Science.gov

Sample records for mice peritoneal macrophages

  1. Endomorphin-suppressed nitric oxide release from mice peritoneal macrophages.

    PubMed

    Balog, Tihomir; Sarić, Ana; Sobocanec, Sandra; Kusić, Borka; Marotti, Tatjana

    2010-02-01

    Endomorphins are newly discovered mu-opioid receptor selective immunocompetent opioid peptides. Endomorphin 1 is predominantly distributed in brain, while endomorphin 2 is widely allocated in the spinal cord. Lately, endomorphins have been investigated as modulators of reactive oxygen and nitrogen species. Nitric oxide is short lived radical involved in various biological processes such as regulation of blood vessel contraction, inflammation, neurotransmission and apoptosis. The aim of this work was to investigate the in vivo effects of endomorphins on nitric oxide release and NOS 2 isoenzyme upregulation in mice peritoneal macrophages additionally challenged ex vivo with lipopolysaccharide. The results showed that endomorphin 1 or endomorphin 2 in vitro did not change NO release from peritoneal mouse macrophages during a 48 h incubation period. On the other hand in vivo endomorphins had suppressive effect on NO release as well as on NOS 2 and IL-1 protein concentration. The most of suppressive effect in vivo of both endomorphins was blocked with 30 min pretreatment with mu-receptor selective antagonist beta-FNA, which proved involvement of opioid receptor pathway in suppressive effects of endomorphins.

  2. Antigen presentation by peritoneal macrophages from young adult and old mice

    SciTech Connect

    Perkins, E.H.; Massucci, J.M.; Glover, P.L.

    1982-01-01

    Macrophages perform vital inductive and regulatory functions in immune processes and host defense mechanisms. However, macrophage function during senescence has not been extensively studied. Although antibody response is dramatically reduced in old animals, antigen presentation has never been directly assessed. Therefore, the antigen-presenting capabilities of purified peritoneal macrophages from young adult and old mice were studied by quantitatively measuring their ability to induce antigen specific proliferation of lymph node T lymphocytes. Increasing numbers (10/sup 2/ to 10/sup 5/) of macrophages from nonimmunized young adult (3 to 6 months) or aged (27 to 36 months) animals were cultured in the presence of antigen with a constant number (2 x 10/sup 5/) of column-separated popliteal lymph node cells from young adult mice. The latter had been immunized with the dinitrophenyl conjugate of bovine ..gamma..-globulin in complete Freund's adjuvant by footpad injection. Macrophages from old animals were equal to macrophages from young adult in stimulating T-lymphocyte proliferation, and the kinetics of incorporation was identical with increasing numbers of macrophages from either young adult or old animals. However, greater numbers of resident or induced peritoneal macrophages were always harvested from old animals. Differences in macrophage activity as assessed by different functional parameters may be reconciled by implicating subpopulations of macrophages that perform separate functions, e.g. Ia-positive antigen presenter and Ia-negative scavenger macrophages.

  3. Survival and replication of Escherichia coli O157:H7 inside the mice peritoneal macrophages

    PubMed Central

    Al-Mariri, Ayman

    2008-01-01

    The replication of Escherichia coli O157:H7 on the resident peritoneal macrophages of four mice strains (BALB/c, CD1, C57BL, and Swiss) has been investigated. Macrophagial bactericidal killing activity was estimated via studying their ability to internalize (gentamicin-protected) E. coli during 2, 4, 24, and 48 h assays. Host genetic background has been found to show no significant effect on the ability of resident peritoneal macrophages to kill E. coli O157:H7. PMID:24031167

  4. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    SciTech Connect

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  5. Low-dose cisplatin administration to septic mice improves bacterial clearance and programs peritoneal macrophage polarization to M1 phenotype.

    PubMed

    Li, Yanyan; Wang, Zhenling; Ma, Xuelei; Shao, Bin; Gao, Xiang; Zhang, Binglan; Xu, Guangchao; Wei, Yuquan

    2014-11-01

    Sepsis is a systemic inflammatory response to infection, and early responses of macrophages are vital in controlling the infected microorganisms. We used a cecal ligation and puncture (CLP) model of sepsis to determine the role of cisplatin (0.1, 0.5 and 1 mg kg(-1)) with respect to peritoneal macrophages, controlling peritoneal/blood bacterial infection, and systemic inflammation. We found that mice which received low-dose (0.1 and 0.5 mg kg(-1)) i.p. cisplatin had lower mortality rate and improved clinical scores compared with mice in normal saline-treated group, and the level of IL-6 and TNF-α was significantly reduced after cisplatin administration in peritoneal fluid of mice underwent CLP. Although cisplatin had no directly bactericidal ability, the numbers of bacteria in peritoneal and blood were significantly reduced at 24 and 72 h after the onset of CLP. Besides, in vivo phagocytosis and killing assay showed that the ability of macrophage derived from peritoneum was significantly increased with cisplatin treatment (5, 10, and 15 μM) for both gram-positive (Enterococcus faecalis) and gram-negative (Escherichia coli) bacteria. This was associated with the macrophage phenotype polarization from CD11b(+) F4/80(high) CD206(-) to CD11b(+) F4/80(low) CD206(-) M1 group. These findings underscore the importance of low-dose cisplatin in the treatment of sepsis.

  6. Hepatic cells' mitotic and peritoneal macrophage phagocytic activities during Trypanosoma musculi infection in zinc-deficient mice.

    PubMed Central

    Humphrey, P. A.; Ashraf, M.; Lee, C. M.

    1997-01-01

    The effects of zinc deficiency on hepatic cell mitotic and peritoneal macrophage phagocytic activities were examined in mice infected with Trypanosoma musculi or immunized with parasitic products. On a full-complement or pair-fed diet, infected and homogenate-inoculated mice showed mitotic activity gains of 7.9% to 80.3% and 6.5% to 99.0%, respectively. Infected and homogenate-inoculated mice on a zinc-deficient diet showed 21.8% to 95.7% and 17.2% to 65.2%, respectively, more dividing liver cells compared with controls. In comparison to controls, macrophages isolated from infected and homogenate-immunized mice on full-complement or pair-fed diets had phagocytized 13.4% to 31.4% more latex particles from day 50 to 80. In the zinc-deficient group, macrophages isolated from infected mice had significant numbers of phagocytized latex particles (1.8% to 38.5%) from day 20 to day 80 compared with controls. The homogenate-immunized mice also had increased numbers (18.6 to 30.8%) of phagocytized latex particles. PMID:9145631

  7. Comparative study of peritoneal macrophage functions in mice receiving lethal and non-lethal doses of LPS.

    PubMed

    Víctor, V M; De la Fuente, M

    2000-01-01

    In previous studies, we have observed changes in several functions of peritoneal macrophages from female BALB/c mice with lethal endotoxic shock caused by intraperitoneal injection of Escherichia coli O55:B5 lipopolysaccharide (LPS; 100 mg/kg), which were associated with a high production of superoxide anion and tumor necrosis factor alpha (TNF-alpha). In the present work, both a lethal dose (250 mg/kg) and a non-lethal dose (100 mg/kg) of LPS were used in female Swiss mice. In peritoneal macrophages, the following functions were studied at 2, 4, 12 and 24 h after LPS injection: adherence to substrate, chemotaxis, ingestion of particles, and superoxide anion and TNF-alpha production. In both groups, the results showed a stimulation of adherence, ingestion and superoxide production as well as a decrease of chemotaxis, whereas TNF-alpha could not be detected in either of the two groups. These effects were more evident with the 250 mg/kg dose, especially as regards superoxide anion production, which was higher in the animals treated with a lethal dose of LPS.

  8. In vivo effect of fly ash on surface receptors of mice peritoneal macrophages

    SciTech Connect

    Dogra, S.; Khanna, A.K.; Kaw, J.L.

    1987-01-01

    Functional activity of macrophages was studied in mice up to 15 days after intraperitoneal injection of 2.5 and 5.0 mg of fly ash using in vitro parameters. Fly ash did not cause any variation in the type of cellular response. The total cell number decreased significantly by 4 days after fly ash treatment but recovered subsequently. The decrease was dose dependent. Fly ash also caused a 50% depression in the FC receptor mediated phagocytosis of IgG coated sheep erythrocytes (SRBC) by macrophages at 2 days of dust treatment. However, the recovery began earlier with 2.5 mg fly ash than with 5.0 mg fly ash. These changes were not associated with any marked changes in esterase activity of macrophages following phagocytosis of fly ash.

  9. In vitro Staphylococcus aureus-induced oxidative stress in mice murine peritoneal macrophages: a duration-dependent approach

    PubMed Central

    Chakraborty, Subhankari Prasad; Roy, Somenath

    2014-01-01

    Objective To evaluate the free radical generation and status of the antioxidant enzymes in murine peritoneal macrophage during in vitro vancomycin sensitive Staphylococcus aureus (VSSA) treatment with different time interval. Methods Peritoneal macrophages were treated with 5×106 CFU/mL VSSA cell suspension in vitro for different time interval (1, 2, 3, 6, 12, and 24 h) and superoxide anion generation, NADPH oxidase activity, myeloperoxidase activity, nitric oxide generation, antioxidant enzyme status and components of glutathione cycle were analyzed. Results Superoxide anion generation, NADPH oxidase activity, myeloperoxidase activity and nitric oxide generation got peak at 3 h, indicating maximum free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during VSSA infection. Reduced glutathione level, glutathione peroxidase, glutathione reductase, and glutathione-s-transferase activity were decreased significantly (P<0.05) with increasing time of VSSA infection. But the oxidized glutathione level was time dependently increased significantly (P<0.05) in murine peritoneal macrophages. All the changes in peritoneal macrophages after 3 h in vitro VSSA treatment had no significant difference. Conclusions From this study, it may be summarized that in vitro VSSA infection not only generates excess free radical but also affects the antioxidant status and glutathione cycle in murine peritoneal macrophages. PMID:25183101

  10. Injection of mice with antibody to mouse interferon alpha/beta decreases the level of 2'-5' oligoadenylate synthetase in peritoneal macrophages.

    PubMed Central

    Gresser, I; Vignaux, F; Belardelli, F; Tovey, M G; Maunoury, M T

    1985-01-01

    Injection of conventional or axenic weanling mice with potent sheep or goat antibody to mouse interferon alpha/beta resulted in a decrease in the basal level of 2-5A synthetase in resting peritoneal macrophages and rendered these cells permissive for vesicular stomatitis virus. There was a good inverse correlation between the level of 2-5A synthetase in peritoneal macrophages and the permissivity of these cells for vesicular stomatitis virus. The peritoneal macrophages of 1- and 2-week-old mice had low levels of 2-5A synthetase and were permissive for vesicular stomatitis virus, whereas at 3 weeks (and after) there was a marked increase in the level of 2-5A synthetase in peritoneal macrophages, and these cells were no longer permissive for vesicular stomatitis virus. We suggest that low levels of interferon alpha or beta or both are produced in normal mice, and that this interferon contributes to host defense by inducing and maintaining an antiviral state in some cells. PMID:2981340

  11. Protective effects of Mangifera indica L. extract, mangiferin and selected antioxidants against TPA-induced biomolecules oxidation and peritoneal macrophage activation in mice.

    PubMed

    Sánchez, G M; Re, L; Giuliani, A; Núñez-Sellés, A J; Davison, G P; León-Fernández, O S

    2000-12-01

    We compared the protective abilities of Mangifera indica L. stem bark extract (Vimang) 50-250 mgkg(-1), mangiferin 50 mgkg(-1), vitamin C 100 mgkg(-1), vitamin E 100 mgkg(-1)and beta -carotene 50 mgkg(-1)against the 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced oxidative damage in serum, liver, brain as well as in the hyper-production of reactive oxygen species (ROS) by peritoneal macrophages. The treatment of mice with Vimang, vitamin E and mangiferin reduced the TPA-induced production of ROS by the peritoneal macrophages by 70, 17 and 44%, respectively. Similarly, the H(2)O(2)levels were reduced by 55-73, 37 and 40%, respectively, when compared to the control group. The TPA-induced sulfhydryl group loss in liver homogenates was attenuated by all the tested antioxidants. Vimang, mangiferin, vitamin C plus E and beta -carotene decreased TPA-induced DNA fragmentation by 46-52, 35, 42 and 17%, respectively, in hepatic tissues, and by 29-34, 22, 41 and 17%, in brain tissues. Similar results were observed in respect to lipid peroxidation in serum, in hepatic mitochondria and microsomes, and in brain homogenate supernatants. Vimang exhibited a dose-dependent inhibition of TPA-induced biomolecule oxidation and of H(2)O(2)production by peritoneal macrophages. Even if Vimang, as well as other antioxidants, provided significant protection against TPA-induced oxidative damage, the former lead to better protection when compared with the other antioxidants at the used doses. Furthermore, the results indicated that Vimang is bioavailable for some vital target organs, including liver and brain tissues, peritoneal exudate cells and serum. Therefore, we conclude that Vimang could be useful to prevent the production of ROS and the oxidative tissue damages in vivo.

  12. Single-cell analysis reveals new subset markers of murine peritoneal macrophages and highlights macrophage dynamics upon Staphylococcus aureus peritonitis.

    PubMed

    Accarias, Solène; Genthon, Clémence; Rengel, David; Boullier, Séverine; Foucras, Gilles; Tabouret, Guillaume

    2016-07-01

    Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity.

  13. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.

    PubMed

    Linehan, Eimear; Dombrowski, Yvonne; Snoddy, Rachel; Fallon, Padraic G; Kissenpfennig, Adrien; Fitzgerald, Denise C

    2014-08-01

    Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.

  14. Immunomodulation by Blastomyces dermatitidis: functional activity of murine peritoneal macrophages.

    PubMed Central

    McDaniel, L S; Cozad, G C

    1983-01-01

    Cell-mediated immunity plays the dominant role in the immune response of mice to Blastomyces dermatitidis infections. Since macrophages play an important role in cell-mediated immunity, the interactions between sensitized murine peritoneal macrophages and the yeast phase of B. dermatitidis were investigated. Scanning electron microscopy showed that the sensitized macrophages readily phagocytized B. dermatitidis yeast cells. In addition, there appeared to be activation of metabolic pathways within the sensitized macrophages, as indicated by increased chemiluminescence activity during phagocytosis. Sensitized macrophages were significantly better at controlling intracellular proliferation of the yeast cells when compared to nonsensitized cells. This was determined by disruption of macrophages and plating for viable yeasts. Scanning electron microscope observations offered further substantiation. Experiments with Candida albicans indicated that B. dermatitidis non-specifically activated macrophages. At 2 h postphagocytosis, 30% fewer C. albicans in B. dermatitidis-activated macrophages were able to form germ tubes. These studies demonstrated the multiple potential of activated macrophages with regard to their functional activity. Images PMID:6840859

  15. Reduced secretion of the inflammatory cytokine IL-1β by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7 Gy of ionizing radiation.

    PubMed

    Frischholz, Birgit; Wunderlich, Roland; Rühle, Paul-Friedrich; Schorn, Christine; Rödel, Franz; Keilholz, Ludwig; Fietkau, Rainer; Gaipl, Udo S; Frey, Benjamin

    2013-08-01

    Since the beginning of the 20th century, low dose radiotherapy (LD-RT) has been practiced and established as therapy of inflammatory diseases. Several clinical studies already have proven the anti-inflammatory effect of low doses of ionizing irradiation (LDR). However, further research is inevitable to reveal the underlying immune-biological mechanisms. Focus has been set on the modulation of activated macrophages by LDR, since they participate in both, initiation and resolution of inflammation. Here we examined with an ex vivo peritoneal mouse macrophage model how LDR modulates the secretion of the inflammatory cytokines IL-1β and TNF-α by activated macrophages and whether the basal radiosensitivity of the immune cells has influence on it. Peritoneal macrophages of Balb/c mice responded to exposure of 0.5 or 0.7 Gy of ionizing irradiation (X-ray) with significant decreased release of IL-1β and slightly, but not significantly, reduced release of TNF-α. Macrophages of the less radiosensitive C57BL/6 mice did not show this anti-inflammatory reaction. This was observed in both wild type and human TNF-α transgenic animals with C57BL/6 background. We conclude that only the inflammatory phenotype of more radiosensitive macrophages is reduced by LDR and that ex vivo and in vivo models with primary cells should be applied to examine how the immune system is modulated by LDR.

  16. Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice

    PubMed Central

    Nagai, Takuo; Doi, Shigehiro; Nakashima, Ayumu; Irifuku, Taisuke; Sasaki, Kensuke; Ueno, Toshinori; Masaki, Takao

    2016-01-01

    Recent studies have reported increases of methylglyoxal (MGO) in peritoneal dialysis patients, and that MGO-mediated inflammation plays an important role in the development of peritoneal fibrosis through production of transforming growth factor-β1 (TGF-β1). Linagliptin, a dipeptidyl peptidase-4 inhibitor, exerts anti-inflammatory effects independent of blood glucose levels. In this study, we examined whether linagliptin suppresses MGO-induced peritoneal fibrosis in mice. Male C57/BL6 mice were divided into three groups: control, MGO injection plus saline, and MGO injection plus linagliptin (n = 6 per group). Peritoneal fibrosis was induced by daily intraperitoneal injection of saline containing 40 mmol/L MGO for 21 days. Saline was administered intraperitoneally to the control group. Linagliptin (10 mg/kg) or saline were administrated by once-daily oral gavage from 3 weeks before starting MGO injections. Immunohistochemical staining revealed that linagliptin suppressed expression of α-smooth muscle actin and fibroblast-specific protein-1, deposition of type I and III collagen, and macrophage (F4/80) infiltration. Peritoneal equilibration testing showed improved peritoneal functions in mice treated with linagliptin. Peritoneal injection of MGO increased plasma levels of glucagon-like peptide-1 (GLP-1) in mice, and a further increase was observed in linagliptin-treated mice. Although MGO increased plasma glucose levels, linagliptin did not decrease plasma glucose levels. Moreover, linagliptin reduced the TGF-β1 concentration in the peritoneal fluid of MGO-treated mice. GLP-1 receptor (GLP-1R) was expressed in monocytes/macrophages and linagliptin suppressed GLP-1R expression in MGO-injected mice. These results suggest that oral administration of linagliptin ameliorates MGO-induced peritoneal fibrosis. PMID:27513960

  17. Chemotherapeutic agent CPT-11 eliminates peritoneal resident macrophages by inducing apoptosis.

    PubMed

    Huang, Mei-Yun; Pan, Hao; Liang, Yi-Dan; Wei, Hong-Xia; Xu, Li-Hui; Zha, Qing-Bing; He, Xian-Hui; Ouyang, Dong-Yun

    2016-02-01

    CPT-11 (Irinotecan) is a first-line chemotherapeutic agent in clinic, but it may induce side effects including diarrhea and enteritis in patients. The underlying mechanism of CPT-11's intestinal toxicity is unclear. Peritoneal resident macrophages have been reported to be important for the maintenance of intestinal homeostasis. In this study, we evaluated the cytotoxic effects of CPT-11 on mouse peritoneal resident macrophages. CPT-11 was administered intraperitoneally to mice and their peritoneal exudate cells were isolated for evaluation. CPT-11 treatment strikingly decreased the ratio of F4/80(hi)MHCII(low) large peritoneal macrophages (LPMs), which are regarded as prenatally-originated peritoneal resident macrophages. Consistent with this, the transcription factor GATA6 specifically expressed in LPMs was barely detectable in the macrophages from CPT-11-treated mice, indicative of elimination of LPMs. Such elimination of LPMs was at least partly due to CPT-induced apoptosis in macrophages, because inhibition of apoptosis by caspase-3 inhibitor z-DEVD-fmk significantly diminished the loss of GATA6(+) LPMs. As GATA6 is a transcription factor that controls expression of multiple genes regulating peritoneal B-1 cell development and translocation, elimination of GATA6(+) LPMs led to a great reduction in B-1 cells in the peritoneal cavity after CPT-11 treatment. These results indicated that CPT-11-induced apoptosis contributed to the elimination of peritoneal resident macrophages, which might in turn impair the function of peritoneal B-1 cells in maintaining intestinal homeostasis. Our findings may at least partly explain why CPT-11 treatment in cancer patients induces diarrhea and enteritis, which may provide a novel avenue to prevent such side effects.

  18. Plasminogen promotes macrophage phagocytosis in mice.

    PubMed

    Das, Riku; Ganapathy, Swetha; Settle, Megan; Plow, Edward F

    2014-07-31

    The phagocytic function of macrophages plays a pivotal role in eliminating apoptotic cells and invading pathogens. Evidence implicating plasminogen (Plg), the zymogen of plasmin, in phagocytosis is extremely limited with the most recent in vitro study showing that plasmin acts on prey cells rather than on macrophages. Here, we use apoptotic thymocytes and immunoglobulin opsonized bodies to show that Plg exerts a profound effect on macrophage-mediated phagocytosis in vitro and in vivo. Plg enhanced the uptake of these prey by J774A.1 macrophage-like cells by 3.5- to fivefold Plg receptors and plasmin proteolytic activity were required for phagocytosis of both preys. Compared with Plg(+/+) mice, Plg(-/-) mice exhibited a 60% delay in clearance of apoptotic thymocytes by spleen and an 85% reduction in uptake by peritoneal macrophages. Phagocytosis of antibody-mediated erythrocyte clearance by liver Kupffer cells was reduced by 90% in Plg(-/-) mice compared with Plg(+/+) mice. A gene array of splenic and hepatic tissues from Plg(-/-) and Plg(+/+) mice showed downregulation of numerous genes in Plg(-/-) mice involved in phagocytosis and regulation of phagocytic gene expression was confirmed in macrophage-like cells. Thus, Plg may play an important role in innate immunity by changing expression of genes that contribute to phagocytosis.

  19. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  20. Studies of macrophage function during Trichinella spiralis infection in mice.

    PubMed Central

    Wing, E J; Krahenbuhl, J L; Remington, J S

    1979-01-01

    Studies were made to investigate the quantitative and functional changes which occur in peritoneal macrophage populations obtained from mice infected orally with Trichinella spiralis larvae. C57BL/6 mice infected with T. spiralis larvae became parasitized with adult worms which were rejected from the intestine from 14 to 20 days after infection. Infected mice developed a striking increase in peritoneal exudate cells, composed largely of macrophages, which was maximal at from 16 to 18 days after infection. T. spiralis larvae and eosinophils were not seen in the peritoneal exudates. Macrophages from mice infected more than 11 days earlier inhibited DNA synthesis of syngeneic and allogeneic tumour cells, a property atributed to activated macrophages. In addition, macrophages from T. spiralis-infected mice had the functional ability to kill EL-4 tumour cells as measured by 51Cr release. Unlike activated macrophages, however, macrophages from infected mice did not develop the ability to inhibit multiplication of the intracellular pathogen Toxoplasma gondii. These studies demonstrate that T. spiralis infection in mice induces changes in macrophage function that differ from changes associated with infections by intracellular pathogens. PMID:437839

  1. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells.

    PubMed

    Kolaczkowska, Elzbieta; Lelito, Monika; Kozakiewicz, Elzbieta; van Rooijen, Nico; Plytycz, Barbara; Arnold, Bernd

    2007-11-15

    Metalloproteinase 9 (MMP-9) is crucial for normal neutrophil infiltration into zymosan-inflamed peritoneum. During the course of zymosan peritonitis MMP-9 is produced in a biphasic-manner as its presence is detectable as early as 30 min post zymosan and then between 2 and 8 h of inflammation. As inflammatory leukocytes were shown to produce MMP-9 we asked if also resident leukocytes, mast cells and macrophages, contribute to its production. And furthermore, if their contribution is limited only to the early phase of inflammation or extends to the later stages. For this purpose some mice were depleted of either resident macrophages or functional mast cells and expression of MMP-9 in peritoneal leukocytes and its release to the exudate were monitored. It turned out that depletion of peritoneal macrophages decreased both MMP-9 content in the leukocytes and its release to the inflammatory exudate at 30 min and 6h of peritonitis. The functional depletion of mast cells also caused a significant decrease in the production/release of MMP-9 that was especially apparent at the early time point (30 min). Moreover, the study shows concomitant kinetics of MMP-9 expression in leukocytes and its release to the exudatory fluid. The findings indicate that resident tissue leukocytes, and among them especially macrophages, constitute an important source of MMP-9 during acute peritoneal inflammation. Overall, the study shows that resident tissue leukocytes, mostly macrophages, constitute an important cellular source(s) of inflammation-related factors and should be regarded as possible targets of anti-inflammatory treatment.

  2. Peritonitis-induced antitumor activity of peritoneal macrophages from uremic patients.

    PubMed

    Turyna, Bohdan; Jurek, Aleksandra; Gotfryd, Kamil; Siaśkiewicz, Agnieszka; Kubit, Piotr; Klein, Andrzej

    2004-01-01

    The macrophages belong to the effector cells of both nonspecific and specific immune response. These cells generally express little cytotoxicity unless activated. The present work was intended to determine if peritoneal macrophages collected from patients on Continuous Ambulatory Peritoneal Dialysis (CAPD) during episodes of peritonitis were active against human tumor cell lines without further in vitro stimulation. We also compared macrophage antitumor potential with effectiveness of drugs used in cancer therapy (taxol and suramin). Conditioned medium (CM) of macrophages collected during inflammation-free periods did not exhibit cytostatic and cytotoxic activity against both tumor (A549 and HTB44) and non-transformed (BEAS-2B and CRL2190) cells. Exposure of tumor cells to CM of macrophages harvested during peritonitis resulted in significant suppression of proliferation, impairment of viability and induction of apoptosis, in contrast to non-transformed cells, which remained unaffected. The efficacy of CM of inflammatory macrophages as an antitumor agent appeared to be comparable to cytostatic and cytotoxic potency of taxol and suramin or, in the case of HTB44 cells, even higher. The results obtained suggest that activated human macrophages might represent a useful tool for cancer immunotherapy.

  3. Inhibitory effects of coumarin and acetylene constituents from the roots of Angelica furcijuga on D-galactosamine/lipopolysaccharide-induced liver injury in mice and on nitric oxide production in lipopolysaccharide-activated mouse peritoneal macrophages.

    PubMed

    Yoshikawa, Masayuki; Nishida, Norihisa; Ninomiya, Kiyofumi; Ohgushi, Teruki; Kubo, Mizuho; Morikawa, Toshio; Matsuda, Hisashi

    2006-01-15

    The methanolic extract (200 mg/kg, p.o. and i.p.), principal coumarin constituents (isoepoxypteryxin, anomalin, and praeroside IV), and a polyacetylene constituent (falcarindiol) (25 mg/kg, i.p.) from the roots of Angelica furcijuga protected the liver injury induced by D-galactosamine (D-GalN)/lipopolysaccharide (LPS) in mice. In in vitro experiments, coumarin constituents (hyuganins A-D, anomalin, pteryxin, isopteryxin, and suksdorfin) and polyacetylene constituents [(-)-falcarinol and falcarindiol] substantially inhibited LPS-induced NO and/or TNF-alpha production in mouse peritoneal macrophages, and isoepoxypteryxin inhibited D-GalN-induced cytotoxicity in primary cultured rat hepatocytes. Furthermore, hyuganin A, anomalin, and isopteryxin inhibited the decrease in cell viability by TNF-alpha in L929 cells.

  4. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  5. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization

    PubMed Central

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury. PMID:25650776

  6. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  7. Immunological impact of magnetic nanoparticles (Ferucarbotran) on murine peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    Yeh, Chen-Hao; Hsiao, Jong-Kai; Wang, Jaw-Lin; Sheu, Fuu

    2010-01-01

    Ferucarbotran, a clinically used superparamagnetic iron oxide, is widely developed as a magnetic resonance imaging (MRI) contrast agent and has the potential to improve the monitoring of macrophage recirculation in vivo. However, the biological effect of Ferucarbotran or magnetic nanoparticles (MNPs) on macrophage is not clearly understood yet. This study is aimed to examine the immunological impact of Ferucarbotran toward murine peritoneal macrophages. Cells treated with Ferucarbotran demonstrated a dose-responsive increase of granularity in the cytoplasm. After 24 h of incubation, viability and cytotoxicity in macrophages treated with 200 μg Fe/mL of Ferucarbotran were not affected. Macrophages loaded with Ferucarbotran above 100 μg Fe/mL showed a significant ( p < 0.01) increase in cytokine (TNF-α, IL-1β, IL-6) secretion and mRNA expression, followed by nitric oxide (NO) secretion and iNOS mRNA expression. Chemotactic responses of Ferucarbotran-preloaded macrophages toward CX3CL1 were significantly ( p < 0.05) lower than those of untreated macrophages. Taking together, Ferucarbotran at high dose (100 μg Fe/mL) could induce murine peritoneal macrophages activation in pro-inflammatory cytokine secretion and NO production.

  8. Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis.

    PubMed

    Barnett, Rebecca Elise; Conklin, Daniel J; Ryan, Lindsey; Keskey, Robert C; Ramjee, Vikram; Sepulveda, Ernesto A; Srivastava, Sanjay; Bhatnagar, Aruni; Cheadle, William G

    2016-02-01

    We investigated the role of microRNA-21 in the macrophage response to peritonitis; microRNA-21 expression increases in peritoneal macrophages after lipopolysaccharide stimulation but is delayed until 48 hours after cecal ligation and puncture. MicroRNA-21-null mice and bone marrow-derived cell lines were exposed to cecal ligation and puncture or lipopolysaccharide, and survival, microRNA-21 levels, target messenger RNAs and proteins, and cytokines were assayed. Macrophages were also transfected with microRNA-21 mimics and antagomirs, and similar endpoints were measured. Survival in microRNA-21-null mice was significantly decreased after lipopolysaccharide-induced peritonitis but unchanged after cecal ligation and puncture compared with similarly treated wild-type mice. MicroRNA-21 expression, tumor necrosis factor-α, interleukin 6, and programmed cell death protein 4 levels were increased after lipopolysaccharide addition in peritoneal cells. Pelino1 and sprouty (SPRY) messenger RNAs were similarly increased early, whereas programmed cell death protein 4 messenger RNA was decreased after lipopolysaccharide, and all microR-21 target messenger RNAs were subsequently decreased by 24 hours after lipopolysaccharide. Transfection with mimics and antagomirs led to appropriate responses in microRNA-21 and tumor necrosis factor-α. Knockdown of microRNA-21 in bone marrow-derived cells showed increased tumor necrosis factor-α and decreased interleukin 10 in response to lipopolysaccharide. Target proteins were unaffected by knockdown as was extracellular signal-regulated kinase; however, the nuclear factor κB p65 subunit was increased after lipopolysaccharide in the microRNA-21 knockout cells. In contrast, there was little change in these parameters after cecal ligation and puncture induction between null and wild-type mice. MicroRNA-21 is beneficial to survival in mice following lipopolysaccharide peritonitis. Overexpression of microRNA-21 decreased tumor necrosis factor

  9. Suppression of Mcl-1 induces apoptosis in mouse peritoneal macrophages infected with Mycobacterium tuberculosis.

    PubMed

    Wang, Fei-Yu; Wang, Xin-Min; Wang, Chan; Wang, Xiao-Fang; Zhang, Yu-Qing; Wu, Jiang-Dong; Wu, Fang; Zhang, Wan-Jiang; Zhang, Le

    2016-04-01

    The effect of myeloid cell leukemia-1 (Mcl-1) inhibition on apoptosis of peritoneal macrophages in mice infected with Mycobacterium tuberculosis was investigated and the primary signaling pathway associated with the transcriptional regulation of Mcl-1 was identified. Real-time PCR and western blotting indicated that Mcl-1 transcript and protein expression are upregulated during infection with virulent M. tuberculosis H37Rv and Xinjiang strains but not with attenuated M. tuberculosis strain H37Ra or Bacillus Calmette-Guérin. Mcl-1 transcript and protein expression were downregulated by specific inhibitors of the Janus kinase/signal transducer and activator of transcription (JAK/STAT), mitogen-activated protein kinase (MAPK) and phosphoinositol 3-kinase (PI3K) pathways (AG490, PD98059 and LY294002, respectively). The strongest inhibitor of Mcl-1 expression was PD98059, the MAPK inhibitor. Flow cytometry demonstrated that the rate of apoptosis in peritoneal macrophages is significantly higher in mice infected with M. tuberculosis and the rate of apoptosis is correlated with the virulence of the strain of M. tuberculosis. Apoptosis was found to be upregulated by AG490, PD98059 and LY294002, whereas inhibition of the MAPK pathway sensitized the infected macrophages to apoptosis. Taken together, these results suggest that specific downregulation of Mcl-1 significantly increases apoptosis of peritoneal macrophages and that the MAPK signaling pathway is the primary mediator of Mcl-1 expression.

  10. Morphological effects of autologous hsp70 on peritoneal macrophages in a murine T cell lymphoma.

    PubMed

    Gautam, P K; Kumar, S; Deepak, P; Acharya, A

    2013-12-01

    Heat shock protein 70 is highly conserved cytosolic protein which have important role in growth, development, and apoptosis. Hsp70 is well-known activator of macrophages and enhances the release of specific and non-specific effector molecules that have major role in tumor destruction and immunopotentiation of host. However, morphological effects of hsp 70 has not been carried out, therefore, morphological effects of hsp 70 on murine peritoneal macrophages were examined by light microscopy and scanning electron microscopy. Thioglycolate-induced peritoneal macrophages were prepared from BALB/c mice and cultured for 24 h in the presence of the hsp70. Tumor-associated macrophages treated with 10 μg/ml were varied in shape, mostly spindle shaped, i.e., stretched bidirectionally; surface ruffles were increased and their lamellipodia was prominent which suggest that hsp 70 treatment not only enhances the functional state of the peritoneal macrophages but also initiate immense morphological changes leading to increased endothelium adherence, increased antigen uptake, and increased migration to the inflammatory site.

  11. TWEAK Promotes Peritoneal Inflammation

    PubMed Central

    Sanz, Ana Belen; Aroeira, Luiz Stark; Bellon, Teresa; del Peso, Gloria; Jimenez-Heffernan, Jose; Santamaria, Beatriz; Sanchez-Niño, Maria Dolores; Blanco-Colio, Luis Miguel; Lopez-Cabrera, Manuel; Ruiz-Ortega, Marta; Egido, Jesus; Selgas, Rafael; Ortiz, Alberto

    2014-01-01

    Peritoneal dialysis (PD) is complicated by peritonitis episodes that cause loss of mesothelium and eventually sclerosing peritonitis. An improved understanding of the molecular contributors to peritoneal injury and defense may increase the therapeutic armamentarium to optimize peritoneal defenses while minimizing peritoneal injury. There is no information on the expression and function of the cytokine TWEAK and its receptor Fn14 during peritoneal injury. Fn14 expression and soluble TWEAK levels were measured in human PD peritoneal effluent cells or fluids with or without peritonitis. Fn14 expression was also analyzed in peritoneal biopsies from PD patients. Actions of intraperitoneal TWEAK were studied in mice in vivo. sTWEAK levels were increased in peritoneal effluent in PD peritonitis. Effluent sTWEAK levels correlated with the number of peritoneal macrophages (r = 0.491, p = 0.002). Potential TWEAK targets that express the receptor Fn14 include mesothelial cells and macrophages, as demonstrated by flow cytometry of peritoneal effluents and by analysis of peritoneal biopsies. Peritoneal biopsy Fn14 correlated with mesothelial injury, fibrosis and inflammation, suggesting a potential deleterious effect of TWEAK/Fn14. In this regard, intraperitoneal TWEAK administration to mice promoted peritoneal inflammation characterized by increased peritoneal effluent MCP-1, Fn14 and Gr1+ macrophages, increased mesothelial Fn14, MCP-1 and CCL21 expression and submesothelial tissue macrophage recruitment. Taken together these data suggest that the TWEAK/Fn14 system may promote inflammation and tissue injury during peritonitis and PD. PMID:24599047

  12. Elicitation of macrophages from the peritoneal cavity of channel catfish

    USGS Publications Warehouse

    Jenkins, J.A.; Klesius, P.H.

    1998-01-01

    Four chemicals were evaluated for elicitation of macrophages in peritoneal cavities of 250-300g healthy channel catfish Ictalurus punctatus. Cellular exudates were collected at 3, 5, 7, 10, 14, and 20 d following intraperitoneal injections with squalene, Freund's incomplete adjuvant (FIA), goat serum, thioglycollate, or as a control, phosphate-buffered saline. Injection with either squalene or FIA induced significantly greater (P ??? 0.0001) macrophage recruitment than the other chemicals. The effectiveness of squalene and FIA was compared further by macrophage collection daily for 7 d. Squalene and FIA elicited similarly high macrophage responses (P ??? 0.0450), the highest being 3.43 x 106 macrophages/mL (SE, 2.4 x l06) at 99% purity at day 2 and 2.1 X 106 macrophages/mL (SE, 0.7 x 106) at day 14 at 80% purity, respectively. In both experiments, the time after injection was not statistically significant, nor was there an interaction between time and chemicals. The occurrence of cells other than macrophages decreased with time to yield macrophage recoveries of 47-99% for squalene and 30-80% for FIA. Two subsets of macrophages were observed by means of flow cytometry. As demonstrated by chemiluminescence, the squalene-elicited cells produced high-energy oxygen compounds important to the phagocytic process.

  13. Lipopolysaccharide (LPS) alters phosphatidylcholine metabolism in elicited peritoneal macrophages

    SciTech Connect

    Grove, R.I.; Allegretto, N.J.; Kiener, P.A.; Warr, G.A. )

    1990-07-01

    We investigated the effects of LPS on mouse peritoneal macrophage phospholipids using radiolabeled precursors. LPS (200 ng/ml) stimulated incorporation of ({sup 32}P) into all classes of phospholipids within 0.5 hr, and after 2 hr the increase was 60% greater than controls. Separation of the phospholipid classes by thin-layer chromatography revealed a selective increase in incorporation of label into phosphatidylcholine (PC) (90% increase compared to approximately 50% in the other phospholipids). In macrophages labeled with ({sup 3}H)-choline, LPS stimulated both the incorporation of label into PC and the release of incorporated label into the medium. The time dependencies of stimulated ({sup 3}H) release and ({sup 32}P) incorporation were similar. These data are consistent with the hypothesis that LPS activates macrophages via a PC-specific phospholipase-dependent mechanism.

  14. Genetic Control of the Innate Resistance of Mice to Salmonella typhimurium: Expression of the Ity Gene in Peritoneal Macrophages Isolated In Vitro

    DTIC Science & Technology

    1984-07-20

    Statistical Analysis 67 RESULTS Configuration of the _In Vitro Salmonella Infection Assay 68 I. Assessment of the cellular composition of resident... Salmonella Infection Assay I. Assessment of the cellular composition of resident adherent macrophages at the time of infection The methods used for...point of Salmonella infection . At that time, the macrophage cultures were overlaid with 500 pi/well of the lidocaine solution, and incubated at 37° C

  15. A role for connexin43 in macrophage phagocytosis and host survival after bacterial peritoneal infection.

    PubMed

    Anand, Rahul J; Dai, Shipan; Gribar, Steven C; Richardson, Ward; Kohler, Jeff W; Hoffman, Rosemary A; Branca, Maria F; Li, Jun; Shi, Xiao-Hua; Sodhi, Chhinder P; Hackam, David J

    2008-12-15

    The pathways that lead to the internalization of pathogens via phagocytosis remain incompletely understood. We now demonstrate a previously unrecognized role for the gap junction protein connexin43 (Cx43) in the regulation of phagocytosis by macrophages and in the host response to bacterial infection of the peritoneal cavity. Primary and cultured macrophages were found to express Cx43, which localized to the phagosome upon the internalization of IgG-opsonized particles. The inhibition of Cx43 using small interfering RNA or by obtaining macrophages from Cx43 heterozygous or knockout mice resulted in significantly impaired phagocytosis, while transfection of Cx43 into Fc-receptor expressing HeLa cells, which do not express endogenous Cx43, conferred the ability of these cells to undergo phagocytosis. Infection of macrophages with adenoviruses expressing wild-type Cx43 restored phagocytic ability in macrophages from Cx43 heterozygous or deficient mice, while infection with viruses that expressed mutant Cx43 had no effect. In understanding the mechanisms involved, Cx43 was required for RhoA-dependent actin cup formation under adherent particles, and transfection with constitutively active RhoA restored a phagocytic phenotype after Cx43 inactivation. Remarkably, mortality was significantly increased in a mouse model of bacterial peritonitis after Cx43 inhibition and in Cx43 heterozygous mice compared with untreated and wild-type counterparts. These findings reveal a novel role for Cx43 in the regulation of phagocytosis and rearrangement of the F-actin cytoskeleton, and they implicate Cx43 in the regulation of the host response to microbial infection.

  16. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator.

  17. Macrophage autophagy protects against liver fibrosis in mice.

    PubMed

    Lodder, Jasper; Denaës, Timothé; Chobert, Marie-Noële; Wan, JingHong; El-Benna, Jamel; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2015-01-01

    Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.

  18. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites

    PubMed Central

    Irvine, Katharine M.; Banh, Xuan; Gadd, Victoria L.; Wojcik, Kyle K.; Ariffin, Juliana K.; Jose, Sara; Lukowski, Samuel; Baillie, Gregory J.; Sweet, Matthew J.; Powell, Elizabeth E.

    2016-01-01

    Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients. PMID:27699269

  19. In vivo killing and degradation of Mycobacterium aurum within mouse peritoneal macrophages.

    PubMed Central

    Silva, M T; Appelberg, R; Silva, M N; Macedo, P M

    1987-01-01

    We studied the in vivo killing and degradation of Mycobacterium aurum, a nonpathogenic, acid-fast bacillus, within macrophages after inoculation into the peritoneal cavity of CD-1 mice. The degradative process could be divided in five successive steps that were characterized on ultrastructural and cytochemical grounds and the relative contributions of which were determined by quantitative electron microscopy of samples taken at different times. The main ultrastructural alterations observed during the degradative process were ribosome disaggregation, coagulation of the cytoplasmic matrix, and change in the membrane profile from asymmetric to symmetric, with loss of the polysaccharide components from the outer layer, followed by membrane solubilization and intracellular clearing, followed by digestion of the innermost (peptidoglycan) layer of the cell wall, and at the end of the process, disorganization and collapse of the remaining layers of the cell wall. The correlation between viability and morphology indicated that the first ultrastructural signs of viability loss are cytoplasmic coagulation, change in the membrane geometry, and disappearance of ribosomes. The labeling of lysosomes of peritoneal macrophages with ferritin or by the cytochemical demonstration of inorganic trimetaphosphatase showed that fusion of lysosomes with phagosomes containing mycobacteria occurs in the phagocytes in the mouse peritoneal cavity and is already extensive as soon as 1 h after the inoculation of the bacilli. Images PMID:3623691

  20. Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis

    PubMed Central

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.

    2016-01-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038

  1. Interleukin 27 inhibits atherosclerosis via immunoregulation of macrophages in mice.

    PubMed

    Hirase, Tetsuaki; Hara, Hiromitsu; Miyazaki, Yoshiyuki; Ide, Noriko; Nishimoto-Hazuku, Ai; Fujimoto, Hirokazu; Saris, Christiaan J M; Yoshida, Hiroki; Node, Koichi

    2013-08-01

    Chronic inflammation in arterial wall that is driven by immune cells and cytokines plays pivotal roles in the development of atherosclerosis. Interleukin 27 (IL-27) is a member of the IL-12 family of cytokines that consists of IL-27p28 and Epstein-Barr virus induced gene 3 (EBI3) and has anti-inflammatory properties that regulate T cell polarization and cytokine production. IL-27-deficient (Ldlr-/-Ebi3-/-) and IL-27 receptor-deficient (Ldlr-/-WSX-1-/-) Ldlr-/- mice were generated and fed with a high-cholesterol diet to induce atherosclerosis. Roles of bone marrow-derived cells in vivo and macrophages in vitro were studied using bone marrow reconstitution by transplantation and cultured peritoneal macrophages, respectively. We demonstrate that mice lacking IL-27 or IL-27 receptor are more susceptible to atherosclerosis compared with wild type due to enhanced accumulation and activation of macrophages in arterial walls. The number of circulating proinflammatory Ly6C(hi) monocytes showed no significant difference between wild-type mice and mice lacking IL-27 or IL-27 receptor. Administration of IL-27 suppressed the development of atherosclerosis in vivo and macrophage activation in vitro that was indicated by increased uptake of modified low-density lipoprotein and augmented production of proinflammatory cytokines. These findings define a novel inhibitory role for IL-27 in atherosclerosis that regulates macrophage activation in mice.

  2. The equine alveolar macrophage: functional and phenotypic comparisons with peritoneal macrophages.

    PubMed

    Karagianni, Anna E; Kapetanovic, Ronan; McGorum, Bruce C; Hume, David A; Pirie, Scott R

    2013-10-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  3. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  4. Trafficking of phagocytic peritoneal cells in hypoinsulinemic-hyperglycemic mice with systemic candidiasis

    PubMed Central

    2013-01-01

    Background Candidemia is a severe fungal infection that primarily affects hospitalized and/or immunocompromised patients. Mononuclear phagocytes have been recognized as pivotal immune cells which act in the recognition of pathogens, phagocytosis, inflammation, polarization of adaptive immune response and tissue repair. Experimental studies have showed that the systemic candidiasis could be controlled by activated peritoneal macrophages. However, the mechanism to explain how these cells act in distant tissue during a systemic fungal infection is still to be elucidated. In the present study we investigate the in vivo trafficking of phagocytic peritoneal cells into infected organs in hypoinsulinemic-hyperglycemic (HH) mice with systemic candidiasis. Methods The red fluorescent vital dye PKH-26 PCL was injected into the peritoneal cavity of Swiss mice 24 hours before the intravenous inoculation with Candida albicans. After 24 and 48 hours and 7 days of infection, samples of the spleen, liver, kidneys, brain and lungs were submitted to the microbiological evaluation as well as to phagocytic peritoneal cell trafficking analyses by fluorescence microscopy. Results In the present study, PKH+ cells were observed in the peritoneum, kidney, spleen and liver samples from all groups. In infected mice, we also found PKH+ cells in the lung and brain. The HH condition did not affect this process. Conclusions In the present study we have observed that peritoneal phagocytes migrate to tissues infected by C. albicans and the HH condition did not interfere in this process. PMID:23521724

  5. Differential turnover of phospholipid acyl groups in mouse peritoneal macrophages

    SciTech Connect

    Kuwae, T.; Schmid, P.C.; Johnson, S.B.; Schmid, H.H. )

    1990-03-25

    Phospholipid acyl turnover was assessed in mouse peritoneal exudate cells which consisted primarily of macrophages. The cells were incubated for up to 5 h in media containing 40% H218O, and uptake of 18O into ester carbonyls of phospholipids was determined by gas chromatography-mass spectrometry of hydrogenated methyl esters. The uptake was highest in choline phospholipids and phosphatidylinositol, less in ethanolamine phospholipids, and much less in phosphatidylserine. Acyl groups at the sn-1 and sn-2 positions of diacyl glycerophospholipids, including arachidonic and other long-chain polyunsaturated fatty acids, acquired 18O at about the same rate. Acyl groups of alkylacyl glycerophosphocholine exhibited lower rates of 18O uptake, and acyl groups of ethanolamine plasmalogens (alkenylacyl glycerophosphoethanolamines) acquired only minimal amounts of 18O within 5 h, indicating a low average acyl turnover via free fatty acids. Pulse experiments with exogenous 3H-labeled arachidonic acid supported the concept that acylation of alkenyl glycerophosphoethanolamine occurs by acyl transfer from other phospholipids rather than via free fatty acids and acyl-CoA. The 18O content of intracellular free fatty acids increased gradually over a 5-h period, whereas in extracellular free fatty acids it reached maximal 18O levels within the first hour. Arachidonate and other long-chain polyunsaturated fatty acids were found to participate readily in deacylation-reacylation reactions but were present only in trace amounts in the free fatty acid pools inside and outside the cells. We conclude that acyl turnover of macrophage phospholipids through hydrolysis and reacylation is rapid but tightly controlled so that appreciable concentrations of free arachidonic acid do not occur.

  6. A thrombin receptor in resident rat peritoneal macrophages

    SciTech Connect

    Kudahl, K.; Fisker, S.; Sonne, O. )

    1991-03-01

    Resident rat peritoneal macrophages possess 6 x 10(2) high-affinity binding sites per cell for bovine thrombin with a Kd of 11 pM, and 7.5 x 10(4) low-affinity sites with a Kd of 5.8 nM. These binding sites are highly specific for thrombin. Half-maximal binding of {sup 125}I-labeled bovine thrombin is achieved after 1 min at 37{degrees}C, and after 12 min at 4 degrees C. The reversibly bound fraction of the ligand dissociates according to a biexponential time course with the rate constants 0.27 and 0.06 min-1 at 4 degrees C. Part of the tracer remains cell-associated even after prolonged incubation, but all cell-associated radio-activity migrates as intact thrombin upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The bound thrombin is minimally endocytosed as judged by the resistance to pH 3 treatment, and the receptor does not mediate a quantitatively important degradation of the ligand. The binding is not dependent on the catalytic site of thrombin, since irreversibly inactivated thrombin also binds to the receptor. {sup 125}I-labeled thrombin covalently cross-linked to its receptor migrates in sodium dodecyl sulfate-polyacrylamide gel electrophoresis with a Mr 160,000, corresponding to an approximate receptor size of Mr 120,000.

  7. Expression of Nocardia brasiliensis superoxide dismutase during the early infection of murine peritoneal macrophages.

    PubMed

    Revol, Agnès; Espinoza-Ruiz, Marisol; Medina-Villanueva, Igor; Salinas-Carmona, Mario Cesar

    2006-12-01

    Nocardia brasiliensis is the main agent of actinomycetoma in Mexico, but little is known about its virulence and molecular pathogenic pathways. These facultative intracellular bacteria are able to survive and divide within the host phagocytic cells, in part by neutralizing the reactive oxygen intermediates. Superoxide dismutase (SOD) participates in the intracellular survival of several bacterial species and, in particular, constitutes one of Nocardia asteroides virulence factors. To clarify SOD participation in the N. brasiliensis early infective process, we report its isolation and the consequent comparison of its transcript level. A 630 bp polymerase chain reaction fragment that included most of the coding sequence of N. brasiliensis sodA was cloned. A competitive assay was developed, allowing comparison of bacterial sod expression in exponential culture and 1 h after infecting peritoneal macrophages from BALB/c mice. At that time, there were viable bacteria in the macrophages. The intracellular bacteria presented a clear decrease in their sod transcript amount, although their 16S rRNA (used as an internal control) and hsp levels were maintained or slightly increased, respectively. These results indicate that sodA transcription is not maintained within the SOS bacterial response induced by phagosomal conditions. Further kinetics will be necessary to precisely define sod transcriptional regulation during N. brasiliensis intra-macrophage growth.

  8. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice.

    PubMed

    Obata, Yoko; Nishino, Tomoya; Kushibiki, Toshihiro; Tomoshige, Ryuji; Xia, Zhiyin; Miyazaki, Masanobu; Abe, Katsushige; Koji, Takehiko; Tabata, Yasuhiko; Kohno, Shigeru

    2012-07-01

    Heat shock protein 47 (HSP47), a collagen-specific molecular chaperone, is essential for the biosynthesis and secretion of collagen and is expressed in the fibrotic peritoneum. In the present study, we evaluated the efficacy of HSP47 small interfering RNA (siRNA) to suppress the development of peritoneal fibrosis induced by chlorhexidine gluconate in mice. We initially confirmed that biodegradable cationized gelatin microspheres (CGMs) containing HSP47 siRNA could continuously release siRNA over 21 days as a result of microsphere degradation. We then determined that a single injection of CGMs incorporating HSP47 siRNA suppressed collagen expression and macrophage infiltration, thereby preventing peritoneal fibrosis. Therefore, we suggest that this controlled-release technology using HSP47 siRNA is a potential treatment for peritoneal fibrosis. Additionally, RNA interference combined with CGMs as a drug-delivery system may lead to new strategies for knocking down specific genes in vivo.

  9. Methylglyoxal induced activation of murine peritoneal macrophages and surface markers of T lymphocytes in sarcoma-180 bearing mice: involvement of MAP kinase, NF-kappa beta signal transduction pathway.

