ohara, K; Mayuzumi, H; Kato, S; Minokoshi, Y; Otsubo, T; Kawamura, Y I; Dohi, T; Matsuzaki, G; Yoshimura, A

    2014-01-01

    Leptin acts on its receptor (ObR) in the hypothalamus to inhibit food intake and energy expenditure. Leptin and ObR are also expressed in the gastrointestinal tract; however, the physiological significance of leptin signaling in the gut remains uncertain. Suppressor of cytokine signaling 3 (SOCS3) is a key negative feedback regulator of ObR-mediated signaling in the hypothalamus. We now show that gastrointestinal epithelial cell-specific SOCS3 conditional knockout (T3b-SOCS3 cKO) mice developed gastric tumors by enhancing leptin production and the ObRb/signal transducer and activator of transcription 3 (STAT3) signaling pathway. All T3b-SOCS3 cKO mice developed tumors in the stomach but not in the bowels by 2 months of age, even though the SOCS3 deletion occurred in both the epithelium of stomach and bowels. The tumors developed in the absence of the inflammatory response and all cKO mice died within 6 months. These tumors displayed pathology and molecular alterations, such as an increase in MUC2 (Mucin 2, oligomeric mucus/gel-forming) and TFF3 (trefoil factor 3), resembling human intestinal-type gastric tumors. Administration of antileptin antibody to T3b-SOCS3 cKO mice reduced hyperplasia of gastric mucosa, which is the step of the initiation of gastric tumor. These data suggest that SOCS3 is an antigastric tumor gene that suppresses leptin overexpression and ObRb/STAT3 hyperactivation, supporting the hypothesis that the leptin/ObRb/STAT3 axis accelerates tumorigenesis and that it may represent a new therapeutic target for the treatment of gastric cancer.

  19. CD4(+) T cells confer anxiolytic and antidepressant-like effects, but enhance fear memory processes in Rag2(-/-) mice.

    PubMed

    Clark, Sarah M; Soroka, Jennifer A; Song, Chang; Li, Xin; Tonelli, Leonardo H

    2016-05-01

    Accumulating evidence supports a role of T cells in behavioral stress responsiveness. Our laboratory previously reported that lymphocyte deficient Rag2(-/-) mice on a BALB/c background display resilience to maladaptive stress responses when compared with immune competent mice in the predator odor exposure (POE) paradigm, while exhibiting similar behavior in a cued fear-conditioning (FC) paradigm. In the present study, Rag2(-/-) mice on a C57BL/6 background were assessed in the same behavioral paradigms, as well as additional tests of anxiety and depressive-like behavior. Furthermore, the effects of naïve CD4(+ ) T cells were evaluated by adoptive transfer of functional cells from nonstressed, wild-type donors to Rag2(-/-) mice. Consistent with our prior results, Rag2(-/-) mice displayed an attenuated startle response after POE. Nevertheless, reconstitution of Rag2(-/-) mice with CD4(+ ) T cells did not modify startle reactivity. Additionally, in contrast with our previous findings, Rag2(-/-) mice showed attenuated fear responses in the FC paradigm compared to wild-type mice and reconstitution with CD4(+ ) T cells promoted fear learning and memory. Notably, reconstitution with CD4(+ ) T cells had anxiolytic and antidepressant-like effects in Rag2(-/-) mice that had not been previously stressed, but had no effect after POE. Taken together, our results support a role of CD4(+ ) T cells in emotionality, but also indicate that they may promote fear responses by enhancing learning and memory processes.

  20. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice.

    PubMed

    Ferreira-Vieira, Talita H; Bastos, Cristiane P; Pereira, Grace S; Moreira, Fabricio A; Massensini, André R

    2014-01-01

    It is well known that physical exercise has positive effects on cognitive functions and hippocampal plasticity. However, the underlying mechanisms have remained to be further investigated. Here we investigated the hypothesis that the memory-enhancement promoted by physical exercise relies on facilitation of the endocannabinoid system. We observed that the spatial memory tested in the object location paradigm did not persist in sedentary mice, but could be improved by 1 week of treadmill running. In addition, exercise up-regulated CB1 receptor and BDNF expression in the hippocampus. To verify if these changes required CB1 activation, we treated the mice with the selective antagonist, AM251, before each period of physical activity. In line with our hypothesis, this drug prevented the exercise-induced memory enhancement and BDNF expression. Furthermore, AM251 reduced CB1 expression. To test if facilitating the endocannabinoid system signaling would mimic the alterations observed after exercise, we treated sedentary animals during 1 week with the anandamide-hydrolysis inhibitor, URB597. Mice treated with this drug recognized the object in a new location and have increased levels of CB1 and BDNF expression in the hippocampus, showing that potentiating the endocanabinoid system equally benefits memory. In conclusion, the favorable effects of exercise upon spatial memory and BDNF expression depend on facilitation of CB1 receptor signaling, which can be mimic by inhibition of anandamide hydrolysis in sedentary animals. Our results suggest that, at least in part, the promnesic effect of the exercise is dependent of CB1 receptor activation and is mediated by BDNF.

  1. Glucocorticoid receptor impairment enhances impulsive responding in transgenic mice performing on a simultaneous visual discrimination task.

    PubMed

    Steckler, T; Sauvage, M; Holsboer, F

    2000-07-01

    Transgenic mice with impaired glucocorticoid receptor (GR) function were tested for their ability to learn and perform a series of simultaneous visual discriminations which allowed a dissociation between accuracy of discrimination from those of motivation and behavioural disinhibition. Animals were first trained on an operant five-choice simultaneous discrimination autoshaping procedure, followed by a continuous reinforcement schedule on that task. Subsequently, the number of choices was limited to two and data were analysed according to the mathematical methods of signal detection theory (SDT). The effects of GR-antisense expression on accuracy when different rates of responding were required were studied under different fixed ratio response requirements (FR1-FR10). Autoshaping was retarded in transgenic animals and accuracy was impaired in both the five-choice and the two-choice discrimination tasks, although transgenic mice showed clear evidence for learning. Under conditions of low response requirements, transgenic mice showed increased response and cognitive biases, but reduced perceptual bias, and a behavioural disinhibition, characterized by a reduction in errors of omission, decreased response latencies and increased number of responses during the inter-trial interval. Increasing the response requirement improved performance in transgenic animals as reflected by enhanced accuracy. Moreover, transgenics were less susceptible to the deleterious effects of higher response requirements, as indicated by relatively unaffected bias measures in this group, while bias increased in controls. These results indicate that altered performance in GR-antisense transgenic animals cannot simply be interpreted as a mnemonic deficit, but that altered motivation and enhanced impulsive responding may account for some of these impairments.

  2. Selective Enhancement of Dopamine Release in the Ventral Pallidum of Methamphetamine-Sensitized Mice

    PubMed Central

    2016-01-01

    Drugs of abuse induce sensitization, which is defined as enhanced response to additional drug following a period of withdrawal. Sensitization occurs in both humans and animal models of drug reinforcement and contributes substantially to the addictive nature of drugs of abuse, because it is thought to represent enhanced motivational wanting for drug. The ventral pallidum, a key member of the reward pathway, contributes to behaviors associated with reward, such as sensitization. Dopamine inputs to the ventral pallidum have not been directly characterized. Here we provide anatomical, neurochemical, and behavioral evidence demonstrating that dopamine terminals in the ventral pallidum contribute to reward in mice. We report subregional differences in dopamine release, measured by ex vivo fast-scan cyclic voltammetry: rostral ventral pallidum exhibits increased dopamine release and uptake compared with caudal ventral pallidum, which is correlated with tissue expression of dopaminergic proteins. We then subjected mice to a methamphetamine-sensitization protocol to investigate the contribution of dopaminergic projections to the region in reward related behavior. Methamphetamine-sensitized animals displayed a 508% and 307% increase in baseline dopamine release in the rostral and caudal ventral pallidum, respectively. Augmented dopamine release in the rostral ventral pallidum was significantly correlated with sensitized locomotor activity. Moreover, this presynaptic dopaminergic plasticity occurred only in the ventral pallidum and not in the ventral or dorsal striatum, suggesting that dopamine release in the ventral pallidum may be integrally important to drug-induced sensitization. PMID:27501345

  3. Disruption of Nrf2 enhances susceptibility to severe airway inflammation and asthma in mice.

    PubMed

    Rangasamy, Tirumalai; Guo, Jia; Mitzner, Wayne A; Roman, Jessica; Singh, Anju; Fryer, Allison D; Yamamoto, Masayuki; Kensler, Thomas W; Tuder, Rubin M; Georas, Steve N; Biswal, Shyam

    2005-07-01

    Oxidative stress has been postulated to play an important role in the pathogenesis of asthma; although a defect in antioxidant responses has been speculated to exacerbate asthma severity, this has been difficult to demonstrate with certainty. Nuclear erythroid 2 p45-related factor 2 (Nrf2) is a redox-sensitive basic leucine zipper transcription factor that is involved in the transcriptional regulation of many antioxidant genes. We show that disruption of the Nrf2 gene leads to severe allergen-driven airway inflammation and hyperresponsiveness in mice. Enhanced asthmatic response as a result of ovalbumin sensitization and challenge in Nrf2-disrupted mice was associated with more pronounced mucus cell hyperplasia and infiltration of eosinophils into the lungs than seen in wild-type littermates. Nrf2 disruption resulted in an increased expression of the T helper type 2 cytokines interleukin (IL)-4 and IL-13 in bronchoalveolar lavage fluid and in splenocytes after allergen challenge. The enhanced severity of the asthmatic response from disruption of the Nrf2 pathway was a result of a lowered antioxidant status of the lungs caused by lower basal expression, as well as marked attenuation, of the transcriptional induction of multiple antioxidant genes. Our studies suggest that the responsiveness of Nrf2-directed antioxidant pathways may act as a major determinant of susceptibility to allergen-mediated asthma. PMID:15998787

  4. Inflammation enhances mu-opioid receptor transcription and expression in mice intestine.

    PubMed

    Pol, O; Alameda, F; Puig, M M

    2001-11-01

    Opioid receptors (ORs) and their mRNA are present in the central and peripheral nervous systems of mammals and in different peripheral tissues, including the gut. Using a model of croton oil-induced (CO) intestinal inflammation in mice, we have shown a 6-fold increase in the potency of the antitransit and antisecretory effects of mu-OR agonists, mediated by peripheral ORs. We postulate that the enhanced effects are mediated by an increase in the expression of intestinal OR. We used jejunum (stripped of the mucosal layer) from mice with CO-induced intestinal inflammation and, as control subjects, saline-treated animals (SS). We evaluated the quantity of mu-OR mRNA determined by a competitive reverse-transcriptase polymerase chain reaction; the levels of mu-OR protein by Western blot immunoassay, and the localization and number of cells expressing mu-OR using immunohistochemistry. The results show a significant increase of mu-OR mRNA (7.7-fold) and receptor protein (3-fold) during intestinal inflammation. Inflammation also induced a 64.3% increase in the number of neurons expressing mu-OR immunoreactivity in the myenteric plexus but not in the submucosal plexus. Our results show that intestinal inflammation enhances the transcription and translation of mu-OR mRNA, thus explaining the increased potency of mu-opioids during inflammation.

  5. Hematopoietic Stem Cell Regeneration Enhanced by Ectopic Expression of ROS-detoxifying Enzymes in Transplant Mice

    PubMed Central

    Miao, Weimin; XuFeng, Richard; Park, Moo-Rim; Gu, Haihui; Hu, Linping; Kang, Jin Wook; Ma, Shihui; Liang, Paulina H; Li, Yanxin; Cheng, Haizi; Yu, Hui; Epperly, Michael; Greenberger, Joel; Cheng, Tao

    2013-01-01

    High levels of reactive oxygen species (ROS) can exhaust hematopoietic stem cells (HSCs). Thus, maintaining a low state of redox in HSCs by modulating ROS-detoxifying enzymes may augment the regeneration potential of HSCs. Our results show that basal expression of manganese superoxide dismutase (MnSOD) and catalase were at low levels in long-term and short-term repopulating HSCs, and administration of a MnSOD plasmid and lipofectin complex (MnSOD-PL) conferred radiation protection on irradiated recipient mice. To assess the intrinsic role of elevated MnSOD or catalase in HSCs and hematopoietic progenitor cells, the MnSOD or catalase gene was overexpressed in mouse hematopoietic cells via retroviral transduction. The impact of MnSOD and catalase on hematopoietic progenitor cells was mild, as measured by colony-forming units (CFUs). However, overexpressed catalase had a significant beneficial effect on long-term engraftment of transplanted HSCs, and this effect was further enhanced after an insult of low-dose γ-irradiation in the transplant mice. In contrast, overexpressed MnSOD exhibited an insignificant effect on long-term engraftment of transplanted HSCs, but had a significant beneficial effect after an insult of sublethal irradiation. Taken together, these results demonstrate that HSC function can be enhanced by ectopic expression of ROS-detoxifying enzymes, especially after radiation exposure in vivo. PMID:23295952

  6. Enhancement of neuromuscular dynamics and strength behavior using extremely low magnitude mechanical signals in mice.

    PubMed

    Mettlach, Gabriel; Polo-Parada, Luis; Peca, Lauren; Rubin, Clinton T; Plattner, Florian; Bibb, James A

    2014-01-01

    Exercise in general, and mechanical signals in particular, help ameliorate the neuromuscular symptoms of aging and possibly other neurodegenerative disorders by enhancing muscle function. To better understand the salutary mechanisms of such physical stimuli, we evaluated the potential for low intensity mechanical signals to promote enhanced muscle dynamics. The effects of daily brief periods of low intensity vibration (LIV) on neuromuscular functions and behavioral correlates were assessed in mice. Physiological analysis revealed that LIV increased isometric force production in semitendinosus skeletal muscle. This effect was evident in both young and old mice. Isometric force recordings also showed that LIV reduced the fatiguing effects of intensive synaptic muscle stimulation. Furthermore, LIV increased evoked neurotransmitter release at neuromuscular synapses but had no effect on spontaneous end plate potential amplitude or frequency. In behavioral studies, LIV increased mouse grip strength and potentiated initial motor activity in a novel environment. These results provide evidence for the efficacy of LIV in producing changes in the neuromuscular system that translate into performance gains at a behavioral scale.

  7. Passport to health: an innovative tool to enhance healthy lifestyle choices.

    PubMed

    Vaczy, Elizabeth; Seaman, Brenda; Peterson-Sweeney, Kathleen; Hondorf, Carol

    2011-01-01

    Obesity in children and adolescents has become an epidemic in the United States. The ramifications of obesity at a young age are longstanding and affect physical health, emotional health, and the economics of the health care industry. The Strong Pediatric Practice at Golisano Children's Hospital is a large inner-city practice serving more than 14,000 urban children and adolescents, the majority living below the poverty level. The Obesity Task Force, which comprises four nurse practitioners, two nurses, a nutritionist, and one physician, developed and implemented the "Passport to Health" tool in an attempt to encourage providers to assess and work with families around the issues of weight and activity, a need that was identified through chart audits. The Passport to Health supports the policy statements on prevention of overweight and obesity by the Centers for Disease Control and Prevention, National Association of Pediatric Nurse Practitioners, and American Academy of Pediatrics. Quality assurance standards for managed care that mandate body mass index (BMI) assessment and nutrition counseling in all children and adolescents also is supported by this tool. The Passport to Health also provides the same message as a current community initiative in the Rochester area that has received widespread media coverage. This tool includes a visual color-coded indicator of the child's BMI status and a synopsis of specific healthy eating and activity goals, and it permits an individualized goal to be established. The Passport to Health translates information that the provider knows about the BMI status into information that the family and child can embrace and understand. Chart audits as well as exit interviews have demonstrated that use of the Passport to Health has increased the assessment, identification, and counseling by providers in relation to healthy eating and activity. Chart audits found that nurse practitioners embraced this practice change more readily than did

  8. Passport to health: an innovative tool to enhance healthy lifestyle choices.

    PubMed

    Vaczy, Elizabeth; Seaman, Brenda; Peterson-Sweeney, Kathleen; Hondorf, Carol

    2011-01-01

    Obesity in children and adolescents has become an epidemic in the United States. The ramifications of obesity at a young age are longstanding and affect physical health, emotional health, and the economics of the health care industry. The Strong Pediatric Practice at Golisano Children's Hospital is a large inner-city practice serving more than 14,000 urban children and adolescents, the majority living below the poverty level. The Obesity Task Force, which comprises four nurse practitioners, two nurses, a nutritionist, and one physician, developed and implemented the "Passport to Health" tool in an attempt to encourage providers to assess and work with families around the issues of weight and activity, a need that was identified through chart audits. The Passport to Health supports the policy statements on prevention of overweight and obesity by the Centers for Disease Control and Prevention, National Association of Pediatric Nurse Practitioners, and American Academy of Pediatrics. Quality assurance standards for managed care that mandate body mass index (BMI) assessment and nutrition counseling in all children and adolescents also is supported by this tool. The Passport to Health also provides the same message as a current community initiative in the Rochester area that has received widespread media coverage. This tool includes a visual color-coded indicator of the child's BMI status and a synopsis of specific healthy eating and activity goals, and it permits an individualized goal to be established. The Passport to Health translates information that the provider knows about the BMI status into information that the family and child can embrace and understand. Chart audits as well as exit interviews have demonstrated that use of the Passport to Health has increased the assessment, identification, and counseling by providers in relation to healthy eating and activity. Chart audits found that nurse practitioners embraced this practice change more readily than did

  9. mPGES-2 deletion remarkably enhances liver injury in streptozotocin-treated mice via induction of GLUT2

    PubMed Central

    Yang, Guangrui; Kakizoe, Yutaka; Liu, Mi; Yang, Kevin T.; Liu, Ying; Yang, Baoxue; Yang, Tianxin

    2015-01-01

    Background & Aims Microsomal prostaglandin E synthase-2 (mPGES-2) deletion does not influence in vivo PGE2 production and the function of this enzyme remains elusive. The present study was undertaken to investigate the role of mPGES-2 in streptozotocin (STZ)-induced type-1 diabetes and organ injuries. Methods mPGES-2 wild type (WT) and knockout (KO) mice were treated by a single intraperitoneal injection of STZ at the dose of 120 mg/kg to induce type-1 diabetes. Subsequently, glycemic status and organ injuries were evaluated. Results Following 4 days of STZ administration, mPGES-2 KO mice exhibited severe lethality in contrast to the normal phenotype observed in WT control mice. In a separate experiment, the analysis was performed at day 3 of the STZ treatment in order to avoid lethality. Blood glucose levels were similar between STZ-treated KO and WT mice. However, the livers of KO mice were yellowish with severe global hepatic steatosis, in parallel with markedly elevated liver enzymes and remarkable stomach expansion. However, the morphology of the other organs was largely normal. The STZ-treated KO mice displayed extensive hepatocyte apoptosis compared with WT mice in parallel with markedly enhanced inflammation and oxidative stress. More interestingly, a liver-specific 50% upregulation of GLUT2 was found in the KO mice accompanied with a markedly enhanced STZ accumulation and this induction of GLUT2 was likely to be associated with the insulin/SREBP-1c pathway. Primary cultured hepatocytes of KO mice exhibited an increased sensitivity to STZ-induced injury and higher cellular STZ content, which was markedly blunted by the selective GLUT2 inhibitor phloretin. Conclusions mPGES-2 deletion enhanced STZ-induced liver toxicity possibly via GLUT2-mediated STZ uptake, independently of diabetes mellitus. PMID:25076362

  10. SK3 K+ channel-deficient mice have enhanced dopamine and serotonin release and altered emotional behaviors.

    PubMed

    Jacobsen, J P R; Weikop, P; Hansen, H H; Mikkelsen, J D; Redrobe, J P; Holst, D; Bond, C T; Adelman, J P; Christophersen, P; Mirza, N R

    2008-11-01

    SK3 K(+) channels influence neuronal excitability and are present in 5-hydroxytryptamine (5-HT) and dopamine (DA) nuclei in the brain stem. We therefore hypothesized that SK3 channels affect 5-HT and DA neurotransmission and associated behaviors. To explore this, we used doxycycline-induced conditional SK3-deficient (T/T) mice. In microdialysis, T/T mice had elevated baseline levels of striatal extracellular DA and the metabolites dihydroxyphenylacetic acid and homovanillic acid. While baseline hippocampal extracellular 5-HT was unchanged in T/T mice, the 5-HT response to the 5-HT transporter inhibitor citalopram was enhanced. Furthermore, baseline levels of the 5-HT metabolite 5-hydroxyindoleacetic acid were elevated in T/T mice. T/T mice performed equally to wild type (WT) in most sensory and motor tests, indicating that SK3 deficiency does not lead to gross impairments. In the forced swim and tail suspension tests, the T/T mice displayed reduced immobility compared with WT, indicative of an antidepressant-like phenotype. Female T/T mice were more anxious in the zero maze. In contrast, anxiety-like behaviors in the open-field and four-plate tests were unchanged in T/T mice of both sexes. Home cage diurnal activity was also unchanged in T/T mice. However, SK3 deficiency had a complex effect on activity responses to novelty: T/T mice showed decreased, increased or unchanged activity responses to novelty, depending on sex and context. In summary, we report that SK3 deficiency leads to enhanced DA and 5-HT neurotransmission accompanied by distinct alterations in emotional behaviors. PMID:18616612

  11. Lack of LCAT reduces the LPS-neutralizing capacity of HDL and enhances LPS-induced inflammation in mice.

    PubMed

    Petropoulou, Peristera-Ioanna; Berbée, Jimmy F P; Theodoropoulos, Vassilios; Hatziri, Aikaterini; Stamou, Panagiota; Karavia, Eleni A; Spyridonidis, Alexandros; Karagiannides, Iordanes; Kypreos, Kyriakos E

    2015-10-01

    HDL has important immunomodulatory properties, including the attenuation of lipopolysaccharide (LPS)-induced inflammatory response. As lecithin-cholesterol acyltransferase (LCAT) is a critical enzyme in the maturation of HDL we investigated whether LCAT-deficient (Lcat(-/-)) mice present an increased LPS-induced inflammatory response. LPS (100μg/kg body weight)-induced cytokine response in Lcat(-/-) mice was markedly enhanced and prolonged compared to wild-type mice. Importantly, reintroducing LCAT expression using adenovirus-mediated gene transfer reverted their phenotype to that of wild-type mice. Ex vivo stimulation of whole blood with LPS (1-100ng/mL) showed a similar enhanced pro-inflammatory phenotype. Further characterization in RAW 264.7 macrophages in vitro showed that serum and HDL, but not chylomicrons, VLDL or the lipid-free protein fraction of Lcat(-/-) mice, had a reduced capacity to attenuate the LPS-induced TNFα response. Analysis of apolipoprotein composition revealed that LCAT-deficient HDL lacks significant amounts of ApoA-I and ApoA-II and is primarily composed of ApoE, while HDL from Apoa1(-/-) mice is highly enriched in ApoE and ApoA-II. ApoA-I-deficiency did not affect the capacity of HDL to neutralize LPS, though Apoa1(-/-) mice showed a pronounced LPS-induced cytokine response. Additional immunophenotyping showed that Lcat(-/-) , but not Apoa1(-/-) mice, have markedly increased circulating monocyte numbers as a result of increased Cd11b(+)Ly6C(med) monocytes, whereas 'pro-inflammatory' Cd11b(+)Ly6C(hi) monocytes were reduced. In line with this observation, peritoneal macrophages of Lcat(-/-) mice showed a markedly dampened LPS-induced TNFα response. We conclude that LCAT-deficiency increases LPS-induced inflammation in mice due to reduced LPS-neutralizing capacity of immature discoidal HDL and increased monocyte number. PMID:26170061

  12. Baseline-dependent effect of noise-enhanced insoles on gait variability in healthy elderly walkers.

    PubMed

    Stephen, Damian G; Wilcox, Bethany J; Niemi, James B; Franz, Jason R; Franz, Jason; Kerrigan, Dr; Kerrigan, D Casey; D'Andrea, Susan E

    2012-07-01

    The purpose of this study was to determine whether providing subsensory stochastic-resonance mechanical vibration to the foot soles of elderly walkers could decrease gait variability. In a randomized double-blind controlled trial, 29 subjects engaged in treadmill walking while wearing sandals customized with three actuators capable of producing stochastic-resonance mechanical vibration embedded in each sole. For each subject, we determined a subsensory level of vibration stimulation. After a 5-min acclimation period of walking with the footwear, subjects were asked to walk on the treadmill for six trials, each 30s long. Trials were pair-wise random: in three trials, actuators provided subsensory vibration; in the other trials, they did not. Subjects wore reflective markers to track body motion. Stochastic-resonance mechanical stimulation exhibited baseline-dependent effects on spatial stride-to-stride variability in gait, slightly increasing variability in subjects with least baseline variability and providing greater reductions in variability for subjects with greater baseline variability (p<.001). Thus, applying stochastic-resonance mechanical vibrations on the plantar surface of the foot reduces gait variability for subjects with more variable gait. Stochastic-resonance mechanical vibrations may provide an effective intervention for preventing falls in healthy elderly walkers.

  13. Pathological Type-2 Immune Response, Enhanced Tumor Growth, and Glucose Intolerance in Retnlβ (RELMβ) Null Mice: A Model of Intestinal Immune System Dysfunction in Disease Susceptibility.

    PubMed

    Wernstedt Asterholm, Ingrid; Kim-Muller, Ja Young; Rutkowski, Joseph M; Crewe, Clair; Tao, Caroline; Scherer, Philipp E

    2016-09-01

    Resistin, and its closely related homologs, the resistin-like molecules (RELMs) have been implicated in metabolic dysregulation, inflammation, and cancer. Specifically, RELMβ, expressed predominantly in the goblet cells in the colon, is released both apically and basolaterally, and is hence found in both the intestinal lumen in the mucosal layer as well as in the circulation. RELMβ has been linked to both the pathogenesis of colon cancer and type 2 diabetes. RELMβ plays a complex role in immune system regulation, and the impact of loss of function of RELMβ on colon cancer and metabolic regulation has not been fully elucidated. We therefore tested whether Retnlβ (mouse ortholog of human RETNLβ) null mice have an enhanced or reduced susceptibility for colon cancer as well as metabolic dysfunction. We found that the lack of RELMβ leads to increased colonic expression of T helper cell type-2 cytokines and IL-17, associated with a reduced ability to maintain intestinal homeostasis. This defect leads to an enhanced susceptibility to the development of inflammation, colorectal cancer, and glucose intolerance. In conclusion, the phenotype of the Retnlβ null mice unravels new aspects of inflammation-mediated diseases and strengthens the notion that a proper intestinal barrier function is essential to sustain a healthy phenotype. PMID:27397737

  14. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice.

    PubMed

    Tan, Min; Schmidt, Robin H; Beier, Juliane I; Watson, Walter H; Zhong, Hai; States, J Christopher; Arteel, Gavin E

    2011-12-15

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations.

  15. Chronic subhepatotoxic exposure to arsenic enhances hepatic injury caused by high fat diet in mice

    PubMed Central

    Tan, Min; Schmidt, Robin H.; Beier, Juliane I.; Watson, Walter H.; Zhong, Hai; States, J. Christopher; Arteel, Gavin E.

    2011-01-01

    Arsenic is a ubiquitous contaminant in drinking water. Whereas arsenic can be directly hepatotoxic, the concentrations/doses required are generally higher than present in the US water supply. However, physiological/biochemical changes that are alone pathologically inert can enhance the hepatotoxic response to a subsequent stimulus. Such a '2-hit' paradigm is best exemplified in chronic fatty liver diseases. Here, the hypothesis that low arsenic exposure sensitizes liver to hepatotoxicity in a mouse model of non-alcoholic fatty liver disease was tested. Accordingly, male C57Bl/6J mice were exposed to low fat diet (LFD; 13% calories as fat) or high fat diet (HFD; 42% calories as fat) and tap water or arsenic (4.9 ppm as sodium arsenite) for ten weeks. Biochemical and histologic indices of liver damage were determined. High fat diet (± arsenic) significantly increased body weight gain in mice compared with low-fat controls. HFD significantly increased liver to body weight ratios; this variable was unaffected by arsenic exposure. HFD caused steatohepatitis, as indicated by histological assessment and by increases in plasma ALT and AST. Although arsenic exposure had no effect on indices of liver damage in LFD-fed animals, it significantly increased the liver damage caused by HFD. This effect of arsenic correlated with enhanced inflammation and fibrin extracellular matrix (ECM) deposition. These data indicate that subhepatotoxic arsenic exposure enhances the toxicity of HFD. These results also suggest that arsenic exposure might be a risk factor for the development of fatty liver disease in human populations. PMID:21983427

  16. Gintonin enhances performance of mice in rotarod test: Involvement of lysophosphatidic acid receptors and catecholamine release.

    PubMed

    Lee, Byung-Hwan; Kim, Jisu; Lee, Ra Mi; Choi, Sun-Hye; Kim, Hyeon-Joong; Hwang, Sung-Hee; Lee, Myung Koo; Bae, Chun-Sik; Kim, Hyoung-Chun; Rhim, Hyewon; Lim, Kiwon; Nah, Seung-Yeol

    2016-01-26

    Ginseng has a long history of use as a tonic for restoration of vigor. One example of ginseng-derived tonic effect is that it can improve physical stamina under conditions of stress. However, the active ingredient and the underlying molecular mechanism responsible for the ergogenic effect are unknown. Recent studies show that ginseng contains a novel ingredient, gintonin, which consists of a unique class of herbal-medicine lysophosphatidic acids (LPAs). Gintonin activates G protein-coupled LPA receptors to produce a transient [Ca(2+)]i signal, which is coupled to diverse intra- and inter-cellular signal transduction pathways that stimulate hormone or neurotransmitter release. However, relatively little is known about how gintonin-mediated cellular modulation is linked to physical endurance. In the present study, systemic administration of gintonin, but not ginsenosides, in fasted mice increased blood glucose concentrations in a dose-dependent manner. Gintonin treatment elevated blood glucose to a maximum level after 30min. This elevation in blood glucose level could be abrogated by the LPA1/3 receptor antagonist, Ki16425, or the β-adrenergic receptor antagonist, propranolol. Furthermore, gintonin-dependent enhanced performance of fasted mice in rotarod test was likewise abrogated by Ki16425. Gintonin also elevated plasma epinephrine and norepinephrine concentrations. The present study shows that gintonin mediates catecholamine release through activation of the LPA receptor and that activation of the β-adrenergic receptor is coupled to liver glycogenolysis, thereby increasing the supply of glucose and enhancing performance in the rotarod test. Thus, gintonin acts via the LPA-catecholamine-glycogenolysis axis, representing a candidate mechanism that can explain how ginseng treatment enhances physical stamina. PMID:26706688

  17. Surface-enhanced Raman scattering from living cells: from differentiating healthy and cancerous cell to cytotoxicity assessment

    NASA Astrophysics Data System (ADS)

    Kuku, Gamze; Sarıçam, Melike; Mert, Sevda; ćulha, Mustafa

    2015-05-01

    There is an ongoing effort to obtain molecular level information from living cells using surface-enhanced Raman scattering (SERS) not only to understand changes of cellular processes upon exposure to external stimuli but also to decide the status of cells; whether they are healthy or abnormal. In our research effort, we investigate how much information can be obtained from living cells to use for decision making about the cellular processes using SERS. The undertaken studies include cytotoxicity assessment of the nanomaterials and differentiation of the healthy and cancer cells. In the first case, A549 (lung cancer) and HDF (human dermal fibroblast) cells were incubated with 50 nm gold nanoparticles (AuNP) and exposed to three different nanoparticles (Zinc oxide nanoparticles (ZnO NPs), titanium dioxide nanoparticles (TiO2) and single walled carbon nanotubes (SWCNTs)) to perform SERS analysis and track the cellular response to these nanomaterials (NMs). After the principal component analysis on the spectral data, it was shown that the NPs exposed samples could be differentiated through SERS. In the second case, SERS spectra obtained from human kidney adenocarcinoma (ACHN), human kidney carcinoma (A-498) and non-cancerous human kidney embryonic cells (HEK 293) were used to diagnose metastatic, primary and non-cancerous cell lines. Linear discriminant analysis (LDA) based on principal component analysis (PCA) was applied to collected multidimensional SERS spectral data set to differentiate three different cell lines.

  18. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet

    SciTech Connect

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji; Klaassen, Curtis D.

    2010-06-15

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2-Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gst{alpha}1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities.

  19. Enhanced expression of Nrf2 in mice attenuates the fatty liver produced by a methionine- and choline-deficient diet☆

    PubMed Central

    Zhang, Yu-Kun Jennifer; Yeager, Ronnie L.; Tanaka, Yuji; Klaassen, Curtis D.

    2011-01-01

    Oxidative stress has been proposed as an important promoter of the progression of fatty liver diseases. The current study investigates the potential functions of the Nrf2–Keap1 signaling pathway, an important hepatic oxidative stress sensor, in a rodent fatty liver model. Mice with no (Nrf2-null), normal (wild type, WT), and enhanced (Keap1 knockdown, K1-kd) expression of Nrf2 were fed a methionine- and choline-deficient (MCD) diet or a control diet for 5 days. Compared to WT mice, the MCD diet-caused hepatosteatosis was more severe in the Nrf2-null mice and less in the K1-kd mice. The Nrf2-null mice had lower hepatic glutathione and exhibited more lipid peroxidation, whereas the K1-kd mice had the highest amount of glutathione in the liver and developed the least lipid peroxidation among the three genotypes fed the MCD diet. The Nrf2 signaling pathway was activated by the MCD diet, and the Nrf2-targeted cytoprotective genes Nqo1 and Gstα1/2 were induced in WT and even more in K1-kd mice. In addition, Nrf2-null mice on both control and MCD diets exhibited altered expression profiles of fatty acid metabolism genes, indicating Nrf2 may influence lipid metabolism in liver. For example, mRNA levels of long chain fatty acid translocase CD36 and the endocrine hormone Fgf21 were higher in livers of Nrf2-null mice and lower in the K1-kd mice than WT mice fed the MCD diet. Taken together, these observations indicate that Nrf2 could decelerate the onset of fatty livers caused by the MCD diet by increasing hepatic antioxidant and detoxification capabilities. PMID:20350562

  20. Trehalose dimycolate enhances survival of fission neutron-irradiated mice and Klebsiella pneumoniae-challenged irradiated mice

    SciTech Connect

    McChesney, D.G.; Ledney, G.D.; Madonna, G.S. )

    1990-01-01

    The survival of B6D2F1 female mice exposed to lethal doses of fission neutron radiation is increased when trehalose dimycolate (TDM) preparations are given either 1 h after exposure or 1 day before exposure to radiation. TDM in an emulsion of squalene, Tween 80, and saline was the most effective formulation for increasing the 30-day survival of mice when given 1 day before (90%) or 1 h after (88%) exposure to radiation. An aqueous suspension of a synthetic analog of TDM was less effective at increasing 30-day survival (60%) when given 1 day prior to radiation exposure and not effective when given 1 h after radiation. Mice receiving a sublethal dose (3.5 Gy) of fission neutron radiation and either the TDM emulsion or synthetic TDM 1 h after irradiation were substantially more resistant to challenge with 10, 100, 1000, or 5000 times the LD50/30 dose of Klebsiella pneumoniae than untreated mice.

  1. Application of SPECT/CT imaging system and radiochemical analysis for investigation of blood kinetics and tissue distribution of radiolabeled plumbagin in healthy and Plasmodium berghei-infected mice.

    PubMed

    Sumsakul, W; Karbwang, J; Na-Bangchang, K

    2016-02-01

    Plumbagin is a derivative of napthoquinone which is isolated from the roots of plants in several families. These compound exhibits a wide range of biological and pharmacological activities including antimalarial, antibacterial, antifungal, and anticancer activities. The aim of the study was to investigate blood kinetics and tissue distribution of plumbagin in healthy and Plasmodium berghei-infected mice using Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and radiochemical analysis by gamma counter. Plumbagin was labeled with (99m)technetium and the reducing agent stannous chloride dihydrate (50 μg/ml) at pH 6.5. Blood kinetics and tissue distribution of the radiolabeled plumbagin were investigated in healthy and P. berghei-infected mice (2 males and 2 females for each experimental group). In vitro and in vivo stability of plumbagin complex suggested satisfactory stability profiles of (99m)Tc-plumbagin complex in plasma and normal saline (92.21-95.47%) within 24 h. Significant difference in blood kinetics parameters (Cmax, AUC, t1/2, MRT, Vd, and CL) were observed between P. berghei-infected and healthy mice. The labeled complex distributed to all organs of both healthy and infected mice but with high intensity in liver, followed by lung, stomach, large intestine and kidney. Accumulation in spleen was markedly noticeable in the infected mice. Plumbagin-labeled complex was rapidly cleared from blood and major routes of excretion were hepatobiliary and pulmonary routes. In P. berghei-infected mice, t1/2 was significantly decreased, while Vd and CL were increased compared with healthy mice. Result suggests that malaria disease state influenced the pharmacokinetics and disposition of plumbagin. SPECT/CT imaging with radiolabeled (99m)Tc is a viable non-invasive technique that can be applied for investigation of kinetics and biodistribution of plumbagin in animal models. PMID:26713669

  2. Potentials and limits to enhance cognitive functions in healthy and pathological aging by tDCS

    PubMed Central

    Prehn, Kristin; Flöel, Agnes

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that is increasingly used in research and clinical settings to enhance the effects of cognitive training. In our present review, we will first summarize studies using tDCS alone and in combination with cognitive training in older adults and patients with Alzheimer’s dementia (AD). We will also review one study (Meinzer et al., 2014c) that showed an improvement in cognitive performance during anodal tDCS over the left inferior frontal cortex in patients with mild cognitive impairment (MCI) which is regarded as a prodromal stage of AD. Although promising short-term results have been reported, evidence from randomized controlled trials (RCTs) with sufficient sample sizes is scarce. In addition, stimulation protocols (in terms of intensity, duration, and repetition of stimulation) that lead to sustained improvements in outcome measures relevant for daily life still remain to be established. Following, we will discuss modulating factors such as technical parameters as well as the question whether there are specific cognitive functions (e.g., learning, memory consolidation, executive control) which are more amenable to tDCS enhancement than others. Finally, we will highlight future directions and limitations in this field and emphasize the need to conduct RCTs to establish efficacy of interventions for activities of daily life for a given patient population. PMID:26441526

  3. Bisphenol A enhances kisspeptin neurons in anteroventral periventricular nucleus of female mice.

    PubMed

    Wang, Xiaoli; Chang, Fei; Bai, Yinyang; Chen, Fang; Zhang, Jun; Chen, Ling

    2014-05-01

    Bisphenol-A (BPA), an environmental estrogen, adversely affects female reproductive health. However, the underlying mechanisms remain largely unknown. We found that oral administration (p.o.) of BPA (20  μg/kg) to adult female mice at proestrus, but not at estrus or diestrus, significantly increased the levels of plasma E₂, LH and FSH, and Gnrh mRNA within 6  h. The administration of BPA at proestrus, but not at diestrus, could elevate the levels of Kiss1 mRNA and kisspeptin protein in anteroventral periventricular nucleus (AVPV) within 6  h. In contrast, the level of Kiss1 mRNA in arcuate nucleus (ARC) was hardly altered by BPA administration. In addition, at proestrus, a single injection (i.c.v.) of BPA dose-dependently enhanced the AVPV-kisspeptin expression within 6  h, this was sensitive to E₂ depletion by ovariectomy and an estrogen receptor α (ERα) antagonist. Similarly, the injection of BPA (i.c.v.) at proestrus could elevate the levels of plasma E₂, LH, and Gnrh mRNA within 6  h in a dose-dependent manner, which was blocked by antagonists of GPR54 or ERα. Injection of BPA (i.c.v.) at proestrus failed to alter the timing and peak concentration of LH-surge generation. In ovariectomized mice, the application of E₂ induced a dose-dependent increase in the AVPV-Kiss1 mRNA level, indicating 'E₂-induced positive feedback', which was enhanced by BPA injection (i.c.v.). The levels of Erα (Esr1) and Erβ (Esr2) mRNAs in AVPV and ARC did not differ significantly between vehicle-and BPA-treated groups. This study provides in vivo evidence that exposure of adult female mice to a low dose of BPA disrupts the hypothalamic-pituitary-gonadal reproductive endocrine system through enhancing AVPV-kisspeptin expression and release.

  4. Possible involvement of enhanced prostaglandin E2 production in the photosensitivity in xeroderma pigmentosum group A model mice.

    PubMed

    Kuwamoto, K; Miyauchi-Hashimoto, H; Tanaka, K; Eguchi, N; Inui, T; Urade, Y; Horio, T

    2000-02-01

    Xeroderma pigmentosum group A (XPA) gene-deficient mice cannot repair UV-induced DNA damage and easily develop skin cancers by UV irradiation. Therefore, XPA-deficient mice are a useful model of human XP and represent a promising tool for photobiologic studies of the disorder. Exposure to ultraviolet (UV) B (280-320 nm) radiation greatly enhanced inflammation and immunosuppression in these mice. To investigate the molecular mechanisms of enhanced UV inflammation and immunosuppression, we determined the amount of prostaglandin (PG) E2, an inflammatory mediator and immunomodulator, and analysed the expression of cyclooxygenase (COX) mRNA in the ear skin of XPA-deficient mice after UV irradiation. In XPA-deficient mice, the amount of PGE2 significantly increased at 48 and 72 h after UVB irradiation to the level that was 8- and 16-fold higher than those in wild-type mice, respectively. The expression level of COX-2 mRNA increased in a time-dependent manner, although COX-1 mRNA was constantly expressed. Treatment with indomethacin, a potent inhibitor of PG biosynthesis, inhibited UV-induced ear swelling, abrogated local immunosuppression, and decreased the amount of PGE2 in the ear skin of XPA-deficient mice. These results indicate that the excess DNA photoproducts remaining in XPA-deficient cells after UV radiation may induce COX-2 expression. The induced production of PGE2 may be involved in the enhanced inflammation and immunosuppression caused by UV radiation in XPA-deficient mice and XP patients. PMID:10651981

  5. Cyclooxygenase I and II inhibitors distinctly enhance hippocampal- and cortex-dependent cognitive functions in mice.

    PubMed

    Syed, Huma; Ikram, Muhammad Faisal; Yaqinuddin, Ahmed; Ahmed, Touqeer

    2015-11-01

    Cyclooxygenase (COX) enzymes are expressed in the brain; however, their role in hippocampus-dependent and cortex-dependent cognitive functions remains to be fully elucidated. The aim of the present study was to comparatively investigate the effects of piroxicam, a selective COX-I inhibitor, and celecoxib, a selective COX‑II inhibitor, on cognitive functions in an AlCl3‑induced neurotoxicity mouse model to understand the specific role of each COX enzyme in the hippocampus and cortex. The AlCl3 (250 mg/kg) was administered to the mice in drinking water and the drugs were administered in feed for 30 days. Assessments of memory, including a Morris water maze, social behavior and nesting behavior were performed in control and treated mice. The RNA expression of the COX enzymes were analyzed using reverse transcription‑quantitative polymerase chain reaction analysis. An ex‑vivo 2,2‑Diphenyl‑1‑picrylhydrazyl assay was performed in the hippocampus and cortex. Following 30 days of treatment with thedrugs, the mice in the celecoxib‑ and piroxicam‑treated groups exhibited enhanced learning (6.84 ± 0.76 and 9.20 ± 1.08, respectively), compared with the AlCl3‑induced neurotoxicity group (21.14 ± 0.76) on the fifth day of the Morris water maze test. Celecoxib treatment improved social affiliation in the AlCl3‑induced neurotoxicity group, the results of which were superior to piroxicam. Piroxicam led to better improvement in nesting score in the AlCl3‑induced neurotoxicity group. Both drugs decreased the expression levels of COX‑I and COX‑II in the hippocampus and cortex, and rescued oxidative stress levels. These findings suggested that each drug distinctly affected cognitive functions, highlighting the distinctive roles of COX-I and COX-II in learning and memory.

  6. Dual Inhibition of Endocannabinoid Catabolic Enzymes Produces Enhanced Antiwithdrawal Effects in Morphine-Dependent Mice

    PubMed Central

    Ramesh, Divya; Gamage, Thomas F; Vanuytsel, Tim; Owens, Robert A; Abdullah, Rehab A; Niphakis, Micah J; Shea-Donohue, Terez; Cravatt, Benjamin F; Lichtman, Aron H

    2013-01-01

    Inhibition of the endocannabinoid catabolic enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) attenuates naloxone-precipitated opioid withdrawal signs in mice via activation of CB1 receptors. Complete FAAH inhibition blocks only a subset of withdrawal signs, whereas complete MAGL inhibition elicits enhanced antiwithdrawal efficacy, but is accompanied with some cannabimimetic side effects. Thus, the primary objective of the present study was to determine whether combined, full FAAH inhibition and partial MAGL represents an optimal strategy to reduce opioid withdrawal. To test this hypothesis, we examined whether combined administration of high-dose of the FAAH inhibitor PF-3845 and low-dose of the MAGL inhibitor JZL184, as well as the novel dual FAAH-MAGL inhibitor SA-57, which is 100-fold more potent in inhibiting FAAH than MAGL, would prevent spontaneous withdrawal in morphine-dependent mice, a model with greater face validity than precipitating withdrawal with μ-opioid receptor antagonists. Strikingly, a combination of low-dose JZL184 and high-dose PF-3845 as well as the dual inhibitor SA-57 reduced all abrupt withdrawal signs (ie, platform jumping, paw flutters, head shakes, diarrhea, and total body weight loss), but did not elicit any cannabimimetic side effects. In addition, JZL184 or PF-3845 blocked naloxone-precipitated hypersecretion in morphine-dependent small intestinal tissue. Collectively, these results are the first to show that endocannabinoid catabolic enzyme inhibitors reduce abrupt withdrawal in morpine-dependent mice and are effective in a novel in vitro model of opioid withdrawal. More generally, these findings support the idea that joint MAGL and FAAH inhibition represents a promising approach for the treatment of opioid dependence. PMID:23303065

  7. High-resolution contrast-enhanced optical coherence tomography in mice retinae

    NASA Astrophysics Data System (ADS)

    Sen, Debasish; SoRelle, Elliott D.; Liba, Orly; Dalal, Roopa; Paulus, Yannis M.; Kim, Tae-Wan; Moshfeghi, Darius M.; de la Zerda, Adam

    2016-06-01

    Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ˜0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.

  8. Otx2 is a putative candidate to activate mice Msx1 gene from distal enhancer

    SciTech Connect

    Binato, Renata . E-mail: rebinato@biof.ufrj.br; Pizzatti, Luciana; Abdelhay, Eliana

    2007-06-29

    A comparative analysis between sequences of Msx1 promoter gene from human, mouse, and fugu allowed us to identify sequences highly conserved among these animals. One of the regions of great homology is localized between the positions -4622 and -4572, including the region described as distal enhancer. In this region putative transcription factors binding sites for Nkx2.5, CTF-CBP, Bicoid, Brn2, and Oct were found. To evaluate the functionality of these sites we performed EMSA analysis using two different regions from the distal enhancer and nuclear protein extracts from embryos. The results showed that in the presence of a Bicoid consensus binding site a DNA-protein complex can be formed. The identification of the proteins involved in this complex by mass spectrometry and Western blotting identified OTX2, a Bicoid-like protein. This protein was shown to be present in nuclear extracts of the embryonic stages analyzed by Western blot. Altogether these results suggest that OTX2 is a putative candidate to activate mice Msx1 gene from distal enhancer.

  9. High-resolution contrast-enhanced optical coherence tomography in mice retinae

    NASA Astrophysics Data System (ADS)

    Sen, Debasish; SoRelle, Elliott D.; Liba, Orly; Dalal, Roopa; Paulus, Yannis M.; Kim, Tae-Wan; Moshfeghi, Darius M.; de la Zerda, Adam

    2016-06-01

    Optical coherence tomography (OCT) is a noninvasive interferometric imaging modality providing anatomical information at depths of millimeters and a resolution of micrometers. Conventional OCT images limit our knowledge to anatomical structures alone, without any contrast enhancement. Therefore, here we have, for the first time, optimized an OCT-based contrast-enhanced imaging system for imaging single cells and blood vessels in vivo inside the living mouse retina at subnanomolar sensitivity. We used bioconjugated gold nanorods (GNRs) as exogenous OCT contrast agents. Specifically, we used anti-mouse CD45 coated GNRs to label mouse leukocytes and mPEG-coated GNRs to determine sensitivity of GNR detection in vivo inside mice retinae. We corroborated OCT observations with hyperspectral dark-field microscopy of formalin-fixed histological sections. Our results show that mouse leukocytes that otherwise do not produce OCT contrast can be labeled with GNRs leading to significant OCT intensity equivalent to a 0.5 nM GNR solution. Furthermore, GNRs injected intravenously can be detected inside retinal blood vessels at a sensitivity of ˜0.5 nM, and GNR-labeled cells injected intravenously can be detected inside retinal capillaries by enhanced OCT contrast. We envision the unprecedented resolution and sensitivity of functionalized GNRs coupled with OCT to be adopted for longitudinal studies of retinal disorders.

  10. Withdrawal of repeated morphine enhances histamine-induced scratching responses in mice.

    PubMed

    Abe, Kenji; Kobayashi, Kanayo; Yoshino, Saori; Taguchi, Kyoji; Nojima, Hiroshi

    2015-04-01

    An itch is experientially well known that the scratching response of conditions such as atopic dermatitis is enhanced under psychological stress. Morphine is typical narcotic drug that induces a scratching response upon local application as an adverse drug reaction. Although long-term treatment with morphine will cause tolerance and dependence, morphine withdrawal can cause psychologically and physiologically stressful changes in humans. In this study, we evaluated the effects of morphine withdrawal on histamine-induced scratching behavior in mice. Administration of morphine with progressively increasing doses (10-50 mg/kg, i.p.) was performed for 5 consecutive days. At 3, 24, 48, and 72 hr after spontaneous withdrawal from the final morphine dose, histamine was intradermally injected into the rostral part of the back and then the number of bouts of scratching in 60 min was recorded and summed. We found that at 24 hr after morphine withdrawal there was a significant increase in histamine-induced scratching behavior. The spinal c-Fos positive cells were also significantly increased. The relative adrenal weight increased and the relative thymus weight decreased, both significantly. Moreover, the plasma corticosterone levels changed in parallel with the number of scratching bouts. These results suggest that morphine withdrawal induces a stressed state and enhances in histamine-induced scratching behavior. Increased reaction against histamine in the cervical vertebrae will participate in this stress-induced itch enhancement.

  11. Enhanced suicidal erythrocyte death in mice carrying a loss-of-function mutation of the adenomatous polyposis coli gene.

    PubMed

    Qadri, Syed M; Mahmud, Hasan; Lang, Elisabeth; Gu, Shuchen; Bobbala, Diwakar; Zelenak, Christine; Jilani, Kashif; Siegfried, Alexandra; Föller, Michael; Lang, Florian

    2012-05-01

    Loss-of-function mutations in human adenomatous polyposis coli (APC) lead to multiple colonic adenomatous polyps eventually resulting in colonic carcinoma. Similarly, heterozygous mice carrying defective APC (apc(Min/+)) suffer from intestinal tumours. The animals further suffer from anaemia, which in theory could result from accelerated eryptosis, a suicidal erythrocyte death triggered by enhanced cytosolic Ca(2+) activity and characterized by cell membrane scrambling and cell shrinkage. To explore, whether APC-deficiency enhances eryptosis, we estimated cell membrane scrambling from annexin V binding, cell size from forward scatter and cytosolic ATP utilizing luciferin-luciferase in isolated erythrocytes from apc(Min/+) mice and wild-type mice (apc(+/+)). Clearance of circulating erythrocytes was estimated by carboxyfluorescein-diacetate-succinimidyl-ester labelling. As a result, apc(Min/+) mice were anaemic despite reticulocytosis. Cytosolic ATP was significantly lower and annexin V binding significantly higher in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Glucose depletion enhanced annexin V binding, an effect significantly more pronounced in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Extracellular Ca(2+) removal or inhibition of Ca(2+) entry with amiloride (1 mM) blunted the increase but did not abrogate the genotype differences of annexin V binding following glucose depletion. Stimulation of Ca(2+) -entry by treatment with Ca(2+) -ionophore ionomycin (10 μM) increased annexin V binding, an effect again significantly more pronounced in apc(Min/+) erythrocytes than in apc(+/+) erythrocytes. Following retrieval and injection into the circulation of the same mice, apc(Min/+) erythrocytes were more rapidly cleared from circulating blood than apc(+/+) erythrocytes. Most labelled erythrocytes were trapped in the spleen, which was significantly enlarged in apc(Min/+) mice. The observations point to accelerated eryptosis and subsequent

  12. Berberine enhances antidiabetic effects and attenuates untoward effects of canagliflozin in streptozotocin-induced diabetic mice.

    PubMed

    Tian, Cai-Ming; Jiang, Xin; Ouyang, Xiao-Xi; Zhang, Ya-Ou; Xie, Wei-Dong

    2016-07-01

    The present study aimed at determining whether berberine can enhance the antidiabetic effects and alleviate the adverse effects of canagliflozin in diabetes mellitus. Streptozotocin-induced diabetic mice were introduced, and the combined effects of berberine and canagliflozin on glucose metabolism and kidney functions were investigated. Our results showed that berberine combined with canagliflozin (BC) increased reduction of fasting and postprandial blood glucose, diet, and water intake compared with berberine or canagliflozin alone. Interestingly, BC showed greater decrease in blood urea nitrogen and creatinine levels and lower total urine glucose excretion than canagliflozin alone. In addition, BC showed increased phosphorylated 5' AMP-activated protein kinase (pAMPK) expression and decreased tumor necrosis factor alpha (TNFα) levels in kidneys, compared with berberine or canagliflozin alone. These results indicated that BC was a stronger antidiabetic than berberine or canagliflozin alone with less negative side effects on the kidneys in the diabetic mice. The antidiabetic effect was likely to be mediated by synergically promoting the expression of pAMPK and reducing the expression of TNFα in kidneys. The present study represented the first report that canagliflozin combined with berberine was a promising treatment for diabetes mellitus. The exact underlying mechanisms of action should be investigated in future studies. PMID:27507202

  13. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI

    PubMed Central

    Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2015-01-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of R2* and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and R2* values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher R2* and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in R2* and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2–8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced R2* and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies. PMID:26661253

  14. Perinatal exposure to methoxychlor enhances adult cognitive responses and hippocampal neurogenesis in mice

    PubMed Central

    Martini, Mariangela; Calandreau, Ludovic; Jouhanneau, Mélanie; Mhaouty-Kodja, Sakina; Keller, Matthieu

    2014-01-01

    During perinatal life, sex steroids, such as estradiol, have marked effects on the development and function of the nervous system. Environmental estrogens or xenoestrogens are man-made chemicals, which animal and human population encounter in the environment and which are able to disrupt the functioning of the endocrine system. Scientific interest in the effects of exposure to xenoestrogens has focused more on fertility and reproductive behaviors, while the effects on cognitive behaviors have received less attention. Therefore, the present study explored whether the organochlorine insecticide Methoxychlor (MXC), with known xenoestrogens properties, administered during the perinatal period (from gestational day 11 to postnatal day 8) to pregnant-lactating females, at an environmentally relevant dose (20 µg/kg (body weight)/day), would also affect learning and memory functions depending on the hippocampus of male and female offspring mice in adulthood. When tested in adulthood, MXC perinatal exposure led to an increase in anxiety-like behavior and in short-term spatial working memory in both sexes. Emotional learning was also assessed using a contextual fear paradigm and MXC treated male and female mice showed an enhanced freezing behavior compared to controls. These results were correlated with an increased survival of adult generated cells in the adult hippocampus. In conclusion, our results show that perinatal exposure to an environmentally relevant dose of MXC has an organizational effect on hippocampus-dependent memory and emotional behaviors. PMID:24982620

  15. Quantitative assessment of microvasculopathy in arcAβ mice with USPIO-enhanced gradient echo MRI.

    PubMed

    Klohs, Jan; Deistung, Andreas; Ielacqua, Giovanna D; Seuwen, Aline; Kindler, Diana; Schweser, Ferdinand; Vaas, Markus; Kipar, Anja; Reichenbach, Jürgen R; Rudin, Markus

    2016-09-01

    Magnetic resonance imaging employing administration of iron oxide-based contrast agents is widely used to visualize cellular and molecular processes in vivo. In this study, we investigated the ability of [Formula: see text] and quantitative susceptibility mapping to quantitatively assess the accumulation of ultrasmall superparamagnetic iron oxide (USPIO) particles in the arcAβ mouse model of cerebral amyloidosis. Gradient-echo data of mouse brains were acquired at 9.4 T after injection of USPIO. Focal areas with increased magnetic susceptibility and [Formula: see text] values were discernible across several brain regions in 12-month-old arcAβ compared to 6-month-old arcAβ mice and to non-transgenic littermates, indicating accumulation of particles after USPIO injection. This was concomitant with higher [Formula: see text] and increased magnetic susceptibility differences relative to cerebrospinal fluid measured in USPIO-injected compared to non-USPIO-injected 12-month-old arcAβ mice. No differences in [Formula: see text] and magnetic susceptibility were detected in USPIO-injected compared to non-injected 12-month-old non-transgenic littermates. Histological analysis confirmed focal uptake of USPIO particles in perivascular macrophages adjacent to small caliber cerebral vessels with radii of 2-8 µm that showed no cerebral amyloid angiopathy. USPIO-enhanced [Formula: see text] and quantitative susceptibility mapping constitute quantitative tools to monitor such functional microvasculopathies. PMID:26661253

  16. Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice

    PubMed Central

    Stranahan, Alexis M.; Lee, Kim; Becker, Kevin G.; Zhang, Yonqing; Maudsley, Stuart; Martin, Bronwen; Cutler, Roy G.; Mattson, Mark P.

    2009-01-01

    Physical activity preserves cognition in the aging brain, but the mechanisms remain obscure. In order to identify candidate genes and pathways responsible for the preservation of cognitive function by exercise, we trained mice that had been exposed to lifelong running or sedentary lifestyle for 16 months in the hippocampus-dependent water maze. After water maze training, we analyzed the expression of 24,000 genes in the hippocampus using Illumina bead microarray. Runners show greater activation of genes associated with synaptic plasticity and mitochondrial function, and also exhibit significant downregulation of genes associated with oxidative stress and lipid metabolism. Running also modified the effects of learning on the expression of genes involved in cell excitability, energy metabolism, and insulin, MAP kinase and Wnt signaling. These results suggest that the enhancement of cognitive function by lifelong exercise is associated with an altered transcriptional profile following learning. PMID:19070401

  17. Penicillamine Increases Free Copper and Enhances Oxidative Stress in the Brain of Toxic Milk Mice

    PubMed Central

    Lin, Xiao-Pu; Zhang, Wei; Li, Fu-Rong; Liang, Xiu-Ling; Li, Xun-Hua

    2012-01-01

    Wilson disease (WD) is characterized by the accumulation of copper arising from a mutation in the ATP7B gene. Penicillamine (PA) makes 10–50% of the patients with neurologic symptoms neurologically worse at the early stage of administration. The aim of this study was to determine how the copper metabolism changes and whether the change impairs the brain of toxic milk (tx) mice, an animal model of WD, during the PA administration. The free copper and protein-bound copper concentrations in the serum, cortex and basal ganglia of tx mice with PA administration for 3 days, 10 days and 14 days, respectively, were investigated. The expression of copper transporters, ATP7A and CTR1,was analyzed by real-time quantitative PCR, immunofluorescence and Western blot. Then SOD, MDA and GSH/GSSG were detected to determine whether the oxidative stress changed correspondingly. The results revealed the elevated free copper concentrations in the serum and brain, and declined protein-bound copper concentrations in the brain of tx mice during PA administration. Meanwhile, transiently increased expression of ATP7A and CTR1 was observed generally in the brain parenchyma by immunofluorescence, real-time quantitative PCR and Western blot. Additionally, ATP7A and CTR1 were observed to locate mainly at Golgi apparatus and cellular membrane respectively. Intense staining of ATP7A in the choroid plexus was found in tx mice on the 3rd and 10th day of PA treatment, but rare staining of ATP7A and CTR1 in the blood-brain barrier (BBB). Decreased GSH/GSSG and increased MDA concentrations were also viewed in the cortex and basal ganglia. Our results suggested the elevated free copper concentrations in the brain might lead to the enhanced oxidative stress during PA administration. The increased free copper in the brain might come from the copper mobilized from brain parenchyma cells but not from the serum according to the ATP7A and CTR1 expression analysis. PMID:22629446

  18. Expression stability of reference genes for quantitative RT-PCR of healthy and diseased pituitary tissue samples varies between humans, mice, and dogs.

    PubMed

    van Rijn, Sarah J; Riemers, Frank M; van den Heuvel, Douwe; Wolfswinkel, Jeannette; Hofland, Leo; Meij, Björn P; Penning, Louis C

    2014-04-01

    Pituitary surgery generates pituitary tissue for histology, immunohistochemistry, and molecular biological research. In the last decade, the pathogenesis of pituitary adenomas has been extensively studied in humans, and to a lesser degree in dogs, and tumor oncogenesis has been studied in knock-out mice, often by means of quantitative reversed-transcriptase PCR (RT-qPCR). A precondition of such analyses is that so-called reference genes are stably expressed regardless of changes in disease status or treatment. In this study, the expression of six frequently used reference genes, namely, tata box binding protein (tbp), tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta polypeptide (ywhaz), hydroxymethylbilane synthase (hmbs), beta-2-microglobulin (b2m), succinate dehydrogenase complex subunit A (sdha), and glyceraldehyde 3 phosphate dehydrogenase 1 (gapdh), was studied in pituitary tissue (normal and adenoma) from three species (humans, mice, and dogs). The stability of expression of these reference genes differed between species and between healthy and diseased tissue within one species. Quantitative analysis based on a single reference gene that is assumed to be stably expressed might lead to wrong conclusions. This cross-species analysis clearly emphasizes the need to evaluate the expression stability of reference genes as a standard and integral aspect of study design and data analysis, in order to improve the validity of the conclusions drawn on the basis of quantitative molecular analyses.

  19. Anti-lubricin monoclonal antibodies created using lubricin-knockout mice immunodetect lubricin in several species and in patients with healthy and diseased joints.

    PubMed

    Ai, Minrong; Cui, Yajun; Sy, Man-Sun; Lee, David M; Zhang, Ling Xiu; Larson, Katherine M; Kurek, Kyle C; Jay, Gregory D; Warman, Matthew L

    2015-01-01

    Lubricin, encoded by the gene PRG4, is the principal lubricant in articulating joints. We immunized mice genetically deficient for lubricin (Prg4-/-) with purified human lubricin, and generated several mAbs. We determined each mAb's binding epitope, sensitivity, and specificity using biologic samples and recombinant lubricin sub-domains, and we also developed a competition ELISA assay to measure lubricin in synovial fluid and blood. We found the mAbs all recognized epitopes containing O-linked oligosaccharides conjugated to the peptide motif KEPAPTTT. By western blot, the mAbs detected lubricin in 1 μl of synovial fluid from several animal species, including human. The mAbs were specific for lubricin since they did not cross-react with other synovial fluid constituents from patients with camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), who genetically lack this protein. The competition ELISA detected lubricin in blood samples from healthy individuals but not from patients with CACP, indicating blood can be used in a diagnostic test for patients suspected of having CACP. Lubricin epitopes in blood do not represent degradation fragments from synovial fluid. Therefore, although blood lubricin levels did not differentiate patients with inflammatory joint disease from healthy controls, epitope-specific anti-lubricin mAbs could be useful for monitoring disease activity in synovial fluid.

  20. Anti-Lubricin Monoclonal Antibodies Created Using Lubricin-Knockout Mice Immunodetect Lubricin in Several Species and in Patients with Healthy and Diseased Joints

    PubMed Central

    Ai, Minrong; Cui, Yajun; Sy, Man-Sun; Lee, David M.; Zhang, Ling Xiu; Larson, Katherine M.; Kurek, Kyle C.; Jay, Gregory D.; Warman, Matthew L.

    2015-01-01

    Lubricin, encoded by the gene PRG4, is the principal lubricant in articulating joints. We immunized mice genetically deficient for lubricin (Prg4-/-) with purified human lubricin, and generated several mAbs. We determined each mAb’s binding epitope, sensitivity, and specificity using biologic samples and recombinant lubricin sub-domains, and we also developed a competition ELISA assay to measure lubricin in synovial fluid and blood. We found the mAbs all recognized epitopes containing O-linked oligosaccharides conjugated to the peptide motif KEPAPTTT. By western blot, the mAbs detected lubricin in 1 μl of synovial fluid from several animal species, including human. The mAbs were specific for lubricin since they did not cross-react with other synovial fluid constituents from patients with camptodactyly-arthropathy-coxa vara-pericarditis syndrome (CACP), who genetically lack this protein. The competition ELISA detected lubricin in blood samples from healthy individuals but not from patients with CACP, indicating blood can be used in a diagnostic test for patients suspected of having CACP. Lubricin epitopes in blood do not represent degradation fragments from synovial fluid. Therefore, although blood lubricin levels did not differentiate patients with inflammatory joint disease from healthy controls, epitope-specific anti-lubricin mAbs could be useful for monitoring disease activity in synovial fluid. PMID:25642942

  1. Pulsed magnetic field from video display terminals enhances teratogenic effects of cytosine arabinoside in mice

    SciTech Connect

    Chiang, H.; Wu, R.Y.; Shao, B.J.; Fu, Y.D.; Yao, G.D.; Lu, D.J.

    1995-05-01

    Eighty-nine Swiss Webster mice were randomly divided into four groups: a control group, a pulsed magnetic field (PMF) group, a cytosine arabinoside (ara-C, a teratogen) group, and a combined PMF + ara-C group. Mice in the PMF and PMF + ara-C groups were irradiated with a PMF (a sawtooth waveform with 52 {mu}s rise time, 12{mu}s decay time, and 15.6 kHz frequency) at a peak magnetic flux density of 40 {mu}T for 4 hours daily on days 6-17 of gestation. The mice in the ara-C and the PMF + ara-C groups were injected intraperitoneally on day 9 of gestation with 10 mg/kg of ara-C. The incidence of resorption and dead fetuses was not affected by PMF but was increased by ara-C injection. The malformation incidence of cleft palate (CP) and/or cleft lip (CL) was significantly higher in all three of the treated groups than in the control group (P < 0.05). If, however, statistical analyses had been done on litters rather than on individual fetuses, they would show that the incidence of CP and/or CL in the PMF group is not significantly greater than that in the control group. A significantly higher incidence of CP and/or CL was found in the PMF + ara-C group (49%) than the ara-C alone group (26.1%). These data suggest that PMF might enhance the development of ara-C-induced CP and/or CL. The incidence of minor variations in skeletal development, including reduction of skeletal calcification and loss of skeleton, was not statistically significant in the PMF group. However, it was higher in the two ara-C-treated groups, and there was no significant difference between the ara-C alone group and the ara-C + PMF group. From these results it is concluded that the very weak embryotoxic effects of PMF exposure may be revealed and enhanced in combination with a teratogenic agent.

  2. Mushroom lectin enhanced immunogenicity of HBV DNA vaccine in C57BL/6 and HBsAg-transgenic mice.

    PubMed

    Gao, Wenjuan; Sun, Yuhan; Chen, Shiwen; Zhang, Jingyao; Kang, Jingjing; Wang, Yongqiang; Wang, Hexiang; Xia, Guoliang; Liu, Qinghong; Kang, Youmin

    2013-04-26

    DNA vaccination is a promising strategy for activating immune responses against hepatitis B virus (HBV) infection. However, the accumulated data have shown that DNA vaccination alone generates weak immune responses. To enhance the immunogenicity of HBV DNA vaccine, lectin purified from pleurotus ostreatus (POL) was used as adjuvant of HBV DNA vaccine for C57BL/6 and HBV surface antigen transgenic (HBVsAg-Tg) mice. Our data demonstrate that low dose of POL (1 μg/mouse) in conjunction with HBV DNA vaccine stimulated stronger HBV-specific delayed-type hypersensitivity (DTH) responses and higher HBV-specific IgG level than that in high dose of POL groups (5 μg/mouse and 10 μg/mouse). POL activated strong Th2 and Tc1 cell responses in immunized C57BL/6 and HBVsAg-Tg mice. POL as adjuvant of HBV DNA vaccine effectively enhanced HBV surface protein antibody (HBVsAb) and decreased HBVsAg level for HBV Tg mice treatment. Furthermore, POL infiltrated more lymphocytes excluding Th1, Th2 and Tc1 cell subtypes to liver of HBVsAg-Tg mice. Together, these results suggest that POL as adjuvant enhanced immunogenicity of HBV DNA vaccination and effectively stimulated immune reaponse for HBsAg-Tg mice treatment. Our findings implicate the potential of mushroom lectin as adjuvant of HBV DNA vaccine.

  3. Electroacupuncture at ST37 Enhances Jejunal Motility via Excitation of the Parasympathetic System in Rats and Mice

    PubMed Central

    Yuan, Mengqian; Li, Yuqin; Wang, Yidan; Zhang, Na; Hu, XuanMing; Yin, Yin; Zhu, Bing

    2016-01-01

    Background. The roles of the sympathetic and parasympathetic systems in mediating the effect of electroacupuncture (EA) at ST37 on jejunal motility have yet to be demonstrated. Aim. We used rats and mice to investigate the effect and mechanism of action of EA at ST37 on jejunal motility. Methods. Jejunal motility was recorded by a balloon placed in the jejunum and connected to a biological signal collection system through a transducer. The effects of EA (3 mA) at ST37 were evaluated in Sprague-Dawley rats without drugs and with the administration of clenbuterol, propranolol, acetylcholine, and atropine. Further, the efficacy of EA at different intensities (1/2/4/6/8 mA) was measured in wild-type mice and β1β2−/− mice and M2M3−/− mice. Results. In Sprague-Dawley rats, the excitatory effect of EA at ST37 on jejunal motility disappeared in the presence of the muscarinic receptor antagonist atropine. EA at ST37 was less effective in M2M3−/− mice than in wild-type mice. Furthermore, to a certain extent, there existed “intensity-response” relationship between jejunal motility and EA. Conclusions. EA at ST37 can enhance jejunal motility in rats and mice mainly via excitation of the parasympathetic pathway. There is an “intensity-response” relationship between EA and effect on jejunal motility.

  4. Sudden detraining deteriorates swimming training-induced enhancement of short-term and spatial learning memories in mice.

    PubMed

    Kim, You-Mi; Ji, Eun-Sang; Yoon, Sung-Jin; Yoon, Jin-Hwan

    2013-04-01

    In the present study, we investigated the effect of swimming training and sudden detraining on learning ability and spatial memory capability and on neurogenesis and brain-derived neurotrophic factor (BDNF) expression in the hippocampus of mice. Male ICR mice were randomly assigned into three groups (n= 15 in each group): the control group, the swimming training group, and the detraining group. The mice in the swimming training group were made to swim (6 days/week, 60 min/day) for 8 weeks. The mice in the detraining group were accomplished the same swimming program for 4 weeks and then discontinued exercise for 4 weeks. In the present results, enhanced short-term and spatial learning memories and increased hippocampal neurogenesis and BDNF expression were observed in the mice of the swimming training group. In contrast, decreased short-term and spatial learning memories were observed in the mice of the swimming detraining group compared to the control level. Hippocampal neurogenesis and BDNF expression were also decreased in the mice of the detraining group near to the control level. Here in this study, we suggest that sudden cessation of exercise training might bring decline of the brain functions.

  5. In vitro vitamin K(2) and 1α,25-dihydroxyvitamin D(3) combination enhances osteoblasts anabolism of diabetic mice.

    PubMed

    Poon, Christina C W; Li, Rachel W S; Seto, Sai Wang; Kong, Siu Kai; Ho, Ho Pui; Hoi, Maggie P M; Lee, Simon M Y; Ngai, Sai Ming; Chan, Shun Wan; Leung, George P H; Kwan, Yiu Wa

    2015-11-15

    In this study, we evaluated the anabolic effect and the underlying cellular mechanisms involved of vitamin K2 (10 nM) and 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3) (10 nM), alone and in combination, on primary osteoblasts harvested from the iliac crests of C57BL/KsJ lean (+/+) and obese/diabetic (db/db) mice. A lower alkaline phosphatase (ALP) activity plus a reduced expression of bone anabolic markers and bone formation transcription factors (osteocalcin, Runx2, Dlx5, ATF4 and OSX) were consistently detected in osteoblasts of db/db mice compared to lean mice. A significantly higher calcium deposits formation in osteoblasts was observed in lean mice when compared to db/db mice. Co-administration of vitamin K2 (10 nM) and 1,25(OH)2D3 (10 nM) caused an enhancement of calcium deposits in osteoblasts in both strains of mice. Vitamins K2 and 1,25(OH)2D3 co-administration time-dependently (7, 14 and 21 days) increased the levels of bone anabolic markers and bone formation transcription factors, with a greater magnitude of increase observed in osteoblasts of db/db mice. Combined vitamins K2 plus 1,25(OH)2D3 treatment significantly enhanced migration and the re-appearance of surface microvilli and ruffles of osteoblasts of db/db mice. Thus, our results illustrate that vitamins K2 plus D3 combination could be a novel therapeutic strategy in treating diabetes-associated osteoporosis.

  6. Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1.

    PubMed

    Jiang, Jiu; Fisher, Erin M; Concannon, Mark; Lustigman, Sara; Shen, Hao; Murasko, Donna M

    2016-02-10

    Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV+rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV+rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly.

  7. Enhanced humoral response to influenza vaccine in aged mice with a novel adjuvant, rOv-ASP-1.

    PubMed

    Jiang, Jiu; Fisher, Erin M; Concannon, Mark; Lustigman, Sara; Shen, Hao; Murasko, Donna M

    2016-02-10

    Immunization is the best way to prevent seasonal epidemics and pandemics of influenza. There are two kinds of influenza vaccines available in the United States: an inactivated vaccine (TIV) and an attenuated vaccine; however, only TIV is approved for immunization of the elderly population. While the aged population has the highest rate of influenza vaccination, the protective efficacy is low as evidenced by elderly individuals having the highest mortality associated with influenza. Recently, we reported that an adjuvant derived from the helminth parasite Onchocerca volvulus, named O. volvulus activation-associated secreted protein-1 (Ov-ASP-1), can significantly enhance the protective efficacy of an inactivated vaccine (TIV) in young adult mice. In the current study, we examined whether this recombinant Ov-ASP-1 (rOv-ASP-1) can enhance the efficacy of TIV in aged mice as well. While primary immunization with TIV alone produced only a low level of influenza-specific antibodies (total IgG, IgG1, and IgG2c) in aged mice, the antibody levels were significantly increased after immunization with TIV+rOv-ASP-1. More importantly, the level of the total IgG in aged mice administered TIV+rOv-ASP-1 was comparable to that of young adult mice immunized with TIV alone. Co-administration of rOv-ASP-1 induced a low level of cross-reactive antibody and enhanced the protective efficacy of TIV in aged mice, reflected by significantly increased survival after challenge with a heterologous influenza virus. rOv-ASP-1 was also superior to the conventional adjuvant alum in inducing specific IgG after TIV immunization in aged mice, and in conferring protection after challenge. These results demonstrate that rOv-ASP-1 may serve as a potential adjuvant for influenza vaccine to improve the efficacy of protection in the elderly. PMID:26795365

  8. Healthy Water, Healthy People.

    ERIC Educational Resources Information Center

    Etgen, John

    2002-01-01

    Describes a hands-on activity, Hitting the Mark, which is found in the "Healthy Water, Healthy People Water Quality Educators Guide" in terms of its objectives, materials, background, procedures, activities, and assessment. (KHR)

  9. Enhancing memory for lists by grouped presentation and rehearsal: a pilot study in healthy subjects with unexpected results.

    PubMed

    Hoppe, Christian; Stojanovic, Jelena; Elger, Christian E

    2009-12-01

    List learning is probably the most established paradigm for the psychometric evaluation of episodic memory deficits in different neuropsychiatric conditions including epilepsy. Strategies which are capable of increasing the test performance might be promising candidates for a therapeutic improvement of daily memory performance. Based on the classical 'temporal grouping effect' we wanted to evaluate the memory-enhancing potential of disentangling perceiving, rehearsing and encoding by temporally grouped presentation and group-wise reproduction during acquisition. According to the ethical principle of subsidiary the study was performed in healthy adolescents (N=126) before setting-up a patient study. Subjects had to learn a list of 12 semantically unrelated nouns and a list of 12 figures during two acquisition trials under one of four experimental conditions defined by the size of presented item groups (GS): GS=1 (single items, i.e., 12 x 1 item), GS=3 (4 x 3 items), GS=6 (2 x 6 items), and GS=12 (standard presentation mode, i.e., 1 x 12 items). Repeated measures MANOVA confirmed a positive effect of smaller GS on acquisition performance but the grouping condition obtained no effect on immediate and delayed free recall or on yes/no recognition. For verbal retention, GS=12 even showed a tendency toward an advantage as compared to GS=3. Although appearing reasonable and promising, facilitating acquisition during list learning by temporal grouping and grouped overt rehearsal turned out to be ineffective with regard to long-term memory encoding and retrieval. A strategy however which fails in healthy subjects is unlikely to obtain a therapeutic potential in patients with memory deficits.

  10. Enhancing effects of agelasphin-11 on natural killer cell activities of normal and tumor-bearing mice.

    PubMed

    Kobayashi, E; Motoki, K; Natori, T; Uchida, T; Fukushima, H; Koezuka, Y

    1996-03-01

    Agelasphin-11 (AGL-11), a novel alpha-galactosylceramide isolated from an extract of a marine sponge, Agelas mauritianus, markedly prolonged the life span of mice intraperitoneally inoculated with B16 cells. Since AGL-11 did not show any direct cytotoxic activity against B16 cells, this compound is considered to be a biological response modifier (BRM). We focused on the enhancing effect of this compound on in vivo natural killer (NK) cell activity because several BRMs have already been determined to enhance the in vivo natural killer (NK) cell activity. When we evaluated the enhancing activity of AGL-11 using normal mice, AGL-11 enhanced in vivo NK cell activity more potently than Poly I:C, which is a positive control. In addition, we examined the effect of this compound on the NK cell activity of tumor-bearing mice, and found that AGL-11 recovers the reduced NK cell activity in a tumor-bearing condition to a higher level than that of normal mice. These results suggest that AGL-11 shows antitumor activity by the activation of antitumor effector cells such as NK cells.

  11. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    SciTech Connect

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-08-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  12. Enhanced growth of primary tumors in cancer-prone mice after immunization against the mutant region of an inherited oncoprotein.

    PubMed

    Siegel, C T; Schreiber, K; Meredith, S C; Beck-Engeser, G B; Lancki, D W; Lazarski, C A; Fu, Y X; Rowley, D A; Schreiber, H

    2000-06-01

    One major objective of tumor immunologists is to prevent cancer development in individuals at high risk. (TG.AC x C57BL/6)F1 mice serve as a model for testing the feasibility of this objective. The mice carry in the germline a mutant ras oncogene that has an arginine at codon 12 instead of glycine present in the wild-type, and after physical (wounding) or chemical promotion, these mice have a high probability for developing papillomas that progress to cancer. Furthermore, F1 mice immunized with Arg(12) mutant ras peptide in complete Freund's adjuvant (CFA) develop T cells within 10 d that proliferate in vitro on stimulation with the Arg(12) mutant ras peptide. Within 14 d, these mice have delayed-type hypersensitivity to the peptide. Immunization with CFA alone or with a different Arg(12) mutant ras peptide in CFA induced neither response. To determine the effect of immunization on development of tumors, mice immunized 3 wk earlier were painted on the back with phorbol 12-myristate 13-acetate every 3 d for 8 wk. The time of appearance and the number of papillomas were about the same in immunized and control mice, but the tumors grew faster and became much larger in the mice immunized with the Arg(12) mutant ras peptide. Thus, the immunization failed to protect against growth of papillomas. The peptide-induced CD4(+) T cells preferentially recognized the peptide but not the native mutant ras protein. On the other hand, mice immunized with Arg(12) mutant ras peptide and bearing papillomas had serum antibodies that did bind native mutant ras protein. Together, these studies indicate that active immunization of cancer-prone individuals may result in immune responses that fail to eradicate mutant oncogene-expressing tumor cells, but rather induce a remarkable enhancement of tumor growth.

  13. Activation of nicotinic α(7) acetylcholine receptor enhances long term potentation in wild type mice but not in APP(swe)/PS1ΔE9 mice.

    PubMed

    Söderman, Andreas; Mikkelsen, Jens D; West, Mark J; Christensen, Ditte Z; Jensen, Morten S

    2011-01-10

    Amyloid β (Aβ) plays a central role in Alzheimer's disease (AD) and binds to the nicotinic α(7) receptor (α(7) nAChR). Little is known about the degree to which the binding of Aβ to the α(7) nAChR influences the role of this receptor in long-term potentiation (LTP), however. We have studied the effect of the partial α(7) nAChR agonist SSR180711 on hippocampal slice preparations from normal wild type (Wt) and APP(swe)/PS1ΔE9 transgenic (Tg) mice. In the hippocampal slices from the 6 months old Wt mice, the application of both nicotine (5μM) and SSR180711 (300nM) resulted in a significant enhancement of LTP expressed in area CA1. However, in the Tg mice the application of SSR180711 did not result in an increase in LTP beyond control levels. The amount of binding of the α(7) nAChR ligand 125-I-α-bungarotoxin was not different between in Tg and Wt mice. These findings indicate that the α(7) nAChR is functionally blocked in the hippocampal neurons, downstream of the α(7) nAChR, and that this is likely due to an interaction between the receptor and Aβ, which leads to changes in LTP.

  14. Enhanced histaminergic neurotransmission and sleep-wake alterations, a study in histamine H3-receptor knock-out mice.

    PubMed

    Gondard, Elise; Anaclet, Christelle; Akaoka, Hidéo; Guo, Rui-Xian; Zhang, Mei; Buda, Colette; Franco, Patricia; Kotani, Hidehito; Lin, Jian-Sheng

    2013-05-01

    Long-term abolition of a brain arousal system impairs wakefulness (W), but little is known about the consequences of long-term enhancement. The brain histaminergic arousal system is under the negative control of H3-autoreceptors whose deletion results in permanent enhancement of histamine (HA) turnover. In order to determine the consequences of enhancement of the histaminergic system, we compared the cortical EEG and sleep-wake states of H3-receptor knockout (H3R-/-) and wild-type mouse littermates. We found that H3R-/-mice had rich phenotypes. On the one hand, they showed clear signs of enhanced HA neurotransmission and vigilance, i.e., a higher EEG θ power during spontaneous W and a greater extent of W or sleep restriction during behavioral tasks, including environmental change, locomotion, and motivation tests. On the other hand, during the baseline dark period, they displayed deficient W and signs of sleep deterioration, such as pronounced sleep fragmentation and reduced cortical slow activity during slow wave sleep (SWS), most likely due to a desensitization of postsynaptic histaminergic receptors as a result of constant HA release. Ciproxifan (H3-receptor inverse agonist) enhanced W in wild-type mice, but not in H3R-/-mice, indicating a functional deletion of H3-receptors, whereas triprolidine (postsynaptic H1-receptor antagonist) or α-fluoromethylhistidine (HA-synthesis inhibitor) caused a greater SWS increase in H3R-/- than in wild-type mice, consistent with enhanced HA neurotransmission. These sleep-wake characteristics and the obesity phenotypes previously reported in this animal model suggest that chronic enhancement of histaminergic neurotransmission eventually compromises the arousal system, leading to sleep-wake, behavioral, and metabolic disorders similar to those caused by voluntary sleep restriction in humans.

  15. Enhanced Histaminergic Neurotransmission and Sleep-Wake Alterations, a Study in Histamine H3-Receptor Knock-Out Mice

    PubMed Central

    Gondard, Elise; Anaclet, Christelle; Akaoka, Hidéo; Guo, Rui-Xian; Zhang, Mei; Buda, Colette; Franco, Patricia; Kotani, Hidehito; Lin, Jian-Sheng

    2013-01-01

    Long-term abolition of a brain arousal system impairs wakefulness (W), but little is known about the consequences of long-term enhancement. The brain histaminergic arousal system is under the negative control of H3-autoreceptors whose deletion results in permanent enhancement of histamine (HA) turnover. In order to determine the consequences of enhancement of the histaminergic system, we compared the cortical EEG and sleep-wake states of H3-receptor knockout (H3R−/−) and wild-type mouse littermates. We found that H3R−/−mice had rich phenotypes. On the one hand, they showed clear signs of enhanced HA neurotransmission and vigilance, i.e., a higher EEG θ power during spontaneous W and a greater extent of W or sleep restriction during behavioral tasks, including environmental change, locomotion, and motivation tests. On the other hand, during the baseline dark period, they displayed deficient W and signs of sleep deterioration, such as pronounced sleep fragmentation and reduced cortical slow activity during slow wave sleep (SWS), most likely due to a desensitization of postsynaptic histaminergic receptors as a result of constant HA release. Ciproxifan (H3-receptor inverse agonist) enhanced W in wild-type mice, but not in H3R−/−mice, indicating a functional deletion of H3-receptors, whereas triprolidine (postsynaptic H1-receptor antagonist) or α-fluoromethylhistidine (HA-synthesis inhibitor) caused a greater SWS increase in H3R−/− than in wild-type mice, consistent with enhanced HA neurotransmission. These sleep-wake characteristics and the obesity phenotypes previously reported in this animal model suggest that chronic enhancement of histaminergic neurotransmission eventually compromises the arousal system, leading to sleep-wake, behavioral, and metabolic disorders similar to those caused by voluntary sleep restriction in humans. PMID:23303066

  16. Asian sand dust enhances ovalbumin-induced eosinophil recruitment in the alveoli and airway of mice

    SciTech Connect

    Hiyoshi, Kyoko; Ichinose, Takamichi; Sadakane, Kaori; Takano, Hirohisa; Nishikawa, Masataka; Mori, Ikuko; Yanagisawa, Rie; Yoshida, Seiichi; Kumagai, Yoshito; Tomura, Shigeo; Shibamoto, Takayuki . E-mail: tshibamoto@ucdavis.edu

    2005-11-15

    Asian sand dust (ASD) containing sulfate (SO{sub 4} {sup 2-}) reportedly causes adverse respiratory health effects but there is no experimental study showing the effect of ASD toward allergic respiratory diseases. The effects of ASD and ASD plus SO{sub 4} {sup 2-} toward allergic lung inflammation induced by ovalbumin (OVA) were investigated in this study. ICR mice were administered intratracheally with saline; ASD alone (sample from Shapotou desert); and ASD plus SO{sub 4} {sup 2-} (ASD-SO{sub 4}); OVA+ASD; OVA+ASD-SO{sub 4}. ASD or ASD-SO{sub 4} alone caused mild nutrophilic inflammation in the bronchi and alveoli. ASD and ASD-SO{sub 4} increased pro-inflammatory mediators, such as Keratinocyte chemoattractant (KC) and macrophage inflammatory protein (MIP)-1 alpha, in bronchoalveolar lavage fluids (BALF). ASD and ASD-SO{sub 4} enhanced eosinophil recruitment induced by OVA in the alveoli and in the submucosa of the airway, which has a goblet cell proliferation in the bronchial epithelium. However, a further increase of eosinophils by addition of SO{sub 4} {sup 2-} was not observed. The two sand dusts synergistically increased interleukin-5 (IL-5) and monocyte chemotactic protein-1 (MCP-1), which were associated with OVA, in BALF. However, the increased levels of IL-5 were lower in the OVA+ASD-SO{sub 4} group than in the OVA+ASD group. ASD caused the adjuvant effects to specific-IgG1 production by OVA, but not to specific-IgE. These results suggest that the enhancement of eosinophil recruitment in the lung is mediated by synergistically increased IL-5 and MCP-1. IgG1 antibodies may play an important role in the enhancement of allergic reaction caused by OVA and sand dust. However, extra sulfate may not contribute to an increase of eosinophils.