    PubMed

    Pal, Aparajita; Bhattacharya, Iman; Bhattacharya, Kaushik; Mandal, Chitra; Ray, Manju

    2009-06-01

    Methylglyoxal profoundly stimulates host's immune response against tumor cell by producing reactive oxygen intermediates (ROI's) and reactive nitrogen intermediates (RNI's) [Bhattacharyya, N., Pal, A., Patra, S., Haldar, A.K., Roy, S., Ray, M., 2008. Activation of macrophages and lymphocytes by methylglyoxal against tumor cells in the host. Int. Immunophar. 8 (11), 1503-1512]. Present study indicated that methylglyoxal stimulates iNOS activation by p38 MAPK-NF-kappa beta dependent pathway and ROS production by ERK and JNK activation in sarcoma-180 tumor bearing mice. Proinflammatory cytokines, for macrophage activation, IL-6 and IL-1 beta were also increased. Production of TLR 4 and TLR 9, which acts through the same signaling pathway, were also upregulated. Hence, concluded that methylglyoxal augmented the IL-6 and IL-1 beta, expression of TLR 4 and TLR 9 and produced MAPKs, important regulators of ROIs and RNIs. Methylglyoxal treatment also increased M-CSF, an upregulator of macrophage production. CD8 and CD4 molecules, associated with T(C) and T(H) cells respectively, were also increased. Overall methylglyoxal treatment is important for enhancement of macrophages and lymphocyte activation or immunomodulation against sarcoma-180 tumor.

  10. Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin.

    PubMed

    Marinkovic, Emilija; Djokic, Radmila; Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Kosanovic, Dejana; Gavrovic-Jankulovic, Marija; Stojanovic, Marijana

    2017-01-01

    We demonstrated that a recombinant banana lectin (rBanLec), which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs) and thioglycollate-elicited (TGMs) peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice) or not detectable (C57BL/6 mice). In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity). Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion). Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to investigate

  11. Modulation of functional characteristics of resident and thioglycollate-elicited peritoneal murine macrophages by a recombinant banana lectin

    PubMed Central

    Marinkovic, Emilija; Djokic, Radmila; Lukic, Ivana; Filipovic, Ana; Inic-Kanada, Aleksandra; Kosanovic, Dejana; Gavrovic-Jankulovic, Marija; Stojanovic, Marijana

    2017-01-01

    We demonstrated that a recombinant banana lectin (rBanLec), which structural characteristics and physiological impacts highly resemble those reported for its natural counterparts, binds murine peritoneal macrophages and specifically modulates their functional characteristics. By using rBanLec in concentrations ranging from 1 μg to 10 μg to stimulate resident (RMs) and thioglycollate-elicited (TGMs) peritoneal macrophages from BALB/c and C57BL/6 mice, we have shown that effects of rBanLec stimulation depend on its concentration but also on the functional status of macrophages and their genetic background. rBanLec, in a positive dose-dependent manner, promotes the proliferation of TGMs from both BALB/c and C57BL/6 mice, while its mitogenic influence on RMs is significantly lower (BALB/c mice) or not detectable (C57BL/6 mice). In all peritoneal macrophages, irrespective of their type and genetic background, rBanLec, in a positive dose dependent manner, enhances the secretion of IL-10. rBanLec stimulation of RMs from both BALB/c and C57BL/6 resulted in a positive dose-dependent promotion of proinflammatory phenotype (enhancement of NO production and IL-12 and TNFα secretion, reduction of arginase activity). Positive dose-dependent skewing toward proinflammatory phenotype was also observed in TGMs from C57BL/6 mice. However, the enhancement of rBanLec stimulation promotes skewing of TGMs from BALB/c mice towards anti-inflammatory profile (reduction of NO production and IL-12 secretion, enhancement of arginase activity and TGFβ and IL-4 secretion). Moreover, we established that rBanLec binds oligosaccharide structures of TLR2 and CD14 and that blocking of signaling via these receptors significantly impairs the production of TNFα and NO in BALB/c macrophages. Since the outcome of rBanLec stimulation depends on rBanLec concentration as well as on the functional characteristics of its target cells and their genetic background, further studies are needed to investigate

  12. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  13. Aging enhances the production of reactive oxygen species and bactericidal activity in peritoneal macrophages by upregulating classical activation pathways.

    PubMed

    Smallwood, Heather S; López-Ferrer, Daniel; Squier, Thomas C

    2011-11-15

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3-4 months) and aged (14-15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  14. Peritonitis

    MedlinePlus

    Acute abdomen; Spontaneous bacterial peritonitis; SBP; Cirrhosis - spontaneous peritonitis ... blood, body fluids, or pus in the belly ( abdomen ). One type is called spontaneous bacterial peritonitis (SPP). ...

  15. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  16. Protective effect of natural flavonoids on rat peritoneal macrophages injury caused by asbestos fibers.

    PubMed

    Kostyuk, V A; Potapovich, A I; Speransky, S D; Maslova, G T

    1996-01-01

    Exposure of macrophages to asbestos fibers resulted in enhancement of the production of oxygen radicals, determined by a lucigenin enhanced chemiluminescence (LEC) assay, a formation of thiobarbituric acid reactive substances (TBARS), a LDH release into the incubation mixture, and a rapid lysis of the cells. Rutin (Rut) and quercetin (Qr) were effective in inhibiting LEC, TBARS formation, and reducing peritoneal macrophages injury caused by asbestos. The concentrations pre-treatment of antioxidants that were required to prevent the injury of peritoneal macrophages caused by asbestos by 50% (IC50) were 90 microM and 290 microM for Qr and Rut, respectively. Both flavonoids were found to be oxidized during exposure of peritoneal macrophages to asbestos and the oxidation was SOD sensitive. The efficacy of flavonoids as antioxidant agents as well as superoxide ion scavengers was also evaluated using appropriate model systems, and both quercetin and rutin were found to be effective in scavenging O2.-. These findings indicate that flavonoids are able to prevent the respiratory burst in rat peritoneal macrophages exposed to asbestos at the stage of activated oxygen species generation, mainly as superoxide scavengers. On the basis of this study it was concluded that natural flavonoids quercetin and rutin would be promising drug candidates for a prophylactic asbestos-induced disease.

  17. CD4-Positive T Cells and M2 Macrophages Dominate the Peritoneal Infiltrate of Patients with Encapsulating Peritoneal Sclerosis

    PubMed Central

    Habib, Sayed M.; Abrahams, Alferso C.; Korte, Mario R.; Zietse, Robert; de Vogel, Lisette L.; Boer, Walther H.; Dendooven, Amélie; Clahsen-van Groningen, Marian C.; Betjes, Michiel G. H.

    2015-01-01

    Background Encapsulating peritoneal sclerosis (EPS) is a severe complication of peritoneal dialysis (PD). Previously, it has been shown that infiltrating CD4-positive T cells and M2 macrophages are associated with several fibrotic conditions. Therefore, the characteristics of the peritoneal cell infiltrate in EPS may be of interest to understand EPS pathogenesis. In this study, we aim to elucidate the composition of the peritoneal cell infiltrate in EPS patients and relate the findings to clinical outcome. Study Design, Setting, and Participants We studied peritoneal membrane biopsies of 23 EPS patients and compared them to biopsies of 15 PD patients without EPS. The cellular infiltrate was characterized by immunohistochemistry to detect T cells(CD3-positive), CD4-positive (CD4+) and CD8-positive T cell subsets, B cells(CD20-positive), granulocytes(CD15-positive), macrophages(CD68-positive), M1(CD80-positive), and M2(CD163-positive) macrophages. Tissues were analysed using digital image analysis. Kaplan-Meier survival analysis was performed to investigate the survival in the different staining groups. Results The cellular infiltrate in EPS biopsies was dominated by mononuclear cells. For both CD3 and CD68, the median percentage of area stained was higher in biopsies of EPS as opposed to non-EPS patients (p<0.001). EPS biopsies showed a higher percentage of area stained for CD4 (1.29%(0.61-3.20)) compared to CD8 (0.71%(0.46-1.01), p = 0.04), while in the non-EPS group these cells were almost equally represented (respectively 0.28%(0.05-0.83) versus 0.22%(0.17-0.43), p = 0.97). The percentage of area stained for both CD80 and CD163 was higher in EPS than in non-EPS biopsies (p<0.001), with CD163+ cells being the most abundant phenotype. Virtually no CD20-positive and CD15-positive cells were present in biopsies of a subgroup of EPS patients. No relation was found between the composition of the mononuclear cell infiltrate and clinical outcome. Conclusions A

  18. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated.

  19. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages

    PubMed Central

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-01-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  20. Isoalantolactone inhibits LPS-induced inflammation via NF-κB inactivation in peritoneal macrophages and improves survival in sepsis.

    PubMed

    He, Guodong; Zhang, Xu; Chen, Yanhua; Chen, Jing; Li, Li; Xie, Yubo

    2017-04-10

    Sepsis, a clinical syndrome occurring in patients following infection or injury, is a leading cause of mortality worldwide. It involves uncontrolled inflammatory response resulting in multi-organ failure and even death. Isoalantolactone (IAL), a sesquiterpene lactone, is known for its anti-cancer effects. Nevertheless, little is known about the anti-inflammatory effects of IAL, and the role of IAL in sepsis is unclear. In this study, we demonstrated that IAL decreased lipopolysaccharide (LPS)-mediated production of nitric oxide, PEG2 and cytokines (IL-6, TNF-α) in peritoneal macrophages and RAW 264.7 macrophages. Moreover, molecular mechanism studies indicated that IAL plays an anti-inflammatory role by inhibiting LPS-induced activation of NF-κB pathway in peritoneal macrophages. In vivo, IAL reduced the secretion of IL-6 and TNF-α in serum, and increased the survival rate of mice with LPS-induced sepsis. In addition, IAL attenuated the activation of NF-κB pathway in liver. Taken together, our data suggest that IAL may represent a potentially new drug candidate for the treatment of sepsis.

  1. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  2. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  3. Effects of microwave exposure on the hamster immune system. II. Peritoneal macrophage function

    SciTech Connect

    Rama Rao, G.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.

  4. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  5. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox.

  6. Vascular endothelial growth factor is produced by peritoneal fluid macrophages in endometriosis and is regulated by ovarian steroids.

    PubMed Central

    McLaren, J; Prentice, A; Charnock-Jones, D S; Millican, S A; Müller, K H; Sharkey, A M; Smith, S K

    1996-01-01

    Angiogenesis is important in the pathophysiology of endometriosis, a condition characterized by implantation of ectopic endometrium in the peritoneal cavity. Vascular endothelial growth factor (VEGF) is a potent angiogenic factor involved in physiological and pathological angiogenesis, and elevated levels of VEGF are found in peritoneal fluid of patients with endometriosis. Our aim was to investigate the site of expression and regulation of VEGF in endometriosis. VEGF immunoreactivity was found in tissue macrophages present in ectopic endometrium and in activated peritoneal fluid macrophages. Macrophage activation was highest in women with endometriosis, and media conditioned by peritoneal fluid macrophages from these women caused a VEGF-dependent increase in endothelial cell proliferation above that seen from normal women. Peritoneal fluid macrophages secreted VEGF in response to ovarian steroids, and this secretion was enhanced after activation with lipopolysaccharide. Peritoneal fluid macrophages expressed receptors for steroid hormones. VEGF receptors flt and KDR (kinase domain receptor) were also detected, suggesting autocrine regulation. During the menstrual cycle, expression of flt was constant but that of KDR was increased in the luteal phase, at which time the cells migrated in response to VEGF. KDR expression and the migratory response were significantly higher in patients with endometriosis. This study demonstrates that activated macrophages are a major source of VEGF in endometriosis and that this expression is regulated directly by ovarian steroids. PMID:8755660

  7. Nitric oxide is overproduced by peritoneal macrophages in rat taurocholate pancreatitis: the mechanism of inducible nitric oxide synthase expression.

    PubMed

    Satoh, A; Shimosegawa, T; Kimura, K; Moriizumi, S; Masamune, A; Koizumi, M; Toyota, T

    1998-11-01

    To investigate the pathobiology of severe acute pancreatitis, we studied the expression of inducible nitric oxide synthase (iNOS) in peritoneal macrophages of experimental pancreatitis. Taurocholate (TCA) pancreatitis and cerulein (CE) pancreatitis were used as models of lethal and self-limited pancreatitis, respectively, and the mechanism of iNOS expression in peritoneal macrophages was studied. Serum nitrate and nitrite (NOx) concentrations increased during the course of TCA pancreatitis, and iNOS-immunoreactivity was detected in the peritoneal macrophages 12 h after the induction of TCA pancreatitis, but these phenomena were not observed in CE pancreatitis. Despite the difference in the iNOS expression, the iNOS messenger RNA (mRNA) and the activation of nuclear factor-kappa B (NF-kappa B) were detected in the peritoneal macrophages of both pancreatitis models. The supernatant of TCA pancreatitis ascites could induce iNOS in the peritoneal macrophages of normal rats in vitro, but the peritoneal lavage fluid of CE pancreatitis rats could not. The results indicated that there may be qualitative or quantitative differences in the macrophage activation between the two types of experimental pancreatitis and suggested that the ascites of rats with lethal acute pancreatitis contains some soluble factors that activate the macrophage/monocyte system and cause an overproduction of NO by the iNOS expression.

  8. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    SciTech Connect

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  9. Growth of Mycobacterium lepraemurium in nonstimulated and stimulated mouse peritoneal-derived and bone marrrow-derived macrophages in vitro.

    PubMed Central

    Alexander, J; Smith, C C

    1978-01-01

    Mycobacterium lepraemurium cells were found to multiply in normal mouse peritoneal-derived and bone marrow-derived macrophages in vitro. Whereas activated peritoneal-derived macrophages demonstrated marked bacteriostasis for M. lepraemurium, significant bactericidal activity was exhibited by activated bone marrow-derived macrophages. However, only a small proportion of the bacterial were killed by activated bone marrow-derived macrophages with subsequent and enhanced bacteria growth. It is suggested that a rapid turnover of monocytes in active lesions is required to control mycobacterial infections in vivo. These results would suggest that careful consideration be given to the choice of the host cell in studies involving obligate intracellular parasites. PMID:365762

  10. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  11. Effects of arginine supplementation on antioxidant enzyme activity and macrophage response in burned mice.

    PubMed

    Tsai, Hui-Ju; Shang, Huey-Fang; Yeh, Chiu-Li; Yeh, Sung-Ling

    2002-05-01

    This study investigated the effect of arginine (Arg) supplementation on antioxidant enzyme activities and macrophage response in burned mice. Experiment 1: 60 male BALB/c mice were assigned to two groups. One group was fed a control diet with casein as the protein source, the other group was supplemented with 2% Arg in addition to casein. The two groups were isonitrogenous. After 4 weeks, all mice received a 30% body surface area burn injury. The antioxidant enzyme activities and lipid peroxides in the tissues were analyzed. Experiment 2: 20 mice were divided into two groups and burn injury was induced after feeding for 4 weeks as described in experiment 1. Twenty-four hours after the burn, tumor necrosis factor-alpha (TNF-alpha) secreted by cultured peritoneal macrophages was measured. The results show that antioxidant enzyme activities and lipid peroxides in tissues tended to be lower in the Arg group than in the control group after the burn. Production of TNF-alpha by peritoneal macrophages after stimulation with lipopolysacchride (LPS) was significantly elevated in the Arg group, whereas no response was observed in the control group. These results suggest that dietary Arg supplementation attenuates the oxidative stress induced by burn injury, and a better macrophage response was observed when Arg was administered.

  12. The galactose-recognizing system of rat peritoneal macrophages; identification and characterization of the receptor molecule.

    PubMed

    Kelm, S; Schauer, R

    1988-08-01

    Resident rat peritoneal macrophages express a galactose-recognizing system, which mediates binding and uptake of cells and glycoproteins exposing terminal galactose residues. Here we describe the identification, isolation, and characterization of the corresponding receptor molecule. Using photoaffinity labelling of adherent peritoneal macrophages with the 4-azido-6-125I-salicylic acid derivative of anti-freeze glycoprotein 8 followed by SDS-PAGE and autoradiography, we identified the receptor of these cells as a protein with an apparent molecular mass of 42 kDa. Furthermore, cell surface receptors were radioiodinated by an affinity-supported labelling technique using the conjugate of asialoorosomucoid and lactoperoxidase, followed by extraction and isolation by affinity chromatography. Finally, the native receptor was isolated and analysed. To estimate its binding activity in solutions, a suitable binding assay was developed, using the precipitation of receptor-ligand complex with polyethylene glycol to separate bound from unbound 125I-asialoorosomucoid, which was used as ligand. It is shown that the isolated receptor binds to galactose-exposing particles and distinguishes between sialidase-treated and -untreated erythrocytes, similar to peritoneal macrophages. The binding characteristics of the membrane-bound and the solubilized receptor are described in the following paper of Lee et al.

  13. Asbestos-activated peritoneal macrophages release a factors(s) which inhibits lymphocyte mitogenesis

    SciTech Connect

    Donaldson, K.; Davis, J.M.G.; James, K.

    1984-10-01

    Intraperitoneal asbestos injection in mice has previously been reported to elicit an activated macrophage population. In the present study supernatants from such macrophages were tested for their effect on thymocyte mitogenesis in response to concanavalin A; control supernantants were obtained from saline- and latex-elicited macrophages. Supernatants from asbestos-elicited macrophages were significantly inhibitory to thymocyte mitogenesis while saline- and latex-elicited macrophages did not release significant amounts of such activity. Asbestos-activated macrophage supernatants were inhibitory in a dose-dependent way and the activity was not secreted by macrophages from mice which had received asbestos in the long term. The inhibitory activity was partially dialysable. Supernatants prepared by treating macrophages in vitro with a lethal dose of asbestos were not inhibitory suggesting that the inhibitory activity in the supernatants of asbestos-activated macrophages did not leak from dead or dying cells. The asbestos macrophage supernatant was also significantly inhibitory to mature T-cell-enriched spleen cells but had no effect on fibroblasts, suggesting that the inhibitory effect could be lymphoid cell specific.

  14. Peritonitis

    MedlinePlus

    Diseases and Conditions Peritonitis By Mayo Clinic Staff Peritonitis is inflammation of the peritoneum — a silk-like membrane that lines your inner abdominal ... usually due to a bacterial or fungal infection. Peritonitis can result from any rupture (perforation) in your ...

  15. The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages☆

    PubMed Central

    Karagianni, Anna E.; Kapetanovic, Ronan; McGorum, Bruce C.; Hume, David A.; Pirie, Scott R.

    2013-01-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  16. Macrophage peroxisome proliferator-activated receptor γ deficiency delays skin wound healing through impairing apoptotic cell clearance in mice.

    PubMed

    Chen, H; Shi, R; Luo, B; Yang, X; Qiu, L; Xiong, J; Jiang, M; Liu, Y; Zhang, Z; Wu, Y

    2015-01-15

    Skin wound macrophages are key regulators of skin repair and their dysfunction causes chronic, non-healing skin wounds. Peroxisome proliferator-activated receptor gamma (PPARγ) regulates pleiotropic functions of macrophages, but its contribution in skin wound healing is poorly defined. We observed that macrophage PPARγ expression was upregulated during skin wound healing. Furthermore, macrophage PPARγ deficiency (PPARγ-knock out (KO)) mice exhibited impaired skin wound healing with reduced collagen deposition, angiogenesis and granulation formation. The tumor necrosis factor alpha (TNF-α) expression in wounds of PPARγ-KO mice was significantly increased and local restoration of TNF-α reversed the healing deficit in PPARγ-KO mice. Wound macrophages produced higher levels of TNF-α in PPARγ-KO mice compared with control. In vitro, the higher production of TNF-α by PPARγ-KO macrophages was associated with impaired apoptotic cell clearance. Correspondingly, increased apoptotic cell accumulation was found in skin wound of PPARγ-KO mice. Mechanically, peritoneal and skin wound macrophages expressed lower levels of various phagocytosis-related molecules. In addition, PPARγ agonist accelerated wound healing and reduced local TNF-α expression and wound apoptotic cells accumulation in wild type but not PPARγ-KO mice. Therefore, PPARγ has a pivotal role in controlling wound macrophage clearance of apoptotic cells to ensure efficient skin wound healing, suggesting a potential new therapeutic target for skin wound healing.

  17. Inhibition of mouse peritoneal macrophage DNA synthesis by infection with the Arenavirus Pichinde. Interim report

    SciTech Connect

    Friedlander, A.M.; Jahrling, P.B.; Merrill, P.; Tobery, S.

    1983-01-19

    Macrophage DNA synthesis and proliferation occur during the development of cell-mediated immunity and in the early non-specific reaction to infection. Arenaviruses have a predilection for infection of cells of the reticuloendothelial system and in this study we have examined the effect of the arenavirus Pichinde on macrophage DNA synthesis. We have found that infection of mouse peritoneal macrophages with Pichinde caused a profound dose dependent inhibition of the DNA synthesis induced by macrophage growth factor/colony stimulating factor. At a multiplicity of inoculum of five there is a 75-95% inhibition of DNA synthesis. Viable virus is necessary for inhibition since Pichinde inactivated by heat or cobalt irradiation had no effect. Similarly, virus pre-treated with an antiserum to Pichinde was without inhibitory effect. Inhibition was demonstrated by measuring DNA synthesis spectrofluorometrically as well as by 3H-thymidine incorporation. The inhibition of DNA synthesis was not associated with any cytopathology. There was no evidence that the inhibition was due to soluble factors, such as prostaglandins or interferon, released by infected cells. These studies demonstrate, for the first time in vitro, a significant alteration in macrophage function caused by infection with an arenavirus. It is possible that inhibition of macrophage proliferation represents a mechanism by which some microorganisms interfere with host resistance.

  18. Modulatory effect of plumbagin (5-hydroxy-2-methyl-1,4-naphthoquinone) on macrophage functions in BALB/c mice. I. Potentiation of macrophage bactericidal activity.

    PubMed

    Abdul, K M; Ramchender, R P

    1995-09-01

    The modulatory ability of plumbagin, a natural product from Plumbago zeylanica, was studied on peritoneal macrophages of BALB/c mice. The macrophage functions evaluated were bactericidal activity, hydrogen peroxide and superoxide anion release. The bactericidal capacity of in vivo plumbagin-treated mouse macrophages was estimated against Staphylococcus aureus. In low doses plumbagin exerted a constant increase in bactericidal activity throughout the study period whereas with a high dose a higher response was observed up to six weeks. But in the next two weeks a considerable decline in the bactericidal activity was noticed compared to low dose. Plumbagin was also seen to exert a similar response on oxygen radical release by macrophages in vivo showing a clear correlation between oxygen radical release and the bactericidal activity. The data indicate that plumbagin augments the macrophage bactericidal activity by potentiating the oxyradical release at low concentration whereas at the higher concentration it has inhibitory activity.

  19. C/EBP homologous protein-induced macrophage apoptosis protects mice from steatohepatitis.

    PubMed

    Malhi, Harmeet; Kropp, Erin M; Clavo, Vinna F; Kobrossi, Christina R; Han, JaeSeok; Mauer, Amy S; Yong, Jing; Kaufman, Randal J

    2013-06-28

    Nonalcoholic fatty liver disease is a heterogeneous disorder characterized by liver steatosis; inflammation and fibrosis are features of the progressive form nonalcoholic steatohepatitis. The endoplasmic reticulum stress response is postulated to play a role in the pathogenesis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In particular, C/EBP homologous protein (CHOP) is undetectable under normal conditions but is induced by cellular stress, including endoplasmic reticulum stress. Chop wild type (Chop(+/+)) and knock-out (Chop(-/-)) mice were used in these studies to elucidate the role of CHOP in the pathogenesis of fatty liver disease. Paradoxically, Chop(-/-) mice developed greater liver injury, inflammation, and fibrosis than Chop(+/+) mice, with greater macrophage activation. Primary, bone marrow-derived, and peritoneal macrophages from Chop(+/+) and Chop(-/-) were challenged with palmitic acid, an abundant saturated free fatty acid in plasma and liver lipids. Where palmitic acid treatment activated Chop(+/+) and Chop(-/-) macrophages, Chop(-/-) macrophages were resistant to its lipotoxicity. Chop(-/-) mice were sensitized to liver injury in a second model of dietary steatohepatitis using the methionine-choline-deficient diet. Analysis of bone marrow chimeras between Chop(-/-) and Chop(+/+) mice demonstrated that Chop in macrophages protects from liver injury and inflammation when fed the methionine-choline-deficient diet. We conclude that Chop deletion has a proinflammatory effect in fatty liver injury apparently due to decreased cell death of activated macrophages, resulting in their net accumulation in the liver. Thus, macrophage CHOP plays a key role in protecting the liver from steatohepatitis likely by limiting macrophage survival during lipotoxicity.

  20. C/EBP Homologous Protein-induced Macrophage Apoptosis Protects Mice from Steatohepatitis*

    PubMed Central

    Malhi, Harmeet; Kropp, Erin M.; Clavo, Vinna F.; Kobrossi, Christina R.; Han, JaeSeok; Mauer, Amy S.; Yong, Jing; Kaufman, Randal J.

    2013-01-01

    Nonalcoholic fatty liver disease is a heterogeneous disorder characterized by liver steatosis; inflammation and fibrosis are features of the progressive form nonalcoholic steatohepatitis. The endoplasmic reticulum stress response is postulated to play a role in the pathogenesis of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. In particular, C/EBP homologous protein (CHOP) is undetectable under normal conditions but is induced by cellular stress, including endoplasmic reticulum stress. Chop wild type (Chop+/+) and knock-out (Chop−/−) mice were used in these studies to elucidate the role of CHOP in the pathogenesis of fatty liver disease. Paradoxically, Chop−/− mice developed greater liver injury, inflammation, and fibrosis than Chop+/+ mice, with greater macrophage activation. Primary, bone marrow-derived, and peritoneal macrophages from Chop+/+ and Chop−/− were challenged with palmitic acid, an abundant saturated free fatty acid in plasma and liver lipids. Where palmitic acid treatment activated Chop+/+ and Chop−/− macrophages, Chop−/− macrophages were resistant to its lipotoxicity. Chop−/− mice were sensitized to liver injury in a second model of dietary steatohepatitis using the methionine-choline-deficient diet. Analysis of bone marrow chimeras between Chop−/− and Chop+/+ mice demonstrated that Chop in macrophages protects from liver injury and inflammation when fed the methionine-choline-deficient diet. We conclude that Chop deletion has a proinflammatory effect in fatty liver injury apparently due to decreased cell death of activated macrophages, resulting in their net accumulation in the liver. Thus, macrophage CHOP plays a key role in protecting the liver from steatohepatitis likely by limiting macrophage survival during lipotoxicity. PMID:23720735

  1. Interleukin-12 synthesis is a required step in trehalose dimycolate-induced activation of mouse peritoneal macrophages.

    PubMed Central

    Oswald, I P; Dozois, C M; Petit, J F; Lemaire, G

    1997-01-01

    Trehalose dimycolate (TDM), a glycolipid present in the cell wall of Mycobacterium spp., is a powerful immunostimulant. TDM primes murine macrophages (Mphi) to produce nitric oxide (NO) and to develop antitumoral activity upon activation with low doses of lipopolysaccharide (LPS). In this study, we investigated the ability of TDM to induce interleukin 12 (IL-12) and the role of this cytokine in TDM-induced activation of murine Mphi. RNA isolated from peritoneal exudate cells (PEC) collected at different times after TDM injection was used to determine IL-12 (p35 and p40 subunits) and gamma interferon (IFN-gamma) mRNA levels by semiquantitative reverse transcriptase-PCR. Constitutive expression of IL-12p35 was observed in PEC from untreated as well as from TDM-injected mice. In contrast, expression of the IL-12p40 subunit was almost undetectable in control PEC but was dramatically upregulated in PEC from TDM-injected mice. IL-12p40 expression peaked at 8 h and subsided to baseline levels at 39 h postinjection. TDM was also able to induce IFN-gamma expression; however, kinetics of induction of IFN-gamma was different from that of IL-12p40. Maximal levels of IFN-gamma mRNA were reached by 24 h and did not return to baseline by 4 days. In addition, pretreatment of mice with neutralizing monoclonal antibodies directed against IL-12 (C15.6.7 and C15.1.2) blocked IFN-gamma mRNA induction in PEC from TDM-treated mice. We further determined if the induction of IL-12 and/or IFN-gamma contributes to the in vivo priming effect of TDM on peritoneal Mphi. TDM-injected mice were treated in vivo with anti-IL-12 or anti-IFN-gamma (XMG.1.6) monoclonal antibodies. TDM-primed Mphi were then activated in vitro with LPS and tested for their ability to produce NO and to develop cytostatic activity toward cocultivated L1210 tumor cells. Priming of Mphi by TDM was completely blocked by in vivo neutralization of either IL-12 or IFN-gamma as demonstrated by an absence of tumoricidal activity

  2. Effect of irradiation, cyclophosphamide, and etoposide (VP-16) on number of peripheral blood and peritoneal leukocytes in mice under normal conditions and during acute inflammatory reaction

    SciTech Connect

    van't Wout, J.W.; Linde, I.; Leijh, P.C.; van Furth, R.

    1989-02-01

    In order to develop a suitable model for studying the role of granulocytes and monocytes in resistance against pathogenic microorganisms, we investigated the effect of irradiation and cytostatic treatment (cyclophosphamide and VP-16) on the number of both peripheral blood and peritoneal leukocytes in male Swiss mice. Irradiation and cyclophosphamide treatment severely decreased the number of both granulocytes and monocytes in peripheral blood, whereas VP-16 only lowered the number of blood monocytes to a significant degree and had little effect on the number of blood granulocytes or lymphocytes. When normal mice were injected intraperitoneally with newborn calf serum (NBCS) the number of peritoneal granulocytes rose about 100-fold within 6 h. In irradiated and cyclophosphamide-treated mice, this influx of granulocytes into the peritoneal cavity was virtually eliminated, as was the concomitant increase in the number of blood granulocytes; in VP-16-treated mice, on the other hand, the number of peripheral blood and peritoneal granulocytes increased to the same degree as in normal mice. An increase in the number of peripheral blood monocytes and peritoneal macrophages occurred 24-48 h after injection of NBCS in normal mice. This increase was significantly impaired by irradiation as well as by treatment with cyclophosphamide or VP-16.

  3. Immunocytochemical demonstration of feline infectious peritonitis virus within cerebrospinal fluid macrophages.

    PubMed

    Ives, Edward J; Vanhaesebrouck, An E; Cian, Francesco

    2013-12-01

    A 4-month-old female entire domestic shorthair cat presented with an acute onset of blindness, tetraparesis and subsequent generalised seizure activity. Haematology and serum biochemistry demonstrated a moderate, poorly regenerative anaemia, hypoalbuminaemia and hyperglobulinaemia with a low albumin:globulin ratio. Serology for feline coronavirus antibody was positive with an elevated alpha-1 acid glycoprotein. Analysis of cisternal cerebrospinal fluid (CSF) demonstrated markedly elevated protein and a mixed, predominately neutrophilic pleocytosis. Immunocytochemistry for feline coronavirus was performed on the CSF, with positive staining observed inside macrophages. The cat was subsequently euthanased, and both histopathology and immunohistochemistry were consistent with a diagnosis of feline infectious peritonitis. This is the first reported use of immunocytochemistry for detection of feline coronavirus within CSF macrophages. If this test proves highly specific, as for identification of feline coronavirus within tissue or effusion macrophages, it would be strongly supportive of an ante-mortem diagnosis of feline infectious peritonitis in cats with central nervous system involvement without the need for biopsy.

  4. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  5. Killing of Pseudomonas pseudomallei by polymorphonuclear leukocytes and peritoneal macrophages from chicken, sheep, swine and rabbits.

    PubMed

    Markova, N; Kussovski, V; Radoucheva, T

    1998-07-01

    Differences in the kinetics of Pseudomonas pseudomallei killing by peritoneal macrophages (PM) and polymorphonuclear leucocytes (PMNL) from chickens, sheep, swine and rabbits were found. P. pseudomallei was rapidly killed by porcine PM and PMNL. However the bacterial killing by ovine and lapine PM and PMNL proceeded at a slower rate. In contrast, chicken PM and PMNL ingested and killed the lowest number of P. pseudomallei bacteria. The differences in the bactericidal activity of PM and PMNL from different animal species correlated with the level of their acid phosphatase and glycolytic activity.

  6. In Vitro Response of Guinea Pig Peritoneal Macrophages to Legionella pneumophila

    DTIC Science & Technology

    1981-03-01

    causative agent of I strains. were cultured onl Mueller-Hinton agar supt)I- Legionnaires disease , have niot heeni well defined. niented with 2...In Vitro Responlse of Guinea Pig Peritoneal Macrophages to Legionella pneumophila It. A. KISIIIMi~O~’ .1. Ii.,W11ITE, F. G. SIREY, V. (U.1 Mc(GANN, R...obtained from the Centers for two washes of Hlanks balanced salt solution. Bacteria. Disease Control. Atlanta, Ga. The virulent P1hiladel- suspended in Earle

  7. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages

    PubMed Central

    Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-01-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  8. Detecting peritoneal dissemination of ovarian cancer in mice by DWIBS.

    PubMed

    Lee, Hye Jeong; Luci, Jeffrey J; Tantawy, Mohammed N; Lee, Haakil; Nam, Ki Taek; Peterson, Todd E; Price, Ronald R

    2013-02-01

    Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS) is a relatively new diffusion-based pulse sequence that produces positron emission tomography (PET) with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose ((18)F-FDG)-like images. We tested the feasibility of DWIBS in detecting peritoneal ovarian cancer in a syngeneic mouse model. Female C57BL/6 mice were injected intraperitoneally with ID8 murine ovarian carcinoma cells. After 11 weeks, the abdomen was imaged by DWIBS. A respiratory gating diffusion-weighted spin-echo echo-planar imaging in abdomen was used (imaging parameters of field of view of 47×47 mm(2), matrix size of 64×64 zero-filled to 256×256 and b-value of 1500 s/mm(2)). We also performed FDG microPET as the reference standard. For comparison of the correlating surface areas of tumor foci on both DWIBS and FDG microPET imaging, two-dimensional region-of-interest (ROI) analysis was performed, and correlation between the two modalities was determined. Mice were also subjected to macroscopic examination for tumor location and pathology after imaging. DWIBS in all mice depicted the tumors as abnormal high signal intensity. The results show that the ROI analysis of correlating lesions reveals relatively high correlation (r²=0.7296) and significant difference (P=.021) between DWIBS and FDG microPET. These results demonstrate that DWIBS has the potential for detecting peritoneal dissemination of ovarian cancer. Nonetheless, due to low ratios of image signal-to-noise and motion artifacts, DWIBS can be limited for lesions near the liver.

  9. Alterations in macrophages and monocytes from tumor-bearing mice: evidence of local and systemic immune impairment.

    PubMed

    Torroella-Kouri, Marta; Rodríguez, Dayron; Caso, Raul

    2013-12-01

    Macrophages are cells of the innate immune system involved in critical activities such as maintaining tissue homeostasis and immune surveillance. Pro-inflammatory macrophages M1 are responsible for the inflammatory response, while M2 macrophages are associated with the immunosuppressive repair phase of tissue remodeling. Most cancers are associated with chronic inflammation, and a high number of macrophages in tumors have been associated with tumor progression. Much effort has been made in elucidating the mechanisms through which macrophages contribute to tumor development, yet much less is known about the initial mechanisms by which tumors modify macrophages. Our work has focused on identifying the mechanisms by which macrophages from tumor hosts are modified by tumors. We have shown that peritoneal macrophages are significantly altered in mice bearing advanced mammary tumors and are not M1 or M2 polarized, but express a mixture of both transcriptional programs. These macrophages are less differentiated and more prone to apoptosis, resulting in increased myelopoiesis as a compensation to regenerate macrophage progenitors in the marrow. Macrophages in the tumor microenvironment are also neither M1 nor M2 cells and through a display of different mechanisms are even more impaired than their peripheral counterparts. Finally, systemic blood monocytes, precursors of tissue macrophages, are also altered in tumor bearers and show a mixed program of pro- and anti-inflammatory functions. We conclude that there is evidence for local and systemic immune impairment in tumor hosts.

  10. Selective induction of metabolic activation programs in peritoneal macrophages by lipopolysaccharide substructures.

    PubMed Central

    Lehmann, V; Benninghoff, B; Dröge, W

    1991-01-01

    The structural elements of Salmonella typhimurium lipopolysaccharides (LPS) that are able to stimulate peritoneal macrophages to produce increased amounts of prostaglandin E2, ornithine, and citrulline, agents known to modulate immune responses, are described. Two different incomplete lipid A structures which lack the carbohydrate portion, the nonhydroxylated fatty acids lauric acid and myristic acid (lipid A precursor IB), and additional palmitic acid (lipid A precursor IA) stimulated increased prostaglandin E2 synthesis but were unable to augment ornithine and citrulline production at concentrations of up to 0.5 microgram/ml. Acyl-deficient smooth LPS containing lipid A precursors IA and IB substituted by the complete carbohydrate region were able to augment prostaglandin E2 and ornithine production but failed, even at a high concentration (0.5 microgram/ml), to stimulate citrulline production. Moreover, Re glycolipids and smooth intact LPS containing the lipid A region with 3-acyloxyacyl residues possessed all of the structural requirements to induce increased prostaglandin E2, ornithine, and citrulline synthesis. Finally, all of the LPS structures, including lipid A precursors IA and IB stimulated, in combination with gamma interferon, production of citrulline with similar efficiencies. These results demonstrate that LPS contains various substructures including regions of the carbohydrate and lipid A structure that can deliver signals for the activation of peritoneal macrophages. Signals for partial activation of macrophages to produce prostaglandins and ornithine can be delivered by acyl-deficient LPS structures. In contrast, full activation of macrophages to produce citrulline requires an additional signal that is delivered by 3-acyloxyacyl residues of the lipid A region or gamma interferon. PMID:1906843

  11. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  12. Effect of nematode Trichinella infection on glucose tolerance and status of macrophage in obese mice.

    PubMed

    Okada, Hideyuki; Ikeda, Takahide; Kajita, Kazuo; Mori, Ichiro; Hanamoto, Takayuki; Fujioka, Kei; Yamauchi, Masahiro; Usui, Taro; Takahashi, Noriko; Kitada, Yoshihiko; Taguchi, Koichiro; Uno, Yoshihiro; Morita, Hiroyuki; Wu, Zhiliang; Nagano, Isao; Takahashi, Yuzo; Kudo, Takuya; Furuya, Kazuki; Yamada, Takahiro; Ishizuka, Tatsuo

    2013-01-01

    We investigated the effect of Trichinella infection on glucose tolerance and (pro- or anti-inflammatory) macrophage status in adipose tissue. Ob/ob mice and high fat-fed mice (obesity model) and C57/BL mice (control mice) were orally infected with (infected group) or without (uninfected group) 400 Trichinella per mouse. Four weeks later, the mice were subjected to investigation, which showed that fasting plasma glucose levels decreased in the infected group of C57/BL and ob/ob mice. Glucose tolerance, evaluated with intraperitoneal GTT, improved in the infected group of ob/ob mice and high fat-fed mice compared with the uninfected groups. Additional assay included anti-inflammatory macrophage (M2) markers and pro-inflammatory macrophage (M1) markers, with the aim to explore the effect of Trichinella infection on adipose tissue inflammation, since our previous study identified anti-inflammatory substances in secreted proteins by Trichinella. The result showed that mRNA levels of M2 markers, such as CD206, arginase and IL-10, increased, whereas M1 markers, such as CD11c, iNOS and IL-6, decreased in the stromal vascular fraction (SVF) isolated from epididymal fat in ob/ob mice. Residential macrophages obtained from the peritoneal lavage exhibited lower M1 markers and higher M2 markers levels in the infected group than in the uninfected group. Trichinella infection increases the ratio of M2/M1 systemically, which results in an improvement in pro-inflammatory state in adipose tissue and amelioration of glucose tolerance in obese mice.

  13. Ouabain Modulates Zymosan-Induced Peritonitis in Mice.

    PubMed

    Leite, Jacqueline Alves; Alves, Anne Kaliery De Abreu; Galvão, José Guilherme Marques; Teixeira, Mariana Pires; Cavalcante-Silva, Luiz Henrique Agra; Scavone, Cristoforo; Morrot, Alexandre; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2015-01-01

    Ouabain, a potent inhibitor of the Na(+), K(+)-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance.

  14. Ouabain Modulates Zymosan-Induced Peritonitis in Mice

    PubMed Central

    Leite, Jacqueline Alves; Alves, Anne Kaliery De Abreu; Galvão, José Guilherme Marques; Teixeira, Mariana Pires; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2015-01-01

    Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance. PMID:26078492

  15. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  16. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  17. TNF-alpha, produced by feline infectious peritonitis virus (FIPV)-infected macrophages, upregulates expression of type II FIPV receptor feline aminopeptidase N in feline macrophages.

    PubMed

    Takano, Tomomi; Hohdatsu, Tsutomu; Toda, Ayako; Tanabe, Maki; Koyama, Hiroyuki

    2007-07-20

    The pathogenicity of feline infectious peritonitis virus (FIPV) is known to depend on macrophage tropism, and this macrophage infection is enhanced by mediation via anti-S antibody (antibody-dependent enhancement, ADE). In this study, we found that TNF-alpha production was increased with viral replication in macrophages inoculated with a mixture of FIPV and anti-S antibody, and demonstrated that this culture supernatant had feline PBMC apoptosis-inducing activity. We also demonstrated that the expression level of the FIPV virus receptor, feline aminopeptidase N (fAPN), was increased in macrophages of FIP cats. For upregulation of TNF-alpha and fAPN in macrophages, viral replication in macrophages is necessary, and their expressions were increased by ADE of FIPV infection. It was demonstrated that a heat-resistant fAPN-inducing factor was present in the culture supernatant of FIPV-infected macrophages, and this factor was TNF-alpha: fAPN expression was upregulated in recombinant feline TNF-alpha-treated macrophages, and FIPV infectivity was increased in these macrophages. These findings suggested that FIPV replication in macrophages increases TNF-alpha production in macrophages, and the produced TNF-alpha acts and upregulates fAPN expression, increasing FIPV sensitivity.

  18. Differential responses of rat alveolar and peritoneal macrophages to man-made vitreous fibers in vitro.

    PubMed

    Dörger, M; Münzing, S; Allmeling, A M; Messmer, K; Krombach, F

    2001-03-01

    Different approaches, including inhalation and intraperitoneal injection assays, have been used to assess the potential health effects of man-made vitreous fibers (MMVF). The purpose of this study was to compare the phagocytic activity and the formation of reactive oxygen species by rat alveolar macrophages (AM) and peritoneal macrophages (PM) upon exposure to MMVF10 glass wool and MMVF21 rock wool fibers. Macrophage (Mphi) phagocytosis of mineral fibers was assessed by optical videomicroscopy and computer-aided image analysis. Mphi were classified as cells not associated with fibers, cells with attached fibers, cells with incompletely phagocytized fibers (an appearance known as "frustrated phagocytosis"), and cells with completely phagocytized fibers. The production of superoxide anions by AM and PM upon incubation with MMVF10 and MMVF21 fibers was determined by the superoxide dismutase-inhibitable reduction of ferricytochrome C. PM were found to have a lower phagocytic activity than AM. A significantly higher percentage of AM than of PM underwent frustrated phagocytosis of MMVF10 and MMVF21 fibers. In line with these findings, AM generated higher levels of oxygen radicals than PM upon exposure to MMVF21 fibers. In contrast, MMVF10 fibers failed to induce the generation of reactive oxygen species by both AM and PM. Our in vitro results show that the phagocytic activity, in particular the frustrated phagocytosis of mineral fibers, was significantly lower in PM than in AM. The data support the idea that the durability and biopersistence of mineral fibers are higher in the peritoneal cavity than in the lung.

  19. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression – implications for atherosclerosis research

    PubMed Central

    Bisgaard, Line S.; Mogensen, Christina K.; Rosendahl, Alexander; Cucak, Helena; Nielsen, Lars Bo; Rasmussen, Salka E.; Pedersen, Tanja X.

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206highCD11clow profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206highCD11clow macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes. PMID:27734926

  20. Detection of disseminated peritoneal tumors by fluorescein diacrylate in mice

    NASA Astrophysics Data System (ADS)

    Harada, Yoshinori; Furuta, Hirokazu; Murayama, Yasutoshi; Dai, Ping; Fujikawa, Yuta; Urano, Yasuteru; Nagano, Tetsuo; Morishita, Koki; Hasegawa, Akira; Takamatsu, Tetsuro

    2009-02-01

    Tumor invasion to the peritoneum is a poor prognostic factor in cancer patients. Accurate diagnosis of disseminated peritoneal tumors is essential to accurate cancer staging. To date, peritoneal washing cytology during laparotomy has been used for diagnosis of peritoneal dissemination of gastrointestinal cancer, but its sensitivity has not been satisfactory. Thus, a more direct approach is indispensable to detect peritoneal dissemination in vivo. Fluorescein diacrylate (FDAcr) is an esterase-sensitive fluorescent probe derived from fluorescein. In cancer cells, fluorescent fluorescein generated by exogenous application of FDAcr selectively deposits owing to its stronger hydrolytic enzyme activity and its lower leakage rate. We examined whether FDAcr can specifically detect disseminated peritoneal tumors in athymic nude mouse models. Intraperitoneally administered FDAcr revealed disseminated peritoneal microscopic tumors not readily recognized on white-light imaging. These results suggest that FDAcr is a useful probe for detecting disseminated peritoneal tumors.

  1. The immunomodulatory effects of 3-monochloro-1,2-propanediol on murine splenocyte and peritoneal macrophage function in vitro.

    PubMed

    Byun, Jung A; Ryu, Mi Hyun; Lee, Jong Kwon

    2006-04-01

    3-Monochloro-1,2-propanediol (MCPD) is a well-known by-product of acid-hydrolyzed soy sauce during its manufacturing process. MCPD has been reported genotoxic in vitro, and reproductive toxicity and carcinogenicity in rats. To evaluate the immunomodulatory effect of MCPD on murine splenocyte and macrophage in vitro, we investigated splenocyte blastogenesis by concanavalin A (Con A), anti-CD3, and lipopolyssacharide (LPS), the production of cytokines from splenocyte, and the activity of mouse peritoneal macrophages. There was a significant decrease in lymphocyte blastogenesis to Con A or anti-CD3 at subtoxic dose of MCPD. A significant decrease in splenocyte blastogenesis to LPS was also observed. The production level of interferon (IFN)-gamma on splenocyte culture with Con A was significantly reduced at the higher concentration than 1.0mM of MCPD. The levels of interleukin (IL)-4 and IL-10 were also decreased at high concentrations of MCPD. There was a significant decrease in production of nitric oxide (NO) by peritoneal macrophages treated with MCPD. MCPD also inhibits tumor necrosis factor (TNF)-alpha production of stimulated macrophages. These results indicate that MCPD might be able to reduce the functionality of lymphocytes and peritoneal macrophages in vitro.

  2. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  3. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  4. Cl-IB-MECA enhances TNF-α release in peritoneal macrophages stimulated with LPS.

    PubMed

    Forte, Giovanni; Sorrentino, Rosalinda; Montinaro, Antonella; Pinto, Aldo; Morello, Silvana

    2011-05-01

    Adenosine receptor A3 (A3R) belongs to the Gi/Gq-coupled receptor family, that leads to the intracellular cAMP reduction and intracellular calcium increase, respectively. A3R is widely expressed and it can play a crucial role in many patho-physiological conditions, including inflammation. Here we investigate the effect of Cl-IB-MECA, A3R agonist, on the production of TNF-α. We found that Cl-IB-MECA enhances LPS-induced TNF-α release in peritoneal macrophages. This effect is reduced by MRS1191, A3R antagonist and by forskolin, activator of adenylyl cyclase. pIκBα increased in LPS+Cl-IB-MECA-treated macrophages, while total IκB kinase-β (IKKβ) reduced. Indeed, p65NF-κB nuclear translocation increased in cells treated with LPS+Cl-IB-MECA. Moreover, IMD 0354, IKKβ inhibitor, significantly abrogated the effect of Cl-IB-MECA on TNF-α release. Inhibition of protein kinase C (PKC) significantly reduced Cl-IB-MECA-induced TNF-α release in LPS-stimulated macrophages. Furthermore, LY-294002, PI3K inhibitor, reduced the TNF-α production enhanced by Cl-IB-MECA, although the phosphorylation status of Akt did not change in cells treated with LPS+Cl-IB-MECA than LPS alone. In summary, these data show that Cl-IB-MECA is able to enhance TNF-α production in LPS-treated macrophages in an NF-κB- dependent manner.

  5. Targeting colon cancer cell NF-κB promotes an anti-tumour M1-like macrophage phenotype and inhibits peritoneal metastasis.

    PubMed

    Ryan, A E; Colleran, A; O'Gorman, A; O'Flynn, L; Pindjacova, J; Lohan, P; O'Malley, G; Nosov, M; Mureau, C; Egan, L J

    2015-03-19

    In a model of peritoneal metastasis in immune-competent mice, we show that nuclear factor (NF)-κB inhibition in CT26 colon cancer cells prevents metastasis. NF-κB inhibition, by stable overexpression of IκB-α super-repressor, induced differential polarization of co-cultured macrophages to an M1-like anti-tumour phenotype in vitro. NF-κB-deficient cancer cell-conditioned media (CT26/IκB-α SR) induced interleukin (IL)-12 and nitric oxide (NO) synthase (inducible NO synthase (iNOS)) expression in macrophages. Control cell (CT26/EV) conditioned media induced high levels of IL-10 and arginase in macrophages. In vivo, this effect translated to reduction in metastasis in mice injected with CT26/ IκB-α SR cells and was positively associated with increased CD8(+)CD44(+)CD62L(-) and CD4(+)CD44(+)CD62L(-) effector T cells. Furthermore, inhibition of NF-κB activity induced high levels of NO in infiltrating immune cells and decreases in matrix metalloproteinase-9 expression, simultaneous with increases in tissue inhibitor of metalloproteinases 1 and 2 within tumours. CT26/IκB-α SR tumours displayed increased pro-inflammatory gene expression, low levels of angiogenesis and extensive intratumoral apoptosis, consistent with the presence of an anti-tumour macrophage phenotype. Macrophage depletion reduced tumour size in CT26/EV-injected animals and increased tumour size in CT26/IκB-α SR cells compared with untreated tumours. Our data demonstrate, for the first time, that an important implication of targeting tumour cell NF-κB is skewing of macrophage polarization to an anti-tumour phenotype. This knowledge offers novel therapeutic opportunities for anticancer treatment.

  6. Peritoneal macrophages from patients with cirrhotic ascites show impaired phagocytosis and vigorous respiratory burst

    PubMed Central

    Ahmed, Abdel Motaal M.; Bomford, Adrian; Nouri-Aria, Kayhan T.; Davies, Ted; Smith, Roger; Williams, Roger

    2011-01-01

    Cirrhotic patients (CPs) are susceptible to spontaneous bacterial peritonitis (SBP). Aim of this study was to examine if this susceptibility was related to peritoneal macrophages' (PMs) altered host defence. Absorbance of phagocytosed particles by PMs from CPs was lower than that of control (31.88% vs. 77.2%). Particle opsonisation increased the absorbance to 41% in CPs' PMs, and this value remains lower than the control; 77.2%. Respiratory burst (RB) was expressed as fluorescence index values, and these were higher in PMs from CPs than in controls (82 vs. 41, 73 vs. 26 and 71 vs. 26). IFN-γ made no further increase of RB values in PMs from CPs. CD14 expression was also higher in CPs' PMs. IFN-γ significantly downregulated CD14 expression in both CPs' PMs and control. Reduced phagocytosis by predominantly CD14-positive PMs from CPs could be related to intense RB. Findings suggest altered host defence that could contribute to susceptibility to SBP. PMID:24371553

  7. Anti-tissue transglutaminase antibody inhibits apoptotic cell clearance by macrophages in pregnant NOD mice.

    PubMed

    Sóñora, Cecilia; Mourglia-Ettlin, Gustavo; Calo, Guillermina; Hauk, Vanesa; Ramhorst, Rosanna; Hernández, Ana; Leirós, Claudia Pérez

    2014-06-01

    Autoimmunity is a feature of celiac disease (CD) with tissue transglutaminase (tTG) as a major autoantigen. A correlation between gynecological-obstetric disorders in CD patients and the presence of circulating antibodies anti-tTG that inhibited tTG activity was reported. Serum anti-tTG antibodies were detected in a non-obese diabetic (NOD) mouse model of type I insulin-dependent diabetes mellitus and Sjögren's syndrome, two comorbid states with CD. Since pregnancy complications have been described in NOD mice, we evaluated the ability of anti-tTG antibodies to affect the functions of tTG relevant to the normal course of an early pregnancy like extracellular matrix assembling and apoptotic cell phagocytosis by macrophages. Circulating IgG antibodies against tTG were detected in NOD mice with titers that decreased at early pregnancy; interestingly, the in vitro transamidating activity of tTG was reduced by NOD serum samples. Particularly, anti-tTG antibody inhibited apoptotic cell phagocytosis by peritoneal macrophages from pregnant NOD mice that express the enzyme on surface. Evidence provided support for a role for anti-tTG antibodies through reduced transamidating activity and reduced apoptotic cell clearance by the macrophages of pregnant NOD mice.