  17. Activation of Rho-kinase in the brainstem enhances sympathetic drive in mice with heart failure.

    PubMed

    Ito, Koji; Kimura, Yoshikuni; Hirooka, Yoshitaka; Sagara, Yoji; Sunagawa, Kenji

    2008-11-01

    Rho-kinase is involved in the pathogenesis of hypertension and left ventricular remodelling after myocardial infarction (MI). In an earlier study, we had demonstrated that Rho-kinase in the brainstem contributes to hypertensive mechanisms via the sympathetic nervous system; however, it is not known whether Rho-kinase in the brainstem also contributes to sympathetic nerve activation after MI. Male Institute of Cancer Research mice (8-10 weeks old) were used for the study. Two days before coronary artery occlusion (MI group), the left ventricular function was estimated by echocardiography. Following this, Y-27632 (0.5 mM, 0.25 microL/h), a specific Rho-kinase inhibitor, or a vehicle was intracisternally infused in the mice using an osmotic mini-pump. Nine days after coronary artery occlusion, we evaluated the 24-hour urinary norepinephrine excretion (U-NE) as a marker of sympathetic nerve activity. Ten days after coronary artery occlusion, we measured organ weight and evaluated Rho-kinase activity in the brainstem by measuring the amount of phosphorylated ezrin/radixin/moesin proteins, one of the substrates of Rho-kinase. The control group underwent a sham operation. Rho-kinase activity, U-NE, and lungs and liver weight were significantly greater in the MI group compared with the control group. Left ventricular size increased and percent fractional shortening decreased in the MI group compared with the control group. Y-27632 significantly decreased Rho-kinase activity and attenuated the increase in U-NE after MI. These results demonstrate that Rho-kinase is activated in the brainstem after MI and that the activation of this pathway is involved in the resulting enhanced sympathetic drive. PMID:18762460

  18. Cocaine enhances the conditioned rewarding effects of MDMA in adolescent mice.

    PubMed

    Aguilar, M A; Roger-Sánchez, C; Rodríguez-Arias, M; Miñarro, J

    2015-04-01

    Although the consumption of cocaine is frequent in young users of MDMA (3,4-methylenedioxymethamphetamine), the influence of exposure to cocaine on the rewarding effects of MDMA in adolescents has not been studied. The purpose of the present work was to evaluate the effect of co-administration of cocaine (1 and 10 mg/kg) and a sub-threshold dose of MDMA (1.25 mg/kg) on the acquisition of conditioned place preference (CPP) (experiment 1). In addition, the effect of pre-treatment with cocaine on MDMA-induced CPP was evaluated (experiment 2). Levels of monoamines in striatum, hippocampus and cortex were measured in both experiments. Our hypotheses were that cocaine co-administration or pre-treatment would increase the rewarding effects of MDMA, and that these effects would be related with changes in brain monoamine levels. Our results showed that cocaine potentiated the rewarding effects of MDMA, since a sub-threshold dose of MDMA, which did not induce CPP by itself, induced a significant CPP in adolescent mice when administered along with cocaine during conditioning (experiment 1). Moreover, pre-treatment with cocaine several days before conditioning also increased the rewarding effects of MDMA (experiment 2). No significant changes in the levels of biogenic amines, which correlated with these behavioural effects, were observed. Our results confirm the involvement of the dopaminergic system in MDMA-induced CPP in adolescent mice and suggest that combined consumption with or pre-exposure to cocaine increases the conditioned rewarding effects of MDMA, which may enhance the capacity of MDMA to induce dependence.

  19. Nrf2 reduces allergic asthma in mice through enhanced airway epithelial cytoprotective function.

    PubMed

    Sussan, Thomas E; Gajghate, Sachin; Chatterjee, Samit; Mandke, Pooja; McCormick, Sarah; Sudini, Kuladeep; Kumar, Sarvesh; Breysse, Patrick N; Diette, Gregory B; Sidhaye, Venkataramana K; Biswal, Shyam

    2015-07-01

    Asthma development and pathogenesis are influenced by the interactions of airway epithelial cells and innate and adaptive immune cells in response to allergens. Oxidative stress is an important mediator of asthmatic phenotypes in these cell types. Nuclear erythroid 2-related factor 2 (Nrf2) is a redox-sensitive transcription factor that is the key regulator of the response to oxidative and environmental stress. We previously demonstrated that Nrf2-deficient mice have heightened susceptibility to asthma, including elevated oxidative stress, inflammation, mucus, and airway hyperresponsiveness (AHR) (Rangasamy T, Guo J, Mitzner WA, Roman J, Singh A, Fryer AD, Yamamoto M, Kensler TW, Tuder RM, Georas SN, Biswal S. J Exp Med 202: 47-59, 2005). Here we dissected the role of Nrf2 in lung epithelial cells and tested whether genetic or pharmacological activation of Nrf2 reduces allergic asthma in mice. Cell-specific activation of Nrf2 in club cells of the airway epithelium significantly reduced allergen-induced AHR, inflammation, mucus, Th2 cytokine secretion, oxidative stress, and airway leakiness and increased airway levels of tight junction proteins zonula occludens-1 and E-cadherin. In isolated airway epithelial cells, Nrf2 enhanced epithelial barrier function and increased localization of zonula occludens-1 to the cell surface. Pharmacological activation of Nrf2 by 2-trifluoromethyl-2'-methoxychalone during the allergen challenge was sufficient to reduce allergic inflammation and AHR. New therapeutic options are needed for asthma, and this study demonstrates that activation of Nrf2 in lung epithelial cells is a novel potential therapeutic target to reduce asthma susceptibility.

  20. Enhanced analgesic effects of propacetamol and tramadol combination in rats and mice.

    PubMed

    Zhang, Yuyang; Du, Lili; Pan, He; Li, Li; Su, Xing

    2011-01-01

    Drug combinations have more potential advantage of greater analgesia than monotherapy. By the combination of analgesics with different mechanism, potency of analgesia can be maximized while the incidence of adverse effects is minimized. This study was aimed to assess a possible interaction in the antinociceptive effects between tramadol (T) and propacetamol (P) when administered in combination against nociceptive effects induced by physical or chemical injury in mice and rats. Three series of experiments were performed. The first was to determine effects of P and T alone or in combination in the acetic acid (AA)-induced writhing test in mice. Combination of T/P (3.9/67.5, 7.8/135, 15.6/271 mg/kg, intraperitoneally (i.p.)) elicited dose-dependent antinociception. The second determined whether the antinociceptive effects of the drugs observed in a test of persistent chemical pain could be seen in a test of acute thermal pain and the back-paw licking response was tested on the hot plate. The back-paw licking latency at different times after drugs obtained with the combination (16/270, 32/540 mg/kg, i.p. T/P) was longer than the respective values obtained with the individual agents. The third was designed to compare the antinociceptive effects between the drugs, either alone or in combination in the rat tail-flicks test. Combination of T/P (5.5/96, 11/192 mg/kg i.p.) both showed effects of higher potency than T and P, respectively. The data obtained confirmed that propacetamol is able to enhance the antinociceptive activity of tramadol. PMID:21372383

  1. miR-378 Activates the Pyruvate-PEP Futile Cycle and Enhances Lipolysis to Ameliorate Obesity in Mice

    PubMed Central

    Zhang, Yong; Li, Changyin; Li, Hu; Song, Yipeng; Zhao, Yixia; Zhai, Lili; Wang, Haixia; Zhong, Ran; Tang, Huiru; Zhu, Dahai

    2016-01-01

    Obesity has been linked to many health problems, such as diabetes. However, there is no drug that effectively treats obesity. Here, we reveal that miR-378 transgenic mice display reduced fat mass, enhanced lipolysis, and increased energy expenditure. Notably, administering AgomiR-378 prevents and ameliorates obesity in mice. We also found that the energy deficiency seen in miR-378 transgenic mice was due to impaired glucose metabolism. This impairment was caused by an activated pyruvate-PEP futile cycle via the miR-378-Akt1-FoxO1-PEPCK pathway in skeletal muscle and enhanced lipolysis in adipose tissues mediated by miR-378-SCD1. Our findings demonstrate that activating the pyruvate-PEP futile cycle in skeletal muscle is the primary cause of elevated lipolysis in adipose tissues of miR-378 transgenic mice, and it helps orchestrate the crosstalk between muscle and fat to control energy homeostasis in mice. Thus, miR-378 may serve as a promising agent for preventing and treating obesity in humans. PMID:27077116

  2. IgE-mediated systemic anaphylaxis and impaired tolerance to food antigens in mice with enhanced IL-4 receptor signaling

    PubMed Central

    Mathias, Clinton B.; Hobson, Suejy A.; Garcia-Lloret, Maria; Lawson, Greg; Poddighe, Dimitri; Freyschmidt, Eva-Jasmin; Xing, Wei; Gurish, Michael F.; Chatila, Talal A.; Oettgen, Hans C.

    2010-01-01

    Background In atopic individuals, food ingestion drives the production of IgE antibodies that can trigger hypersensitivity reactions. The IL-4 pathway plays critical roles in this response and genetic polymorphisms in its components have been linked to allergy. Objective To test whether an activating mutation in the IL-4 receptor (IL-4R) α chain enhances allergic responses to a food antigen. Methods F709 mice, in which the IL-4Rα immuno-tyrosine inhibitory motif (ITIM) motif is inactivated, were gavage fed with ovalbumin (OVA). Reactions to OVA challenge and immune responses including antibody production and Th2 responses were assessed. Results F709 mice, but not wild-type (WT) controls, sensitized by gavage with OVA and either cholera toxin (CT) or Staphylococcal enterotoxin B (SEB), displayed mast cell activation and systemic anaphylaxis upon enteral challenge. Anaphylaxis was elicited even in F709 mice enterally sensitized with OVA alone. Bone marrow chimera experiments established that the increased sensitivity conferred by the F709 genotype was mediated mostly by hematopoietic cells but that nonhematopoietic cells also contributed. F709 mice exhibited increased intestinal permeability to macromolecules. The F709 genotype conferred increased OVA-specific IgE but not IgG1 responses, local and systemic Th2 responses and intestinal mast cell hyperplasia as compared with WT mice. Anaphylaxis was abrogated in F709 mice lacking IgE or the high affinity receptor for IgE (FcεRI). Conclusion Augmented IL-4Rα signaling confers increased intestinal permeability and dramatically enhanced sensitivity to food allergens. Unlike anaphylaxis to injected antigens, which in rodents can be mediated by either IgE or IgG antibodies, the food-induced response in F709 mice is solely IgE-dependent. PMID:21167580

  3. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors

    PubMed Central

    Kakoki, Masao; Kizer, Catherine M.; Yi, Xianwen; Takahashi, Nobuyuki; Kim, Hyung-Suk; Bagnell, C. Robert; Edgell, Cora-Jean S.; Maeda, Nobuyo; Jennette, J. Charles; Smithies, Oliver

    2006-01-01

    We have previously reported that genetically increased angiotensin-converting enzyme levels, or absence of the bradykinin B2 receptor, increase kidney damage in diabetic mice. We demonstrate here that this is part of a more general phenomenon — diabetes and, to a lesser degree, absence of the B2 receptor, independently but also largely additively when combined, enhance senescence-associated phenotypes in multiple tissues. Thus, at 12 months of age, indicators of senescence (alopecia, skin atrophy, kyphosis, osteoporosis, testicular atrophy, lipofuscin accumulation in renal proximal tubule and testicular Leydig cells, and apoptosis in the testis and intestine) are virtually absent in WT mice, detectable in B2 receptor–null mice, clearly apparent in mice diabetic because of a dominant mutation (Akita) in the Ins2 gene, and most obvious in Akita diabetic plus B2 receptor–null mice. Renal expression of several genes that encode proteins associated with senescence and/or apoptosis (TGF-β1, connective tissue growth factor, p53, α-synuclein, and forkhead box O1) increases in the same progression. Concomitant increases occur in 8-hydroxy-2′-deoxyguanosine, point mutations and deletions in kidney mitochondrial DNA, and thiobarbituric acid–reactive substances in plasma, together with decreases in the reduced form of glutathione in erythrocytes. Thus, absence of the bradykinin B2 receptor increases the oxidative stress, mitochondrial DNA damage, and many senescence-associated phenotypes already present in untreated Akita diabetic mice. PMID:16604193

  4. Compensatory hyperinsulinemia in high-fat diet-induced obese mice is associated with enhanced insulin translation in islets

    SciTech Connect

    Kanno, Ayumi; Asahara, Shun-ichiro; Masuda, Katsuhisa; Matsuda, Tomokazu; Kimura-Koyanagi, Maki; Seino, Susumu; Ogawa, Wataru; Kido, Yoshiaki

    2015-03-13

    A high-fat diet (HF) is associated with obesity, insulin resistance, and hyperglycemia. Animal studies have shown compensatory mechanisms in pancreatic β-cells after high fat load, such as increased pancreatic β-cell mass, enhanced insulin secretion, and exocytosis. However, the effects of high fat intake on insulin synthesis are obscure. Here, we investigated whether insulin synthesis was altered in correlation with an HF diet, for the purpose of obtaining further understanding of the compensatory mechanisms in pancreatic β-cells. Mice fed an HF diet are obese, insulin resistant, hyperinsulinemic, and glucose intolerant. In islets of mice fed an HF diet, more storage of insulin was identified. We analyzed insulin translation in mouse islets, as well as in INS-1 cells, using non-radioisotope chemicals. We found that insulin translational levels were significantly increased in islets of mice fed an HF diet to meet systemic demand, without altering its transcriptional levels. Our data showed that not only increased pancreatic β-cell mass and insulin secretion but also elevated insulin translation is the major compensatory mechanism of pancreatic β-cells. - Highlights: • More stored insulin was recognized in islets of mice fed a high-fat diet. • Insulin translation was not enhanced by fatty acids, but by insulin demand. • Insulin transcription was not altered in islets of mice fed a high-fat diet. • Insulin translation was markedly enhanced in islets of mice fed a high-fat diet. • Non-radioisotope chemicals were used to measure insulin translation in mouse islets.

  5. Meclizine enhancement of sensorimotor gating in healthy male subjects with high startle responses and low prepulse inhibition.

    PubMed

    Larrauri, José A; Kelley, Lisalynn D; Jenkins, Mason R; Westman, Eric C; Schmajuk, Nestor A; Rosenthal, M Zachary; Levin, Edward D

    2014-02-01

    Histamine H1 receptor systems have been shown in animal studies to have important roles in the reversal of sensorimotor gating deficits, as measured by prepulse inhibition (PPI). H1-antagonist treatment attenuates the PPI impairments caused by either blockade of NMDA glutamate receptors or facilitation of dopamine transmission. The current experiment brought the investigation of H1 effects on sensorimotor gating to human studies. The effects of the histamine H1 antagonist meclizine on the startle response and PPI were investigated in healthy male subjects with high baseline startle responses and low PPI levels. Meclizine was administered to participants (n=24) using a within-subjects design with each participant receiving 0, 12.5, and 25 mg of meclizine in a counterbalanced order. Startle response, PPI, heart rate response, galvanic skin response, and changes in self-report ratings of alertness levels and affective states (arousal and valence) were assessed. When compared with the control (placebo) condition, the two doses of meclizine analyzed (12.5 and 25 mg) produced significant increases in PPI without affecting the magnitude of the startle response or other physiological variables. Meclizine also caused a significant increase in overall self-reported arousal levels, which was not correlated with the observed increase in PPI. These results are in agreement with previous reports in the animal literature and suggest that H1 antagonists may have beneficial effects in the treatment of subjects with compromised sensorimotor gating and enhanced motor responses to sensory stimuli. PMID:24045586

  6. Meclizine Enhancement of Sensorimotor Gating in Healthy Male Subjects with High Startle Responses and Low Prepulse Inhibition

    PubMed Central

    Larrauri, José A; Kelley, Lisalynn D; Jenkins, Mason R; Westman, Eric C; Schmajuk, Nestor A; Rosenthal, M Zachary; Levin, Edward D

    2014-01-01

    Histamine H1 receptor systems have been shown in animal studies to have important roles in the reversal of sensorimotor gating deficits, as measured by prepulse inhibition (PPI). H1-antagonist treatment attenuates the PPI impairments caused by either blockade of NMDA glutamate receptors or facilitation of dopamine transmission. The current experiment brought the investigation of H1 effects on sensorimotor gating to human studies. The effects of the histamine H1 antagonist meclizine on the startle response and PPI were investigated in healthy male subjects with high baseline startle responses and low PPI levels. Meclizine was administered to participants (n=24) using a within-subjects design with each participant receiving 0, 12.5, and 25 mg of meclizine in a counterbalanced order. Startle response, PPI, heart rate response, galvanic skin response, and changes in self-report ratings of alertness levels and affective states (arousal and valence) were assessed. When compared with the control (placebo) condition, the two doses of meclizine analyzed (12.5 and 25 mg) produced significant increases in PPI without affecting the magnitude of the startle response or other physiological variables. Meclizine also caused a significant increase in overall self-reported arousal levels, which was not correlated with the observed increase in PPI. These results are in agreement with previous reports in the animal literature and suggest that H1 antagonists may have beneficial effects in the treatment of subjects with compromised sensorimotor gating and enhanced motor responses to sensory stimuli. PMID:24045586

  7. Breath Analysis Based on Surface-Enhanced Raman Scattering Sensors Distinguishes Early and Advanced Gastric Cancer Patients from Healthy Persons.

    PubMed

    Chen, Yunsheng; Zhang, Yixia; Pan, Fei; Liu, Jie; Wang, Kan; Zhang, Chunlei; Cheng, Shangli; Lu, Lungen; Zhang, Wei; Zhang, Zheng; Zhi, Xiao; Zhang, Qian; Alfranca, Gabriel; de la Fuente, Jesús M; Chen, Di; Cui, Daxiang

    2016-09-27

    Fourteen volatile organic compound (VOC) biomarkers in the breath have been identified to distinguish early gastric cancer (EGC) and advanced gastric cancer (AGC) patients from healthy persons by gas chromatography-mass spectrometry coupled with solid phase microextraction (SPME). Then, a breath analysis approach based on a surface-enhanced Raman scattering (SERS) sensor was developed to detect these biomarkers. Utilizing hydrazine vapor adsorbed in graphene oxide (GO) film, the clean SERS sensor is facilely prepared by in situ formation of gold nanoparticles (AuNPs) on reduced graphene oxide (RGO) without any organic stabilizer. In the SERS sensor, RGO can selectively adsorb and enrich the identified biomarkers from breath as an SPME fiber, and AuNPs well dispersed on RGO endow the SERS sensor with an effective detection of adsorbed biomarkers. Fourteen Raman bands associated with the biomarkers are selected as the fingerprints of biomarker patterns to distinguish persons in different states. The approach has successfully analyzed and distinguished different simulated breath samples and 200 breath samples of clinical patients with a sensitivity of higher than 83% and a specificity of more than 92%. In conclusion, the VOC biomarkers and breath analysis approach in this study can not only diagnose gastric cancer but also distinguish EGC and AGC. This work has great potential for clinical translation in primary screening diagnosis and stage determination of stomach cancer in the near future.

  8. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice.

    PubMed

    Arteel, Gavin E; Guo, Luping; Schlierf, Thomas; Beier, Juliane I; Kaiser, J Phillip; Chen, Theresa S; Liu, Marsha; Conklin, Daniel J; Miller, Heather L; von Montfort, Claudia; States, J Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  9. Subhepatotoxic exposure to arsenic enhances lipopolysaccharide-induced liver injury in mice

    SciTech Connect

    Arteel, Gavin E. Guo, Luping; Schlierf, Thomas; Beier, Juliane I.; Kaiser, J. Phillip; Chen, Theresa S.; Liu, Marsha; Conklin, Daniel J.; Miller, Heather L.; Montfort, Claudia von; States, J. Christopher

    2008-01-15

    Exposure to arsenic via drinking water is a serious health concern in the US. Whereas studies have identified arsenic alone as an independent risk factor for liver disease, concentrations of arsenic required to damage this organ are generally higher than found in the US water supply. The purpose of the current study was to test the hypothesis that arsenic (at subhepatotoxic doses) may also sensitize the liver to a second hepatotoxin. To test this hypothesis, the effect of chronic exposure to arsenic on liver damage caused by acute lipopolysaccharide (LPS) was determined in mice. Male C57Bl/6J mice (4-6 weeks) were exposed to arsenic (49 ppm as sodium arsenite in drinking water). After 7 months of exposure, animals were injected with LPS (10 mg/kg i.p.) and sacrificed 24 h later. Arsenic alone caused no overt hepatotoxicity, as determined by plasma enzymes and histology. In contrast, arsenic exposure dramatically enhanced liver damage caused by LPS, increasing the number and size of necroinflammatory foci. This effect of arsenic was coupled with increases in indices of oxidative stress (4-HNE adducts, depletion of GSH and methionine pools). The number of apoptotic (TUNEL) hepatocytes was similar in the LPS and arsenic/LPS groups. In contrast, arsenic pre-exposure blunted the increase in proliferating (PCNA) hepatocytes caused by LPS; this change in the balance between cell death and proliferation was coupled with a robust loss of liver weight in the arsenic/LPS compared to the LPS alone group. The impairment of proliferation after LPS caused by arsenic was also coupled with alterations in the expression of key mediators of cell cycle progression (p27, p21, CDK6 and Cyclin D1). Taken together, these results suggest that arsenic, at doses that are not overtly hepatotoxic per se, significantly enhances LPS-induced liver injury. These results further suggest that arsenic levels in the drinking water may be a risk modifier for the development of chronic liver diseases.

  10. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    PubMed

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX.

  11. Clavulanic acid enhances glutamate transporter subtype I (GLT-1) expression and decreases reinforcing efficacy of cocaine in mice.

    PubMed

    Kim, Jae; John, Joel; Langford, Dianne; Walker, Ellen; Ward, Sara; Rawls, Scott M

    2016-03-01

    The β-lactam antibiotic ceftriaxone (CTX) reduces cocaine reinforcement and relapse in preclinical assays through a mechanism involving activation of glutamate transporter subtype 1 (GLT-1). However, its poor brain penetrability and intravenous administration route may limit its therapeutic utility for indications related to CNS diseases. An alternative is clavulanic acid (CA), a structural analog of CTX that retains the β-lactam core required for GLT-1 activity but displays enhanced brain penetrability and oral activity relative to CTX. Here, we tested the hypothesis that CA (1, 10 mg/kg ip) would enhance GLT-1 expression and decrease cocaine self-administration (SA) in mice, but at lower doses than CTX. Experiments revealed that GLT-1 transporter expression in the nucleus accumbens of mice treated with repeated CA (1, 10 mg/kg) was enhanced relative to saline-treated mice. Repeated CA treatment (1 mg/kg) reduced the reinforcing efficacy of cocaine (0.56 mg/kg/inf) in mice maintained on a progressive-ratio (PR) schedule of reinforcement but did not affect acquisition of cocaine SA under fixed-ratio responding or acquisition or retention of learning. These findings suggest that the β-lactamase inhibitor CA can activate the cellular glutamate reuptake system in the brain reward circuit and reduce cocaine's reinforcing efficacy at 100-fold lower doses than CTX. PMID:26543027

  12. Long term intravital multiphoton microscopy imaging of immune cells in healthy and diseased liver using CXCR6.Gfp reporter mice.

    PubMed

    Heymann, Felix; Niemietz, Patricia M; Peusquens, Julia; Ergen, Can; Kohlhepp, Marlene; Mossanen, Jana C; Schneider, Carlo; Vogt, Michael; Tolba, Rene H; Trautwein, Christian; Martin, Christian; Tacke, Frank

    2015-01-01

    Liver inflammation as a response to injury is a highly dynamic process involving the infiltration of distinct subtypes of leukocytes including monocytes, neutrophils, T cell subsets, B cells, natural killer (NK) and NKT cells. Intravital microscopy of the liver for monitoring immune cell migration is particularly challenging due to the high requirements regarding sample preparation and fixation, optical resolution and long-term animal survival. Yet, the dynamics of inflammatory processes as well as cellular interaction studies could provide critical information to better understand the initiation, progression and regression of inflammatory liver disease. Therefore, a highly sensitive and reliable method was established to study migration and cell-cell-interactions of different immune cells in mouse liver over long periods (about 6 hr) by intravital two-photon laser scanning microscopy (TPLSM) in combination with intensive care monitoring. The method provided includes a gentle preparation and stable fixation of the liver with minimal perturbation of the organ; long term intravital imaging using multicolor multiphoton microscopy with virtually no photobleaching or phototoxic effects over a time period of up to 6 hr, allowing tracking of specific leukocyte subsets; and stable imaging conditions due to extensive monitoring of mouse vital parameters and stabilization of circulation, temperature and gas exchange. To investigate lymphocyte migration upon liver inflammation CXCR6.gfp knock-in mice were subjected to intravital liver imaging under baseline conditions and after acute and chronic liver damage induced by intraperitoneal injection(s) of carbon tetrachloride (CCl4). CXCR6 is a chemokine receptor expressed on lymphocytes, mainly on Natural Killer T (NKT)-, Natural Killer (NK)- and subsets of T lymphocytes such as CD4 T cells but also mucosal associated invariant (MAIT) T cells1. Following the migratory pattern and positioning of CXCR6.gfp+ immune cells allowed a

  13. Brief exposure to predator odor and resultant anxiety enhances mesocorticolimbic activity and enkephalin expression in CD-1 mice.

    PubMed

    Hebb, Andrea L O; Zacharko, Robert M; Gauthier, Michelle; Trudel, France; Laforest, Sylvie; Drolet, Guy

    2004-11-01

    The present study assessed alterations in mesolimbic enkephalin (ENK) mRNA levels after predator [2,5-dihydro-2,4,5-trimethylethiazoline (TMT)] and non-predator (butyric acid) odor encounter and/or light-dark (LD) testing in CD-1 mice immediately, 24, 48 and 168 h after the initial odor encounter and/or LD testing. The nucleus accumbens, ventral tegmental area, basolateral (BLA), central (CEA) and medial amygdaloid nuclei, prelimbic and infralimbic cortex were assessed for fos-related antigen (FRA) and/or ENK mRNA as well as neuronal activation of ENK neurons (FRA/ENK). Mice exposed to TMT displayed enhanced freezing and spent less time in the light of the immediate LD test relative to saline- or butyric acid-treated mice. Among mice exposed to TMT, LD anxiety-like behavior was associated with increased FRA in the prelimbic cortex and accumbal shell and decreased ENK-positive neurons in the accumbal core. Mice displaying high TMT-induced LD anxiety exhibited increased ENK-positive neurons in the BLA, CEA and medial amygdaloid nuclei relative to mice that displayed low anxiety-like behavior in the LD test after TMT exposure. In the BLA and CEA, 'high-anxiety' mice also displayed increased FRA/ENK after TMT exposure and LD testing. In contrast to neural cell counts, the level of ENK transcript was decreased in the BLA and CEA of 'high-anxiety' mice after TMT exposure and LD testing. These data suggest that increased FRA may regulate stressor-responsive genes and mediate long-term behavioral changes. Indeed, increased ENK availability in mesolimbic sites may promote behavioral responses that detract from the aversiveness of the stressor experience.

  14. Increased Expression of the Na,K-ATPase alpha4 Isoform Enhances Sperm Motility in Transgenic Mice1

    PubMed Central

    Jimenez, Tamara; Sanchez, Gladis; McDermott, Jeffrey P.; Nguyen, Anh-Nguyet; Kumar, T. Rajendra; Blanco, Gustavo

    2010-01-01

    The Na,K-ATPase alpha4 (ATP1A4) isoform is specifically expressed in male germ cells and is highly prevalent in spermatozoa. Although selective inhibition of alpha4 activity with ouabain has been shown to affect sperm motility, a more direct analysis of the role of this isoform in sperm movement has not yet been demonstrated. To establish this, we engineered transgenic mice that express the rat alpha4 isoform fused to green fluorescent protein in male germ cells, under the control of the mouse protamine 1 promoter. We showed that the rat Atp1a4 transgene is expressed in mouse spermatozoa and that it is localized to the sperm flagellum. In agreement with increased expression of the alpha4 isoform, sperm from transgenic mice displayed higher alpha4-specific Na,K-ATPase activity and binding of fluorescently labeled ouabain than wild-type mice. In contrast, expression and activity of ATP1A1 (alpha1), the other Na,K-ATPase alpha isoform present in sperm, remained unchanged. Similar to wild-type mice, mice expressing the alpha4 transgene exhibited normal testis and sperm morphology and no differences in fertility. However, compared to wild-type mice, sperm from transgenic mice displayed plasma membrane hyperpolarization and higher total and progressive motility. Other parameters of motility also increased, including straight-line, curvilinear, and average path velocities and amplitude of lateral head displacement. In addition, sperm from the transgenic mice showed enhanced sperm hyperactive motility, but no changes in progesterone-induced acrosome reaction. Altogether, these results provide new genetic evidence for the role of the ATP1A4 isoform in sperm motility, under both noncapacitating and capacitating conditions. PMID:20826726

  15. Lack of Endogenous IL-10 Enhances Production of Proinflammatory Cytokines and Leads to Brucella abortus Clearance in Mice

    PubMed Central

    Corsetti, Patrícia P.; de Almeida, Leonardo A.; Carvalho, Natália B.; Azevedo, Vasco; Silva, Teane M. A.; Teixeira, Henrique C.; Faria, Ana C.; Oliveira, Sergio C.

    2013-01-01

    IL-10 is a cytokine that regulates the balance between pathogen clearance and immunopathology. Brucella abortus is an intracellular bacterium that causes chronic disease in humans and domestic animals. Here we evaluated the contribution of IL-10 in host immune response and pathology during B. abortus infection. To assess the role of IL-10 in vivo, IL-10 knockout (KO) or 129 Sv/Ev (wild-type) mice were infected with B. abortus and the number of viable bacteria from the spleen was determined at 1, 2, 3, 6 and 14-weeks postinfection. IL-10 KO mice showed reduced bacterial loads in the spleen when compared to wild-type mice during all time points studied. Additionally, at 14-weeks postinfection IL-10 KO mice had totally cleared the infection. This clearance was preceded by an enhanced IFN-γ, TNF-α and IL-17 responses in both the serum and the spleen of IL-10 KO mice. Additionally, dendritic cells from infected IL-10 KO mice produced elevated levels of IL-12 and TNF-α compared to wild-type animals. Histopathology analysis was performed and both KO and wild-type mice developed multifocal granulomas and necrosis in the liver. However, at six-weeks postinfection reduced numbers of granulomas was detected in IL-10 KO mice compared to wild-type animals. This reduced liver pathology at later stage of infection was accompanied by increased numbers of CD4+CD25+foxp3+ T cells and expression of TGF-β in IL-10 KO splenocytes. Taken together, our findings demonstrate that IL-10 modulates the proinflammatory immune response to B. abortus infection and the lack of IL-10 increases resistance to Brucella infection. PMID:24069337

  16. Heme oxygenase 1-mediated neurogenesis is enhanced by Ginkgo biloba (EGb 761®) after permanent ischemic stroke in mice.

    PubMed

    Nada, Shadia E; Tulsulkar, Jatin; Shah, Zahoor A

    2014-04-01

    Stroke is the fourth leading cause of death and a major cause of disability in stroke survivors. Studies have underlined the importance of repair mechanisms in the recovery phase of stroke. Neurogenesis in response to brain injury is one of the regeneration processes that, if enhanced, may offer better stroke treatment alternatives. Previously, we have demonstrated antioxidant, neuritogenic, and angiogenic properties of Ginkgo biloba/EGb 761® (EGb 761) in different mouse models of stroke. In the present study, we were interested to study whether EGb 761 could protect mice from permanent middle cerebral artery occlusion (pMCAO) and enhance neurogenesis. EGb 761 pre- and posttreated mice had lower infarct volume and improved motor skills with enhanced proliferation of neuronal stem/progenitor cells (NSPCs) at 24 h and 7 days posttreatment. Netrin-1 and its receptors (DCC and UNC5B) that mediate axonal attraction and repulsion were observed to be overexpressed in NSPCs only, implying that netrin-1 and its receptors might have partly played a role in enhanced neurogenesis. Interestingly, in heme oxygenase 1 knockout mice (HO1(-/-)), neurogenesis was significantly lower than in vehicle-treated mice at day 8. Furthermore, EGb 761 posttreated mice also demonstrated heme oxygenase 1 (HO1)-activated pathway of phosphorylated glycogen synthase kinase 3 α/β (p-GSK-3 α/β), collapsin response mediator protein 2 (CRMP-2), semaphorin3A (SEMA3A), and Wnt, suggesting probable signaling pathways involved in proliferation, differentiation, and migration of NSPCs. Together, these results propose that EGb 761 not only has antioxidant, neuritogenic, and angiogenic properties, but can also augment the repair and regeneration mechanisms following stroke.

  17. Enhancing self-regulation as a strategy for obesity prevention in Head Start preschoolers: the growing healthy study

    PubMed Central

    2012-01-01

    Background Nearly one in five 4-year-old children in the United States are obese, with low-income children almost twice as likely to be obese as their middle/upper-income peers. Few obesity prevention programs for low-income preschoolers and their parents have been rigorously tested, and effects are modest. We are testing a novel obesity prevention program for low-income preschoolers built on the premise that children who are better able to self-regulate in the face of psychosocial stressors may be less likely to eat impulsively in response to stress. Enhancing behavioral self-regulation skills in low-income children may be a unique and important intervention approach to prevent childhood obesity. Methods/design The Growing Healthy study is a randomized controlled trial evaluating two obesity prevention interventions in 600 low-income preschoolers attending Head Start, a federally-funded preschool program for low-income children. Interventions are delivered by community-based, nutrition-education staff partnering with Head Start. The first intervention (n = 200), Preschool Obesity Prevention Series (POPS), addresses evidence-based obesity prevention behaviors for preschool-aged children and their parents. The second intervention (n = 200) comprises POPS in combination with the Incredible Years Series (IYS), an evidence-based approach to improving self-regulation among preschool-aged children. The comparison condition (n = 200) is Usual Head Start Exposure. We hypothesize that POPS will yield positive effects compared to Usual Head Start, and that the combined intervention (POPS + IYS) addressing behaviors well-known to be associated with obesity risk, as well as self-regulatory capacity, will be most effective in preventing excessive increases in child adiposity indices (body mass index, skinfold thickness). We will evaluate additional child outcomes using parent and teacher reports and direct assessments of food-related self-regulation. We will

  18. Betaine enhances antidepressant-like, but blocks psychotomimetic effects of ketamine in mice.

    PubMed

    Lin, Jen-Cheng; Lee, Mei-Yi; Chan, Ming-Huan; Chen, Yi-Chyan; Chen, Hwei-Hsien

    2016-09-01

    Ketamine is emerging as a new hope against depression, but ketamine-associated psychotomimetic effects limit its clinical use. An adjunct therapy along with ketamine to alleviate its adverse effects and even potentiate the antidepressant effects might be an alternative strategy. Betaine, a methyl derivative of glycine and a dietary supplement, has been shown to have antidepressant-like effects and to act like a partial agonist at the glycine site of N-methyl-D-aspartate receptors (NMDARs). Accordingly, betaine might have potential to be an adjunct to ketamine treatment for depression. The antidepressant-like effects of ketamine and betaine were evaluated by forced swimming test and novelty suppressed feeding test in mice. Both betaine and ketamine produced antidepressant-like effects. Furthermore, we determined the effects of betaine on ketamine-induced antidepressant-like and psychotomimetic behaviors, motor incoordination, hyperlocomotor activity, and anesthesia. The antidepressant-like responses to betaine combined with ketamine were stronger than their individual effects. In contrast, ketamine-induced impairments in prepulse inhibition, novel object recognition test, social interaction, and rotarod test were remarkably attenuated, whereas ketamine-induced hyperlocomotion and loss of righting reflex were not affected by betaine. These findings revealed that betaine could enhance the antidepressant-like effects, yet block the psychotomimetic effects of ketamine, suggesting that betaine can be considered as an add-on therapy to ketamine for treatment-resistant depression and suitable for the treatment of depressive symptoms in patients with schizophrenia. PMID:27363702

  19. In vivo analysis of mouse gastrin gene regulation in enhanced GFP-BAC transgenic mice.

    PubMed

    Takaishi, Shigeo; Shibata, Wataru; Tomita, Hiroyuki; Jin, Guangchun; Yang, Xiangdong; Ericksen, Russell; Dubeykovskaya, Zinaida; Asfaha, Samuel; Quante, Michael; Betz, Kelly S; Shulkes, Arthur; Wang, Timothy C

    2011-02-01

    Gastrin is secreted from a subset of neuroendocrine cells residing in the gastric antrum known as G cells, but low levels are also expressed in fetal pancreas and intestine and in many solid malignancies. Although past studies have suggested that antral gastrin is transcriptionally regulated by inflammation, gastric pH, somatostatin, and neoplastic transformation, the transcriptional regulation of gastrin has not previously been demonstrated in vivo. Here, we describe the creation of an enhanced green fluorescent protein reporter (mGAS-EGFP) mouse using a bacterial artificial chromosome that contains the entire mouse gastrin gene. Three founder lines expressed GFP signals in the gastric antrum and the transitional zone to the corpus. In addition, GFP(+) cells could be detected in the fetal pancreatic islets and small intestinal villi, but not in these organs of the adult mice. The administration of acid-suppressive reagents such as proton pump inhibitor omeprazole and gastrin/CCK-2 receptor antagonist YF476 significantly increased GFP signal intensity and GFP(+) cell numbers in the antrum, whereas these parameters were decreased by overnight fasting, octreotide (long-lasting somatostatin ortholog) infusion, and Helicobacter felis infection. GFP(+) cells were also detected in the anterior lobe of the pituitary gland and importantly in the colonic tumor cells induced by administration with azoxymethane and dextran sulfate sodium salt. This transgenic mouse provides a useful tool to study the regulation of mouse gastrin gene in vivo, thus contributing to our understanding of the mechanisms involved in transcriptional control of the gastrin gene.

  20. Oroxylin A enhances memory consolidation through the brain-derived neurotrophic factor in mice.

    PubMed

    Kim, Dong Hyun; Lee, Younghwan; Lee, Hyung Eun; Park, Se Jin; Jeon, Su Jin; Jeon, Se Jin; Cheong, Jae Hoon; Shin, Chan Young; Son, Kun Ho; Ryu, Jong Hoon

    2014-09-01

    Memory consolidation is a process by which acquired information is transformed from a labile into a more stable state that can be retrieved at a later time. In the present study, we investigated the role of oroxylin A on the memory consolidation process in mice. Oroxylin A improved the memory retention administered at 0 h, 1 h and 3 h after training in a passive avoidance task, suggesting that oroxylin A facilitates memory consolidation. Oroxylin A increased mature brain-derived neurotrophic factor (mBDNF) levels in the hippocampus from 6h to 24h after administration. Moreover, 3h post-training administration of oroxylin A enhanced the mBDNF level at 9h after the acquisition trial compared to the level at 6h after the acquisition trial. However, 6h post-training administration of oroxylin A did not increase the mBDNF level at 9h after the acquisition trial. Blocking mBDNF signaling with recombinant tropomyosin receptor kinase B (TrkB)-Fc or k252a at 9h after the acquisition trial obstructed the effect of oroxylin A on memory consolidation. Taken together, our data suggest that oroxylin A facilitates memory consolidation through BDNF-TrkB signaling and confirms that the increase of BDNF in a specific time window plays a crucial role in memory consolidation.

  1. Dibutyl Maleate and Dibutyl Fumarate Enhance Contact Sensitization to Fluorescein Isothiocyanate in Mice.

    PubMed

    Matsuoka, Takeshi; Kurohane, Kohta; Suzuki, Wakana; Ogawa, Erina; Kobayashi, Kamiyu; Imai, Yasuyuki

    2016-01-01

    Di-n-butyl phthalate (DBP), a phthalate ester, has been shown to have an adjuvant effect on fluorescein isothiocyanate (FITC)-induced contact hypersensitivity (CHS) mouse models. Di-n-butyl maleate (DBM), widely used as a plasticizer for industrial application, has been reported to cause dermatitis in humans. DBM is a butyl alcohol ester of di-carboxylic acid that represents a part of the DBP structure, while di-n-butyl fumarate (DBF) is a trans isomer of DBM. We examined whether DBM or DBF exhibits an adjuvant effect like DBP does. When BALB/c mice were epicutaneously sensitized with FITC in the presence of DBM or DBF, the FITC-specific CHS response was enhanced, as we have observed for DBP. As to underlying mechanisms, DBM and DBF facilitated the trafficking of FITC-presenting CD11c(+) dendritic cells (DCs) from skin to draining lymph nodes and increased the cytokine production by draining lymph nodes. In conclusion, DBM and DBF may have an effect that aggravates contact dermatitis through a skin sensitization process. PMID:26632200

  2. Priming of hepatocytes enhances in vivo liver transduction with lentiviral vectors in adult mice.

    PubMed

    Pichard, Virginie; Boni, Sébastien; Baron, William; Nguyen, Tuan Huy; Ferry, Nicolas

    2012-02-01

    Lentiviral vectors are promising tools for liver disease gene therapy, because they can achieve protracted expression of transgenes in hepatocytes. However, the question as to whether cell division is required for optimal hepatocyte transduction has still not been completely answered. Liver gene-transfer efficiency after in vivo administration of recombinant lentiviral vectors carrying a green fluorescent protein reporter gene under the control of a liver-specific promoter in mice that were either hepatectomized or treated with cholic acid or phenobarbital was compared. Phenobarbital is known as a weak inducer of hepatocyte proliferation, whereas cholic acid has no direct effect on the cell cycle. This study shows that cholic acid is able to prime hepatocytes without mitosis induction. Both phenobarbital and cholic acid significantly increased hepatocyte transduction six- to ninefold, although cholic acid did not modify the mitotic index or cell-cycle entry. However, the effect of either compound was weaker than that observed after partial hepatectomy. In no cases was there a correlation between the expression of cell-cycle marker and transduction efficiency. We conclude that priming of hepatocytes should be considered a clinically applicable strategy to enhance in vivo liver gene therapy with lentiviral vectors.

  3. Transcriptomic plasticity in brown adipose tissue contributes to an enhanced capacity for nonshivering thermogenesis in deer mice.

    PubMed

    Velotta, Jonathan P; Jones, Jennifer; Wolf, Cole J; Cheviron, Zachary A

    2016-06-01

    For small mammals living at high altitude, aerobic heat generation (thermogenesis) is essential for survival during prolonged periods of cold, but is severely impaired under conditions of hypobaric hypoxia. Recent studies in deer mice (Peromyscus maniculatus) reveal adaptive enhancement of thermogenesis in high- compared to low-altitude populations under hypoxic cold stress, an enhancement that is attributable to modifications in the aerobic metabolism of muscles used in shivering. However, because small mammals rely heavily on nonshivering mechanisms for cold acclimatization, we tested for evidence of adaptive divergence in nonshivering thermogenesis (NST) under hypoxia. To do so, we measured NST and characterized transcriptional profiles of brown adipose tissue (BAT) in high- and low-altitude deer mice that were (i) wild-caught and acclimatized to their native altitude, and (ii) born and reared under common garden conditions at low elevation. We found that NST performance under hypoxia is enhanced in wild-caught, high-altitude deer mice, a difference that is associated with increased expression of coregulated genes that influence several physiological traits. These traits include vascularization and O2 supply to BAT, brown adipocyte proliferation and the uncoupling of oxidative phosphorylation from ATP synthesis in the generation of heat. Our results suggest that acclimatization to hypoxic cold stress is facilitated by enhancement of nonshivering heat production, which is driven by regulatory plasticity in a suite of genes that influence intersecting physiological pathways. PMID:27126783

  4. Munc18-1 haploinsufficiency results in enhanced anxiety-like behavior as determined by heart rate responses in mice.

    PubMed

    Hager, Torben; Maroteaux, Grégoire; Pont, Paula du; Julsing, Joris; van Vliet, Rick; Stiedl, Oliver

    2014-03-01

    Heterozygous (HZ) missense mutations in the gene encoding syntaxin binding protein 1 (Stxbp1 or Munc18-1), a presynaptic protein essential for neurotransmitter release, causes early infantile epileptic encephalopathy, abnormal brain structure and mental retardation in humans. Here we investigated whether the mouse model mimics symptoms of the human phenotype. The effects of the deletion of munc18-1 were studied in HZ and wild-type (WT) mice based on heart rate (HR) and its variability (HRV) as independent measures to expand previous behavioral results of enhanced anxiety and impaired emotional learning suggesting mild cognitive impairments. HR responses were assessed during novelty exposure, during the expression and extinction of conditioned tone-dependent fear and during the diurnal phase. Novelty exposure yielded no differences in activity patterns between the two genotypes, while maximum HR differed significantly (WT: 770 bpm; HZ: 790 bpm). Retention tests after both auditory delay and trace fear conditioning showed a delayed extinction of the conditioned HR response in HZ mice compared to WT mice. Since the HR versus HRV correlation and HR dynamics assessed by nonlinear methods revealed similar function in HZ and WT mice, the higher HR responses of munc18-1 HZ mice to different emotional challenges cannot be attributed to differences in autonomic nervous system function. Thus, in contrast to the adverse consequences of deletion of a single allele of munc18-1 in humans, C57BL/6J mice show enhanced anxiety responses based on HR adjustments that extend previous results on the behavioral level without support of cognitive impairment, epileptic seizures and autonomic dysregulation.

  5. Minocycline enhances hippocampal memory, neuroplasticity and synapse-associated proteins in aged C57 BL/6 mice.

    PubMed

    Jiang, Ying; Liu, Yingying; Zhu, Cansheng; Ma, Xiaomeng; Ma, Lili; Zhou, Linli; Huang, Qiling; Cen, Lei; Pi, Rongbiao; Chen, Xiaohong

    2015-05-01

    Previous studies have suggested that minocycline can attenuate cognitive deficits in animal models of conditions such as Alzheimer's disease and cerebral ischemia through inhibiting microglia associated anti-inflammatory actions. However the pathway that minocycline targets to enhance cognitive performance is not fully defined. Here we examined the effects of minocycline on learning and memory in aged (22-month-old) C57 BL/6 mice. We treated one group of mice with minocycline (30 mg/kg/day), and another group of mice with donepezil (2 mg/kg/day) as a positive control. The Morris water maze and passive avoidance tests were used to evaluate the effects of minocycline on learning and memory deficits. We also used high-frequency stimulation-induced long-term potentiation and Golgi-Cox staining to assess the effect of minocycline on synaptic plasticity and synaptogenesis. The effects of minocycline on synapse-associated signaling proteins were determined by western blot. We found that minocycline ameliorates cognitive deficits, enhances neuroplasticity, activates brain-derived neurotrophic factor- extracellular signal-regulated kinases signaling and increases expression of Arc, EGR1 and PSD-95 in the CA1 and dentate gyrus regions of the hippocampus in aged mice. The effects of minocycline in aged mice were similar to those of donepezil. Our results suggest that minocycline could improve learning and memory through enhancing synaptic plasticity and synaptogenesis, modulating the expression of synapse-associated signaling proteins, which provide a rationale for exploring the viability of using minocycline treatment in cognitive deficits.

  6. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass

    PubMed Central

    Farman, H. H.; Windahl, S. H.; Westberg, L.; Isaksson, H.; Egecioglu, E.; Schele, E.; Ryberg, H.; Jansson, J. O.; Tuukkanen, J.; Koskela, A.; Xie, S. K.; Hahner, L.; Zehr, J.; Clegg, D. J.; Lagerquist, M. K.

    2016-01-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα−/−). Female POMC-ERα−/− and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα−/− mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice. PMID:27254004

  7. Female Mice Lacking Estrogen Receptor-α in Hypothalamic Proopiomelanocortin (POMC) Neurons Display Enhanced Estrogenic Response on Cortical Bone Mass.

    PubMed

    Farman, H H; Windahl, S H; Westberg, L; Isaksson, H; Egecioglu, E; Schele, E; Ryberg, H; Jansson, J O; Tuukkanen, J; Koskela, A; Xie, S K; Hahner, L; Zehr, J; Clegg, D J; Lagerquist, M K; Ohlsson, C

    2016-08-01

    Estrogens are important regulators of bone mass and their effects are mainly mediated via estrogen receptor (ER)α. Central ERα exerts an inhibitory role on bone mass. ERα is highly expressed in the arcuate (ARC) and the ventromedial (VMN) nuclei in the hypothalamus. To test whether ERα in proopiomelanocortin (POMC) neurons, located in ARC, is involved in the regulation of bone mass, we used mice lacking ERα expression specifically in POMC neurons (POMC-ERα(-/-)). Female POMC-ERα(-/-) and control mice were ovariectomized (OVX) and treated with vehicle or estradiol (0.5 μg/d) for 6 weeks. As expected, estradiol treatment increased the cortical bone thickness in femur, the cortical bone mechanical strength in tibia and the trabecular bone volume fraction in both femur and vertebrae in OVX control mice. Importantly, the estrogenic responses were substantially increased in OVX POMC-ERα(-/-) mice compared with the estrogenic responses in OVX control mice for cortical bone thickness (+126 ± 34%, P < .01) and mechanical strength (+193 ± 38%, P < .01). To test whether ERα in VMN is involved in the regulation of bone mass, ERα was silenced using an adeno-associated viral vector. Silencing of ERα in hypothalamic VMN resulted in unchanged bone mass. In conclusion, mice lacking ERα in POMC neurons display enhanced estrogenic response on cortical bone mass and mechanical strength. We propose that the balance between inhibitory effects of central ERα activity in hypothalamic POMC neurons in ARC and stimulatory peripheral ERα-mediated effects in bone determines cortical bone mass in female mice.

  8. The post-training memory enhancement induced by physostigmine and oxotremorine in mice is not state-dependent.

    PubMed

    Baratti, C M; Kopf, S R

    1996-03-01

    Immediate post-training subcutaneous administration of either the centrally acting anticholinesterase physostigmine (35, 70, or 150 mu g/kg) or the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 mu g/kg) significantly enhanced retention of male Swiss mice tested 48 h after training in a one-trial step-through inhibitory avoidance task (0.8 mA, 50 Hz, 1 s footshock). Neither physostigmine nor OTM affected latencies to step through in mice not given the footshock on the training trial, suggesting that the effects of both cholinomimetics on retention performance were not due to nonspecific actions on response test latencies. The peripherally acting anticholinesterase neostigmine (35, 70, or 150 mu g/kg) did not significantly influence retention latencies of either shocked or unshocked mice. The influences of physostigmine (150 mu g/kg) or OTM (100 mu g/kg) 30 min prior to the retention test did not affect the retention performance of mice given post-training injections of either saline, physostigmine (150 mu g/kg), or OTM (100 mu g/kg). Considered together, these findings indicate that the memory-enhancing effects of post-training administration of physostigmine or OTM are not state-dependent and are consistent with the view that the behavioral effects of the cholinomimetics drugs are mediated through an interaction with the neural processes underlying the storage of acquired information. PMID:8833101

  9. Adipose tissue hyperplasia with enhanced adipocyte-derived stem cell activity in Tc1(C8orf4)-deleted mice

    PubMed Central

    Jang, Hayoung; Kim, Minsung; Lee, Soyoung; Kim, Jungtae; Woo, Dong-Cheol; Kim, Kyung Won; Song, Kyuyoung; Lee, Inchul

    2016-01-01

    Adipose tissue hyperplasia with increased number of adipocytes is implicated in a protective rather than deleterious effect on obesity-associated metabolic disorder. It is poorly understood how the adipose tissue cellularity is regulated. Tc1 is a gene of vertebrates that regulates diverse downstream genes. Young Tc1-deleted mice fed on standard chow diet show expanded adipose tissue with smaller adipocytes in size compared to wild type controls, representing adipose tissue hyperplasia. Tc1−/− mice show enhanced glucose tolerance and reduced serum lipids. Adipocyte-derived stem cells (ADSCs) from Tc1−/− mice show enhanced proliferative and adipogenic capacity compared to wild type controls, suggesting that the adipose hyperplasia is regulated at the stem cell level. PPARγ and CEBPα are up-regulated robustly in Tc1−/− ADSCs upon induction for adipogenesis. Wisp2 and Dlk1, inhibitors of adipogenesis, are down-regulated in Tc1−/− ADSCs compared to controls. Tc1-transfected NIH3T3 cells show higher β-catenin reporter signals than vector transfected controls, suggesting a role of canonical Wnt signaling in the Tc1-dependent adipose regulation. Our data support that Tc1 is a novel regulator for adipose stem cells. Adipose tissue hyperplasia may be implicated in the metabolic regulation of Tc1−/− mice. PMID:27775060

  10. Naringenin enhances the efficacy of human embryonic stem cell-derived pancreatic endoderm in treating gestational diabetes mellitus mice.

    PubMed

    Xing, Bao-Heng; Yang, Feng-Zhen; Wu, Xiao-Hua

    2016-06-01

    Gestational diabetes mellitus (GDM) is a disease commonly occurs during mid to late pregnancy with pathologies such as hyperglycemia, hyperinsulinemia and mal-development of fetus. We have previously demonstrated that pancreatic endoderm (PE) derived from human embryonic stem cells (hESCs) effectively alleviated diabetic symptoms in a mouse model of GDM, although the clinical efficacy was limited due to oxidative stress. In this study, using the anti-oxidant agent naringenin, we aimed to further enhance the efficacy of hESC-derived PE transplant. Insulin-secreting PE was differentiated from hESCs, which were then transplanted into GDM mice. Naringenin was administered to mice receiving the PE transplant, with sham operated mice serving as negative control, to assess its effect on alleviation of GDM symptoms. We found that naringenin supplement further improved insulin response, glucose metabolism and reproductive outcome of the PE-transplanted female mice. Our new findings further potentiates the feasibility of using differentiated hESCs to treat GDM, in which anti-oxidative agent such as naringenin could greatly enhance the clinical efficacy of stem cell based therapies. PMID:27156928

  11. The post-training memory enhancement induced by physostigmine and oxotremorine in mice is not state-dependent.

    PubMed

    Baratti, C M; Kopf, S R

    1996-03-01

    Immediate post-training subcutaneous administration of either the centrally acting anticholinesterase physostigmine (35, 70, or 150 mu g/kg) or the centrally acting muscarinic cholinergic agonist oxotremorine (OTM; 25, 50, or 100 mu g/kg) significantly enhanced retention of male Swiss mice tested 48 h after training in a one-trial step-through inhibitory avoidance task (0.8 mA, 50 Hz, 1 s footshock). Neither physostigmine nor OTM affected latencies to step through in mice not given the footshock on the training trial, suggesting that the effects of both cholinomimetics on retention performance were not due to nonspecific actions on response test latencies. The peripherally acting anticholinesterase neostigmine (35, 70, or 150 mu g/kg) did not significantly influence retention latencies of either shocked or unshocked mice. The influences of physostigmine (150 mu g/kg) or OTM (100 mu g/kg) 30 min prior to the retention test did not affect the retention performance of mice given post-training injections of either saline, physostigmine (150 mu g/kg), or OTM (100 mu g/kg). Considered together, these findings indicate that the memory-enhancing effects of post-training administration of physostigmine or OTM are not state-dependent and are consistent with the view that the behavioral effects of the cholinomimetics drugs are mediated through an interaction with the neural processes underlying the storage of acquired information.

  12. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory.

    PubMed

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas.

  13. A mouse renin distal enhancer is essential for blood pressure homeostasis in BAC-rescued renin-null mutant mice.

    PubMed

    Tanimoto, Keiji; Kanafusa, Sumiyo; Ushiki, Aki; Matsuzaki, Hitomi; Ishida, Junji; Sugiyama, Fumihiro; Fukamizu, Akiyoshi

    2014-10-01

    Renin is predominantly expressed in juxtaglomerular cells in the kidney and regulates blood pressure homeostasis. To examine possible in vivo functions of a mouse distal enhancer (mdE), we generated transgenic mice (TgM) carrying either wild-type or mdE-deficient renin BACs (bacterial artificial chromosome), integrated at the identical chromosomal site. In the kidneys of the TgM, the mdE contributed 80% to basal renin promoter activity. To test for possible physiological roles for the mdE, renin BAC transgenes were used to rescue the hypotensive renin-null mice. Interestingly, renal renin expression in the Tg(BAC):renin-null compound mice was indistinguishable between the wild-type and mutant BAC carriers. Surprisingly, however, the plasma renin activity and angiotensin I concentration in the mdE compound mutant mice were significantly lower than the same parameters in the control mice, and the mutants were consistently hypotensive, demonstrating that blood pressure homeostasis is regulated through transcriptional cis elements controlling renin activity.

  14. CB2 Cannabinoid Receptor Knockout in Mice Impairs Contextual Long-Term Memory and Enhances Spatial Working Memory

    PubMed Central

    Li, Yong; Kim, Jimok

    2016-01-01

    Neurocognitive effects of cannabinoids have been extensively studied with a focus on CB1 cannabinoid receptors because CB1 receptors have been considered the major cannabinoid receptor in the nervous system. However, recent discoveries of CB2 cannabinoid receptors in the brain demand accurate determination of whether and how CB2 receptors are involved in the cognitive effects of cannabinoids. CB2 cannabinoid receptors are primarily involved in immune functions, but also implicated in psychiatric disorders such as schizophrenia and depression. Here, we examined the effects of CB2 receptor knockout in mice on memory to determine the roles of CB2 receptors in modulating cognitive function. Behavioral assays revealed that hippocampus-dependent, long-term contextual fear memory was impaired whereas hippocampus-independent, cued fear memory was normal in CB2 receptor knockout mice. These mice also displayed enhanced spatial working memory when tested in a Y-maze. Motor activity and anxiety of CB2 receptor knockout mice were intact when assessed in an open field arena and an elevated zero maze. In contrast to the knockout of CB2 receptors, acute blockade of CB2 receptors by AM603 in C57BL/6J mice had no effect on memory, motor activity, or anxiety. Our results suggest that CB2 cannabinoid receptors play diverse roles in regulating memory depending on memory types and/or brain areas. PMID:26819779

  15. Enhanced elimination of theophylline, phenobarbital and strychnine from the bodies of rats and mice by squalane treatment.

    PubMed

    Kamimura, H; Koga, N; Oguri, K; Yoshimura, H

    1992-05-01

    Our previous study suggested that squalane would be a good candidate for an antidote to reduce the toxicity of drug ingested accidentally at a high dose by enhancing the drug elimination from the body. In the present study, we investigated whether squalane given orally could enhance the elimination of theophylline, phenobarbital and strychnine which were administered parenterally to rats or mice. Squalane increased the fecal excretion of theophylline and reduced the serum level of the drug in rats. Squalane accelerated the fecal excretion of strychnine in mice. These results suggest that squalane may stimulate more the elimination of neutral (theophylline) or basic (strychnine) drugs which should be present in unionized form in intestinal lumen, than that of acidic drugs.

  16. Tumours derived from HTLV-I tax transgenic mice are characterized by enhanced levels of apoptosis and oncogene expression.

    PubMed

    Hall, A P; Irvine, J; Blyth, K; Cameron, E R; Onions, D E; Campbell, M E

    1998-10-01

    In order to investigate the role that the human T-lymphotropic virus type I (HTLV-I) tax oncogene plays in apoptosis and transformation in vivo, four lines of HTLV-I tax transgenic mice were generated under the regulatory control of the CD3-epsilon promoter-enhancer sequence. These mice develop a variety of phenotypes including mesenchymal tumours, which develop at wound sites, and salivary and mammary adenomas. In situ DNA fragment labelling and immunocytochemical analysis of these tumours reveals that they display enhanced levels of apoptosis, which is associated with elevated levels of Myc, Fos, Jun, and p53 protein expression. Furthermore, double immunofluorescent staining shows that Tax expression and apoptosis co-localize, indicating that Tax expression is closely associated with apoptosis in vivo. PMID:9924438

  17. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice.

  18. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice. PMID:27412623

  19. Genotype differences in anxiety and fear learning and memory of WT and ApoE4 mice associated with enhanced generation of hippocampal reactive oxygen species.

    PubMed

    Villasana, Laura E; Weber, Sydney; Akinyeke, Tunde; Raber, Jacob

    2016-09-01

    Apolipoprotein E (apoE), involved in cholesterol and lipid metabolism, also influences cognitive function and injury repair. In humans, apoE is expressed in three isoforms. E4 is a risk factor for age-related cognitive decline and Alzheimer's disease, particularly in women. E4 might also be a risk factor for developing behavioral and cognitive changes following (56) Fe irradiation, a component of the space environment astronauts are exposed to during missions. These changes might be related to enhanced generation of reactive oxygen species (ROS). In this study, we compared the behavioral and cognitive performance of sham-irradiated and irradiated wild-type (WT) mice and mice expressing the human E3 or E4 isoforms, and assessed the generation of ROS in hippocampal slices from these mice. E4 mice had greater anxiety-like and conditioned fear behaviors than WT mice, and these genotype differences were associated with greater levels of ROS in E4 than WT mice. The greater generation of ROS in the hippocampus of E4 than WT mice might contribute to their higher anxiety levels and enhanced fear conditioning. In E4, but not WT, mice, phorbol-12-myristate-13-acetate-treated hippocampal slices showed more dihydroxy ethidium oxidation in sham-irradiated than irradiated mice and hippocampal heme oxygenase-1 levels were higher in irradiated than sham-irradiated E4 mice. Mice with apolipoprotein E4 (E4), a risk factor for Alzheimer's disease, have greater anxiety-like and conditioned fear behaviors than wild-type (WT) mice. Generation of reactive oxygen species (ROS, in red) 3 months following (56) Fe irradiation, a component of the space environment astronauts are exposed to, is more pronounced in the hippocampus of E4 than WT mice. In E4, but not WT, mice, hippocampal levels of the oxidative stress-relevant marker heme oxygenase-1 are higher in irradiated than sham-irradiated E4 mice.

  20. Dietary supplementation with curcumin enhances metastatic growth of Lewis lung carcinoma in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The present study investigated the effects of dietary supplementation with curcumin (the principal curcuminoid of the popular Indian spice turmeric) on spontaneous metastasis of Lewis lung carcinoma (LLC) in female C57/BL6 mice. Mice were fed the AIN93G control diet or that diet supplemented with 2...

  1. Acetic acid enhances endurance capacity of exercise-trained mice by increasing skeletal muscle oxidative properties.

    PubMed

    Pan, Jeong Hoon; Kim, Jun Ho; Kim, Hyung Min; Lee, Eui Seop; Shin, Dong-Hoon; Kim, Seongpil; Shin, Minkyeong; Kim, Sang Ho; Lee, Jin Hyup; Kim, Young Jun

    2015-01-01

    Acetic acid has been shown to promote glycogen replenishment in skeletal muscle during exercise training. In this study, we investigated the effects of acetic acid on endurance capacity and muscle oxidative metabolism in the exercise training using in vivo mice model. In exercised mice, acetic acid induced a significant increase in endurance capacity accompanying a reduction in visceral adipose depots. Serum levels of non-esterified fatty acid and urea nitrogen were significantly lower in acetic acid-fed mice in the exercised mice. Importantly, in the mice, acetic acid significantly increased the muscle expression of key enzymes involved in fatty acid oxidation and glycolytic-to-oxidative fiber-type transformation. Taken together, these findings suggest that acetic acid improves endurance exercise capacity by promoting muscle oxidative properties, in part through the AMPK-mediated fatty acid oxidation and provide an important basis for the application of acetic acid as a major component of novel ergogenic aids.

  2. Diosgenin-induced cognitive enhancement in normal mice is mediated by 1,25D3-MARRS

    NASA Astrophysics Data System (ADS)

    Tohda, Chihiro; Lee, Young-A.; Goto, Yukiori; Nemere, Ilka

    2013-12-01

    We previously reported that diosgenin, a plant-derived steroidal sapogenin, improved memory and reduced axonal degeneration in an Alzheimer's disease mouse model. Diosgenin directly activated the membrane-associated rapid response steroid-binding receptor (1,25D3-MARRS) in neurons. However, 1,25D3-MARRS-mediated diosgenin signaling was only shown in vitro in the previous study. Here, we aimed to obtain in vivo evidence showing that diosgenin signaling is mediated by 1,25D3-MARRS in the mouse brain. Diosgenin treatment in normal mice enhanced object recognition memory and spike firing and cross-correlation in the medial prefrontal cortex and hippocampal CA1. In diosgenin-treated mice, axonal density and c-Fos expression was increased in the medial prefrontal and perirhinal cortices, suggesting that neuronal network activation may be enhanced. The diosgenin-induced memory enhancement and axonal growth were completely inhibited by co-treatment with a neutralizing antibody for 1,25D3-MARRS. Our in vivo data indicate that diosgenin is a memory-enhancing drug and that enhancement by diosgenin is mediated by 1,25D3-MARRS-triggered axonal growth.

  3. Pluronic P85 enhances the efficacy of outer membrane vesicles as a subunit vaccine against Brucella melitensis challenge in mice

    PubMed Central

    Jain-Gupta, Neeta; Contreras-Rodriguez, Araceli; Vemulapalli, Ramesh; Witonsky, Sharon G.; Boyle, Stephen M.; Sriranganathan, Nammalwar

    2015-01-01

    Brucellosis is the most common zoonotic disease worldwide and there is no vaccine for human use. Brucella melitensis Rev1, a live attenuated strain, is the commercial vaccine for small ruminants to prevent B. melitensis infections but has been associated with abortions in animals. Moreover, strain Rev1 is known to cause disease in humans and cannot be used for human vaccination. Outer membrane vesicles (OMVs) obtained from B. melitensis have been shown to provide protection similar to strain Rev1 in mice against B. melitensis challenge. In the present work we tested the efficacy of Pluronic P85 as an adjuvant to enhance the efficacy of Brucella OMVs as a vaccine. P85 enhanced the in vitro secretion of TNF-α by macrophages induced with OMVs and P85. Further, P85 enhanced the protection provided by OMVs against B. melitensis challenge. This enhanced protection was associated with higher total IgG antibody production but not increased IFN-γ or IL-4 cytokine levels. Moreover, P85 alone provided significantly better clearance of B. melitensis compared to saline vaccinated mice. Further studies are warranted to find the mechanism of action of P85 that provides non-specific protection and enhances the efficacy of OMVs as a vaccine against B. melitensis. PMID:23163875

  4. Fibrillin-1 impairment enhances blood-brain barrier permeability and xanthoma formation in brains of apolipoprotein E-deficient mice.

    PubMed

    Van der Donckt, C; Roth, L; Vanhoutte, G; Blockx, I; Bink, D I; Ritz, K; Pintelon, I; Timmermans, J-P; Bauters, D; Martinet, W; Daemen, M J; Verhoye, M; De Meyer, G R Y

    2015-06-01

    We recently reported that apolipoprotein E (ApoE)-deficient mice with a mutation in the fibrillin-1 gene (ApoE(-/-)Fbn1(C1039G+/-)) develop accelerated atherosclerosis with enhanced inflammation, atherosclerotic plaque rupture, myocardial infarction and sudden death. In the brain, fibrillin-1 functions as an attachment protein in the basement membrane, providing structural support to the blood-brain barrier (BBB). Here, we investigated whether fibrillin-1 impairment affects the permeability of the BBB proper and the blood-cerebrospinal fluid barrier (BCSFB), and whether this leads to the accelerated accumulation of lipids (xanthomas) in the brain. ApoE(-/-) (n=61) and ApoE(-/-)Fbn1(C1039G+/-) (n=73) mice were fed a Western-type diet (WD). After 14 weeks WD, a significantly higher permeability of the BBB was observed in ApoE(-/-)Fbn1(C1039G+/-) mice compared to age-matched ApoE(-/-) mice. This was accompanied by leukocyte infiltration, enhanced expression of pro-inflammatory cytokines, matrix metalloproteinases and transforming growth factor-β, and by decreased expression of tight junction proteins claudin-5 and occludin. After 20 weeks WD, 83% of ApoE(-/-)Fbn1(C1039G+/-) mice showed xanthomas in the brain, compared to 23% of their ApoE(-/-) littermates. Xanthomas were mainly located in fibrillin-1-rich regions, such as the choroid plexus and the neocortex. Our findings demonstrate that dysfunctional fibrillin-1 impairs BBB/BCSFB integrity, facilitating peripheral leukocyte infiltration, which further degrades the BBB/BCSFB. As a consequence, lipoproteins can enter the brain, resulting in accelerated formation of xanthomas. PMID:25797463

  5. Two weeks of metformin treatment enhances mitochondrial respiration in skeletal muscle of AMPK kinase dead but not wild type mice.

    PubMed

    Kristensen, Jonas M; Larsen, Steen; Helge, Jørn W; Dela, Flemming; Wojtaszewski, Jørgen F P

    2013-01-01

    Metformin is used as an anti-diabetic drug. Metformin ameliorates insulin resistance by improving insulin sensitivity in liver and skeletal muscle. Reduced mitochondrial content has been reported in type 2 diabetic muscles and it may contribute to decreased insulin sensitivity characteristic for diabetic muscles. The molecular mechanism behind the effect of metformin is not fully clarified but inhibition of complex I in the mitochondria and also activation of the 5'AMP activated protein kinase (AMPK) has been reported in muscle. Furthermore, both AMPK activation and metformin treatment have been associated with stimulation of mitochondrial function and biogenesis. However, a causal relationship in skeletal muscle has not been investigated. We hypothesized that potential effects of in vivo metformin treatment on mitochondrial function and protein expressions in skeletal muscle are dependent upon AMPK signaling. We investigated this by two weeks of oral metformin treatment of muscle specific kinase dead α(2) (KD) AMPK mice and wild type (WT) littermates. We measured mitochondrial respiration and protein activity and expressions of key enzymes involved in mitochondrial carbohydrate and fat metabolism and oxidative phosphorylation. Mitochondrial respiration, HAD and CS activity, PDH and complex I-V and cytochrome c protein expression were all reduced in AMPK KD compared to WT tibialis anterior muscles. Surprisingly, metformin treatment only enhanced respiration in AMPK KD mice and thereby rescued the respiration defect compared to the WT mice. Metformin did not influence protein activities or expressions in either WT or AMPK KD mice.We conclude that two weeks of in vivo metformin treatment enhances mitochondrial respiration in the mitochondrial deficient AMPK KD but not WT mice. The improvement seems to be unrelated to AMPK, and does not involve changes in key mitochondrial proteins.

  6. Ovariectomy is associated with metabolic impairments and enhanced mammary tumor growth in MKR mice.

    PubMed

    Ben-Shmuel, Sarit; Scheinman, Eyal J; Rashed, Rola; Orr, Zila Shen; Gallagher, Emily J; LeRoith, Derek; Rostoker, Ran

    2015-12-01

    Obesity and type 2 diabetes (T2D) are associated with an increased risk of breast cancer incidence and mortality. Common features of obesity and T2D are insulin resistance and hyperinsulinemia. A mammary tumor promoting effect of insulin resistance and hyperinsulinemia was demonstrated in the transgenic female MKR mouse model of pre-diabetes inoculated with mammary cancer cells. Interestingly, in MKR mice, as well as in other diabetic mouse models, males exhibit severe hyperglycemia, while females display insulin resistance and hyperinsulinemia with only a mild increase in blood glucose levels. This gender-specific protection from hyperglycemia may be attributed to estradiol, a key player in the regulation of the metabolic state, including obesity, glucose homeostasis, insulin resistance, and lipid profile. The aim of this study was to investigate the effects of ovariectomy (including the removal of endogenous estradiol) on the metabolic state of MKR female mice and subsequently on the growth of Mvt-1 mammary cancer cells, inoculated into the mammary fat pad of ovariectomized mice, compared with sham-operated mice. The results showed an increase in body weight, accompanied by increased fat mass, elevated blood glucose levels, and hypercholesterolemia, in ovariectomized MKR mice. In addition, mammary tumor growth was significantly higher in these mice. The results suggest that ovarian hormone deficiency may promote impaired metabolic homeostasis in the hyperinsulinemic MKR female mice, which in turn is associated with an increased growth of mammary tumors. PMID:26383532

  7. Xenogenic transplantation of human breast adipose-derived stromal vascular fraction enhances recovery of erectile function in diabetic mice.

    PubMed

    Das, Nando Dulal; Song, Kang-Moon; Yin, Guo Nan; Batbold, Dulguun; Kwon, Mi-Hye; Kwon, Ki-Dong; Kim, Woo Jean; Kim, Yeon Soo; Ryu, Ji-Kan; Suh, Jun-Kyu

    2014-03-01

    The adipose tissue-derived stromal vascular fraction (SVF) is an ideal source of stem and stromal cells. The aim of this study was to examine whether and how xenogenic transplantation of human breast SVF restores erectile function in diabetic mice. Human SVF was isolated from five patients (age, 20-45 yr) undergoing reduction mammoplasty. Eight-week-old C57BL/6J mice were used, and diabetes was induced by intraperitoneal injection of streptozotocin. At 8 wk after induction of diabetes, the animals were randomly distributed into controls and diabetic mice treated with a single intracavernous injection of PBS, human SVF at different concentrations, or human SVF lysate. Two weeks later, erectile function was measured by cavernous nerve stimulation, and the penis was then harvested for biochemical examinations. Erectile function was significantly improved in diabetic mice treated with human SVF (2 × 10(5), 5 × 10(5), and 1 × 10(6) cells/20 μl) and SVF lysate. Human SVF treatment in diabetic mice significantly increased cavernous endothelial and smooth muscle cell contents, induced eNOS phosphorylation, and restored penile nNOS-positive nerve fibers. Human SVF lysate induced secretion of angiogenic factors and expression of their receptors. Human SVF did not increase serum levels of proinflammatory cytokines. A limitation of this study was that the exact composition of the human SVF was not examined. In summary, xenogenic transplantation of human SVF did not induce systemic inflammation and successfully improved erectile function in diabetic mice through enhanced penile angiogenesis and neural regeneration.

  8. Overexpression of intraislet ghrelin enhances β-cell proliferation after streptozotocin-induced β-cell injury in mice.

    PubMed

    Bando, Mika; Iwakura, Hiroshi; Ariyasu, Hiroyuki; Koyama, Hiroyuki; Hosoda, Kiminori; Adachi, Souichi; Nakao, Kazuwa; Kangawa, Kenji; Akamizu, Takashi

    2013-07-01

    Previously, we reported that exogenous administration of ghrelin ameliorates glucose metabolism in a neonate streptozotocin (STZ)-induced diabetic rat model through enhancement of β-cell proliferation. However, it was not clear whether the observed β-cell proliferation was a direct or indirect effect (e.g., via orexigenic or growth hormone-stimulated pathways) of ghrelin activity. Here, we aimed to investigate whether ghrelin directly impacts β-cell proliferation after STZ-induced injury in mice. Seven-week-old male rat insulin II promoter-ghrelin internal ribosomal sequence ghrelin O-acyltransferase transgenic (RIP-GG Tg) mice, which have elevated pancreatic ghrelin levels, but only minor changes in plasma ghrelin levels when fed a medium-chain triglyceride-rich diet, were treated with STZ. Then, serum insulin, pancreatic insulin mRNA expression, and islet histology were evaluated. We found that the serum insulin levels, but not blood glucose levels, of RIP-GG Tg mice were significantly ameliorated 14 days post-STZ treatment. Pancreatic insulin mRNA expression was significantly elevated in RIP-GG Tg mice, and β-cell numbers in islets were increased. Furthermore, the number of phospho-histone H3⁺ or Ki67⁺ proliferating β-cells was significantly elevated in RIP-GG Tg mice, whereas the apoptotic indexes within the islets, as determined by TUNEL assay, were not changed. These results indicate that ghrelin can directly stimulate β-cell proliferation in vivo after β-cell injury even without its orexigenic or GH-stimulating activities, although it did not have enough impact to normalize the glucose tolerance in adult mice.

  9. Chronic exercise prevents repeated restraint stress-provoked enhancement of immobility in forced swimming test in ovariectomized mice.

    PubMed

    Han, Tae-Kyung; Lee, Jang-Kyu; Leem, Yea-Hyun

    2015-06-01

    We assessed whether chronic treadmill exercise attenuated the depressive phenotype induced by restraint stress in ovariectomized mice (OVX). Immobility of OVX in the forced swimming test was comparable to that of sham mice (CON) regardless of the postoperative time. Immobility was also no difference between restrained mice (exposure to periodic restraint for 21 days; RST) and control mice (CON) on post-exposure 2nd and 9th day, but not 15th day. In contrast, the immobility of ovariectomized mice with repeated stress (OVX + RST) was profoundly enhanced compared to ovariectomized mice-alone (OVX), and this effect was reversed by chronic exercise (19 m/min, 60 min/day, 5 days/week for 8 weeks; OVX + RST + Ex) or fluoxetine administration (20 mg/kg, OVX + RST + Flu). In parallel with behavioral data, the immunoreactivity of Ki-67 and doublecortin (DCX) in OVX was significantly decreased by repeated stress. However, the reduced numbers of Ki-67- and DCX-positive cells in OVX + RST were restored in response to chronic exercise (OVX + RST + Ex) and fluoxetine (OVX + RST + Flu). In addition, the expression pattern of cAMP response element-binding protein (CREB) and calcium-calmodulin-dependent kinase IV (CaMKIV) was similar to that of the hippocampal proliferation and neurogenesis markers (Ki-67 and DCX, respectively). These results suggest that menopausal depression may be induced by an interaction between repeated stress and low hormone levels, rather than a deficit in ovarian secretion alone, which can be improved by chronic exercise.

  10. Corticotropin-releasing hormone receptor type 1-deficiency enhances hippocampal serotonergic neurotransmission: an in vivo microdialysis study in mutant mice.

    PubMed

    Peñalva, R G; Flachskamm, C; Zimmermann, S; Wurst, W; Holsboer, F; Reul, J M H M; Linthorst, A C E

    2002-01-01

    Corticotropin-releasing hormone plays an important role in the coordination of various responses to stress. Previous research has implicated both corticotropin-releasing hormone and the serotonergic system as causative factors in the development and course of stress-related psychiatric disorders such as major depression. To delineate the role of the corticotropin-releasing hormone receptor type 1 (CRH-R1) in the interactions between corticotropin-releasing hormone and serotonergic neurotransmission, in vivo microdialysis was performed in CRH-R1-deficient mice under basal (home cage) and stress (forced swimming) conditions. Hippocampal dialysates were used to measure extracellular levels of serotonin and its metabolite 5-hydroxyindoleacetic acid, and free corticosterone levels to monitor the status of the hypothalamic-pituitary-adrenocortical axis. Moreover, behavioural activity was assessed by visual observation and a scoring paradigm. Both wild-type and heterozygous mutant mice showed a clear diurnal rhythm in free corticosterone. Free corticosterone concentrations were, however, lower in heterozygous mutant mice than in wild-type animals and undetectable in homozygous CRH-R1-deficient mice. Homozygous CRH-R1-deficient mice showed enhanced hippocampal levels of 5-hydroxyindoleacetic acid but not of serotonin during the light and the dark phase of the diurnal cycle, which may point to an enhanced synthesis of serotonin in the raphe-hippocampal system. Moreover, the mutation resulted in higher behavioural activity in the home cage during the light but not during the dark period. Forced swimming caused a rise in hippocampal serotonin followed by a further increase after the end of the stress paradigm in all genotypes. Homozygous and heterozygous mutant mice showed, however, a significantly amplified serotonin response to the forced swimming as compared to wild-type control animals. We conclude that CRH-R1-deficiency results in reduced hypothalamic

  11. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice

    PubMed Central

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-01-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer’s disease. PMID:27133261

  12. Cognitive-Enhancing Effect of Dianthus superbus var. Longicalycinus on Scopolamine-Induced Memory Impairment in Mice.

    PubMed

    Weon, Jin Bae; Jung, Youn Sik; Ma, Choong Je

    2016-05-01

    Dianthus superbus (D. superbus) is a traditional crude drug used for the treatment of urethritis, carbuncles and carcinomas. The objective of this study was to confirm the cognitive enhancing effect of D. superbus in memory impairment induced mice and to elucidate the possible potential mechanism. Effect of D. superbus on scopolamine induced memory impairment on mice was evaluated using the Morris water maze and passive avoidance tests. We also investigated acetylcholinesterase (AChE) activity and brain-derived neurotropic factor (BDNF) expression in scopolamine-induced mice. HPLC-DAD analysis was performed to identify active compounds in D. superbus. The results revealed that D. superbus attenuated the learning and memory impairment induced by scopolamine. D. superbus also inhibited AChE levels in the hippocampi of the scopolamine-injected mice. Moreover, D. superbus increased BDNF expression in the hippocampus. Eight compounds were identified using HPLC-DAD analysis. The content of 4-hydroxyphenyl acetic acid was higher than contents of other compounds. These results indicated that D. superbus improved memory functioning accompanied by inhibition of AChE and upregulation of BDNF, suggesting that D. superbus may be a useful therapeutic agent for the prevention or treatment of Alzheimer's disease.

  13. Procollagen C-Proteinase Enhancer 1 (PCPE-1) as a Plasma Marker of Muscle and Liver Fibrosis in Mice

    PubMed Central

    Hassoun, Eyal; Safrin, Mary; Ziv, Hana; Pri-Chen, Sarah; Kessler, Efrat

    2016-01-01

    Current non-invasive diagnostic methods of fibrosis are limited in their ability to identify early and intermediate stages of fibrosis and assess the efficacy of therapy. New biomarkers of fibrosis are therefore constantly sought for, leading us to evaluate procollagen C-proteinase enhancer 1 (PCPE-1), a fibrosis-related extracellular matrix glycoprotein, as a plasma marker of fibrosis. A sandwich ELISA that permitted accurate measurements of PCPE-1 concentrations in mouse plasma was established. Tissue fibrosis was assessed using histochemical, immunofluorescence, and immunoblotting analyses for type I collagen and PCPE-1. The normal plasma concentration of PCPE-1 in 6 weeks to 4 months old mice was ~200 ng/ml (189.5 ± 11.3 to 206.8 ± 13.8 ng/ml). PCPE-1 plasma concentrations in four and 8.5 months old mdx mice displaying fibrotic diaphragms increased 27 and 40% respectively relatively to age-matched control mice, an increase comparable to that of the N-propeptide of procollagen type III (PIIINP), a known blood marker of fibrosis. PCPE-1 plasma levels in mice with CCl4-induced liver fibrosis increased 34 to 50% relatively to respective controls and reflected the severity of the disease, namely increased gradually during the progression of fibrosis and went down to basal levels during recovery, in parallel to changes in the liver content of collagen I and PCPE-1. The results favor PCPE-1 as a potential new clinically valuable fibrosis biomarker. PMID:27458976

  14. Intake of a milk-based wolfberry formulation enhances the immune response of young-adult and aged mice.

    PubMed

    Vidal, Karine; Benyacoub, Jalil; Sanchez-Garcia, José; Foata, Francis; Segura-Roggero, Iris; Serrant, Patrick; Moser, Mireille; Blum, Stephanie

    2010-02-01

    Aging is associated with alterations of immune responses. Wolfberry, a popular Chinese functional ingredient, is prized for its anti-aging properties; however, little is known about the immunological effect of wolfberry intake. The purpose of this study was to examine the effect of dietary intake of a milk-based formulation of wolfberry, named Lacto-Wolfberry, on in vivo and ex vivo parameters of adaptive immunity in young-adult and aged mice. Over 44 days, young-adult (2 months) and aged (21 months) C57BL/6J mice were fed ad libitum with a controlled diet and received drinking water supplemented or not with 0.5% (wt/vol) Lacto-Wolfberry. All mice were immunized on day 15 and challenged on day 22 with a T cell- dependent antigen, keyhole limpet hemocyanin (KLH). Lacto-Wolfberry supplementation significantly increased in vivo systemic immune markers that are known to decline with aging. Indeed, both antigen-(KLH) specific humoral response and cell-mediated immune responses in young-adult and aged mice were enhanced when compared to their respective controls. No significant effect of Lacto-Wolfberry supplementation was observed on ex vivo spleen cells proliferative response to mitogens and on splenocyte T cell subsets. In conclusion, dietary intake of Lacto-Wolfberry may favorably modulate the poor responsiveness to antigenic challenge observed with aging. PMID:20230278

  15. Statins enhance cognitive performance in object location test in albino Swiss mice: involvement of beta-adrenoceptors.

    PubMed

    Vandresen-Filho, Samuel; França, Lucas Moreira; Alcantara-Junior, José; Nogueira, Lucas Caixeta; de Brito, Thiago Marques; Lopes, Lousã; Junior, Fernando Mesquita; Vanzeler, Maria Luzinete; Bertoldo, Daniela Bohn; Dias, Paula Gomes; Colla, André R S; Hoeller, Alexandre; Duzzioni, Marcelo; Rodrigues, Ana Lúcia S; de Lima, Thereza C M; Tasca, Carla Inês; Viola, Giordano Gubert

    2015-05-01

    Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/kg or 10 mg/kg (v.o.) or simvastatin 10 mg/kg or 20 mg/kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of the used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improve the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation.