  8. Piroxicam, indomethacin and aspirin action on a murine fibrosarcoma. Effects on tumour-associated and peritoneal macrophages.

    PubMed Central

    Valdéz, J C; Perdigón, G

    1991-01-01

    Growth of a methylcholanthrene-induced fibrosarcoma in BALB/c mice was accompanied by an increase in the activation state of tumour-associated macrophages (TAM), as measured by their FcIgG receptor expression, phagocytic index and beta-glucuronidase levels. All of these parameters were markedly higher in TAM than in peritoneal macrophages (PM) derived from the same animal. On the other hand, PM from tumour-bearing mice showed lower activation parameters than PM from normal animals. We also studied the effect on tumour development of three inhibitors of prostaglandin synthesis: indomethacin, piroxicam and aspirin. Intraperitoneal administration of these drugs during 8 d was followed by the regression of palpable tumours. Indomethacin (90 mg/d) induced 45% regression, while with piroxicam (two 400 mg/d doses and six 200 mg/d doses) and aspirin (1 mg/d) 32% and 30% regressions, respectively, were observed. The growth rate of nonregressing tumours, which had reached different volumes by the end of the treatment, was delayed to a similar extent by the three anti-inflammatory non-steroidal drugs (NSAID). With respect to TAM, the treatment did not induce any significant change in their activation state, though both piroxicam and indomethacin increased slightly the TAM number. In contrast, NSAID administration was followed by a remarkable increase in the activation parameters of PM when compared with PM from tumour-bearing mice receiving no treatment. Indeed, these parameters were in some cases higher than those of PM from normal mice. The leukocytosis (60,000/microliters) with neutrophilia (80%) induced by tumour growth on peripheral blood leukocytes (PBL) was reversed by the treatment to values close to normal, in parallel with the reduction of tumour size. A drop in haematocrit was also noted which was most probably a consequence of tumour growth rather than of the treatment. This study reveals that the three NSAID tested have a remarkable antitumour activity, which

  9. Changes in lymphocyte subsets and macrophage functions from high, short-term dietary ethanol in C57/BL6 mice

    SciTech Connect

    Watson, R.R.; Prabhala, R.H.; Abril, E.; Smith, T.L.

    1988-01-01

    Chronic administration of a diet containing 7% ethanol (36% of total calories) for 8 days to male C57/BL6 mice resulted in significant changes in functioning of macrophages. Peritoneal exudate macrophages from the ethanol-fed mice released more tumor cell cytotoxic materials upon culturing in vitro than cells from controls. However, peritoneal exudate cells continued to respond to exogenous beta carotene in vitro to produce additional cytotoxic materials. Phagocytosis of sheep red blood cells in vitro was suppressed in cells from ethanol treated mice. The number of splenic lymphocytes of various subsets was significantly changed by the ethanol exposure. Total T cells and T suppressor cells were lower, with a significant decrease in B cells containing IgM on their surface. The percentage of spleen cells showing markers for macrophage functions and their activation were significantly reduced. It is concluded that short-term chronic consumption of dietary ethanol, which was sufficient to produce physical dependence, results in significant alterations in lymphocyte subtypes and suppression of some macrophage functions.

  10. Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: Ex vivo and in vivo studies

    PubMed Central

    Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti

    2016-01-01

    Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349

  11. Phosphatidylserine receptor Tim-4 is essential for the maintenance of the homeostatic state of resident peritoneal macrophages.

    PubMed

    Wong, Kit; Valdez, Patricia A; Tan, Christine; Yeh, Sherry; Hongo, Jo-Anne; Ouyang, Wenjun

    2010-05-11

    Tim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear. In this study, we show that Tim-4 quickly forms punctate caps on contact with apoptotic cells, in contrast to its normal diffused expression on the surface of phagocytes. Despite its expression in marginal zone and tingible body macrophages, Tim-4 deficiency only minimally affects outcomes of several acute immune challenges, including the trapping of apoptotic cells in the marginal zone, the clearance apoptotic cells by tingible body macrophages, and the formation of germinal centers and elicitation of antibody responses against sheep red blood cells (SRBCs). In addition, Tim-4(-/-) resident peritoneal macrophages (rPMs) phagocytose necrotic cells and other opsonized targets normally. However, their ability to bind and engulf apoptotic cells is significantly compromised both in vitro and in vivo. Most importantly, Tim-4 deficiency results in increased cellularity in the peritoneum. Resting rPMs produce higher TNF-alpha in culture. Their response to LPS, on the contrary, is dampened. Our data support an indispensible role of Tim-4 in maintaining the homeostasis of rPMs.

  12. Production of nitric oxide in mouse peritoneal macrophages after priming with interferon-gamma by the stem of Sinomenium acutum.

    PubMed

    Kim, H M; Oh, D I; Chung, C K

    1999-09-01

    The present study demonstrates that the aqueous extract of Sinomenium acutum stem (SSAE) produces nitric oxide (NO) upon treatment with recombinant interferon gamma (rIFN-gamma) in mouse peritoneal macrophages. Apparently SSAE has no effect on NO production by itself. This production is dependent on L-arginine and can be inhibited by the L-arginine analogue N(G)-monomethyl-L-arginine. The increased production of NO from rIFN-gamma plus SSAE-stimulated cells was decreased by the treatment of protein kinase C inhibitor. Tumor necrosis factor-alpha (TNF-alpha) has been shown to stimulate the oxidative metabolism of L-arginine to produce NO. Mouse peritoneal macrophages secrete high levels of TNF-alpha after incubation with rIFN-gamma plus SSAE. In addition, SSAE-induced NO production is progressively inhibited by anti-murine TNF-alpha neutralizing antibody. These results show that the capacity of SSAE to increase NO production from rIFN-gamma-primed mouse peritoneal macrophages is the result of SSAE-induced TNF-alpha secretion.

  13. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  14. Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplasmosis in mice.

    PubMed Central

    Wu-Hsieh, B A; Lee, G S; Franco, M; Hofman, F M

    1992-01-01

    Experimental infection of animals with Histoplasma capsulatum caused a massive macrophage infiltration into the spleen and induced the production of tumor necrosis factor alpha (TNF-alpha) locally. The cytokine was also produced in vitro by peritoneal exudate macrophages exposed to a large inoculum of yeast cells. Depletion of the cytokine by injection of polyclonal sheep anti-TNF-alpha antibody was detrimental to sublethally infected mice. Fungous burdens in the spleens of TNF-alpha-depleted mice were higher than they were in the infected control mice at days 2, 7, and 9 after infection, and the antibody-treated animals succumbed to the infection. Histopathological study of spleen sections revealed that splenic macrophages were not able to control proliferation of intracellular yeasts as a result of TNF-alpha depletion. It seems that TNF-alpha plays a role in early activation of splenic macrophages which is important in controlling the outcome of an infection. Images PMID:1398934

  15. Mycobacterium tuberculosis Prolyl Oligopeptidase Induces In vitro Secretion of Proinflammatory Cytokines by Peritoneal Macrophages

    PubMed Central

    Portugal, Brina; Motta, Flávia N.; Correa, Andre F.; Nolasco, Diego O.; de Almeida, Hugo; Magalhães, Kelly G.; Atta, Ana L. V.; Vieira, Francisco D.; Bastos, Izabela M. D.; Santana, Jaime M.

    2017-01-01

    Tuberculosis (TB) is a disease that leads to death over 1 million people per year worldwide and the biological mediators of this pathology are poorly established, preventing the implementation of effective therapies to improve outcomes in TB. Host–bacterium interaction is a key step to TB establishment and the proteases produced by these microorganisms seem to facilitate bacteria invasion, migration and host immune response evasion. We presented, for the first time, the identification, biochemical characterization, molecular dynamics (MDs) and immunomodulatory properties of a prolyl oligopeptidase (POP) from Mycobacterium tuberculosis (POPMt). POP is a serine protease that hydrolyzes substrates with high specificity for proline residues and has already been characterized as virulence factor in infectious diseases. POPMt reveals catalytic activity upon N-Suc-Gly-Pro-Leu-Gly-Pro-AMC, a recognized POP substrate, with optimal activity at pH 7.5 and 37°C. The enzyme presents KM and Kcat/KM values of 108 μM and 21.838 mM-1 s-1, respectively. MDs showed that POPMt structure is similar to that of others POPs, which consists of a cylindrical architecture divided into an α/β hydrolase catalytic domain and a β-propeller domain. Finally, POPMt was capable of triggering in vitro secretion of proinflammatory cytokines by peritoneal macrophages, an event dependent on POPMt intact structure. Our data suggests that POPMt may contribute to an inflammatory response during M. tuberculosis infection. PMID:28223969

  16. Role of prostaglandin E2 in peptidoglycan mediated iNOS expression in mouse peritoneal macrophages in vitro.

    PubMed

    Dahiya, Yogesh; Pandey, Rajeev Kumar; Bhatt, Kunal H; Sodhi, Ajit

    2010-10-08

    Many extracellular stimuli, e.g. microbial products, cytokines etc., result in the expression of inducible nitric oxide synthase (iNOS) in macrophages. However, it is not known whether expression of the iNOS gene in response to microbial products is a primary response of macrophages, or is the result of paracrine/autocrine signalling induced by endogenous biomolecules that are synthesised as a result of host cell-microbe interaction. In this paper we demonstrate that iNOS expression in mouse peritoneal macrophages in response to bacterial peptidoglycan (PGN) is a secondary effect requiring autocrine signalling of endogenously produced prostaglandin E2, and that PGN stimulation is mandatory, but not sufficient in itself, for induction of iNOS expression.

  17. Muscarinic receptors participation in angiogenic response induced by macrophages from mammary adenocarcinoma-bearing mice

    PubMed Central

    de la Torre, Eulalia; Davel, Lilia; Jasnis, María A; Gotoh, Tomomi; de Lustig, Eugenia Sacerdote; Sales, María E

    2005-01-01

    Introduction The role of macrophages in tumor progression has generated contradictory evidence. We had previously demonstrated the ability of peritoneal macrophages from LMM3 murine mammary adenocarcinoma-bearing mice (TMps) to increase the angiogenicity of LMM3 tumor cells, mainly through polyamine synthesis. Here we investigate the ability of the parasympathetic nervous system to modulate angiogenesis induced by TMps through the activation of the muscarinic acetylcholine receptor (mAchR). Methods Peritoneal macrophages from female BALB/c mice bearing a 7-day LMM3 tumor were inoculated intradermally (3 × 105 cells per site) into syngeneic mice. Before inoculation, TMps were stimulated with the muscarinic agonist carbachol in the absence or presence of different muscarinic antagonists or enzyme inhibitors. Angiogenesis was evaluated by counting vessels per square millimeter of skin. The expression of mAchR, arginase and cyclo-oxygenase (COX) isoforms was analyzed by Western blotting. Arginase and COX activities were evaluated by urea and prostaglandin E2 (PGE2) production, respectively. Results TMps, which stimulate neovascularization, express functional mAchR, because carbachol-treated TMps potently increased new blood vessels formation. This response was completely blocked by preincubating TMps with pirenzepine and 4-diphenylacetoxy-N-methylpiperidine (4-DAMP), M1 and M3 receptor antagonists, and partly by the M2 receptor antagonist methoctramine. M1 receptor activation by carbachol in TMps triggers neovascularization through arginase products because Nω-hydroxy-L-arginine reversed the agonist action. Preincubation of TMps with methoctramine partly prevented carbachol-stimulated urea formation. In addition, COX-derived liberation of PGE2 is responsible for the promotion of TMps angiogenic activity by M3 receptor. We also detected a higher expression of vascular endothelial growth factor (VEGF) in TMps than in macrophages from normal mice. Carbachol

  18. An online coupled peritoneal macrophage/cell membrane chromatography and high-performance liquid chromatography/mass spectrometry method to screen for anti-inflammatory components from the Chinese traditional medicine Chloranthus multistachys Pei.

    PubMed

    Li, Weifeng; Xing, Wei; Wang, Sicen; Fan, Ting; Huang, Huimin; Niu, Xiaofeng; He, Langchong

    2013-11-01

    Cell membrane chromatography (CMC) is a chromatographic biological affinity method that uses specific cell membranes as the stationary phase. In this study, a novel peritoneal macrophage/cell membrane chromatography (PM/CMC)-online-high performance liquid chromatography/mass spectrometry (HPLC/MS) method was established to screen for the anti-inflammatory components from traditional Chinese medicines using hydrocortisone and dexamethasone as standards. The stationary phase of the CMC employed mouse peritoneal macrophage cell membranes. This method was applied to the purification and identification of components in extracts of Chloranthus multistachys Pei. The major component retained by CMC was identified as isofraxidin by HPLC/MS. In vitro experiments revealed that IF was able to inhibit the production of nitric oxide and tumor necrosis factor-α in lipopolysaccharide-stimulated mice and peritoneal macrophages in a dose-dependent manner. The results demonstrated that the PM/CMC-online-HPLC/MS is an effective screening system for the rapid detection, enrichment, and identification of target components from complex samples.

  19. Effects of Macrophage Depletion on Sleep in Mice

    PubMed Central

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  20. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects

    PubMed Central

    Tran, Thanh-Huyen; Krishnan, Swathi; Amiji, Mansoor M.

    2016-01-01

    The aim of this study was to evaluate macrophages repolarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype upon transfection with microRNA-223 (miR-223) duplexes and miR-223 expressing plasmid DNA encapsulated in CD44-targeting hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/miR-223 NPs with spherical shape and an average diameter of 200 nm were efficiently internalized by J774A.1 alveolar and primary peritoneal macrophages and non-cytotoxic at HA-PEI concentration less than 200 μg/mL. Transfection of HA-PEI/miR-223 NPs in J774A.1 macrophages showed significantly higher miR-223 expression than that with HA-PEI/plasmid DNA expressing miR-223 (pDNA-miR-223). HA-PEI/miR-223 NPs mediated transfection increased miR-223 expression to 90 fold in primary peritoneal macrophages compared to untreated cells. The overexpression of miR-223 in both J774A.1 and peritoneal macrophages induced a phenotypic change from M1 to M2 state as indicated by a decrease in iNOS-2 (M1 marker) and an increase in Arg-1 (M2 marker) levels compared to those in lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-stimulated macrophages (M1). The change in macrophage phenotype by HA-PEI/miR-223 NPs could suppress the inflammation in peritoneal macrophages induced by LPS as evidenced by a significant decrease in pro-inflammatory cytokine levels TNF-α, IL-1β and IL-6, compared to LPS-stimulated peritoneal macrophages without treatment. The results demonstrated that miR-223-encapsulated HA-PEI NPs modulated macrophage polarity toward an anti-inflammatory M2 phenotype, which has potential for the treatment of inflammatory diseases. PMID:27148749

  1. Green Brazilian Propolis Action on Macrophages and Lymphoid Organs of Chronically Stressed Mice

    PubMed Central

    Missima, Fabiane

    2008-01-01

    Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H2O2) generation by peritoneal macrophages, and propolis treatment potentiated H2O2 generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress. PMID:18317551

  2. Relationship between enhanced macrophage phagocytic activity and the induction of interferon by Newcastle disease virus in mice.

    PubMed

    Hamburg, S I; Cassell, G H; Rabinovitch, M

    1980-03-01

    The relationship between phagocytic activity of peritoneal macrophages and serum interferon (IF) titers was evaluated in mice challenged with Newcastle disease virus (NDV). Time course studies indicated peak serum IF titers between 6 and 12 hr, whereas Fc receptor-mediated macrophage phagocytosis was maximal 18 hr after viral administration. Both responses decreased in parallel as the inoculated dose of the virus was reduced. Splenectomy, shown by others to decrease the NDV-induced serum IF titers, significantly decreased the stimulation of phagocytosis. The role of T cells in the response to the virus was studied with nude mice raised under germfree conditions. NDV-induced serum IF titers and macrophage phagocytosis were both diminished in BALB/c nudes compared with their heterozygous littermates. Both responses could be partially restored by transfer of thymocytes obtained from heterozygous mice. The results provide further evidence that in vivo macrophage stimulation by NDV is mediated by induced IF. The experiments with nude mice also indicate that the IF response to NDV is regulated by T lymphocytes.

  3. Proliferative actions of muscarinic receptors expressed in macrophages derived from normal and tumor bearing mice.

    PubMed

    de la Torre, Eulalia; Genaro, Ana M; Ribeiro, María L; Pagotto, Romina; Pignataro, Omar P; Sales, María E

    2008-02-01

    Macrophages (Mps) are essential cellular components of the innate immune system. They are released from the bone marrow as immature monocytes and after circulating in the blood stream, migrate into tissues to undergo final differentiation into resident Mps. In general terms Mps behavior in breast tumors, was described as being either for or against tumor growth. Under certain well defined circumstances Mps are able to kill cells in two ways: direct tumor cytotoxicity or antibody dependent cytotoxicity. We had previously demonstrated that peritoneal Mps from LMM3 mammary tumor bearing mice (TMps) enhanced in vivo the LMM3 induced angiogenesis, promoting tumor growth while Mps from normal BALB/c mice (NMps) did not. In this work, we demonstrate that Mps, expressing functional muscarinic acetylcholine receptors, are able to proliferate in vitro in response to the muscarinic agonist carbachol. These peritoneal cells use two distinct metabolic pathways: TMps are primed by tumor presence and they proliferate mainly by activating arginase pathway and by producing high levels of prostaglandin E(2) via M(1)-M(3) receptors activation. In NMps, carbachol stimulates M(2) receptors function, triggering protein kinase C activity and induces moderate prostaglandin E(2) liberation via M(1) receptor.

  4. Subcellular localization of the PGE2 synthesis activity in mouse resident peritoneal macrophages

    PubMed Central

    1984-01-01

    The aim of this work was to establish, on a quantitative basis, the subcellular distribution of the enzyme system that converts arachidonic acid into prostaglandin (PG) E2 in mouse resident peritoneal (MRP) macrophages. Kinetic studies were conducted on cell-free extracts derived from cells cultivated for 1 d, using [1-14C]arachidonic acid as substrate and measuring the label in PGE2 after extraction and thin layer chromatography. The activity was synergistically enhanced by L- adrenaline and reduced glutathione, inhibited by indomethacin, and linearly related to the concentration of the cell-free extract. It was labile at 0 degrees C in the medium used for homogenization and fractionation of the cells (half-life less than 2 h). Addition of catalase (0.15 mg/ml) to the suspension medium increased the initial activity (by congruent to 70%) and the stability (half-life congruent to 6 h) of the enzyme in cytoplasmic extracts. It enabled us to establish the density distribution after isopycnic centrifugation in a linear gradient of sucrose. The sample centrifuged consisted of untreated cytoplasmic extracts, or cytoplasmic extracts treated with digitonin and Na pyrophosphate. Comparison of the centrifugation behavior of PGE2 synthesis activity with that of various enzymes used as reference for the major subcellular entities has revealed that PGE2 synthesis fairly fits the density profile of sulfatase C in each case. The conclusion is that at least the rate-limiting reaction in the conversion of arachidonic acid into PGE2 is catalyzed by an enzyme associated with the endoplasmic reticulum. PMID:6420497

  5. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages.

    PubMed Central

    Capo, C; Bongrand, P; Benoliel, A M; Depieds, R

    1979-01-01

    Particles were chemically modified with aldehydes and incubated with rat peritoneal cells for phagocytosis. All dialdehydes and lower monaldehydes tested (methanal, ethanal and propanal) made sheep erythrocytes phagocytosable. Failure of higher monaldehydes to induce phagocytosis of treated erythrocytes was not due to lack of reactivity with red cell membranes. All erythrocytes tested (bird and mammal red cells were used) and rat thymocytes were phagocytosed by rat macrophages after incubation with aldehyde. Treatment of Candida albicans did not induce phagocytosis: this failure was not due to lack of aldehyde binding (as demonstrated with [14C]-methanal) nor to anti-phagocytic properties of the parasite membrane. Sheep erythrocytes were submitted to enzymatic treatment (pronase, trypsin, neuraminidase) or incubated with succinic anhydride (to block free NH2 groups) or iodacetamide (to block free SH groups) before aldehyde treatment: phagocytosis was not decreased, which suggested that aldehydes did not act by altering some definite surface structure of the treated particles. Treatment of erythrocytes with cross-linking compounds such as tetraazotized o-dianisidine (coupling occurs mainly on tyrosine and histidine residues) or l-ethyl(3-dimethyl aminopropyl) carbodiimide (a bivalent reagent binding free COOH groups) did not induce any substantial phagocytosis of erythrocytes. Phagocytosis of aldehyde treated erythrocytes was partly correlated with hydrophobicity of these cells, as measured with a two-phase partition system. It is concluded that aldehyde-mediated phagocytosis of erythrocytes is mainly due to cross-linking of red cell membrane structures, probably involving free OH groups, which must increase local rigidity and thereby modify hydrophobicity of the red cell surface. Images Figure 1 PMID:437841

  6. Non-specific recognition in phagocytosis: ingestion of aldehyde-treated erythrocytes by rat peritoneal macrophages.

    PubMed

    Capo, C; Bongrand, P; Benoliel, A M; Depieds, R

    1979-03-01

    Particles were chemically modified with aldehydes and incubated with rat peritoneal cells for phagocytosis. All dialdehydes and lower monaldehydes tested (methanal, ethanal and propanal) made sheep erythrocytes phagocytosable. Failure of higher monaldehydes to induce phagocytosis of treated erythrocytes was not due to lack of reactivity with red cell membranes. All erythrocytes tested (bird and mammal red cells were used) and rat thymocytes were phagocytosed by rat macrophages after incubation with aldehyde. Treatment of Candida albicans did not induce phagocytosis: this failure was not due to lack of aldehyde binding (as demonstrated with [14C]-methanal) nor to anti-phagocytic properties of the parasite membrane. Sheep erythrocytes were submitted to enzymatic treatment (pronase, trypsin, neuraminidase) or incubated with succinic anhydride (to block free NH2 groups) or iodacetamide (to block free SH groups) before aldehyde treatment: phagocytosis was not decreased, which suggested that aldehydes did not act by altering some definite surface structure of the treated particles. Treatment of erythrocytes with cross-linking compounds such as tetraazotized o-dianisidine (coupling occurs mainly on tyrosine and histidine residues) or l-ethyl(3-dimethyl aminopropyl) carbodiimide (a bivalent reagent binding free COOH groups) did not induce any substantial phagocytosis of erythrocytes. Phagocytosis of aldehyde treated erythrocytes was partly correlated with hydrophobicity of these cells, as measured with a two-phase partition system. It is concluded that aldehyde-mediated phagocytosis of erythrocytes is mainly due to cross-linking of red cell membrane structures, probably involving free OH groups, which must increase local rigidity and thereby modify hydrophobicity of the red cell surface.

  7. Modulation of phagocytic function in murine peritoneal macrophages by bombesin, gastrin-releasing peptide and neuromedin C.

    PubMed Central

    De la Fuente, M; Del Rio, M; Ferrandez, M D; Hernanz, A

    1991-01-01

    Bombesin, as well as the two mammalian bombesin-like peptides gastrin-releasing peptide and neuromedin C, have been shown in this study to stimulate in vitro all steps of the phagocytic process in murine peritoneal macrophages: adherence to substrate, chemotaxis, ingestion of cells (Candida albicans) and inert particles (latex beads), and production of superoxide anion as measured by nitroblue tetrazolium reduction. A dose-response relationship was observed, with maximal stimulation of phagocytic process between 10(-12)M and 10(-9)M. Gastrin-releasing peptide (GRP) and neuromedin C caused a higher activation of adherence, chemotaxis and ingestion of C. albicans than bombesin. The three neuropeptides induced in murine macrophages a significant, but transient, increase of inositol 1,4,5-trisphosphate (IP3) levels at 60 seconds. On the contrary, these neuropeptides produced a rapid, transient and significant decrease of cAMP at 30 seconds. These results suggest that there are close relations between IP3 and cAMP messenger systems and the phagocytic process in murine peritoneal macrophages when these cells are incubated in the presence of bombesin, GRP or neuromedin C. PMID:1649124

  8. Receptor-recognized alpha 2-macroglobulin-methylamine elevates intracellular calcium, inositol phosphates and cyclic AMP in murine peritoneal macrophages.

    PubMed Central

    Misra, U K; Chu, C T; Rubenstein, D S; Gawdi, G; Pizzo, S V

    1993-01-01

    Human plasma alpha 2-macroglobulin (alpha 2M) is a tetrameric proteinase inhibitor, which undergoes a conformational change upon reaction with either a proteinase or methylamine. As a result, a receptor recognition site is exposed on each subunit of the molecule enabling it to bind to its receptors on macrophages. We have used Fura-2-loaded murine peritoneal macrophages and digital video fluorescence microscopy to examine the effects of receptor binding on second messenger levels. alpha 2M-methylamine caused a rapid 2-4-fold increase in intracellular Ca2+ concentration ([Ca2+]i) within 5 s of binding to receptors. The agonists induced a focal increase in [Ca2+]i that spread out to other areas of the cell. The increase in [Ca2+]i was dependent on the alpha 2M-methylamine concentration and on the extracellular [Ca2+]. Both sinusoidal and transitory oscillations were observed, which varied from cell to cell. Neither alpha 2M nor boiled alpha 2M-methylamine, forms that are not recognized by the receptor, affected [Ca2+]i in peritoneal macrophages under identical conditions of incubation. The alpha 2M-methylamine-induced rise in [Ca2+]i was accompanied by a rapid and transient increase in macrophage inositol phosphates, including inositol tris- and tetrakis-phosphates. Native alpha 2M did not stimulate a rise in inositol phosphates. Finally, binding of alpha 2M-methylamine to macrophages increased cyclic AMP transiently. Thus receptor-recognized alpha-macroglobulins behave as agonists whose receptor binding causes stimulation of signal transduction pathways. Images Figure 2 PMID:7681282

  9. Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice.

    PubMed Central

    Bellosta, S; Mahley, R W; Sanan, D A; Murata, J; Newland, D L; Taylor, J M; Pitas, R E

    1995-01-01

    apoE deficiency causes hyperlipidemia and premature atherosclerosis. To determine if macrophage-specific expression of apoE would decrease the extent of atherosclerosis, we expressed human apoE in macrophages of apoE-null mice (apoE-/-) and assessed the effect on lipid accumulation in cells of the arterial wall. Macrophage-specific expression of human apoE in normal mice was obtained by use of the visna virus LTR. These animals were bred with apoE-/- mice to produce animals hemizygous for expression of human apoE in macrophages in the absence of murine apoE (apoE-/-,hTgE+/0). Low levels of human apoE mRNA were present in liver and spleen and high levels in lung and peritoneal macrophages. Human apoE was secreted by peritoneal macrophages and was detected in Kupffer cells of the liver. Human apoE in the plasma of apoE-/-,hTgE+/0 mice (n = 30) was inversely correlated (P < 0.005) with the plasma cholesterol concentration. After 15 wk on a normal chow diet, atherosclerosis was assessed in apoE-/-,hTgE+/0 animals and in apoE-/-,hTgE0/0 littermates matched for plasma cholesterol level (approximately 450 mg/dl) and lipoprotein profile. There was significantly less atherosclerosis in both the aortic sinus and in the proximal aorta (P < 0.0001) in the animals expressing the human apoE transgene. In apo-E-/-,hTgE+/0 animals, which had detectable atherosclerotic lesions, human apoE was detected in the secretory apparatus of macrophage-derived foam cells in the arterial wall. The data demonstrate that expression of apoE by macrophages is antiatherogenic even in the presence of high levels of atherogenic lipoproteins. The data suggest that apoE prevents atherosclerosis by promoting cholesterol efflux from cells of the arterial wall. Images PMID:7593602

  10. Abdominal Distension and Escherichia coli Peritonitis in Mice Lacking Myeloid Differentiation Factor 88.

    PubMed

    Johnson, Linda K; Widi, Antin Yn; Rowarth, Serrin; Baxter, Alan G

    2015-04-01

    Here we describe the gross and microscopic findings of naturally occurring, β-hemolytic Escherichia coli peritonitis in B6.129-Myd88(tm1Aki) male and female mice. Over approximately 5 mo, 10 homozygous mutant mice deficient in myeloid differentiation factor 88 (C57BL/6 strain; male and female) that had not been used in research protocols developed rapid-onset abdominal swelling associated with copious viscous ascites. Each mouse developed an anterior peritonitis, primarily involving the parietal peritoneum and the visceral surface of the spleen, liver, diaphragm, and stomach. Inflammation was confined to the organ surfaces, with no indication of septicemia or grossly apparent gastrointestinal perforation or other tissue compromise that would initiate peritonitis. Peritonitis was likely attributable to compromised antibacterial innate immunity; cohoused, similarly immunodeficient littermates did not develop similar clinical signs. An unusual finding in all cases was mesothelial cell hyperplasia and hypertrophy. Although the underlying innate immune deficiency accounts for much of the observed pathology, the remarkable mesothelial cell morphology and the episodic nature of the peritonitis in some littermates and not others remain unexplained.

  11. Macrophages in protective immunity to Hymenolepis nana in mice.

    PubMed

    Asano, K; Muramatsu, K; Ito, A; Okamoto, K

    1992-12-01

    When mice were treated with carrageenan just before infection with eggs of Hymenolepis nana, they failed to exhibit sterile immunity to the egg challenge, with evidence of a decrease in the number of peripheral macrophages (Mø) and the rate of carbon clearance. Although there were high levels of interleukin-1 (IL-1) released into the intestinal tracts of the parasitized mice at challenge infection, there was almost no release of IL-1 in those treated with carrageenan just before challenge. These results strongly suggest that Mø have an important role in protective immunity to H. nana in mice.

  12. In vitro time-dependent vancomycin-resistant Staphylococcus aureus-induced free radical generation and status of antioxidant enzymes in murine peritoneal macrophage.

    PubMed

    Chakraborty, Subhankari Prasad; Mahapatra, Santanu Kar; Roy, Somenath

    2012-01-01

    Staphylococcus aureus is most frequently isolated pathogen causing bloodstream infections, skin and soft tissue infections, and pneumonia. The immune cells use reactive oxygen species (ROS) for carrying out their normal functions, while an excess amount of ROS can attack cellular components that lead to cell damage. The aim of the present study was to evaluate the free radical generation and status of the antioxidant enzymes in murine peritoneal macrophage during in vitro vancomycin-resistant S. aureus (VRSA) treatment with different time intervals. Peritoneal macrophages were treated with 5 × 10(6) colony-forming units (CFU)/mL VRSA cell suspension in vitro for different time intervals (1, 2, 3, 6, 12, and 24 h), and superoxide anion generation, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, myeloperoxidase (MPO) activity, nitric oxide (NO) generation, antioxidant enzyme status, and components of glutathione cycle were analyzed. Superoxide anion generation, NADPH oxidase activity, MPO activity, and NO generation got peak at 3 h indicates maximum free radical generation through activation of NADPH oxidase in murine peritoneal macrophages during VRSA infection. Reduced glutathione level, glutathione peroxidase, glutathione reductase, and glutathione S-transferase activity were decreased significantly (P < 0.05) with increasing time of VRSA infection. But the oxidized glutathione level was time-dependently increased significantly (P < 0.05) in murine peritoneal macrophages. All the changes in peritoneal macrophages after 3 h in vitro VRSA treatment had no significant difference. From this study, it may be summarized that in vitro VRSA infection not only generates excess free radical but also affects the antioxidant status and glutathione cycle in murine peritoneal macrophages.

  13. Capsaicin exhibits anti-inflammatory property by inhibiting IkB-a degradation in LPS-stimulated peritoneal macrophages.

    PubMed

    Kim, Chu-Sook; Kawada, Teruo; Kim, Byung-Sam; Han, In-Seob; Choe, Suck-Young; Kurata, Tadao; Yu, Rina

    2003-03-01

    Capsaicin, a major ingredient of hot pepper, was considered to exhibit an anti-inflammatory property. In order to clarify the signalling mechanism underlying the anti-inflammatory action of capsaicin, we investigated the effect of capsaicin on the production of inflammatory molecules in lipopolysaccharide (LPS)-stimulated murine peritoneal macrophages. The level of PGE2 was measured by EIA. The expression levels of COX-2, iNOS, IkB-a, and vanilloid receptor-1 (VR-1) were determined at the protein and mRNA levels. Significant inhibition of the production of LPS-induced PGE2 by capsaicin was observed in a dose-dependent manner. Capsaicin did not affect the COX-2 expression at either the protein or mRNA level, but inhibited the enzyme activity of COX-2 and the expression of the iNOS protein. Capsaicin completely blocked LPS-induced disappearance of IkB-a and therefore inactivated NF-kB. The inhibitory action of capsaicin on PGE2 production was not abolished by capsazepine, a specific antagonist to VR-1. A high expression level of the VR-1 like protein (VRL-1) was observed in peritoneal macrophages, while the expression of VR-1 was not detected. These findings suggest that the anti-inflammatory action of capsaicin may occur through a novel mechanism, not by a VR-1 receptor-mediated one. Both capsaicin and capsazepine may be a promising drug candidates for ameliorating inflammatory diseases and cancer.

  14. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  15. Cystic metacestodes of a rat-adapted Taenia taeniaeformis established in the peritoneal cavity of scid and nude mice.

    PubMed

    Ito, A; Ma, L; Sato, Y

    1997-08-01

    In vitro-hatched (but not activated) oncospheres of a rat-adapted strain of Taenia taeniaeformis intraperitoneally inoculated into severe combined immunodeficiency (scid), congenitally athymic (nude) and immunocompetent (normal) female BALB/c mice developed into cystic metacestodes in the peritoneal cavity (but not in the liver) of scid and nude mice exclusively. This suggests that cystic metacestodes of this parasite, usually harboured in the liver only, can establish in scid and nude mice provided that the oncospheres are inoculated into the peritoneal cavity. Immunodeficient mice, especially scid mice, may be a good experimental animal model for the intermediate host of any taeniid species, of human, domestic- or wild-animal origin.

  16. Semaphorin7A promotes tumor growth and exerts a pro-angiogenic effect in macrophages of mammary tumor-bearing mice

    PubMed Central

    Garcia-Areas, Ramon; Libreros, Stephania; Amat, Samantha; Keating, Patricia; Carrio, Roberto; Robinson, Phillip; Blieden, Clifford; Iragavarapu-Charyulu, Vijaya

    2014-01-01

    Semaphorins are a large family of molecules involved in axonal guidance during the development of the nervous system and have been recently shown to have both angiogenic and anti-angiogenic properties. Specifically, semaphorin 7A (SEMA7A) has been reported to have a chemotactic activity in neurogenesis and to be an immune modulator through α1β1integrins. SEMA7A has been shown to promote monocyte chemotaxis and induce them to produce proinflammatory mediators. In this study we explored the role of SEMA7A in a murine model of breast cancer. We show that SEMA7A is highly expressed by DA-3 murine mammary tumor cells in comparison to normal mammary cells (EpH4), and that peritoneal elicited macrophages from mammary tumor-bearing mice also express SEMA7A at higher levels compared to those derived from normal mice. We also show that murine macrophages treated with recombinant murine SEMA7A significantly increased their expression of proangiogenic molecule CXCL2/MIP-2. Gene silencing of SEMA7A in peritoneal elicited macrophages from DA-3 tumor-bearing mice resulted in decreased CXCL2/MIP-2 expression. Mice implanted with SEMA7A silenced tumor cells showed decreased angiogenesis in the tumors compared to the wild type tumors. Furthermore, peritoneal elicited macrophages from mice bearing SEMA7A-silenced tumors produce significantly (p < 0.01) lower levels of angiogenic proteins, such as CXCL2/MIP-2, CXCL1, and MMP-9, compared to those from control DA-3 mammary tumors. We postulate that SEMA7A in mammary carcinomas may skew monocytes into a pro-tumorigenic phenotype to support tumor growth. SEMA7A could prove to be valuable in establishing new research avenues toward unraveling important tumor-host immune interactions in breast cancer patients. PMID:24550834

  17. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  18. A2B adenosine receptor blockade enhances macrophage-mediated bacterial phagocytosis and improves polymicrobial sepsis survival in mice.

    PubMed

    Belikoff, Bryan G; Hatfield, Stephen; Georgiev, Peter; Ohta, Akio; Lukashev, Dmitriy; Buras, Jon A; Remick, Daniel G; Sitkovsky, Michail

    2011-02-15

    Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP) model of sepsis. Antagonism of A2BR significantly increased survival, enhanced bacterial phagocytosis, and decreased IL-6 and MIP-2 (a CXC chemokine) levels after CLP in outbred (ICR/CD-1) mice. During the CLP-induced septic response in A2BR knockout mice, hemodynamic parameters were improved compared with wild-type mice in addition to better survival and decreased plasma IL-6 levels. A2BR deficiency resulted in a dramatic 4-log reduction in peritoneal bacteria. The mechanism of these improvements was due to enhanced macrophage phagocytic activity without augmenting neutrophil phagocytosis of bacteria. Following ex vivo LPS stimulation, septic macrophages from A2BR knockout mice had increased IL-6 and TNF-α secretion compared with wild-type mice. A therapeutic intervention with A2BR blockade was studied by using a plasma biomarker to direct therapy to those mice predicted to die. Pharmacological blockade of A2BR even 32 h after the onset of sepsis increased survival by 65% in those mice predicted to die. Thus, even the late treatment with an A2BR antagonist significantly improved survival of mice (ICR/CD-1) that were otherwise determined to die according to plasma IL-6 levels. Our findings of enhanced bacterial clearance and host survival suggest that antagonism of A2BRs offers a therapeutic target to improve macrophage function in a late treatment protocol that improves sepsis survival.

  19. Selective Blocking of TNF Receptor 1 Attenuates Peritoneal Dialysis Fluid Induced Inflammation of the Peritoneum in Mice.

    PubMed

    Kälble, Florian; Damaske, Janine; Heide, Danijela; Arnold, Iris; Richter, Fabian; Maier, Olaf; Eisel, Ulrich; Scheurich, Peter; Pfizenmaier, Klaus; Zeier, Martin; Schwenger, Vedat; Ranzinger, Julia

    2016-01-01

    Chronic inflammatory conditions during peritoneal dialysis (PD)-treatment lead to the impairment of peritoneal tissue integrity. The resulting structural and functional reorganization of the peritoneal membrane diminishes ultrafiltration rate and thereby enhances mortality by limiting dialysis effectiveness over time. Tumour necrosis factor (TNF) and its receptors TNFR1 and TNFR2 are key players during inflammatory processes. To date, the role of TNFR1 in peritoneal tissue damage during PD-treatment is completely undefined. In this study, we used an acute PD-mouse model to investigate the role of TNFR1 on structural and morphological changes of the peritoneal membrane. TNFR1-mediated TNF signalling in transgenic mice expressing human TNFR1 was specifically blocked by applying a monoclonal antibody (H398) highly selective for human TNFR1 prior to PD-treatment. Cancer antigen-125 (CA125) plasma concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analyses were applied to determine TNFR2 protein concentrations. Histological staining of peritoneal tissue sections was performed to assess granulocytes within the peritoneal membrane as well as the content of hyaluronic acid and collagen. We show for the first time that the number of granulocytes within the peritoneal membrane is significantly reduced in mice pre-treated with H398. Moreover, we demonstrate that blocking of TNFR1 not only influences CA125 values but also hyaluronic acid and collagen contents of the peritoneal tissue in these mice. These results strongly suggest that TNFR1 inhibition attenuates peritoneal damage caused by peritoneal dialysis fluid (PDF) and therefore may represent a new therapeutic approach in the treatment of PD-related side effects.

  20. Differential clearance and immune responses to tick cell-derived versus macrophage culture-derived Ehrlichia chaffeensis in mice.

    PubMed

    Ganta, Roman R; Cheng, Chuanmin; Miller, Elizabeth C; McGuire, Bridget L; Peddireddi, Lalitha; Sirigireddy, Kamesh R; Chapes, Stephen K

    2007-01-01

    Human monocytic ehrlichiosis is caused by a tick-transmitted rickettsia, Ehrlichia chaffeensis. We recently reported that E. chaffeensis grown in tick cells expresses different proteins than bacteria grown in macrophages. Therefore, we tested the hypothesis that immune responses against E. chaffeensis would be different if the mice are challenged with bacteria grown in macrophages or tick cells. We assessed the E. chaffeensis clearance from the peritoneum, spleen, and liver by C57BL/6J mice using a TaqMan-based real-time reverse transcription-PCR assay. Macrophage-grown E. chaffeensis was cleared in 2 weeks from the peritoneum, whereas the pathogen from tick cells persisted for nine additional days and included three relapses of increasing bacterial load separated by three-day intervals. Tick cell-grown bacteria also persisted in the livers and spleens with higher bacterial loads compared to macrophage-grown bacteria and fluctuated over a period of 35 days. Three-day periodic cycles were detected in T-cell CD62L/CD44 ratios in the spleen and bone marrow in response to infections with both tick cell- and macrophage-grown bacteria and were accompanied by similar periodic cycles of spleen cell cytokine secretions and nitric oxide and interleukin-6 by peritoneal macrophages. The E. chaffeensis-specific immunoglobulin G response was considerably higher and steadily increased in mice infected with the tick cell-derived E. chaffeensis compared to DH82-grown bacteria. In addition, antigens detected by the immunoglobulins were significantly different between mice infected with the E. chaffeensis originating from tick cells or macrophages. The differences in the immune response to tick cell-grown bacteria compared to macrophage-grown bacteria reflected a delay in the shift of gene expression from the tick cell-specific Omp 14 gene to the macrophage-specific Omp 19 gene. These data suggest that the host response to E. chaffeensis depends on the source of the bacteria and that

  1. Escherichia coli maltose-binding protein activates mouse peritoneal macrophages and induces M1 polarization via TLR2/4 in vivo and in vitro.

    PubMed

    Ni, Weihua; Zhang, Qingyong; Liu, Guomu; Wang, Fang; Yuan, Hongyan; Guo, Yingying; Zhang, Xu; Xie, Fei; Li, Qiongshu; Tai, Guixiang

    2014-07-01

    Maltose-binding protein (MBP) is a component of the maltose transport system of Escherichia coli. Our previous study found that MBP combined with Bacillus Calmette-Guerin (BCG) increases the percentage of activated macrophages in the spleen and the pinocytic activity of peritoneal macrophages in vivo. However, the effect of MBP alone on macrophages remains unclear. In the present study, the results showed that MBP enhanced LPS-stimulated macrophage activity in vivo. Subsequently, we investigated the regulatory effect of MBP on mouse peritoneal macrophages in vitro and the possible underlying mechanism. The results showed that MBP directly promoted macrophage phagocytic activity and increased the production of NO, IL-1β and IL-6. Notably, macrophage phenotypic analysis showed that MBP significantly increased iNOS, IL-12p70 and CD16/32. In contrast, MBP decreased the secretion of IL-10 and slightly decreased Arg-1 mRNA and CD206 protein expression. These results suggested that MBP activated macrophages and polarized them into M1 macrophages. Further study found that MBP directly bound to macrophages and upregulated TLR2 mRNA expression. This process was accompanied by a clear increase in MyD88 expression and phosphorylation of p38 MAPK and IκB-α, but these effects were largely abrogated by pretreatment with anti-TLR2 or anti-TLR4 antibodies. The effects of MBP on macrophage NO production were also partially inhibited by anti-TLR2 and/or anti-TLR4 antibodies. Furthermore, the effect of MBP on IL-12 and IL-10 secretion was largely influenced by the NF-κB inhibitor PDTC and the p38 MAPK inhibitor SB203580. These results suggest that MBP directly activates macrophages and induces M1 polarization through a process that may involve TLR2 and TLR4.

  2. Morphological and biochemical changes during formocresol induced cell death in murine peritoneal macrophages: apoptotic and necrotic features.

    PubMed

    Cardoso, María Lorena; Todaro, Juan Santiago; Aguirre, María Victoria; Juaristi, Julián Antonio; Brandan, Nora Cristina

    2010-10-01

    The present study was conducted to investigate the role of Formocresol (FC)-induced apoptosis and necrotic cell death in murine peritoneal macrophages (pMø). Macrophages were cultured with 1:100 FC for 2 to 24 h. The viability (trypan blue assay), cell morphology (scanning electronic microscope), and apoptotic and necrotic indexes (light and fluorescent microscopy) were determined at different scheduled times. Simultaneously, the expressions of proteins related to stress, survival, and cell death were measured by western blotting. FC-exposed macrophages exhibited maximal apoptosis from 2 to 6 h, coincident with Bax overexpression (P < 0.001). Additionally, Bcl-x(L) showed maximal expression between 12 and 24 h suggesting its survival effect in pMø. The lowest pMø viability and the increment of the necrotic rate from 4 to 12 h were observed in accordance to Fas and Hsp60 overexpressions. In summary, all the experimental data suggest that two different pathways emerge in pMø exposed to FC, one leading Bax-dependent apoptosis (2-6 h) and the other one favoring necrosis (4-18 h), related to Fas-receptor and Hsp60 stress signal.

  3. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo.

    PubMed Central

    Williams, Z; Hertogs, C F; Pluznik, D H

    1983-01-01

    Injection of lipopolysaccharide (LPS) into mice was followed by a rapid elevation of colony-stimulating factor (CSF) in the serum. A second, challenging injection of LPS given 3 to 4 days later failed to induce elevated levels of CSF in the serum. Such mice tolerant to LPS were used as an experimental tool to identify the CSF-producing cells which respond to LPS. We observed that generation of LPS-induced CSF in mice tolerant to LPS could be restored by an intraperitoneal injection of spleen cells 24 h before the challenging injection of LPS. Depletion of the adherent cells from the spleen cells reduced the ability of the splenic lymphocytes to restore the capacity of the mice tolerant to LPS to generate serum CSF. Reconstitution of the splenic lymphocytes with 5% thioglycolate-elicited peritoneal macrophages, however, reestablished the restorative capacity of these cells, whereas almost no restoration was observed after direct injection of elicited peritoneal macrophages. These data suggest that the spleen cells are active in generating CSF, provided that macrophages are present and can interact with the splenic lymphocytes to generate LPS-induced CSF in the serum. PMID:6602767

  4. Impaired Cd14 and Cd36 expression, bacterial clearance, and Toll-like receptor 4-Myd88 signaling in caveolin-1-deleted macrophages and mice.

    PubMed

    Tsai, Tsung-Huang; Chen, Shu-Fen; Huang, Tai-Yu; Tzeng, Chun-Fu; Chiang, Ann-Shyn; Kou, Yu Ru; Lee, Tzong-Shyuan; Shyue, Song-Kun

    2011-01-01

    An overwhelming immune response, particularly from macrophages, with gram-negative bacteria-induced sepsis plays a critical role in survival of and organ damage in infected patients. Caveolin-1 (Cav-1), a major structure protein of caveolae, regulates many cellular functions. We examined the vital role of Cav-1 in the response of macrophages and mice to bacteria or LPS exposure. Deletion of Cav-1 decreased the expression of CD14 and CD36 during macrophage differentiation and suppressed their phagocytotic ability. As well, the ability to kill bacteria was inhibited in Cav-1 macrophages and mice peritoneal cavity, tissue, and plasma, which was partly attributed to hindered expression of iNOS induced by bacteria or LPS. Furthermore, deletion of Cav-1 attenuated the expression of Toll-like receptor 4 and myeloid differentiation factor 88 and the activation of nuclear factor κB, all of which impeded the production of inflammatory cytokines in response to bacterial exposure in Cav-1 macrophages and mice. Thus, Cav-1 participates in the regulation of CD14, CD36, Toll-like receptor 4 and myeloid differentiation factor 88 protein expression and is crucial for the immune response of macrophages to bacterial infection. Cav-1 may be a therapeutic target in the treatment of sepsis.

  5. Macrophage-Specific ApoE Gene Repair Reduces Diet-Induced Hyperlipidemia and Atherosclerosis in Hypomorphic Apoe Mice

    PubMed Central

    Gaudreault, Nathalie; Kumar, Nikit; Olivas, Victor R.; Eberlé, Delphine; Rapp, Joseph H.; Raffai, Robert L.

    2012-01-01

    Background Apolipoprotein (apo) E is best known for its ability to lower plasma cholesterol and protect against atherosclerosis. Although the liver is the major source of plasma apoE, extra-hepatic sources of apoE, including from macrophages, account for up to 10% of plasma apoE levels. This study examined the contribution of macrophage-derived apoE expression levels in diet-induced hyperlipidemia and atherosclerosis. Methodology/Principal Findings Hypomorphic apoE (Apoeh/h) mice expressing wildtype mouse apoE at ∼2–5% of physiological levels in all tissues were derived by gene targeting in embryonic stem cells. Cre-mediated gene repair of the Apoeh/h allele in Apoeh/hLysM-Cre mice raised apoE expression levels by 26 fold in freshly isolated peritoneal macrophages, restoring it to 37% of levels seen in wildtype mice. Chow-fed Apoeh/hLysM-Cre and Apoeh/h mice displayed similar plasma apoE and cholesterol levels (55.53±2.90 mg/dl versus 62.70±2.77 mg/dl, n = 12). When fed a high-cholesterol diet (HCD) for 16 weeks, Apoeh/hLysM-Cre mice displayed a 3-fold increase in plasma apoE and a concomitant 32% decrease in plasma cholesterol when compared to Apoeh/h mice (602.20±22.30 mg/dl versus 888.80±24.99 mg/dl, n = 7). On HCD, Apoeh/hLysM-Cre mice showed increased apoE immunoreactivity in lesional macrophages and liver-associated Kupffer cells but not hepatocytes. In addition, Apoeh/hLysM-Cre mice developed 35% less atherosclerotic lesions in the aortic root than Apoeh/h mice (167×103±16×103 µm2 versus 259×103±56×103 µm2, n = 7). This difference in atherosclerosis lesions size was proportional to the observed reduction in plasma cholesterol. Conclusions/Significance Macrophage-derived apoE raises plasma apoE levels in response to diet-induced hyperlipidemia and by such reduces atherosclerosis proportionally to the extent to which it lowers plasma cholesterol levels. PMID:22606237

  6. Different effects of the immunomodulatory drug GMDP immobilized onto aminopropyl modified and unmodified mesoporous silica nanoparticles upon peritoneal macrophages of women with endometriosis.

    PubMed

    Antsiferova, Yuliya; Sotnikova, Nataliya; Parfenyuk, Elena

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages.

  7. Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages

    SciTech Connect

    Kitagawa, S.; Johnston, R.B. Jr.

    1985-11-01

    To understand better the molecular basis for the enhanced respiratory burst of activated macrophages (M phi), the relationship between the stimulus-induced changes in membrane potential and release of superoxide anion (O/sub 2//sup -/) in mouse peritoneal M phi was investigated. Resident M phi and M phi elicited by injection of lipopolysaccharide (LPS-M phi) or obtained from animals infected with bacille Calmette-Guerin (BCG-M phi) were used. LPS-M phi and BCG-M phi showed more pronounced changes in membrane potential (depolarization) and greater release of O/sub 2//sup -/ on contact with phorbol myristate acetate (PMA) than did resident macrophages. The lag time between addition of stimulus and onset of release of O/sub 2//sup -/ was reduced in activated compared with resident cells. Membrane potential changes began 60 to 90 sec before release of O/sub 2//sup -/ could be detected in each cell type. The dose-response curves for triggering of membrane potential changes and O/sub 2//sup -/ release by PMA were identical. The magnitude of membrane potential changes and of O/sub 2//sup -/ release in LPS-M phi and BCG-M phi declined progressively during in vitro culture, and values on day 3 approached those in resident macrophages (deactivation). Extracellular glucose was required for effective stimulated change in membrane potential and O/sub 2//sup -/ release. These findings indicate that membrane potential changes are closely associated with O/sub 2//sup -/-releasing capacity in macrophages, and that the systems that mediate membrane potential changes and production of O/sub 2//sup -/ develop or decline concomitantly during activation or deactivation of the cells.

  8. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Zhao, Lixia; Yang, Yu

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are often detected in the environment, wildlife, and humans, presenting potential threats to ecosystem and human health. PBDEs can cause neurotoxicity, hepatotoxicity, and endocrine disruption. However, data on PBDE immunotoxicity are limited, and the toxicity mechanisms remain largely unknown. Both immune cell death and dysfunction can modulate the responses of the immune system. This study examined the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) on the immune system by using peritoneal macrophages as the model. The macrophages were exposed to PBDEs, and cell death was determined through flow cytometry and immunochemical blot. The results showed that after 24h of exposure, BDE-47 (>5 μM) and BDE-209 (>20 μM) induced cell apoptosis, increased intracellular reactive oxygen species (ROS) formation and depleted glutathione. BDE-47 was more potent than BDE-209; the cytotoxic concentrations for BDE-47 and BDE-209 were determined to be 5 μM and 20 μM, respectively, during 24h of exposure. However, pretreatment with n-acetyl-l-cysteine (ROS scavenger) partially reversed the cytotoxic effects. Further gene expression analyses on Caspase-3,-8,-9, TNFR1, and Bax revealed that both intrinsic and extrinsic apoptotic pathways were activated. More importantly, non-cytotoxic concentrations BDE-47 (<2 μM) and BDE-209 (<10 μM) could impair macrophage accessory cell function in a concentration-dependent manner, but no effects were observed on phagocytic responses. These revealed effects of PBDEs on macrophages may shed light on the toxicity mechanisms of PBDEs and suggest the necessity of evaluating cellular functionality during the risk assessment of PBDE immunotoxicity.