  16. Knockout of Density-Enhanced Phosphatase-1 Impairs Cerebrovascular Reserve Capacity in an Arteriogenesis Model in Mice

    PubMed Central

    Hackbusch, Daniel; Dülsner, André; Gatzke, Nora; Krüger, Janine; Hillmeister, Philipp; Nagorka, Stephanie; Blaschke, Florian; Ritter, Zully; Thöne-Reineke, Christa; Böhmer, Frank-D.; Buschmann, Ivo; Kappert, Kai

    2013-01-01

    Collateral growth, arteriogenesis, represents a proliferative mechanism involving endothelial cells, smooth muscle cells, and monocytes/macrophages. Here we investigated the role of Density-Enhanced Phosphatase-1 (DEP-1) in arteriogenesis in vivo, a protein-tyrosine-phosphatase that has controversially been discussed with regard to vascular cell biology. Wild-type C57BL/6 mice subjected to permanent left common carotid artery occlusion (CCAO) developed a significant diameter increase in distinct arteries of the circle of Willis, especially in the anterior cerebral artery. Analyzing the impact of loss of DEP-1 function, induction of collateralization was quantified after CCAO and hindlimb femoral artery ligation comparing wild-type and DEP-1−/− mice. Both cerebral collateralization assessed by latex perfusion and peripheral vessel growth in the femoral artery determined by microsphere perfusion and micro-CT analysis were not altered in DEP-1−/− compared to wild-type mice. Cerebrovascular reserve capacity, however, was significantly impaired in DEP-1−/− mice. Cerebrovascular transcriptional analysis of proarteriogenic growth factors and receptors showed specifically reduced transcripts of PDGF-B. SiRNA knockdown of DEP-1 in endothelial cells in vitro also resulted in significant PDGF-B downregulation, providing further evidence for DEP-1 in PDGF-B gene regulation. In summary, our data support the notion of DEP-1 as positive functional regulator in vascular cerebral arteriogenesis, involving differential PDGF-B gene expression. PMID:24027763

  17. Only watching others making their experiences is insufficient to enhance adult neurogenesis and water maze performance in mice

    PubMed Central

    Iggena, Deetje; Klein, Charlotte; Garthe, Alexander; Winter, York; Kempermann, Gerd; Steiner, Barbara

    2015-01-01

    In the context of television consumption and its opportunity costs the question arises how far experiencing mere representations of the outer world would have the same neural and cognitive consequences than actively interacting with that environment. Here we demonstrate that physical interaction and direct exposition are essential for the beneficial effects of environmental enrichment. In our experiment, the mice living in a simple standard cage placed in the centre of a large enriched environment only indirectly experiencing the stimulus-rich surroundings (IND) did not display increased adult hippocampal neurogenesis. In contrast, the mice living in and directly experiencing the surrounding enriched environment (DIR) and mice living in a similar enriched cage containing an uninhabited inner cage (ENR) showed enhanced neurogenesis compared to mice in control conditions (CTR). Similarly, the beneficial effects of environmental enrichment on learning performance in the Morris Water maze depended on the direct interaction of the individual with the enrichment. In contrast, indirectly experiencing a stimulus-rich environment failed to improve memory functions indicating that direct interaction and activity within the stimulus-rich environment are necessary to induce structural and functional changes in the hippocampus. PMID:26369255

  18. Enhanced sensitivity of laforin- and malin-deficient mice to the convulsant agent pentylenetetrazole

    PubMed Central

    García-Cabrero, Ana M.; Sánchez-Elexpuru, Gentzane; Serratosa, José M.; Sánchez, Marina P.

    2014-01-01

    Lafora disease is a rare form of inherited progressive myoclonus epilepsy caused by mutations in the EPM2A gene encoding laforin, or in the EPM2B gene, which encodes malin. It is characterized by the presence of polyglucosan inclusion bodies (Lafora bodies) in brain and other tissues. Genetically engineered mice lacking expression of either the laforin (Epm2a−/−) or malin (Epm2b−/−) genes display a number of neurological and behavioral abnormalities that resemble those found in patients suffering from Lafora disease; of these, both Epm2a−/− and Epm2b−/− mice have shown altered motor activity, impaired motor coordination, episodic memory deficits, and different degrees of spontaneous epileptic activity. In this study, we analyze the sensitivity of Epm2a−/− and Epm2b−/− mice to the convulsant drug pentylenetetrazol (PTZ), an antagonist of the γ-aminobutyric acid type A (GABAA) receptor, commonly used to induce epileptic tonic-clonic seizures in laboratory animals. PTZ-induced epileptic activity, including myoclonic jerks and tonic-clonic seizures, was analyzed in 2 age groups of mice comprising representative samples of young adult and aged mice, after administration of PTZ at sub-convulsive and convulsive doses. Epm2a−/− and Epm2b−/− mice showed a lower convulsive threshold after PTZ injections at sub-convulsive doses. A lower convulsive threshold and shorter latencies to develop epileptic seizures were observed after PTZ injections at convulsive doses. Different patterns of generalized seizures and of discharges were observed in Epm2a−/− and Epm2b−/− mice. Epm2a−/− and Epm2b−/− mice present an increased sensitivity to the convulsant agent PTZ that may reflect different degrees of increased GABAA receptor-mediated hyperexcitability. PMID:25309313

  19. Tuberculosis: Getting Healthy, Staying Healthy

    MedlinePlus

    Tuberculosis Getting Healthy, Staying Healthy U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES National Institutes of Health National Institute of Allergy and Infectious Diseases Tuberculosis Getting Healthy, Staying Healthy U.S. DEPARTMENT OF HEALTH ...

  20. Expression of stimulator of Fe transport is not enhanced in Hfe knockout mice.

    PubMed

    Knutson, M D; Levy, J E; Andrews, N C; Wessling-Resnick, M

    2001-05-01

    Hfe knockout (-/-) mice recapitulate many of the biochemical abnormalities of hereditary hemochromatosis (HH), but the molecular mechanisms involved in the etiology of iron overload in HH remain poorly understood. It was found previously that livers of patients with HH contained 5-fold higher SFT (stimulator of Fe transport) mRNA levels relative to subjects without HH. Because this observation suggests a possible role for SFT in HH, we investigated SFT mRNA expression in Hfe(-/-) mice. The 4- and 10-wk-old Hfe(-/-) mice do not have elevated levels of hepatic SFT transcripts relative to age-matched Hfe(+/+) mice, despite having 2.2- and 3.3-fold greater hepatic nonheme iron concentrations, respectively. Northern blot analyses of various mouse tissues revealed that SFT is widely expressed. The novel observation that SFT transcripts are abundant in brain prompted a comparison of SFT transcript levels and nonheme iron levels in the brains of Hfe(+/+) and Hfe(-/-) mice. Neither SFT mRNA levels nor nonheme iron levels differed between groups. Further comparisons of Hfe(-/-) and Hfe(+/+) mouse tissues revealed no significant differences in SFT mRNA levels in duodenum, the site of increased iron absorption in HH. Important distinctions between Hfe(-/-) mice and HH patients include not only differences in the relative rate and magnitude of iron loading but also the lack of fibrosis and phlebotomy treatment in the knockout animals.

  1. Cystic echinococcosis therapy: Albendazole-loaded lipid nanocapsules enhance the oral bioavailability and efficacy in experimentally infected mice.

    PubMed

    Pensel, Patricia E; Ullio Gamboa, Gabriela; Fabbri, Julia; Ceballos, Laura; Sanchez Bruni, Sergio; Alvarez, Luis I; Allemandi, Daniel; Benoit, Jean Pierre; Palma, Santiago D; Elissondo, María C

    2015-12-01

    Therapeutic failures attributed to medical management of cystic echinococcosis (CE) with albendazole (ABZ) have been primarily linked to the poor drug absorption rate resulting in low drug level in plasma and hydatid cysts. Lipid nanocapsules (LNCs) represent nanocarriers designed to encapsulate lipophilic drugs, such as ABZ. The goals of the current work were: (i) to characterize the plasma and cyst drug exposure after the administration of ABZ as ABZ-LNCs or ABZ suspension (ABZ-SUSP) in mice infected with Echinococcus granulosus, and ii) to compare the clinical efficacies of both ABZ formulations. Enhanced ABZ sulphoxide (ABZ-SO) concentration profiles were obtained in plasma and cysts from ABZ-LNC treated animals. ABZSO exposure (AUC0-LOQ) was significantly higher in plasma and cyst after the ABZ-LNC treatments, both orally and subcutaneously, compared to that observed after oral administration of ABZ-SUSP. Additionally, ABZSO concentrations measured in cysts from ABZ-LNC treated mice were 1.7-fold higher than those detected in plasma. This enhanced drug availability correlated with an increased efficacy against secondary CE in mice observed for the ABZ-LNCs, while ABZ-SUSP did not reach differences with the untreated control group. This new pharmacotechnically-based strategy could be a potential alternative to improve the treatment of human CE. PMID:26409727

  2. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice.

    PubMed

    Rogóż, Zofia; Kabziński, Marcin

    2011-01-01

    The aim of the present study was to examine the effect of antidepressants (ADs) belonging to different pharmacological groups and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. The antidepressants: citalopram, fluvoxamine, sertraline, reboxetine, milnacipran (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Co-treatment with reboxetine or milnacipran (10 mg/kg) and risperidone in a lower dose of 0.05 mg/kg or with sertraline, reboxetine (5 and 10 mg/kg), citalopram, fluvoxamine, milnacipran (10 mg/kg) and risperidone in a higher dose of 0.1 mg/kg produced antidepressant-like effect in the forced swimming test. WAY100635 (a 5-HT(1A) receptor antagonist) inhibited the effects induced by co-administration of ADs and risperidone. Active behavior in the forced swimming test was not a consequence of an increased general activity, since the combined treatment with ADs and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that a low dose of risperidone enhances the activity of ADs in an animal model of depression, and that, among other mechanisms, 5-HT(1A) receptors may play a role in these effects. PMID:22358101

  3. In-situ administration of dendritic cells following argon-helium cryosurgery enhances specific antiglioma immunity in mice.

    PubMed

    Lin, Chunnan; Wang, Qifu; Lu, Guohui; Yin, Zhilin; He, Xiaozheng; Xu, Hongchao; Pan, Jun; Zhang, Shizhong

    2014-08-20

    Dendritic cells (DCs) are highly specialized antigen-presenting cells that play a key role in the activation of naive T cells. With an aim to explore whether in-situ administration of DCs following argon-helium cryosurgery could enhance specific antiglioma immunity in mice, we evaluated the validity of this approach in a murine subcutaneous GL261 glioma model. C57BL/6 mice models bearing subcutaneous GL261 glioma were established and then divided into four groups, namely, no-treatment group (n=14), DC group (n=14), cryosurgery group (n=15), and cryosurgery+DC group (n=15). Compared with the other groups, cryosurgery combined with DCs injection reduced tumor sizes and significantly prolonged survival. In addition, the combined treatment resulted in significantly increasing percentages of CD3, CD3CD4 cells, the ratio of CD3CD4/CD3CD8, and the level of serum interleukin-12 10 days after treatments. Furthermore, in the combined treatment group, Th1 cells were significantly higher than those in the other groups, and the splenic cytotoxic T lymphocyte of mice showed significantly increasing specific cytotoxicity against GL261 cells. These results indicated that in addition to the destruction of tumor, cryosurgery combined with DCs injection enhanced systemic antitumor immunity, suggesting the potential usefulness of the combined treatment in the clinical management of gliomas.

  4. Decreased in vitro mitochondrial function is associated with enhanced brain metabolism, blood flow, and memory in Surf1-deficient mice.

    PubMed

    Lin, Ai-Ling; Pulliam, Daniel A; Deepa, Sathyaseelan S; Halloran, Jonathan J; Hussong, Stacy A; Burbank, Raquel R; Bresnen, Andrew; Liu, Yuhong; Podlutskaya, Natalia; Soundararajan, Anuradha; Muir, Eric; Duong, Timothy Q; Bokov, Alex F; Viscomi, Carlo; Zeviani, Massimo; Richardson, Arlan G; Van Remmen, Holly; Fox, Peter T; Galvan, Veronica

    2013-10-01

    Recent studies have challenged the prevailing view that reduced mitochondrial function and increased oxidative stress are correlated with reduced longevity. Mice carrying a homozygous knockout (KO) of the Surf1 gene showed a significant decrease in mitochondrial electron transport chain Complex IV activity, yet displayed increased lifespan and reduced brain damage after excitotoxic insults. In the present study, we examined brain metabolism, brain hemodynamics, and memory of Surf1 KO mice using in vitro measures of mitochondrial function, in vivo neuroimaging, and behavioral testing. We show that decreased respiration and increased generation of hydrogen peroxide in isolated Surf1 KO brain mitochondria are associated with increased brain glucose metabolism, cerebral blood flow, and lactate levels, and with enhanced memory in Surf1 KO mice. These metabolic and functional changes in Surf1 KO brains were accompanied by higher levels of hypoxia-inducible factor 1 alpha, and by increases in the activated form of cyclic AMP response element-binding factor, which is integral to memory formation. These findings suggest that Surf1 deficiency-induced metabolic alterations may have positive effects on brain function. Exploring the relationship between mitochondrial activity, oxidative stress, and brain function will enhance our understanding of cognitive aging and of age-related neurologic disorders.

  5. Enhancement of the anti-immobility action of antidepressants by risperidone in the forced swimming test in mice.

    PubMed

    Rogóż, Zofia; Kabziński, Marcin

    2011-01-01

    The aim of the present study was to examine the effect of antidepressants (ADs) belonging to different pharmacological groups and risperidone (an atypical antipsychotic drug), given separately or jointly, on immobility time in the forced swimming test in male C57BL/6J mice. The antidepressants: citalopram, fluvoxamine, sertraline, reboxetine, milnacipran (5 and 10 mg/kg), or risperidone in low doses (0.05 and 0.1 mg/kg) given alone did not change the immobility time of mice in the forced swimming test. Co-treatment with reboxetine or milnacipran (10 mg/kg) and risperidone in a lower dose of 0.05 mg/kg or with sertraline, reboxetine (5 and 10 mg/kg), citalopram, fluvoxamine, milnacipran (10 mg/kg) and risperidone in a higher dose of 0.1 mg/kg produced antidepressant-like effect in the forced swimming test. WAY100635 (a 5-HT(1A) receptor antagonist) inhibited the effects induced by co-administration of ADs and risperidone. Active behavior in the forced swimming test was not a consequence of an increased general activity, since the combined treatment with ADs and risperidone failed to enhance the locomotor activity of mice. The obtained results indicate that a low dose of risperidone enhances the activity of ADs in an animal model of depression, and that, among other mechanisms, 5-HT(1A) receptors may play a role in these effects.

  6. The enhancement of retention performance induced by picrotoxin in mice may be mediated through a release of endogenous vasopressin.

    PubMed

    Boccia, M.M.; Kopf, S.R.; Baratti, C.M.

    1996-05-01

    Male Swiss mice were tested 48h after training in a one-trial step-through inhibitory avoidance task. Immediately post-training i.p. injection of the GABA antagonist picrotoxin (0.3-3.0mg/kg), at nonconvulsive doses, induced a dose-dependent modification of retention performance. The lower doses of picrotoxin (0.1-1.0mg/kg) enhanced retention, whereas the highest dose (3.0mg/kg) impaired retention. Picrotoxin did not affect response latencies in mice not given the footshock on the training trial, indicating that the actions of picrotoxin on retention performance were not due to nonspecific proactive effects on response latencies. The enhancing effects of picrotoxin (1.0mg/kg) on retention were time-dependent, which suggests that picrotoxin enhanced storage of recently acquired information. The enhancement of retention induced by picrotoxin (1.0mg/kg) was prevented by the vasopressin receptor antagonist, AAVP (0.01µg/kg, s.c.) administered immediately after training, but prior to picrotoxin treatment. This dose of AAVP did not affect retention by itself, either under the standard experimental conditions, or in mice trained with a high footshock. Low subeffective doses of picrotoxin (0.1mg/kg, s.c.) administered immediately after training, and hypertonic saline (1ml of 0.5M NaCl, i.p.), given 10min after training, interacted to improve retention. Considered together, these findings suggest that the better retention performance induced by post-training administration of picrotoxin could result, at least in part, from an endogenous release of vasopressin.

  7. Leukemia Inhibitory Factor Enhances Endometrial Stromal Cell Decidualization in Humans and Mice

    PubMed Central

    Yap, Joanne; Li, Priscilla; Lane, Natalie; Dimitriadis, Evdokia

    2011-01-01

    Adequate differentiation or decidualization of endometrial stromal cells (ESC) is critical for successful pregnancy in humans and rodents. Here, we investigated the role of leukemia inhibitory factor (LIF) in human and murine decidualization. Ex vivo human (H) ESC decidualization was induced by estrogen (E, 10−8 M) plus medroxyprogesterone acetate (MPA, 10−7 M). Exogenous LIF (≥50 ng/ml) induced STAT3 phosphorylation in non-decidualized and decidualized HESC and enhanced E+MPA-induced decidualization (measured by PRL secretion, P<0.05). LIF mRNA in HESC was down-regulated by decidualization treatment (E+MPA) whereas LIF receptor (R) mRNA was up-regulated, suggesting that the decidualization stimulus ‘primed’ HESC for LIF action, but that factors not present in our in vitro model were required to induce LIF expression. Ex vivo first trimester decidual biopsies secreted >100 pg/mg G-CSF, IL6, IL8, and MCP1. Decidualized HESC secreted IL6, IL8, IL15 and MCP1. LIF (50 ng/ml) up-regulated IL6 and IL15 (P<0.05) secretion in decidualized HESC compared to 0.5 ng/ml LIF. In murine endometrium, LIF and LIFR immunolocalized to decidualized stromal cells on day 5 of gestation (day 0 = day of plug detection). Western blotting confirmed that LIF and the LIFR were up-regulated in intra-implantation sites compared to inter-implantation sites on Day 5 of gestation. To determine the role of LIF during in vivo murine decidualization, intra-peritoneal injections of a long-acting LIF antagonist (PEGLA; 900 or 1200 µg) were given just post-attachment, during the initiation of decidualization on day 4. PEGLA treatment reduced implantation site decidual area (P<0.05) and desmin staining immuno-intensity (P<0.05) compared to control on day 6 of gestation. This study demonstrated that LIF was an important regulator of decidualization in humans and mice and data provides insight into the processes underlying decidualization, which are important for understanding implantation

  8. Apolipoprotein A-V deficiency enhances chylomicron production in lymph fistula mice

    PubMed Central

    Xu, Min; Yang, Qing; Ryan, Robert O.; Howles, Philip; Tso, Patrick

    2015-01-01

    Apolipoprotein A-V (apoA-V), a liver-synthesized apolipoprotein discovered in 2001, strongly modulates fasting plasma triglycerides (TG). Little is reported on the effect of apoA-V on postprandial plasma TG, an independent predictor for atherosclerosis. Overexpressing apoA-V in mice suppresses postprandial TG, but mechanisms focus on increased lipolysis or clearance of remnant particles. Unknown is whether apoA-V suppresses the absorption of dietary lipids by the gut. This study examines how apoA-V deficiency affects the steady-state absorption and lymphatic transport of dietary lipids in chow-fed mice. Using apoA-V knockout (KO, n = 8) and wild-type (WT, n = 8) lymph fistula mice, we analyzed the uptake and lymphatic transport of lipids during a continuous infusion of an emulsion containing [3H]triolein and [14C]cholesterol. ApoA-V KO mice showed a twofold increase in 3H (P < 0.001) and a threefold increase in 14C (P < 0.001) transport into the lymph compared with WT. The increased lymphatic transport was accompanied by a twofold reduction (P < 0.05) in mucosal 3H, suggesting that apoA-V KO mice more rapidly secreted [3H]TG out of the mucosa into the lymph. ApoA-V KO mice also produced chylomicrons more rapidly than WT (P < 0.05), as measured by the transit time of [14C]oleic acid from the intestinal lumen to lymph. Interestingly, apoA-V KO mice produced a steadily increasing number of chylomicron particles over time, as measured by lymphatic apoB output. The data suggest that apoA-V suppresses the production of chylomicrons, playing a previously unknown role in lipid metabolism that may contribute to the postprandial hypertriglyceridemia associated with apoA-V deficiency. PMID:25617349

  9. Enhanced mucosal permeability and nitric oxide synthase activity in jejunum of mast cell deficient mice

    PubMed Central

    Komatsu, S; Grisham, M; Russell, J; Granger, D

    1997-01-01

    Background—Recent reports have described a modulating influence of nitric oxide (NO) on intestinal mucosal permeability and have implicated a role for mast cells in this NO mediated process. 
Aims—To assess further the contribution of mast cells to the mucosal permeability changes elicited by the NO synthase (NOS) inhibitor NG-nitro-L-arginine methylester (L-NAME), using mast cell deficient (W/WV) and mast cell replete mice (+/+). 
Methods—Chromium-51 EDTA clearance (from blood to jejunal lumen), jejunal NOS and myeloperoxidase (MPO) activities, and plasma nitrate/nitrite levels were monitored. 
Results—The increased EDTA clearance elicited by intraluminal L-NAME in W/WV mice (4.4-fold) was significantly greater than the response observed in control (+/+) mice (1.8-fold). The exacerbated response in W/Wv mice was greatly attenuated by pretreatment with either dexamethasone (1.3-fold) or the selective inducible NOS inhibitor, aminoguanidine (1.4-fold), and partially attenuated by the mast cell stabiliser, lodoxamide (2.9-fold). Jejunal inducible NOS activity was significantly higher in W/WV than in +/+ mice, while jejunal MPO was lower in W/WV mice than in +/+ mice, suggesting that the higher inducible NOS in W/WV does not result from the recruitment of inflammatory cells into the gut. The higher inducible NOS activity in the jejunum of W/WV was significantly reduced by dexamethasone treatment. 
Conclusions—Our results suggest that mast cells normally serve to inhibit inducible NOS activity tonically in the gut and that inhibitors of NOS elicit a larger permeability response when this tonic inhibitory influence is released by mast cell depletion. 

 Keywords: aminoguanidine; c-kit; dexamethasone; epithelium; neutrophils PMID:9414970

  10. Enhanced insulin sensitivity of gene-targeted mice lacking functional KCNQ1

    PubMed Central

    Boini, Krishna M.; Graf, Dirk; Hennige, Anita M.; Koka, Saisudha; Kempe, Daniela S.; Wang, Kan; Ackermann, Teresa F.; Föller, Michael; Vallon, Volker; Pfeifer, Karl; Schleicher, Erwin; Ullrich, Susanne; Häring, Hans-Ulrich; Häussinger, Dieter; Lang, Florian

    2009-01-01

    The pore-forming K+-channel α-subunit KCNQ1 is expressed in a wide variety of tissues including heart, skeletal muscle, liver, and epithelia. Most recent evidence revealed an association of the KCNQ1 gene with the susceptibility to type 2 diabetes. KCNQ1 participates in the regulation of cell volume, which is, in turn, critically important for the regulation of metabolism by insulin. The present study explored the influence of KCNQ1 on insulin-induced cellular K+ uptake and glucose metabolism. Insulin (100 nM)-induced K+ uptake was determined in isolated perfused livers from KCNQ1-deficient mice (kcnq1−/−) and their wild-type littermates (kcnq1+/+). Moreover, plasma glucose and insulin levels, intraperitoneal glucose (3 g/kg) tolerance, insulin (0.15 U/kg)-induced hypoglycemia, and peripheral uptake of radiolabeled 3H-deoxy-glucose were determined in both genotypes. Insulin-stimulated hepatocellular K+ uptake was significantly more sustained in isolated perfused livers from kcnq1−/− mice than from kcnq1+/+mice. The decline of plasma glucose concentration following an intraperitoneal injection of insulin was again significantly more sustained in kcnq1−/− than in kcnq1+/+ mice. Both fasted and nonfasted plasma glucose and insulin concentrations were significantly lower in kcnq1−/− than in kcnq1+/+mice. Following an intraperitoneal glucose injection, the peak plasma glucose concentration was significantly lower in kcnq1−/− than in kcnq1+/+mice. Uptake of 3H-deoxy-glucose into skeletal muscle, liver, kidney and lung tissue was significantly higher in kcnq1−/− than in kcnq1+/+mice. In conclusion, KCNQ1 counteracts the stimulation of cellular K+ uptake by insulin and thereby influences K+-dependent insulin signaling on glucose metabolism. The observations indicate that KCNQ1 is a novel molecule affecting insulin sensitivity of glucose metabolism. PMID:19369585

  11. Intermittent cold stress enhances features of atherosclerotic plaque instability in apolipoprotein E‑deficient mice.

    PubMed

    Zheng, Xi; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Li, Xiuchuan; Yang, Yongjian; Ma, Shuangtao

    2014-10-01

    The cold weather is associated with an increased occurrence of acute coronary events. However, the mechanisms underlying cold‑induced myocardial infarctions have not yet been fully elucidated. In the present study, 20 male, eight week‑old, apolipoprotein E (ApoE)‑deficient mice were subjected to either control conditions or intermittent cold exposure for eight weeks. Mice in the cold group were placed in a cold room at 4˚C for 4 h per day, while the mice in the control group were kept in a room at 24˚C. Cold‑exposed mice did not significantly differ from control mice in body weight, fasting glucose concentration and plasma lipid levels, including triglyceride, total cholesterol, low‑density lipoprotein and high‑density lipoprotein. The hematoxylin and eosin‑stained sections of the aortic root demonstrated increased plaque size in the cold group compared with the control group (P<0.01). Furthermore, cold‑treated mice exhibited significantly decreased plaque collagen and vascular smooth muscle cell deposition and increased macrophage and lymphocyte content (P<0.05 or P<0.01), which are typical features of atherosclerotic plaque instability. Additionally, the protein expression of matrix metalloproteinase (MMP)‑2, MMP‑9 and MMP‑14 were significantly increased (P<0.05 or P<0.01), whereas tissue inhibitor of matrix metalloproteinase (TIMP)‑1 expression was decreased (P<0.05) following exposure to a cold environment. The present study demonstrated that chronic intermittent cold stress may increase atherosclerotic plaque size and promote plaque instability in ApoE‑deficient mice by altering the balance of MMPs and TIMPs. These findings may provide mechanistic insights into sudden cardiac death in cold environments. PMID:25109747

  12. Low-magnitude whole-body vibration does not enhance the anabolic skeletal effects of intermittent PTH in adult mice.

    PubMed

    Lynch, Michelle A; Brodt, Michael D; Stephens, Abby L; Civitelli, Roberto; Silva, Matthew J

    2011-04-01

    Whole-body vibration (WBV) is a low-magnitude mechanical stimulus that may be anabolic for bone, yet we recently found that WBV did not improve bone properties in adult mice. Because intermittent parathyroid hormone (PTH) enhances the anabolic effects of high-magnitude skeletal loading, we sought to determine the skeletal effects of WBV in combination with PTH. Seven-month-old male BALB/c mice were assigned to six groups (n = 13-14/group) based on magnitude of applied acceleration (0 or 0.3 G) and PTH dose (0, 10, or 40 µg/kg/day). Mice were exposed to WBV (0.3 G, 90 Hz, sine wave) or sham loading (0 G) for 15 min/day, 5 days/week for 8 weeks. Vehicle or hPTH (1-34) was administered prior to each WBV session. Whole-body bone mineral content increased by ~ 5% from 0 to 8 weeks in the 40 µg/kg PTH group only, independent of WBV loading. Similarly, PTH treatment increased tibial cortical bone volume by ~5% from 0 to 8 weeks, independent of WBV loading. Neither PTH nor WBV stimulated trabecular bone formation. Consistent with the cortical bone effect, tibias from the 40 µg/kg PTH group had significantly greater ultimate force and energy to failure than tibias in the 0 and 10 µg/kg PTH groups, independent of WBV treatment. In summary, 8 weeks of intermittent PTH treatment increased cortical bone volume and strength in adult male BALB/c mice. Daily exposure to low-magnitude WBV by itself did not improve skeletal properties and did not enhance the PTH effect. No WBV-PTH synergy was found in this preclinical study.

  13. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes.

    PubMed

    Garcia-Alvarez, Gisela; Shetty, Mahesh S; Lu, Bo; Yap, Kenrick An Fu; Oh-Hora, Masatsugu; Sajikumar, Sreedharan; Bichler, Zoë; Fivaz, Marc

    2015-01-01

    Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.

  14. CCAAT/enhancer binding protein {beta} deletion increases mitochondrial function and protects mice from LXR-induced hepatic steatosis

    SciTech Connect

    Rahman, Shaikh M.; Choudhury, Mahua; Janssen, Rachel C.; Baquero, Karalee C.; Miyazaki, Makoto; Friedman, Jacob E.

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer LXR agonist activation increases liver TG accumulation by increasing lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta}{sup -/-} mouse prevents LXR activation-mediated induction of hepatic lipogenesis. Black-Right-Pointing-Pointer C/EBP{beta} deletion increases mitochondrial transport chain function. Black-Right-Pointing-Pointer Beneficial effects of LXR activation on liver cholesterol metabolism did not change. Black-Right-Pointing-Pointer C/EBP{beta} inhibition might have important therapeutic potential. -- Abstract: Drugs designed specifically to activate liver X receptors (LXRs) have beneficial effects on lowering cholesterol metabolism and inflammation but unfortunately lead to severe hepatic steatosis. The transcription factor CCAAT/enhancer binding protein beta (C/EBP{beta}) is an important regulator of liver gene expression but little is known about its involvement in LXR-based steatosis and cholesterol metabolism. The present study investigated the role of C/EBP{beta} expression in LXR agonist (T0901317)-mediated alteration of hepatic triglyceride (TG) and lipogenesis in mice. C/EBP{beta} deletion in mice prevented LXR agonist-mediated induction of lipogenic gene expression in liver in conjunction with significant reduction of liver TG accumulation. Surprisingly, C/EBP{beta}{sup -/-} mice showed a major increase in liver mitochondrial electron chain function compared to WT mice. Furthermore, LXR activation in C/EBP{beta}{sup -/-} mice increased the expression of liver ATP-binding cassette transporter ABCG1, a gene implicated in cholesterol efflux and reducing blood levels of total and LDL-cholesterol. Together, these findings establish a central role for C/EBP{beta} in the LXR-mediated steatosis and mitochondrial function, without impairing the influence of LXR activation on lowering LDL and increasing HDL-cholesterol. Inactivation of C/EBP{beta} might therefore be an important therapeutic strategy to prevent LXR

  15. Fusobacterium nucleatum Alters Atherosclerosis Risk Factors and Enhances Inflammatory Markers with an Atheroprotective Immune Response in ApoEnull Mice

    PubMed Central

    Rivera-Kweh, Mercedes. F.; Chen, Hao; Zheng, Donghang; Bhattacharyya, Indraneel; Gangula, Pandu R.; Lucas, Alexandra R.; Kesavalu, Lakshmyya

    2015-01-01

    The American Heart Association supports an association between periodontal disease (PD) and atherosclerotic vascular disease (ASVD) but does not as of yet support a causal relationship. Recently, we have shown that major periodontal pathogens Porphyromonas gingivalis and Treponema denticola are causally associated with acceleration of aortic atherosclerosis in ApoEnull hyperlipidemic mice. The aim of this study was to determine if oral infection with another significant periodontal pathogen Fusobacterium nucleatum can accelerate aortic inflammation and atherosclerosis in the aortic artery of ApoEnull mice. ApoEnull mice (n = 23) were orally infected with F. nucleatum ATCC 49256 and euthanized at 12 and 24 weeks. Periodontal disease assessments including F. nucleatum oral colonization, gingival inflammation, immune response, intrabony defects, and alveolar bone resorption were evaluated. Systemic organs were evaluated for infection, aortic sections were examined for atherosclerosis, and inflammatory markers were measured. Chronic oral infection established F. nucleatum colonization in the oral cavity, induced significant humoral IgG (P=0.0001) and IgM (P=0.001) antibody response (12 and 24 weeks), and resulted in significant (P=0.0001) alveolar bone resorption and intrabony defects. F. nucleatum genomic DNA was detected in systemic organs (heart, aorta, liver, kidney, lung) indicating bacteremia. Aortic atherosclerotic plaque area was measured and showed a local inflammatory infiltrate revealed the presence of F4/80+ macrophages and CD3+ T cells. Vascular inflammation was detected by enhanced systemic cytokines (CD30L, IL-4, IL-12), oxidized LDL and serum amyloid A, as well as altered serum lipid profile (cholesterol, triglycerides, chylomicrons, VLDL, LDL, HDL), in infected mice and altered aortic gene expression in infected mice. Despite evidence for systemic infection in several organs and modulation of known atherosclerosis risk factors, aortic atherosclerotic

  16. Mapping transitions between healthy and pathological lesions in human breast tissues by diffraction enhanced imaging computed tomography (DEI-CT) and small angle x-ray scattering (SAXS)

    NASA Astrophysics Data System (ADS)

    Conceição, A. L. C.; Antoniassi, M.; Geraldelli, W.; Poletti, M. E.

    2014-02-01

    In this work we have combined the DEI-CT and SAXS technique to study the transition between healthy and pathological breast tissues, which include benign and malignant lesions. The ability of DEI-CT to enhance the contrast between soft tissues was used to localize the tumor region in the sample. Then, the tumor region and its surroundings were scanned by SAXS in order to map the changes promoted by the neoplasias at nano-level.It was clearly observed that pathological tissues present distinguishable SAXS scattering profiles from those of normal tissue. These differences are mainly related to changes in arrangement and diameter of collagen fibrils, evaluated by the higher order of reflection peaks of these fibrils. Differences related to the peak intensities and the total scattered intensity were found by comparing the healthy and pathological regions. The 2nd order of collagen reflection arises only in the healthy region neighboring the benign lesion. A broader peak at q=0.16 nm-1 seems to characterize the malignant lesions. Finally, based on this information, the transition between healthy and pathological human breast tissues was mapped which allowed to get insights into the changes promoted by tumors during growth and progression.

  17. Vitamin D Supplementation Enhances the Fixation of Titanium Implants in Chronic Kidney Disease Mice

    PubMed Central

    Liu, Weiqing; Zhang, Shiwen; Zhao, Dan; Zou, Huawei; Sun, Ningyuan; Liang, Xing; Dard, Michel; Lanske, Beate; Yuan, Quan

    2014-01-01

    Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD. PMID:24752599

  18. Evans blue dye adjuvant enhances delayed hypersensitivity while blocking immunity to Mycobacterium tuberculosis in mice.

    PubMed Central

    Anderson, D W; Crowle, A J

    1981-01-01

    Evans blue dye functions as an adjuvant with protein antigens in saline to induce cell-mediated immunological responses in mice. But when used to help induce cell-mediated tuberculoimmunity, it decreased mouse resistance to tuberculosis instead of helping induce immunity. This paradox was investigated. As could be expected from previous work with other antigens, the dye did promote induction of delayed hypersensitivity in mice to tuberculoprotein when injected in saline with killed tubercle bacilli. Peritoneal macrophages from mice injected with the dye responded normally to migration inhibition factor. Morphologically, these cells were moderately "activated" compared with similar cells taken from untreated mice. However, such cells incubated with tuberculosis growth inhibition lymphokine in an in vitro test for tuberculoimmunity did not express tuberculoimmunity, whereas macrophages from untreated mice did. Therefore, Evans blue dye did promote induction of cell-mediated immunological responses and tuberculoimmunity in lymphocytes, but under the conditions used in these experiments, it also blocked expression of tuberculoimmunity by macrophages. PMID:7012002

  19. Enhanced hematopoietic recovery in irradiated mice pretreated with interleukin-1 (IL-1)2,3

    SciTech Connect

    Schwartz, G.N.; MacVittie, T.J.; Vigneulle, R.M.; Patchen, M.L.; Douches, S.D.

    1987-01-01

    Data in this report compare the number of colony-forming cells (CFC) in bone marrow from irradiated and pre-irradiated C57B1/6J mice injected with saline or recombinant interleukin-1-alpha (rIL-1). Eight to 12 days after sublethal or lethal irradiation, there were more CFU-E (colony-forming units-erythroid), BFU-E (burst-forming units erythroid), GM-CFC (granulocyte-macrophage colony-forming cells), and 8 CFU-S (colony-forming units-spleen) in bone marrow from rIL-1 injected mice than from saline injected mice. Prior to irradiation, there was no increase in number of CFC in bone marrow from rIL-1 injected mice. However, as determined by sensitivity to hydroxyurea, rIL-1 injection stimulated GM-CFC into cell cycle. These results demonstrate that rIL-1 injection increases the number of CFC that survive in irradiated mice and may be a consequence of the stimulation of CFC into cell cycle prior to irradiation.

  20. Enhanced thermal stability of lysosomal beta-D-galactosidase in parenchymal cells of tumour bearing mice.

    PubMed Central

    Lenti, L.; Lipari, M.; Lombardi, D.; Zicari, A.; Dotta, A.; Pontieri, G. M.

    1986-01-01

    The thermal stability of the enzyme beta-D-galactosidase varies among different organs in normal C57Bl/6 mice, and increases in the same organs in mice with Lewis Lung carcinoma. Thermal stability of this enzyme is also increased by treatment of the mice with cell-free extracts of tumour cells or with inflammatory compounds such as carrageenan or orosomucoid. After desialylation, orosomucoid more effectively increases the heat stability of the enzyme. By contrast talc, which has no galactosyl groups, is without effect on the stability of the enzyme in vivo. Macrophages of tumour bearing mice release into the culture medium a more heat resistant enzyme than macrophages from control mice. In both cases the heat resistance of the secreted enzyme is higher when fetal calf serum is present in the culture medium. Bovine serum does not modify the thermal stability of beta-D-galactosidase in this system. Incubation of lysosomal fractions of various organs with the synthetic beta-D-galactosidase substrate, p-nitrophenyl-galactopyranoside, also strongly increases the heat resistance of the enzyme. The results suggest that one factor influencing the heat resistance of this enzyme may be complex formation between the enzyme and its substrates, an example of substrate protection of the enzyme. This may not be the only factor involved in enzyme stabilization in vivo. PMID:3099822

  1. Vitamin D supplementation enhances the fixation of titanium implants in chronic kidney disease mice.

    PubMed

    Liu, Weiqing; Zhang, Shiwen; Zhao, Dan; Zou, Huawei; Sun, Ningyuan; Liang, Xing; Dard, Michel; Lanske, Beate; Yuan, Quan

    2014-01-01

    Vitamin D (Vit D) deficiency is a common condition in chronic kidney disease (CKD) patients that negatively affects bone regeneration and fracture healing. Previous study has shown that timely healing of titanium implants is impaired in CKD. This study aimed to investigate the effect of Vit D supplementation on implant osseointegration in CKD mice. Uremia was induced by 5/6 nephrectomy in C57BL mice. Eight weeks after the second renal surgery, animals were given 1,25(OH)2D3 three times a week intraperitoneally for four weeks. Experimental titanium implants were inserted into the distal end of femurs two weeks later. Serum measurements confirmed decreased 1,25(OH)2D levels in CKD mice, which could be successfully corrected by Vit D injections. Moreover, the hyperparathyroidism observed in CKD mice was also corrected. X-ray examination and histological sections showed successful osseointegration in these mice. Histomorphometrical analysis revealed that the bone-implant contact (BIC) ratio and bone volume (BV/TV) around the implant were significantly increased in the Vit D-supplementation group. In addition, resistance of the implant, as measured by a push-in method, was significantly improved compared to that in the vehicle group. These results demonstrate that Vit D supplementation is an effective approach to improve the fixation of titanium implants in CKD.

  2. Epilepsy in Dcx Knockout Mice Associated with Discrete Lamination Defects and Enhanced Excitability in the Hippocampus

    PubMed Central

    Denis, Cécile; Germain, Johanne; Dinh Tuy, Françoise Phan; Verstraeten, Soraya; Alvarez, Chantal; Métin, Christine; Chelly, Jamel; Giros, Bruno; Miles, Richard; Depaulis, Antoine; Francis, Fiona

    2008-01-01

    Patients with Doublecortin (DCX) mutations have severe cortical malformations associated with mental retardation and epilepsy. Dcx knockout (KO) mice show no major isocortical abnormalities, but have discrete hippocampal defects. We questioned the functional consequences of these defects and report here that Dcx KO mice are hyperactive and exhibit spontaneous convulsive seizures. Changes in neuropeptide Y and calbindin expression, consistent with seizure occurrence, were detected in a large proportion of KO animals, and convulsants, including kainate and pentylenetetrazole, also induced seizures more readily in KO mice. We show that the dysplastic CA3 region in KO hippocampal slices generates sharp wave-like activities and possesses a lower threshold for epileptiform events. Video-EEG monitoring also demonstrated that spontaneous seizures were initiated in the hippocampus. Similarly, seizures in human patients mutated for DCX can show a primary involvement of the temporal lobe. In conclusion, seizures in Dcx KO mice are likely to be due to abnormal synaptic transmission involving heterotopic cells in the hippocampus and these mice may therefore provide a useful model to further study how lamination defects underlie the genesis of epileptiform activities. PMID:18575605

  3. Alertness in Young Healthy Subjects: An fMRI Study of Brain Region Interactivity Enhanced by a Warning Signal

    ERIC Educational Resources Information Center

    Perin, B.; Godefroy, O.; Fall, S.; de Marco, G.

    2010-01-01

    An effective connectivity study was carried out on 16 young, healthy subjects performing an alertness task. The objective of this study was to develop and to evaluate a putative network model of alertness by adapting structural equation modeling to fMRI data. This study was designed to evaluate the directed interactivity of an attentional network…

  4. Modified recombinant adenoviruses increase porcine circovirus 2 capsid protein expression and induce enhanced immune responses in mice.

    PubMed

    Li, D L; Huang, Y; Chang, L L; DU, Q; Chen, Y; Wang, T T; Luo, X M; Zhao, X M; Tong, D W

    2016-01-01

    Porcine circovirus type 2 (PCV2) is the primary viral pathogen of porcine circovirus associated disease (PCVAD) and vaccination is an important method to prevent and control the disease. The expression of PCV2 capsid protein (Cap) in adenovirus vector system has been investigated, but the poor immune responses limit its application. In this study, transcriptional enhancer element largest intron of the human cytomegalovirus (Intron A) and woodchuck hepatitis virus post-transcriptional regulatory element (WPRE) were applied to increase the immunogenicity of PCV2 Cap adenovirus-based vaccine. Western blot and indirect immunofluorescence assay (IFA) analysis showed that modified adenoviruses with Intron A and WPRE alone or both could significantly increase the expression of Cap compared to the unmodified adenoviruses. Furthermore, the humoral and cellular immune responses of the constructed recombinant adenoviruses were evaluated in mice. Indirect ELISA, virus neutralizing test and western blot showed that modified adenoviruses elicited higher humoral immune responses than unmodified adenovirus, and Intron A-WPRE-modified virus immunized group had better immune response than the others. Besides, the results of lymphocyte proliferation response and cytokines release assay showed that enhanced cellular immune responses were induced by modified adenoviruses. These results demonstrated that Intron A and WPRE significantly improved the expression of the Cap protein in adenovirus vector system and enhanced the immune responses in mice, making the adenovirus vector system more applicable against PCV2. PMID:27640437

  5. Sasa borealis Extract Efficiently Enhanced Swimming Capacity by Improving Energy Metabolism and the Antioxidant Defense System in Mice.