  9. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    SciTech Connect

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  10. Role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in gastric ulcer healing in mice.

    PubMed

    Kawahara, Y; Nakase, Y; Isomoto, Y; Matsuda, N; Amagase, K; Kato, S; Takeuchi, K

    2011-08-01

    We examined the role of macrophage colony-stimulating factor (M-CSF)-dependent macrophages in the healing of gastric ulcers in mice. Male M-CSF-deficient (op/op) and M-CSF-expressing heterozygote (+/?) mice were used. Gastric ulcers were induced by thermal cauterization under ether anesthesia, and healing was observed for 14 days after ulceration. The numbers of macrophages and microvessels in the gastric mucosa were determined immunohistochemically with anti-CD68 and anti-CD31 antibodies, respectively. Expression of tumor necrosis factor (TNF)-α, cyclooxygenase (COX)-2, and vascular endothelial growth factor (VEGF) mRNA was determined via real-time reverse transcription-polymerase chain reaction (RT-PCR), and the mucosal content of prostaglandin (PG) E(2) was determined via enzyme immunoassay on day 10 after ulceration. The healing of gastric ulcers was significantly delayed in op/op mice compared with +/? mice. Further, significantly fewer macrophages were observed in the normal gastric mucosa of op/op mice than in +/? mice. Ulcer induction caused a marked accumulation of macrophages around the ulcer base in +/? mice, but this response was attenuated in op/op mice. The mucosal PGE(2) content as well as the expression of COX-2, VEGF, and TNF-α mRNA were all upregulated in the ulcerated area of +/? mice but significantly suppressed in op/op mice. The degree of vascularization in the ulcerated area was significantly lower in op/op mice than in +/? mice. Taken together, these results suggest that M-CSF-dependent macrophages play an important role in the healing of gastric ulcers, and that this action may be associated with angiogenesis promoted by upregulation of COX-2/PGE(2) production.

  11. Pulmonary Chlamydia muridarum challenge activates lung interstitial macrophages which correlate with IFN-γ production and infection control in mice.

    PubMed

    Gracey, Eric; Baglaenko, Yuriy; Prayitno, Nadia; Van Rooijen, Nico; Akram, Ali; Lin, Aifeng; Chiu, Basil; Inman, Robert D

    2015-12-01

    Protective immunity to the pathogen Chlamydia is dependent on a robust IFN-γ response generated by innate and adaptive lymphocytes. Here we assess the role of the macrophage in orchestrating a protective response in vivo to the murine pathogen, Chlamydia muridarum. During acute pulmonary and peritoneal infection, resident macrophages in both sites are infected with C. muridarum and adopt an inflammatory phenotype. In the lung, this activation is restricted to interstitial macrophages, which harbor higher levels of C. muridarum 16sRNA than alveolar macrophages. We examined innate and adaptive lymphocyte activation in the peritoneal cavity with macrophage depletion and with adoptive transfer of infected macrophages. These experiments demonstrate macrophage activation correlates with a protective IFN-γ response and effective control of C. muridarum. These studies suggest that a quantitative or qualitative alteration in macrophages may play a key role in the development of Chlamydia-associated diseases.

  12. The altered tumoricidal capacity of macrophages isolated from tumor- bearing mice is related to reduce expression of the inducible nitric oxide synthase gene

    PubMed Central

    1996-01-01

    Nitric oxide (NO) is a major effector molecule in the destruction of tumor cells by activated macrophages. However, in many cases, developing neoplasms appear to be capable of impairing steps in the complex process leading to NO production as a means of avoiding immune destruction. After activation with lipopolysaccharide (LPS), peritoneal- elicited macrophages (PEM) from mice bearing mammary tumors display alterations in their ability to lyse tumor cells due to reduced production of NO. In contrast, when these same cells are stimulated with LPS in combination with interferon gamma (IFN-gamma), they are able to produce NO and lyse targets at normal levels. Since tumor- associated macrophages are intimately associated with the cells of the developing tumor, their ability to produce NO and lyse tumor targets is likely to be more relevant to controlling tumor growth. This population of macrophages exhibited a more profound inability to produce NO and lyse targets and, unlike the PEM, was not able to upregulate these functions even when treated with combinations of LPS and IFN-gamma. Northern and Western blots revealed that inducible nitric oxide synthase (iNOS) mRNA and protein levels correlated directly with the ability of each macrophage population to produce NO, and the levels of these macromolecules were altered sufficiently in tumor bearers' macrophages to account for the diminished NO production described. These results indicate that a spatial gradient of suppression of macrophage cytolytic activity and iNOS expression exists in mammary tumor-bearing mice, whereby macrophages from within the tumor exhibit a more pronounced suppression than the more distally located PEM. This suppression may be due to proximity of the macrophages to the developing tumor, macrophage maturational state, or both. PMID:8666890

  13. Role of resident macrophages, peripheral neutrophils, and translymphatic absorption in bacterial clearance from the peritoneal cavity

    SciTech Connect

    Dunn, D.L.; Barke, R.A.; Knight, N.B.; Humphrey, E.W.; Simmons, R.L.

    1985-08-01

    Microbial pathogens within the peritoneal cavity are thought to encounter three categories of host defense mechanisms: (i) removal mechanisms, which occur via diaphragmatic lymphatic absorption; (ii) killing mechanisms, in which host phagocytes act as effector cells; and (iii) sequestration mechanisms due to fibrin trapping and the formation of adhesions between visceral surfaces. The authors sought to define and quantitate the relative role of the first two components in an experimental rat model of Escherichia coli peritonitis in which fibrinous adhesions do not form. Intraperitoneal challenge with greater than or equal to 2 X 10(8) CFU of viable E. coli led to an initial decline in bacterial numbers followed by ongoing proliferation and greater than 50% mortality. With inocula of less than or equal to 5 X 10(7) CFU, elimination of bacteria occurred after moderate initial proliferation, and no mortality ensued. Nonviable, radiolabeled E. coli organisms were utilized to examine bacterial clearance via translymphatic absorption and phagocytosis. Both processes were extremely rapid, serving to eliminate free bacteria rapidly within the peritoneal cavity.

  14. Effect of the native polysaccharide of cashew-nut tree gum exudate on murine peritoneal macrophage modulatory activities.

    PubMed

    Yamassaki, F T; Lenzi, R M; Campestrini, L H; Bovo, F; Seyfried, M; Soldera-Silva, A; Stevan-Hancke, F R; Zawadzki-Baggio, S F; Pettolino, F A; Bacic, A; Maurer, J B B

    2015-07-10

    The native polysaccharide of cashew-nut tree gum exudate (CNTG) and its arabinogalactan-protein component (CNTG-AGP) were tested by using immuno-stimulant and anti-inflammatory in vitro assays of murine peritoneal macrophage activities. In the assay for immuno-stimulant activity (without previous treatment with lipopolysaccharide; LPS), CNTG increased the production of interleukin (IL)-10 and both CNTG and CNTG-AGP decreased the concentrations of IL6. When the macrophages were incubated in the presence of LPS and CNTG a decrease in the levels of nitric oxide (NO(·)) and IFN-γ was observed. The results could explain the popular use of CNTG as an anti-inflammatory. In addition, CNTG is the main component of the cashew-nut tree gum exudate, which has been considered a versatile polymer with potential pharmaceutical and food industry applications. These data may contribute to the study of the immunomodulation activity of plant polysaccharides, as well as encourage future experiments in the field of cashew-nut tree gum exudate applications.

  15. Effects of macrophage colony-stimulating factor (M-CSF) on the development, differentiation, and maturation of marginal metallophilic macrophages and marginal zone macrophages in the spleen of osteopetrosis (op) mutant mice lacking functional M-CSF activity.

    PubMed

    Takahashi, K; Umeda, S; Shultz, L D; Hayashi, S; Nishikawa, S

    1994-05-01

    Immunohistochemical techniques using an anti-mouse panmacrophage monoclonal antibody and anti-mouse monoclonal antibodies specific for marginal metallophilic macrophages or marginal zone macrophages were used to detect red pulp macrophages, marginal metallophilic macrophages, and marginal zone macrophages in the spleen of op/op mice. In the mutant mice, the red pulp macrophages were reduced to about 60% of those in the normal littermates and the marginal metallophilic macrophages and marginal zone macrophages were absent. After administration of recombinant human macrophage colony-stimulating factor (rhM-CSF), numbers of red pulp macrophages increased rapidly, reaching levels found in normal littermates 1 week later. In contrast, the marginal metallophilic macrophages as well as the marginal zone macrophages appeared slowly after rhM-CSF administration and their numbers were less than half of the baseline level of normal littermates even at 12 weeks of administration. The distribution of marginal metallophilic macrophages and marginal zone macrophages appearing after M-CSF administration was irregular in the spleen of the op/op mice. These splenic macrophage subpopulations differed in their responses to rhM-CSF, suggesting that distinct mechanisms may be involved in their development and differentiation. The splenic red pulp macrophages present in unmanipulated op/op mice are an M-CSF-independent macrophage population. Although the marginal metallophilic macrophages and marginal zone macrophages are thought to be M-CSF-dependent, their development and differentiation appear to be influenced by locally produced M-CSF or other cytokines.

  16. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W.; Testa, Joseph R.; Hwang, Wei-Ting; Albelda, Steven M.

    2016-01-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2+/mu mice. Mice (n = 16–17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  17. Interleukin-5 induces tumor suppression by peritoneal exudate cells in mice.

    PubMed

    Nakashima, Y; Mita, S; Takatsu, K; Ogawa, M

    1993-09-01

    The antitumor activity of peritoneal exudate cells (PEC) induced by murine interleukin-5 (mIL-5) was examined using Meth-A sarcoma cells transplanted into the peritoneal cavity of mice. Although in vitro treatment of Meth-A sarcoma cells with mIL-5 did not result in inhibition of their growth, treatment of mice intraperitoneally with mIL-5 (1 microgram/day) from day -5 to +5 (tumor cells were inoculated on day 0) led to a significant increase in survival or even rejection of tumor cells. This antitumor effect depended on the dose of mIL-5. Interestingly, there was identical therapeutic activity when the protocol of days -10 to -1 was used as opposed to -5 to +5. In addition, post-treatment with mIL-5 from day +1 to +10 was ineffective. This suggests that the therapeutic activity of IL-5 is largely prophylactic. Under the former condition, the number of PEC was found to increase over 50-fold when compared to levels in control mice. Moreover, the antitumor effect of mIL-5 was completely abolished by subcutaneous injection of anti-mIL-5 monoclonal antibodies. The treatment of mice injected intraperitoneally with human IL-2 also resulted in an increase in survival. Winn assay experiments using PEC recovered from mIL-5-treated mice (1 microgram/day, from day -10 to -1) revealed that these PEC could mediate antitumor activity against Meth-A sarcoma cells. Furthermore, when the cured mice were re-injected with Meth-A sarcoma cells or syngeneic MOPC104E cells, they could reject Meth-A sarcoma cells but not MOPC104E cells, indicating that immune memory had been generated. These results suggest that IL-5 augmented the PEC tumoricidal activity but we have no indication that the tumoricidal activity was mediated through a mIL-5-dependent mechanism.

  18. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W; Testa, Joseph R; Hwang, Wei-Ting; Albelda, Steven M; Christofidou-Solomidou, Melpo

    2016-02-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2(+/mu) mice. Mice (n = 16-17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM.

  19. Mechanisms of glucocorticoid induced suppression of phagocytosis in murine peritoneal macrophage cultures

    SciTech Connect

    Becker, J.L.

    1986-01-01

    Glucocorticoids suppress phagocytosis of heat killed Saccharomyces cerevisiae in macrophage cultures. In order to determine the mechanisms by which this response occurs, this investigation was initiated to examine whether the suppression of phagocytosis is mediated by a steroid induced phagocytosis inhibitory protein (PIP). Furthermore, it is postulated that these suppressive effects may be associated with alterations in macrophage phospholipid metabolism. To assess the association between phospholipid metabolism and phagocytosis, control and 1 ..mu..M dexamethasone treated macrophages were exposed to the phospholipase inhibitor bromophenacylbromide. The enzyme inhibitor suppressed phagocytosis in a time and dose dependent manner. However, supplying dexamethasone treated cultures with arachidonate did not reverse the steroid induced suppression of phagocytosis, whether the arachidonate was supplied alone or together with indomethacin and nordihydroguaiaretic acid. Control cells, prelabeled with /sup 3/H-arachidonate, exhibited an increased percentage of the radiolabeled fatty acid in neutral lipids following phagocytosis, with a corresponding decrease in the percentage associated with phosphatidylcholine.

  20. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells

    PubMed Central

    Hall, Brandon M.; Balan, Vitaly; Gleiberman, Anatoli S.; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P.; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B.; Gudkov, Andrei V.

    2016-01-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-galpH6), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-galpH6-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-galpH6-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-galpH6-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-galpH6-positive cells and reconsideration of potential cellular target for anti-aging treatment. PMID:27391570

  1. Prevention of peritoneal carcinomatosis from colon cancer cell seeding using a pirarubicin solution in rats and nude mice.

    PubMed

    Favoulet, Patrick; Benoit, Laurent; Osmak, Liliana; Polycarpe, Emmanuel; Esquis, Philippe; Duvillard, Christian; Guiu, Boris; Rat, Patrick; Favre, Jean Pierre; Chauffert, Bruno

    2004-05-01

    Free malignant cells, which are frequently detected in the washing liquid from the peritoneal cavity before and after resection of human colorectal cancer, are suspected to cause recurrent peritoneal cancer. We carried out an experimental study to compare the prophylactic efficacy of washing the peritoneum with several anticancer drugs and the antiseptic povidone-iodine against the development of peritoneal carcinomatosis from colonic origin in rats and nude mice. The in vitro anticancer activity of a short, 15-minute exposure of pirarubicin, doxorubicin, 5-fluorouracil, cisplatin, mitomycin C, and 1% povidone-iodine was first evaluated by an MTT assay on DHD/K12/PROb rat and LS174T human colon cancer cells. For the in vivo experiments, BDIX rats were inoculated intraperitoneally (i.p.) with 1 x 10(6) DHD/K12/PROb cells followed by peritoneal scarring and a colocolic anastomosis. A 15-minute peritoneal washing with the anticancer drugs or povidone-iodine was then performed. Nude mice were i.p.-inoculated with 1 x 10(7) LS174T human cells and treated 2 hours later with i.p. pirarubicin. Only pirarubicin, mitomycin C, and povidone-iodine were fully cytotoxic in vitro against DHD/K12/PROb rat colon cancer cells. In contrast to pirarubicin and povidone-iodine, mitomycin C was not completely active against LS174Tcells. In vivo, pirarubicin cured DHD/K12/PROb-inoculated rats, even at the site of the peritoneal scarring and intestinal anastomosis. i.p. pirarubicin prevented the development of peritoneal carcinomatosis and liver metastasis in LS174T-inoculated mice. i.p. washing with pirarubicin cured 2-day-old, but not 7-day-old, peritoneal carcinomatosis in rats. Short exposure to i.p. pirarubicin is nontoxic and more active than povidone-iodine and other anticancer drugs in preventing the development of peritoneal carcinomatosis from colonic origin in rats and mice. The prophylactic effect of preoperative peritoneal washing with pirarubicin on the development of

  2. Paricalcitol Reduces Peritoneal Fibrosis in Mice through the Activation of Regulatory T Cells and Reduction in IL-17 Production

    PubMed Central

    González-Mateo, Guadalupe T.; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S.

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice. PMID:25279459

  3. Macrophages are the determinant of resistance to and outcome of nonlethal Babesia microti infection in mice.

    PubMed

    Terkawi, Mohamad Alaa; Cao, Shinuo; Herbas, Maria S; Nishimura, Maki; Li, Yan; Moumouni, Paul Franck Adjou; Pyarokhil, Asadullah Hamid; Kondoh, Daisuke; Kitamura, Nobuo; Nishikawa, Yoshifumi; Kato, Kentaro; Yokoyama, Naoaki; Zhou, Jinlin; Suzuki, Hiroshi; Igarashi, Ikuo; Xuan, Xuenan

    2015-01-01

    In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ(-/-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.

  4. CXCR2 deficient mice display macrophage-dependent exaggerated acute inflammatory responses

    PubMed Central

    Dyer, Douglas P.; Pallas, Kenneth; Ruiz, Laura Medina; Schuette, Fabian; Wilson, Gillian J.; Graham, Gerard J.

    2017-01-01

    CXCR2 is an essential regulator of neutrophil recruitment to inflamed and damaged sites and plays prominent roles in inflammatory pathologies and cancer. It has therefore been highlighted as an important therapeutic target. However the success of the therapeutic targeting of CXCR2 is threatened by our relative lack of knowledge of its precise in vivo mode of action. Here we demonstrate that CXCR2-deficient mice display a counterintuitive transient exaggerated inflammatory response to cutaneous and peritoneal inflammatory stimuli. In both situations, this is associated with reduced expression of cytokines associated with the resolution of the inflammatory response and an increase in macrophage accumulation at inflamed sites. Analysis using neutrophil depletion strategies indicates that this is a consequence of impaired recruitment of a non-neutrophilic CXCR2 positive leukocyte population. We suggest that these cells may be myeloid derived suppressor cells. Our data therefore reveal novel and previously unanticipated roles for CXCR2 in the orchestration of the inflammatory response. PMID:28205614

  5. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  6. Combination Therapy with a Sodium-Glucose Cotransporter 2 Inhibitor and a Dipeptidyl Peptidase-4 Inhibitor Additively Suppresses Macrophage Foam Cell Formation and Atherosclerosis in Diabetic Mice

    PubMed Central

    Hiromura, Munenori; Mori, Yusaku; Kohashi, Kyoko; Kushima, Hideki; Ohara, Makoto; Watanabe, Takuya; Andersson, Olov

    2017-01-01

    Dipeptidyl peptidase-4 inhibitors (DPP-4is), in addition to their antihyperglycemic roles, have antiatherosclerotic effects. We reported that sodium-glucose cotransporter 2 inhibitors (SGLT2is) suppress atherosclerosis in a glucose-dependent manner in diabetic mice. Here, we investigated the effects of combination therapy with SGLT2i and DPP-4i on atherosclerosis in diabetic mice. SGLT2i (ipragliflozin, 1.0 mg/kg/day) and DPP-4i (alogliptin, 8.0 mg/kg/day), either alone or in combination, were administered to db/db mice or streptozotocin-induced diabetic apolipoprotein E-null (Apoe−/−) mice. Ipragliflozin and alogliptin monotherapies improved glucose intolerance; however, combination therapy did not show further improvement. The foam cell formation of peritoneal macrophages was suppressed by both the ipragliflozin and alogliptin monotherapies and was further enhanced by combination therapy. Although foam cell formation was closely associated with HbA1c levels in all groups, DPP-4i alone or the combination group showed further suppression of foam cell formation compared with the control or SGLT2i group at corresponding HbA1c levels. Both ipragliflozin and alogliptin monotherapies decreased scavenger receptors and increased cholesterol efflux regulatory genes in peritoneal macrophages, and combination therapy showed additive changes. In diabetic Apoe−/− mice, combination therapy showed the greatest suppression of plaque volume in the aortic root. In conclusion, combination therapy with SGLT2i and DPP4i synergistically suppresses macrophage foam cell formation and atherosclerosis in diabetic mice.

  7. Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii

    PubMed Central

    Mota, Laura Azeredo Miranda; Roberto, João; Monteiro, Verônica Gomes; Lobato, Caroliny Samary Silva; de Oliveira, Marco Antonio; da Cunha, Maura; D’Ávila, Heloisa; Seabra, Sérgio Henrique; Bozza, Patrícia Torres; DaMatta, Renato Augusto

    2014-01-01

    Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production. PMID:25317704

  8. Acrolein increases macrophage atherogenicity in association with gut microbiota remodeling in atherosclerotic mice: protective role for the polyphenol-rich pomegranate juice.

    PubMed

    Rom, Oren; Korach-Rechtman, Hila; Hayek, Tony; Danin-Poleg, Yael; Bar, Haim; Kashi, Yechezkel; Aviram, Michael

    2017-04-01

    The unsaturated aldehyde acrolein is pro-atherogenic, and the polyphenol-rich pomegranate juice (PJ), known for its anti-oxidative/anti-atherogenic properties, inhibits macrophage foam cell formation, the hallmark feature of early atherosclerosis. This study aimed to investigate two unexplored areas of acrolein atherogenicity: macrophage lipid metabolism and the gut microbiota composition. The protective effects of PJ against acrolein atherogenicity were also evaluated. Atherosclerotic apolipoprotein E-deficient (apoE(-/-)) mice that were fed acrolein (3 mg/kg/day) for 1 month showed significant increases in serum and aortic cholesterol, triglycerides, and lipid peroxides. In peritoneal macrophages isolated from the mice and in J774A.1 cultured macrophages, acrolein exposure increased intracellular oxidative stress and stimulated cholesterol and triglyceride accumulation via enhanced rates of their biosynthesis and over-expression of key regulators of cellular lipid biosynthesis: sterol regulatory element-binding proteins (SREBPs), 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR), and diacylglycerol acyltransferase1 (DGAT1). Acrolein-fed mice demonstrated a major shift in the gut microbiota composition, including a significant phylum-level change in increased Firmicutes and decreased Bacteroidetes. At the family level, acrolein significantly increased the prevalence of Ruminococcaceae and Lachnospiraceae of which the Coprococcus genus was significantly and positively correlated with serum, aortic and macrophage lipid levels and peroxidation. The pro-atherogenic effects of acrolein on serum, aortas, macrophages, and the gut microbiota were substantially abolished by PJ. In conclusion, these findings provide novel mechanisms by which acrolein increases macrophage lipid accumulation and alters the gut microbiota composition in association with enhanced atherogenesis. Moreover, PJ was found as an effective strategy against acrolein atherogenicity.

  9. Diagnostic utility of a direct immunofluorescence test to detect feline coronavirus antigen in macrophages in effusive feline infectious peritonitis.

    PubMed

    Litster, A L; Pogranichniy, R; Lin, T-L

    2013-11-01

    The antemortem diagnosis of feline infectious peritonitis (FIP) remains challenging in clinical practice, since current testing methods have suboptimal diagnostic accuracy. Immunohistochemical testing of biopsy specimens and postmortem examination are the standard diagnostic methods, although direct immunofluorescence (DIF) testing to detect feline coronavirus in macrophages in effusion specimens has been reported to have 100% specificity and has been recommended as an antemortem confirmatory test. The aim of this study was to compare the results of DIF testing in antemortem feline effusions with postmortem results using field samples. Effusion specimens were collected antemortem from 17 cats and tested by DIF, followed by postmortem examination. Histopathological examination of specimens collected at postmortem confirmed FIP in 10/17 cases and ruled out FIP out in 7/17 cases. Antemortem DIF testing was positive in all 10 cases confirmed as FIP at postmortem examination. In the seven cats where FIP was ruled out at postmortem examination, DIF was negative in five cases and positive in the remaining two cases. The calculated sensitivity of DIF testing was 100% and the specificity was 71.4%. Duplicate effusion specimens from eight cats that were initially DIF positive were stored refrigerated (4 °C) or at room temperature (22-25 °C) and subjected to serial DIF testing to determine the duration of positive results. DIF-positive specimens stored at both temperatures retained their positive status for at least 2 days.

  10. Sodium-cromoglycate (Cromolyn) selectively increases the binding and phagocytosis of unsensitized target cells by rat peritoneal macrophages.

    PubMed

    Miklós, K; Tolnay, M; Medgyesi, G A

    1996-09-01

    The influence of sodium-cromoglycate (cromolyn) on the binding and ingestion of sheep erythrocytes (SRBC) by elicited rat peritoneal macrophages (M phi) was studied using unsensitized SRBC. SRBC sensitized by homologous IgG or by IgM and complement as target cells. Preincubation of M phi with the drug (1 nM/1-2 mM/1) markedly enhanced both binding and ingestion of uncoated SRBC. The IgG-related increment in binding and phagocytosis was not significantly influenced by the drug. When target cells were coated by IgM and complement cromolyn pretreatment was ineffective. Preincubation of M phi by bovine brain gangliosides (BBG) diminished the cromolyn-induced enhancement of target cell binding and phagocytosis. When SRBC were pretreated by BBG, an increase of binding and phagocytosis was observed. These data suggest that cromoglycate may enhance the capacity of M phi to bind erythrocytes via ganglioside structures. Coating SRBC by complement components appears to interfere with binding of erythrocytes to M phi ganglioside receptors.

  11. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages.

    PubMed

    Chávez Enciso, N A; Coy-Barrera, E D; Patiño, O J; Cuca, L E; Delgado, Gabriela

    2014-05-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis.

  12. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages

    PubMed Central

    Chávez Enciso, N. A.; Coy-barrera, E. D.; Patiño, O. J.; Cuca, L. E.; Delgado, Gabriela

    2014-01-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis. PMID:25035529

  13. Attachment, ingestion and intracellular killing of Helicobacter pylori by human peripheral blood mononuclear leukocytes and mouse peritoneal inflammatory macrophages.

    PubMed

    Chmiela, M; Paziak-Domanska, B; Wadström, T

    1995-02-01

    The different steps of phagocytosis, attachment, ingestion and intracellular killing of cells of Helicobacter pylori strain 17874 (expressing sialic acid-specific haemagglutinin) and cells of H. pylori strain 17875 (expressing non-sialic acid-specific haemagglutinin) have been studied. More cells of sialopositive H. pylori strain 17874 have been found attached to human peripheral blood mononuclear leukocytes (PBM) and mouse peritoneal inflammatory macrophages (PIM) than cells of sialonegative H. pylori strain 17875. Binding of cells of H. pylori strain 17874 has been significantly inhibited by treatment of phagocytes with neuraminidase. Inhibition of adhesion of these bacteria preincubated with foetuin to normal phagocytic cells has also been found. Well adhering cells of H. pylori strain 17874 were more resistant to killing mechanisms of human PBM and mouse PIM than cells of strain 17875. Good, probably sialic acid-specific haemagglutinin dependent, adhesion of H. pylori bacteria to phagocytes can be considered as an important virulence factor which facilitates the pathogen to avoid the defence mechanisms.

  14. CCN1 expression in hepatocytes contributes to macrophage infiltration in nonalcoholic fatty liver disease in mice.

    PubMed

    Bian, Zhaolian; Peng, Yanshen; You, Zhengrui; Wang, Qixia; Miao, Qi; Liu, Yuan; Han, Xiaofeng; Qiu, Dekai; Li, Zhiping; Ma, Xiong

    2013-01-01

    Our objective was to investigate the potential roles of CCN1 in the inflammation and macrophage infiltration of nonalcoholic fatty liver disease (NAFLD). The regulation of hepatic CCN1 expression was investigated in vitro with murine primary hepatocytes treated with free fatty acids or lipopolysaccharide (LPS) and in vivo with high-fat (HF) diet-fed mice or ob/ob mice. CCN1 protein and a liver-specific CCN1 expression plasmid were administered to mice fed a normal diet (ND) or HF diet. Myeloid-derived macrophages and RAW264.7 cells were also treated with CCN1 in vitro to determine the chemotactic effects of CCN1 on macrophages. LPS treatment significantly increased hepatic CCN1 expression in HF diet-fed mice and ob/ob mice. LPS and FFAs induced CCN1 expression in primary murine hepatocytes in vitro through the TLR4/MyD88/AP-1 pathway. CCN1 protein and overexpression of CCN1 in the liver induced more severe hepatic inflammation and macrophage infiltrates in HF mice than in ND mice. CCN1 recruited macrophages through activation of the Mek/Erk signaling pathway in myeloid-derived macrophages and RAW264.7 cells in vitro. Endotoxin and FFA-induced CCN1 expression in hepatocytes is involved in the hepatic proinflammatory response and macrophage infiltration in murine NAFLD.

  15. Reduced Necrosis and Content of Apoptotic M1 Macrophages in Advanced Atherosclerotic Plaques of Mice With Macrophage-Specific Loss of Trpc3

    PubMed Central

    Solanki, Sumeet; Dube, Prabhatchandra R.; Birnbaumer, Lutz; Vazquez, Guillermo

    2017-01-01

    In previous work we reported that ApoeKO mice transplanted with bone marrow cells deficient in the Transient Receptor Potential Canonical 3 (TRPC3) channel have reduced necrosis and number of apoptotic macrophages in advanced atherosclerotic plaques. Also, in vitro studies with polarized macrophages derived from mice with macrophage-specific loss of TRPC3 showed that M1, but not M2 macrophages, deficient in Trpc3 are less susceptible to ER stress-induced apoptosis than Trpc3 expressing cells. The questions remained (a) whether the plaque phenotype in transplanted mice resulted from a genuine effect of Trpc3 on macrophages, and (b) whether the reduced necrosis and macrophage apoptosis in plaques of these mice was a manifestation of the selective effect of TRPC3 on apoptosis of M1 macrophages previously observed in vitro. Here, we addressed these questions using Ldlr knockout (Ldlr−/−) mice with macrophage-specific loss of Trpc3 (MacTrpc3−/−/Ldlr−/− → Ldlr−/−). Compared to controls, we observed decreased plaque necrosis and number of apoptotic macrophages in MacTrpc3−/−/Ldlr−/− → Ldlr−/− mice. Immunohistochemical analysis revealed a reduction in apoptotic M1, but not apoptotic M2 macrophages. These findings confirm an effect of TRPC3 on plaque necrosis and support the notion that this is likely a reflection of the reduced susceptibility of Trpc3-deficient M1 macrophages to apoptosis. PMID:28186192

  16. The peritoneal macrophage inflammatory profile in cirrhosis depends on the alcoholic or hepatitis C viral etiology and is related to ERK phosphorylation

    PubMed Central

    2012-01-01

    Background The development of ascites in cirrhotic patients generally heralds a deterioration in their clinical status. A differential gene expression profile between alcohol- and hepatitis C virus (HCV)-related cirrhosis has been described from liver biopsies, especially those associated with innate immune responses. The aim of this work was to identify functional differences in the inflammatory profile of monocyte-derived macrophages from ascites in cirrhotic patients of different etiologies in an attempt to extrapolate studies from liver biopsies to immune cells in ascites. To this end 45 patients with cirrhosis and non-infected ascites, distributed according to disease etiology, HCV (n = 15) or alcohol (n = 30) were studied. Cytokines and the cell content in ascites were assessed by ELISA and flow cytometry, respectively. Cytokines and ERK phosphorylation in peritoneal monocyte-derived macrophages isolated and stimulated in vitro were also determined. Results A different pattern of leukocyte migration to the peritoneal cavity and differences in the primed status of macrophages in cirrhosis were observed depending on the viral or alcoholic etiology. Whereas no differences in peripheral blood cell subpopulations could be observed, T lymphocyte, monocyte and polymorphonuclear cell populations in ascites were more abundant in the HCV than the alcohol etiology. HCV-related cirrhosis etiology was associated with a decreased inflammatory profile in ascites compared with the alcoholic etiology. Higher levels of IL-10 and lower levels of IL-6 and IL-12 were observed in ascitic fluid from the HCV group. Isolated peritoneal monocyte-derived macrophages maintained their primed status in vitro throughout the 24 h culture period. The level of ERK1/2 phosphorylation was higher in ALC peritoneal macrophages at baseline than in HCV patients, although the addition of LPS induced a greater increase in ERK1/2 phosphorylation in HCV than in ALC patients. Conclusions The

  17. Selective and specific macrophage ablation is detrimental to wound healing in mice.

    PubMed

    Mirza, Rita; DiPietro, Luisa A; Koh, Timothy J

    2009-12-01

    Macrophages are thought to play important roles during wound healing, but definition of these roles has been hampered by our technical inability to specifically eliminate macrophages during wound repair. The purpose of this study was to test the hypothesis that specific depletion of macrophages after excisional skin wounding would detrimentally affect healing by reducing the production of growth factors important in the repair process. We used transgenic mice that express the human diphtheria toxin (DT) receptor under the control of the CD11b promoter (DTR mice) to specifically ablate macrophages during wound healing. Mice without the transgene are relatively insensitive to DT, and administration of DT to wild-type mice does not alter macrophage or other inflammatory cell accumulation after injury and does not influence wound healing. In contrast, treatment of DTR mice with DT prevented macrophage accumulation in healing wounds but did not affect the accumulation of neutrophils or monocytes. Such macrophage depletion resulted in delayed re-epithelialization, reduced collagen deposition, impaired angiogenesis, and decreased cell proliferation in the healing wounds. These adverse changes were associated with increased levels of tumor necrosis factor-alpha and reduced levels of transforming growth factor-beta1 and vascular endothelial growth factor in the wound. In summary, macrophages seem to promote both wound closure and dermal healing, in part by regulating the cytokine environment of the healing wound.

  18. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    PubMed

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  19. Macrophage apolipoprotein A-I expression protects against atherosclerosis in ApoE-deficient mice and up-regulates ABC transporters.

    PubMed

    Su, Yan Ru; Ishiguro, Hiroyuki; Major, Amy S; Dove, Dwayne E; Zhang, Wenwu; Hasty, Alyssa H; Babaev, Vladimir R; Linton, MacRae F; Fazio, Sergio

    2003-10-01

    The antiatherogenic effect of high-density lipoprotein (HDL) and its major protein component apolipoprotein A-I (apoA-I) has been largely attributed to their key roles in reverse cholesterol transport (RCT) and cellular cholesterol efflux. Substantial evidence shows that overexpression of human apoA-I reduces atherosclerosis in animal models. However, it is uncertain whether this protection is due to an increase in plasma HDL level or to a local effect in the artery wall. To test the hypothesis that expression of human apoA-I in macrophages can promote RCT in the artery wall, we used a retroviral construct expressing human apoA-I cDNA (MFG-HAI) to transduce ApoE(-/-) bone marrow cells and then transplanted these cells into ApoE(-/-) mice with preexisting atherosclerosis. ApoE(-/-) mice reconstituted with MFG-HAI marrow had a significant reduction (30%) in atherosclerotic lesions in the proximal aorta compared to control mice that received marrow expressing MFG parental virus. Peritoneal macrophages isolated from MFG-HAI mice showed a four- to fivefold increase in mRNA expression levels of both ATP-binding cassette (ABC) A1 and ABCG1 compared to controls. Our data demonstrate that gene transfer-mediated expression of human apoA-I in macrophages can compensate in part for apoE deficiency and delay the progression of atherosclerotic lesions by stimulating ABC-dependent cholesterol efflux and RCT.

  20. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  1. Macrophage depletion abates Porphyromonas gingivalis-induced alveolar bone resorption in mice.

    PubMed

    Lam, Roselind S; O'Brien-Simpson, Neil M; Lenzo, Jason C; Holden, James A; Brammar, Gail C; Walsh, Katrina A; McNaughtan, Judith E; Rowler, Dennis K; Van Rooijen, Nico; Reynolds, Eric C

    2014-09-01

    The role of the macrophage in the immunopathology of periodontitis has not been well defined. In this study, we show that intraoral inoculation of mice with Porphyromonas gingivalis resulted in infection, alveolar bone resorption, and a significant increase in F4/80(+) macrophages in gingival and submandibular lymph node tissues. Macrophage depletion using clodronate-liposomes resulted in a significant reduction in F4/80(+) macrophage infiltration of gingival and submandibular lymph node tissues and significantly (p < 0.01) less P. gingivalis-induced bone resorption compared with controls in BALB/c and C57BL/6 mice. In both mouse strains, the P. gingivalis-specific IgG Ab subclass and serum cytokine [IL-4, IL-10, IFN-γ, and IL-12 (p70)] responses were significantly (p < 0.01) lower in the macrophage-depleted groups. Macrophage depletion resulted in a significant reduction in the level of P. gingivalis infection, and the level of P. gingivalis infection was significantly correlated with the level of alveolar bone resorption. M1 macrophages (CD86(+)), rather than M2 macrophages (CD206(+)), were the dominant macrophage phenotype of the gingival infiltrate in response to P. gingivalis infection. P. gingivalis induced a significant (p < 0.01) increase in NO production and a small increase in urea concentration, as well as a significant increase in the secretion of IL-1β, IL-6, IL-10, IL-12 (p70), eotaxin, G-CSF, GM-CSF, macrophage chemoattractant protein-1, macrophage inflammatory protein-α and -β, and TNF-α in isolated murine macrophages. In conclusion, P. gingivalis infection induced infiltration of functional/inflammatory M1 macrophages into gingival tissue and alveolar bone resorption. Macrophage depletion reduced P. gingivalis infection and alveolar bone resorption by modulating the host immune response.

  2. Uptake by mouse peritoneal macrophages of large cholesteryl ester-rich particles isolated from human atherosclerotic lesions.

    PubMed

    Hoff, H F; Clevidence, B A

    1987-06-01

    We have previously shown that a lipoprotein fraction consisting of large cholesteryl ester-rich particles can be isolated from homogenates of human aortic plaques by gel exclusion chromatography. This fraction was recognized by a high-affinity binding site on mouse peritoneal macrophages (MPM) resulting in unregulated uptake, stimulation of cholesterol esterification, and massive accumulation of cholesteryl esters. In this report we have further characterized such a fraction, designated lipid-protein complex (LP), which can be isolated from the void volume fraction of a Bio-Gel A-150m column following chromatography of plaque extracts. LP possessed a mean cholesterol-to-protein ratio of 2.3; it was heterogeneous in size and structure as observed by electron microscopy after negative staining, and it stimulated cholesterol esterification in MPM in a linear fashion over a 48-hr time interval, suggesting that the binding site on MPM recognizing LP was not down-regulated by intracellular cholesterol content. This uptake resulted in the presence of oil red O-positive intracellular droplets and numerous vacuoles containing electron-dense structures, whereas MPM incubated without lipoprotein showed few vacuoles or lipid droplets. Using SDS-PAGE and immunoblot and dot-blot techniques, we found that the major proteins associated with LP were albumin and fibronectin, whereas apoB and apoE were present in lower amounts. These proteins may be responsible for opsonization of LP, making it recognizable to receptors on MPM and facilitating LP uptake by MPM. LP isolated from tissue extracts without homogenization had the same structural and functional characteristics, suggesting that homogenization per se was not responsible for creating a particle that was recognized by MPM. However, homogenization yielded two to three times more LP. MPM uptake of LP derived from lysed foam cells may represent one of the mechanisms by which fatty streak lesions may grow to larger atherosclerotic

  3. Protective effect of a novel antibody against TLR2 on zymosan-induced acute peritonitis in NF-κB transgenic mice

    PubMed Central

    Pan, Qingjun; Cai, Jun; Peng, Yanxia; Xiao, Haiyan; Zhang, Lifang; Chen, Jinying; Liu, Huafeng

    2017-01-01

    In addition to antibiotic therapy for treatment of peritonitis, biologics have also been found to exhibit both anti-inflammatory and inflammation-resolving properties. Here, we first developed NF-κB transgenic mice with zymosan-induced acute peritonitis to investigate the effects of a novel anti-Toll-like receptor (TLR)2 antibody (anti-T20). In this mouse model, anti-T20 treatment significantly attenuated the increase of peritoneal NF-κB activity and serum levels of inflammatory cytokines, including monocyte chemoattractant protein (MCP)-1, interleukin (IL)-6 and tumor necrosis factor (TNF)-α, in a dose-dependent manner compared to mice treated with isotype control antibody. Additionally, anti-T20 treatment significantly reduced MCP-1 levels as well as the leukocyte and total protein concentrations in the peritoneal exudates of peritonitis mice. Moreover, anti-T20 treatment significantly reduced TLR2 signal transduction in the leukocytes in peritoneal exudates from the experimental peritonitis mice. In conclusion, we developed a zymosan-induced acute peritonitis mouse model that facilitated visualization of NF-κB activity and demonstrated that anti-T20 treatment plays a protective role in this model concomitant with the inhibition of the zymosan-induced inflammatory response. PMID:28337297

  4. Sialoadhesin expression by bone marrow macrophages derived from Ehrlich-tumor-bearing mice.

    PubMed

    Kusmartsev, S; Ruiz de Morales, J M; Rullas, J; Danilets, M G; Subiza, J L

    1999-12-01

    Sialoadhesin (sheep erythrocyte receptor, SER) is a macrophage-restricted adhesion molecule that binds certain sialylated ligands. It is borne by bone marrow stromal macrophages, promoting the interaction with developing myeloid cells, and by a subset of tissue macrophages involved in antigen presentation and activation of tumor-reactive T cells. The expression of sialoadhesin on SER+ macrophages is not constitutive but requires the continuous supply of a sialoadhesin-inducing serum factor. Tumor growth is often associated with marked alterations of myelopoiesis and impairment of T cell activation; yet the expression of sialoadhesin in macrophages derived from tumor bearers has not been addressed. The aim of this study was to assess whether Ehrlich tumor (ET) - a murine mammary carcinoma - growth may modify the sialoadhesin expression by bone marrow macrophages and/or sialoadhesin-inducing activity in ET-bearing sera. Moreover, putative functional sialoadhesin inhibitors produced by ET cells were tested. The results indicate that bone marrow cells from ET bearers show a seven- to eight-fold decrease in SER+ cells as detected by flow cytometry. This is accompanied by an overall decrease in sheep erythrocyte binding to tumor-bearer-derived bone marrow cells, but also by lower numbers of plastic-adherent cells. Functional sialoadhesin expression is preserved at the single-cell level and no inhibitors are found in ET-bearing sera or ET cell culture supernatants. Tumor progression does not impair the sialoadhesin-inducing activity of ET-bearing sera, or the ability of SER- macrophages (e.g. peritoneal macrophages) to respond to such an induction. In conclusion, while SER+ macrophages are greatly decreased in bone marrow from ET bearers, this is not due to a down-regulation of sialoadhesin expression, nor to an impairment of sialoadhesin-inducing factor or to the presence of sialoadhesin-binding moieties of tumor origin, but, more likely, to a decrease of fully mature

  5. Vascular endothelial growth factor (VEGF), produced by feline infectious peritonitis (FIP) virus-infected monocytes and macrophages, induces vascular permeability and effusion in cats with FIP.

    PubMed

    Takano, Tomomi; Ohyama, Taku; Kokumoto, Aiko; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-06-01

    Feline infectious peritonitis virus (FIPV) causes a fatal disease called FIP in Felidae. The effusion in body cavity is commonly associated with FIP. However, the exact mechanism of accumulation of effusion remains unclear. We investigated vascular endothelial growth factor (VEGF) to examine the relationship between VEGF levels and the amounts of effusion in cats with FIP. Furthermore, we examined VEGF production in FIPV-infected monocytes/macrophages, and we used feline vascular endothelial cells to examine vascular permeability induced by the culture supernatant of FIPV-infected macrophages. In cats with FIP, the production of effusion was related with increasing plasma VEGF levels. In FIPV-infected monocytes/macrophages, the production of VEGF was associated with proliferation of virus. Furthermore, the culture supernatant of FIPV-infected macrophages induced hyperpermeability of feline vascular endothelial cells. It was suggested that vascular permeability factors, including VEGF, produced by FIPV-infected monocytes/macrophages might increase the vascular permeability and the amounts of effusion in cats with FIP.

  6. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ

    PubMed Central

    Li, Andrew C.; Binder, Christoph J.; Gutierrez, Alejandra; Brown, Kathleen K.; Plotkin, Christine R.; Pattison, Jennifer W.; Valledor, Annabel F.; Davis, Roger A.; Willson, Timothy M.; Witztum, Joseph L.; Palinski, Wulf; Glass, Christopher K.

    2004-01-01

    PPARα, β/δ, and γ regulate genes involved in the control of lipid metabolism and inflammation and are expressed in all major cell types of atherosclerotic lesions. In vitro studies have suggested that PPARs exert antiatherogenic effects by inhibiting the expression of proinflammatory genes and enhancing cholesterol efflux via activation of the liver X receptor–ABCA1 (LXR-ABCA1) pathway. To investigate the potential importance of these activities in vivo, we performed a systematic analysis of the effects of PPARα, β, and γ agonists on foam-cell formation and atherosclerosis in male LDL receptor–deficient (LDLR–/–) mice. Like the PPARγ agonist, a PPARα-specific agonist strongly inhibited atherosclerosis, whereas a PPARβ-specific agonist failed to inhibit lesion formation. In concert with their effects on atherosclerosis, PPARα and PPARγ agonists, but not the PPARβ agonist, inhibited the formation of macrophage foam cells in the peritoneal cavity. Unexpectedly, PPARα and PPARγ agonists inhibited foam-cell formation in vivo through distinct ABCA1-independent pathways. While inhibition of foam-cell formation by PPARα required LXRs, activation of PPARγ reduced cholesterol esterification, induced expression of ABCG1, and stimulated HDL-dependent cholesterol efflux in an LXR-independent manner. In concert, these findings reveal receptor-specific mechanisms by which PPARs influence macrophage cholesterol homeostasis. In the future, these mechanisms may be exploited pharmacologically to inhibit the development of atherosclerosis. PMID:15578089

  7. Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury.

    PubMed

    Altmann, Chris; Ahuja, Nilesh; Kiekhaefer, Carol M; Andres Hernando, Ana; Okamura, Kayo; Bhargava, Rhea; Duplantis, Jane; Kirkbride-Romeo, Lara A; Huckles, Jill; Fox, Benjamin M; Kahn, Kashfi; Soranno, Danielle; Gil, Hyo-Wook; Teitelbaum, Isaac; Faubel, Sarah

    2017-03-16

    Although dialysis has been used in the care of patients with acute kidney injury (AKI) for over 50 years, very little is known about the potential benefits of uremic control on systemic complications of AKI. Since the mortality of AKI requiring renal replacement therapy (RRT) is greater than half in the intensive care unit, a better understanding of the potential of RRT to improve outcomes is urgently needed. Therefore, we sought to develop a technically feasible and reproducible model of RRT in a mouse model of AKI. Models of low- and high-dose peritoneal dialysis (PD) were developed and their effect on AKI, systemic inflammation, and lung injury after ischemic AKI was examined. High-dose PD had no effect on AKI, but effectively cleared serum IL-6, and dramatically reduced lung inflammation, while low-dose PD had no effect on any of these three outcomes. Both models of RRT using PD in AKI in mice reliably lowered urea in a dose-dependent fashion. Thus, use of these models of PD in mice with AKI has great potential to unravel the mechanisms by which RRT may improve the systemic complications that have led to increased mortality in AKI. In light of recent data demonstrating reduced serum IL-6 and improved outcomes with prophylactic PD in children, we believe that our results are highly clinically relevant.

  8. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90.

  9. Cholesteryl ester loading of mouse peritoneal macrophages is associated with changes in the expression or modification of specific cellular proteins, including increase in an alpha-enolase isoform.

    PubMed

    Bottalico, L A; Kendrick, N C; Keller, A; Li, Y; Tabas, I

    1993-02-01

    This report explores the hypothesis that massive cholesteryl ester (CE) accumulation in macrophages, such as that occurring in atheroma foam cells, results in changes in the expression or modification of specific cellular proteins. Two-dimensional (2-D) gel electrophoretic patterns of metabolically labeled cellular proteins from mouse peritoneal macrophages that were loaded with CE (through incubation with acetylated low density lipoprotein [acetyl-LDL] for 4 days) were compared with those of control macrophages. Densitometric analysis of 2-D gel autoradiograms from the cell lysates revealed statistically significant changes in seven cellular proteins (five decreases and two increases). The changes in protein expression (foam cell versus control) ranged from a 458 +/- 164% (p < 0.001) increase to a 35 +/- 34% (p < 0.001) decrease (n = 11). Incubation of macrophages with beta-very low density lipoprotein, which also increased the CE content of macrophages (albeit to a lesser extent than acetyl-LDL), resulted in changes in five of the seven proteins. In contrast, incubation of cells with LDL, fucoidan, or latex beads, none of which caused CE accumulation, did not lead to significant changes in four of these five proteins. One of these four proteins, which increased fourfold to fivefold in foam cells (M(r) = 49,000; isoelectric point of 6.8), was purified by preparative 2-D gel electrophoresis. Internal amino acid sequence of cyanogen bromide fragments of this protein as well as Western blot analysis identified this protein as an isoform of alpha-enolase. The increased expression of this alpha-enolase isoform, which was seen as early as day 2 of acetyl-LDL incubation of the macrophages, was diminished by including an inhibitor of cholesterol esterification during the acetyl-LDL incubation period. In conclusion, macrophage foam cell formation is associated with distinct changes in protein expression, including a marked increase in an isoform of alpha

  10. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c.

    PubMed

    Almeida-Souza, Fernando; de Souza, Celeste da Silva Freitas; Taniwaki, Noemi Nosomi; Silva, João José Mendes; de Oliveira, Renata Mondêgo; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-31

    Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 μg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 μg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.

  11. Macrophage-specific overexpression of interleukin-5 attenuates atherosclerosis in LDL receptor-deficient mice.

    PubMed

    Zhao, W; Lei, T; Li, H; Sun, D; Mo, X; Wang, Z; Zhang, K; Ou, H

    2015-08-01

    Interleukin-5 (IL-5) increases the secretion of natural T15/EO6 IgM antibodies that inhibit the uptake of oxidized low-density lipoprotein (LDL) by macrophages. This study aimed to determine whether macrophage-specific expression of IL-5 in LDL receptor-deficient mice (Ldlr(-/-)) could improve cholesterol metabolism and reduce atherosclerosis. To induce macrophage-specific IL-5 expression, the pLVCD68-IL5 lentivirus was delivered into Ldlr(-/-) mice via bone marrow transplantation. The recipient mice were fed a Western-type diet for 12 weeks to induce lesion formation. We found that IL-5 was efficiently and specifically overexpressed in macrophages in recipients of pLVCD68-IL5-transduced bone marrow cells (BMC). Plasma titers of T15/EO6 IgM antibodies were significantly elevated by 58% compared with control mice transplanted with pLVCD68 lacking the IL-5 coding sequence. Plaque areas of aortas in IL-5-overexpressing mice were reduced by 43% and associated with a 2.4-fold decrease in lesion size at the aortic roots when compared with mice receiving pLVCD68-transduced BMCs. The study showed that macrophage-specific overexpression of IL-5 inhibited the progression of atherosclerotic lesions. These findings suggest that modulation of IL-5 cytokine expression represents a potential strategy for intervention of familial hypercholesterolemia and other cardiovascular diseases.

  12. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice

    PubMed Central

    Yu, Jie; Qiu, Youzhu; Yang, Jie; Bian, Shizhu; Chen, Guozhu; Deng, Mengyang; Kang, Huali; Huang, Lan

    2016-01-01

    The DNA methyltransferase-mediated proinflammatory activation of macrophages is causally linked to the development of atherosclerosis (AS). However, the role of DNMT1, a DNA methylation maintenance enzyme, in macrophage polarization and AS development remains obscure. Here, we established transgenic mice with macrophage-specific overexpression of DNMT1 (TgDNMT1) or PPAR-γ (TgPPAR-γ) to investigate their effects on AS progression in ApoE-knockout mice fed an atherogenic diet. Primary macrophages were extracted to study the role of the DNMT1/PPAR-γ pathway in regulating inflammatory cytokine production. We demonstrated that TgDNMT1 significantly increased proinflammatory cytokine production in macrophages and plasma, and it accelerated the progression of AS in the atherogenic diet-treated ApoE-knockout mice. Further, we found that the DNA methylation status of the proximal PPAR-γ promoter was regulated by DNMT1 in macrophages. Notably, additional TgPPAR-γ or pharmacological activation of PPAR-γ effectively prevented TgDNMT1-induced proinflammatory cytokine production in macrophages and AS development in the mouse model. Finally, we demonstrated that elevated DNMT1 was correlated with decreased PPAR-γ, and increased proinflammatory cytokine production in the peripheral blood monocytes isolated from the patients with AS, compared to those of healthy donors. Our findings shed light on a novel strategy for the prevention and therapy of AS. PMID:27530451

  13. Large-conductance channel formation mediated by P2X7 receptor activation is regulated through distinct intracellular signaling pathways in peritoneal macrophages and 2BH4 cells.