    PubMed

    You, Yanghee; Kim, Kyungmi; Yoon, Ho-Geun; Choi, Kyung-Chul; Lee, Yoo-Hyun; Lee, Jeongmin; Jun, Woojin

    2015-01-01

    This study was conducted to determine the effects of 50% ethanolic extract from Sasa borealis leaves (SBE) on swimming capacity and oxidative metabolism in mice. The mice were divided into 2 groups with similar swimming times and body weights; Ex-Control and Ex-SBE were orally administered with distilled water and 250 mg/kg body weight/d of SBE. Exhaustive swimming times were prolonged by 1.5-fold in the Ex-SBE group compared to the Ex-Control. The Ex-SBE group displayed lower lactate and higher non-esterified fatty acid levels 15 min after swimming and the hepatic and muscle glycogen levels were significantly higher than that in the Ex-Control. SBE potentially enhanced mRNA expression of citrate synthase (CS), carnitine palmitoyltransferase (CPT-1), and β-hydroxyacyl coenzyme A dehydrogenase (β-HAD) in skeletal muscle. The activities and mRNA expression of catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were elevated in the Ex-SBE compared with the Ex-Control after exhaustive swimming. These results suggest that SBE might be used as an effective agent to enhance swimming capacity by utilization of energy substrates and might ameliorate physical exhaustion by facilitating energy-generating metabolic genes and enhancing endogenous antioxidants. PMID:26875491

  6. Phospho-NSAIDs have enhanced efficacy in mice lacking plasma carboxylesterase: Implications for their clinical pharmacology

    PubMed Central

    Wong, Chi C.; Cheng, Ka-Wing; Papayannis, Ioannis; Mattheolabakis, George; Huang, Liqun; Xie, Gang; Ouyang, Nengtai; Rigas, Basil

    2015-01-01

    Purpose The purpose of the study was to evaluate the metabolism, pharmacokinetics and efficacy of phospho-NSAIDs in Ces1c-knockout mice. Methods Hydrolysis of phospho-NSAIDs by Ces1c was investigated using Ces1c-overexpressing cells. The rate of phospho-NSAID hydrolysis was compared between wild-type, Ces1c+/− and Ces1c−/− mouse plasma in vitro, and the effect of plasma Ces1c on the cytotoxicity of phospho-NSAIDs was evaluated. Pharmacokinetics of phospho-sulindac was examined in wild-type and Ces1c−/− mice. The impact of Ces1c on the efficacy of phospho-sulindac was investigated using lung and pancreatic cancer models in vivo. Results Phospho-NSAIDs were extensively hydrolyzed in Ces1c-overexpressing cells. Phospho-NSAID hydrolysis in wild-type mouse plasma was 6- to 530-fold higher than that in the plasma of Ces1c−/− mice. Ces1c-expressing wild-type mouse serum attenuated the in vitro cytotoxicity of phospho-NSAIDs towards cancer cells. Pharmacokinetic studies of phospho-sulindac using wild-type and Ces1c−/− mice demonstrated 2-fold less inactivation of phospho-sulindac in the latter. Phospho-sulindac was 2-fold more efficacious in inhibiting the growth of lung and pancreatic carcinoma in Ces1c −/− mice, as compared to wild-type mice. Conclusions Our results indicate that intact phospho-NSAIDs are the pharmacologically active entities and phospho-NSAIDs are expected to be more efficacious in humans than in rodents due to their differential expression of carboxylesterases. PMID:25392229

  7. Enhanced Immune Response to DNA Vaccine Encoding Bacillus anthracis PA-D4 Protects Mice against Anthrax Spore Challenge

    PubMed Central

    Kim, Na Young; Chang, Dong Suk; Kim, Yeonsu; Kim, Chang Hwan; Hur, Gyeung Haeng; Yang, Jai Myung; Shin, Sungho

    2015-01-01

    Anthrax has long been considered the most probable bioweapon-induced disease. The protective antigen (PA) of Bacillus anthracis plays a crucial role in the pathogenesis of anthrax. In the current study, we evaluated the efficiency of a genetic vaccination with the fourth domain (D4) of PA, which is responsible for initial binding of the anthrax toxin to the cellular receptor. The eukaryotic expression vector was designed with the immunoglobulin M (IgM) signal sequence encoding for PA-D4, which contains codon-optimized genes. The expression and secretion of recombinant protein was confirmed in vitro in 293T cells transfected with plasmid and detected by western blotting, confocal microscopy, and enzyme-linked immunosorbent assay (ELISA). The results revealed that PA-D4 protein can be efficiently expressed and secreted at high levels into the culture medium. When plasmid DNA was given intramuscularly to mice, a significant PA-D4-specific antibody response was induced. Importantly, high titers of antibodies were maintained for nearly 1 year. Furthermore, incorporation of the SV40 enhancer in the plasmid DNA resulted in approximately a 15-fold increase in serum antibody levels in comparison with the plasmid without enhancer. The antibodies produced were predominantly the immunoglobulin G2 (IgG2) type, indicating the predominance of the Th1 response. In addition, splenocytes collected from immunized mice produced PA-D4-specific interferon gamma (IFN-γ). The biodistribution study showed that plasmid DNA was detected in most organs and it rapidly cleared from the injection site. Finally, DNA vaccination with electroporation induced a significant increase in immunogenicity and successfully protected the mice against anthrax spore challenge. Our approach to enhancing the immune response contributes to the development of DNA vaccines against anthrax and other biothreats. PMID:26430894

  8. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice.

    PubMed

    Zhong, T; Ren, F; Huang, C S; Zou, W Y; Yang, Y; Pan, Y D; Sun, B; Wang, E; Guo, Q L

    2016-03-01

    Isoflurane-induced neurocognitive impairment in the developing rodent brain is well documented, and regular physical exercise has been demonstrated to be a viable intervention for some types of neurocognitive impairment. This study was designed to investigate the potential protective effect of swimming exercise on both neurocognitive impairment caused by repeated neonatal exposure to isoflurane and the underlying molecular mechanism. Mice received 0.75% isoflurane exposures for 4h on postnatal days 7, 8, and 9. From the third month after anesthesia, the mice were subjected to regular swimming exercise for 4weeks, followed by a contextual fear condition (CFC) trial. We found that repeated neonatal exposure to isoflurane reduced freezing behavior during CFC testing and deregulated hippocampal histone H4K12 acetylation. Conversely, mice subjected to regular swimming exercise showed enhanced hippocampal H3K9, H4K5, and H4K12 acetylation levels, increased numbers of c-Fos-positive cells 1h after CFC training, and less isoflurane-induced memory impairment. We also observed increases in histone acetylation and of cAMP-response element-binding protein (CREB)-binding protein (CBP) during the swimming exercise program. The results suggest that neonatal isoflurane exposure-induced memory impairment was associated with dysregulation of H4K12 acetylation, which may lead to less hippocampal activation following learning tasks. Swimming exercise was associated with enhanced hippocampal histone acetylation and CBP expression. Exercise most likely ameliorated isoflurane-induced memory impairment by enhancing hippocampal histone acetylation and activating more neuron cells during memory formation.

  9. Swimming exercise ameliorates neurocognitive impairment induced by neonatal exposure to isoflurane and enhances hippocampal histone acetylation in mice.

    PubMed

    Zhong, T; Ren, F; Huang, C S; Zou, W Y; Yang, Y; Pan, Y D; Sun, B; Wang, E; Guo, Q L

    2016-03-01

    Isoflurane-induced neurocognitive impairment in the developing rodent brain is well documented, and regular physical exercise has been demonstrated to be a viable intervention for some types of neurocognitive impairment. This study was designed to investigate the potential protective effect of swimming exercise on both neurocognitive impairment caused by repeated neonatal exposure to isoflurane and the underlying molecular mechanism. Mice received 0.75% isoflurane exposures for 4h on postnatal days 7, 8, and 9. From the third month after anesthesia, the mice were subjected to regular swimming exercise for 4weeks, followed by a contextual fear condition (CFC) trial. We found that repeated neonatal exposure to isoflurane reduced freezing behavior during CFC testing and deregulated hippocampal histone H4K12 acetylation. Conversely, mice subjected to regular swimming exercise showed enhanced hippocampal H3K9, H4K5, and H4K12 acetylation levels, increased numbers of c-Fos-positive cells 1h after CFC training, and less isoflurane-induced memory impairment. We also observed increases in histone acetylation and of cAMP-response element-binding protein (CREB)-binding protein (CBP) during the swimming exercise program. The results suggest that neonatal isoflurane exposure-induced memory impairment was associated with dysregulation of H4K12 acetylation, which may lead to less hippocampal activation following learning tasks. Swimming exercise was associated with enhanced hippocampal histone acetylation and CBP expression. Exercise most likely ameliorated isoflurane-induced memory impairment by enhancing hippocampal histone acetylation and activating more neuron cells during memory formation. PMID:26748054

  10. Sildenafil, a selective phosphodiesterase type 5 inhibitor, enhances memory reconsolidation of an inhibitory avoidance task in mice.

    PubMed

    Boccia, M M; Blake, M G; Krawczyk, M C; Baratti, C M

    2011-07-01

    Intracellular levels of the second messengers cAMP and cGMP are maintained through a balance between production, carried out by adenyl cyclase (AC) and guanylyl cyclase (GC), and degradation, carried out by phosphodiesterases (PDEs). Recently, PDEs have gained increased attention as potential new targets for cognition enhancement, with particular reference to phosphodiesterase type 5 (PDE5A). It is accepted that once consolidation is completed memory becomes permanent, but it has also been suggested that reactivation (memory retrieval) of the original memory makes it sensitive to the same treatments that affect memory consolidation when given after training. This new period of sensitivity coined the term reconsolidation. Sildenafil (1, 3, and 10mg/kg, ip), a cGMP-PDE5 inhibitor, facilitated retention performance of a one-trial step-through inhibitory avoidance task, when administered to CF-1 male mice immediately after retrieval. The effects of sildenafil (1mg/kg, ip) were time-dependent, long-lasting and inversely correlated with memory age. The administration of sildenafil (1mg/kg, ip) 30 min prior to the 2nd retention test did not affect retention of mice given post-retrieval injections of either vehicle or sildenafil (1mg/kg, ip). Finally, an enhancement of retention was also observed in CF-1 female mice receiving sildenafil (1mg/kg, ip) immediately, but not 180 min after retrieval. In the present paper we reported for the first time that systemic administration of sildenafil after memory reactivation enhances retention performance of the original learning. Our results indirectly point out cGMP, a component of the NO/cGMP/PKG pathway, as a necessary factor for memory reconsolidation.

  11. A Novel mouse model of enhanced proteostasis: Full-length human heat shock factor 1 transgenic mice

    SciTech Connect

    Pierce, Anson; Wei, Rochelle; Halade, Dipti; Yoo, Si-Eun; Ran, Qitao; Richardson, Arlan

    2010-11-05

    Research highlights: {yields} Development of mouse overexpressing native human HSF1 in all tissues including CNS. {yields} HSF1 overexpression enhances heat shock response at whole-animal and cellular level. {yields} HSF1 overexpression protects from polyglutamine toxicity and favors aggresomes. {yields} HSF1 overexpression enhances proteostasis at the whole-animal and cellular level. -- Abstract: The heat shock response (HSR) is controlled by the master transcriptional regulator heat shock factor 1 (HSF1). HSF1 maintains proteostasis and resistance to stress through production of heat shock proteins (HSPs). No transgenic model exists that overexpresses HSF1 in tissues of the central nervous system (CNS). We generated a transgenic mouse overexpressing full-length non-mutant HSF1 and observed a 2-4-fold increase in HSF1 mRNA and protein expression in all tissues studied of HSF1 transgenic (HSF1{sup +/0}) mice compared to wild type (WT) littermates, including several regions of the CNS. Basal expression of HSP70 and 90 showed only mild tissue-specific changes; however, in response to forced exercise, the skeletal muscle HSR was more elevated in HSF1{sup +/0} mice compared to WT littermates and in fibroblasts following heat shock, as indicated by levels of inducible HSP70 mRNA and protein. HSF1{sup +/0} cells elicited a significantly more robust HSR in response to expression of the 82 repeat polyglutamine-YFP fusion construct (Q82YFP) and maintained proteasome-dependent processing of Q82YFP compared to WT fibroblasts. Overexpression of HSF1 was associated with fewer, but larger Q82YFP aggregates resembling aggresomes in HSF1{sup +/0} cells, and increased viability. Therefore, our data demonstrate that tissues and cells from mice overexpressing full-length non-mutant HSF1 exhibit enhanced proteostasis.

  12. Results of a Needs Assessment to Guide the Development of a Website to Enhance Emotional Wellness and Healthy Behaviors During Pregnancy.

    PubMed

    Da Costa, Deborah; Zelkowitz, Phyllis; Bailey, Kristen; Cruz, Rani; Bernard, Jean-Christophe; Dasgupta, Kaberi; Lowensteyn, Ilka; Khalifé, Samir

    2015-01-01

    In preparation for developing a website to enhance emotional wellness and healthy lifestyle during the perinatal period, this study examined women's informational needs and barriers. Seventy-four women who were pregnant or had given birth completed an online survey inquiring about information needs and preferred sources related to psychosocial aspects and lifestyle behaviors. Information related to healthy diet choices and weight management, followed by exercise, was rated highly as a need. Information related to depression, stress, and anxiety was also rated as important. Health-care providers and the Internet were found to be preferred sources of information. Evidence-based websites can serve as a powerful low-cost educational resource to support and reinforce the health promotion advice received from their health-care providers. PMID:26834443

  13. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake.

    PubMed

    Pollard, Ricquita D; Blesso, Christopher N; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W; Nuradin, Nebil; Francone, Omar L; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J; Sorci-Thomas, Mary G

    2015-06-19

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr(-/-), PCPE2(-/-) mice, which had elevated HDL levels compared with LDLr(-/-) mice with similar LDL concentrations. We found that LDLr(-/-), PCPE2(-/-) mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr(-/-) mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr(-/-), PCPE2(-/-) mice was similar to that reported for LDLr(-/-), apoA-I(-/-) mice, which lack any apoA-I/HDL. Furthermore, LDLr(-/-), PCPE2(-/-) mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr(-/-) mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system.

  14. Procollagen C-endopeptidase Enhancer Protein 2 (PCPE2) Reduces Atherosclerosis in Mice by Enhancing Scavenger Receptor Class B1 (SR-BI)-mediated High-density Lipoprotein (HDL)-Cholesteryl Ester Uptake*

    PubMed Central

    Pollard, Ricquita D.; Blesso, Christopher N.; Zabalawi, Manal; Fulp, Brian; Gerelus, Mark; Zhu, Xuewei; Lyons, Erica W.; Nuradin, Nebil; Francone, Omar L.; Li, Xiang-An; Sahoo, Daisy; Thomas, Michael J.; Sorci-Thomas, Mary G.

    2015-01-01

    Studies in human populations have shown a significant correlation between procollagen C-endopeptidase enhancer protein 2 (PCPE2) single nucleotide polymorphisms and plasma HDL cholesterol concentrations. PCPE2, a 52-kDa glycoprotein located in the extracellular matrix, enhances the cleavage of C-terminal procollagen by bone morphogenetic protein 1 (BMP1). Our studies here focused on investigating the basis for the elevated concentration of enlarged plasma HDL in PCPE2-deficient mice to determine whether they protected against diet-induced atherosclerosis. PCPE2-deficient mice were crossed with LDL receptor-deficient mice to obtain LDLr−/−, PCPE2−/− mice, which had elevated HDL levels compared with LDLr−/− mice with similar LDL concentrations. We found that LDLr−/−, PCPE2−/− mice had significantly more neutral lipid and CD68+ infiltration in the aortic root than LDLr−/− mice. Surprisingly, in light of their elevated HDL levels, the extent of aortic lipid deposition in LDLr−/−, PCPE2−/− mice was similar to that reported for LDLr−/−, apoA-I−/− mice, which lack any apoA-I/HDL. Furthermore, LDLr−/−, PCPE2−/− mice had reduced HDL apoA-I fractional clearance and macrophage to fecal reverse cholesterol transport rates compared with LDLr−/− mice, despite a 2-fold increase in liver SR-BI expression. PCPE2 was shown to enhance SR-BI function by increasing the rate of HDL-associated cholesteryl ester uptake, possibly by optimizing SR-BI localization and/or conformation. We conclude that PCPE2 is atheroprotective and an important component of the reverse cholesterol transport HDL system. PMID:25947382

  15. Enhancement of exercise endurance capacity by fermented deer antler in BALB/c mice.

    PubMed

    Jang, Seongho; Park, Eu Ddeum; Suh, Hyung Joo; Lee, Sang Hun; Kim, Jin Soo; Park, Yooheon

    2014-01-01

    To investigate the activity of fermented deer antler on exercise endurance capacity, we evaluated endurance capacity in five-week-old male BALB/c mice by administering the fermented deer antler extract (FA) or the non-fermented deer antler extract (NFA) and then subjected the mice to exercise in the form of swimming. The mice administered 500 mg/kg/day of FA showed a significant increase in swimming time compared with mice administered placebo (16.55 min vs. 21.64 min, P<0.05). Serum lactate dehydrogenase (LDH), the marker of the liver and muscle damage, was significantly lower in FA groups. However, NFA groups did not show significantly different swimming time or serum LDH from that of the control group. Moreover, the FA-500 group had significantly higher hepatic superoxide dismutase (SOD) activity after forced swimming than the control and NFA groups (P<0.05). These findings suggest that fermentation may increase the exercise endurance capacity of the deer antler. PMID:25273137

  16. Convection-Enhanced Delivery of AAV2-PrPshRNA in Prion-Infected Mice

    PubMed Central

    Ahn, Misol; Bajsarowicz, Krystyna; Oehler, Abby; Lemus, Azucena; Bankiewicz, Krystof; DeArmond, Stephen J.

    2014-01-01

    Prion disease is caused by a single pathogenic protein (PrPSc), an abnormal conformer of the normal cellular prion protein PrPC. Depletion of PrPC in prion knockout mice makes them resistant to prion disease. Thus, gene silencing of the Prnp gene is a promising effective therapeutic approach. Here, we examined adeno-associated virus vector type 2 encoding a short hairpin RNA targeting Prnp mRNA (AAV2-PrP-shRNA) to suppress PrPC expression both in vitro and in vivo. AAV2-PrP-shRNA treatment suppressed PrP levels and prevented dendritic degeneration in RML-infected brain aggregate cultures. Infusion of AAV2-PrP-shRNA-eGFP into the thalamus of CD-1 mice showed that eGFP was transported to the cerebral cortex via anterograde transport and the overall PrPC levels were reduced by ∼70% within 4 weeks. For therapeutic purposes, we treated RML-infected CD-1 mice with AAV2-PrP-shRNA beginning at 50 days post inoculation. Although AAV2-PrP-shRNA focally suppressed PrPSc formation in the thalamic infusion site by ∼75%, it did not suppress PrPSc formation efficiently in other regions of the brain. Survival of mice was not extended compared to the untreated controls. Global suppression of PrPC in the brain is required for successful therapy of prion diseases. PMID:24866748

  17. Healthy Aging

    MedlinePlus

    ... About Us Contact Us Text size | Print | Healthy Aging This information in Spanish ( en español ) A healthy ... Aging email updates. Enter email address Submit Healthy Aging news Accessibility | Privacy policy | Disclaimers | FOIA | Link to ...

  18. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice.

    PubMed

    Yang, Mao-Wei; Wang, Tong-Hao; Yan, Pei-Pei; Chu, Li-Wei; Yu, Jiang; Gao, Zhi-Da; Li, Yuan-Zhou; Guo, Bao-Lei

    2011-01-15

    Alzheimer's disease and osteoporosis are often observed to co-occur in clinical practice. The present study aimed to evaluate the bone microarchitecture and bone mineral density (BMD) of the proximal tibia in APP/PS1 transgenic mice by micro-computed tomography (micro-CT), and to search for evidence that curcumin can be used to reduce bone mineral losses and treat osteoporosis after senile dementia in these transgenic mice. Three-month-old female mice were divided into the following groups (n=9 per group): wild-type mice (WT group); APP/PS1 transgenic mice (APP group); and APP/PS1 transgenic mice with curcumin treatment (APP+Cur group). Between 9 and 12 months of age, the APP+Cur group were administered curcumin orally (600ppm). CT scans of the proximal tibia were taken at 6, 9 and 12 months. At 6 months, there were little differences in the structural parameters. At 9 months, the APP groups displayed loss of bone volume ratio (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and connectivity density (Conn.D) and increases in trabecular separation (Tb.Sp) and geometric degree of anisotropy (DA) (P<0.05 or P<0.01), with significant changes in the BMD parameters. At 12 months, curcumin treatment led to constant increases in the trabecular bone mass of the metaphysis and clearly improved the BMD. By the same time, we measured the TNF-α and IL-6 in the serum among the different groups at 6, 9 and 12 months by enzyme-linked immunoassay(ELISA). These results suggest that APP/PS1 transgenic mice are susceptible to osteoporosis, and that curcumin can prevent further deterioration of the bone structure and produce beneficial changes in bone turnover. The change of inflammation cytokine, including TNF-α and IL-6, may play an important role in the mechanisms of action of curcumin, but the detail mechanism remains unknown. PMID:20637579

  19. Suxiaojiuxin pill enhances atherosclerotic plaque stability by modulating the MMPs/TIMPs balance in ApoE-deficient mice.

    PubMed

    Zhang, Jinbao; Zhuang, Pengwei; Lu, Zhiqiang; Zhang, Mixia; Zhang, Teng; Zhang, Yanjun; Wang, Jinlei; Liu, Dan; Tong, Yongling

    2014-08-01

    : Suxiaojiuxin pill (SX) is a famous Chinese formulated product, which has been used to treat coronary heart disease and angina pectoris in China. This study was carried out to investigate the effect and possible mechanism of SX on the stability of atherosclerotic plaque in ApoE-deficient mice. ApoE-/- mice of 6-8 weeks old were fed with high-fat diet for developing artherosclerosis. After oral administration of SX for 8 weeks, histopathology of aortic plaque was performed by Sudan III and hematoxylin-eosin staining, and muscle protein was detected by Western blotting (WB). The mRNA and proteins associated with aortic plaque stability were detected by reverse transcription-polymerase chain reaction and WB, respectively. SX treatment could not only reduce serum triglyceride level and plaque area but also increase fibrous cap thickness and collagen content compared with the model group. WB results showed that SX could increase α-smooth muscle actin, tissue inhibitor of metalloproteinase 1 (TIMP-1), and TIMP-2 protein expression, whereas decrease matrix metalloproteinase 2 (MMP-2) and MMP-9 protein expression. Moreover, SX could upregulate the expression of α-smooth muscle actin mRNA and downregulate the expression of vascular endothelial growth factor mRNA. These results showed that SX could enhance atherosclerotic plaque stability in ApoE-deficient mice. The mechanism may be associated with modulating the MMPs/TIMPs balance.

  20. Transgenic mice with enhanced neuronal major histocompatibility complex class I expression recover locomotor function better after spinal cord injury.

    PubMed

    Joseph, M Selvan; Bilousova, Tina; Zdunowski, Sharon; Wu, Zhongqi-Phyllis; Middleton, Blake; Boudzinskaia, Maia; Wong, Bonnie; Ali, Noore; Zhong, Hui; Yong, Jing; Washburn, Lorraine; Escande-Beillard, Nathalie; Dang, Hoa; Edgerton, V Reggie; Tillakaratne, Niranjala J K; Kaufman, Daniel L

    2011-03-01

    Mice that are deficient in classical major histocompatibility complex class I (MHCI) have abnormalities in synaptic plasticity and neurodevelopment and have more extensive loss of synapses and reduced axon regeneration after sciatic nerve transection, suggesting that MHCI participates in maintaining synapses and axon regeneration. Little is known about the biological consequences of up-regulating MHCI's expression on neurons. To understand MHCI's neurobiological activity better, and in particular its role in neurorepair after injury, we have studied neurorepair in a transgenic mouse model in which classical MHCI expression is up-regulated only on neurons. Using a well-established spinal cord injury (SCI) model, we observed that transgenic mice with elevated neuronal MHCI expression had significantly better recovery of locomotor abilities after SCI than wild-type mice. Although previous studies have implicated inflammation as both deleterious and beneficial for recovery after SCI, our results point directly to enhanced neuronal MHCI expression as a beneficial factor for promoting recovery of locomotor function after SCI.

  1. Enhanced phosphorylation of cyclic AMP response element binding protein in Brain of mice following repetitive hypoxic exposure

    SciTech Connect

    Gao Yanan; Gao Ge; Long Caixia; Han Song; Zu Pengyu; Fang Li . E-mail: lfang@utmb.edu; Li Junfa . E-mail: junfali@cpums.edu.cn

    2006-02-10

    Cerebral ischemic/hypoxic preconditioning (I/HPC) is a phenomenon of endogenous protection that renders Brain tolerant to sustained ischemia/hypoxia. This profound protection induced by I/HPC makes it an attractive target for developing potential clinical therapeutic approaches. However, the molecular mechanism of I/HPC is unclear. Cyclic AMP (cAMP) response element binding protein (CREB), a selective nuclear transcriptional factor, plays a key role in the neuronal functions. Phosphorylation of CREB on Ser-133 may facilitate its transcriptional activity in response to various stresses. In the current study, we observed the changes in CREB phosphorylation (Ser-133) and protein expression in Brain of auto-hypoxia-induced HPC mice by using Western blot analysis. We found that the levels of phosphorylated CREB (Ser-133), but not protein expression of CREB, increased significantly (p < 0.05) in the hippocampus and the frontal cortex of mice after repetitive hypoxic exposure (H2-H4, n = 6 for each group), when compared to that of the normoxic (H0, n = 6) or hypoxic exposure once group (H1, n = 6). In addition, a significant enhancement (p < 0.05) of CREB phosphorylation (Ser-133) could also be found in the nuclear extracts from the whole hippocampus of hypoxic preconditioned mice (H2-H4, n = 6 for each group). These results suggest that the phosphorylation of CREB might be involved in the development of cerebral hypoxic preconditioning.

  2. Endogenous IL-21 regulates pathogenic mucosal CD4 T-cell responses during enhanced RSV disease in mice

    PubMed Central

    Dodd, J S; Clark, D; Muir, R; Korpis, C; Openshaw, P J M

    2013-01-01

    A role for interleukin-21 (IL-21) has recently been found in several diseases, but contribution to mucosal defences has not been described. In BALB/c mice infected with respiratory syncytial virus (RSV), IL-21 depletion had little effect in primary infection. However, depletion of mice during priming with recombinant vaccinia expressing RSV G protein (which primes RSV-specific T helper type 2 cells and causes lung eosinophilia during RSV infection) further exacerbated pathology during RSV challenge, with reduced viral clearance and impaired virus-specific serum antibody responses. This enhancement was accompanied by lymphocyte, neutrophil, and antigen-presenting cell recruitment to the lungs, with increased bronchoalveolar lavage interferon-γ and IL-17 levels. Adoptive transfer of splenic CD4 T cells from depleted mice into naive recipients replicated these effects, indicating that IL-21 mediates its effects via CD4 T cells. Endogenous IL-21, therefore, has potent and specific effects on mucosal antiviral responses, assisting viral clearance, regulating pulmonary T- and B-cell responses, and inhibiting IL-17 production. PMID:23168836

  3. Estrogen receptor alpha activation enhances mitochondrial function and systemic metabolism in high-fat-fed ovariectomized mice.

    PubMed

    Hamilton, Dale J; Minze, Laurie J; Kumar, Tanvi; Cao, Tram N; Lyon, Christopher J; Geiger, Paige C; Hsueh, Willa A; Gupte, Anisha A

    2016-09-01

    Estrogen impacts insulin action and cardiac metabolism, and menopause dramatically increases cardiometabolic risk in women. However, the mechanism(s) of cardiometabolic protection by estrogen remain incompletely understood. Here, we tested the effects of selective activation of E2 receptor alpha (ERα) on systemic metabolism, insulin action, and cardiac mitochondrial function in a mouse model of metabolic dysfunction (ovariectomy [OVX], insulin resistance, hyperlipidemia, and advanced age). Middle-aged (12-month-old) female low-density lipoprotein receptor (Ldlr)(-/-) mice were subjected to OVX or sham surgery and fed "western" high-fat diet (WHFD) for 3 months. Selective ERα activation with 4,4',4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl) (PPT), prevented weight gain, improved insulin action, and reduced visceral fat accumulation in WHFD-fed OVX mice. PPT treatment also elevated systemic metabolism, increasing oxygen consumption and core body temperature, induced expression of several metabolic genes such as peroxisome proliferator-activated receptor gamma, coactivator 1 alpha, and nuclear respiratory factor 1 in heart, liver, skeletal muscle, and adipose tissue, and increased cardiac mitochondrial function. Taken together, selective activation of ERα with PPT enhances metabolic effects including insulin resistance, whole body energy metabolism, and mitochondrial function in OVX mice with metabolic syndrome. PMID:27582063

  4. Enhancement of lung tumor formation in mice by dietary butylated hydroxytoluene: dose-time relationships and cell kinetics

    SciTech Connect

    Witschi, H.R.; Morse, C.C.

    1983-10-01

    Strain A/J mice given injections of 1000 mg urethan/kg and fed for 12 weeks a diet containing 0.75% of butylated hydroxytoluene (BHT) had significantly more tumors per lung 4 or 9 months later than animals given urethan and fed a control diet. A 2-week exposure to dietary BHT (0.75%) was sufficient to significantly enhance tumor development, and the lowest effective BHT concentration was 0.1%, fed for 8 weeks. Tumor development was also enhanced in animals treated once with 3-methylcholanthrene, benzo(a)pyrene, or N-nitrosodimethylamine and, beginning 24 hours later, fed BHT for 8 weeks. Cell kinetic studies showed that BHT given in the diet produced increased proliferation of type II alveolar cells during the first 2 weeks and that initial cell proliferation was delayed in urethan-treated animals.

  5. Intra-cerebellar microinjection of histamine enhances memory consolidation of inhibitory avoidance learning in mice via H2 receptors.

    PubMed

    Gianlorenço, A C L; Canto-de-Souza, A; Mattioli, R

    2013-12-17

    Studies have demonstrated the relationship between the histaminergic system and the cerebellum, and we intend to investigate the role of the cerebellar histaminergic system on memory consolidation. This study investigated the effect of intra-cerebellar microinjection of histamine on memory retention of inhibitory avoidance in mice, and the role of H1 and H2 receptors in it. The cerebellar vermis of male mice were implanted with guide cannulae, and after three days of recovery, the inhibitory avoidance test was performed. Immediately after a training session, animals received a microinjection of histaminergic drugs: in the experiment 1, saline (SAL) or histamine (HA 0.54, 1.36, 2.72 or 4.07 nmol); experiment 2, SAL or 1.36 nmol HA 5 min after a pretreatment with 0.16 nmol chlorpheniramine (CPA) or SAL; and experiment 3, SAL or 1.36 nmol HA 5 min after a pretreatment with 2.85 nmol ranitidine (RA) or SAL. Twenty-four hours later, a retention test was performed. The data were analyzed using one-way analysis of variance (ANOVA) and Duncan's tests. In experiment 1, animals microinjected with 1.36 nmol HA showed a higher latency to cross to the dark compartment compared to controls and to 2.72 and 4.07 nmol HA groups. In experiment 2, the combined infusions revealed difference between control (SAL+SAL) and SAL+HA and CPA+HA; while in the experiment 3 the analysis indicated differences in retention latency between mice injected with SAL+SAL and SAL+HA. The groups that received the H2 antagonist RA did not show difference compared to control. These results indicate that 1.36 nmol HA enhances memory consolidation of inhibitory avoidance learning in mice and that the pretreatment with H2 antagonist RA was able to prevent this effect.

  6. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1

    PubMed Central

    Lelliott, Patrick M.; McMorran, Brendan J.; Foote, Simon J.

    2015-01-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, TfrcMRI24910, identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria. PMID:26303393

  7. Erythrocytic Iron Deficiency Enhances Susceptibility to Plasmodium chabaudi Infection in Mice Carrying a Missense Mutation in Transferrin Receptor 1.

    PubMed

    Lelliott, Patrick M; McMorran, Brendan J; Foote, Simon J; Burgio, Gaetan

    2015-11-01

    The treatment of iron deficiency in areas of high malaria transmission is complicated by evidence which suggests that iron deficiency anemia protects against malaria, while iron supplementation increases malaria risk. Iron deficiency anemia results in an array of pathologies, including reduced systemic iron bioavailability and abnormal erythrocyte physiology; however, the mechanisms by which these pathologies influence malaria infection are not well defined. In the present study, the response to malaria infection was examined in a mutant mouse line, Tfrc(MRI24910), identified during an N-ethyl-N-nitrosourea (ENU) screen. This line carries a missense mutation in the gene for transferrin receptor 1 (TFR1). Heterozygous mice exhibited reduced erythrocyte volume and density, a phenotype consistent with dietary iron deficiency anemia. However, unlike the case in dietary deficiency, the erythrocyte half-life, mean corpuscular hemoglobin concentration, and intraerythrocytic ferritin content were unchanged. Systemic iron bioavailability was also unchanged, indicating that this mutation results in erythrocytic iron deficiency without significantly altering overall iron homeostasis. When infected with the rodent malaria parasite Plasmodium chabaudi adami, mice displayed increased parasitemia and succumbed to infection more quickly than their wild-type littermates. Transfusion of fluorescently labeled erythrocytes into malaria parasite-infected mice demonstrated an erythrocyte-autonomous enhanced survival of parasites within mutant erythrocytes. Together, these results indicate that TFR1 deficiency alters erythrocyte physiology in a way that is similar to dietary iron deficiency anemia, albeit to a lesser degree, and that this promotes intraerythrocytic parasite survival and an increased susceptibility to malaria in mice. These findings may have implications for the management of iron deficiency in the context of malaria.

  8. Enhanced synthesis and release of dopamine in transgenic mice with gain-of-function α6* nAChRs

    PubMed Central

    Wang, Yuexiang; Lee, Jang-Won; Oh, Gyeon; Grady, Sharon R.; McIntosh, J. Michael; Brunzell, Darlene H.; Cannon, Jason R.; Drenan, Ryan M.

    2014-01-01

    α6β2* nAChRs in the ventral tegmental area (VTA) to nucleus accumbens (NAc) pathway are implicated in the response to nicotine, and recent work suggests these receptors play a role in the rewarding action of ethanol. Here, we studied mice expressing gain-of-function α6β2* nAChRs (α6L9’S mice) that are hypersensitive to nicotine and endogenous acetylcholine (ACh). Evoked extracellular dopamine (DA) levels were enhanced in α6L9’S NAc slices compared to control, non-transgenic (nonTg) slices. Extracellular DA levels in both nonTg and α6L9’S slices were further enhanced in the presence of GBR12909, suggesting intact DA transporter function in both mouse strains. Ongoing α6β2* nAChR activation by ACh plays a role in enhancing DA levels, as α-conotoxin MII completely abolished evoked DA release in α6L9’S slices and decreased spontaneous DA release from striatal synaptosomes. In HPLC experiments, α6L9’S NAc tissue contained significantly more DA, 3,4-dihydroxyphenylacetic acid (DOPAC), and homovanillic acid (HVA) compared to nonTg NAc tissue. Serotonin (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), and norepinephrine (NE) were unchanged in α6L9’S compared to nonTg tissue. Western blot analysis revealed increased tyrosine hydroxylase expression in α6L9’S NAc. Overall, these results show that enhanced α6β2* nAChR activity in NAc can stimulate DA production and lead to increased extracellular DA levels. PMID:24266758

  9. Importin-α7 Is Required for Enhanced Influenza A Virus Replication in the Alveolar Epithelium and Severe Lung Damage in Mice

    PubMed Central

    Resa-Infante, Patricia; Thieme, René; Ernst, Thomas; Arck, Petra C.; Ittrich, Harald; Reimer, Rudolph

    2014-01-01

    ABSTRACT Influenza A viruses recruit components of the nuclear import pathway to enter the host cell nucleus and promote viral replication. Here, we analyzed the role of the nuclear import factor importin-α7 in H1N1 influenza virus pulmonary tropism by using various ex vivo imaging techniques (magnetic resonance imaging, confocal laser scanning microscopy, and correlative light-electron microscopy). We infected importin-α7 gene-deficient (α7−/−) mice with a recombinant H1N1 influenza virus and compared the in vivo viral kinetics with those in wild-type (WT) mice. In WT mice, influenza virus replication in the bronchial and alveolar epithelium already occurred a few days after infection. Accordingly, extensive mononuclear infiltration and alveolar destruction were present in the lungs of infected WT mice, followed by 100% lethality. Conversely, in α7−/− mice, virus replication was restricted mostly to the bronchial epithelium with marginal alveolar infection, resulting in significantly reduced lung damage and enhanced animal survival. To investigate the host immune response during alveolar virus replication, we studied the role of primary macrophages in virus propagation and clearance. The ability of macrophages to support or clear the virus infection, as well as the host cellular immune responses, did not significantly differ between WT and α7−/− mice. However, cytokine and chemokine responses were generally elevated in WT mice, likely reflective of increased viral replication in the lung. In summary, these data show that a cellular factor, importin-α7, is required for enhanced virus replication in the alveolar epithelium, resulting in elevated cytokine and chemokine levels, extensive mononuclear infiltration, and thus, severe pneumonia and enhanced virulence in mice. IMPORTANCE Influenza A viruses are respiratory pathogens that may cause pneumonia in humans. Viral infection and replication in the alveoli of the respiratory tract are believed to

  10. Sarcosine attenuates toluene-induced motor incoordination, memory impairment, and hypothermia but not brain stimulation reward enhancement in mice

    SciTech Connect

    Chan, Ming-Huan; Chung, Shiang-Sheng; Stoker, Astrid K.; Markou, Athina; Chen, Hwei-Hsien

    2012-12-01

    Toluene, a widely used and commonly abused organic solvent, produces various behavioral disturbances, including motor incoordination and cognitive impairment. Toluene alters the function of a large number of receptors and ion channels. Blockade of N-methyl-D-aspartate (NMDA) receptors has been suggested to play a critical role in toluene-induced behavioral manifestations. The present study determined the effects of various toluene doses on motor coordination, recognition memory, body temperature, and intracranial self-stimulation (ICSS) thresholds in mice. Additionally, the effects of sarcosine on the behavioral and physiological effects induced by toluene were evaluated. Sarcosine may reverse toluene-induced behavioral manifestations by acting as an NMDA receptor co-agonist and by inhibiting the effects of the type I glycine transporter (GlyT1). Mice were treated with toluene alone or combined with sarcosine pretreatment and assessed for rotarod performance, object recognition memory, rectal temperature, and ICSS thresholds. Toluene dose-dependently induced motor incoordination, recognition memory impairment, and hypothermia and lowered ICSS thresholds. Sarcosine pretreatment reversed toluene-induced changes in rotarod performance, novel object recognition, and rectal temperature but not ICSS thresholds. These findings suggest that the sarcosine-induced potentiation of NMDA receptors may reverse motor incoordination, memory impairment, and hypothermia but not the enhancement of brain stimulation reward function associated with toluene exposure. Sarcosine may be a promising compound to prevent acute toluene intoxications by occupational or intentional exposure. -- Highlights: ► Toluene induces impairments in Rotarod test and novel object recognition test. ► Toluene lowers rectal temperature and ICSS thresholds in mice. ► Sarcosine reverses toluene-induced changes in motor, memory and body temperature. ► Sarcosine pretreatment does not affect toluene

  11. Additive enhancement of wound healing in diabetic mice by low level light and topical CoQ10

    PubMed Central

    Mao, Zhigang; Wu, Jeffrey H.; Dong, Tingting; Wu, Mei X.

    2016-01-01

    Diabetes, a highly prevalent disease that affects 9.3% of Americans, often leads to severe complications and slow wound healing. Preclinical studies have suggested that low level light therapy (LLLT) can accelerate wound healing in diabetic subjects, but significant improvements must be made to overcome the absence of persuasive evidence for its clinical use. We demonstrate here that LLLT can be combined with topical Coenzyme Q10 (CoQ10) to heal wounds in diabetic mice significantly faster than LLLT alone, CoQ10 alone, or controls. LLLT followed by topical CoQ10 enhanced wound healing by 68~103% in diabetic mice in the first week and more than 24% in the second week compared with untreated controls. All wounds were fully healed in two weeks following the dual treatment, in contrast to only 50% wounds or a fewer being fully healed for single or sham treatment. The accelerated healing was corroborated by at least 50% higher hydroxyproline levels, and tripling cell proliferation rates in LLLT and CoQ10 treated wounds over controls. The beneficial effects on wound healing were probably attributed to additive enhancement of ATP production by LLLT and CoQ10 treatment. The combination of LLLT and topical CoQ10 is safe and convenient, and merits further clinical study. PMID:26830658

  12. Genetic enhancement of behavioral itch responses in mice lacking phosphoinositide 3-kinase-γ (PI3Kγ)

    PubMed Central

    2011-01-01

    Phosphoinositide 3-kinases (PI3Ks) are important for synaptic plasticity and various brain functions. The only class IB isoform of PI3K, PI3Kγ, has received the most attention due to its unique roles in synaptic plasticity and cognition. However, the potential role of PI3Kγ in sensory transmission, such as pain and itch has not been examined. In this study, we present the evidence for the first time, that genetic deletion of PI3Kγ enhanced scratching behaviours in histamine-dependent and protease-activated receptor 2 (PAR-2)-dependent itch. In contrast, PI3Kγ-deficient mice did not exhibit enhanced scratching in chloroquine-induced itch, suggesting that PI3Kγ selectively contributes to certain types of behavioal itch response. Furthermore, PI3Kγ-deficient mice exhibited normal acute nociceptive responses to thermal and mechanical noxious stimuli. Behavioral licking responses to intraplantar injections of formalin and mechanical allodynia in a chronic inflammatory pain model (CFA) were also not affected by PI3Kγ gene deletion. Our findings indicate that PI3Kγ selectively contributes to behavioral itching induced by histamine and PAR-2 agonist, but not chloroquine agonist. PMID:22168443

  13. Pulsed high-intensity focused ultrasound therapy enhances targeted delivery of cetuximab to colon cancer xenograft model in mice.

    PubMed

    Park, Min Jung; Kim, Young-Sun; Yang, Jehoon; Sun, Woo Chul; Park, Hajan; Chae, Sun Young; Namgung, Mi-Sun; Choi, Kyu-Sil

    2013-02-01

    Our aim was to evaluate whether pulsed high-intensity focused ultrasound (HIFU) therapy enhances the effect of an epidermal growth factor receptor-targeted chemotherapeutic drug, cetuximab, in treating human colon cancer xenografts in a mouse model. Balb/c nude mice with subcutaneous xenografts of HT-29 cells were randomly categorized into control (n = 9), pulsed HIFU alone (n = 10), cetuximab monotherapy (n = 8) or combined pulsed HIFU and cetuximab therapy (n = 9) group. Cetuximab, pulsed HIFU therapy, or both were administered three times per week starting from day 8 after tumor cell injection. Based on tumor growth curves up to 34 days, the combination therapy group showed more suppressed tumor growth than all other groups (p < 0.05). The final relative tumor volumes were 5.4 ± 2.1, 5.2 ± 1.3, 4.8 ± 1.8, and 3.1 ± 0.9 for control, pulsed HIFU alone, cetuximab monotherapy, and combination therapy groups, respectively. In conclusion, pulsed HIFU therapy appears to enhance the anti-tumor effect of epidermal growth factor receptor-targeted cetuximab on human colon cancer xenograft models in mice. PMID:23219035

  14. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects

    PubMed Central

    Fogaça, Manoela V.; Gomes, Felipe V.; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A.; Hallak, Jaime C.; Crippa, José A.; Zuardi, Antonio W.; Guimarães, Francisco S.