    PubMed

    Faria, R X; Cascabulho, C M; Reis, R A M; Alves, Luiz Anastácio

    2010-07-01

    The P2X(7) receptor (P2X7R) is a ligand-gated ATP receptor that acts as a low- and large-conductance channel (pore) and is known to be coupled to several downstream effectors. Recently, we demonstrated that the formation of a large-conductance channel associated with the P2X(7) receptor is induced by increasing the intracellular Ca(2+) concentration (Faria et al., Am J Physiol Cell Physiol 297:C28-C42, 2005). Here, we investigated the intracellular signaling pathways associated with P2X(7) large-conductance channel formation using the patch clamp technique in conjunction with fluorescent imaging and flow cytometry assays in 2BH4 cells and peritoneal macrophages. Different antagonists were applied to investigate the following pathways: Ca(2+)-calmodulin, phospholipase A, phospholipase D, phospholipase C, protein kinase C (PKC), mitogen-activated protein kinase (MAPK), MAPK/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K), and cytoskeletal proteins. Macroscopic ionic currents induced by 1 mM ATP were reduced by 85% in the presence of PKC antagonists. The addition of antagonists for MAPK, PI3K, and the cytoskeleton (actin, intermediary filament, and microtubule) blocked 92%, 83%, and 95% of the ionic currents induced by 1 mM ATP, respectively. Our results show that PKC, MAPK, PI3K, and cytoskeletal components are involved in P2X(7) receptor large-channel formation in 2BH4 cells and peritoneal macrophages.

  14. Prostaglandin E2 restrains macrophage maturation via E prostanoid receptor 2/protein kinase A signaling

    PubMed Central

    Zasłona, Zbigniew; Serezani, Carlos H.; Okunishi, Katsuhide; Aronoff, David M.

    2012-01-01

    Prostaglandin E2 (PGE2) is a lipid mediator that acts by ligating 4 distinct G protein–coupled receptors, E prostanoid (EP) 1 to 4. Previous studies identified the importance of PGE2 in regulating macrophage functions, but little is known about its effect on macrophage maturation. Macrophage maturation was studied in vitro in bone marrow cell cultures, and in vivo in a model of peritonitis. EP2 was the most abundant PGE2 receptor expressed by bone marrow cells, and its expression further increased during macrophage maturation. EP2-deficient (EP2−/−) macrophages exhibited enhanced in vitro maturation compared with wild-type cells, as evidenced by higher F4/80 expression. An EP2 antagonist also increased maturation. In the peritonitis model, EP2−/− mice exhibited a higher percentage of F4/80high/CD11bhigh cells and greater expression of macrophage colony-stimulating factor receptor (M-CSFR) in both the blood and the peritoneal cavity. Subcutaneous injection of the PGE2 analog misoprostol decreased M-CSFR expression in bone marrow cells and reduced the number of peritoneal macrophages in wild-type mice but not EP2−/− mice. The suppressive effect of EP2 ligation on in vitro macrophage maturation was mimicked by a selective protein kinase A agonist. Our findings reveal a novel role for PGE2/EP2/protein kinase A signaling in the suppression of macrophage maturation. PMID:22234697

  15. Anti-tumor effects of recombinant human macrophage colony-stimulating factor, alone or in combination with local irradiation, in mice inoculated with Lewis lung carcinoma cells.

    PubMed

    Lu, L; Shen, R N; Lin, Z H; Aukerman, S L; Ralph, P; Broxmeyer, H E

    1991-01-02

    Recombinant human (rhu) macrophage colony-stimulating factor (M-CSF) was evaluated for efficacy, either alone or in combination with local X-irradiation (LR), in mice inoculated subcutaneously (s.c.) with Lewis lung carcinoma (LLC) cells. The size of the primary tumor and numbers of lung metastases, 21 days after tumor inoculation and 15 days after the start of treatment, were reduced by 87% in tumor-bearing mice treated with 20 micrograms/dose M-CSF s.c. twice a day for 5 days. LR (800 cGy) to the tumor once a week for 2 weeks had a moderate anti-tumor effect and enhanced the anti-tumor effect of M-CSF. Hematological parameters, including nucleated cellularity in peripheral blood, femoral marrow, spleen and peritoneal exudate, as well as marrow and splenic granulocyte-macrophage progenitor cells, and numbers of splenic Thy 1.2+ cell and peritoneal mast cells, were perturbed in LLC-bearing mice, and were influenced by treatment with M-CSF and LR. Treatment with M-CSF plus LR, but not with either agent alone, was associated with a significant, although slight, enhancement in survival time for LLC-bearing mice. Inability to obtain a better survival-enhancing effect appeared to be related to the limited treatment, since the anti-tumor effects of M-CSF were more notable early on in disease progression and were related to the dose of M-CSF used. The effects of M-CSF were most probably indirect ones on the host immune system. M-CSF, in combination with LR, may be of benefit in the treatment of human tumors that have metastatic potential.

  16. Influence of exercise on NA- and Hsp72-induced release of IFNγ by the peritoneal suspension of macrophages and lymphocytes from genetically obese Zucker rats.

    PubMed

    Martín-Cordero, L; García, J J; Hinchado, M D; Bote, E; Ortega, E

    2013-03-01

    Regular physical exercise is recognized as a nonpharmacological therapeutic strategy in the treatment of metabolic syndrome, and has been proposed for improving obesity, diabetic status, insulin resistance, and immune response. The aim of the present study was to evaluate the effect of a regular exercise program (treadmill running, 5 days/week for 14 weeks at 35 cm/s for 35 min in the last month) on the release of the pro-inflammatory cytokine interferon gamma (IFNγ) by peritoneal cells (macrophages and lymphocytes) from obese Zucker rats (fa/fa) in response to noradrenaline (NA) and heat shock proteins of 72 kDa (Hsp72), and the possible adaptation due to training for a bout acute exercise (a single session of 25-35 min at 35 cm/s). In healthy (lean Fa/fa) and obese animals, peritoneal cells released greater concentrations of IFNγ in response to Hsp72 and lower concentrations in response to NA. The regular exercise training protocol, evaluated in the obese animals, produced a clear change in the regulation of the release of IFNγ. Peritoneal immune cells from trained animals released more IFNγ in response to NA, but there was a reduction in the release of IFNγ in response to Hsp72. In the obese animals, regular exercise caused a change in the inhibitory effect of NA (which now becomes stimulatory) and the stimulatory effect of Hsp72e (which now becomes inhibitory) in relation to the release of IFNγ. This reflects that Hsp72, induced by the prior release of NA following exercise-induced stress, plays a role in the homeostatic balance of release of IFNγ by peritoneal immune cells in obese animals during exercise.

  17. The Brucella abortus Cu,Zn superoxide dismutase is required for optimal resistance to oxidative killing by murine macrophages and wild-type virulence in experimentally infected mice.

    PubMed

    Gee, Jason M; Valderas, Michelle Wright; Kovach, Michael E; Grippe, Vanessa K; Robertson, Gregory T; Ng, Wai-Leung; Richardson, John M; Winkler, Malcolm E; Roop, R Martin

    2005-05-01

    Two-dimensional gel electrophoretic analysis of cell lysates from Brucella abortus 2308 and the isogenic hfq mutant Hfq3 revealed that the RNA binding protein Hfq (also known as host factor I or HF-I) is required for the optimal stationary phase production of the periplasmic Cu,Zn superoxide dismutase SodC. An isogenic sodC mutant, designated MEK2, was constructed from B. abortus 2308 by gene replacement, and the sodC mutant exhibited much greater susceptibility to killing by O(2)(-) generated by pyrogallol and the xanthine oxidase reaction than the parental 2308 strain supporting a role for SodC in protecting this bacterium from O(2)(-) of exogenous origin. The B. abortus sodC mutant was also found to be much more sensitive to killing by cultured resident peritoneal macrophages from C57BL6J mice than 2308, and the attenuation displayed by MEK2 in cultured murine macrophages was enhanced when these phagocytes were treated with gamma interferon (IFN-gamma). The attenuation displayed by the B. abortus sodC mutant in both resting and IFN-gamma-activated macrophages was alleviated, however, when these host cells were treated with the NADPH oxidase inhibitor apocynin. Consistent with its increased susceptibility to killing by cultured murine macrophages, the B. abortus sodC mutant also displayed significant attenuation in experimentally infected C57BL6J mice compared to the parental strain. These experimental findings indicate that SodC protects B. abortus 2308 from the respiratory burst of host macrophages. They also suggest that reduced SodC levels may contribute to the attenuation displayed by the B. abortus hfq mutant Hfq3 in the mouse model.

  18. Receptors for oxidized low-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: Implications with respect to macrophage recognition of apoptotic cells

    PubMed Central

    Bird, David A.; Gillotte, Kristin L.; Hörkkö, Sohvi; Friedman, Peter; Dennis, Edward A.; Witztum, Joseph L.; Steinberg, Daniel

    1999-01-01

    It has been shown previously that the binding of oxidized low-density lipoprotein (OxLDL) to resident mouse peritoneal macrophages can be inhibited (up to 70%) by the apoprotein B (apoB) isolated from OxLDL, suggesting that macrophage recognition of OxLDL is primarily dependent on its modified protein moiety. However, recent experiments have demonstrated that the lipids isolated from OxLDL and reconstituted into a microemulsion can also strongly inhibit uptake of OxLDL (up to 80%). The present studies show that lipid microemulsions prepared from OxLDL bind to thioglycollate-elicited macrophages at 4°C in a saturable fashion and inhibit the binding of intact OxLDL and also of the apoB from OxLDL. Reciprocally, the binding of the OxLDL-lipid microemulsions was strongly inhibited by intact OxLDL. A conjugate of synthetic 1-palmitoyl 2(5-oxovaleroyl) phosphatidylcholine (an oxidation product of 1-palmitoyl 2-arachidonoyl phosphatidylcholine) with serum albumin, shown previously to inhibit macrophage binding of intact OxLDL, also inhibited the binding of both the apoprotein and the lipid microemulsions prepared from OxLDL. Finally, a monoclonal antibody against oxidized phospholipids, one that inhibits binding of intact OxLDL to macrophages, also inhibited the binding of both the resolubilized apoB and the lipid microemulsions prepared from OxLDL. These studies support the conclusions that: (i) at least some of the macrophage receptors for oxidized LDL can recognize both the lipid and the protein moieties; and (ii) oxidized phospholipids, in the lipid phase of the lipoprotein and/or covalently linked to the apoB of OxLDL, likely play a role in that recognition. PMID:10339590

  19. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  20. Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response.

    PubMed

    Roberts, Lydia M; Ledvina, Hannah E; Tuladhar, Shraddha; Rana, Deepa; Steele, Shaun P; Sempowski, Gregory D; Frelinger, Jeffrey A

    2015-06-01

    Alveolar macrophages play a critical role in initiating the immune response to inhaled pathogens and have been shown to be the first cell type infected following intranasal inoculation with several pathogens, including Francisella tularensis. In an attempt to further dissect the role of alveolar macrophages in the immune response to Francisella, we selectively depleted alveolar macrophages using CD11c.DOG mice. CD11c.DOG mice express the diphtheria toxin receptor (DTR) under control of the full CD11c promoter. Because mice do not express DTR, tissue restricted expression of the primate DTR followed by treatment with diphtheria toxin (DT) has been widely used as a tool in immunology to examine the effect of acute depletion of a specific immune subset following normal development. We successfully depleted alveolar macrophages via intranasal administration of DT. However, alveolar macrophage depletion was accompanied by many other changes to the cellular composition and cytokine/chemokine milieu in the lung that potentially impact innate and adaptive immune responses. Importantly, we observed a transient influx of neutrophils in the lung and spleen. Our experience serves as a cautionary note to other researchers using DTR mice given the complex changes that occur following DT treatment that must be taken into account when analyzing data.

  1. Depletion of alveolar macrophages in CD11c diphtheria toxin receptor mice produces an inflammatory response

    PubMed Central

    Roberts, Lydia M; Ledvina, Hannah E; Tuladhar, Shraddha; Rana, Deepa; Steele, Shaun P; Sempowski, Gregory D; Frelinger, Jeffrey A

    2015-01-01

    Alveolar macrophages play a critical role in initiating the immune response to inhaled pathogens and have been shown to be the first cell type infected following intranasal inoculation with several pathogens, including Francisella tularensis. In an attempt to further dissect the role of alveolar macrophages in the immune response to Francisella, we selectively depleted alveolar macrophages using CD11c.DOG mice. CD11c.DOG mice express the diphtheria toxin receptor (DTR) under control of the full CD11c promoter. Because mice do not express DTR, tissue restricted expression of the primate DTR followed by treatment with diphtheria toxin (DT) has been widely used as a tool in immunology to examine the effect of acute depletion of a specific immune subset following normal development. We successfully depleted alveolar macrophages via intranasal administration of DT. However, alveolar macrophage depletion was accompanied by many other changes to the cellular composition and cytokine/chemokine milieu in the lung that potentially impact innate and adaptive immune responses. Importantly, we observed a transient influx of neutrophils in the lung and spleen. Our experience serves as a cautionary note to other researchers using DTR mice given the complex changes that occur following DT treatment that must be taken into account when analyzing data. PMID:26029367

  2. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity

    PubMed Central

    Toyonaga, Takahiko; Nakase, Hiroshi; Ueno, Satoru; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Itou, Ayako; Namba, Kazuyoshi; Minami, Naoki; Yamada, Satoshi; Koshikawa, Yorimitsu; Uede, Toshimitsu; Chiba, Tsutomu; Okazaki, Kazuichi

    2015-01-01

    Background Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear. Aims To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice. Methods We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay. Results OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml. Conclusions OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PMID:26274807

  3. Calpains promote neutrophil recruitment and bacterial clearance in an acute bacterial peritonitis model.

    PubMed

    Kumar, Vijay; Everingham, Stephanie; Hall, Christine; Greer, Peter A; Craig, Andrew W B

    2014-03-01

    Activation of the innate immune system is critical for clearance of bacterial pathogens to limit systemic infections and host tissue damage. Here, we report a key role for calpain proteases in bacterial clearance in mice with acute peritonitis. Using transgenic mice expressing Cre recombinase primarily in innate immune cells (fes-Cre), we generated conditional capns1 knockout mice. Consistent with capns1 being essential for stability and function of the ubiquitous calpains (calpain-1, calpain-2), peritoneal cells from these mice had reduced levels of calpain-2/capns1, and reduced proteolysis of their substrate selenoprotein K. Using an acute bacterial peritonitis model, we observed impaired bacterial killing within the peritoneum and development of bacteremia in calpain knockout mice. These defects correlated with significant reductions in IL-1α release, neutrophil recruitment, and generation of reactive oxygen species in calpain knockout mice with acute bacterial peritonitis. Peritoneal macrophages from calpain knockout mice infected with enterobacteria ex vivo, were competent in phagocytosis of bacteria, but showed impaired clearance of intracellular bacteria compared with control macrophages. Together, these results implicate calpains as key mediators of effective innate immune responses to acute bacterial infections, to prevent systemic dissemination of bacteria that can lead to sepsis.

  4. Distinct Hepatic Macrophage Populations in Lean and Obese Mice

    PubMed Central

    Mayoral Monibas, Rafael; Johnson, Andrew M. F.; Osborn, Olivia; Traves, Paqui G.; Mahata, Sushil K.

    2016-01-01

    Obesity is a complex metabolic disorder associated with the development of non-communicable diseases such as cirrhosis, non-alcoholic fatty liver disease, and type 2 diabetes. In humans and rodents, obesity promotes hepatic steatosis and inflammation, which leads to increased production of pro-inflammatory cytokines and acute-phase proteins. Liver macrophages (resident as well as recruited) play a significant role in hepatic inflammation and insulin resistance (IR). Interestingly, depletion of hepatic macrophages protects against the development of high-fat-induced steatosis, inflammation, and IR. Kupffer cells (KCs), liver-resident macrophages, are the first-line defense against invading pathogens, clear toxic or immunogenic molecules, and help to maintain the liver in a tolerogenic immune environment. During high fat diet feeding and steatosis, there is an increased number of recruited hepatic macrophages (RHMs) in the liver and activation of KCs to a more inflammatory or M1 state. In this review, we will focus on the role of liver macrophages (KCs and RHMs) during obesity. PMID:27999564

  5. Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions.

    PubMed

    Schütze, Sandra; Ribes, Sandra; Kaufmann, Annika; Manig, Anja; Scheffel, Jörg; Redlich, Sandra; Bunkowski, Stephanie; Hanisch, Uwe-Karsten; Brück, Wolfgang; Nau, Roland

    2014-12-30

    Incidence and mortality of bacterial meningitis are strongly increased in aged compared to younger adults demanding new strategies to improve prevention and therapy of bacterial central nervous system (CNS) infections the elderly. Here, we established a geriatric mouse model for an intracerebral E. coli infection which reflects the clinical situation in aged patients: After intracerebral challenge with E. coli K1, aged mice showed a higher mortality, a faster development of clinical symptoms, and a more pronounced weight loss. Elimination of bacteria and systemic inflammatory response were impaired in aged mice, however, the number of infiltrating leukocytes and microglial cells in the CNS of aged and young mice did not differ substantially. In vitro, primary microglial cells and peritoneal macrophages from aged mice phagocytosed less E. coli and released less NO and cyto-/chemokines compared to cells from young mice both without activation and after stimulation by agonists of TLR 2, 4, and 9. Our results suggest that the age-related decline of microglia and macrophage functions plays an essential role for the higher susceptibility of aged mice to intracerebral infections. Strategies to improve the phagocytic potential of aged microglial cells and macrophages appear promising for prevention and treatment of CNS infections in elderly patients.

  6. Macrophages largely contribute to heterologous anti-Propionibacterium acnes antibody-mediated protection from Actinobacillus pleuropneumoniae infection in mice.

    PubMed

    Ma, Qiuyue; Sun, Changjiang; Yang, Feng; Wang, Lei; Qin, Wanhai; Xia, Xiaojing; Feng, Xin; Du, Chongtao; Gu, Jingmin; Han, Wenyu; Lei, Liancheng

    2015-03-01

    Actinobacillus pleuropneumoniae is the causative agent of acute and chronic pleuropneumonia. Propionibacterium acnes is a facultative anaerobic gram-positive corynebacterium. We have previously found that anti-P. acnes antibodies can prevent A. pleuropneumoniae infections in mice. To investigate the role of macrophages in this process, affinity-purified anti-P. acnes IgG and anti-A. pleuropneumoniae IgG were used in opsonophagocytosis assays. Additionally, the efficacy of passive immunization with P. acnes serum against A. pleuropneumoniae was tested in macrophage-depleted mice. It was found that anti-P. acnes IgG had an effect similar to that of anti-A. pleuropneumoniae IgG (P > 0.05), which significantly promotes phagocytosis of A. pleuropneumoniae by macrophages (P < 0.01). It was also demonstrated that, after passive immunization with anti-P. acnes serum, macrophage-replete mice had the highest survival rate (90%), whereas the survival rate of macrophage-depleted mice was only 40% (P < 0.05). However, macrophage-depleted mice that had been passively immunized with naïve serum had the lowest survival rate (20%), this rate being lower than that of macrophage-replete mice that had been passively immunized with naïve serum. Overall, anti-P. acnes antibodies did not prevent A. pleuropneumoniae infection under conditions of macrophage depletion (P > 0.05). Furthermore, in mice that had been passively immunized with anti-P. acnes serum, macrophage depletion resulted in a greater A. pleuropneumoniae burden and more severe pathological features of pneumonia in lung tissues than occurred in macrophage-replete mice. It was concluded that macrophages are essential for the process by which anti-P. acnes antibody prevents A. pleuropneumoniae infection in mice.

  7. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice.

    PubMed

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-Ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-18

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot-Marie-Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages.

  8. IL-23 protection against Plasmodium berghei infection in mice is partially dependent on IL-17 from macrophages.

    PubMed

    Ishida, Hidekazu; Imai, Takashi; Suzue, Kazutomo; Hirai, Makoto; Taniguchi, Tomoyo; Yoshimura, Akihiko; Iwakura, Yoichiro; Okada, Hiroko; Suzuki, Tomohisa; Shimokawa, Chikako; Hisaeda, Hajime

    2013-10-01

    Although IL-12 is believed to contribute to protective immune responses, the role played by IL-23 (a member of the IL-12 family) in malaria is elusive. Here, we show that IL-23 is produced during infection with Plasmodium berghei NK65. Mice deficient in IL-23 (p19KO) had higher parasitemia and died earlier than wild-type (WT) controls. Interestingly, p19KO mice had lower numbers of IL-17-producing splenic cells than their WT counterparts. Furthermore, mice deficient in IL-17 (17KO) suffered higher parasitemia than the WT controls, indicating that IL-23-mediated protection is dependent on induction of IL-17 during infection. We found that macrophages were responsible for IL-17 production in response to IL-23. We observed a striking reduction in splenic macrophages in the p19KO and 17KO mice, both of which became highly susceptible to infection. Thus, IL-17 appears to be crucial for maintenance of splenic macrophages. Adoptive transfer of macrophages into macrophage-depleted mice confirmed that macrophage-derived IL-17 is required for macrophage accumulation and parasite eradication in the recipient mice. We also found that IL-17 induces CCL2/7, which recruit macrophages. Our findings reveal a novel protective mechanism whereby IL-23, IL-17, and macrophages reduce the severity of infection with blood-stage malaria parasites.

  9. Toxic response of HIPCO single-walled carbon nanotubes in mice and RAW264.7 macrophage cells.

    PubMed

    Park, Eun-Jung; Zahari, Nur Elida M; Kang, Min-Sung; Lee, Sang jin; Lee, Kyuhong; Lee, Byoung-Seok; Yoon, Cheolho; Cho, Myung-Haing; Kim, Younghun; Kim, Jae-Ho

    2014-08-17

    In this study, we identified the toxic response of pristine single-walled carbon nanotubes (P-SWCNTs) synthesized by HIPCO method in mice and RAW264.7 cells, a murine peritoneal macrophage cell line. P-SWCNT contained a large amount of Fe ion (36 wt%). In the lungs of mice 24 h after intratracheal administration, P-SWCNTs increased the secretion of IL-6 and MCP-1, and the number of total cells, the portion of neutrophils, lymphocytes, and eosinophils, also significantly increased at a 100 μg/mL of concentration. In RAW264.7 cells, cell viability and ATP production decreased in a dose-dependent manner at 24 h after exposure, whereas the generations of ROS and NO were enhanced at all concentrations together with the activation of the MAP kinase pathway. Moreover, the levels of both apoptosis- and autophagy-related proteins and ER stress-related proteins clearly increased, and the concentrations of Fe, Cu, and Zn ions, but not of Mn ions, increased in a dose-dependent manner. TEM images also revealed that P-SWCNTs induced the formation of autophagosome-like vacuoles, the dilatation of the ER, the generation of mitochondrial flocculent densities, and the separation of organelle by disappearance of the cell membrane. Taken together, we suggest that P-SWCNTs cause acute inflammatory response in the lungs of mice, and induce autophagy accompanied with apoptosis through mitochondrial dysfunction and ER stress in RAW264.7 cells. Furthermore, further study is required to elucidate how the physicochemical properties of SWCNTs determine the cell death pathway and an immune response.

  10. IRF5 governs liver macrophage activation that promotes hepatic fibrosis in mice and humans

    PubMed Central

    Alzaid, Fawaz; Lagadec, Floriane; Albuquerque, Miguel; Ballaire, Raphaëlle; Orliaguet, Lucie; Hainault, Isabelle; Blugeon, Corinne; Lemoine, Sophie; Lehuen, Agnès; Saliba, David G.; Udalova, Irina A.; Paradis, Valérie; Foufelle, Fabienne

    2016-01-01

    Hepatic fibrosis arises from inflammation in the liver initiated by resident macrophage activation and massive leukocyte accumulation. Hepatic macrophages hold a central position in maintaining homeostasis in the liver and in the pathogenesis of acute and chronic liver injury linked to fibrogenesis. Interferon regulatory factor 5 (IRF5) has recently emerged as an important proinflammatory transcription factor involved in macrophage activation under acute and chronic inflammation. Here, we revealed that IRF5 is significantly induced in liver macrophages from human subjects developing liver fibrosis from nonalcoholic fatty liver disease or hepatitis C virus infection. Furthermore, IRF5 expression positively correlated with clinical markers of liver damage, such as plasma transaminase and bilirubin levels. Interestingly, mice lacking IRF5 in myeloid cells (MKO) were protected from hepatic fibrosis induced by metabolic or toxic stresses. Transcriptional reprogramming of macrophages lacking IRF5 was characterized by immunosuppressive and antiapoptotic properties. Consequently, IRF5 MKO mice respond to hepatocellular stress by promoting hepatocyte survival, leading to complete protection from hepatic fibrogenesis. Our findings reveal a regulatory network, governed by IRF5, that mediates hepatocyte death and liver fibrosis in mice and humans. Therefore, modulating IRF5 function may be an attractive approach to experimental therapeutics in fibroinflammatory liver disease. PMID:27942586

  11. High mobility group box 1 protein synergizes with lipopolysaccharide and peptidoglycan for nitric oxide production in mouse peritoneal macrophages in vitro.

    PubMed

    Chakraborty, Rituparna; Bhatt, Kunal H; Sodhi, Ajit

    2013-05-01

    Extracellular high mobility group box 1 (HMGB1) protein and nitric oxide (NO) has been credited with multiple inflammatory functions using in vivo and in vitro systems. Therefore, delineating their regulation may be an important therapeutic strategy for the treatment of sepsis. In the present study, it is demonstrated that recombinant HMGB1 (rHMGB1) synergizes with sub threshold concentration of TLR2 agonist (PGN; 1 μg/ml) as well as with TLR4 agonist (LPS; 1 ng/ml) to induce NO release in mouse peritoneal macrophages. The enhanced iNOS expression was also observed at the transcription and translational level. Co-incubation of macrophages with rHMGB1 with either PGN or LPS showed enhanced expression of TLR2, TLR4 and RAGE. TLR2, TLR4 or RAGE knockdown macrophages effectively inhibited the rHMGB1+PGN or LPS induced NO synergy. It was further observed that the JNK MAPK inhibitor SP600125 attenuated the PGN+rHMGB1 induced iNOS/NO synergy whereas p38 MAPK inhibitor SB908912 inhibited iNOS/NO synergy induced by LPS+rHMGB1. It was also observed that the activation of NF-κB is essential for the synergy as the pharmacological inhibition or siRNA knockdown of NF-κB (cRel) significantly reduced the rHMGB1+PGN or rHMGB1+LPS induced enhanced iNOS/NO expression. Altogether, the data suggests that the co-incubation of macrophages with rHMGB1 with either LPS or PGN induces the synergistic effect on iNOS expression and NO release by the upregulation of surface receptors (TLR2, TLR4 and RAGE) which in turn amplifies the MAPKs (p38 and JNK) and NF-κB activation and results in enhanced iNOS expression and NO production.

  12. Effects of Combined Simultaneous and Sequential Endostar and Cisplatin Treatment in a Mice Model of Gastric Cancer Peritoneal Metastases

    PubMed Central

    Jia, Lin; Ren, Shuguang; Li, Tao; Wu, Jianing; Zhou, Xinliang; Zhang, Yan; Wu, Jianhua

    2017-01-01

    Objective. Aimed to study the effects of endostar and cisplatin using an in vivo imaging system (IVIS) in a model of peritoneal metastasis of gastric cancer. Methods. NUGC-4 gastric cancer cells transfected with luciferase gene (NUGC-4-Luc) were injected i.p. into nude mice. One week later, mice were randomly injected i.p.: group 1, cisplatin (d1–3) + endostar (d4–7); group 2, endostar (d1–4) + cisplatin (d5–7); group 3, endostar + cisplatin d1, 4, and 7; group 4, saline for two weeks. One week after the final administration, mice were sacrificed. Bioluminescent data, microvessel density (MVD), and lymphatic vessel density (LVD) were analyzed. Results. Among the four groups, there were no significant differences in the weights and in the number of cancer cell photons on days 1 and 8 (P > 0.05). On day 15, the numbers in groups 3 and 1 were less than that in group 2 (P < 0.05). On day 21, group 3 was significantly less than group 2 (P < 0.05). MVD of group 4 was less than that of groups 1 and 2 (P < 0.01). There was no significant difference between groups 2 and 3 (P > 0.05) or in LVD number among the four groups (P > 0.05). Conclusions. IVIS® was more useful than weight, volume of ascites, and number of peritoneal nodules. The simultaneous group was superior to sequential groups in killing cancer cells and inhibiting vascular endothelium. Cisplatin-endostar was superior to endostar-cisplatin in killing cancer cells, while the latter in inhibiting peritoneal vascular endothelium. PMID:28197204

  13. Phenotypic plasticity of male Schistosoma mansoni from the peritoneal cavity and hepatic portal system of laboratory mice and hamsters.

    PubMed

    Mati, V L T; Freitas, R M; Bicalho, R S; Melo, A L

    2015-05-01

    Morphometric analysis of Schistosoma mansoni male worms obtained from AKR/J and Swiss mice was carried out. Rodents infected by the intraperitoneal route with 80 cercariae of the schistosome (LE strain) were killed by cervical dislocation at 45 and 60 days post-infection and both peritoneal lavage and perfusion of the portal system were performed for the recovery of adult worms. Characteristics including total body length, the distance between oral and ventral suckers, extension of testicular mass and the number of testes were considered in the morphological analysis. Changes that occurred in S. mansoni recovered from the peritoneal cavity or from the portal system of AKR/J and Swiss mice included total body length and reproductive characteristics. Significant morphometric alterations were also observed when worms recovered from the portal system of both strains of mice were compared with the schistosomes obtained from hamsters (Mesocricetus auratus), the vertebrate host in which the LE strain had been adapted and maintained by successive passages for more than four decades. The present results reinforce the idea that S. mansoni has high plastic potential and adaptive capacity.

  14. β-glucans from Coriolus versicolor protect mice against S. typhimurium challenge by activation of macrophages.

    PubMed

    Shi, Shao-Hua; Yang, Wen-Tao; Huang, Ke-Yan; Jiang, Yan-Long; Yang, Gui-Lian; Wang, Chun-Feng; Li, Yu

    2016-05-01

    The effects of β-glucans from Coriolus versicolor (CVP), which are extracted from a well-known immune stimulator C. versicolor, have been demonstrated extensively in vitro and in vivo. However, until now, the phagocytic activity has not been elucidated. Hence, the objective of the present study was to identify the antibacterial activity of CVP or CVP-treated macrophages by an analysis of cell cytotoxicity, phagocytic activity, intracellular bacterial survival, macrophage activation, production of nitric oxide (NO) and expression of inducible nitric oxide synthase (iNOS) in CVP-treated macrophages using flow cytometry, RT-PCR, a gentamicin protection assay, a Nitric oxide assay and an iNOS enzymatic activity assay. The results indicate that CVP-treated macrophages can phagocytize and kill bacteria, probably due to the production of NO and iNOS. More importantly, CVP-treated macrophages are effective at protecting mice against the challenge of Salmonella typhimurium. The results of this study suggest that the antibacterial effects of CVP are probably caused by the activation of innate immune cells, especially macrophages, because the activated macrophage produces NO, which kills bacteria. These phenomena indicate the possibility of CVP as a potential alternative for antibiotics against resistant bacteria.

  15. Increased cellular free cholesterol in macrophage-specific Abca1 knock-out mice enhances pro-inflammatory response of macrophages.

    PubMed

    Zhu, Xuewei; Lee, Ji-Young; Timmins, Jenelle M; Brown, J Mark; Boudyguina, Elena; Mulya, Anny; Gebre, Abraham K; Willingham, Mark C; Hiltbold, Elizabeth M; Mishra, Nilamadhab; Maeda, Nobuyo; Parks, John S

    2008-08-22

    Macrophage-specific Abca1 knock-out (Abca1(-)(M)(/-)(M)) mice were generated to determine the role of macrophage ABCA1 expression in plasma lipoprotein concentrations and the innate immune response of macrophages. Plasma lipid and lipoprotein concentrations in chow-fed Abca1(-)(M)(/-)(M) and wild-type (WT) mice were indistinguishable. Compared with WT macrophages, Abca1(-)(M)(/-)(M) macrophages had a >95% reduction in ABCA1 protein, failed to efflux lipid to apoA-I, and had a significant increase in free cholesterol (FC) and membrane lipid rafts without induction of endoplasmic reticulum stress. Lipopolysaccharide (LPS)-treated Abca1(-)(M)(/-)(M) macrophages exhibited enhanced expression of pro-inflammatory cytokines and increased activation of the NF-kappaB and MAPK pathways, which could be diminished by silencing MyD88 or by chemical inhibition of NF-kappaB or MAPK. In vivo LPS injection also resulted in a higher pro-inflammatory response in Abca1(-)(M)(/-)(M) mice compared with WT mice. Furthermore, cholesterol depletion of macrophages with methyl-beta-cyclodextrin normalized FC content between the two genotypes and their response to LPS; cholesterol repletion of macrophages resulted in increased cellular FC accumulation and enhanced cellular response to LPS. Our results suggest that macrophage ABCA1 expression may protect against atherosclerosis by facilitating the net removal of excess lipid from macrophages and dampening pro-inflammatory MyD88-dependent signaling pathways by reduction of cell membrane FC and lipid raft content.

  16. Naringin Decreases TNF-α and HMGB1 Release from LPS-Stimulated Macrophages and Improves Survival in a CLP-Induced Sepsis Mice

    PubMed Central

    Hong, Sang Bum; Lee, Kyung Jin

    2016-01-01

    Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis. PMID:27716835

  17. Gallium arsenide differentially affects processing of phagolysosomal targeted antigen by macrophages.

    PubMed

    Lewis, T A; Hartmann, C B; McCoy, K L

    1998-03-01

    Gallium arsenide, a semiconductor utilized in the electronics industry, causes immunosuppression in animals. The chemical's effect on macrophages to process antigen for activating pigeon cytochrome-specific helper T cell hybridoma was investigated. Mice were administered 200 mg/kg gallium arsenide or vehicle intraperitoneally. Five-day exposure suppressed processing by splenic macrophages but augmented processing by thioglycollate-elicited and resident peritoneal macrophages. Cytochrome coupled to latex beads was targeted to phagolysosomes to examine processing in lysosomes. Cytochrome beads required phagocytosis for processing and were located in phagolysosomes. Gallium arsenide did not alter the phagocytic ability of macrophages. Peritoneal macrophages normally processed the targeted antigen, indicating that gallium arsenide influenced compartment(s) preceding lysosomes. However, the processing efficiency of exposed splenic macrophages depended on the size of particulate cytochrome, suggesting that processing varied in phagolysosomes of different sizes. Gallium arsenide impacted different intracellular compartments in these macrophages, perhaps contributing to systemic immunotoxicity and local inflammation caused by exposure.

  18. Macrophage micro-RNA-155 promotes lipopolysaccharide-induced acute lung injury in mice and rats.

    PubMed

    Wang, Wen; Liu, Zhi; Su, Jie; Chen, Wen-Sheng; Wang, Xiao-Wu; Bai, San-Xing; Zhang, Jin-Zhou; Yu, Shi-Qiang

    2016-08-01

    Micro-RNA (miR)-155 is a novel gene regulator with important roles in inflammation. Herein, our study aimed to explore the role of miR-155 in LPS-induced acute lung injury(ALI). ALI in mice was induced by intratracheally delivered LPS. Loss-of-function experiments performed on miR-155 knockout mice showed that miR-155 gene inactivation protected mice from LPS-induced ALI, as manifested by preserved lung permeability and reduced lung inflammation compared with wild-type controls. Bone marrow transplantation experiments identified leukocytes, but not lung parenchymal-derived miR-155-promoted acute lung inflammation. Real-time PCR analysis showed that the expression of miR-155 in lung tissue was greatly elevated in wild-type mice after LPS stimulation. In situ hybridization showed that miR-155 was mainly expressed in alveolar macrophages. In vitro experiments performed in isolated alveolar macrophages and polarized bone marrow-derived macrophages confirmed that miR-155 expression in macrophages was increased in response to LPS stimulation. Conversely, miR-155 gain-of-function in alveolar macrophages remarkably exaggerated LPS-induced acute lung injury. Molecular studies identified the inflammation repressor suppressor of cytokine signaling (SOCS-1) as the downstream target of miR-155. By binding to the 3'-UTR of the SOCS-1 mRNA, miR-155 downregulated SOCS-1 expression, thus, permitting the inflammatory response during lung injury. Finally, we generated a novel miR-155 knockout rat strain and showed that the proinflammatory role of miR-155 was conserved in rats. Our study identified miR-155 as a proinflammatory factor after LPS stimulation, and alveolar macrophages-derived miR-155 has an important role in LPS-induced ALI.

  19. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    SciTech Connect

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  20. Effects of Opsonization and Gamma Interferon on Growth of Brucella Melitensis 16M in Mouse Peritoneal Macrophages In Vitro

    DTIC Science & Technology

    2000-01-01

    SUBTITLE Effects of Opsonization and Gamma Interferon on Growth of Brucella , melitensis 16M in Mouse Peritoneal Microphages rom In Vitro 3. REPORT...with Brucella melitensis 16M treated with complement- and/or antibody-rich serum. Mouse serum rich in antibody against Brucella lipopolysaccnaride...pathogens of humans and livestock. Brucella meli- tensis usually infects sheep, goats , and camels and is the most pathogenic species for humans (1). Like

  1. Development of multiple necrotizing enteritis induced by a tumor necrosis factor-like cytokine from lipopolysaccharide-stimulated peritoneal macrophages in rats.

    PubMed Central

    Torimoto, K.; Sato, N.; Okubo, M.; Yagihashi, A.; Wada, Y.; Hara, I.; Hayasaka, H.; Kikuchi, K.

    1990-01-01

    We report the development of an animal model of multiple necrotizing enteritis (MNE) in rats. When rats were injected directly with a culture supernatant of lipopolysaccharide (LPS)-stimulated rat peritoneal macrophages into the abdominal aorta, the overt pathologic lesions of MNE developed within 30 minutes after injection. The rats showed an elevated level of blood fibrinogen degradation product content even 30 minutes after injection. Furthermore the rats that were pretreated intravenously with heparin sulfate did not develop MNE, indicating the acute disturbances of blood microcirculation in the intestine. Multiple necrotizing enteritis was developed also by the injection with recombinant tumor necrosis factor (rTNF) but rarely was observed with even a high dose of recombinant interleukin-1 (rIL-1) or platelet-activating factor (PAF). The supernatant was cytotoxic in vitro to TNF-susceptible LM and many other cells but was less cytotoxic to the TNF-resistant LR line. Partial purification of the supernatant suggested that the supernatant contained a cytokine that has biochemical features of TNF. Furthermore polyclonal anti-TNF antibody could inhibit not only the cytotoxicity in vitro but also MNE development in vivo by this factor. These data strongly indicate that MNE possibly could be caused by a TNF-like cytokine produced by macrophages that are stimulated by the endotoxin. Images Figure 1 PMID:2240161

  2. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  3. Chemokine receptor 2-mediated accumulation of fungicidal exudate macrophages in mice that clear cryptococcal lung infection.

    PubMed

    Osterholzer, John J; Chen, Gwo-Hsiao; Olszewski, Michal A; Zhang, Yan-Mei; Curtis, Jeffrey L; Huffnagle, Gary B; Toews, Galen B

    2011-01-01

    Clearance of pulmonary infection with the fungal pathogen Cryptococcus neoformans is associated with the accumulation and activation of lung macrophages. However, the phenotype of these macrophages and the mechanisms contributing to their accumulation are not well-defined. In this study, we used an established murine model of cryptococcal lung infection and flow cytometric analysis to identify alveolar macrophages (AMs) and the recently described exudate macrophages (ExMs). Exudate macrophages are distinguished from AMs by their strong expression of CD11b and major histocompatibility complex class II and modest expression of costimulatory molecules. Exudate macrophages substantially outnumber AMs during the effector phase of the immune response; and accumulation of ExMs, but not AMs, was chemokine receptor 2 (CCR2) dependent and attributable to the recruitment and subsequent differentiation of Ly-6C(high) monocytes originating from the bone marrow and possibly the spleen. Peak ExM accumulation in wild-type (CCR2(+/+)) mice coincided with maximal lung expression of mRNA for inducible nitric oxide synthase and correlated with the known onset of cryptococcal clearance in this strain of mice. Exudate macrophages purified from infected lungs displayed a classically activated effector phenotype characterized by cryptococcal-enhanced production of inducible nitric oxide synthase and tumor necrosis factor α. Cryptococcal killing by bone marrow-derived ExMs was CCR2 independent and superior to that of AMs. We conclude that clearance of cryptococcal lung infection requires the CCR2-mediated massive accumulation of fungicidal ExMs derived from circulating Ly-6C(high) monocytes.

  4. Surveillance of systemic trafficking of macrophages induced by UHMWPE particles in nude mice by noninvasive imaging.

    PubMed

    Ren, Pei-Gen; Huang, Zhinong; Ma, Ting; Biswal, Sandip; Smith, Robert L; Goodman, Stuart B

    2010-09-01

    Macrophages constitute a major part of the cell response to wear particles produced at articulating and nonarticulating interfaces of joint replacements. This foreign body reaction can result in periprosthetic osteolysis and implant loosening. We demonstrate that ultra-high molecular weight polyethylene (UHMWPE) particles induce systemic trafficking of macrophages by noninvasive in vivo imaging and immunohistochemistry. The distal femora of nude mice were injected with 60 mg/mL UHMWPE suspension or saline alone. Reporter RAW264.7 macrophages that stably expressed the bioluminescent reporter gene and the fluorescence reporter gene were injected intravenously. Bioluminescence imaging was performed using an in vivo imaging system immediately after macrophage injection and at 2-day intervals. Compared with the nonoperated contralateral femora, at day 4, 6, and 8, the bioluminescent signal of femora containing UHMWPE suspension increased 1.30 +/- 0.09-, 2.36 +/- 0.92-, and 10.32 +/- 7.61-fold, respectively. The values at same time points for saline-injected control group were 1.08 +/- 0.07-, 1.14 +/- 0.27-, and 1.14 +/- 0.35-fold, respectively. The relative bioluminescence of the UHMWPE group was higher at all postinjection days and significantly greater than the saline group at day 8 (p < 0.05). Histological analysis confirmed the presence of reporter macrophages within the medullary canal of mice with implanted UHMWPE particles. The presence of UHMWPE particles induced enhanced bone remodeling activity. Clinically relevant UHMWPE particles stimulated the systemic recruitment of macrophages during an early time course using the murine femoral implant model. Interference with systemic macrophage trafficking may potentially mitigate UHMWPE particle-induced periprosthetic osteolysis.

  5. The Effect of Carbon Monoxide Exposure on Susceptibility of Mice to Respiratory Infection with Listeria Monocytogenes

    DTIC Science & Technology

    1972-01-01

    flora in non - infected mice ............. ................. 34 3. Per cent mortality of CO exposed and non - exposed mice irfected with L. monocytogenes...Exposure for 2, 3, 4, 5, and 6 days ........ ... 39 1+. Quantitative assay of listeria in peritoneal macrophages from CO and non CO exposed mice . . 45...5. Quantitative assay of listeria in alveolar macrophages from CO and non CO exposed mice . . 48 6. Spleen assay for L. monocytogenes from non

  6. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    SciTech Connect

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.

  7. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice.

    PubMed

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-26

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival.

  8. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    PubMed Central

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-01

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival. PMID:26812653

  9. Regulating effect of Chinese herbal medicine on the peritoneal lymphatic stomata in enhancing ascites absorption of experimental hepatofibrotic mice

    PubMed Central

    Li, Ji-Cheng; Ding, Shi-Ping; Xu, Jian

    2002-01-01

    AIM: To observe the regulatory effect of Chinese herbal medicine on peritoneal lymphatic stomata and its significance in treating ascites in liver fibrosis model mice. METHODS: Two Chinese herbal composite prescriptions were used separately to treat the carbon tetrachloride-induced mouse model of liver fibrosis. The histo-pathologic changes of the liver sections (HE and VG stainings) were observed. The peritoneal lymphatic stomata was detected by scanning electron microscopy and computer image processing. The changes of urinary volume and sodium ion concentration were measured. RESULTS: In the model group, lots of fibrous tissue formed in liver and extended into the hepatic lobules to separate them incompletely. In the treated and prevention groups, the histo-pathologic changes of liver was rather milder, only showed much less fibrous tissue proliferation in the hepatic lobules. The peritoneal lymphatic stomata enlarged with increased density in the experimental groups (diameter: PA, 3.07 ± 0.69 µm; PB, 2.82 ± 0.37 µm; TA, 3.25 ± 0.82 µm and TB, 2.82 ± 0.56 µm; density: PA, 7.11 ± 1.90 stomata·1000 µm-2; PB, 8.76 ± 1.45 stomata·1000 µm-1; TA, 6.55 ± 1.44 stomata·1000 µm-2 and TB, 8.76 ± 1.79 stomata·1000 µm-2), as compared with the model group (diameter: 2.00 ± 0.52 µm; density: 4.45 ± 1.05 stomata·1000 µm-2). After treatment, the urinary volume and sodium ion excretion increased in the experimental groups (PA, 231.28 ± 41.09 mmol·L-1; PB, 171.69 ± 27.48 mmol·L-1 and TA, 231.44 ± 34.12 mmol·L-1), which were significantly different with those in the model group (129.33 ± 36.75 mmol·L-1). CONCLUSION: Chinese herbal medicine has marked effects in alleviating liver fibrosis, regulating peritoneal lymphatic stomata, improving the drainage of ascites from peritoneal cavity and causing increase of urinary volume and sodium ion excretion to reduce the water and sodium retention, and thus have favorable therapeutic effect in treating ascites

  10. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice

    PubMed Central

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-01-01

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β. In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner. PMID:27528423

  11. IL-1α and IL-1β-producing macrophages populate lung tumor lesions in mice.

    PubMed

    Terlizzi, Michela; Colarusso, Chiara; Popolo, Ada; Pinto, Aldo; Sorrentino, Rosalinda

    2016-09-06

    Macrophages highly populate tumour microenvironment and are referred to as tumor-associated macrophages (TAMs). The inflammasome is a multiprotein complex responsible of IL-1 like cytokines release, which biology has been widely studied by using bone-marrow-derived macrophages to mimic a physiological and/or host defense condition. To understand the role of this complex in lung tumor-associated macrophages (TAMs), we isolated and cultured broncho-alveolar lavage (BAL)-derived cells of lung tumor-bearing mice. The stimulation of lung TAMs with LPS+ATP increased the release of IL-1β. The inhibition of NLRP3 by means of glybenclamide significantly reduced IL-1β release. Similarly, C3H-derived, caspase-1 ko and caspase-11 ko TAMs released significantly reduced levels of IL-1β. Moreover, the stimulation of lung TAMs with the sole LPS induced a significant release of IL-1α, which was significantly reduced after caspase-1 pharmacological inhibition, and in TAMs genetically lacking caspase-1 and caspase-11. The inhibition of calpain I/II by means of MDL28170 did not alter IL-1α release after LPS treatment of lung TAMs. To note, the inoculation of LPS-treated bone marrow-derived macrophages into carcinogen-exposed mice increased lung tumor formation. In contrast, the depletion of TAMs by means of clodronate liposomes reduced lung tumorigenesis, associated to lower in vivo release of IL-1α and IL-1β.In conclusion, our data imply lung tumor lesions are populated by macrophages which pro-tumor activity is regulated by the activation of the NLRP3 inflammasome that leads to the release of IL-1α and IL-1β in a caspase-11/caspase-1-dependent manner.

  12. Proteomic profiling of dextran sulfate sodium induced acute ulcerative colitis mice serum exosomes and their immunomodulatory impact on macrophages.

    PubMed

    Wong, Wing-Yan; Lee, Magnolia Muk-Lan; Chan, Brandon Dow; Kam, Richard Kin-Tin; Zhang, Ge; Lu, Ai-Ping; Tai, William Chi-Shing

    2016-04-01

    Macrophages are essential for the maintenance of intestinal homeostasis, and their activation has been proposed to be critical to the pathogenesis of inflammatory bowel disease (IBD). Although there are many recognized mediators of macrophage activation, increasing evidence suggests that macrophages respond to exosome stimulation. Exosomes are 40-150 nm microvesicles released from different cell types and are found in a variety of physiological fluids, including serum. As studies have shown that circulating exosomes participate in intercellular communication and can mediate the immune response, we hypothesized that exosomes may play a role in the pathogenesis of IBD though modulation of macrophage activity. In this study, we used the dextran sulfate sodium (DSS) induced acute colitis mice model to investigate the effect of serum exosomes on macrophages and identify exosome proteins potentially involved in macrophage activation. We treated RAW264.7 macrophages with serum exosomes isolated from dextran sulfate sodium induced mice and found that treatment induced phosphorylation of p38 and ERK and production of tumor necrosis factor α when compared to treatment with exosomes isolated from control mice. Subsequent proteomic analysis identified 56 differentially expressed proteins, a majority of which were acute-phase proteins and immunoglobulins. Bioinformatics analysis suggested these proteins were mainly involved in the complement and coagulation cascade, which has been implicated in macrophage activation. Our findings provide new insight into the role of circulating serum exosomes in acute colitis and contribute to the understanding of macrophage activation in the pathogenesis of IBD.

  13. Passive transfer of interferon-γ over-expressing macrophages enhances resistance of SCID mice to Mycobacterium tuberculosis infection.

    PubMed

    Pasula, Rajamouli; Martin, William J; Kesavalu, Banu Rekha; Abdalla, Maher Y; Britigan, Bradley E

    2017-02-23

    Infection with Mycobacterium tuberculosis (M.tb) is associated with increased deaths worldwide. Alveolar macrophages (AMs) play a critical role in host defense against infection with this pathogen. In this work we tested the hypothesis that passive transfer of normal AMs, IFN-γ activated AMs, or macrophages transduced to over-express IFN-γ into the lungs of immunosuppressed SCID mice, where resident macrophages are present but not functional, would enhance alveolar immunity and increase clearance of pulmonary M.tb infection. Accordingly, SCID mice were infected with M.tb intratracheally (I.T.), following which they received either control macrophages or macrophages overexpressing IFN-γ (J774A.1). The extent of M.tb infection was assessed at 30days post-M.tb infection. SCID mice administered macrophages over-expressing IFN-γ showed a significant decrease in M.tb burden and increased survival compared to J774A.1 control macrophages or untreated mice. This was further associated with a significant increase in IFN-γ and TNF-α mRNA and protein expression, as well as NF-κB (p65) mRNA, in the lungs. The increase in IFN-γ and TNF-α lung levels was inversely proportional to the number of M.tb organisms recovered. These results provide evidence that administration of macrophages overexpressing IFN-γ inhibit M.tb growth in vivo and may enhance host defense against M.tb infection.

  14. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  15. Impaired phagocytosis of apoptotic cells causes accumulation of bone marrow-derived macrophages in aged mice

    PubMed Central

    Kim, Ok-Hee; Kim, Hyojung; Kang, Jinku; Yang, Dongki; Kang, Yu-Hoi; Lee, Dae Ho; Cheon, Gi Jeong; Park, Sang Chul; Oh, Byung-Chul

    2017-01-01

    Accumulation of tissue macrophages is a significant characteristic of disease-associated chronic inflammation, and facilitates the progression of disease pathology. However, the functional roles of these bone marrow-derived macrophages (BMDMs) in aging are unclear. Here, we identified age-dependent macrophage accumulation in the bone marrow, showing that aging significantly increases the number of M1 macrophages and impairs polarization of BMDMs. We found that age-related dysregulation of BMDMs is associated with abnormal overexpression of the anti-inflammatory interleukin-10. BMDM dysregulation in aging impairs the expression levels of pro-inflammatory cytokines and genes involved in B-cell maturation and activation. Phagocytosis of apoptotic Jurkat cells by BMDMs was reduced because of low expression of phagocytic receptor CD14, indicating that increased apoptotic cells may result from defective phagocytosis of apoptotic cells in the BM of aged mice. Therefore, CD14 may represent a promising target for preventing BMDM dysregulation, and macrophage accumulation may provide diagnostic and therapeutic clues. PMID:27866511

  16. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ɛ-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml-1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml-1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  17. Differential Responses to Adjuvants of Macrophages from Young Virgin, Aging Virgin and Aging Breeder Mice.

    DTIC Science & Technology

    1985-12-01

    Rb-Ai.62 483 DIFFERENTIAL RESPONSES TO ADJUVANTS OF MACROPHAGES FROM i/i YOUNG VIRGIN AGIN (U) MINNESOTA UNIV DULUTH DEPT OF MEDICAL MICROBIOLOGY RN...ADDRESS (City, State. an ZI 0EC 18 198E- Dept. of Medical Microbiology & Immunology 800 N. Quincy Street E1 8 Duluth, MN 55812-2487 Arlington, VA 22217-5...Aging Breeder Mice by Pamela R. Petrequin and Arthur G. Johnson Dept. of Medical Microbiology /Immunology University of Minnesota-Duluth School of

  18. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice

    PubMed Central

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections. PMID:26926145

  19. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    PubMed

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.

  20. Immunomodulation of macrophages by methylglyoxal conjugated with chitosan nanoparticles against Sarcoma-180 tumor in mice.

    PubMed

    Chakrabarti, Adrita; Talukdar, Dipa; Pal, Aparajita; Ray, Manju

    2014-01-01

    Methylglyoxal (MG), the potent anticancer agent has been conjugated to a nontoxic, biocompatible polymer, chitosan, to protect it from in vivo enzymatic degradation. This polymeric complex, 'Nano-MG' shows remarkable antitumor property and elicits macrophage-mediated immunity in tumor bearing mice on intravenous (0.4 mg/kg body wt/day) treatment more efficiently than MG (20mg/kg body wt/day). These activated macrophages appear more in numbers in the peritoneum and produce more superoxide and nitrite. Moreover, immunomodulatory cytokines and surface receptors of these macrophages like iNOS, IFN-γ, TNF-α, IL-1β, IL-6, M-CSF, TLR-4 and TLR-9 also exhibit marked up-regulation in Sarcoma-180 tumor bearing mice after Nano-MG treatment compared to untreated tumor bearing counterpart. Hence, Nano-MG acts as an immunostimulant in tumor bearing mice to combat cancer at conspicuously lower dose, probably due to its longer circulation time in blood.

  1. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    PubMed

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  2. Myeloid cell-specific inositol polyphosphate-4-phosphatase type I knockout mice impair bacteria clearance in a murine peritonitis model.

    PubMed

    Morioka, Shin; Nigorikawa, Kiyomi; Sasaki, Junko; Hazeki, Kaoru; Kasuu, Yoshihiro; Sasaki, Takehiko; Hazeki, Osamu

    2016-08-01

    Phosphatidylinositol 3-kinase (PI3K)/Akt signaling has been implicated in the anti-inflammatory response in a mouse model of endotoxemia and sepsis. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a), which dephosphorylates PtdIns(3,4)P2 to PtdIns(3)P, in bacterial infections. We prepared myeloid cell-specific Inpp4a-conditional knockout mice. Macrophages from these mice showed increased Akt phosphorylation and reduced production of inflammatory cytokines in response to LPS or Escherichia coli in vitro The Inpp4a knockout mice survived for a shorter time than wild type mice after i.p. infection with E. coli, with less production of inflammatory cytokines. Additionally, E. coli clearance from blood and lung was significantly impaired in the knockout mice. A likely mechanism is that the Inpp4a-catalyzed dephosphorylation of PtdIns(3,4)P2 down-regulates Akt pathways, which, in turn, increases the production of inflammatory mediators. This mechanism at least fits the decreased E. coli clearance and short survival in the Inpp4a knockout mice.

  3. M3 Macrophages Stop Division of Tumor Cells In Vitro and Extend Survival of Mice with Ehrlich Ascites Carcinoma

    PubMed Central

    Kalish, Sergey; Lyamina, Svetlana; Manukhina, Eugenia; Malyshev, Yuri; Raetskaya, Anastasiya; Malyshev, Igor

    2017-01-01

    Background M1 macrophages target tumor cells. However, many tumors produce anti-inflammatory cytokines, which reprogram the anti-tumor M1 macrophages into the pro-tumor M2 macrophages. We have hypothesized that the problem of pro-tumor macrophage reprogramming could be solved by using a special M3 switch phenotype. The M3 macrophages, in contrast to the M1 macrophages, should respond to anti-inflammatory cytokines by increasing production of pro-inflammatory cytokines to retain its anti-tumor properties. Objectives of the study were to form an M3 switch phenotype in vitro and to evaluate the effect of M3 macrophages on growth of Ehrlich ascites carcinoma (EAC) in vitro and in vivo. Material/Methods Tumor growth was initiated by an intraperitoneal injection of EAC cells into C57BL/6J mice. Results 1) The M3 switch phenotype can be programed by activation of M1-reprogramming pathways with simultaneous inhibition of the M2 phenotype transcription factors, STAT3, STAT6, and/or SMAD3. 2) M3 macrophages exerted an anti-tumor effect both in vitro and in vivo, which was superior to anti-tumor effects of cisplatin or M1 macrophages. 3) The anti-tumor effect of M3 macrophages was due to their anti-proliferative effect. Conclusions Development of new biotechnologies for restriction of tumor growth using in vitro reprogrammed M3 macrophages is very promising. PMID:28123171

  4. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages.

  5. Mechanism of the modulation of murine peritoneal cell function and mast cell degranulation by low doses of malathion.

    PubMed

    Rodgers, K; Ellefson, D

    1992-01-01

    Malathion is a widely used organophosphate pesticide that modulates immune function at noncholinergic doses. Previous studies showed that this alteration in immune function was the result of enhanced macrophage function. In the present study, the effects of low doses of purified malathion (as low as 0.25 mg/kg malathion) administered orally to mice enhanced the respiratory burst of peritoneal cells. Microscopic examination of the peritoneal cells showed that mast cells were degranulated within 4 hr after malathion administration. The amount of beta-hexosaminidase, an enzyme released upon immunologic degranulation of mast cells, in the peritoneal lavage fluid of malathion-treated mice was also significantly elevated with 4 hours after malathion administration. Treatment of RBL-1, a rat basophilic cell line, cells with malathion, parathion or paroxon in vitro also led to the release of beta-hexosaminidase with paraoxon being the most potent. Further examination of the peritoneal cells of malathion-treated mice showed that the percentage of phagocytic peritoneal cells ingesting mast cell granules and the number of granules ingested per cell were elevated. These data suggest that malathion may enhance the respiratory burst of peritoneal cells through degranulation of peritoneal mast cells and the subsequent exposure to peritoneal cells to mast cell mediators.

  6. Salvianolic Acid A Attenuates Cell Apoptosis, Oxidative Stress, Akt and NF-κB Activation in Angiotensin-II Induced Murine Peritoneal Macrophages.

    PubMed

    Li, Ling; Xu, Tongda; Du, Yinping; Pan, Defeng; Wu, Wanling; Zhu, Hong; Zhang, Yanbin; Li, Dongye

    2016-01-01

    We discuss the role of Salvianolic acid A(SAA), one of the main effective components in Salvia Miltiorrhiza (known as 'Danshen' in traditional Chinese medicine), in apoptotic factors, the production of oxidative products, and the expression of Akt and NF-κB in angiotensin II (Ang II)-mediated murine macrophages. In the present study, Ang II was added to mice abdominal macrophages with or without addition of SAA. After cell identification, apoptosis was measured by DNA strand break level with TdT-mediated dUTP nick-end labeling (TUNEL) staining, and the expression of Bcl-2 and Bax. Intracellular concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were also measured. Western blotting determined the expression of Akt, p-Akt, NF-κB and p-NF-κB. Ly294002 (the inhibitor of PI3K) was used to determine the mechanism of SAA. Ang II (1 µM) significantly increased the number of TUNEL-positive cells and Bax expression, but reduced Bcl-2 expression. These effects were antagonized when the cells were pretreated with SAA. SAA decreased MDA, but increased SOD in the cell lysis solution treated with Ang II. It markedly reduced the level of p-NF-κB, as also p-Akt, which was partly blocked by Ly294002. SAA prevents Ang IIinduced apoptosis, oxidative stress and related protein expression in the macrophages. It also inhibits the activation of Akt.

  7. Impaired function of Fanconi anemia type C-deficient macrophages.

    PubMed

    Liu, Ying; Ballman, Kimberly; Li, Deqiang; Khan, Shehnaz; Derr-Yellin, Ethel; Shou, Weinian; Haneline, Laura S

    2012-02-01

    FA is a genetic disorder characterized by BM failure, developmental defects, and cancer predisposition. Previous studies suggest that FA patients exhibit alterations in immunologic function. However, it is unclear whether the defects are immune cell-autonomous or secondary to leukopenia from evolving BM failure. Given the central role that macrophages have in the innate immune response, inflammation resolution, and antigen presentation for acquired immunity, we examined whether macrophages from Fancc-/- mice exhibit impaired function. Peritoneal inflammation induced by LPS or sodium periodate resulted in reduced monocyte/macrophage recruitment in Fancc-/- mice compared with WT controls. Fancc-/- mice also had decreased inflammatory monocytes mobilized into the peripheral blood after LPS treatment compared with controls. Furthermore, Fancc-/- peritoneal macrophages displayed cell-autonomous defects in function, including impaired adhesion to FN or endothelial cells, reduced chemoattractant-mediated migration, and decreased phagocytosis. Moreover, dysregulated F-actin rearrangement was detected in Fancc-/- macrophages after adhesion to FN, which was consistent with an observed reduction in RhoA-GTP levels. Importantly, these data suggest that impaired cytoskeletal rearrangements in Fancc-/- macrophages may be the common mechanism responsible for cell-autonomous defects detected in vitro, as well as altered monocyte/macrophage trafficking in vivo.

  8. Sex-associated expression of co-stimulatory molecules CD80, CD86, and accessory molecules, PDL-1, PDL-2 and MHC-II, in F480+ macrophages during murine cysticercosis.

    PubMed

    Togno-Peirce, Cristián; Nava-Castro, Karen; Terrazas, Luis Ignacio; Morales-Montor, Jorge

    2013-01-01

    Macrophages are critically involved in the interaction between T. crassiceps and the murine host immune system. Also, a strong gender-associated susceptibility to murine cysticercosis has been reported. Here, we examined the sex-associated expression of molecules MHC-II, CD80, CD86, PD-L1, and PD-L2 on peritoneal F4/80(hi) macrophages of BALB/c mice infected with Taenia crassiceps. Peritoneal macrophages from both sexes of mice were exposed to T. crassiceps total extract (TcEx). BALB/c Females mice recruit higher number of macrophages to the peritoneum. Macrophages from infected animals show increased expression of PDL2 and CD80 that was dependent from the sex of the host. These findings suggest that macrophage recruitment at early time points during T. crassiceps infection is a possible mechanism that underlies the differential sex-associated susceptibility displayed by the mouse gender.

  9. Anti-inflammatory effect of tetrahydrocoptisine from Corydalis impatiens is a function of possible inhibition of TNF-α, IL-6 and NO production in lipopolysaccharide-stimulated peritoneal macrophages through inhibiting NF-κB activation and MAPK pathway.

    PubMed

    Li, Weifeng; Huang, Huimin; Zhang, Yanmin; Fan, Ting; Liu, Xia; Xing, Wei; Niu, Xiaofeng

    2013-09-05

    The extracts or constituents from Corydalis impatiens are known to have many pharmacological activities. Tetrahydrocoptisine (THC), a protoberberine compound from Corydalis impatiens, was found to possess a potent anti-inflammatory effect in different acute or chronic inflammation model animals. Pretreatment with THC (i.p.) inhibited the paw and ear edema in the carrageenan-induced paw edema assay and xylene-induced ear edema assay, respectively. In the lipopolysaccharide (LPS)-induced systemic inflammation model, THC significantly inhibited serum tumor necrosis factor-alpha (TNF-α) release in mice. To clarify its possible molecular mechanisms underlying this anti-inflammatory effect, we investigated the effect of THC on LPS-induced responses in peritoneal macrophages. Our data demonstrated that THC significantly inhibited LPS-induced TNF-α, interleukin-6(IL-6) and nitric oxide (NO) production. THC inhibited the production of TNF-α and IL-6 by down-regulating LPS-induced IL-6 and TNF-α mRNA expression. Furthermore, it attenuated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK) and phosphorylation of extracellular signal-regulated kinase1/2 (ERK1/2) as well as the expression of nuclear factor kappa B(NF-κB), in a concentration-dependent manner. Taken together, our data suggest that THC is an active anti-inflammatory constituent by inhibition of TNF-α, IL-6 and NO production possibly via down-regulation of NF-κB activation, phospho-ERK1/2 and phospho-p38MAPK signal pathways.

  10. Novel Endothelial Cell-Specific AQP1 Knockout Mice Confirm the Crucial Role of Endothelial AQP1 in Ultrafiltration during Peritoneal Dialysis.

    PubMed

    Zhang, Wei; Freichel, Marc; van der Hoeven, Frank; Nawroth, Peter Paul; Katus, Hugo; Kälble, Florian; Zitron, Edgar; Schwenger, Vedat

    2016-01-01

    The water channel aquaporin-1 (AQP1) mediates about 50% ultrafiltration during a 2-hour hypertonic dwell in global AQP1 knockout (AQP1-/-) mice. Although AQP1 is widely expressed in various cell types including mesothelial cells, the ultrafiltration has been assumed to be mediated via endothelial AQP1 of the peritoneum. The partial embryonic lethality and reduced body weight in AQP1-/- mice may reflect potential confounding phenotypic effects evoked by ubiquitous AQP1 deletion, which may interfere with functional analysis of endothelial AQP1. Using a Cre/loxP approach, we generated and characterised endothelial cell- and time-specific AQP1 knockout (AQP1fl/fl; Cdh5-Cre+) mice. Compared to controls, AQP1fl/fl; Cdh5-Cre+ mice showed no difference in an initial clinical and biological analysis at baseline, including body weight and survival. During a 1-hour 3.86% mini-peritoneal equilibration test (mini-PET), AQP1fl/fl; Cdh5-Cre+ mice exhibited strongly decreased indices for AQP1-related transcellular water transport (43.0% in net ultrafiltration, 93.0% in sodium sieving and 57.9% in free water transport) compared to controls. The transport rates for small solutes of urea and glucose were not significantly altered. Our data provide the first direct experimental evidence for the functional relevance of endothelial AQP1 to the fluid transport in peritoneal dialysis and thereby further validate essential predictions of the three-pore model of peritoneal transport.

  11. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo

    PubMed Central

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun

    2016-01-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo. After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with 3H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of 3H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed 3H-cholesterol of plasma was decreased by 68% for male and 62% for female, and 3H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and 3H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, 3H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0–24 h period, but there was no significant difference during 24–48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  12. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice

    PubMed Central

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  13. Wild-type macrophages reverse disease in heme oxygenase 1-deficient mice.

    PubMed

    Kovtunovych, Gennadiy; Ghosh, Manik C; Ollivierre, Wade; Weitzel, R Patrick; Eckhaus, Michael A; Tisdale, John F; Yachie, Akihiro; Rouault, Tracey A

    2014-08-28

    Loss-of-function mutation in the heme oxygenase 1 (Hmox1) gene causes a rare and lethal disease in children, characterized by severe anemia and intravascular hemolysis, with damage to endothelia and kidneys. Previously, we found that macrophages engaged in recycling of red cells were depleted from the tissues of Hmox1(-/-) mice, which resulted in intravascular hemolysis and severe damage to the endothelial system, kidneys, and other organs. Here, we report that subablative bone marrow transplantation (BMT) has a curative effect for disease in Hmox1(-/-) animals as a result of restoration of heme recycling by repopulation of the tissues with wild-type macrophages. Although engraftment was transient, BMT reversed anemia, normalized blood chemistries and iron metabolism parameters, and prevented renal damage. The largest proportion of donor-derived cells was observed in the livers of transplanted animals. These cells, identified as Kupffer cells with high levels of Hmox1 expression, persisted months after transient engraftment of the donor bone marrow and were responsible for the full restoration of heme-recycling ability in Hmox1(-/-) mice and reversing Hmox1-deficient phenotype. Our findings suggest that BMT or the development of specific cell therapies to repopulate patients' tissues with wild-type or reengineered macrophages represent promising approaches for HMOX1 deficiency treatment in humans.

  14. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing.

    PubMed

    Bellner, Lars; Marrazzo, Giuseppina; van Rooijen, Nico; Dunn, Michael W; Abraham, Nader G; Schwartzman, Michal L

    2015-01-01

    Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2(-/-) and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2(-/-) mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2(-/-) macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2(-/-) mice. These findings indicate that HO-2-deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2(-/-) cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.

  15. The transcription factor Fli-1 regulates monocyte, macrophage and dendritic cell development in mice.

    PubMed

    Suzuki, Eiji; Williams, Sarah; Sato, Shuzo; Gilkeson, Gary; Watson, Dennis K; Zhang, Xian K

    2013-07-01

    Fli-1 belongs to the Ets transcription factor family and is expressed in haematopoietic cells, including most of the cells that are active in immunity. The mononuclear phagocytes, i.e. monocytes, macrophages and dendritic cells, originate in haematopoietic stem cells and play an important role in immunity. To assess the role of Fli-1 in mononuclear phagocyte development in vivo, we generated mice that express a truncated Fli-1 protein, lacking the C-terminal transcriptional activation domain (Fli-1(Δ) (CTA) ). Fli-1(Δ) (CTA) (/Δ) (CTA) mice had significantly increased populations of haematopoietic stem cells and common dendritic cell precursors in bone marrow compared with wild-type littermates. Significantly increased classical dendritic cells, plasmacytoid dendritic cells, and macrophage populations were found in spleens from Fli-1(∆) (CTA) (/∆) (CTA) mice compared with wild-type littermates. Fli-1(Δ) (CTA) (/Δ) (CTA) mice also had increased pre-classical dendritic cell and monocyte populations in peripheral blood mononuclear cells. Furthermore, bone marrow reconstitution studies demonstrated that expression of Fli-1 in both haematopoietic cells and stromal cells affected mononuclear phagocyte development in mice. Expression of Fms-like tyrosine kinase 3 ligand (Flt3L), a haematopoietic growth factor, in multipotent progenitors was statistically significantly increased from Fli-1(∆) (CTA) (/∆) (CTA) mice compared with wild-type littermates. Fli-1 protein binds directly to the promoter region of the Flt3L gene. Hence, Fli-1 plays an important role in the mononuclear phagocyte development, and the C-terminal transcriptional activation domain of Fli-1 negatively modulates mononuclear phagocyte development.

  16. Wound healing defect of Vav3-/- mice due to impaired {beta}2-integrin-dependent macrophage phagocytosis of apoptotic neutrophils.

    PubMed

    Sindrilaru, Anca; Peters, Thorsten; Schymeinsky, Jürgen; Oreshkova, Tsvetelina; Wang, Honglin; Gompf, Anne; Mannella, Francesca; Wlaschek, Meinhard; Sunderkötter, Cord; Rudolph, Karl Lenhard; Walzog, Barbara; Bustelo, Xosé R; Fischer, Klaus D; Scharffetter-Kochanek, Karin

    2009-05-21

    Vav proteins are guanine-nucleotide exchange factors implicated in leukocyte functions by relaying signals from immune response receptors and integrins to Rho-GTPases. We here provide first evidence for a role of Vav3 for beta(2)-integrins-mediated macrophage functions during wound healing. Vav3(-/-) and Vav1(-/-)/Vav3(-/-) mice revealed significantly delayed healing of full-thickness excisional wounds. Furthermore, Vav3(-/-) bone marrow chimeras showed an identical healing defect, suggesting that Vav3 deficiency in leukocytes, but not in other cells, is causal for the impaired wound healing. Vav3 was required for the phagocytotic cup formation preceding macrophage phagocytosis of apoptotic neutrophils. Immunoprecipitation and confocal microscopy revealed Vav3 activation and colocalization with beta(2)-integrins at the macrophage membrane upon adhesion to ICAM-1. Moreover, local injection of Vav3(-/-) or beta(2)-integrin(CD18)(-/-) macrophages into wound margins failed to restore the healing defect of Vav3(-/-) mice, suggesting Vav3 to control the beta(2)-integrin-dependent formation of a functional phagocytic synapse. Impaired phagocytosis of apoptotic neutrophils by Vav3(-/-) macrophages was causal for their reduced release of active transforming growth factor (TGF)-beta(1), for decreased myofibroblasts differentiation and myofibroblast-driven wound contraction. TGF-beta(1) deficiency in Vav3(-/-) macrophages was causally responsible for the healing defect, as local injection of either Vav3-competent macrophages or recombinant TGF-beta(1) into wounds of Vav3(-/-) mice fully rescued the delayed wound healing.

  17. The use of a model of in vivo macrophage depletion to study the role of macrophages during infection with Bacillus anthracis spores.

    PubMed

    Cote, Christopher K; Rea, Kelly M; Norris, Sarah L; van Rooijen, Nico; Welkos, Susan L

    2004-10-01

    The pathogenesis of infection by Bacillus anthracis has been the subject of many investigations, but remains incompletely understood. It has been shown that B. anthracis spores germinate in macrophages and perhaps require this intracellular niche to germinate in vivo before outgrowth of the vegetative organism. However, it has also been reported that macrophages are sporicidal in vitro. In our in vivo model, macrophages were depleted from mice by either silica treatment or treatment with liposome-encapsulated dichloromethylene disphosphonate (Cl(2)MDP), and the animals were infected parenterally with virulent ungerminated B. anthracis (Ames strain) spores. The mice in which macrophages had been depleted were killed more rapidly than untreated mice. In addition, augmenting peritoneal populations of macrophages with cultured RAW264.7 cells partially protected mice from disease, increasing the survival rate in a dose dependent relationship. Alveolar macrophages were depleted by intranasal instillation of liposome-encapsulated Cl(2)MDP. The animals with normal alveolar macrophage numbers had significantly greater survival rates after inhaling B. anthracis spores than the macrophage-depleted mice. These findings do not preclude the observations that macrophages provide a site permissive for spore germination, however, these data suggest that macrophages do play an important role in limiting and/or clearing a B. anthracis infection.

  18. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

    SciTech Connect

    Ye, Dan; Meurs, Illiana; Ohigashi, Megumi; Calpe-Berdiel, Laura; Habets, Kim L.L.; Zhao, Ying; Kubo, Yoshiyuki; Yamaguchi, Akihito; Van Berkel, Theo J.C.; Nishi, Tsuyoshi; Van Eck, Miranda

    2010-05-07

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

  19. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor.

  20. The Tissue Fibrinolytic System Contributes to the Induction of Macrophage Function and CCL3 during Bone Repair in Mice

    PubMed Central

    Kawao, Naoyuki; Tamura, Yukinori; Horiuchi, Yoshitaka; Okumoto, Katsumi; Yano, Masato; Okada, Kiyotaka; Matsuo, Osamu; Kaji, Hiroshi

    2015-01-01

    Macrophages play crucial roles in repair process of various tissues. However, the details in the role of macrophages during bone repair still remains unknown. Herein, we examined the contribution of the tissue fibrinolytic system to the macrophage functions in bone repair after femoral bone defect by using male mice deficient in plasminogen (Plg–/–), urokinase-type plasminogen activator (uPA–/–) or tissue-type plasminogen activator (tPA–/–) genes and their wild-type littermates. Bone repair of the femur was delayed in uPA–/– mice until day 6, compared with wild-type (uPA+/+) mice. Number of Osterix-positive cells and vessel formation were decreased in uPA–/– mice at the bone injury site on day 4, compared with those in uPA+/+ mice. Number of macrophages and their phagocytosis at the bone injury site were reduced in uPA–/– and Plg–/–, but not in tPA–/– mice on day 4. Although uPA or plasminogen deficiency did not affect the levels of cytokines, including TNF-α, IL-1β, IL-6, IL-4 and IFN-γ mRNA in the damaged femur, the elevation in CCL3 mRNA levels was suppressed in uPA–/– and Plg–/–, but not in tPA–/– mice. Neutralization of CCL3 antagonized macrophage recruitment to the site of bone injury and delayed bone repair in uPA+/+, but not in uPA–/– mice. Our results provide novel evidence that the tissue fibrinolytic system contributes to the induction of macrophage recruitment and CCL3 at the bone injury site, thereby, leading to the enhancement of the repair process. PMID:25893677

  1. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNFα, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  2. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress.

    PubMed

    Trevisan, Gabriela; Benemei, Silvia; Materazzi, Serena; De Logu, Francesco; De Siena, Gaetano; Fusi, Camilla; Fortes Rossato, Mateus; Coppi, Elisabetta; Marone, Ilaria Maddalena; Ferreira, Juliano; Geppetti, Pierangelo; Nassini, Romina

    2016-05-01

    Despite intense investigation, the mechanisms of the different forms of trigeminal neuropathic pain remain substantially unidentified. The transient receptor potential ankyrin 1 channel (encoded by TRPA1) has been reported to contribute to allodynia or hyperalgesia in some neuropathic pain models, including those produced by sciatic nerve constriction. However, the role of TRPA1 and the processes that cause trigeminal pain-like behaviours from nerve insult are poorly understood. The role of TRPA1, monocytes and macrophages, and oxidative stress in pain-like behaviour evoked by the constriction of the infraorbital nerve in mice were explored. C57BL/6 and wild-type (Trpa1(+/+)) mice that underwent constriction of the infraorbital nerve exhibited prolonged (20 days) non-evoked nociceptive behaviour and mechanical, cold and chemical hypersensitivity in comparison to sham-operated mice (P < 0.05-P < 0.001). Both genetic deletion of Trpa1 (Trpa1(-/-)) and pharmacological blockade (HC-030031 and A-967079) abrogated pain-like behaviours (both P < 0.001), which were abated by the antioxidant, α-lipoic acid, and the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin (both P < 0.001). Nociception and hypersensitivity evoked by constriction of the infraorbital nerve was associated with intra- and perineural monocytic and macrophagic invasion and increased levels of oxidative stress by-products (hydrogen peroxide and 4-hydroxynonenal). Attenuation of monocyte/macrophage increase by systemic treatment with an antibody against the monocyte chemoattractant chemokine (C-C motif) ligand 2 (CCL2) or the macrophage-depleting agent, clodronate (both P < 0.05), was associated with reduced hydrogen peroxide and 4-hydroxynonenal perineural levels and pain-like behaviours (all P < 0.01), which were abated by perineural administration of HC-030031, α-lipoic acid or the anti-CCL2 antibody (all P < 0.001). The present findings propose that, in the constriction of the

  3. Chronic infection due to mycobacterium intracellulare in mice: association with macrophage release of prostaglandin E/sub 2/ and reversal by injection of indomethacin, muramyl dipeptide, or interferon-. gamma

    SciTech Connect

    Edwards, C.K. III; Hedegaard, H.B.; Zlotnik, A.; Gangadharam, P.R.; Johnston, R.B. Jr.; Pabst, M.J.

    1986-03-01

    As a model for the study of human atypical mycobacterial disease, the basis for the prolonged mycobacteriosis in mice infected with Mycobacterium intracellulare was studied. Two weeks after i.v. injection of mycobacteria, peritoneal macrophages were found to be activated, as indicated by their capacity to produce large amounts of superoxide anion (O/sub 2//sup -/) in response in phorbol myristate acetate (PMA) or viable M. intracellulare. However, 4 wk after infection, despite the continued presence of large numbers of mycobacteria in the spleen, macrophages from infected animals produced low amounts of O/sub 2//sup -/. Additional investigation showed that macrophages from infected animals produced large amounts of prostaglandin E/sub 2/ (PGE/sub 2/) when stimulated by mycobacterial antigens. In vitro, such concentrations of PGE/sub 2/ inhibited uptake of (/sup 3/H)thymidine by stimulated spleen lymphocytes from infected animals. The results support the concept that interaction between the host and M. intracellulare is modulated profoundly by PG and suggest that administration of agents that directly promote macrophage activation can enhance resistance to infection by this organism.

  4. Trypanosoma cruzi: modification of macrophage function during infection

    PubMed Central

    1977-01-01

    Infection of mice with Trypanosoma cruzi and subsequent intraperitoneal challenge with heat-killed trypanosomes elicits peritoneal macrophages which display in vitro microbicidal activity against trypomastigotes of T. cruzi. These cells also display other activated properties including rapid spreading, intense membrane activity, secretion of high levels of plasminogen activator, and ingestion mediated by the C3 receptor. An intravenous infection with BCG, followed by an intraperitoneal challenge with mycobacterial antigens brings about macrophages with similar properties. These criteria of macrophage activation were compared in normal and BCG- or T. cruzi-immune mice, with or without an intraperitoneal challenge with specific or unrelated antigens. Trypanocidal activity is displayed by both BCG- and T. cruzi-immune macrophages after intraperitoneal challenge with either antigen. Resident-immune macrophages from both T. cruzi- and BCG-infected mice show a trypanostatic, rather than trypanocidal activity. Macrophages from noninfected mice, challenged with the same antigens, show neither trypanostatic nor trypanocidal activity. Increased secretion of plasminogen activator shows a definite immunological specificity. Challenge with the specific antigen induces the appearance of macrophages secreting high levels of plasminogen activator, while unrelated antigens induce much smaller levels. Noninfected mice challenged with the same antigens do not display any enchancement in secretion. In contrast, increased spreading and phagocytosis mediated by the complement receptor are also displayed by cells from noninfected mice challenged with any of the agents tested. PMID:327012

  5. Nitric Oxide Synthase Expression in Macrophages of Histoplasma capsulatum-Infected Mice Is Associated with Splenocyte Apoptosis and Unresponsiveness

    PubMed Central

    Wu-Hsieh, Betty A.; Chen, Wen; Lee, Hsin-Ju

    1998-01-01

    Splenic macrophages from Histoplasma capsulatum-infected mice express inducible nitric oxide synthase (iNOS), and the iNOS expression correlates with severity of the infection. We examined whether production of NO is responsible for apoptosis and the anti-lymphoproliferative response of splenocytes from mice infected with H. capsulatum. In situ terminal deoxynucleotidyl transferase nick end labeling revealed apoptotic nuclei in cryosections of spleen from infected but not normal mice. Splenocytes of infected mice were unresponsive to stimulation by either concanavalin A or heat-killed H. capsulatum yeast cells. Splenocyte responsiveness was restored by addition to the medium of NG-monomethyl-l-arginine, a known inhibitor of NO production. The proliferative response of splenocytes from infected mice was also restored by depletion of macrophages or by replacement with macrophages from normal mice. In addition, expression of iNOS returned to its basal level when the animals had recovered from infection. These results suggest that suppressor cell activity of macrophages is associated with production of NO, which also appears to be an effector molecule for apoptosis of cultured splenocytes from infected mice. PMID:9784566

  6. Regular physical activity prevents chronic pain by altering resident muscle macrophage phenotype and increasing IL-10 in mice

    PubMed Central

    Leung, Audrey; Gregory, Nicholas S.; Allen, Lee-Ann H.; Sluka, Kathleen A.

    2015-01-01

    Regular physical activity in healthy individuals prevents development of chronic musculoskeletal pain; however, the mechanisms underlying this exercise-induced analgesia are not well understood. Interleukin-10(IL-10), an anti-inflammatory cytokine which can reduce nociceptor sensitization, increases during regular physical activity. Since macrophages play a major role in cytokine production and are present in muscle tissue, we propose that physical activity alters macrophage phenotype to increase IL-10 and prevent chronic pain. Physical activity was induced by allowing C57BL/6J mice free access to running wheels for 8 weeks and compared to sedentary mice with no running wheels. Using immunohistochemical staining of the gastrocnemius muscle to label regulatory (M2, secretes anti-inflammatory cytokines) and classical (M1, secretes proinflammatory cytokines) macrophages, the percentage of M2-macrophages increased significantly in physically active mice (68.5±4.6% of total) compared to sedentary mice (45.8±7.1% of total). Repeated acid injections into the muscle enhanced mechanical sensitivity of the muscle and paw in sedentary animals that does not occur in physically active mice; no sex differences occur in either sedentary or physically active mice. Blockade of IL-10 systemically or locally prevented the analgesia in physically active mice, i.e. mice developed hyperalgesia. Conversely, sedentary mice pretreated systemically or locally with IL-10 had reduced hyperalgesia after repeated acid injections. Thus, these results suggest that regular physical activity increases the percentage of regulatory macrophages in muscle and that IL-10 is an essential mediator in the analgesia produced by regular physical activity. PMID:26230740

  7. The role of macrophages in the susceptibility of Fc gamma receptor IIb deficient mice to Cryptococcus neoformans

    PubMed Central

    Surawut, Saowapha; Ondee, Thunnicha; Taratummarat, Sujittra; Palaga, Tanapat; Pisitkun, Prapaporn; Chindamporn, Ariya; Leelahavanichkul, Asada

    2017-01-01

    Dysfunctional polymorphisms of FcγRIIb, an inhibitory receptor, are associated with Systemic Lupus Erythaematosus (SLE). Cryptococcosis is an invasive fungal infection in SLE, perhaps due to the de novo immune defect. We investigated cryptococcosis in the FcγRIIb−/− mouse-lupus-model. Mortality, after intravenous C. neoformans-induced cryptococcosis, in young (8-week-old) and older (24-week-old) FcγRIIb−/− mice, was higher than in age-matched wild-types. Severe cryptococcosis in the FcγRIIb−/− mice was demonstrated by high fungal burdens in the internal organs with histological cryptococcoma-like lesions and high levels of TNF-α and IL-6, but not IL-10. Interestingly, FcγRIIb−/− macrophages demonstrated more prominent phagocytosis but did not differ in killing activity in vitro and the striking TNF-α, IL-6 and IL-10 levels, compared to wild-type cells. Indeed, in vivo macrophage depletion with liposomal clodronate attenuated the fungal burdens in FcγRIIb−/− mice, but not wild-type mice. When administered to wild-type mice, FcγRIIb−/− macrophages with phagocytosed Cryptococcus resulted in higher fungal burdens than FcγRIIb+/+ macrophages with phagocytosed Cryptococcus. These results support, at least in part, a model whereby, in FcγRIIb−/− mice, enhanced C. neoformans transmigration occurs through infected macrophages. In summary, prominent phagocytosis, with limited effective killing activity, and high pro-inflammatory cytokine production by FcγRIIb−/− macrophages were correlated with more severe cryptococcosis in FcγRIIb−/− mice. PMID:28074867

  8. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.

  9. Dendrosomal curcumin suppresses metastatic breast cancer in mice by changing m1/m2 macrophage balance in the tumor microenvironment.

    PubMed

    Shiri, Sadaf; Alizadeh, Ali Mohammad; Baradaran, Behzad; Farhanghi, Baharak; Shanehbandi, Dariush; Khodayari, Saeed; Khodayari, Hamid; Tavassoli, Abbas

    2015-01-01

    Curcumin, a lipid-soluble compound extracted from the plant Curcuma Longa, has been found to exert immunomodulatory effects via macrophages. However, most studies focus on the low bioavailability issue of curcumin by nano and microparticles, and thus the role of macrophages in the anticancer mechanism of curcumin has received little attention so far. We have previously shown the potential biocompatibility, biodegradability and anti-cancer effects of dendrosomal curcumin (DNC). In this study, twenty-seven BALB/c mice were equally divided into control as well as 40 and 80 mg/kg groups of DNC to investigate the involvement of macrophages in the antitumor effects of curcumin in a typical animal model of metastatic breast cancer. At the end of intervention, the tumor volume and weight were significantly reduced in DNC groups compared to control (P<0.05). Histopathological data showed the presence of macrophages in tumor and spleen tissues. Real-time PCR results showed that DNC increased the expression of STAT4 and IL-12 genes in tumor and spleen tissues in comparison with control (P<0.05), referring to the high levels of M1 macrophages. Furthermore treatment with DNC decreased STAT3, IL-10 and arginase I gene expression (P<0.05), indicating low levels of M2 macrophage. The results confirm the role of macrophages in the protective effects of dendrosomal curcumin against metastatic breast cancer in mice.

  10. Suppressed monocyte recruitment drives macrophage removal from atherosclerotic plaques of Apoe–/– mice during disease regression

    PubMed Central

    Potteaux, Stephane; Gautier, Emmanuel L.; Hutchison, Susan B.; van Rooijen, Nico; Rader, Daniel J.; Thomas, Michael J.; Sorci-Thomas, Mary G.; Randolph, Gwendalyn J.

    2011-01-01

    Experimental models of atherosclerosis suggest that recruitment of monocytes into plaques drives the progression of this chronic inflammatory condition. Cholesterol-lowering therapy leads to plaque stabilization or regression in human atherosclerosis, characterized by reduced macrophage content, but the mechanisms that underlie this reduction are incompletely understood. Mice lacking the gene Apoe (Apoe–/– mice) have high levels of cholesterol and spontaneously develop atherosclerotic lesions. Here, we treated Apoe–/– mice with apoE-encoding adenoviral vectors that induce plaque regression, and investigated whether macrophage removal from plaques during this regression resulted from quantitative alterations in the ability of monocytes to either enter or exit plaques. Within 2 days after apoE complementation, plasma cholesterol was normalized to wild-type levels, and HDL levels were increased 4-fold. Oil red O staining and quantitative mass spectroscopy revealed that esterified cholesterol content was markedly reduced. Plaque macrophage content decreased gradually and was 72% lower than baseline 4 weeks after apoE complementation. Importantly, this reduction in macrophages did not involve migratory egress from plaques or CCR7, a mediator of leukocyte emigration. Instead, marked suppression of monocyte recruitment coupled with a stable rate of apoptosis accounted for loss of plaque macrophages. These data suggest that therapies to inhibit monocyte recruitment to plaques may constitute a more viable strategy to reduce plaque macrophage burden than attempts to promote migratory egress. PMID:21505265

  11. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    PubMed Central

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  12. PPARγ activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI

    PubMed Central

    Toh, Sue-Anne; Millar, John S.; Billheimer, Jeffrey; Fuki, Ilia; Naik, Snehal U.; Macphee, Colin; Walker, Max; Rader, Daniel J.

    2011-01-01

    PPARγ agonists, used in the treatment of Type 2 diabetes, can raise HDL-cholesterol, therefore could potentially stimulate macrophage-to-feces reverse cholesterol transport (RCT). We aimed to test whether PPARγ activation promotes macrophage RCT in vivo. Macrophage RCT was assessed in mice using cholesterol loaded/3H-cholesterol labeled macrophages. PPARγ agonist GW7845 (20 mg/kg/day) did not change 3H-tracer plasma appearance, but surprisingly decreased fecal 3H-free sterol excretion by 43% (P < 0.01) over 48 h. Total free cholesterol efflux from macrophages to serum (collected from control and GW7845 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW7845. To determine the effect of PPARγ activation on HDL cholesterol uptake by different tissues, the metabolic fate of HDL labeled with 3H-cholesteryl ether (CE) was also measured. We observed two-fold increase in HDL derived 3H-CE uptake by adipose tissue (P < 0.005) with concomitant 22% decrease in HDL derived 3H-CE uptake by the liver (P < 0.05) in GW7845 treated wild type mice. This was associated with a significant increase in SR-BI protein expression in adipose tissue, but not liver. The same experiment in SR-BI knockout mice, showed no difference in HDL derived 3H-CE uptake by adipose tissue or liver. In conclusion, PPARγ activation decreases the fecal excretion of macrophage derived cholesterol in mice. This is not due to inhibition of cholesterol efflux from macrophages, but rather involves redirection of effluxed cholesterol from liver towards adipose tissue uptake via SR-BI. This represents a novel mechanism for regulation of RCT and may extend the therapeutic implications of these ligands. PMID:21291868

  13. Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice.

    PubMed

    Mirza, Rita E; Fang, Milie M; Weinheimer-Haus, Eileen M; Ennis, William J; Koh, Timothy J

    2014-03-01

    The hypothesis of this study was that sustained activity of the Nod-like receptor protein (NLRP)-3 inflammasome in wounds of diabetic humans and mice contributes to the persistent inflammatory response and impaired healing characteristic of these wounds. Macrophages (Mp) isolated from wounds on diabetic humans and db/db mice exhibited sustained inflammasome activity associated with low level of expression of endogenous inflammasome inhibitors. Soluble factors in the biochemical milieu of these wounds are sufficient to activate the inflammasome, as wound-conditioned medium activates caspase-1 and induces release of interleukin (IL)-1β and IL-18 in cultured Mp via a reactive oxygen species-mediated pathway. Importantly, inhibiting inflammasome activity in wounds of db/db mice using topical application of pharmacological inhibitors improved healing of these wounds, induced a switch from proinflammatory to healing-associated Mp phenotypes, and increased levels of prohealing growth factors. Furthermore, data generated from bone marrow-transfer experiments from NLRP-3 or caspase-1 knockout to db/db mice indicated that blocking inflammasome activity in bone marrow cells is sufficient to improve healing. Our findings indicate that sustained inflammasome activity in wound Mp contributes to impaired early healing responses of diabetic wounds and that the inflammasome may represent a new therapeutic target for improving healing in diabetic individuals.

  14. Mitogen-activated protein kinase phosphatase-1 expression in macrophages is controlled by lymphocytes during macrophage activation.

    PubMed

    Luo, Chong; Yang, Xiqiang; Yao, Lan; Jiang, Liping; Liu, Wei; Li, Xin; Wang, Lijia

    2012-01-01

    The viewpoints on the control of innate immune cells by the adaptive immune system during sepsis remain controversial. Mitogen-activated protein kinase phosphatase-1 (MKP-1) is essential to the negative control of innate immunity and suppresses the activation of macrophages by inhibiting activated mitogen-activated protein kinase (MAPK). The purpose of the current study was to observe inflammatory response and macrophage activation in mice with severe combined immunodeficiency (SCID) with endotoxemia and to determine the role of MKP-1 in the control of macrophage activation by the adaptive immune system. Endotoxemia was induced in wild-type and SCID mice by an intraperitoneal injection of lipopolysaccharide (LPS), and all of the SCID mice died. SCID mice produced more inflammatory cytokines than BALB/c mice systemically and locally. TNF-α mRNA expression was higher and MKP-1 mRNA expression was lower in peritoneal macrophages (PMa) from SCID mice compared to PMa from wild-type mice after and even before LPS injection. Thioglycollate-stimulated PMa from wild-type mice were stimulated with LPS in vitro in the presence or absence of pan-T cells. The levels of TNF-α and IL-6 were higher in the supernatants from PMa cultured alone compared to PMa co-cultured with pan-T cells, and PMa MKP-1 mRNA and protein expression were higher when PMa were co-cultured with pan-T cells. Therefore, pan-T cells can up-regulate MKP-1 expression in macrophages and inhibit the secretion of inflammatory cytokines secretion by macrophages. In SCID mice, lymphocyte deficiency, especially T cell deficiency, causes insufficient MKP-1 expression in macrophages, which can be responsible for the severe inflammation and bad prognosis of septic SCID mice. MKP-1 plays an important role in the control of macrophage activation by the adaptive immune system.

  15. Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette- smoke-induced lung inflammation in mice

    PubMed Central

    Bozinovski, Steven; Seow, Huei Jiunn; Chan, Sheau Pyng Jamie; Anthony, Desiree; McQualter, Jonathan; Hansen, Michelle; Jenkins, Brendan J.; Anderson, Gary P.

    2015-01-01

    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD. PMID:26201093

  16. Regulation of LPS-induced mRNA expression of pro-inflammatory cytokines via alteration of NF-κB activity in mouse peritoneal macrophages exposed to fluoride.

    PubMed

    Tian, Yuhu; Huo, Meijun; Li, Guangsheng; Li, Yanyan; Wang, Jundong

    2016-10-01

    F toxicity to immune system, especially to macrophage, has been studied a lot recently. Nuclear factor-kappa B (NF-κB), as a transcription factor, plays a central role in immune and inflammatory responses via the regulation of downstream gene expression. Recent studies indicated that fluoride effect on inflammatory cytokine secretion, however, the molecular mechanism was less understood. In our study, peritoneal macrophages (PMs) were divided several groups and were administrated sodium fluoride (NaF, 50, 100, 200, 400, 800 μM) and/or lipopolysaccharide (LPS, 30 ng/mg). The mRNA expression of p65, inducible nitric oxide synthase (iNOS), tumor necrosis factor alpha (TNF-α) and interleukin-1 beta (IL-1β) in macrophages exposed to fluoride was determined by quantitative real-time RT-PCR respectively. The translocation of NF-κB from cytoplasm to nucleus, which in a way reflects NF-κB activity, was demonstrated by Immunofluorescence and ELISA. Our results showed that fluoride had a dose-dependent effect on NF-κB activity, which coincided with LPS-induced mRNA expression of its downstream genes, iNOS and IL-1β. Fluoride alone causes no effect on gene expression. However, the mRNA expression of TNF-α showed non-NF-κB-dependent manner. Therefore, we come to the conclusion that fluoride can regulate LPS-induced mRNA expression of iNOS and IL-1β via NF-κB pathway in mouse peritoneal macrophages.

  17. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells.

    PubMed

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-11-13

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF-κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy.

  18. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  19. Nod2 sensing of lysozyme-digested peptidoglycan promotes macrophage recruitment and clearance of S. pneumoniae colonization in mice.

    PubMed

    Davis, Kimberly M; Nakamura, Shigeki; Weiser, Jeffrey N

    2011-09-01

    Streptococcus pneumoniae colonizes the mucosal surface of the human upper respiratory tract. A colonization event is gradually cleared through phagocytosis by monocytes/macrophages that are recruited to the airway lumen. Here, we sought to define the bacterial and host factors that promote monocyte/macrophage influx and S. pneumoniae clearance using intranasal bacterial challenge in mice. We found that the recruitment of monocytes/macrophages required their expression of the chemokine receptor CCR2 and correlated with expression of the CCR2 ligand CCL2. Production of CCL2 and monocyte/macrophage recruitment were deficient in mice lacking digestion of peptidoglycan by lysozyme (LysM) and cytosolic sensing of the products of digestion by Nod2. Ex vivo macrophages produced CCL2 following bacterial uptake, digestion by LysM, and sensing of peptidoglycan by Nod2. Sensing of digested peptidoglycan by Nod2 also required the pore-forming toxin pneumolysin. The generation of an adaptive immune response, as measured by anti-pneumococcal antibody titers, was also LysM- and Nod2-dependent. Together, our data suggest that bacterial uptake by professional phagocytes is followed by LysM-mediated digestion of S. pneumoniae-derived peptidoglycan, sensing of the resulting products by Nod2, release of the chemokine CCL2, and CCR2-dependent recruitment of the additional monocytes/macrophages required for the clearance of an S. pneumoniae colonization event.

  20. Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice

    PubMed Central

    Dou, Guo-Rui; Li, Na; Chang, Tian-Fang; Zhang, Ping; Gao, Xiang; Yan, Xian-Chun; Liang, Liang; Han, Hua; Wang, Yu-Sheng

    2016-01-01

    Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition. PMID:27339903

  1. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.

  2. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    PubMed

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-03-10

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.

  3. The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses.

    PubMed Central

    Guilloteau, L A; Wallis, T S; Gautier, A V; MacIntyre, S; Platt, D J; Lax, A J

    1996-01-01

    The Salmonella dublin virulence plasmid mediates systemic infection in mice and cattle. Here, we analyze the interaction between wild-type and plasmid-cured Salmonella strains with phagocytes in vitro and in vivo. The intracellular recovery of S. dublin from murine peritoneal and bovine alveolar macrophages cultured in the presence of gentamicin in vitro was not related to virulence plasmid carriage. However, the virulence plasmid increased the lytic activity of S. dublin, Salmonella typhimurium, and Salmonella choleraesuis for resident or activated mouse peritoneal macrophages. Lysis was not mediated by spv genes and was abolished by cytochalasin D treatment. Peritoneal and splenic macrophages were isolated from mice 4 days after intraperitoneal infection with wild-type or plasmid-cured S. dublin strains. The wild-type strain was recovered in significantly higher numbers than the plasmid-cured strain. However, the intracellular killing rates of such cells cultured in vitro for both S. dublin strains were not significantly different. Four days after infection, there was a lower increase of phagocyte numbers in the peritoneal cavities and spleens of mice infected with the wild-type strain compared with the plasmid-cured strain. The virulence plasmid influenced the survival of macrophages in vitro following infection in vivo as assessed by microscopy. Cells from mice infected with the plasmid-cured strain survived better than those from mice infected with the wild-type strain. This is the first report demonstrating an effect of the virulence plasmid on the interaction of Salmonella strains with macrophages. Plasmid-mediated macrophage dysfunction could influence the recruitment and/or the activation of phagocytic cells and consequently the net growth of Salmonella strains during infection. PMID:8757880

  4. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway.

    PubMed

    Niu, Xiaofeng; Wang, Yu; Li, Weifeng; Zhang, Hailin; Wang, Xiumei; Mu, Qingli; He, Zehong; Yao, Huan

    2015-12-01

    Esculin, a coumarinic derivative found in Aesculus hippocastanum L. (Horse-chestnut), has been reported to have potent anti-inflammatory properties. The present study is designed to investigate the protective effects of esculin on various inflammation models in vivo and in vitro and to clarify the possible mechanism. Induced-animal models of inflammation and lipopolysaccharide (LPS)-challenged mouse peritoneal macrophages were used to examine the anti-inflammatory activity of esculin. In present study, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, and carrageenan-induced mouse pleurisy were attenuated by esculin. In vitro, the pro-inflammatory cytokine levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in supernatant were reduced by esculin. Meanwhile, we found that esculin significantly inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathway in peritoneal macrophages. These results suggest that esculin has potent anti-inflammatory activities in vivo and in vitro, which may involve the inhibition of the MAPK pathway. Esculin may be a promising preventive agent for inflammatory diseases in human.

  5. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages.

    PubMed

    Gonzalez-Pena, Dianelys; Nixon, Scott E; Southey, Bruce R; Lawson, Marcus A; McCusker, Robert H; Hernandez, Alvaro G; Dantzer, Robert; Kelley, Keith W; Rodriguez-Zas, Sandra L

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  6. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  7. Arginase activity in alternatively activated macrophages protects PI3Kp110δ deficient mice from dextran sodium sulfate induced intestinal inflammation.

    PubMed

    Weisser, Shelley B; Kozicky, Lisa K; Brugger, Hayley K; Ngoh, Eyler N; Cheung, Bonnie; Jen, Roger; Menzies, Susan C; Samarakoon, Asanga; Murray, Peter J; Lim, C James; Johnson, Pauline; Boucher, Jean-Luc; van Rooijen, Nico; Sly, Laura M

    2014-11-01

    Alternatively activated or M2 macrophages have been reported to protect mice from intestinal inflammation, but the mechanism of protection has not been elucidated. In this study, we demonstrate that mice deficient in the p110δ catalytic subunit activity of class I phosphatidylinositol 3-kinase (PI3Kp110δ) have increased clinical disease activity and histological damage during dextran sodium sulfate (DSS) induced colitis. Increased disease severity in PI3Kp110δ-deficient mice is dependent on professional phagocytes and correlates with reduced numbers of arginase I+ M2 macrophages in the colon and increased production of inflammatory nitric oxide. We further demonstrate that PI3Kp110δ-deficient macrophages are defective in their ability to induce arginase I when skewed to an M2 phenotype with IL-4. Importantly, adoptive transfer of IL-4-treated macrophages derived from WT mice, but not those from PI3Kp110δ-deficient mice, protects mice during DSS-induced colitis. Moreover, M2 macrophages mediated protection is lost when mice are cotreated with inhibitors that block arginase activity or during adoptive transfer of arginase I deficient M2 macrophages. Taken together, our data demonstrate that arginase I activity is required for M2 macrophages mediated protection during DSS-induced colitis in PI3Kp110δ-deficient mice.