    2016-01-01

    Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors. PMID:27416026

  15. Fluorinated Cannabidiol Derivatives: Enhancement of Activity in Mice Models Predictive of Anxiolytic, Antidepressant and Antipsychotic Effects.

    PubMed

    Breuer, Aviva; Haj, Christeene G; Fogaça, Manoela V; Gomes, Felipe V; Silva, Nicole Rodrigues; Pedrazzi, João Francisco; Del Bel, Elaine A; Hallak, Jaime C; Crippa, José A; Zuardi, Antonio W; Mechoulam, Raphael; Guimarães, Francisco S

    2016-01-01

    Cannabidiol (CBD) is a major Cannabis sativa constituent, which does not cause the typical marijuana psychoactivity. However, it has been shown to be active in a numerous pharmacological assays, including mice tests for anxiety, obsessive-compulsive disorder, depression and schizophrenia. In human trials the doses of CBD needed to achieve effects in anxiety and schizophrenia are high. We report now the synthesis of 3 fluorinated CBD derivatives, one of which, 4'-F-CBD (HUF-101) (1), is considerably more potent than CBD in behavioral assays in mice predictive of anxiolytic, antidepressant, antipsychotic and anti-compulsive activity. Similar to CBD, the anti-compulsive effects of HUF-101 depend on cannabinoid receptors. PMID:27416026

  16. Postnatal exposure to predator odor (TMT) enhances spatial learning in mice adulthood.

    PubMed

    Hacquemand, R; Jacquot, L; Brand, G

    2012-04-01

    Adult behavioral and physiological responses are partly dependent on neonatal experiences. In several animal species, enriched/aprovished environments and stressful/appeasing events are crucial in the setting of adaptative behaviors. However, little is known about the effects of postnatal exposure to predator odor (as unconditioned fear-related stimulus) on spatial learning at adulthood. Thus, the aim of the present study was to investigate the effects of a postnatal exposure to 2,4,5-trimethylthiazoline (TMT, as a predator odor) on radial arm maze (RAM), Tolman maze (TM) and Morris water maze (MWM) in mice at adulthood. The results showed that a TMT group constituted by mice exposed postnatally during 3 weeks to TMT presented significantly better spatial learning achievements in adulthood compared to a water group, postnatally exposed to water only, as well as compared to a butanol group (butanol used as an odor without ecological significance) exposed postnatally to butanol during 3 weeks. PMID:22245526

  17. Fluoxetine Protection in Decompression Sickness in Mice is Enhanced by Blocking TREK-1 Potassium Channel with the “spadin” Antidepressant

    PubMed Central

    Vallée, Nicolas; Lambrechts, Kate; De Maistre, Sébastien; Royal, Perrine; Mazella, Jean; Borsotto, Marc; Heurteaux, Catherine; Abraini, Jacques; Risso, Jean-Jacques; Blatteau, Jean-Eric

    2016-01-01

    In mice, disseminated coagulation, inflammation, and ischemia induce neurological damage that can lead to death. These symptoms result from circulating bubbles generated by a pathogenic decompression. Acute fluoxetine treatment or the presence of the TREK-1 potassium channel increases the survival rate when mice are subjected to an experimental dive/decompression protocol. This is a paradox because fluoxetine is a blocker of TREK-1 channels. First, we studied the effects of an acute dose of fluoxetine (50 mg/kg) in wild-type (WT) and TREK-1 deficient mice (knockout homozygous KO and heterozygous HET). Then, we combined the same fluoxetine treatment with a 5-day treatment protocol with spadin, in order to specifically block TREK-1 activity (KO-like mice). KO and KO-like mice were regarded as antidepressed models. In total, 167 mice (45 WTcont 46 WTflux 30 HETflux and 46 KOflux) constituting the flux-pool and 113 supplementary mice (27 KO-like 24 WTflux2 24 KO-likeflux 21 WTcont2 17 WTno dive) constituting the spad-pool were included in this study. Only 7% of KO-TREK-1 treated with fluoxetine (KOflux) and 4% of mice treated with both spadin and fluoxetine (KO-likeflux) died from decompression sickness (DCS) symptoms. These values are much lower than those of WT control (62%) or KO-like mice (41%). After the decompression protocol, mice showed significant consumption of their circulating platelets and leukocytes. Spadin antidepressed mice were more likely to exhibit DCS. Nevertheless, mice which had both blocked TREK-1 channels and fluoxetine treatment were better protected against DCS. We conclude that the protective effect of such an acute dose of fluoxetine is enhanced when TREK-1 is inhibited. We confirmed that antidepressed models may have worse DCS outcomes, but concomitant fluoxetine treatment not only decreased DCS severity but increased the survival rate. PMID:26909044

  18. Allopregnanolone enhances the neurogenesis of midbrain dopaminergic neurons in APPswe/PSEN1 mice.

    PubMed

    Zhang, P; Xie, M Q; Ding, Y-Q; Liao, M; Qi, S S; Chen, S X; Gu, Q Q; Zhou, P; Sun, C Y

    2015-04-01

    An earlier study has demonstrated that exogenous allopregnanolone (APα) can reverse the reduction of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra pars compacta (SNpc) of 3-month-old male triple transgenic Alzheimer's disease mouse (3xTgAD). This paper is focused on further clarifying the origin of these new-born TH-positive neurons induced by exogenous APα treatment. We performed a deeper research in another AD mouse model, 4-month-old male APPswe/PSEN1 double transgenic AD mouse (2xTgAD) by measuring APα concentration and counting immunopositive neurons using enzyme-linked immunosorbent assay (ELISA) and unbiased stereology. It was found that endogenous APα level and the number of TH-positive neurons were reduced in the 2xTgAD mice, and these reductions were present prior to the appearance of β-amyloid (Aβ)-positive plaques. Furthermore, a single 20mg/kg of exogenous APα treatment prevented the decline of total neurons, TH-positive neurons and TH/bromodeoxyuridine (BrdU) double-positive neurons in the SNpc of 2xTgAD mice although the decreased intensity of TH-positive fibers was not rescued in the striatum. It was also noted that exogenous APα administration had an apparent increase in the doublecortin (DCX)-positive neurons and DCX/BrdU double-positive neurons of subventricular zone (SVZ), as well as in the percentage of neuronal nuclear antigen (NeuN)/BrdU double-positive neurons of the SNpc in the 2xTgAD mice. These findings indicate that a lower level of endogenous APα is implicated in the loss of midbrain dopaminergic neurons in the 2xTgAD mice, and exogenous APα-induced a significant increase in the new-born dopaminergic neurons might be derived from the proliferating and differentiation of neural stem niche of SVZ.

  19. The effects of enhanced zinc on spatial memory and plaque formation in transgenic mice

    USGS Publications Warehouse

    Linkous, D.H.; Adlard, P.A.; Wanschura, P.B.; Conko, K.M.; Flinn, J.M.

    2009-01-01

    There is considerable evidence suggesting that metals play a central role in the pathogenesis of Alzheimer's disease. Reports suggest that elevated dietary metals may both precipitate and potentiate an Alzheimer's disease phenotype. Despite this, there remain few studies that have examined the behavioral consequences of elevated dietary metals in wild type and Alzheimer's disease animals. To further investigate this in the current study, two separate transgenic models of AD (Tg2576 and TgCRND8), together with wild type littermates were administered 10 ppm (0.153 mM) Zn. Tg2576 animals were maintained on a zinc-enriched diet both pre- and postnatally until 11 months of age, while TgCRND8 animals were treated for five months following weaning. Behavioral testing, consisting of "Atlantis" and "moving" platform versions of the Morris water maze, were conducted at the end of the study, and tissues were collected for immunohistochemical analysis of amyloid-β burden. Our data demonstrate that the provision of a zinc-enriched diet potentiated Alzheimer-like spatial memory impairments in the transgenic animals and was associated with reduced hippocampal amyloid-β plaque deposits. Zinc-related behavioral deficits were also demonstrated in wild type mice, which were sometimes as great as those present in the transgenic animals. However, zinc-related cognitive impairments in transgenic mice were greater than the summation of zinc effects in the wild type mice and the transgene effects.

  20. Role of Plasmacytoid Dendritic Cells for Aberrant Class II Expression in Exocrine Glands from Estrogen-Deficient Mice of Healthy Background

    PubMed Central

    Arakaki, Rieko; Nagaoka, Ai; Ishimaru, Naozumi; Yamada, Akiko; Yoshida, Satoko; Hayashi, Yoshio

    2009-01-01

    Although it has been well documented that aberrant major histocompatibility complex class II molecules may contribute to the development of autoimmune disorders, the precise mechanisms responsible for their tissue-specific expression remain unknown. Here we show that estrogen deficiency induces aberrant class II major histocompatibility complex expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells. Relatively modest but functionally significant expression levels of major histocompatibility complex class II and class II transactivator molecules were observed in the exocrine glands of ovariectomized (Ovx) C57BL/6 (B6) mice, but were not seen in the exocrine glands of control B6 mice. We observed that the salivary dendritic cells adjacent to the apoptotic epithelial cells positive for terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling, were activated in Ovx mice, but were not activated in control mice. We obtained evidence that the salivary gland cells express both interferon regulatory factor-1 and class II transactivator type IV molecules in Ovx mice. Salivary gland cells from Ovx mice were also capable of inducing the activation of antigen-specific T cells from OT-II transgenic mice. These findings indicate that estrogen deficiency initiates class II transactivator type IV mRNA expression in exocrine glands via interactions between epithelial cells and plasmacytoid dendritic cells, suggesting that plasmacytoid dendritic cells play a pivotal role in gender-based autoimmune disorders in postmenopausal women. PMID:19359524

  1. Vitamin D₃ and monomethyl fumarate enhance natural killer cell lysis of dendritic cells and ameliorate the clinical score in mice suffering from experimental autoimmune encephalomyelitis.

    PubMed

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A

    2015-11-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4⁺ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139-151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D₃ (vitamin D₃), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D₃ and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D₃-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells.

  2. Vitamin D3 and Monomethyl Fumarate Enhance Natural Killer Cell Lysis of Dendritic Cells and Ameliorate the Clinical Score in Mice Suffering from Experimental Autoimmune Encephalomyelitis

    PubMed Central

    Al-Jaderi, Zaidoon; Maghazachi, Azzam A.

    2015-01-01

    Experimental autoimmune encephalomyelitis (EAE) is a CD4+ T cell mediated inflammatory demyelinating disease that is induced in mice by administration of peptides derived from myelin proteins. We developed EAE in SJL mice by administration of PLP139–151 peptide. The effect of treating these mice with 1α,25-Dihydroxyvitamin D3 (vitamin D3), or with monomethyl fumarate (MMF) was then examined. We observed that both vitamin D3 and MMF inhibited and/or prevented EAE in these mice. These findings were corroborated with isolating natural killer (NK) cells from vitamin D3-treated or MMF-treated EAE mice that lysed immature or mature dendritic cells. The results support and extend other findings indicating that an important mechanism of action for drugs used to treat multiple sclerosis (MS) is to enhance NK cell lysis of dendritic cells. PMID:26580651

  3. A single exercise bout enhances the manufacture of viral-specific T-cells from healthy donors: implications for allogeneic adoptive transfer immunotherapy

    PubMed Central

    Spielmann, Guillaume; Bollard, Catherine M.; Kunz, Hawley; Hanley, Patrick J.; Simpson, Richard J.

    2016-01-01

    Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) infections remain a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). The adoptive transfer of donor-derived viral-specific cytotoxic T-cells (VSTs) is an effective treatment for controlling CMV and EBV infections after HSCT; however, new practical methods are required to augment the ex vivo manufacture of multi-VSTs from healthy donors. This study investigated the effects of a single exercise bout on the ex vivo manufacture of multi-VSTs. PBMCs isolated from healthy CMV/EBV seropositive participants before (PRE) and immediately after (POST) 30-minutes of cycling exercise were stimulated with CMV (pp65 and IE1) and EBV (LMP2A and BMLF1) peptides and expanded over 8 days. The number (fold difference from PRE) of T-cells specific for CMV pp65 (2.6), EBV LMP2A (2.5), and EBV BMLF1 (4.4) was greater among the VSTs expanded POST. VSTs expanded PRE and POST had similar phenotype characteristics and were equally capable of MHC-restricted killing of autologous target cells. We conclude that a single exercise bout enhances the manufacture of multi-VSTs from healthy donors without altering their phenotype or function and may serve as a simple and economical adjuvant to boost the production of multi-VSTs for allogeneic adoptive transfer immunotherapy. PMID:27181409

  4. Synchrotron nanoscopy imaging study of scalp hair in breast cancer patients and healthy individuals: Difference in medulla loss and cortical membrane enhancements.

    PubMed

    Han, Sung-Mi; Chikawa, Jun-Ichi; Jeon, Jae-Kun; Hwang, Min-Young; Lim, Jun; Jeong, Young-Ju; Park, Sung-Hwan; Kim, Hong-Tae; Jheon, Sanghoon; Kim, Jong-Ki

    2016-01-01

    Nanoscopic synchrotron X-ray imaging was performed on scalp hair samples of patients with breast cancer and healthy individuals to investigate any structural differences as diagnostic tool. Hair strands were divided into 2-3 segments along the strands from root to tip, followed by imaging either in projection or in CT scanning with a monochromatic 6.78-keV X-ray using zone-plate optics with a resolving power of 60 nm. All the examined cancer hairs exhibited medulla loss with cancer stage-dependent pattern; complete loss, discontinuous or trace along the strands. In contrast, medullas were well retained without complete loss in the healthy hair. In the CT-scanned axial images, the cortical spindle compartments had no contrast in the healthy hair, but appeared hypointense in contrast to the surrounding hyperintense cortical membrane complex in the cancer hair. In conclusion, observation of medulla loss and cortical membrane enhancements in the hair strands of breast cancer patients demonstrated structural variations in the cancer hair, providing a new platform for further synchrotron X-ray imaging study of screening breast cancer patients.

  5. Enhancing memory performance with rTMS in healthy subjects and individuals with Mild Cognitive Impairment: the role of the right dorsolateral prefrontal cortex

    PubMed Central

    Turriziani, Patrizia; Smirni, Daniela; Zappalà, Giuseppe; Mangano, Giuseppa R.; Oliveri, Massimiliano; Cipolotti, Lisa

    2012-01-01

    A debated question in the literature is the degree of anatomical and functional lateralization of the executive control processes sub-served by the dorsolateral prefrontal cortex (DLPFC) during recognition memory retrieval. We investigated if transient inhibition and excitation of the left and right DLPFC at retrieval by means of repetitive transcranial magnetic stimulation (rTMS) modulate recognition memory performance in 100 healthy controls (HCs) and in eight patients with Mild Cognitive Impairment (MCI). Recognition memory tasks of faces, buildings, and words were used in different experiments. rTMS-inhibition of the right DLPFC enhanced recognition memory in both HCs and MCIs. rTMS-excitation of the same region in HCs deteriorated memory performance. Inhibition of the right DLPFC could modulate the excitability of a network of brain regions, in the ipsilateral as well as in the contralateral hemisphere, enhancing function in HCs or restoring an adaptive equilibrium in MCI. PMID:22514525

  6. Combined Treatment with a BACE Inhibitor and Anti-Aβ Antibody Gantenerumab Enhances Amyloid Reduction in APPLondon Mice

    PubMed Central

    Ozmen, Laurence; Caruso, Antonello; Narquizian, Robert; Hilpert, Hans; Jacobsen, Bjoern; Terwel, Dick; Tanghe, An

    2014-01-01

    Therapeutic approaches for prevention or reduction of amyloidosis are currently a main objective in basic and clinical research on Alzheimer‘s disease. Among the agents explored in clinical trials are anti-Aβ peptide antibodies and secretase inhibitors. Most anti-Aβ antibodies are considered to act via inhibition of amyloidosis and enhanced clearance of existing amyloid, although secretase inhibitors reduce the de novo production of Aβ. Limited information is currently available on the efficacy and potential advantages of combinatorial antiamyloid treatment. We performed a chronic study in APPLondon transgenic mice that received treatment with anti-Aβ antibody gantenerumab and BACE inhibitor RO5508887, either as mono- or combination treatment. Treatment aimed to evaluate efficacy on amyloid progression, similar to preexisting amyloidosis as present in Alzheimer's disease patients. Mono-treatments with either compound caused a dose-dependent reduction of total brain Aβ and amyloid burden. Combination treatment with both compounds significantly enhanced the antiamyloid effect. The observed combination effect was most pronounced for lowering of amyloid plaque load and plaque number, which suggests effective inhibition of de novo plaque formation. Moreover, significantly enhanced clearance of pre-existing amyloid plaques was observed when gantenerumab was coadministered with RO5508887. BACE inhibition led to a significant time- and dose-dependent decrease in CSF Aβ, which was not observed for gantenerumab treatment. Our results demonstrate that combining these two antiamyloid agents enhances overall efficacy and suggests that combination treatments may be of clinical relevance. PMID:25164658

  7. Prolonged use of Kinesiotaping does not enhance functional performance and joint proprioception in healthy young males: Randomized controlled trial

    PubMed Central

    Magalhães, Igor; Bottaro, Martim; Freitas, João R.; Carmo, Jake; Matheus, João P. C.; Carregaro, Rodrigo L.

    2016-01-01

    ABSTRACT Objectives The aim of this study was to investigate the effects of continuous (48-hour) use of Kinesiotaping (KT) on functional and proprioceptive performance in healthy, physically active men. Method Twenty-six healthy, physically active men (21.8±2.2 years old) were randomly allocated into two groups: 1) Kinesiotaping group (KG, tape applied with 40% tension for rectus femoris activation); 2) Control (CG, tape applied over rectus femoris without additional tension). Subjects attended the laboratory on five separate occasions: 1) familiarization; 2) baseline measurement without tape (BL); 3) immediately post-tape application (T0); 4) 24h (T24); and 5) 48h (T48) post-tape application. The outcomes were distance in the single (SHT) and triple hop tests (THT), vertical jump height (VJH), vertical jump power (VJP), and rate of force development (RFD). A mixed-model ANOVA was applied to verify differences between and within groups. Results No significant (p >0.05) differences were found in the SHT and THT between groups and moments. Likewise, the main effects for VJH, VJP, and RFD were not significant (p >0.05). Conclusion The present study demonstrated no significant immediate or prolonged (48h) effects of KT on functional and proprioceptive performance. PMID:27437712

  8. Enhancement of episodic memory in young and healthy adults: a paired-pulse TMS study on encoding and retrieval performance.

    PubMed

    Gagnon, Geneviève; Schneider, Cyril; Grondin, Simon; Blanchet, Sophie

    2011-01-20

    Transcranial magnetic stimulation (TMS) is a neurophysiological tool that can transiently influence brain excitability and improve cognitive performance. Facilitation effects induced by low frequency repetitive TMS on memory functions have been shown in a few studies in young and healthy participants [29] and in older individuals with memory complaints [40]. However, regions specifically involved in encoding and retrieval were not always systematically targeted. We thus aimed to facilitate episodic memory with online TMS systematically applied over the left or right dorsolateral prefrontal cortex (DLPFC) while participants were performing a recognition task. We applied online paired-pulse TMS (ppTMS) (15 ms inter-stimulus interval) either during encoding or retrieving of verbal or non-verbal material. Participants were 11 right-handed young individuals (21.33 ± 2.27 years old). Repeated measures ANOVA showed shorter reaction time when ppTMS are applied over the left DLPFC during encoding as compared to right homologous stimulation or to Sham condition. In contrast, ppTMS over the right DLPFC during retrieval was associated with shorter reaction times compared to left homologous stimulation. Overall, our data support for the first time that online ppTMS over the DLPFCs is capable of hastening memory processes in young and healthy individuals. PMID:21094215

  9. Sex Hormones Enhance Gingival Inflammation without Affecting IL-1β and TNF-α in Periodontally Healthy Women during Pregnancy

    PubMed Central

    Wu, Min; Chen, Shao-Wu; Su, Wei-Lan; Zhu, Hong-Ying; Ouyang, Shu-Yuan; Cao, Ya-Ting; Jiang, Shao-Yun

    2016-01-01

    Hormones (progesterone and estradiol) change greatly during pregnancy; however, the mechanism of hormonal changes on gingival inflammation is still unclear. This study is to evaluate the effects of hormonal changes during pregnancy on gingival inflammation and interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in gingival crevicular fluid (GCF). 30 periodontally healthy pregnant women were evaluated in the first, second, and third trimesters. 20 periodontally healthy nonpregnant women were evaluated twice (once per subsequent month). Clinical parameters including probing pocket depth (PPD), bleeding index (BI), gingival index (GI), clinical attachment level (CAL), and plaque index (PLI) were recorded. GCF levels of IL-1β and TNF-α and serum levels of progesterone and estradiol were measured. From the data, despite low PLI, BI and GI increased significantly during pregnancy; however, no significant changes in PLI, CAL, IL-1β, or TNF-α GCF levels were observed. Although IL-1β, not TNF-α, was higher in pregnant group than in nonpregnant group, they showed no correlation with serum hormone levels during pregnancy. GI and BI showed significant positive correlation with serum hormone levels during pregnancy. This study suggests that sex hormone increase during pregnancy might have an effect on inflammatory status of gingiva, independent of IL-1β and TNF-α in GCF. PMID:27034591

  10. The glycolytic inhibitor 2-deoxy-D-glucose enhances the efficacy of etoposide in ehrlich ascites tumor-bearing mice.

    PubMed

    Gupta, Seema; Mathur, Rohit; Dwarakanath, B S

    2005-01-01

    Earlier studies have shown that 2-deoxy-D-glucose (2-DG), a glucose analogue and inhibitor of glycolytic ATP production significantly enhances the cytotoxic effects of anticancer agents like topoisomerase inhibitors (etoposide and camptothecin) and a radiomimetic drug (bleomycin) in established human tumor cell lines. Therefore, combination of 2-DG and DNA damage causing cytotoxic agents could be very useful in enhancing local tumor control. The purpose of the present studies was to investigate the therapeutic effects of etoposide and 2-DG in Ehrlich ascites tumor (EAT) bearing mice, grown as solid tumor as well as in the ascites form. Cell growth, cell cycle perturbations (flow cytometry), cytogenetic damage (micronuclei assay) and apoptosis (DNA content, morphological changes) were studied as parameters of cellular response, while delay in tumor growth and cure rate (tumor free survival) were evaluated as parameters of systemic response. Body weight and general condition as well as the damage to bone marrow and spleen was monitored to evaluate normal tissue toxicity. Intraperitoneal administration of etoposide (30 mg/Kg b. wt.) resulted in significant tumor growth delay and cure (approximately 11%) only in subcutaneous tumors leading to local tumor control. When etoposide was combined with 2-DG (2 g/Kg b. wt.; i.v./i.p.; 4 h after etoposide injection), these effects were further enhanced resulting in a cure rate of approximately 22% in case of subcutaneous tumors and 20% in ascites bearing mice. Analysis of cells obtained from ascitic fluid as well as solid tumors during follow up clearly showed that etoposide induced cell death was mainly due to apoptosis, which was enhanced further by 2-DG. Although, there was a significant level of toxicity revealed by reduced animal survival, decrease in body weight and damage to sensitive organ status like spleen and bone marrow at 60 mg/Kg b. wt. of etoposide, it was not significant at 30 mg/Kg b.wt. 2-DG, however, did not

  11. Dietary arginine enhances adhesion molecule and T helper 2 cytokine expression in mice with gut-derived sepsis.

    PubMed

    Yeh, Chiu-Li; Hsu, Chun-Sen; Chiu, Wan-Chun; Hou, Yu-Chen; Yeh, Sung-Ling

    2006-02-01

    This study investigated the effects of arginine (Arg) on cellular adhesion molecules and intracellular Th1/Th2 cytokine expressions in mice with polymicrobial sepsis. Myeloperoxidase activity in organs was also analyzed to identify the extent of tissue injury resulting from neutrophil infiltration. Mice were randomly assigned to a normal group (NC), a control group, or an Arg group. The NC group was fed a standard chow diet. The control group was fed a common semipurified diet, and in the Arg group, part of the casein was replaced by Arg, which provided 2% of the total calories. After 3 weeks, sepsis was induced by cecal ligation and puncture (CLP) in the control and Arg groups. Mice in the experimental groups were sacrificed at 0, 6, 12, and 24 h after CLP, whereas mice in the NC group were sacrificed when the CLP was performed. Blood and organ samples were immediately collected for further analysis. Results showed that compared with the control group, plasma intracellular adhesion molecule-1 levels were significantly higher in the Arg group 12 and 24 h after CLP. Lymphocyte interferon-gamma expression in the Arg groups was significantly lower, whereas interleukin (IL)-4 expression was higher than the control group at various time points after CLP. The expression of lymphocyte CD11a/CD18 was significantly higher in the Arg group 6, 12, and 24 h after CLP than those of the corresponding control group and the NC group. PMN expressions of CD11b/CD18 in the Arg groups were higher than those in the control group at 12 and 24 h after CLP. The Arg group had higher IL-6 levels at 6 and 12 h in the kidney and intestine and 12 h in the lung after CLP. Higher myeloperoxidase activities were observed in the Arg groups at 24 h after CLP than those in the control group in various organs. These findings suggest that pretreatment with an Arg-supplemented diet enhances adhesion molecule and inflammatory cytokine expression during sepsis, which may aggravate the inflammatory

  12. CONTRAST-ENHANCED ULTRASOUND ASSESSMENT OF IMPAIRED ADIPOSE TISSUE AND MUSCLE PERFUSION IN INSULIN-RESISTANT MICE

    PubMed Central

    Belcik, J. Todd; Davidson, Brian P.; Foster, Ted; Qi, Yue; Zhao, Yan; Peters, Dawn; Lindner, Jonathan R.

    2015-01-01

    Background In diabetes mellitus reduced perfusion and capillary surface area in skeletal muscle, which is a major glucose storage site, contributes to abnormal glucose homeostasis. Using contrast-enhanced ultrasound (CEU) we investigated whether abdominal adipose tissue perfusion is abnormal in insulin resistance (IR) and correlates with glycemic control. Methods and Results Abdominal adipose tissue and skeletal muscle CEU perfusion imaging was performed in obese IR (db/db) mice at 11-12 or 14-16 weeks of age, and in control lean mice. Time-intensity data were analyzed to quantify microvascular blood flow (MBF) and capillary blood volume (CBV). Blood glucose response over one hour was measured after insulin challenge (1 u/Kg, I.P.). Compared to control mice, db/db mice at 11-12 and 14-16 weeks had a higher glucose concentration area-under-the-curve after insulin (11.8±2.8, 20.6±4.3, and 28.4±5.9 mg·min/dL [×1000], respectively, p=0.0002), and also had lower adipose MBF (0.094±0.038, 0.035±0.010, and 0.023±0.01 mL/min/g, p=0.0002) and CBV (1.6±0.6, 1.0±0.3, and 0.5±0.1 mL/100 g, p=0.0017). The glucose area-under-the-curve correlated in a non-linear fashion with both adipose and skeletal muscle MBF and CBV. There were significant linear correlations between adipose and muscle MBF (r=0.81) and CBV (r=0.66). Adipocyte cell volume on histology was 25-fold higher in 14-16 week db/db versus control mice. Conclusions Abnormal adipose MBF and CBV in IR can be detected by CEU and correlates with the degree of impairment in glucose storage. Abnormalities in adipose tissue and muscle appear to be coupled. Impaired adipose tissue perfusion is in part explained by an increase in adipocyte size without proportional vascular response. PMID:25855669

  13. Recombinant human lactoferrin enhances the efficacy of triple therapy in mice infected with Helicobacter pylori.

    PubMed

    Yuan, Yuping; Wu, Qinyi; Cheng, Guoxiang; Liu, Xuefang; Liu, Siguo; Luo, Juan; Zhang, Aimin; Bian, Li; Chen, Jianquan; Lv, Jiajun; Dong, Xiangqian; Yang, Gang; Zhu, Yunzhen; Ma, Lanqing

    2015-08-01

    Helicobacter pylori (H. pylori) is a life-threatening pathogen which causes chronic gastritis, gastric ulcers and even stomach cancer. Treatment normally involves bacterial eradication; however, this type of treatment only has a rate of effectiveness of <80%. Thus, it is a matter of some urgency to develop new therapeutic strategies. Lactoferrin, a member of the transferrin family of iron-binding proteins, has been proven to be effective in removing a vast range of pathogens, including H. pylori. In the present study, we examined the effectiveness of recombinant human lactoferrin (rhLf) isolated from transgenic goats as a treatment for H. pylori in vitro and in vivo. For the in vivo experiments, BALB/c mice received an intragastric administration of 0.1 ml of a suspension of H. pylori. The mice were then divided into 4 groups: group A, treated with saline; group B, treated with 1.5 g of rhLF; group C, treated with the standard triple therapy regimen; and group D, treated with the standard triple therapy regimen plus.5 g of rhLF. Following sacrifice, the stomach tissues of the mice were histologically examined for the presence of bacteria. For the in vitro experiments, the bacteria were cultured in BHI broth and RT-qPCR and western blot analysis were carried out to determine the mRNA and protein levels of virulence factors (CagA and VacA) in the cultures. Our results revealed that rhLf not only inhibited the growth of H. pylori, but also suppressed the expression of two major virulence factors. Moreover, rhLf markedly increased bacterial eradication and effectively reduced the inflammatory response when combined with the standard triple therapy regimen. These results provide evidence supporting the use of rhLF as an adjuvant to traditional therapeutic strategies in the treatment of H. pylori.

  14. Enhanced stability of tristetraprolin mRNA protects mice against immune-mediated inflammatory pathologies

    PubMed Central

    Patial, Sonika; Curtis, Alan D.; Lai, Wi S.; Stumpo, Deborah J.; Hill, Georgette D.; Flake, Gordon P.; Mannie, Mark D.; Blackshear, Perry J.

    2016-01-01

    Tristetraprolin (TTP) is an inducible, tandem zinc-finger mRNA binding protein that binds to adenylate-uridylate–rich elements (AREs) in the 3′-untranslated regions (3′UTRs) of specific mRNAs, such as that encoding TNF, and increases their rates of deadenylation and turnover. Stabilization of Tnf mRNA and other cytokine transcripts in TTP-deficient mice results in the development of a profound, chronic inflammatory syndrome characterized by polyarticular arthritis, dermatitis, myeloid hyperplasia, and autoimmunity. To address the hypothesis that increasing endogenous levels of TTP in an intact animal might be beneficial in the treatment of inflammatory diseases, we generated a mouse model (TTPΔARE) in which a 136-base instability motif in the 3′UTR of TTP mRNA was deleted in the endogenous genetic locus. These mice appeared normal, but cultured fibroblasts and macrophages derived from them exhibited increased stability of the otherwise highly labile TTP mRNA. This resulted in increased TTP protein expression in LPS-stimulated macrophages and increased levels of TTP protein in mouse tissues. TTPΔARE mice were protected from collagen antibody-induced arthritis, exhibited significantly reduced inflammation in imiquimod-induced dermatitis, and were resistant to induction of experimental autoimmune encephalomyelitis, presumably by dampening the excessive production of proinflammatory mediators in all cases. These data suggest that increased systemic levels of TTP, secondary to increased stability of its mRNA throughout the body, can be protective against inflammatory disease in certain models and might be viewed as an attractive therapeutic target for the treatment of human inflammatory diseases. PMID:26831084

  15. Restoration of synaptic plasticity and learning in young and aged NCAM-deficient mice by enhancing neurotransmission mediated by GluN2A-containing NMDA receptors.

    PubMed

    Kochlamazashvili, Gaga; Bukalo, Olena; Senkov, Oleg; Salmen, Benedikt; Gerardy-Schahn, Rita; Engel, Andreas K; Schachner, Melitta; Dityatev, Alexander

    2012-02-15

    Neural cell adhesion molecule (NCAM) is the predominant carrier of the unusual glycan polysialic acid (PSA). Deficits in PSA and/or NCAM expression cause impairments in hippocampal long-term potentiation and depression (LTP and LTD) and are associated with schizophrenia and aging. In this study, we show that impaired LTP in adult NCAM-deficient (NCAM(-/-)) mice is restored by increasing the activity of the NMDA subtype of glutamate receptor (GluN) through either reducing the extracellular Mg2+ concentration or applying d-cycloserine (DCS), a partial agonist of the GluN glycine binding site. Pharmacological inhibition of the GluN2A subtype reduced LTP to the same level in NCAM(-/-) and wild-type (NCAM(+/+)) littermate mice and abolished the rescue by DCS in NCAM(-/-) mice, suggesting that the effects of DCS are mainly mediated by GluN2A. The insufficient contribution of GluN to LTD in NCAM(-/-) mice was also compensated for by DCS. Furthermore, impaired contextual and cued fear conditioning levels were restored in NCAM(-/-) mice by administration of DCS before conditioning. In 12-month-old NCAM(-/-), but not NCAM(+/+) mice, there was a decline in LTP compared with 3-month-old mice that could be rescued by DCS. In 24-month-old mice of both genotypes, there was a reduction in LTP that could be fully restored by DCS in NCAM(+/+) mice but only partially restored in NCAM(-/-) mice. Thus, several deficiencies of NCAM(-/-) mice can be ameliorated by enhancing GluN2A-mediated neurotransmission with DCS.

  16. Inhibition of pan neurotrophin receptor p75 attenuates diesel particulate-induced enhancement of allergic airway responses in C57/B16J mice.

    PubMed

    Farraj, Aimen K; Haykal-Coates, Najwa; Ledbetter, Allen D; Evansky, Paul A; Gavett, Stephen H

    2006-06-01

    Recent investigations have linked neurotrophins, including nerve growth factor (NGF), neurotrophin-3 (NT-3), and brain-derived neurotrophic factor (BDNF), to allergic airways diseases. Antibody blockade of NGF attenuates airway resistance in allergic mice. Diesel exhaust particle (DEP) exposure has been linked to asthma exacerbation in many cities with vehicular traffic congestion. We tested the hypothesis that DEP-induced enhancement of the hallmark features of allergic airway disease in a murine model is dependent on the function of the pan neurotrophin receptor p75. Ovalbumin (OVA)-sensitized C57B1/6J mice were intranasally instilled with an antibody against the p75 receptor or saline alone 1 h before OVA challenge. The mice were then exposed nose-only to the PM2.5 fraction of SRM2975 DEP or air alone for 5 h beginning 1 h after OVA challenge. Two days later, air-exposed OVA-allergic mice developed a small but insignificant increase in methacholine-induced airflow obstruction relative to air-exposed, vehicle-sensitized mice. DEP-exposed OVA-allergic mice had a significantly greater degree of airway obstruction than all other groups. Instillation of anti-p75 significantly attenuated the DEP-induced increase in airway obstruction in OVA-allergic mice to levels similar to non-sensitized mice. The DEP-induced exacerbation of allergic airway responses may, in part, be mediated by neurotrophins.

  17. Enhanced Immune Response in Immunodeficient Mice Improves Peripheral Nerve Regeneration Following Axotomy

    PubMed Central

    Bombeiro, André L.; Santini, Júlio C.; Thomé, Rodolfo; Ferreira, Elisângela R. L.; Nunes, Sérgio L. O.; Moreira, Bárbara M.; Bonet, Ivan J. M.; Sartori, Cesar R.; Verinaud, Liana; Oliveira, Alexandre L. R.

    2016-01-01

    Injuries to peripheral nerves cause loss of motor and sensory function, greatly affecting life quality. Successful repair of the lesioned nerve requires efficient cell debris removal, followed by axon regeneration and reinnervation of target organs. Such process is orchestrated by several cellular and molecular events in which glial and immune cells actively participate. It is known that tissue clearance is largely improved by macrophages, which activation is potentiated by cells and molecules of the acquired immune system, such as T helper lymphocytes and antibodies, respectively. In the present work, we evaluated the contribution of lymphocytes in the regenerative process of crushed sciatic nerves of immunocompetent (wild-type, WT) and T and B-deficient (RAG-KO) mice. In Knockout animals, we found increased amount of macrophages under basal conditions and during the initial phase of the regenerative process, that was evaluated at 2, 4, and 8 weeks after lesion (wal). That parallels with faster axonal regeneration evidenced by the quantification of neurofilament and a growth associated protein immunolabeling. The motor function, evaluated by the sciatic function index, was fully recovered in both mouse strains within 4 wal, either in a progressive fashion, as observed for RAG-KO mice, or presenting a subtle regression, as seen in WT mice between 2 and 3 wal. Interestingly, boosting the immune response by early adoptive transference of activated WT lymphocytes at 3 days after lesion improved motor recovery in WT and RAG-KO mice, which was not ameliorated when cells were transferred at 2 wal. When monitoring lymphocytes by in vivo imaging, in both mouse strains, cells migrated to the lesion site shortly after transference, remaining in the injured limb up to its complete motor recovery. Moreover, a first peak of hyperalgesia, determined by von-Frey test, was coincident with increased lymphocyte infiltration in the damaged paw. Overall, the present results suggest

  18. Bio-enhancing Effect of Piperine with Metformin on Lowering Blood Glucose Level in Alloxan Induced Diabetic Mice

    PubMed Central

    Atal, Shubham; Atal, Sarjana; Vyas, Savita; Phadnis, Pradeep

    2016-01-01

    Background: Diabetes mellitus is the most rampant metabolic pandemic of the 21st century. Piperine, the chief alkaloid of Piper nigrum (black pepper) is widely used in alternative and complementary therapies has been extensively studied for its bio-enhancing property. Objective: To evaluate the bio-enhancing effect of piperine with metformin in lowering blood glucose levels in alloxan-induced diabetic mice. Materials and Methods: Piperine was isolated from an extract of fruits of P. nigrum. Alloxan-induced (150 mg/kg intraperitoneal) diabetic mice were divided into four groups. Group I (control 2% gum acacia 2 g/100 mL), Group II (metformin 250 mg/kg), Group III (metformin and piperine 250 mg/kg + 10 mg/kg), and Group IV (metformin and piperine 125 mg/kg + 10 mg/kg). All the drugs were administered orally once daily for 28 days. Blood glucose levels were estimated at day 0, day 14, and end of the study (day 28). Results: The combination of piperine with therapeutic dose of metformin (10 mg/kg + 250 mg/kg) showed significantly more lowering of blood glucose level as compared to metformin alone on both 14th and 28th day (P < 0.05). Piperine in combination with sub-therapeutic dose of metformin (10 mg/kg + 125 mg/kg) showed significantly more lowering of blood glucose as compared to control group and also showed greater lowering of blood glucose as compared to metformin (250 mg/kg) alone. Conclusion: Piperine has the potential to be used as a bio-enhancing agent in combination with metformin which can help reduce the dose of metformin and its adverse effects. SUMMARY Piperine is known for its bioenhancing property. This study evaluates the effect of piperine in combination with oral antidiabetic drug metformin. Drugs were administered for 28 days in alloxan induced diabetic mice and blood glucose lowering effect was seen. Results showed significantly better effect of combination of piperine with therapeutic dose of metformin in comparison to metformin alone. Piperine

  19. Radiation enhances silica translocation to the pulmonary interstitium and increases fibrosis in mice

    SciTech Connect

    Adamson, I.Y.R. )

    1992-07-01

    The effects of whole body irradiation (WBR) on particle clearance and the development of pulmonary fibrosis have been investigated. Using carbon, clearance is accomplished by polymorphonuclear leukocytes (PMN) and alveolar macrophages (AM), and only a few particles reach the interstitum. However, in preirradiated mice, the usual eflux of inflammatory cells is much delayed so that more free carbon remains in the alveoli, and by 1 week, many particles cross the epithelium to be phagocytized by interstitial macrophages. Carbon is found in the peribronchiolar interstitium 6 months later with no evidence of fibrosis. In the present study, mice received 1 mg silica intratracheally 2 days after 6.5 Gy WBR when the white blood cell count was low. A much-reduced Am and PMN response was found in the following 2 weeks compared to the reaction to silica alone, and many silica particles reached interstitial macrophages. In this case, macrophage activation by silica was associated with fibroblast proliferation, and by 16 weeks, much more pulmonary fibrosis was produced than after silica or irradiation only. This was measured biochemically and correlated with a large increase in retained silica in the irradiation-silica group. The results indicate that radiation inhibits the inflammatory response to particle instillation, resulting in greater translocation of free particles to the pulmonary interstitium. In the case of silica, the greater, prolonged interaction with interstitial macrophages leads to a much exaggerated fibrotic reaction. 17 refs., 11 figs.

  20. Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice

    PubMed Central

    Pineton de Chambrun, G; Body-Malapel, M; Frey-Wagner, I; Djouina, M; Deknuydt, F; Atrott, K; Esquerre, N; Altare, F; Neut, C; Arrieta, M C; Kanneganti, T-D; Rogler, G; Colombel, J-F; Cortot, A; Desreumaux, P; Vignal, C

    2014-01-01

    The increasing incidence of inflammatory bowel diseases (IBDs) in developing countries has highlighted the critical role of environmental pollutants as causative factors in their pathophysiology. Despite its ubiquity and immune toxicity, the impact of aluminum in the gut is not known. This study aimed to evaluate the effects of environmentally relevant intoxication with aluminum in murine models of colitis and to explore the underlying mechanisms. Oral administration of aluminum worsened intestinal inflammation in mice with 2,4,6-trinitrobenzene sulfonic acid- and dextran sodium sulfate-induced colitis and chronic colitis in interleukin 10-negative (IL10−/−) mice. Aluminum increased the intensity and duration of macroscopic and histologic inflammation, colonic myeloperoxidase activity, inflammatory cytokines expression, and decreased the epithelial cell renewal compared with control animals. Under basal conditions, aluminum impaired intestinal barrier function. In vitro, aluminum induced granuloma formation and synergized with lipopolysaccharide to stimulate inflammatory cytokines expression by epithelial cells. Deleterious effects of aluminum on intestinal inflammation and mucosal repair strongly suggest that aluminum might be an environmental IBD risk factor. PMID:24129165

  1. Citreoviridin Enhances Atherogenesis in Hypercholesterolemic ApoE-Deficient Mice via Upregulating Inflammation and Endothelial Dysfunction

    PubMed Central

    Guo, Qing; Sun, Tao; Li, Cheng; Liu, Jian-Bao; Li, Qun-Wei; Jiang, Bao-Fa

    2015-01-01

    Vascular endothelial dysfunction and inflammatory response are early events during initiation and progression of atherosclerosis. In vitro studies have described that CIT markedly upregulates expressions of ICAM-1 and VCAM-1 of endothelial cells, which result from NF-κB activation induced by CIT. In order to determine whether it plays a role in atherogenesis in vivo, we conducted the study to investigate the effects of CIT on atherosclerotic plaque development and inflammatory response in apolipoprotein E deficient (apoE-/-) mice. Five-week-old apoE-/- mice were fed high-fat diets and treated with CIT for 15 weeks, followed by assay of atherosclerotic lesions. Nitric oxide (NO), vascular endothelial growth factor (VEGF) and endothelin-1 (ET-1) were detected in serum. Levels of intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), VEGF, and ET-1 in plaque areas of artery walls were examined. NF-κB p65 expression and NF-κB activation in aorta also were assessed. CIT treatment significantly augmented atherosclerotic plaques and increased expressions of ICAM-1, VCAM-1, VEGF and ET-1 in aorta. Mechanistic studies showed that activation of NF-κB was significantly elevated by CIT treatment, indicating the effect of CIT on atherosclerosis may be regulated by activation of NF-κB. PMID:25933220

  2. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis.