  8. Macrophage-dependent IL-1β production induces cardiac arrhythmias in diabetic mice

    PubMed Central

    Monnerat, Gustavo; Alarcón, Micaela L.; Vasconcellos, Luiz R.; Hochman-Mendez, Camila; Brasil, Guilherme; Bassani, Rosana A.; Casis, Oscar; Malan, Daniela; Travassos, Leonardo H.; Sepúlveda, Marisa; Burgos, Juan Ignacio; Vila-Petroff, Martin; Dutra, Fabiano F.; Bozza, Marcelo T.; Paiva, Claudia N.; Carvalho, Adriana Bastos; Bonomo, Adriana; Fleischmann, Bernd K.; de Carvalho, Antonio Carlos Campos; Medei, Emiliano

    2016-01-01

    Diabetes mellitus (DM) encompasses a multitude of secondary disorders, including heart disease. One of the most frequent and potentially life threatening disorders of DM-induced heart disease is ventricular tachycardia (VT). Here we show that toll-like receptor 2 (TLR2) and NLRP3 inflammasome activation in cardiac macrophages mediate the production of IL-1β in DM mice. IL-1β causes prolongation of the action potential duration, induces a decrease in potassium current and an increase in calcium sparks in cardiomyocytes, which are changes that underlie arrhythmia propensity. IL-1β-induced spontaneous contractile events are associated with CaMKII oxidation and phosphorylation. We further show that DM-induced arrhythmias can be successfully treated by inhibiting the IL-1β axis with either IL-1 receptor antagonist or by inhibiting the NLRP3 inflammasome. Our results establish IL-1β as an inflammatory connection between metabolic dysfunction and arrhythmias in DM. PMID:27882934

  9. INFLUENCE OF SURGICAL TECHNIQUE IN THE PERITONEAL CARCINOMATOSIS SURGICAL WOUND IMPLANT: EXPERIMENTAL MODEL IN MICE

    PubMed Central

    ROSA, Roberto Maranhão; CAIADO, Rafael Coelho; REIS, Paulo Roberto de Melo; LACERDA, Elisângela de Paula Silveira; SUGITA, Denis Masashi; MRUÉ, Fátima

    2015-01-01

    Background The number of malignancies increased alarmingly. Surgery constitutes one of the most efficient therapeutic modalities for the treatment of solid tumors. The neoplastic implant in surgical wound is a complication whose percentage of occurrence reported in the literature is variable, but sets with high morbidity and therapeutic difficulties. Protecting the wound is one of the recommended principles of oncologic surgery. Aim To evaluate the influence of wound protection in the development of tumor implantation. Methods Sarcoma 180 tumor cells were used, with intraperitoneal inoculation in Swiss mice. After the establishment of neoplastic ascites, animals were randomized into two groups of 10, each group consisting of five males and five females. In both groups, laparotomy and manipulation of intra-abdominal organs was performed. In a group laparotomy was performed using the protection of the abdominal wound and the other group without it. On the 9th postoperative day macroscopic evaluation of the operative scar was performed, which was later removed for microscopic evaluation. Results There was microscopic infiltration of tumor cells in the wound of all animals. However, the group that held the protection, infiltration was less intense when compared to the group without it. The infiltration was also more severe in females than in males of the same group. Conclusion Tumor infiltration into the wound was more intense in the group in which the protection of the surgical site was not performed, and in females when compared to males of the same group. PMID:25861061

  10. Increased uptake by splenic red pulp macrophages contributes to rapid platelet turnover in WASP(-) mice.

    PubMed

    Prislovsky, Amanda; Strom, Ted S

    2013-09-01

    Thrombocytopenia caused by rapid platelet consumption contributes to the severe thrombocytopenia of Wiskott-Aldrich syndrome (WAS) and to the milder thrombocytopenia seen in murine WAS. We show that rapid clearance of ¹¹¹In-labeled murine WASP(-) platelets correlates with enhanced splenic uptake. Using platelets labeled with a pH-sensitive fluorescent marker (pHrodo), we quantify normal platelet uptake by red pulp macrophages (RPMs), and demonstrate its enhancement after in vivo opsonization of platelets. The spleens of WASP(-) mice contain an increased number of RPM, and rapid clearance of WASP(-) platelets in WASP(-) mice in turn generates an increased number of pHrodo(+) splenic RPMs. To separately assess the platelet intrinsic and recipient-dependent functions involved in the clearance and splenic phagocyte uptake of WASP(-) platelets, we performed "crossed" pHrodo(+) platelet injection studies (wild type [WT] to WASP(-), WASP(-) to WT). We show that an extrinsic effect of recipient WASP deficiency on the clearance of WASP(-) platelets correlates with increased platelet uptake by RPMs. An intrinsic effect of platelet WASP deficiency on platelet clearance does not, however, correlate with increased total uptake by WT or WASP(-) RPMs. In contrast to other published findings, we find no evidence of a baseline or antibody-induced increase in phosphatidyl serine exposure on WASP(-) platelets. Our findings suggest that an increased number of RPMs in WASP(-) mice contributes significantly to the increased platelet consumption rate in WASP(-) mice. This might explain the consistent efficacy of splenectomy in murine and clinical WAS.

  11. Macrophage activation as an immune correlate to protective immunity against schistosomiasis in mice immunized with an irradiated, cryopreserved live vaccine.

    PubMed Central

    Lewis, F A; Winestock, J; James, S L

    1987-01-01

    Immune responses against Schistosoma mansoni were evaluated in C57BL/6 mice injected with one of two populations of irradiated schistosomules, the larval preparations differing only in the degree of freezing-induced damage sustained upon cryopreservation. Mice injected with larvae which successfully withstood cryopreservation showed a significant reduction in worm burden following cercarial challenge. No protection was achieved in mice which received larvae damaged by a suboptimal thawing rate. Parallel comparison of several humoral and cellular responses in mice which received either inoculum revealed that induction of activated macrophages and production of macrophage-activating lymphokine activity were the strongest correlates to development of protective immunity. Protected mice also showed marginal 30-min skin test reactivity and weak but transient 24-h delayed-type hypersensitivity to a soluble adult worm preparation. In contrast, indistinguishable levels of circulating antibodies to soluble and tegumental antigens developed in the two immunization groups, and antigen-stimulated lymphocyte blastogenic responses were strong and essentially equivalent in magnitude. These studies strongly suggested that in this new model for investigating anti-schistosome effector mechanisms, responses contributing to the development of activated macrophages may be essential for induction of protective immunity. PMID:3106218

  12. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  13. Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    PubMed Central

    Tyteca, Donatienne; Nishino, Tomoya; Debaix, Huguette; Van Der Smissen, Patrick; N'Kuli, Francisca; Hoffmann, Delia; Cnops, Yvette; Rabolli, Virginie; van Loo, Geert; Beyaert, Rudi; Huaux, François; Devuyst, Olivier; Courtoy, Pierre J.

    2015-01-01

    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues. PMID:25719758

  14. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.

    PubMed

    Vergadi, Eleni; Vaporidi, Katerina; Theodorakis, Emmanuel E; Doxaki, Christina; Lagoudaki, Eleni; Ieronymaki, Eleftheria; Alexaki, Vassilia I; Helms, Mike; Kondili, Eumorfia; Soennichsen, Birte; Stathopoulos, Efstathios N; Margioris, Andrew N; Georgopoulos, Dimitrios; Tsatsanis, Christos

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.

  15. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation

    PubMed Central

    Liu, Chang; Rajapakse, Angana G.; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II−/− mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II−/− mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II−/− mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II−/−-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity. PMID:26846206

  16. Deletion of Macrophage Vitamin D Receptor Promotes Insulin Resistance and Monocyte Cholesterol Transport to Accelerate Atherosclerosis in Mice

    PubMed Central

    Oh, Jisu; Riek, Amy E.; Darwech, Isra; Funai, Katsuhiko; Shao, JianSu; Chin, Kathleen; Sierra, Oscar L.; Carmeliet, Geert; Ostlund, Richard E.; Bernal-Mizrachi, Carlos

    2015-01-01

    Summary Intense effort has been devoted to understanding predisposition to chronic systemic inflammation as this contributes to cardiometabolic disease. We demonstrate that deletion of the macrophage vitamin D receptor (VDR) in mice (KODMAC) is sufficient to induce insulin resistance by promoting M2 macrophage accumulation in the liver, as well as increase cytokine secretion and hepatic glucose production. Moreover, VDR deletion increases atherosclerosis by enabling lipid-laden M2 monocytes to adhere, migrate, and carry cholesterol into the atherosclerotic plaque, and by increasing macrophage cholesterol uptake and esterification. Increased foam cell formation results from lack of VDR-SERCA2b interaction, causing SERCA dysfunction, activation of ER stress-CaMKII-JNKp-PPARγ signaling, and induction of the scavenger receptors CD36 and SR-A1. BM transplant of VDR-expressing cells into KODMAC mice improved insulin sensitivity, suppressed atherosclerosis, and decreased foam cell formation. The immunomodulatory effects of vitamin D in macrophages are thus critical in diet-induced insulin resistance and atherosclerosis in mice. Graphical Abstract PMID:25801026

  17. Novel feedback loop between M2 macrophages/microglia and regulatory B cells in estrogen-protected EAE mice.

    PubMed

    Benedek, Gil; Zhang, Jun; Nguyen, Ha; Kent, Gail; Seifert, Hilary; Vandenbark, Arthur A; Offner, Halina

    2017-04-15

    Immunoregulatory sex hormones, including estrogen and estriol, may prevent relapses in multiple sclerosis during pregnancy. Our previous studies have demonstrated that regulatory B cells are crucial for estrogen-mediated protection against experimental autoimmune encephalomyelitis (EAE). Herein, we demonstrate an estrogen-dependent induction of alternatively activated (M2) macrophages/microglia that results in an increased frequency of regulatory B cells in the spinal cord of estrogen treated mice with EAE. We further demonstrate that cultured M2-polarized microglia promote the induction of regulatory B cells. Our study suggests that estrogen neuroprotection induces a regulatory feedback loop between M2 macrophages/microglia and regulatory B cells.

  18. Macrophage deficiency in osteopetrotic (op/op) mice inhibits activation of satellite cells and prevents hypertrophy in single soleus fibers.

    PubMed

    Ohira, T; Wang, X D; Ito, T; Kawano, F; Goto, K; Izawa, T; Ohno, H; Kizaki, T; Ohira, Y

    2015-05-15

    Effects of macrophage on the responses of soleus fiber size to hind limb unloading and reloading were studied in osteopetrotic homozygous (op/op) mice with inactivated mutation of macrophage colony-stimulating factor (M-CSF) gene and in wild-type (+/+) and heterozygous (+/op) mice. The basal levels of mitotically active and quiescent satellite cell (-46 and -39% vs. +/+, and -40 and -30% vs. +/op) and myonuclear number (-29% vs. +/+ and -28% vs. +/op) in fibers of op/op mice were significantly less than controls. Fiber length and sarcomere number in op/op were also less than +/+ (-22%) and +/op (-21%) mice. Similar trend was noted in fiber cross-sectional area (CSA, -15% vs. +/+, P = 0.06, and -14% vs. +/op, P = 0.07). The sizes of myonuclear domain, cytoplasmic volume per myonucleus, were identical in all types of mice. The CSA, length, and the whole number of sarcomeres, myonuclei, and mitotically active and quiescent satellite cells, as well as myonuclear domain, in single muscle fibers were decreased after 10 days of unloading in all types of mice, although all of these parameters in +/+ and +/op mice were increased toward the control values after 10 days of reloading. However, none of these levels in op/op mice were recovered. Data suggest that M-CSF and/or macrophages are important to activate satellite cells, which cause increase of myonuclear number during fiber hypertrophy. However, it is unclear why their responses to general growth and reloading after unloading are different.

  19. Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles

    PubMed Central

    Tran, Thanh-Huyen; Rastogi, Ruchir; Shelke, Juili; Amiji, Mansoor M.

    2015-01-01

    The purpose of this study was to modulate macrophage polarity from the pro-inflammatory M1 to anti-inflammatory M2 phenotype using plasmid DNA (pDNA) expressing interleukin-4 (IL4) or interleukin-10 (IL10)-encapsulated in hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/pDNA NPs with spherical shape, average size of 186 nm were efficiently internalized by J774A.1 macrophages. Transfection of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 NPs increased IL4 and IL10 gene expression in J774 macrophages which could re-program the macrophages from M1 to M2 phenotype as evidenced by a significant increase in the Arg/iNOS level, and upregulation of CD206 and CD163 compared to untreated macrophages. Following intraperitoneal (IP) injection to C57BL/6 mice, HA-PEI NPs effectively targeted peritoneal macrophages over-expressing CD44 receptor. In an in vivo model of stimulated peritoneal macrophages, IP administration of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 to C57BL/6 mice significantly increased the Arg/iNOS ratio and CD163 expression in the cells. Furthermore, HA-PEI/pDNA-IL10 NPs significantly increased peritoneal and serum IL10 levels which effectively suppressed LPS-induced inflammation by reducing level of TNF-α and IL-1β in peritoneal macrophages and in the peritoneal fluid. The results demonstrated that pDNA-IL10-encapsulate HA-PEI NPs skewed macrophage functional polarity from M1 toward an anti-inflammatory M2 phenotype which may be a promising platform for the treatment of inflammatory diseases. PMID:26577684

  20. Paradoxical resistance to high-fat diet-induced obesity and altered macrophage polarization in mineralocorticoid receptor-overexpressing mice.

    PubMed

    Kuhn, Emmanuelle; Bourgeois, Christine; Keo, Vixra; Viengchareun, Say; Muscat, Adeline; Meduri, Geri; Le Menuet, Damien; Fève, Bruno; Lombès, Marc

    2014-01-01

    The mineralocorticoid receptor (MR) exerts proadipogenic and antithermogenic effects in vitro, yet its in vivo metabolic impact remains elusive. Wild type (WT) and transgenic (Tg) mice overexpressing human MR were subjected to standard chow (SC) or high-fat diet (HFD) for 16 wk. Tg mice had a lower body weight gain than WT animals and exhibited a relative resistance to HFD-induced obesity. This was associated with a decrease in fat mass, an increased population of smaller adipocytes, and an improved glucose tolerance compared with WT animals. Quantitative RT-PCR studies revealed decreased expression of PPARγ2, a master adipogenic gene, and of glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase type 1, consistent with an impaired local glucocorticoid signaling in adipose tissues (AT). This paradoxical resistance to HFD-induced obesity was not related to an adipogenesis defect since differentiation capacity of Tg preadipocytes isolated from stroma-vascular fractions was unaltered, suggesting that other nonadipocyte factors might compromise AT development. Although AT macrophage infiltration was not different between genotypes, Tg mice exhibited a distinct macrophage polarization, as revealed by FACS analysis and CD11c/CD206 expression studies. We further demonstrated that Tg macrophage-conditioned medium partially impaired preadipocyte differentiation. Therefore, we propose that modification of M1/M2 polarization of hMR-overexpressing macrophages could account in part for the metabolic phenotype of Tg mice. Collectively, our results provide evidence that MR exerts a pivotal immunometabolic role by controlling adipocyte differentiation processes directly but also indirectly through macrophage polarization regulation. Our findings should be taken into account for the pharmacological treatment of metabolic disorders.

  1. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hartung, Annegret; Lisy, Marcus R.; Herrmann, Karl-Heinz; Hilger, Ingrid; Schüler, Dirk; Lang, Claus; Bellemann, Matthias E.; Kaiser, Werner A.; Reichenbach, Jürgen R.

    2007-04-01

    This work investigated macrophages labeled with magnetosomes for the possible detection of inflammations by MR molecular imaging. Pure magnetosomes and macrophages containing magnetosomes were analyzed using a clinical 1.5 T MR-scanner. Relaxivities of magnetosomes and relaxation rates of cells containing magnetosomes were determined. Peritonitis was induced in two mice. T1, T2 and T2* weighted images were acquired following injection of the probes. Pure magnetosomes and labeled cells showed slight effects on T1, but strong effects on T2 and T2* images. Labeled macrophages were located with magnetic resonance imaging (MRI) in the colon area, thus demonstrating the feasibility of the proposed approach.

  2. Effects of oat β-glucan on the macrophage cytokine response to herpes simplex virus 1 infection in vitro.

    PubMed

    Murphy, E Angela; Davis, J Mark; Brown, Adrienne S; Carmichael, Martin D; Ghaffar, Abdul; Mayer, Eugene P

    2012-08-01

    Oat β-glucan can counteract the increased risk for Herpes Simplex Virus 1 (HSV-1) infection in mice, the effects of which have, at least in part, been attributed to macrophages. However, the specific responses of macrophages to oat β-glucan treatment in this model have yet to be elucidated. We examined the effects of varying doses of oat β-glucan on the pro-inflammatory cytokine response in both peritoneal and lung macrophages with and without exposure to HSV-1 infection in vitro. Peritoneal and lung macrophages were obtained from mice and cultured with varying concentrations of oat β-glucan (0 (control), 10, 100, and 1,000 μg) for 24 h and supernatants were collected. A standardized dose of HSV-1 was added for a second 24 h incubation period after which supernatants were again collected. Samples were analyzed for interleukin-1β (IL-1β), IL-6, and tumor necrosis factor α (TNF-α) using enzyme linked immunosorbent assay (ELISA). In most cases, oat β-glucan resulted in a dose-dependent increase in pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in lung and peritoneal macrophages with and without exposure to HSV-1 infection. When comparing across macrophage source, this response was greater for IL-1β and IL-6 in peritoneal macrophages and for TNF-α in lung macrophages. This may be a mechanism for the decreased risk for HSV-1 infection following oat β-glucan feedings in mice.

  3. 22-Oxacalcitriol Prevents Progression of Peritoneal Fibrosis in a Mouse Model

    PubMed Central

    Hirose, Misaki; Nishino, Tomoya; Obata, Yoko; Nakazawa, Masayuki; Nakazawa, Yuka; Furusu, Akira; Abe, Katsushige; Miyazaki, Masanobu; Koji, Takehiko; Kohno, Shigeru

    2013-01-01

    ♦ Objective: Vitamin D plays an important role in calcium homeostasis and is used to treat secondary hyperparathyroidism among dialysis patients. The biologic activity of vitamin D and its analogs is mediated by vitamin D receptor (VDR), which is distributed widely throughout the body. Recent papers have revealed that low vitamin D levels are correlated with severe fibrosis in chronic diseases, including cystic fibrosis and hepatitis. The aim of the present study was to evaluate the protective effects of vitamin D against the progression of peritoneal fibrosis. ♦ Methods: Peritoneal fibrosis was induced by injection of chlorhexidine gluconate (CG) into the peritoneal cavity of mice every other day for 3 weeks. An analog of vitamin D, 22-oxacalcitriol (OCT), was administered subcutaneously daily from initiation of the CG injections. The peritoneal tissue was excised at 3 weeks. Changes in morphology were assessed by hematoxylin and eosin staining. Expression of VDR, alpha smooth muscle actin (as a marker of myofibroblasts), type III collagen, transforming growth factor β(TGF-β), phosphorylated Smad2/3, F4/80 (as a marker of macrophages), and monocyte chemoattractant protein-1 (MCP-1) was examined by immunohistochemistry. Southwestern histochemistry was used to detect activated nuclear factor κB (NF-κB). ♦ Results: In the CG-injected mice, immunohistochemical analysis revealed expression of VDR in mesothelial cells, myofibroblasts, and macrophages in the thickened submesothelial zone. Treatment with OCT significantly prevented peritoneal fibrosis and reduced the accumulation of type III collagen in CG-treated mice. Among the markers of fibrosis, the numbers of myofibroblasts, cells positive for TGF-β, and cells positive for phosphorylated Smad2/3 were significantly decreased in the OCT-treated group compared with the vehicle-treated group. Furthermore, OCT suppressed inflammatory mediators of fibrosis, as shown by the reduced numbers of activated NF

  4. Susceptibility of Inbred Mice to Leishmania major Infection: Genetic Analysis of Macrophage Activation and Innate Resistance to Disease in Individual Progeny of P/J (Susceptible) and C3H/HeN (Resistant) Mice

    DTIC Science & Technology

    1990-12-01

    mediated immu- ease and defective macrophage activation in Bx mice that nity in mice highly susceptible to Leishmania tropica . J. Exp. could not be...inbred mice to Leishmania tropica infec- tion: correlation of susceptibility with in vitro defective macro- LITERATURE CITED phage microbicidal...probability and phage activation to kill Leishmania tropica : characterization of statistics. Chemical Rubber Co., Cleveland. P/J mouse macrophage defects for

  5. Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF-β1

    PubMed Central

    Oliveira, Suellen D'arc Santos; Nanini, Hayandra Ferreira; Savio, Luiz Eduardo Baggio; Waghabi, Mariana Caldas; Silva, Claudia Lucia Martins

    2014-01-01

    Schistosomiasis is a chronic inflammatory disease whose macrophages are involved in immunopathology modulation. Although P2X7 receptor signaling plays an important role in inflammatory responses mediated by macrophages, no reports have examined the role of P2X7 receptors in macrophage function during schistosomiasis. Thus, we evaluated P2X7 receptor function in peritoneal macrophages during schistosomiasis using an ATP-induced permeabilization assay and measurements of the intracellular Ca2+ concentration. ATP treatment induced significantly less permeabilization in macrophages from S. mansoni-infected mice than in control cells from uninfected animals. Furthermore, P2X7-mediated increases in intracellular Ca2+ levels were also reduced in macrophages from infected mice. TGF-β1 levels were increased in the peritoneal cavity of infected animals, and pretreatment of control macrophages with TGF-β1 reduced ATP-induced permeabilization, mimicking the effect of S. mansoni infection. Western blot and qRT-PCR data showed no difference in P2X7 protein and mRNA between uninfected, infected, and TGF-β1-treated groups. However, immunofluorescence analysis revealed reduced cell surface localization of P2X7 receptors in macrophages from infected and TGF-β1-treated mice compared to controls. Therefore, our data suggest that schistosomiasis reduces peritoneal macrophage P2X7 receptor signaling. This effect is likely due to the fact that infected mice have increased levels of TGF-β1, which reduces P2X7 receptor cell surface expression. PMID:25276050

  6. Annexin V decreases PS-mediated macrophage efferocytosis and deteriorates elastase-induced pulmonary emphysema in mice.

    PubMed

    Yoshida, S; Minematsu, N; Chubachi, S; Nakamura, H; Miyazaki, M; Tsuduki, K; Takahashi, S; Miyasho, T; Iwabuchi, T; Takamiya, R; Tateno, H; Mouded, M; Shapiro, S D; Asano, K; Betsuyaku, T

    2012-11-15

    Efferocytosis is believed to be a key regulator for lung inflammation in chronic obstructive pulmonary disease. In this study we pharmacologically inhibited efferocytosis with annexin V and attempted to determine its impact on the progression of pulmonary emphysema in mouse. We first demonstrated in vitro and in vivo efferocytosis experiments using annexin V, an inhibitor for phosphatidylserine-mediated efferocytosis. We then inhibited efferocytosis in porcine pancreatic elastase (PPE)-treated mice. PPE-treated mice were instilled annexin V intranasally starting from day 8 until day 20. Mean linear intercept (Lm) was measured, and cell apoptosis was assessed in lung specimen obtained on day 21. Cell profile, apoptosis, and mRNA expression of matrix metalloproteinases (MMPs) and growth factors were evaluated in bronchoalveolar lavage (BAL) cells on day 15. Annexin V attenuated macrophage efferocytosis both in vitro and in vivo. PPE-treated mice had a significant higher Lm, and annexin V further increased that by 32%. More number of macrophages was found in BAL fluid in this group. Interestingly, cell apoptosis was not increased by annexin V treatment both in lung specimens and BAL fluid, but macrophages from mice treated with both PPE and annexin V expressed higher MMP-2 mRNA levels and had a trend for higher MMP-12 mRNA expression. mRNA expression of keratinocyte growth factor tended to be downregulated. We showed that inhibited efferocytosis with annexin V worsened elastase-induced pulmonary emphysema in mice, which was, at least partly, attributed to a lack of phenotypic change in macrophages toward anti-inflammatory one.

  7. Microbiological aspects of peritonitis associated with continuous ambulatory peritoneal dialysis.

    PubMed Central

    von Graevenitz, A; Amsterdam, D

    1992-01-01

    The process of continuous ambulatory peritoneal dialysis has provided a useful, relatively inexpensive, and safe alternative for patients with end-stage renal disease. Infectious peritonitis, however, has limited a more widespread acceptance of this technique. The definition of peritonitis in this patient population is not universally accepted and does not always include the laboratory support of a positive culture (or Gram stain). In part, the omission of clinical microbiological findings stems from the lack of sensitivity of earlier microbiological efforts. Peritonitis results from decreased host phagocytic efficiency with depressed phagocytosis and bactericidal capacity of peritoneal macrophages. During episodes of peritonitis, fluid movement is reversed, away from the lymphatics and peritoneal membrane and toward the cavity. As a result, bloodstream infections are rare. Most peritonitis episodes are caused by bacteria. Coagulase-negative staphylococci are the most frequently isolated organisms, usually originating from the skin flora, but a wide array of microbial species have been documented as agents of peritonitis. Clinical microbiology laboratories need to be cognizant of the diverse agents so that appropriate primary media can be used. The quantity of dialysate fluid that is prepared for culture is critical and should constitute at least 10 ml. The sensitivity of the cultural approach depends on the volume of dialysate, its pretreatment (lysis or centrifugation), the media used, and the mode of incubation. The low concentration of microorganisms in dialysate fluids accounts for negative Gram stain results. Prevention of infection in continuous ambulatory peritoneal dialysis patients is associated with the socioeconomic status of the patient, advances in equipment (catheter) technology, and, probably least important, the application of prophylactic antimicrobial agents. PMID:1735094

  8. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.

    PubMed

    Wang, Xianwei; Ding, Zufeng; Lin, Juntang; Guo, Zhikun; Mehta, Jawahar L

    2015-11-06

    Previous studies have shown that oxidized low-density lipoprotein (ox-LDL) inhibits macrophage migration, but the precise mechanisms remain unclear. Lectin-like ox-LDL receptor-1 (LOX-1) is a scavenger receptor that is expressed in macrophages and binds ox-LDL. Calpains, a family of calcium-dependent proteases, influence several aspects of cell migration. In this study, we investigated the role of LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains in this process. Peritoneal macrophages from wild type C57BL/6 mice were exposed to different concentrations of ox-LDL (1-20 μg/mL), and expression of LOX-1 and calpain-1 and -2, cell migration and intracellular calcium (Ca(2+)in) were measured. Our results showed that ox-LDL stimulated LOX-1 and calpain-2 expression, and inhibited calpain-1 expression in a dose- and time-dependent manner. Further, ox-LDL inhibited macrophage migration and increased Ca(2+)in concentration in macrophages. To further elucidate the role of LOX-1 in ox-LDL-impaired macrophage migration, we isolated peritoneal macrophages from LOX-1 knockout mice, and treated them with ox-LDL. Interestingly, calpain-1 expression was much higher, and calpain-2 expression was lower in LOX-1 knockout macrophages than in wild-type macrophages following exposure to ox-LDL. LOX-1 deletion significantly improved macrophage migration and decreased Ca(2+)in concentration. These data indicate that LOX-1 is, at least in part, responsible for the inhibitory effect of ox-LDL on macrophage migration and this process involves calpain-1 and -2.

  9. GP43 from Paracoccidioides brasiliensis inhibits macrophage functions. An evasion mechanism of the fungus.

    PubMed

    Flavia Popi, Ana Flavia; Lopes, José Daniel; Mariano, Mario

    2002-01-01

    Macrophages constitute one of the primary cellular mechanisms that impairs parasite invasion of host tissues. The phagocytic and microbicidal properties of these cells can be modulated by specific membrane receptors involved in cell-microorganism interactions. Gp43, the main antigen secreted by Paracoccidiodes brasiliensis (Pb), the causative agent of Paracoccidioidomycosis, is a high mannose glycoprotein. The role played by gp43 in the pathogenesis of the disease is not completely known. Here, we describe the influence of this molecule on the interaction between peritoneal murine macrophages and Pb. Phagocytosis of Pb, live or heat-killed, by adherent peritoneal cells from both, B10.A (susceptible) and A/Sn (resistant) mice, was evaluated. Addition of different concentrations of gp43 to the culture medium inhibited, in a dose-dependent pattern, phagocytosis of live or heat-killed Pb by peritoneal macrophages from both B10.A and A/Sn mice. Gp43 also inhibits phagocytosis of zymosan particles but did not interfere with the uptake of opsonized sheep red blood cells. It was also shown that both gp43 and heat-killed Pb have an inhibitory effect on the release of NO by zymosan stimulated macrophages. Finally, we demonstrated that gp43 inhibits the fungicidal ability of macrophages from both lineages. Based on these data, it is suggested that gp43 can be considered one of the evasion mechanisms for the installation of primary infection in susceptible hosts.

  10. Mutation of neutralizing/antibody-dependent enhancing epitope on spike protein and 7b gene of feline infectious peritonitis virus: influences of viral replication in monocytes/macrophages and virulence in cats.

    PubMed

    Takano, Tomomi; Tomiyama, Yoshika; Katoh, Yasuichiroh; Nakamura, Michiyo; Satoh, Ryoichi; Hohdatsu, Tsutomu

    2011-03-01

    We previously prepared neutralizing monoclonal antibody (MAb)-resistant (mar) mutant viruses using a laboratory strain feline infectious peritonitis virus (FIPV) 79-1146 (Kida et al., 1999). Mar mutant viruses are mutated several amino acids of the neutralizing epitope of Spike protein, compared with the parent strain, FIPV 79-1146. We clarified that MAb used to prepare mar mutant viruses also lost its activity to enhance homologous mar mutant viruses, strongly suggesting that neutralizing and antibody-dependent enhancing epitopes are present in the same region in the strain FIPV 79-1146. We also discovered that amino acid mutation in the neutralizing epitope reduced viral replication in monocytes/macrophages. We also demonstrated that the mutation or deletion of two nucleotides in 7b gene abrogate the virulence of strain FIPV 79-1146.

  11. Exercise-induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators.

    PubMed Central

    Ortega, E; Forner, M A; Barriga, C

    1997-01-01

    1. Exercise provokes changes in the immune system, including macrophage activity. Chemotaxis is a necessary function of macrophages if they are to reach the focus of infection and strenuous acute exercise may modulate chemotaxis. However, the precise mechanisms remain unknown. 2. Three experiments were performed in the present study. (1) The effect of strenuous acute exercise (swimming until exhaustion) on the chemotactic capacity of macrophages was evaluated. (2) Peritoneal macrophages from control mice were incubated with plasma from exercised mice or control (no exercise) mice. The differences in the resulting chemotactic capacity were measured. (3) Changes in the concentration of plasma corticosterone and prolactin after exercise were also measured, and the effect of incubation with the post-exercise levels of plasma corticosterone and prolactin on the chemotactic capacity of the peritoneal macrophages was then studied in vitro. 3. Exercise induced an increase in the macrophage chemotaxis index (103 +/- 8 vs. 47 +/- 11 in controls). Incubation with plasma from exercised mice led to an increased level of chemotaxis (68 +/- 18 vs. 40 +/- 6 with plasma from controls). Incubation with concentrations of corticosterone and prolactin similar to those observed in plasma immediately after exercise (corticosterone, 0.72 mumol l-1; prolactin, 88 pmol l-1) raised the chemotactic capacity with respect to that following incubation with the basal concentrations of the hormones in control animals (90 +/- 9 vs. 37 +/- 4 for corticosterone; 72 +/- 9 vs. 41 +/- 4 for prolactin). 4. It is concluded that corticosterone and prolactin may mediate the increased chemotaxis of peritoneal macrophages induced by exercise. Images Figure 3 Figure 4 PMID:9051584

  12. P65 inactivation in adipocytes and macrophages attenuates adipose inflammatory response in lean but not in obese mice.

    PubMed

    Gao, Zhanguo; Zhang, Jin; Henagan, Tara M; Lee, Jong Han; Ye, Xin; Wang, Hui; Ye, Jianping

    2015-03-15

    NF-κB induces transcriptional expression of proinflammatory genes and antiapoptotic genes. The two activities of NF-κB remain to be characterized in the mechanism of chronic inflammation in obesity. To address this issue, we inactivated NF-κB in adipose tissue by knocking out p65 (RelA) in mice (F-p65-KO) and examined the inflammation in lean and obese conditions. In the lean condition, KO mice exhibited a reduced inflammation in adipose tissue with a decrease in macrophage infiltration, M1 polarization, and proinflammatory cytokine expression. In the obese condition, KO mice had elevated inflammation with more macrophage infiltration, M1 polarization, and cytokine expression. In the mechanism of enhanced inflammation, adipocytes and macrophages exhibited an increase in cellular apoptosis, which was observed with more formation of crown-like structures (CLS) in fat tissue of KO mice. Body weight, glucose metabolism, and insulin sensitivity were not significantly altered in KO mice under the lean and obese conditions. A modest but significant reduction in body fat mass was observed in KO mice on HFD with an elevation in energy expenditure. The data suggest that in the control of adipose inflammation, NF-κB exhibits different activities in the lean vs. obese condition. NF-κB is required for expression of proinflammatory genes in the lean but not in the obese condition. NF-κB is required for inhibition of apoptosis in the obese condition, in which proinflammation is enhanced by NF-κB inactivation.

  13. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing

    PubMed Central

    Bellner, Lars; Marrazzo, Giuseppina; van Rooijen, Nico; Dunn, Michael W.; Abraham, Nader G.; Schwartzman, Michal L.

    2015-01-01

    Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2−/− and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2−/− mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2−/− macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2−/− mice. These findings indicate that HO-2–deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2−/− cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.—Bellner, L., Marrazzo, G., van Rooijen, N., Dunn, M. W., Abraham, N. G., Schwartzman, M. L. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing. PMID:25342128

  14. Glucocorticoid-augmented efferocytosis inhibits pulmonary pneumococcal clearance in mice by reducing alveolar macrophage bactericidal function

    PubMed Central

    Stolberg, Valerie R.; McCubbrey, Alexandra L.; Freeman, Christine M.; Brown, Jeanette P.; Crudgington, Sean W.; Taitano, Sophina H.; Saxton, Bridget L.; Mancuso, Peter; Curtis, Jeffrey L.

    2015-01-01

    Inhaled corticosteroid(s) (ICS) increase community-acquired pneumonia (CAP) incidence in patients with chronic obstructive pulmonary disease (COPD) by unknown mechanisms. Apoptosis is increased in the lungs of COPD patients. Uptake of apoptotic cells (AC) (“efferocytosis”) by alveolar macrophages (AMø) reduces their ability to combat microbes, including Streptococcus pneumoniae, the most common cause of CAP in COPD patients. Having shown that ICS significantly increase AMø efferocytosis, we hypothesized that this process, termed glucocorticoid-augmented efferocytosis (GCAE), might explain the association of CAP with ICS therapy in COPD. To test this hypothesis, we studied the effects of fluticasone, AC or both on AMø of C57BL/6 mice in vitro and in an established model of pneumococcal pneumonia. Fluticasone plus AC significantly reduced TLR4-stimulated AMø IL-12 production, relative to either treatment alone, and decreased TNF-α, CCL3, CCL5 and KC, relative to AC. Mice treated with fluticasone plus AC before infection with viable pneumococci developed significantly more lung CFU at 48 h. However, none of the pretreatments altered inflammatory cell recruitment to the lungs at 48 h post-infection, and fluticasone plus AC less markedly reduced in vitro mediator production to heat-killed pneumococci. Fluticasone plus AC significantly reduced in vitro AMø killing of pneumococci, relative to other conditions, in part by delaying phagolysosome acidification without affecting production of reactive oxygen or nitrogen species. These results support GCAE as a potential explanation for the epidemiological association of ICS therapy of COPD patients with increased risk of CAP, and establish murine experimental models to dissect underlying molecular mechanisms. PMID:25987742

  15. Effect of macrophage-modulating agents on in vivo growth of transplantable Lewis lung cancer in mice.

    PubMed

    Nowicki, A; Ostrowska, G; Aukerman, S L; Wiktor-Jedrzejczak, W

    1994-01-01

    C57Bl/6 mice, bearing transplantable Lewis lung cancer (non-metastatic subline) implanted either subcutaneously or intraperitoneally were treated with macrophage colony stimulating factor (M-CSF, 10(6) units per mouse, per day for 19 days), Escherichia coli lipopolysaccharide or both. Lipopolysaccharide (5 micrograms per mouse) administered daily once a day for up to 30 days impaired both subcutaneous and intraperitoneal tumor growth and prolonged survival of tumor bearing mice. Macrophage colony stimulating factor, administered daily, inhibited only subcutaneous tumor growth, both when administered alone and in combination with with lipopolysaccharide, and had no effect on intraperitoneal tumor. Moreover, it did not prolong survival of tumor bearing mice, when administered alone, and nullified the effects of lipopolysaccharide when administered concomitantly. These data suggest that macrophage colony stimulating factor, at least in this tumor model and in this dose schedule, offers little benefit. In contrast, the present data confirm earlier suggestions on therapeutic usefulness of bacterial lipopolysaccharide in neoplastic disease, which makes this compound an interesting candidate for future clinical trials.

  16. Hyperhomocysteinemia promotes insulin resistance and adipose tissue inflammation in PCOS mice through modulating M2 macrophage polarization via estrogen suppression.

    PubMed

    Qi, Xinyu; Zhang, Bochun; Zhao, Yue; Li, Rong; Chang, Hsun-Ming; Pang, Yanli; Qiao, Jie

    2017-03-15

    It has been shown that serum homocycteine (Hcy) levels are higher in women with polycystic ovary syndrome (PCOS). However, the specific role of hyperhomocycteinemia (HHcy) in the development of PCOS has never been reported. Adipose tissue inflammation is featured by the infiltration of macrophages that plays a critical role in the pathogenesis of glucose and insulin intolerance. In this study, C57BL/6 mice were treated with dehydroepiandrosterone (DHEA) and/or high methionine diet to induce PCOS and HHcy mice models. We showed that DHEA induced a PCOS-like phenotypes, irregular estrous cycles, weight gain, abnormal sex hormone production, glucose and insulin resistance, and polycyctic ovaries. HHcy further intensified the effects DHEA on the metabolic, endocrinal, hormonal, and morphological changes in PCOS-like mice. In addition, the HHcy attenuated the DHEA-induced increase in serum estrogen levels in mice. Furthermore, HHcy may exacerbate the insulin resistance in the PCOS-like mice, most likely through modulating the macrophage M1/M2 polarization pathways via the suppression of estrogen. Most importantly, our clinical data showed that there were increases in serum Hcy levels in PCOS patients. These findings deepen our understanding of the pathological roles of HHcy in the development of PCOS and provide a promising target for PCOS therapy in clinical application.

  17. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression.

    PubMed

    Lai, Jiann-Jyh; Lai, Kuo-Pao; Chuang, Kuang-Hsiang; Chang, Philip; Yu, I-Chen; Lin, Wen-Jye; Chang, Chawnshang

    2009-12-01

    Cutaneous wounds heal more slowly in elderly males than in elderly females, suggesting a role for sex hormones in the healing process. Indeed, androgen/androgen receptor (AR) signaling has been shown to inhibit cutaneous wound healing. AR is expressed in several cell types in healing skin, including keratinocytes, dermal fibroblasts, and infiltrating macrophages, but the exact role of androgen/AR signaling in these different cell types remains unclear. To address this question, we generated and studied cutaneous wound healing in cell-specific AR knockout (ARKO) mice. General and myeloid-specific ARKO mice exhibited accelerated wound healing compared with WT mice, whereas keratinocyte- and fibroblast-specific ARKO mice did not. Importantly, the rate of wound healing in the general ARKO mice was dependent on AR and not serum androgen levels. Interestingly, although dispensable for wound closure, keratinocyte AR promoted re-epithelialization, while fibroblast AR suppressed it. Further analysis indicated that AR suppressed wound healing by enhancing the inflammatory response through a localized increase in TNF-alpha expression. Furthermore, AR enhanced local TNF-alpha expression via multiple mechanisms, including increasing the inflammatory monocyte population, enhancing monocyte chemotaxis by upregulating CCR2 expression, and enhancing TNF-alpha expression in macrophages. Finally, targeting AR by topical application of a compound (ASC-J9) that degrades AR protein resulted in accelerated healing, suggesting a potential new therapeutic approach that may lead to better treatment of wound healing.

  18. Effect of hochuekkito on alveolar macrophage inflammatory responses in hyperglycemic mice.

    PubMed

    Nakayama, Masayuki; Sugiyama, Yukihiko; Yamasawa, Hideaki; Soda, Manabu; Mato, Naoko; Hosono, Tatsuya; Bando, Masashi

    2012-08-01

    Diabetes mellitus reduces immunological activity and increases susceptibility to various infections. Hochuekkito (TJ-41) has been reported to improve the weakened physical condition of various chronic diseases. BALB/c mice were divided into three groups; groups A and B were fed a standard diet, and group C, a TJ-41 diet. Two weeks after starting these diets, hyperglycemia was induced in groups B and C by injection with streptozotocin. Two weeks later, bronchoalveolar lavage was performed. Toll-like receptor (TLR) ligands (TLR2: peptidoglycan, PGN; TLR4: lipopolysaccharide, LPS; TLR5: flagellin, FLG) were used to stimulate alveolar macrophages (AMs), and TNF-α production was measured. Under hyperglycemic conditions and PGN or FLG stimulation, TNF-α production from AMs was significantly reduced in group B compared with group A. However, treatment with TJ-41 (group C) significantly improved the impaired production of TNF-α. These results suggest that, under hyperglycemic conditions, TJ-41 can improve the inflammatory responses of AMs with stimulation of TLR ligands.

  19. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species.

    PubMed

    Wang, Yusi; Pati, Paramita; Xu, Yiming; Chen, Feng; Stepp, David W; Huo, Yuqing; Rudic, R Daniel; Fulton, David J R

    2016-01-01

    The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1) was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS) whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration. These results

  20. Regular Voluntary Exercise Potentiates Interleukin-1β and Interleukin-18 Secretion by Increasing Caspase-1 Expression in Murine Macrophages

    PubMed Central

    Imaizumi, Kazuhiko; Ohno, Hideki

    2017-01-01

    Moderate-intensity regular exercise improves proinflammatory responses of lipopolysaccharide- (LPS-) stimulated macrophages. However, intracellular events that mediate the beneficial effects of exercise were unclear. This study aimed to clarify the mechanism by which regular voluntary exercise (VE) improves proinflammatory cytokine production by macrophages challenged with LPS. Peritoneal macrophages from VE mice secreted considerably higher amounts of interleukin- (IL-) 1β and IL-18 than did cells from sedentary control (SC) mice in the presence and absence of LPS, although tumor necrosis factor-α and IL-10 secretion were comparable between both groups. The mRNA levels of these cytokines increased significantly in response to LPS; similar levels were noted in macrophages from both SC and VE mice. Moreover, LPS evoked similar levels of degradation of inhibitor of κB (IκB) α and phosphorylation of IκB kinase β, c-Jun N-terminal kinase, and p38 in macrophages from SC and VE mice. These results indicate that the increased IL-1β and IL-18 secretion in VE mice are regulated posttranscriptionally. On the other hand, macrophages from VE mice showed higher amounts of caspase-1 protein than did cells from SC mice. These results suggest that regular VE potentiates IL-1β and IL-18 secretion in LPS-challenged macrophages by increasing caspase-1 levels. PMID:28133422

  1. The tumoricidal properties of inflammatory tissue macrophages and multinucleate giant cells.

    PubMed Central

    Poste, G.

    1979-01-01

    Peritoneal exudate cells from C3H/HeN mice infected with bacille Calmette Guérin (BCG) and subcutaneous inflammatory macrophages from uninfected mice exhibit spontaneous cytotoxicity for tumor cells in vitro, but their tumoricidal activity can be increased by incubation in vitro with lymphokines released by mitogen- or antigen-stimulated lymphocytes. Inflammatory macrophages from these sites are only susceptible to activation in vitro by lymphokines for a short period (less than 4 days) following their initial emigration from the circulation to the site of inflammation. The expression of tumoricidal activity by activated macrophages is similarly short-lived (less than 4 days). Once the tumoricidal state is lost it cannot be restored by further incubation with lymphokines in vitro. Fusion of macrophages to form multinucleate giant cells (MGCs) accompanies the loss of tumoricidal activity and the onset of resistance to activation by lymphokines, but the fusion process is not responsible for these changes, since unfused macrophages are similarly affected. Activation and acquisition of tumoricidal properties is confined to young macrophages recruited from the circulation during acute inflammation. Older macrophages and MGCs in chronic inflammatory lesions in which recruitment of new macrophages has ceased are nontumoricidal and are refractory to activation by lymphokines in vitro. These findings are discussed in relation to the efficiency of macrophage-mediated destruction of tumors in vivo and the amplification of macrophage antitumor activity by immunotherapeutic agents. Images Figure 3 Figure 1 Figure 2 PMID:382866

  2. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  3. Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds

    PubMed Central

    Kim, Ha Won; Chan, Qilin; Afton, Scott E.; Caruso, Joseph A.; Lai, Barry; Weintraub, Neal L.; Qin, Zhenyu

    2013-01-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound

  4. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

    PubMed

    Mathews, Joel A; Kasahara, David I; Ribeiro, Luiza; Wurmbrand, Allison P; Ninin, Fernanda M C; Shore, Stephanie A

    2015-01-01

    We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.

  5. Spontaneous hybridization of macrophages and Meth A sarcoma cells.

    PubMed

    Busund, Lill-Tove R; Killie, Mette K; Bartnes, Kristian; Olsen, Randi; Seljelid, Rolf

    2002-04-01

    We present evidence of hybridization between Meth A sarcoma cells and syngeneic as well as semigeneic peritoneal macrophages. The resultant hybrids are characterized by morphology, membrane markers, ploidy, chromosomal content and functional features. Briefly, after a few days of coculture, cells appeared with morphology intermediate between the 2 original cell types. Typical macrophage surface molecules appeared in the hybrids. Meth A cells were labeled with red fluorescence and macrophages with green fluorescence. After 4 days in vitro, hybrids with yellow fluorescence appeared. Macrophages from BALB.K mice (H-2 K(k)) were cocultivated with Meth A cells from BALB/c mice (H-2 K(d)). The semigeneic hybrids displayed both specificities, as demonstrated by flow cytometry. The hybrids appeared moderately phagocytic, less so than the macrophages and markedly more so than the essentially nonphagocytic Meth A cells. The hybrids had a mean number of 76 chromosomes, as opposed to 53 in the Meth A cells and 40 in the macrophages. The macrophage DNA index was set at 1; Meth A cells were found to have an index of 1.6 in G1 phase, and the hybrids had a 2.6 index. The hybrids grew more slowly in vitro than Meth A cells, but grew faster in vivo.

  6. Pleiotrophin triggers inflammation and increased peritoneal permeability leading to peritoneal fibrosis.

    PubMed

    Yokoi, Hideki; Kasahara, Masato; Mori, Kiyoshi; Ogawa, Yoshihisa; Kuwabara, Takashige; Imamaki, Hirotaka; Kawanishi, Tomoko; Koga, Kenichi; Ishii, Akira; Kato, Yukiko; Mori, Keita P; Toda, Naohiro; Ohno, Shoko; Muramatsu, Hisako; Muramatsu, Takashi; Sugawara, Akira; Mukoyama, Masashi; Nakao, Kazuwa

    2012-01-01

    Long-term peritoneal dialysis induces peritoneal fibrosis with submesothelial fibrotic tissue. Although angiogenesis and inflammatory mediators are involved in peritoneal fibrosis, precise molecular mechanisms are undefined. To study this, we used microarray analysis and compared gene expression profiles of the peritoneum in control and chlorhexidine gluconate (CG)-induced peritoneal fibrosis mice. One of the 43 highly upregulated genes was pleiotrophin, a midkine family member, the expression of which was also upregulated by the solution used to treat mice by peritoneal dialysis. This growth factor was found in fibroblasts and mesothelial cells within the underlying submesothelial compact zones of mice, and in human peritoneal biopsy samples and peritoneal dialysate effluent. Recombinant pleiotrophin stimulated mitogenesis and migration of mouse mesothelial cells in culture. We found that in wild-type mice, CG treatment increased peritoneal permeability (measured by equilibration), increased mRNA expression of TGF-β1, connective tissue growth factor and fibronectin, TNF-α and IL-1β expression, and resulted in infiltration of CD3-positive T cells, and caused a high number of Ki-67-positive proliferating cells. All of these parameters were decreased in peritoneal tissues of CG-treated pleiotrophin-knockout mice. Thus, an upregulation of pleiotrophin appears to play a role in fibrosis and inflammation during peritoneal injury.

  7. Role of macrophage migration inhibitory factor in the regulatory T cell response of tumor-bearing mice

    PubMed Central

    Choi, Susanna; Kim, Hang-Rae; Leng, Lin; Kang, Insoo; Jorgensen, William L.; Cho, Chul-Soo; Bucala, Richard; Kim, Wan-Uk

    2012-01-01

    Macrophage migration inhibitory factor (MIF) is involved in tumorigenesis by facilitating tumor proliferation and evasion of apoptosis; however, its role in tumor immunity is unclear. In this study, we investigated the effect of MIF on the progression of the syngenic, CT26 colon carcinoma and the generation of tumor regulatory T cells (Tregs). The results showed that the tumor growth rate was significantly lower in MIF knockout (MIF−/−) mice than in wild type (MIF+/+) mice. Flow cytometric analysis of both spleen and tumor cells revealed that MIF−/− mice had significantly lower levels of tumor-associated CD4+Tregs than MIF+/+ mice. The splenic cells of MIF−/− mice also showed a decrease in CD8+Tregs, which was accompanied by an increase in CD8-induced tumor cytotoxicity. Interestingly, the inducible Treg response in spleen cells to anti-CD3/CD28+IL-2+TGF-β was greater in MIF−/− mice than in MIF+/+ mice. Spleen cells of MIF−/− mice, stimulated with anti-CD3/CD28, produced lower levels of IL-2, but not TGF-β, than those of MIF+/+ mice, which was recovered by the addition of recombinant MIF. Conversely, a neutralizing anti-MIF Ab blocked anti-CD3-induced IL-2 production by splenocytes of MIF+/+ mice and suppressed the inducible Treg generation. Moreover, the administration of IL-2 into tumor-bearing MIF−/− mice restored the generation of Tregs and tumor growth. Taken together, our data suggest that MIF promotes tumor growth by increasing Tregs generation through the modulation of IL-2 production. Thus, anti-MIF treatment might be useful in enhancing the adaptive immune response to colon cancers. PMID:22972922

  8. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages

    PubMed Central

    Lillis, Anna P.; Muratoglu, Selen Catania; Au, Dianaly T.; Migliorini, Mary; Lee, Mi-Jeong; Fried, Susan K.; Mikhailenko, Irina; Strickland, Dudley K.

    2015-01-01

    Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. PMID:26061292

  9. Peritonitis - secondary

    MedlinePlus

    ... Bacteria may enter the peritoneum through a hole (perforation) in an of the organ digestive tract. The ... function tests X-rays or CT scan Peritoneal fluid culture Urinalysis Treatment Often, surgery is needed to ...

  10. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages

    PubMed Central

    Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages. PMID:27611972

  11. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  12. Nerve Growth Factor Regulation by TNF-α and IL-1β in Synovial Macrophages and Fibroblasts in Osteoarthritic Mice

    PubMed Central

    Takano, Shotaro; Inoue, Gen; Aikawa, Jun; Iwase, Dai; Minatani, Atsushi; Iwabuchi, Kazuya; Takaso, Masashi

    2016-01-01

    To investigate the role of macrophages as a regulator and producer of nerve growth factor (NGF) in the synovial tissue (ST) of osteoarthritis (OA) joints, the gene expression profiles of several inflammatory cytokines in the ST, including synovial macrophages and fibroblasts, of OA mice (STR/Ort) were characterized. Specifically, real-time polymerase chain reaction analysis was used to evaluate the expression of tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and NGF in CD11b+ and CD11b– cells isolated from the ST of a murine OA model. The effects of TNF-α, IL-1β, and IL-6 on the expression of NGF in cultured synovial cells were also examined. The expression of TNF-α, IL-1β, IL-6, and NGF in the ST of STR/Ort was higher than that in C57/BL6J mice. Compared to the CD11b– cell fraction, higher expression levels of TNF-α, IL-1β, and IL-6 were detected in the CD11b+ cell fraction, whereas no differences in the expression of NGF were detected between the two cell fractions. Notably, TNF-α upregulated NGF expression in synovial fibroblasts and macrophages and IL-1β upregulated NGF expression in synovial fibroblasts. IL-1β and TNF-α may regulate NGF signaling in OA joints and be suitable therapeutic targets for treating OA pain. PMID:27635406

  13. Bacterial phagocytosis by macrophages from lipopolysaccharide responder and nonresponder mouse strains.

    PubMed Central

    Cuffini, A; Carlone, N A; Forni, G

    1980-01-01

    The phagocytic capacity of macrophages from C3H/H3J mice was assessed against lipopolysaccharide-producing (Escherichia coli) and -nonproducing (Staphylococcus aureus) bacteria. Despite their gene-coded unresponsiveness to lipopolysaccharide endotoxin and lymphokines and their defective tumoricidal activity, proteose peptone-induced C3H/HeJ macrophages did not display a defective phagocytic capacity, but rather displayed an enhanced phagocytosis of both bacterial strains compared with macrophages from closely related C3H/HeN mice. Unstimulated peritoneal resident C3H/HeJ macrophages, on the other hand, displayed a normal phagocytic activity toward E. coli and enhanced phagocytosis toward S. aureus. PMID:6995321

  14. An adventitial IL-6/MCP1 amplification loop accelerates macrophage-mediated vascular inflammation leading to aortic dissection in mice

    PubMed Central

    Tieu, Brian C.; Lee, Chang; Sun, Hong; LeJeune, Wanda; Recinos, Adrian; Ju, Xiaoxi; Spratt, Heidi; Guo, Dong-Chuan; Milewicz, Dianna; Tilton, Ronald G.; Brasier, Allan R.