    PubMed

    Deindl, Elisabeth; Zaruba, Marc-Michael; Brunner, Stefan; Huber, Bruno; Mehl, Ursula; Assmann, Gerald; Hoefer, Imo E; Mueller-Hoecker, Josef; Franz, Wolfgang-Michael

    2006-05-01

    Granulocyte-colony stimulating factor (G-CSF) has been shown to improve cardiac function after myocardial infarction (MI) by bone marrow cell mobilization and by protecting cardiomyocytes from apoptotic cell death. However, its role in collateral artery growth (arteriogenesis) has not been elucidated. Here, we investigated the effect of G-CSF on arteriolar growth and cardiac function in a murine MI model. Mice were treated with G-CSF (100 microg/kg/day) directly after MI for 5 consecutive days. G-CSF application resulted in a significant increase of circulating mononuclear cells expressing stem cell markers. Arterioles in the border zone of infarcted myocardium showed an increased expression of ICAM-1 accompanied by an accumulation of bone marrow derived cells and a pronounced proliferation of endothelial and smooth muscle cells. Histology of G-CSF treated mice revealed a lower amount of granulation tissue (67.8 vs. 84.4%) associated with a subsequent reduction in free LV wall thinning and scar extension (23.1 vs. 30.8% of LV). Furthermore, G-CSF treated animals showed a significant improvement of post-MI survival (68.8 vs. 46.2%). Pressure-volume relations revealed a partially restored myocardial function at day 30 (EF: 32.5 vs. 17.2%). Our results demonstrate that G-CSF administration after MI stimulates arteriogenesis and attenuates ischemic cardiomyopathy after MI.

  3. Increased intake of vegetable oil rich in n-6 PUFA enhances allergic symptoms and prevents oral tolerance induction in whey-allergic mice.

    PubMed

    van den Elsen, Lieke W J; van Esch, Betty C A M; Dingjan, Gemma M; Hofman, Gerard A; Garssen, Johan; Willemsen, Linette E M

    2015-08-28

    Increased intake of vegetable oils rich in n-6 PUFA, including soyabean oil, has been associated with an increase in allergic disease. The present study aimed to determine the effect of an increasing dose of dietary vegetable oil on allergic outcomes in mice. To study this, mice received a 7 v. 10 % soyabean oil diet before and during oral sensitisation with whey or whey hyperimmune serum transfer. Another group of mice received partial whey hydrolysate (pWH) while being fed the diets before oral sensitisation. The acute allergic skin response, serum Ig level, mouse mast cell protease-1 (mMCP-1) concentration and/or splenic T-cell percentages were determined upon whey challenge. When the diets were provided before and during oral sensitisation, the acute allergic skin response was increased in mice fed the 10 % soyabean oil diet compared with the 7 % soyabean oil diet. Whey IgE and IgG1 levels remained unaltered, whereas mMCP-1 levels increased in mice fed the 10 % soyabean oil diet. Furthermore, allergic symptoms were increased in naive mice fed the 10 % soyabean oil diet and sensitised with whey hyperimmune serum. In addition to enhancing the mast cell response, the 10 % soyabean oil diet increased the percentage of activated Th1 and Th2 cells as well as increased the ratios of Th2:regulatory T cells and Th2:Th1 when compared with the 7 % soyabean oil diet. Oral tolerance induction by pWH was abrogated in mice fed the 10 % soyabean oil diet compared with those fed the 7 % soyabean oil diet during pretreatment with pWH. In conclusion, increased intake of soyabean oil rich in n-6 PUFA suppresses tolerance induction by pWH and enhances the severity of the allergic effector response in whey-allergic mice. Dietary vegetable oils rich in n-6 PUFA may enhance the susceptibility to develop or sustain food allergy.

  4. Fentanyl Enhances Hepatotoxicity of Paclitaxel via Inhibition of CYP3A4 and ABCB1 Transport Activity in Mice.

    PubMed

    Xie, Jing-Dun; Huang, Yang; Chen, Dong-Tai; Pan, Jia-Hao; Bi, Bing-Tian; Feng, Kun-Yao; Huang, Wan; Zeng, Wei-An

    2015-01-01

    Fentanyl, a potent opioid analgesic that is used to treat cancer pain, is commonly administered with paclitaxel in advanced tumors. However, the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanism of action is not well studied. The purpose of this study was to investigate the effect of fentanyl on the hepatotoxicity of paclitaxel and its potential mechanisms of action. Pharmacokinetic parameters of paclitaxel were tested using reversed phase high-performance liquid chromatography (RP-HPLC). Aspartate transaminase (AST), alanine aminotransferase (ALT), and mouse liver histopathology were examined. Moreover, the cytotoxicity of anti-carcinogens was examined using 1-(4, 5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), and the intracellular accumulation of doxorubicin and rhodamine 123 was detected by flow cytometry. Furthermore, the expression of ABCB1 and the activity of ABCB1 ATPase and CYP3A4 were also examined. In this study, the co-administration of fentanyl and paclitaxel prolonged the half-life (t1/2) of paclitaxel from 1.455 hours to 2.344 hours and decreased the clearance (CL) from 10.997 ml/h to 7.014 ml/h in mice. Fentanyl significantly increased the levels of ALT in mice to 88.2 U/L, which is more than 2-fold higher than the level detected in the control group, and it increased the histological damage in mouse livers. Furthermore, fentanyl enhanced the cytotoxicity of anti-carcinogens that are ABCB1 substrates and increased the accumulation of doxorubicin and rhodamine 123. Additionally, fentanyl stimulated ABCB1 ATPase activity and inhibited CYP3A4 activity in the liver microsomes of mice. Our study indicates that the obvious hepatotoxicity during this co-administration was due to the inhibition of CYP3A4 activity and ABCB1 transport activity. These findings suggested that the accumulation-induced hepatotoxicity of paclitaxel when it is combined with fentanyl should be avoided.

  5. Niacin improves ischemia-induced neovascularization in diabetic mice by enhancement of endothelial progenitor cell functions independent of changes in plasma lipids.

    PubMed

    Huang, Po-Hsun; Lin, Chih-Pei; Wang, Chao-Hung; Chiang, Chia-Hung; Tsai, Hsiao-Ya; Chen, Jia-Shiong; Lin, Feng-Yen; Leu, Hsin-Bang; Wu, Tao-Cheng; Chen, Jaw-Wen; Lin, Shing-Jong

    2012-09-01

    Niacin was shown to inhibit acute vascular inflammation and improves endothelial dysfunction independent of changes in plasma lipids. Here, we investigated whether niacin can increase blood flow recovery after tissue ischemia by enhancing endothelial progenitor cell (EPC) functions in diabetic mice. Starting at 4 weeks after the onset of diabetes, vehicle or niacin (40 mg/kg/day) was administered daily by gavage to streptozotocin (STZ)-induced diabetic mice and diabetic endothelial nitric oxide synthase (eNOS)-deficient mice. Unilateral hindlimb ischemia surgery was conducted after 2 weeks of vehicle or niacin treatment. Compared to the control group, the niacin group had significantly increased ischemic/non-ischemic limb blood perfusion ratio and higher capillary density. These effects were markedly reduced in STZ-induced diabetic eNOS-deficient mice. Flow cytometry analysis showed impaired EPC-like cell (Sca-1(+)/Flk-1(+)) mobilization after ischemia surgery in diabetic mice but augmented mobilization in the mice treated with niacin. Diabetes was induced by administering STZ to FVB mice that received eGFP mouse bone marrow cells to evaluate effects of niacin on bone marrow-derived EPC homing and differentiation to endothelial cells. Differentiation of bone marrow-derived EPCs to endothelial cells in the ischemic tissue around vessels in diabetic mice that received niacin treatment, was significantly increased than that in control group. By in vitro studies, incubation with niacin in high-glucose medium reduced H(2)O(2) production, cell apoptosis, and improved high glucose-suppressed EPC functions by nitric oxide-related mechanisms. Our findings demonstrate that niacin increases blood flow recovery after tissue ischemia in diabetic mice through enhancing EPC mobilization and functions via nitric oxide-related pathways.

  6. Immune enhancing effects of recombinant bovine IL-18 on foot-and-mouth disease vaccination in mice model.

    PubMed

    Shi, Xi-Ju; Wang, Bin; Wang, Ming

    2007-01-26

    Foot-and-mouth disease (FMD) is a highly contagious disease in cloven-hoofed animals and can cause a considerable socio-economic loss for affected countries. Interleukin-18 (IL-18) is a pleiotropic cytokine and plays important role in both the development of a functional immune system as well as the response of the organism to infection. In the present study, bovine IL-18 (BoIL-18), Foot-and-mouth disease virus VP1 and VP1/BoIL-18 fusion genes were cloned and expressed in pichia pastoris (P. pastoris) and subsequently immune effects were evaluated to study the immune enhancing effects of recombinant BoIL-18 (rBoIL-18) on FMD vaccination. The results showed that the genes encoding for BoIL-18, VP1 and VP1/BoIL-18 are successfully expressed in P. pastoris and the expressed recombinant VP1 (rVP1) proteins could induce both humoral and marginal cell-mediated immune responses in mice, while the co-inoculation with rBoIL-18 could markedly enhance both of immune responses, and the inoculation of the fusion product rVP1/BoIL-18 showed even more dramatic immune responses, suggesting rBoIL-18 has a potential to enhance the efficacy of vaccination against FMDV infection.

  7. Immune-Enhancing Effects of a High Molecular Weight Fraction of Cynanchum wilfordii Hemsley in Macrophages and Immunosuppressed Mice

    PubMed Central

    Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won

    2016-01-01

    The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089

  8. Altered NK Cell Development and Enhanced NK Cell-Mediated Resistance to MCMV in NKG2D-Deficient Mice

    PubMed Central

    Zafirova, Biljana; Mandarić, Sanja; Antulov, Ronald; Krmpotić, Astrid; Jonsson, Helena; Yokoyama, Wayne M.; Jonjić, Stipan; Polić, Bojan

    2009-01-01

    Summary NKG2D is a potent activating receptor on NK cells which acts as a molecular sensor for stressed cells expressing NKG2D ligands such as infected or tumor transformed cells. Although NKG2D is expressed on NK cell precursors, its role in NK cell development is still not known. We have generated NKG2D-deficient mice by targeting the Klrk1 locus. Here we provide evidence for an important regulatory role of NKG2D in the development of NK cells. The absence of NKG2D causes faster division of NK cells, perturbation in size of some NK cell subpopulations and their augmented sensitivity to apoptosis. As expected, NKG2D−/− NK cells are less responsive to tumor targets expressing NKG2D ligands. NKG2D−/− mice, however, show an enhanced NK cell-mediated resistance to MCMV infection as a consequence of NK cell dysregulation. Altogether, these findings provide evidence for yet unknown regulatory function of NKG2D in NK cell physiology. PMID:19631564

  9. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP−/− Mice

    PubMed Central

    Fan, Jing; Stemkowski, Patrick L.; Gandini, Maria A.; Black, Stefanie A.; Zhang, Zizhen; Souza, Ivana A.; Chen, Lina; Zamponi, Gerald W.

    2016-01-01

    Genetic ablation of cellular prion protein (PrPC) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrPC profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrPC. The amplitude of voltage sag, a characteristic of activating HCN channel current (Ih), was decreased in null mice. Moreover, Ih peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrPC. These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability. PMID:27047338

  10. Blockade of PD-1 Signaling Enhances Th2 Cell Responses and Aggravates Liver Immunopathology in Mice with Schistosomiasis japonica

    PubMed Central

    Zhou, Sha; Jin, Xin; Li, Yalin; Li, Wei; Chen, Xiaojun; Xu, Lei; Zhu, Jifeng; Xu, Zhipeng; Zhang, Yang; Liu, Feng; Su, Chuan

    2016-01-01

    Background More than 220 million people worldwide are chronically infected with schistosomes, causing severe disease or even death. The major pathological damage occurring in schistosomiasis is attributable to the granulomatous inflammatory response and liver fibrosis induced by schistosome eggs. The inflammatory response is tightly controlled and parallels immunosuppressive regulation, constantly maintaining immune homeostasis and limiting excessive immunopathologic damage in important host organs. It is well known that the activation of programmed death 1 (PD-1) signaling causes a significant suppression of T cell function. However, the roles of PD-1 signaling in modulating CD4+ T cell responses and immunopathology during schistosome infection, have yet to be defined. Methodology/Principal Findings Here, we show that PD-1 is upregulated in CD4+ T cells in Schistosoma japonicum (S. japonicum)-infected patients. We also show the upregulation of PD-1 expression in CD4+ T cells in the spleens, mesenteric lymph nodes, and livers of mice with S. japonicum infection. Finally, we found that the blockade of PD-1 signaling enhanced CD4+ T helper 2 (Th2) cell responses and led to more severe liver immunopathology in mice with S. japonicum infection, without a reduction of egg production or deposition in the host liver. Conclusions/Significance Overall, our study suggests that PD-1 signaling is specifically induced to control Th2-associated inflammatory responses during schistosome infection and is beneficial to the development of PD-1-based control of liver immunopathology. PMID:27792733

  11. Hippocampal enlargement in Bassoon-mutant mice is associated with enhanced neurogenesis, reduced apoptosis, and abnormal BDNF levels.

    PubMed

    Heyden, Alexandra; Ionescu, Mihai-Constantin S; Romorini, Stefano; Kracht, Bettina; Ghiglieri, Veronica; Calabresi, Paolo; Seidenbecher, Constanze; Angenstein, Frank; Gundelfinger, Eckart D

    2011-10-01

    Mice mutant for the presynaptic protein Bassoon develop epileptic seizures and an altered pattern of neuronal activity that is accompanied by abnormal enlargement of several brain structures, with the strongest size increase in hippocampus and cortex. Using manganese-enhanced magnetic resonance imaging, an abnormal brain enlargement was found, which is first detected in the hippocampus 1 month after birth and amounts to an almost 40% size increase of this structure after 3 months. Stereological quantification of cell numbers revealed that enlargement of the dentate gyrus and the hippocampus proper is associated with larger numbers of principal neurons and of astrocytes. In search for the underlying mechanisms, an approximately 3-fold higher proportion of proliferation and survival of new-born cells in the dentate gyrus was found to go hand in hand with similarly larger numbers of doublecortin-positive cells and reduced numbers of apoptotic cells in the dentate gyrus and the hippocampus proper. Enlargement of the hippocampus and of other forebrain structures was accompanied by increased levels of brain-derived neurotrophic factor (BDNF). These data show that hippocampal overgrowth in Bassoon-mutant mice arises from a dysregulation of neurogenesis and apoptosis that might be associated with unbalanced BDNF levels.

  12. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  13. Low electric field enhanced chemotherapy can cure mice with CT-26 colon carcinoma and induce anti-tumour immunity

    PubMed Central

    PLOTNIKOV, A; FISHMAN, D; TICHLER, T; KORENSTEIN, R; KEISARI, Y

    2004-01-01

    Low electric field cancer treatment − enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to ∼65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours. PMID:15544616

  14. Low electric field enhanced chemotherapy can cure mice with CT-26 colon carcinoma and induce anti-tumour immunity.

    PubMed

    Plotnikov, A; Fishman, D; Tichler, T; Korenstein, R; Keisari, Y

    2004-12-01

    Low electric field cancer treatment-enhanced chemotherapy (LEFCT-EC) is a new anticancer treatment which utilizes a combination of chemotherapeutic agents and a low electric field. We investigated the antitumour effectiveness of this technique in a model of murine colon carcinoma (CT-26). The low electric field was applied to approximately 65 mm3 intracutaneous tumours after intratumoral injection of 5FU, bleomycin or BCNU. We observed significant tumour size reduction and a prolongation of survival time. The complete cure of a significant fraction of animals treated by LEFCT-EC with 5FU (33%), bleomycin (51%) or BCNU (83%) was observed. Mice cured by LEFCT-EC developed resistance to a tumour challenge and their splenocytes had antitumour activity in vivo. Our results suggest that LEFCT-EC is an effective method for treatment of solid tumours.

  15. NAD⁺ repletion improves mitochondrial and stem cell function and enhances life span in mice.

    PubMed

    Zhang, Hongbo; Ryu, Dongryeol; Wu, Yibo; Gariani, Karim; Wang, Xu; Luan, Peiling; D'Amico, Davide; Ropelle, Eduardo R; Lutolf, Matthias P; Aebersold, Ruedi; Schoonjans, Kristina; Menzies, Keir J; Auwerx, Johan

    2016-06-17

    Adult stem cells (SCs) are essential for tissue maintenance and regeneration yet are susceptible to senescence during aging. We demonstrate the importance of the amount of the oxidized form of cellular nicotinamide adenine dinucleotide (NAD(+)) and its effect on mitochondrial activity as a pivotal switch to modulate muscle SC (MuSC) senescence. Treatment with the NAD(+) precursor nicotinamide riboside (NR) induced the mitochondrial unfolded protein response and synthesis of prohibitin proteins, and this rejuvenated MuSCs in aged mice. NR also prevented MuSC senescence in the mdx (C57BL/10ScSn-Dmd(mdx)/J) mouse model of muscular dystrophy. We furthermore demonstrate that NR delays senescence of neural SCs and melanocyte SCs and increases mouse life span. Strategies that conserve cellular NAD(+) may reprogram dysfunctional SCs and improve life span in mammals. PMID:27127236

  16. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    PubMed

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders. PMID:25555360

  17. Estradiol replacement enhances fear memory formation, impairs extinction and reduces COMT expression levels in the hippocampus of ovariectomized female mice.

    PubMed

    McDermott, Carmel M; Liu, Dan; Ade, Catherine; Schrader, Laura A

    2015-02-01

    Females experience depression, posttraumatic stress disorder (PTSD), and anxiety disorders at approximately twice the rate of males, but the mechanisms underlying this difference remain undefined. The effect of sex hormones on neural substrates presents a possible mechanism. We investigated the effect of ovariectomy at two ages, before puberty and in adulthood, and 17β-estradiol (E2) replacement administered chronically in drinking water on anxiety level, fear memory formation, and extinction. Based on previous studies, we hypothesized that estradiol replacement would impair fear memory formation and enhance extinction rate. Females, age 4 weeks and 10 weeks, were divided randomly into 4 groups; sham surgery, OVX, OVX+low E2 (200nM), and OVX+high E2 (1000nM). Chronic treatment with high levels of E2 significantly increased anxiety levels measured in the elevated plus maze. In both age groups, high levels of E2 significantly increased contextual fear memory but had no effect on cued fear memory. In addition, high E2 decreased the rate of extinction in both ages. Finally, catechol-O-methyltransferase (COMT) is important for regulation of catecholamine levels, which play a role in fear memory formation and extinction. COMT expression in the hippocampus was significantly reduced by high E2 replacement, implying increased catecholamine levels in the hippocampus of high E2 mice. These results suggest that estradiol enhanced fear memory formation, and inhibited fear memory extinction, possibly stabilizing the fear memory in female mice. This study has implications for a neurobiological mechanism for PTSD and anxiety disorders.

  18. A Sensitive Period of Mice Inhibitory System to Neonatal GABA Enhancement by Vigabatrin is Brain Region Dependent

    PubMed Central

    Levav-Rabkin, Tamar; Melamed, Osnat; Clarke, Gerard; Farber, Malca; Cryan, John F; Dinan, Timothy G; Grossman, Yoram; Golan, Hava M

    2010-01-01

    Neurodevelopmental disorders, such as schizophrenia and autism, have been associated with disturbances of the GABAergic system in the brain. We examined immediate and long-lasting influences of exposure to the GABA-potentiating drug vigabatrin (GVG) on the GABAergic system in the hippocampus and cerebral cortex, before and during the developmental switch in GABA function (postnatal days P1–7 and P4–14). GVG induced a transient elevation of GABA levels. A feedback response to GABA enhancement was evident by a short-term decrease in glutamate decarboxylase (GAD) 65 and 67 levels. However, the number of GAD65/67-immunoreactive (IR) cells was greater in 2-week-old GVG-treated mice. A long-term increase in GAD65 and GAD67 levels was dependent on brain region and treatment period. Vesicular GABA transporter was insensitive to GVG. The overall effect of GVG on the Cl− co-transporters NKCC1 and KCC2 was an enhancement of their synthesis, which was dependent on the treatment period and brain region studied. In addition, a short-term increase was followed by a long-term decrease in KCC2 oligomerization in the cell membrane of P4–14 hippocampi and cerebral cortices. Analysis of the Ca2+ binding proteins expressed in subpopulations of GABAergic cells, parvalbumin and calbindin, showed region-specific effects of GVG during P4–14 on parvalbumin-IR cell density. Moreover, calbindin levels were elevated in GVG mice compared to controls during this period. Cumulatively, these results suggest a particular susceptibility of the hippocampus to GVG when exposed during days P4–14. In conclusion, our studies have identified modifications of key components in the inhibitory system during a critical developmental period. These findings provide novel insights into the deleterious consequences observed in children following prenatal and neonatal exposure to GABA-potentiating drugs. PMID:20043003

  19. Chronic Compression of the Dorsal Root Ganglion Enhances Mechanically Evoked Pain Behavior and the Activity of Cutaneous Nociceptors in Mice

    PubMed Central

    Wang, Tao; Hurwitz, Olivia; Shimada, Steven G.; Qu, Lintao; Fu, Kai; Zhang, Pu; Ma, Chao; LaMotte, Robert H.

    2015-01-01

    Radicular pain in humans is usually caused by intraforaminal stenosis and other diseases affecting the spinal nerve, root, or dorsal root ganglion (DRG). Previous studies discovered that a chronic compression of the DRG (CCD) induced mechanical allodynia in rats and mice, with enhanced excitability of DRG neurons. We investigated whether CCD altered the pain-like behavior and also the responses of cutaneous nociceptors with unmyelinated axons (C-fibers) to a normally aversive punctate mechanical stimulus delivered to the hairy skin of the hind limb of the mouse. The incidence of a foot shaking evoked by indentation of the dorsum of foot with an aversive von Frey filament (tip diameter 200 μm, bending force 20 mN) was significantly higher in the foot ipsilateral to the CCD surgery as compared to the contralateral side on post-operative days 2 to 8. Mechanically-evoked action potentials were electrophysiologically recorded from the L3 DRG, in vivo, from cell bodies visually identified as expressing a transgenically labeled fluorescent marker (neurons expressing either the receptor MrgprA3 or MrgprD). After CCD, 26.7% of MrgprA3+ and 32.1% MrgprD+ neurons exhibited spontaneous activity (SA), while none of the unoperated control neurons had SA. MrgprA3+ and MrgprD+ neurons in the compressed DRG exhibited, in comparison with neurons from unoperated control mice, an increased response to the punctate mechanical stimuli for each force applied (6, 20, 40, and 80 mN). We conclude that CCD produced both a behavioral hyperalgesia and an enhanced response of cutaneous C-nociceptors to aversive punctate mechanical stimuli. PMID:26356638

  20. Superparamagnetic iron oxide polyacrylic acid coated γ-Fe{sub 2}O{sub 3} nanoparticles do not affect kidney function but cause acute effect on the cardiovascular function in healthy mice

    SciTech Connect

    Iversen, Nina K.; Frische, Sebastian; Thomsen, Karen; Laustsen, Christoffer; Pedersen, Michael; Hansen, Pernille B.L.; Bie, Peter; Fresnais, Jérome; Berret, Jean-Francois; Baatrup, Erik; Wang, Tobias

    2013-01-15

    This study describes the distribution of intravenously injected polyacrylic acid (PAA) coated γ-Fe{sub 2}O{sub 3} NPs (10 mg kg{sup −1}) at the organ, cellular and subcellular levels in healthy BALB/cJ mice and in parallel addresses the effects of NP injection on kidney function, blood pressure and vascular contractility. Magnetic resonance imaging (MRI) and transmission electron microscopy (TEM) showed accumulation of NPs in the liver within 1 h after intravenous infusion, accommodated by intracellular uptake in endothelial and Kupffer cells with subsequent intracellular uptake in renal cells, particularly the cytoplasm of the proximal tubule, in podocytes and mesangial cells. The renofunctional effects of NPs were evaluated by arterial acid–base status and measurements of glomerular filtration rate (GFR) after instrumentation with chronically indwelling catheters. Arterial pH was 7.46 ± 0.02 and 7.41 ± 0.02 in mice 0.5 h after injections of saline or NP, and did not change over the next 12 h. In addition, the injections of NP did not affect arterial PCO{sub 2} or [HCO{sub 3}{sup −}] either. Twenty-four and 96 h after NP injections, the GFR averaged 0.35 ± 0.04 and 0.35 ± 0.01 ml min{sup −1} g{sup −1}, respectively, values which were statistically comparable with controls (0.29 ± 0.02 and 0.33 ± 0.1 ml{sup –1} min{sup –1} 25 g{sup –1}). Mean arterial blood pressure (MAP) decreased 12–24 h after NP injections (111.1 ± 11.5 vs 123.0 ± 6.1 min{sup −1}) associated with a decreased contractility of small mesenteric arteries revealed by myography to characterize endothelial function. In conclusion, our study demonstrates that accumulation of superparamagnetic iron oxide nanoparticles does not affect kidney function in healthy mice but temporarily decreases blood pressure. -- Highlights: ► PAA coated γ-Fe{sub 2}O{sub 3} nanoparticles were injected intravenously into healthy mice. ► We examine the distribution and physiological effects of

  1. Mutations in monoamine oxidase (MAO) genes in mice lead to hypersensitivity to serotonin-enhancing drugs: implications for drug side effects in humans

    PubMed Central

    Fox, MA; Panessiti, MG; Moya, PR; Tolliver, TJ; Chen, K; Shih, JC; Murphy, DL

    2012-01-01

    A possible side effect of serotonin-enhancing drugs is the serotonin syndrome, which can be lethal. Here we examined possible hypersensitivity to two such drugs, the serotonin precursor 5-hydroxy-L-tryptophan (5-HTP) and the atypical opioid tramadol, in mice lacking the genes for both monoamine oxidase A (MAOA) and MAOB. MAOA/B-knockout (KO) mice displayed baseline serotonin syndrome behaviors, and these behavioral responses were highly exaggerated following 5-HTP or tramadol versus baseline and wild-type (WT) littermates. Compared with MAOA/B-WT mice, baseline tissue serotonin levels were increased ~2.6–3.9-fold in MAOA/B-KO mice. Following 5-HTP, serotonin levels were further increased ~4.5–6.2-fold in MAOA/B-KO mice. These exaggerated responses are in line with the exaggerated responses following serotonin-enhancing drugs that we previously observed in mice lacking the serotonin transporter (SERT). These findings provide a second genetic mouse model suggestive of possible human vulnerability to the serotonin syndrome in individuals with lesser-expressing MAO or SERT polymorphisms that confer serotonergic system changes. PMID:22964922

  2. Blocking glucocorticoid receptors at adolescent age prevents enhanced freezing between repeated cue-exposures after conditioned fear in adult mice raised under chronic early life stress.

    PubMed

    Arp, J Marit; Ter Horst, Judith P; Loi, Manila; den Blaauwen, Jan; Bangert, Eline; Fernández, Guillén; Joëls, Marian; Oitzl, Melly S; Krugers, Harm J

    2016-09-01

    Early life adversity can have long-lasting impact on learning and memory processes and increase the risk to develop stress-related psychopathologies later in life. In this study we investigated (i) how chronic early life stress (ELS) - elicited by limited nesting and bedding material from postnatal day 2 to 9 - affects conditioned fear in adult mice and (ii) whether these effects can be prevented by blocking glucocorticoid receptors (GRs) at adolescent age. In adult male and female mice, ELS did not affect freezing behavior to the first tone 24h after training in an auditory fear-conditioning paradigm. Exposure to repeated tones 24h after training also resulted in comparable freezing behavior in ELS and control mice, both in males and females. However, male (but not female) ELS compared to control mice showed significantly more freezing behavior between the tone-exposures, i.e. during the cue-off periods. Intraperitoneal administration of the GR antagonist RU38486 during adolescence (on postnatal days 28-30) fully prevented enhanced freezing behavior during the cue-off period in adult ELS males. Western blot analysis revealed no effects of ELS on hippocampal expression of glucocorticoid receptors, neither at postnatal day 28 nor at adult age, when mice were behaviorally tested. We conclude that ELS enhances freezing behavior in adult mice in a potentially safe context after cue-exposure, which can be normalized by brief blockade of glucocorticoid receptors during the critical developmental window of adolescence. PMID:27246249

  3. Thalidomide enhances both primary and secondary host resistances to Listeria monocytogenes infection by a neutrophil-related mechanism in female B6C3F1 mice

    SciTech Connect

    Guo, Tai L. . E-mail: tlguo@hsc.vcu.edu; Chi, Rui P.; Karrow, Niel A.; Zhang, Ling X.; Pruett, Stephen B.; Germolec, Dori R.; White, Kimber L.

    2005-12-15

    Previously, we have reported that thalidomide can modulate the immune responses in female B6C3F1 mice. Furthermore, thalidomide immunomodulation increased primary host resistance to intravenously infected Listeria monocytogenes. The present study was intended to evaluate the mechanisms underlying the enhanced host resistance to L. monocytogenes by focusing on the neutrophils. Female B6C3F1 mice were treated intraperitoneally with thalidomide (100 mg/kg) for 15 days. Exposure to thalidomide increased the numbers of neutrophils in the spleens and livers of L. monocytogenes-infected mice when compared to the L. monocytogenes-infected control mice. Additionally, the percentage of neutrophils was also significantly increased after Thd treatment in L. monocytogenes-infected mice. Further studies using antibodies to deplete corresponding cells indicated that thalidomide-mediated increase in primary host resistance (both the moribundity and colony counts in the liver and spleen) to L. monocytogenes infection was due to its effect on neutrophils but not CD8{sup +} T cells or NK cells. Finally, Thd exposure also increased host resistance to secondary host resistance to L. monocytogenes infection, and depletion of neutrophils abolished the protective effect. In conclusion, thalidomide enhanced host resistance to both primary and secondary L. monocytogenes infections by a neutrophil-related mechanism in female B6C3F1 mice.

  4. Branched-chain amino acids increase arterial blood ammonia in spite of enhanced intrinsic muscle ammonia metabolism in patients with cirrhosis and healthy subjects.

    PubMed

    Dam, Gitte; Keiding, Susanne; Munk, Ole Lajord; Ott, Peter; Buhl, Mads; Vilstrup, Hendrik; Bak, Lasse Kristoffer; Waagepetersen, Helle Sønderby; Schousboe, Arne; Møller, Niels; Sørensen, Michael

    2011-08-01

    Branched-chain amino acids (BCAA) are used in attempts to reduce blood ammonia in patients with cirrhosis and intermittent hepatic encephalopathy based on the hypothesis that BCAA stimulate muscle ammonia detoxification. We studied the effects of an oral dose of BCAA on the skeletal muscle metabolism of ammonia and amino acids in 14 patients with cirrhosis and in 7 healthy subjects by combining [(13)N]ammonia positron emission tomography (PET) of the thigh muscle with measurements of blood flow and arteriovenous (A-V) concentrations of ammonia and amino acids. PET was used to measure the metabolism of blood-supplied ammonia and the A-V measurements were used to measure the total ammonia metabolism across the thigh muscle. After intake of BCAA, blood ammonia increased more than 30% in both groups of subjects (both P < 0.05). Muscle clearance of blood-supplied ammonia (PET) was unaffected (P = 0.75), but the metabolic removal rate (PET) increased significantly because of increased blood ammonia in both groups (all P < 0.05). The total ammonia clearance across the leg muscle (A-V) increased by more than 50% in both groups, and the flux (A-V) of ammonia increased by more than 45% (all P < 0.05). BCAA intake led to a massive glutamine release from the muscle (cirrhotic patients, P < 0.05; healthy subjects, P = 0.12). In conclusion, BCAA enhanced the intrinsic muscle metabolism of ammonia but not the metabolism of blood-supplied ammonia in both the patients with cirrhosis and in the healthy subjects.

  5. Dietary wolfberry supplementation enhances protective effect of flu vaccine against influenza challenge in aged mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current vaccines for influenza do not fully protect the aged against influenza infection. Wolfberry, or goji berry, has been shown to improve immune response including enhanced antibody production in response to vaccination in the aged; however, it is not known if this effect of wolfberry would tran...

  6. DIETARY FOLATE DEFICIENCY ENHANCES INDUCTION OF MICRONUCLEI BY ARSENIC IN MICE

    EPA Science Inventory

    Folate deficiency increases background levels of DNA damage and can enhance the genotoxicity of chemical agents. Arsenic, a known human carcinogen present in drinking water supplies around the world, induces chromosomal and DNA damage. The effect of dietary folate deficiency on...

  7. Task-specific enhancement of hippocampus-dependent learning in mice deficient in monoacylglycerol lipase, the major hydrolyzing enzyme of the endocannabinoid 2-arachidonoylglycerol

    PubMed Central

    Kishimoto, Yasushi; Cagniard, Barbara; Yamazaki, Maya; Nakayama, Junko; Sakimura, Kenji; Kirino, Yutaka; Kano, Masanobu

    2015-01-01

    Growing evidence indicates that the endocannabinoid system is important for the acquisition and/or extinction of learning and memory. However, it is unclear which endocannabinoid(s) play(s) a crucial role in these cognitive functions, especially memory extinction. To elucidate the physiological role of 2-arachidonoylglycerol (2-AG), a major endocannabinoid, in behavioral and cognitive functions, we conducted a comprehensive behavioral test battery in knockout (KO) mice deficient in monoacylglycerol lipase (MGL), the major hydrolyzing enzyme of 2-AG. We found age-dependent increases in spontaneous physical activity (SPA) in MGL KO mice. Next, we tested the MGL KO mice using 5 hippocampus-dependent learning paradigms (i.e., Morris water maze (MWM), contextual fear conditioning, novel object recognition test, trace eyeblink conditioning, and water-finding test). In the MWM, MGL KO mice showed normal acquisition of reference memory, but exhibited significantly faster extinction of the learned behavior. Moreover, they showed faster memory acquisition on the reversal-learning task of the MWM. In contrast, in the contextual fear conditioning, MGL KO mice tended to show slower memory extinction. In the novel object recognition and water-finding tests, MGL KO mice exhibited enhanced memory acquisition. Trace eyeblink conditioning was not altered in MGL KO mice throughout the acquisition and extinction phases. These results indicate that 2-AG signaling is important for hippocampus-dependent learning and memory, but its contribution is highly task-dependent. PMID:26082696

  8. The effect of anesthesia with propofol and sedation with butorphanol on quantitative contrast-enhanced ultrasonography of the healthy feline kidney.

    PubMed

    Stock, Emmelie; Vanderperren, Katrien; Van der Vekens, Elke; Haers, Hendrik; Duchateau, Luc; Polis, Ingeborgh; Hesta, Myriam; Saunders, Jimmy H

    2014-12-01

    Contrast-enhanced ultrasonography of the left kidney was performed using a commercial contrast agent in six healthy adult purpose-bred cats. A cross-over design was used to compare three protocols: (1) awake, (2) butorphanol (0.4 mg/kg IM), and (3) propofol (3.5-7.7 mg/kg IV boluses to effect). Time-intensity curves were created from two regions-of-interest drawn in the renal cortex. The curves were analyzed for blood flow parameters representing blood volume (base intensity, peak intensity, area-under-curve) and blood velocity (arrival time, time-to-peak, wash-in/out). There was no difference in the subjective enhancement pattern between the three protocols. No significant effect of butorphanol was observed in any of the perfusion parameters (P > 0.05). Propofol did not influence the most important perfusion parameter, area-under-the-curve, and is adequate for use in contrast-enhanced ultrasound studies. PMID:25458879

  9. The Program SI! intervention for enhancing a healthy lifestyle in preschoolers: first results from a cluster randomized trial

    PubMed Central

    2013-01-01

    Background Unhealthy lifestyles contribute to the development of cardiovascular risk factors, whose incidence is increasing among children and adolescents. The Program SI! is a long-term, multi-target behavioral intervention to promote healthy lifestyle habits in children through the school environment. The objective of the study is to evaluate the efficacy of this intervention in its first phase, preschoolers. Methods Cluster-randomized controlled trial in public schools in the city of Madrid, Spain. A total 24 schools, including 2062 children (3–5 years), 1949 families, and 125 teachers participated in the study. Schools were assigned to their usual school curriculum or to engage in an additional multi-component intervention (Program SI!). The primary outcome of this trial is 1-school year changes from baseline in scores for children’s knowledge, attitudes and habits (KAH). Secondary outcomes are 1-school year changes from baseline in scores for knowledge, attitudes, and habits among parents, teachers, and the school environment. Results After 1-school year, our results indicate that the Program SI! intervention increases children’s KAH scores, both overall (3.45, 95% CI, 1.84-5.05) and component-specific (Diet: 0.93, 95% CI, 0.12-1.75; Physical activity: 1.93, 95% CI, 1.17-2.69; Human body: 0.65, 95% CI, 0.07-1.24) score. Conclusions The Program SI! is demonstrated as an effective and feasible strategy for increasing knowledge and improving lifestyle attitudes and habits among very young children. Trial registration NCT01579708, Evaluation of the Program SI! for Preschool Education: A School-Based Randomized Controlled Trial (Preschool-SI!). PMID:24359285

  10. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors

    PubMed Central

    Anderson, Rachel I.; Lopez, Marcelo F.; Becker, Howard C.

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  11. Stress-Induced Enhancement of Ethanol Intake in C57BL/6J Mice with a History of Chronic Ethanol Exposure: Involvement of Kappa Opioid Receptors.

    PubMed

    Anderson, Rachel I; Lopez, Marcelo F; Becker, Howard C

    2016-01-01

    Our laboratory has previously demonstrated that daily forced swim stress (FSS) prior to ethanol drinking sessions facilitates enhanced ethanol consumption in mice with a history of chronic intermittent ethanol (CIE) vapor exposure without altering ethanol intake in air-exposed controls. Because both stress and chronic ethanol exposure have been shown to activate the dynorphin/kappa opioid receptor (KOR) system, the present study was designed to explore a potential role for KORs in modulating stress effects on ethanol consumption in the CIE model of dependence and relapse drinking. After stable baseline ethanol intake was established in adult male C57BL/6J mice, subjects received chronic intermittent exposure (16 h/day × 4 days/week) to ethanol vapor (CIE group) or air (CTL group). Weekly cycles of inhalation exposure were alternated with 5-day limited access drinking tests (1 h access to 15% ethanol). Experiment 1 compared effects of daily FSS and KOR activation on ethanol consumption. CIE and CTL mice were either exposed to FSS (10 min), the KOR agonist U50,488 (5 mg/kg), or a vehicle injection (non-stressed condition) prior to each daily drinking session during test weeks. FSS selectively increased drinking in CIE mice. U50,488 mimicked this effect in CIE mice, but also increased drinking in CTL mice. Experiment 2 assessed effects of KOR blockade on stress-induced drinking in CIE and CTL mice. Stressed and non-stressed mice were administered the short-acting KOR antagonist LY2444296 (0 or 5 mg/kg) 30 min prior to each drinking session during test weeks. FSS selectively increased ethanol consumption in CIE mice, an effect that was abolished by LY2444296 pretreatment. In Experiment 3, CIE and CTL mice were administered one of four doses of U50,488 (0, 1.25, 2.5, 5.0 mg/kg) 1 h prior to each daily drinking test (in lieu of FSS). All doses of U50,488 increased ethanol consumption in both CIE and CTL mice. The U50,488-induced increase in drinking was blocked by LY

  12. Long-lived alphaMUPA transgenic mice show reduced SOD2 expression, enhanced apoptosis and reduced susceptibility to the carcinogen dimethylhydrazine.

    PubMed

    Tirosh, Oren; Pardo, Michal; Schwartz, Betty; Miskin, Ruth

    2005-12-01

    Calorie restriction (CR) extends the life span of various species through mechanisms that are as yet unclear. Recently, we have reported that mitochondrion-mediated apoptosis was enhanced in alphaMUPA transgenic mice that spontaneously eat less and live longer compared with their wild-type (WT) control mice. To understand the molecular mechanisms underlying the increased apoptosis, we compared alphaMUPA and WT mice for parameters associated with SOD2 (MnSOD), a mitochondrial antioxidant enzyme that converts superoxide radicals into H(2)O(2) and is also known to inhibit apoptosis. The SOD2-related parameters included the levels of SOD2 mRNA, immunoreactivity and enzymatic activity in the liver, lipid oxidation and aconitase activity in isolated liver mitochondria, and the sensitivity of the mice to paraquat, an agent that elicits oxidative stress. In addition, we compared the mice for the levels of SOD2 mRNA after treatment with bacterial lipopolysaccharides (LPS), and for the DNA binding activity of NFkappaB as a marker for the inflammatory state. We extended SOD2 determination to the colon, where we also examined the formation of pre-neoplastic aberrant crypt foci (ACF) following treatment with dimethylhydrazine (DMH), a colonic organotypic carcinogen. Overall, alphaMUPA mice showed reduced basal levels of SOD2 gene expression and activity concomitantly with reduced lipid oxidation, increased aconitase activity and enhanced paraquat sensitivity, while maintaining the capacity to produce high levels of SOD2 in response to the inflammatory stimulus. alphaMUPA mice also showed increased resistance to DMH-induced pre-neoplasia. Collectively, these data are consistent with a model, in which an optimal fine-tuning of SOD2 throughout a long-term regimen of reduced eating could contribute to longevity, at least in the alphaMUPA mice. PMID:16139868

  13. Platelet P2Y12 receptors enhance signalling towards procoagulant activity and thrombin generation. A study with healthy subjects and patients at thrombotic risk.

    PubMed

    van der Meijden, Paola E J; Feijge, Marion A H; Giesen, Peter L A; Huijberts, Maya; van Raak, Lisette P M; Heemskerk, Johan W M

    2005-06-01

    Activated platelets participate in arterial thrombosis by forming aggregates and potentiating the coagulation through exposure of procoagulant phosphatidylserine. The function of the two receptors for ADP, P2Y(1) and P2Y(12), is well-established in aggregation, but is incompletely understood in the platelet procoagulant response. We established that, in PRP from healthy subjects, ADP accelerated and potentiated tissue factor induced thrombin generation exclusively via stimulation of P2Y(12) and not via P2Y(1) receptors. The P2Y(12) receptors also mediated the potentiating effect of PAR-1 stimulation on thrombin generation. Furthermore, ADP enhanced in a P2Y(12)-dependent manner the Ca(2+) response induced by thrombin, which was either added externally or generated in-situ. This ADP effect was in part dependent of phosphoinositide 3-kinase and was paralleled by increased phosphatidylserine exposure. In PRP from (young) patients with either stroke or type-II diabetes, platelet-dependent thrombin generation was similarly enhanced byADP or SFLLRN as in healthy subjects. In PRP from stroke patients of older age, the P2Y(12)-mediated contribution to thrombin generation was variably reduced by two weeks of clopidogrel medication. Remaining P2Y(12) activity after medication correlated with remaining P2Y(12)-dependent P-selectin exposure, i.e. Ca(2+)-dependent secretion, likely due to incomplete antagonism of P2Y(12) receptors. Together, these results indicate that physiological platelet agonists amplify phosphatidylserine exposure and subsequent thrombin generation by release of ADP and P2Y(12)-receptor stimulation. This P2Y(12) response is accomplished by a novel Ca(2+) signalling pathway. It is similarly active in platelets from control subjects and patients at thrombotic risk. Finally, the thrombogram method is useful for measuring incomplete P2Y(12) inhibition with clopidogrel. PMID:15968399