    2009-01-01

    Vascular inflammation contributes to cardiovascular diseases such as aortic aneurysm and dissection. However, the precise inflammatory pathways involved have not been clearly defined. We have shown here that subcutaneous infusion of Ang II, a vasopressor known to promote vascular inflammation, into older C57BL/6J mice induced aortic production of the proinflammatory cytokine IL-6 and the monocyte chemoattractant MCP-1. Production of these factors occurred predominantly in the tunica adventitia, along with macrophage recruitment, adventitial expansion, and development of thoracic and suprarenal aortic dissections. In contrast, a reduced incidence of dissections was observed after Ang II infusion into mice lacking either IL-6 or the MCP-1 receptor CCR2. Further analysis revealed that Ang II induced CCR2+CD14hiCD11bhiF4/80– macrophage accumulation selectively in aortic dissections and not in aortas from Il6–/– mice. Adoptive transfer of Ccr2+/+ monocytes into Ccr2–/– mice resulted in selective monocyte uptake into the ascending and suprarenal aorta in regions of enhanced ROS stress, with restoration of IL-6 secretion and increased incidence of dissection. In vitro, coculture of monocytes and aortic adventitial fibroblasts produced MCP-1– and IL-6–enriched conditioned medium that promoted differentiation of monocytes into macrophages, induced CD14 and CD11b upregulation, and induced MCP-1 and MMP-9 expression. These results suggest that leukocyte-fibroblast interactions in the aortic adventitia potentiate IL-6 production, inducing local monocyte recruitment and activation, thereby promoting MCP-1 secretion, vascular inflammation, ECM remodeling, and aortic destabilization. PMID:19920349

  15. Zinc deficiency augments leptin production and exacerbates macrophage infiltration into adipose tissue in mice fed a high-fat diet.

    PubMed

    Liu, Ming-Jie; Bao, Shengying; Bolin, Eric R; Burris, Dara L; Xu, Xiaohua; Sun, Qinghua; Killilea, David W; Shen, Qiwen; Ziouzenkova, Ouliana; Belury, Martha A; Failla, Mark L; Knoell, Daren L

    2013-07-01

    Zinc (Zn) deficiency and obesity are global public health problems. Zn deficiency is associated with obesity and comorbid conditions that include insulin resistance and type 2 diabetes. However, the function of Zn in obesity remains unclear. Using a mouse model of combined high-fat and low-Zn intake (0.5-1.5 mg/kg), we investigated whether Zn deficiency exacerbates the extent of adiposity as well as perturbations in metabolic and immune function. C57BL/6 mice were randomly assigned to receive either a high-fat diet (HFD) or a control (C) diet for 6 wk, followed by further subdivision into 2 additional groups fed Zn-deficient diets (C-Zn, HFD-Zn), along with a C diet and an HFD, for 3 wk (n = 8-9 mice/group). The extent of visceral fat, insulin resistance, or systemic inflammation was unaffected by Zn deficiency. Strikingly, Zn deficiency significantly augmented circulating leptin concentrations (HFD-Zn vs. HFD: 3.15 ± 0.16 vs. 2.59 ± 0.12 μg/L, respectively) and leptin signaling in the liver of obese mice. Furthermore, gene expression of macrophage-specific markers ADAM8 (A disintegrin and metalloproteinase domain-containing protein 8) and CD68 (cluster of differentiation 68) was significantly greater in adipose tissue in the HFD-Zn group than in the HFD group, as confirmed by CD68 protein analysis, indicative of increased macrophage infiltration. Inspection of Zn content and mRNA profiles of all Zn transporters in the adipose tissue revealed alterations of Zn metabolism to obesity and Zn deficiency. Our results demonstrate that Zn deficiency increases leptin production and exacerbates macrophage infiltration into adipose tissue in obese mice, indicating the importance of Zn in metabolic and immune dysregulation in obesity.

  16. Cytogenetic analysis of pulmonary alveolar macrophages from treated mice: the effects of cyclophosphimide and benzene

    SciTech Connect

    Scott, M.J.; Harper, B.L.; Gad-El-Karim, M.; Ward, J.B. Jr.; Legator, M.S.

    1982-02-01

    The lung is a unique organ in environmental toxicology due to its role in chemical absorption, metabolism and clearance. The development of assays for genotoxic events in the lung would allow observation of effects at a site of chemical administration. We are evaluating the genotoxic effects of chemical on the lung by cytogenetic analysis of pulmonary alveolar macrophages (PAM's). Using male, Swiss (ICR) mice and a modified standard lavage technique, we can consistently recover 1.0-1.5 x 10/sup 6/ PAM cells per animal. Cells from the lavage material were prepared by standard cytogenetic procedures. In two experiments, cyclophosphamide was administered interperatoneally at 0, 5 or 20 mg/kg to 5-6 animals in each treatment group. This was to ascertain whether a clastogen, administered systemically, would manifest its effects in PAM cells, whether such effects were observable, and whether these effects were dose related. The results, analyzed as percent damaged cells, were respectively, 1.89%, 6.40% and 14.32%, (p-value < .001). Benzene was tested using the PAM cytogenetic technique. Doses of 440 and 880 mg/kg, administered via oral gavage, resulted in increased damage: 43.8% and 55.3% cells containing chromosome breaks, respectively. SKF had no apparent protective effect, suggesting the non-involvement of P-450 metabolism in the clastogenic process. In addition, in benzene treated animals a characteristic lesion involving destabilization of the short arms of acrocentric chromosomes resulted in linkage arrangements in over half of all metaphases. These results are consistent with the clastogenic activity of these agents in bone marrow.

  17. Depletion of macrophages in CD11b diphtheria toxin receptor mice induces brain inflammation and enhances inflammatory signaling during traumatic brain injury.

    PubMed

    Frieler, Ryan A; Nadimpalli, Sameera; Boland, Lauren K; Xie, Angela; Kooistra, Laura J; Song, Jianrui; Chung, Yutein; Cho, Kae W; Lumeng, Carey N; Wang, Michael M; Mortensen, Richard M

    2015-10-22

    Immune cells have important roles during disease and are known to contribute to secondary, inflammation-induced injury after traumatic brain injury. To delineate the functional role of macrophages during traumatic brain injury, we depleted macrophages using transgenic CD11b-DTR mice and subjected them to controlled cortical impact. We found that macrophage depletion had no effect on lesion size assessed by T2-weighted MRI scans 28 days after injury. Macrophage depletion resulted in a robust increase in proinflammatory gene expression in both the ipsilateral and contralateral hemispheres after controlled cortical impact. Interestingly, this sizeable increase in inflammation did not affect lesion development. We also showed that macrophage depletion resulted in increased proinflammatory gene expression in the brain and kidney in the absence of injury. These data demonstrate that depletion of macrophages in CD11b-DTR mice can significantly modulate the inflammatory response during brain injury without affecting lesion formation. These data also reveal a potentially confounding inflammatory effect in CD11b-DTR mice that must be considered when interpreting the effects of macrophage depletion in disease models.

  18. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice.

    PubMed

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy.

  19. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-maf) Inhibits Angiogenesis and Tumor Growth in Mice1

    PubMed Central

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    Abstract We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  20. Ay allele promotes azoxymethane-induced colorectal carcinogenesis by macrophage migration in hyperlipidemic/diabetic KK mice.

    PubMed

    Ito, Kumiko; Ishigamori, Rikako; Mutoh, Michihiro; Ohta, Toshihiro; Imai, Toshio; Takahashi, Mami

    2013-07-01

    The incidence of colorectal cancer has been increasing and is associated with obesity and diabetes. We have found that type 2 diabetes model KK-Ay/TaJcl (KK-Ay) mice develop tumors within a short period after treatment with azoxymethane (AOM). However, factors that contribute to the promotion of carcinogenesis have not been clarified. Therefore, we looked at the genetic background of KK-Ay, including two genetic characteristics of KK/TaJcl (KK) mice and C57BL/6J-Ham-Ay/+ (Ay) mice, compared with other non-obese and non-diabetic mouse strains C57BL/6J and ICR, and induced colorectal premalignant lesions, aberrant crypt foci (ACF), and tumors using AOM (150 μg/mouse/week for 4 weeks and 200 μg/mouse/week for 6 weeks, respectively). The mice with a diabetes feature, KK-Ay and KK, developed significantly more ACF, 67 and 61 per mouse, respectively, whereas ICR, Ay, and C57BL/6J mice developed 42, 24, and 18 ACF/mouse, respectively, at 17 weeks of age. Serum insulin and triglyceride levels in KK-Ay and KK mice were quite high compared with other non-diabetic mouse strains. Interestingly, KK-Ay mice developed more colorectal tumors (2.7 ± 2.3 tumor/mouse) than KK mice (1.2 ± 1.1 tumor/mouse) at 25 weeks of age, in spite of similar diabetic conditions. The colon cancers that developed in both KK-Ay and KK mice showed similar activation of β-catenin signaling. However, mRNA levels of inflammatory factors related to the activation of macrophages were significantly higher in colorectal cancer of KK-Ay mice than in KK. These data indicate that factors such as insulin resistance and dyslipidemia observed in obese and diabetic patients could be involved in susceptibility to colorectal carcinogenesis. In addition, increase of tumor-associated macrophages may play important roles in the stages of promotion of colorectal cancer.

  1. Effect of recombinant human macrophage colony-stimulating factor 1 on immunopathology of experimental brucellosis in mice.

    PubMed Central

    Doyle, A G; Halliday, W J; Barnett, C J; Dunn, T L; Hume, D A

    1992-01-01

    Brucella abortus injected into CBA mice replicated primarily in the spleen and liver, reaching a peak bacterial count in both organs about 7 days postinfection. The organism was eliminated from the liver but declined to a chronic phase in the spleen. The infection caused hepatosplenomegaly. An influx of macrophages into the two organs was monitored by quantitative Northern (RNA blot) analysis of the macrophage-specific marker lysozyme mRNA. Lysozyme mRNA was detectable in spleen and increased three- to fourfold during infection. In liver, lysozyme mRNA was initially undetectable, but at about the peak of infection it reached a level comparable to that in the spleen. Macrophage colony-stimulating factor 1 (CSF-1) has been reported to be elevated in the circulation of animals infected with B. abortus and is known to stimulate monocytopoiesis. To investigate the role of CSF-1 in pathogenesis, we studied the effect of further increasing the CSF-1 concentration by administration of recombinant human CSF-1. Since the infection is characterized by several distinct phases, recombinant human CSF-1 was administered at defined times relative to these phases. Pronounced effects were observed only when CSF-1 administration was begun during the developing acute phase. The consequences were decreased bacterial numbers in the spleen but an increase in the liver, reduced antibody generation, and increased hepatosplenomegaly. A feature of many chronic intracellular infections is immunosuppression. B. abortus caused a substantial diminution of responsiveness of spleen cells to T-cell mitogens, particularly concanavalin A. This action was mimicked by CSF-1 treatment of the animals prior to spleen cell isolation. The results suggest that CSF-1 plays a role in macrophage recruitment in brucellosis and that recruited macrophages contribute to the immunopathology and immunosuppression. PMID:1548070

  2. Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. The role of alveolar macrophage function and capsular virulence factors

    SciTech Connect

    Gilmour, M.I.; Park, P.; Selgrade, M.K. )

    1993-03-01

    Ozone exposure has been shown to increase the susceptibility of mice to pulmonary bacterial infection. We report here the differences in susceptibility of two strains of mice (C3H/HeJ and C57Bl/6) to pulmonary challenge with Streptococcus zooepidemicus, and demonstrate an association between O3 exposure, reduced alveolar macrophage (AM) function, and increased mortality to infection. After a 3-h exposure to air or to 0.4 or 0.8 ppm O3, mice received an infection of bacteria by aerosol. Subsequent mortality observed over a 20-day period for any given exposure concentration was greater in the C3H/HeJ mice than in the C57Bl/6 mice. Phagocytosis assays identified the AM from O3-exposed lungs as having an impaired ability to engulf the bacteria. Baseline phagocytic activity in C3H/HeJ mice was lower than that in C57Bl/6 mice. Microbiologic assessment of the lungs at various times after infection revealed that the streptococci proliferated rapidly in the lungs of O3-exposed mice, grew more quickly upon isolation, and displayed a mucoid colony appearance indicative of increased encapsulation. In vitro assays confirmed that the encapsulated isolates prevented binding of the bacteria to AM, and reinfection of nonexposed mice with the encapsulated isolate resulted in increased mortality compared with infection with similar numbers of the original unencapsulated bacteria. We have demonstrated that O3 inhalation impairs AM activity in the lung. The streptococci are then able to proliferate and more fully express virulence factors, in particular, the antiphagocytic capsule, which prohibits the ingestion of bacteria by pulmonary phagocytes and leads to increased severity of infection.

  3. [Interaction of very low density lipoproteins (VLDL) with macrophages and their triboluminescence in hypercholesterolemia].

    PubMed

    Voziian, P A; Orel, V E; Baraboĭ, V A; Korniets, G V; Kholodova, Iu D

    1991-01-01

    Accumulation of cholesterol esters and triglycerides in peritoneal mice macrophages in the course of their interaction with lipoproteins of very low density (VLDL) is shown to grow considerably under conditions of hypercholesterolemia. A decrease of triboluminescence intensity characterizing the surface charge has been revealed at hypercholesterolemia both in VLDL and in the blood plasma. It is supposed that the triboluminescence method may be used for testing of the atherosclerotic process development.

  4. Programmed death (PD)-1 attenuates macrophage activation and brain inflammation via regulation of fibrinogen-like protein 2 (Fgl-2) after intracerebral hemorrhage in mice.

    PubMed

    Yuan, Bangqing; Huang, Shaokuan; Gong, Shuangfeng; Wang, Feihong; Lin, Li; Su, Tonggang; Sheng, Hanchao; Shi, Hui; Ma, Kunlong; Yang, Zhao

    2016-11-01

    Neuroinflammation plays an important role in the recovery of brain injury in ICH. Macrophage is the major executor in the neuroinflammation and initiates neurological defects. Programmed death 1 (PD-1) delivers inhibitory signals that regulate the balance between T cell activation, tolerance, and immunopathology. PD-1 expression by macrophages plays a pathologic role in the innate inflammatory response. However, the exact role of PD-1 on inflammatory responses following ICH has not been well identified. In this experiment, PD-1 KO (PD-1 -/-) ICH mice and Wild-type (WT) ICH mice were caused by intracranial injection of type IV collagenase. The level of macrophage activation, inflammatory cytokines and fibrinogen-like protein 2 (Fgl-2) were detected using immunofluorescence staining and ELISA assays. In addition, brain edema and neurological scores of ICH mice were also measured. Our data demonstrated that ICH promoted PD-1 expression of macrophage and enhanced inflammatory cytokines and Fgl-2 concentrations. PD-1 -/- mice exhibited significantly higher expression of the inflammatory cytokines which initiate Fgl-2, than did their wild-type (WT) littermates. As a result, macrophage activation, cerebral edema and neurological deficit scores of PD-1 -/- mice were higher. In conclusion, our data demonstrate that PD-1 plays a vital role in brain inflammation via regulation of Fgl-2 after ICH, and that manipulation of PD-1 might be a promising therapeutical target in ICH.

  5. β-Carotene Attenuates Angiotensin II-Induced Aortic Aneurysm by Alleviating Macrophage Recruitment in Apoe(-/-) Mice.

    PubMed

    Gopal, Kaliappan; Nagarajan, Perumal; Jedy, Jose; Raj, Avinash T; Gnanaselvi, S Kalai; Jahan, Parveen; Sharma, Yogendra; Shankar, Esaki M; Kumar, Jerald M

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe(-/-) mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe(-/-) mice.

  6. Peritoneal Dialysis

    PubMed Central

    Al-Natour, Mohammed; Thompson, Dustin

    2016-01-01

    Peritoneal dialysis is becoming more important in the management of patients with end-stage renal disease. Because of the efforts of the “Fistula First Breakthrough Initiative,” dialysis venous access in the United States has become focused on promoting arteriovenous fistula creation and reducing the number of patients who start dialysis with a tunneled catheter. This is important because tunneled catheters can lead to infection, endocarditis, and early loss of more long-term access. When planned for, peritoneal dialysis can offer patients the opportunity to start dialysis at home without jeopardizing central access or the possibilities of eventual arteriovenous fistula creation. The purpose of this review is to highlight the indications, contraindications, and procedural methods for implanting peritoneal dialysis catheters in the interventional radiology suite. PMID:27011420

  7. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    SciTech Connect

    Rodriguez, Annabelle . E-mail: arodrig5@jhmi.edu; Ashen, M. Dominique; Chen, Edward S.

    2005-05-27

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 {mu}g protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p < 0.04). Cytotoxicity, as measured by the cellular release of [{sup 14}C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1.

  8. Transcription repressor Bach2 is required for pulmonary surfactant homeostasis and alveolar macrophage function

    PubMed Central

    Nakamura, Atsushi; Ebina-Shibuya, Risa; Itoh-Nakadai, Ari; Muto, Akihiko; Shima, Hiroki; Saigusa, Daisuke; Aoki, Junken; Ebina, Masahito; Nukiwa, Toshihiro

    2013-01-01

    Pulmonary alveolar proteinosis (PAP) results from a dysfunction of alveolar macrophages (AMs), chiefly due to disruptions in the signaling of granulocyte macrophage colony–stimulating factor (GM-CSF). We found that mice deficient for the B lymphoid transcription repressor BTB and CNC homology 2 (Bach2) developed PAP-like accumulation of surfactant proteins in the lungs. Bach2 was expressed in AMs, and Bach2-deficient AMs showed alterations in lipid handling in comparison with wild-type (WT) cells. Although Bach2-deficient AMs showed a normal expression of the genes involved in the GM-CSF signaling, they showed an altered expression of the genes involved in chemotaxis, lipid metabolism, and alternative M2 macrophage activation with increased expression of Ym1 and arginase-1, and the M2 regulator Irf4. Peritoneal Bach2-deficient macrophages showed increased Ym1 expression when stimulated with interleukin-4. More eosinophils were present in the lung and peritoneal cavity of Bach2-deficient mice compared with WT mice. The PAP-like lesions in Bach2-deficient mice were relieved by WT bone marrow transplantation even after their development, confirming the hematopoietic origin of the lesions. These results indicate that Bach2 is required for the functional maturation of AMs and pulmonary homeostasis, independently of the GM-CSF signaling. PMID:24127487

  9. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men.

    PubMed

    Dasgupta, Preeta; Keegan, Achsah D

    2012-01-01

    The concept that macrophages play an active role in inflammatory responses began its development in the late 1800s with the now iconic studies by Elie Metchnikoff using starfish larvae and Daphnia [reviewed in Kaufmann SHE: Nat Immunol 2008;9:705-712 and Cavaillon JM: J Leukoc Biol 2011;90:413-424]. Based on his observation of the phagocyte response to a foreign body (rose thorn) and yeast, he proposed that phagocytes acted in host defense and were active participants in the inflammatory process. Flash forward more than 100 years and we find that these basic tenets hold true. However, it is now appreciated that macrophages come in many different flavors and can adopt a variety of nuanced phenotypes depending on the tissue environment in which the macrophage is found. In this brief review, we discuss the role of one type of macrophage termed the alternatively activated macrophage (AAM), also known as the M2 type of macrophage, in regulating allergic lung inflammation and asthma. Recent studies using mouse models of allergic lung inflammation and samples from human asthma patients contribute to the emerging concept that AAMs are not just bystanders of the interleukin (IL)-4- and IL-13-rich environment found in allergic asthma but are also active players in orchestrating allergic lung disease.

  10. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  11. Paeonol suppresses lipopolysaccharide-induced inflammatory cytokines in macrophage cells and protects mice from lethal endotoxin shock.

    PubMed

    Chen, Na; Liu, Dianfeng; Soromou, Lanan Wassy; Sun, Jingjing; Zhong, Weiting; Guo, Weixiao; Huo, Meixia; Li, Hongyu; Guan, Shuang; Chen, Zhenwen; Feng, Haihua

    2014-06-01

    Paeonol (2'-hydroxy-4'-methoxyacetophenone) is the main phenolic compound of the radix of Paeonia suffruticosa which has been used as traditional Chinese medicine. In this study, we primarily investigated the anti-inflammatory effects and the underlying mechanisms of paeonol in RAW macrophage cells; and based on these effects, we assessed the protective effects of paeonol on lipopolysaccharide-induced endotoxemia in mice. The in vitro study showed that paeonol regulated the production of TNF-α, IL-1β, IL-6, and IL-10 via inactivation of IκBα, ERK1/2, JNK, and p38 MAPK. In mouse model of lipopolysaccharide-induced endotoxemia, pro- and anti-inflammatory cytokines are significantly regulated, and thus the survival rates of lipolysaccharide-challenged mice are improved by paeonol (150, 200, or 250 mg/kg). Therefore, paeonol has a beneficial activity against lipopolysaccharide-induced inflammation in RAW 264.7 cell and mouse models.

  12. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages.

    PubMed

    Reyes, José L; Wang, Arthur; Fernando, Maria R; Graepel, Rabea; Leung, Gabriella; van Rooijen, Nico; Sigvardsson, Mikael; McKay, Derek M

    2015-01-01

    Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.

  13. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  14. Dialysis - peritoneal

    MedlinePlus

    ... health. Some people feel more comfortable having a health care provider handle their treatment. You and your provider can decide what is best for you. TYPES OF PERITONEAL DIALYSIS PD gives you more flexibility because you do not have to go to ...

  15. CXCR4 signaling in macrophages contributes to periodontal mechanical hypersensitivity in Porphyromonas gingivalis-induced periodontitis in mice

    PubMed Central

    Nagashima, Hidekazu; Honda, Kuniya; Kamio, Noriaki; Watanabe, Masahiro; Suzuki, Tatsuro; Sugano, Naoyuki; Sato, Shuichi; Iwata, Koichi

    2017-01-01

    Background Periodontitis is an inflammatory disease accompanied by alveolar bone loss and progressive inflammation without pain. However, the potential contributors eliminating pain associated with gingival inflammation are unknown. Results we examined the involvement of CXC chemokine receptor type 4 (CXCR4) on the mechanical sensitivity of inflamed periodontal tissue, using a mouse model of periodontitis established by the ligation of the tooth cervix of a maxillary second molar and inoculation with Porphyromonas gingivalis (P. gingivalis). Infiltration of inflammatory cells into gingival tissue was not observed following the inoculation. Under light anesthesia, the mechanical head withdrawal threshold (MHWT) on the buccal gingiva was measured using an electronic von Frey anesthesiometer. No significant changes in MHWT were observed in the mice with P. gingivalis-induced periodontitis during the experimental period. Continuous administration of CXCR4 neutralizing antibody to the gingival tissue significantly decreased MHWT and increased the number of gingival CXCR4 immunoreactive macrophages in the periodontitis group. Nitric oxide metabolites in the gingival tissue were significantly increased after the inoculation of P. gingivalis and were reduced by gingival CXCR4 neutralization. Gingival L-arginine administration induced gingival mechanical allodynia in naive animals. Moreover, the decrease in MHWT after treatment with P. gingivalis and CXCR4 neutralization was partially reversed by nitric oxide synthase inhibition in the gingival tissue. Nuclear factor-kappa B was expressed in infiltrating macrophages after inoculation of P. gingivalis and administration of the nuclear factor-kappa B activator betulinic acid induced gingival mechanical allodynia in naive mice. Conclusions These findings suggest that CXCR4 signaling inhibits nitric oxide release from infiltrating macrophages and is involved in modulation of the mechanical sensitivity in the periodontal tissue

  16. Enhancement of macrophage-mediated tumor cell killing by bacterial outer membrane proteins (porins).

    PubMed Central

    Weinberg, J B; Ribi, E; Wheat, R W

    1983-01-01

    Various microbial products are known to influence the function of mouse peritoneal macrophages. Lipopolysaccharide (LPS) and certain lipid A-associated proteins are known to enhance the tumoricidal effects of macrophages. The purpose of this study was to determine whether porins (outer membrane proteins) of Salmonella typhimurium G30/C21 would influence the activity of macrophages from lipid A-responsive and -unresponsive mice. Porins, extracted by a combined sodium dodecyl sulfate-EDTA method from cell walls, were free of LPS as determined by Limulus amebocyte lysate assay and appeared as a band at approximately 36,000 molecular weight on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. In tumor cell killing assays done under LPS-free conditions, the porins in doses of 1 to 10 ng/ml enhanced the tumoricidal effect of macrophages from bacillus Calmette-Guérin-infected C3H/HeN or C3H/HeJ mice. Protein-free LPS enhanced the tumoricidal activity of macrophages from bacillus Calmette-Guérin-infected C3H/HeN but not C3H/HeJ mice. The tumoricidal-enhancing activity of protein-free LPS was blocked by the lipid A-binding antibiotic polymyxin B sulfate, but the effects of porins were not altered by the polymyxin B sulfate. These results suggest that porins, proteins known to alter membrane function, may alter macrophage function by interaction with macrophage membranes. Images PMID:6311745

  17. Autoimmune Kidney Disease and Impaired Engulfment of Apoptotic Cells in Mice with Macrophage Peroxisome Proliferator-Activated Receptor γ or Retinoid X Receptor α Deficiency

    PubMed Central

    Rőszer, Tamás; Menéndez-Gutiérrez, María P.; Lefterova, Martina I.; Alameda, Daniel; Núñez, Vanessa; Lazar, Mitchell A.; Fischer, Thierry; Ricote, Mercedes

    2014-01-01

    Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE. PMID:21135166

  18. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  19. Aqueous Extract of Gracilaria tenuistipitata Suppresses LPS-Induced NF-κB and MAPK Activation in RAW 264.7 and Rat Peritoneal Macrophages and Exerts Hepatoprotective Effects on Carbon Tetrachloride-Treated Rat

    PubMed Central

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases. PMID:24475143

  20. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  1. Role of Macrophage Migration Inhibitory Factor (MIF) in Pollen-Induced Allergic Conjunctivitis and Pollen Dermatitis in Mice

    PubMed Central

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis. PMID:25647395

  2. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages.

    PubMed

    Xuan, Dongying; Han, Qianqian; Tu, Qisheng; Zhang, Lan; Yu, Liming; Murry, Dana; Tu, Tianchi; Tang, Yin; Lian, Jane B; Stein, Gary S; Valverde, Paloma; Zhang, Jincai; Chen, Jake

    2016-05-01

    Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies.

  3. Differential effects of chronic monocyte depletion on macrophage populations

    SciTech Connect

    Volkman, A.; Chang, N.C.; Strausbauch, P.H.; Morahan, P.S.

    1983-09-01

    The administration of the bone-seeking isotope, /sup 89/Sr, to mice results in severe monocytopenia without any apparent effect on the numbers of resident peritoneal macrophages (M luminal diameter). An explanation for this dichotomy was sought by determining whether the residual blood monocytes were still an effective source of M luminal diameter after /sup 89/Sr treatment. Stem cell enumeration showed that a 90% fall in bone marrow macrophage colony-forming cells after /sup 89/Sr was accompanied by a 10-fold rise in splenic M-CFC. Splenectomy performed before /sup 89/Sr treatment, however, resulted in little additional monocytopenia and had no affect on the numbers of resident peritoneal M luminal diameter even when sampling was extended to 31 days, an interval beyond the accepted half-time for peritoneal M luminal diameter. Intraperitoneal injections of thioglycollate or Corynebacterium parvum elicited few or no monocyte-M luminal diameter during respective intervals of 4 and 7 days. Elicitation with thioglycollate was attempted in tritiated thymidine-labeled mice 26 days after /sup 89/Sr. Four days later only a 2-fold increase in labeled peritoneal M luminal diameter was found in the /sup 89/Sr-treated mice compared with a 150-fold increase in the controls. Studies of the ectoenzymes 5'-nucleotidase, alkaline phosphodiesterase I, and leucine aminopeptidase in such elicitation experiments suggested that the observed changes in activities reflected the direct stimulation of resident M luminal diameter rather than monocyte immigration. Overall, the results indicate that treatment with /sup 89/Sr distinguishes two large populations of M luminal diameter on the basis of their dependence on bone marrow. M luminal diameter of inflammation reflect the monocytopenia and are severely and rapidly depleted by such treatment.

  4. Effect of a traditional Chinese medicine, bu-zhong-yi-qi-tang (Japanese name: Hochu-ekki-to) on the protection against Listeria monocytogenes infection in mice.

    PubMed

    Li, X Y; Takimoto, H; Miura, S; Yoshikai, Y; Matsuzaki, G; Nomoto, K

    1992-01-01

    Effects of Bu-Zhong-Yi-Qi-Tang (Japanese name: Hochu-ekki-to) on the resistance against Listeria monocytogenes were observed in ICR mice orally administered this medicine daily for 10 days. Survival rates were increased by the pretreatment in mice inoculated i.v. with bacteria 1 day after the last administration and in mice inoculated i.p. 4 days after the last administration. After an i.v. inoculation of L. monocytogenes, the numbers of bacteria in the spleen and liver increased gradually to kill mice by day 5 in untreated group but the bacterial numbers increased slightly by day 3 and decreased from day 3 to day 8 in Hochu-ekki-to pretreated group. After an i.p. inoculation, the number of bacteria in the peritoneal cavity decreased very rapidly within 6h in Hochu-ekki-to treated group compared to that in untreated group. After the administration, number of polymorphonuclear cells increased in the peripheral blood, peritoneal cavity and spleen. In treated mice, macrophages increased in number in the peritoneal cavity and the spleen but decreased in the peripheral blood. Peritoneal macrophages from treated mice showed an enhanced activity to kill L. monocytogenes in vitro within 60 min after ingestion of bacteria. Hochu-ekki-to may augment the host defense against L. monocytogenes through the activation of macrophage series during an early phase of infection.

  5. Macrophage uptake and retention of radiolabeled glycopeptidolipid antigens associated with the superficial L1 layer of Mycobacterium intracellulare serovar 20.

    PubMed Central

    Hooper, L C; Johnson, M M; Khera, V R; Barrow, W W

    1986-01-01

    Glycopeptidolipid (GPL) antigens which are associated with the superficial L1 layer of Mycobacterium intracellulare serovar 20 were labeled with radioisotopes by means of internal labeling techniques and used in macrophage uptake and retention studies. The use of tritiated alanine and phenylalanine allowed the incorporation of label into the GPL invariant fatty acyl peptide core, which is common to all members of the Mycobacterium avium-M. intracellulare complex. Radiolabeled GPL antigens were then purified by a one-step column chromatographic procedure and subsequently used to determine the maximum uptake and retention in peritoneal macrophages isolated from C57BL/6 and CBA/J mice. Maximum uptake for peritoneal macrophages from both strains of mice occurred at a concentration between 200 and 250 micrograms of antigen per ml of medium when 3.4 X 10(5) cells were pulsed. Timed experiments demonstrated that approximately 20% of the antigens remained associated with the macrophages up to 4 days after a pulse of 200 micrograms of GPL, and examination of chloroform-extractable components from both macrophages and spent medium revealed that 98% or more of the radioactivity corresponded to intact GPL components. The ability of the GPL antigens to become associated with macrophages is demonstrated by these results, which strongly suggest that these potentially important mycobacterial antigens are inert to degradation by those cells. Images PMID:3531012

  6. A new monoclonal antibody to study mouse macrophage antigen during BHT-induced lung injury and repair.

    PubMed

    Kennel, S J; Lankford, T; Galloway, P; Witschi, H P

    1989-04-01

    A rat monoclonal antibody 133-13A to a mouse lung carcinoma cell line was found to react with macrophages in mouse lung [1]. This monoclonal antibody is different from previously described antibodies to macrophages. Immunogold electron-microscopy and immunoperoxidase light microscopy have been used to show that MoAb 133-13A binds specifically to macrophages in normal and in BHT treated mouse lungs. This MoAb recognizes a protein of approximately 100 kDa (P100) on cultured lung carcinoma cells and a 87 kDa protein on macrophages from lung or the peritoneal cavity which is different from other macrophage antigens. The surface glycoprotein has been purified from cultured cells using immunoaffinity chromatography. The purified protein was radioiodinated and MoAb 133-13A was used to develop a competition radioimmunoassay to quantitate P100. Spleen, intestines, lung, skin and uterus all have high levels of P100. P100 on peritoneal macrophages has been determined to be about 94,000 molecules/cell. Analyses of lung lavage and whole lung homogenates from mice treated with BHT, BHT plus 70% O2, and 70% O2 alone show that treated animals have elevated P100 content compared to corn oil treated mice.

  7. PD-1 expression by macrophages plays a pathologic role in altering microbial clearance and the innate inflammatory response to sepsis.

    PubMed

    Huang, Xin; Venet, Fabienne; Wang, Yvonne L; Lepape, Alain; Yuan, Zhenglong; Chen, Yaping; Swan, Ryan; Kherouf, Hakim; Monneret, Guillaume; Chung, Chun-Shiang; Ayala, Alfred

    2009-04-14

    Sepsis, a leading cause of death worldwide, involves concomitant expression of an overzealous inflammatory response and inefficient bacterial clearance. Macrophage function is pivotal to the development of these two aspects during sepsis; however, the mechanisms underlying these changes remain unclear. Here we report that the PD-1:PD-L pathway appears to be a determining factor of the outcome of sepsis, regulating the delicate balance between effectiveness and damage by the antimicrobial immune response. To this end we observed that PD-1(-/-) mice were markedly protected from the lethality of sepsis, accompanied by a decreased bacterial burden and suppressed inflammatory cytokine response. To the extent that this is a macrophage-specific aspect of the effects of PD-1, we found the following: first, peritoneal macrophages expressed significantly higher levels of PD-1 during sepsis, which was associated with their development of cellular dysfunction; second, when peritoneal macrophages were depleted (using clodronate liposomes) from PD-1(-/-) mice, the animals' bactericidal capacity was lowered, their inflammatory cytokine levels were elevated, and protection from septic lethality was diminished; and third, blood monocytes from both septic mice and patients with septic shock shared markedly increased PD-1 levels. Together, these data suggest that PD-1 may not only be a dysfunctional marker/effector of macrophages/monocytes, but may also be a potential therapeutic target for designing measures to modulate the innate immune response, thereby preventing the detrimental effects of sepsis.

  8. Histone H2B as a functionally important plasminogen receptor on macrophages

    PubMed Central

    Das, Riku; Burke, Tim

    2007-01-01

    Plasminogen (Plg) facilitates inflammatory cell recruitment, a function that depends upon its binding to Plg receptors (Plg-Rs). However, the Plg-Rs that are critical for cell migration are not well defined. Three previously characterized Plg-Rs (α-enolase, annexin 2, and p11) and a recently identified Plg-R (histone H2B [H2B]) were assessed for their contribution to Plg binding and function on macrophages. Two murine macrophage cell lines (RAW 264.7 and J774A.1) and mouse peritoneal macrophages induced by thioglycollate were analyzed. All 4 Plg-Rs were present on the surface of these cells and showed enhanced expression on the thioglycollate-induced macrophages compared with peripheral blood monocytes. Using blocking Fab fragments to each Plg-R, H2B supported approximately 50% of the Plg binding capacity, whereas the other Plg-Rs contributed less than 25%. Anti-H2B Fab also demonstrated a major role of this Plg-R in plasmin generation and matrix invasion. When mice were treated intravenously with anti-H2B Fab, peritoneal macrophage recruitment in response to thioglycollate was reduced by approximately 45% at 24, 48, and 72 hours, with no effect on blood monocyte levels. Taken together, these data suggest that multiple Plg-Rs do contribute to Plg binding to macrophages, and among these, H2B plays a very prominent and functionally important role. PMID:17690254

  9. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling

    PubMed Central

    Xu, Li-Hui; Liang, Yi-Dan; Wei, Hong-Xia; Hu, Bo; Pan, Hao; Zha, Qing-Bing; Ouyang, Dong-Yun; He, Xian-Hui

    2017-01-01

    The isoquinoline alkaloid berberine possesses many pharmacological activities including antibacterial infection. Although the direct bactericidal effect of berberine has been documented, its influence on the antibacterial functions of macrophages is largely unknown. As inflammasome activation in macrophages is important for the defense against bacterial infection, we aimed to investigate the influence of berberine on inflammasome activation in murine macrophages. Our results showed that berberine significantly increased ATP-induced inflammasome activation as reflected by enhanced pyroptosis as well as increased release of caspase-1p10 and mature interleukin-1β (IL-1β) in macrophages. Such effects of berberine could be suppressed by AMP-activated protein kinase (AMPK) inhibitor compound C or by knockdown of AMPKα expression, indicating the involvement of AMPK signaling in this process. In line with increased IL-1β release, the ability of macrophages to kill engulfed bacteria was also intensified by berberine. This was corroborated by the in vivo finding that the peritoneal live bacterial load was decreased by berberine treatment. Moreover, berberine administration significantly improved survival of bacterial infected mice, concomitant with increased IL-1β levels and elevated neutrophil recruitment in the peritoneal cavity. Collectively, these data suggested that berberine could enhance bacterial killing by augmenting inflammasome activation in macrophages through AMPK signaling. PMID:27980220

  10. Transplantable Subcutaneous Hepatoma 22a Affects Functional Activity of Resident Tissue Macrophages in Periphery

    PubMed Central

    Kisseleva, Ekaterina P.; Krylov, Andrei V.; Stepanova, Olga I.; Lioudyno, Victoria I.

    2011-01-01

    Tumors spontaneously develop central necroses due to inadequate blood supply. Recent data indicate that dead cells and their products are immunogenic to the host. We hypothesized that macrophage tumor-dependent reactions can be mediated differentially by factors released from live or dead tumor cells. In this study, functional activity of resident peritoneal macrophages was investigated in parallel with tumor morphology during the growth of syngeneic nonimmunogenic hepatoma 22a. Morphometrical analysis of tumor necroses, mitoses and leukocyte infiltration was performed in histological sections. We found that inflammatory potential of peritoneal macrophages in tumor-bearing mice significantly varied depending on the stage of tumor growth and exhibited two peaks of activation as assessed by nitroxide and superoxide anion production, 5′-nucleotidase activity and pinocytosis. Increased inflammatory reactions were not followed by the enhancement of angiogenic potential as assessed by Vascular Endothelial Growth Factor mRNA expression. Phases of macrophage activity corresponded to the stages of tumor growth characterized by high proliferative potential. The appearance and further development of necrotic tissue inside the tumor did not coincide with changes in macrophage behavior and therefore indirectly indicated that activation of macrophages was a reaction mostly to the signals produced by live tumor cells. PMID:21760797

  11. Th1 CD4+ lymphocytes delete activated macrophages through the Fas/APO-1 antigen pathway.

    PubMed Central

    Ashany, D; Song, X; Lacy, E; Nikolic-Zugic, J; Friedman, S M; Elkon, K B

    1995-01-01

    The Fas/APO-1 cytotoxic pathway plays an important role in the regulation of peripheral immunity. Recent evidence indicates that this regulatory function operates through deletion of activated T and B lymphocytes by CD4+ T cells expressing the Fas ligand. Because macrophages play a key role in peripheral immunity, we asked whether Fas was involved in T-cell-macrophage interactions. Two-color flow cytometry revealed that Fas receptor (FasR) was expressed on resting murine peritoneal macrophages. FasR expression was upregulated after activation of macrophages with cytokines or lipopolysaccharide, although only tumor necrosis factor-alpha rendered macrophages sensitive to anti-FasR antibody-mediated death. To determine the consequence of antigen presentation by macrophages to CD4+ T cells, macrophages were pulsed with antigen and then incubated with either Th1 or Th2 cell lines or clones. Th1, but not Th2, T cells induced lysis of 60-80% of normal macrophages, whereas macrophages obtained from mice with mutations in the FasR were totally resistant to Th1-mediated cytotoxicity. Macrophage cytotoxicity depended upon specific antigen recognition by T cells and was major histocompatibility complex restricted. These findings indicate that, in addition to deletion of activated lymphocytes, Fas plays an important role in deletion of activated macrophages after antigen presentation to Th1 CD4+ T cells. Failure to delete macrophages that constitutively present self-antigens may contribute to the expression of autoimmunity in mice deficient in FasR (lpr) or Fas ligand (gld). PMID:7479970

  12. Participation of the Salmonella OmpD Porin in the Infection of RAW264.7 Macrophages and BALB/c Mice

    PubMed Central

    Monsalva, Debbie; Bustamante, Victor H.; Luraschi, Roberto; Alegría-Arcos, Melissa; Almonacid, Daniel E.; Aguayo, Daniel; Calderón, Iván L.; Gil, Fernando; Santiviago, Carlos A.; Morales, Eduardo H.; Calva, Edmundo; Saavedra, Claudia P.

    2014-01-01

    Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host. PMID:25360745

  13. Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice.

    PubMed

    Ipinza, Francisco; Collao, Bernardo; Monsalva, Debbie; Bustamante, Victor H; Luraschi, Roberto; Alegría-Arcos, Melissa; Almonacid, Daniel E; Aguayo, Daniel; Calderón, Iván L; Gil, Fernando; Santiviago, Carlos A; Morales, Eduardo H; Calva, Edmundo; Saavedra, Claudia P

    2014-01-01

    Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host.

  14. Peritoneal carcinomatosis

    PubMed Central

    Coccolini, Federico; Gheza, Federico; Lotti, Marco; Virzì, Salvatore; Iusco, Domenico; Ghermandi, Claudio; Melotti, Rita; Baiocchi, Gianluca; Giulini, Stefano Maria; Ansaloni, Luca; Catena, Fausto

    2013-01-01

    Several gastrointestinal and gynecological malignancies have the potential to disseminate and grow in the peritoneal cavity. The occurrence of peritoneal carcinomatosis (PC) has been shown to significantly decrease overall survival in patients with liver and/or extraperitoneal metastases from gastrointestinal cancer. During the last three decades, the understanding of the biology and pathways of dissemination of tumors with intraperitoneal spread, and the understanding of the protective function of the peritoneal barrier against tumoral seeding, has prompted the concept that PC is a loco-regional disease: in absence of other systemic metastases, multimodal approaches combining aggressive cytoreductive surgery, intraperitoneal hyperthermic chemotherapy and systemic chemotherapy have been proposed and are actually considered promising methods to improve loco-regional control of the disease, and ultimately to increase survival. The aim of this review article is to present the evidence on treatment of PC in different tumors, in order to provide patients with a proper surgical and multidisciplinary treatment focused on optimal control of their locoregional disease. PMID:24222942

  15. PERITONEAL ABSORPTION

    PubMed Central

    Hahn, P. F.; Miller, L. L.; Robscheit-Robbins, F. S.; Bale, W. F.; Whipple, G. H.

    1944-01-01

    The absorption of red cells from the normal peritoneum of the dog can be demonstrated by means of red cells labeled with radio-iron incorporated in the hemoglobin of these red cells. Absorption in normal dogs runs from 20 to 100 per cent of the amount given within 24 hours. Dogs rendered anemic by bleeding absorb red cells a little less rapidly—ranging from 5 to 80 per cent of the injected red cells. Doubly depleted dogs (anemic and hypoproteinemic) absorb even less in the three experiments recorded. This peritoneal absorption varies widely in different dogs and even in the same dog at different times. We do not know the factors responsible for these variations but there is no question about active peritoneal absorption. The intact red cells pass readily from the peritoneal cavity into lymph spaces in diaphragm and other areas of the peritoneum. The red cells move along the lymphatics and through the lymph glands with little or no phagocytosis and eventually into the large veins through the thoracic ducts. PMID:19871404

  16. STAT6−/− mice exhibit decreased cells with alternatively activated macrophage phenotypes and enhanced disease severity in murine neurocysticercosis

    PubMed Central

    Mishra, Bibhuti B.; Gundra, Uma Mahesh; Teale, Judy M.

    2010-01-01

    In this study, using a murine model for neurocysticercosis, macrophage phenotypes and their functions were examined. Mesocestoides corti infection in the central nervous system (CNS) induced expression of markers associated with alternatively activated macrophages (AAMs) and a scarcity of iNOS, a classically activated macrophage marker. The infection in STAT6−/− mice resulted in significantly reduced accumulation of AAMs as well as enhanced susceptibility to infection coinciding with increased parasite burden and greater neuropathology. These results demonstrate that macrophages in the helminth infected CNS are largely of AAM phenotypes, particularly as the infection progresses, and that STAT6 dependent responses, possibly involving AAMs, are essential for controlling neurocysticercosis. PMID:21051093

  17. Voluntary exercise attenuates obesity-associated inflammation through ghrelin expressed in macrophages.

    PubMed

    Kizaki, Takako; Maegawa, Taketeru; Sakurai, Takuya; Ogasawara, Jun-etsu; Ookawara, Tomomi; Oh-ishi, Shuji; Izawa, Tetsuya; Haga, Shukoh; Ohno, Hideki

    2011-09-30

    Chronic low-level inflammation is associated with obesity and a sedentary lifestyle, causing metabolic disturbances such as insulin resistance. Exercise training has been shown to decrease chronic low-level systemic inflammation in high-fat diet (HFD)-induced obesity. However, the molecular mechanisms mediating its beneficial effects are not fully understood. Ghrelin is a peptide hormone predominantly produced in the stomach that stimulates appetite and induces growth hormone release. In addition to these well-known functions, recent studies suggest that ghrelin localizes to immune cells and exerts an anti-inflammatory effect. The purpose of the current study was to investigate the role of ghrelin expressed in macrophages in the anti-inflammatory effects of voluntary exercise training. Expression of tumor necrosis factor-α (TNF-α), monocyte chemotactic protein (MCP)-1 and F4/80 was increased in adipose tissue from mice fed a HFD (HFD mice) compared with mice fed a standard diet (SD mice), whereas the expression of these inflammatory cytokines was markedly decreased in mice performing voluntary wheel running during the feeding of a HFD (HFEx mice). The expression of TNF-α was also increased in peritoneal macrophages by a HFD and exercise training inhibited the increase of TNF-α expression. Interestingly, expression of ghrelin in peritoneal macrophages was decreased by a HFD and recovered by exercise training. Suppression of ghrelin expression by siRNA increased TNF-α expression and LPS-stimulated NF-κB activation in RAW264 cells, which is a macrophage cell line. TNF-α expression by stimulation with LPS was significantly suppressed in RAW264 cells cultured in the presence of ghrelin. These results suggest that ghrelin exerts potent anti-inflammatory effects in macrophages and functions as a mediator of the beneficial effects of exercise training.

  18. Mice spermatogonial stem cells transplantation induces macrophage migration into the seminiferous epithelium and lipid body formation: high-resolution light microscopy and ultrastructural studies.

    PubMed

    Dias, Felipe F; Chiarini-Garcia, Hélio; Parreira, Gleydes G; Melo, Rossana C N

    2011-12-01

    Transplantation of spermatogonial stem cells (SSCs), the male germline stem cells, in experimental animal models has been successfully used to study mechanisms involved in SSC self-renewal and to restore fertility. However, there are still many challenges associated with understanding the recipient immune response for SSCs use in clinical therapies. Here, we have undertaken a detailed structural study of macrophages elicited by SSCs transplantation in mice using both high-resolution light microscopy (HRLM) and transmission electron microscopy (TEM). We demonstrate that SSCs transplantation elicits a rapid and potent recruitment of macrophages into the seminiferous epithelium (SE). Infiltrating macrophages were derived from differentiation of peritubular monocyte-like cells into typical activated macrophages, which actively migrate through the SE, accumulate in the tubule lumen, and direct phagocytosis of differentiating germ cells and spermatozoa. Quantitative TEM analyses revealed increased formation of lipid bodies (LBs), organelles recognized as intracellular platforms for synthesis of inflammatory mediators and key markers of macrophage activation, within both infiltrating macrophages and Sertoli cells. LBs significantly increased in number and size in parallel to the augmented macrophage migration during different times post-transplantation. Our findings suggest that LBs may be involved with immunomodulatory mechanisms regulating the seminiferous tubule niche after SSC transplantation.

  19. Self-renewal and phenotypic conversion are the main physiological responses of macrophages to the endogenous estrogen surge

    PubMed Central

    Pepe, Giovanna; Braga, Daniele; Renzi, Tiziana A.; Villa, Alessandro; Bolego, Chiara; D’Avila, Francesca; Barlassina, Cristina; Maggi, Adriana; Locati, Massimo; Vegeto, Elisabetta

    2017-01-01

    Beyond the physiology of reproduction, estrogen controls the homeostasis of several tissues. Although macrophages play a key role in tissue remodeling, the interplay with estrogen is still ill defined. Using a transcriptomic approach we first obtained a comprehensive list of genes that are differentially expressed in peritoneal macrophages in response to physiological levels of 17β-estradiol (E2) injected in intact female mice. Our data also showed the dynamic nature of the macrophage response to E2 and pointed to specific biological programs induced by the hormone, with cell proliferation, immune response and wound healing being the most prominent functional categories. Indeed, the exogenous administration of E2 and, more importantly, the endogenous hormonal surge proved to support macrophage proliferation in vivo, as shown by cell cycle gene expression, BrdU incorporation and cell number. Furthermore, E2 promoted an anti-inflammatory and pro-resolving macrophage phenotype, which converged on the induction of genes related to macrophage alternative activation and on IL-10 expression in vivo. Hormone action was maintained in an experimental model of peritoneal inflammation based on zymosan injection. These findings highlight a direct effect of estrogen on macrophage expansion and phenotypic adaptation in homeostatic conditions and suggest a role for this interplay in inflammatory pathologies. PMID:28317921

  20. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus

    PubMed Central

    Li, Xiaojing; Liu, Fei; Zhang, Xuefang; Shi, Guoping; Ren, Jing; Ji, Jianjian; Ding, Liang; Fan, Hongye; Dou, Huan; Hou, Yayi

    2016-01-01

    The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell–cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus. PMID:27537524

  1. Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice.

    PubMed

    Shimizu, Takuya; Masuo, Yusuke; Takahashi, Saki; Nakamichi, Noritaka; Kato, Yukio

    2015-06-01

    OCTN1/SLC22A4 is expressed on apical membranes of small intestine, and is involved in gastrointestinal absorption of its substrates, including the food-derived antioxidant ergothioneine (ERGO). ERGO concentration in circulating blood of patients with inflammatory bowel disease (Crohn's disease) is lower than that in healthy volunteers; thus, circulating ERGO is a potential diagnostic marker, although the mechanisms underlying low ERGO concentration in patients are unknown. Here, we focused on intestinal macrophages, which infiltrate sites of inflammation, and examined possible first-pass uptake of ERGO by macrophages. ERGO concentration in blood was lower in mice with dextran sodium sulfate (DSS)-induced colitis than in controls. On the other hand, expression of octn1 gene product and ERGO concentration in intestinal tissues of DSS-treated mice were higher than in controls. Interestingly, lamina propria mononuclear cells (LPMCs) isolated from DSS-treated mice contained ERGO and showed [(3)H]ERGO uptake and Octn1 expression, whereas ERGO was undetectable in LPMCs of control mice. Functional expression of OCTN1 was also confirmed in LPS-stimulated human macrophage-like cell line, THP-1. In conclusion, OCTN1 is functionally expressed on activated intestinal macrophages, and ERGO uptake into these immune cells could contribute at least in part to the altered disposition of ERGO in intestinal inflammation.

  2. Gut microbiota from metabolic disease-resistant, macrophage-specific RIP140 knockdown mice improves metabolic phenotype and gastrointestinal integrity

    PubMed Central

    Lin, Yi-Wei; Montassier, Emmanuel; Knights, Dan; Wei, Li-Na

    2016-01-01

    While fecal microbiota transplantation (FMT) presents an attractive therapeutic strategy, it remains unclear how to choose the microbiota repertoire that most effectively transfers benefit to recipients. We identified a beneficial taxonomic repertoire in a transgenic mouse model (RIP140mϕKD) which resists the development of high fat diet (HFD)-induced metabolic diseases due to enhanced anti-inflammation engineered by lowering receptor interacting protein (RIP140) expression in macrophage. We confirmed using FMT from HFD-fed RIP140mϕKD to wild type (WT) mice that recipient mice acquired the microbiota repertoire of donor mice. Importantly, FMT from RIP140mϕKD to WT not only effectively transferred the beneficial taxonomic repertoire to WT recipients, but also enabled recipient animals acquiring the anti-inflammatory status of RIP140mϕKD donor animals and avoid HFD-induced insulin resistance, which is associated with significantly improved intestinal integrity. We conclude that FMT can transfer not only microbiota but also the donors’ intestinal innate immune status and improved intestinal integrity. PMID:27929078

  3. Depletion of cutaneous macrophages and dendritic cells promotes growth of basal cell carcinoma in mice.

    PubMed

    König, Simone; Nitzki, Frauke; Uhmann, Anja; Dittmann, Kai; Theiss-Suennemann, Jennifer; Herrmann, Markus; Reichardt, Holger M; Schwendener, Reto; Pukrop, Tobias; Schulz-Schaeffer, Walter; Hahn, Heidi

    2014-01-01

    Basal cell carcinoma (BCC) belongs to the group of non-melanoma skin tumors and is the most common tumor in the western world. BCC arises due to mutations in the tumor suppressor gene Patched1 (Ptch). Analysis of the conditional Ptch knockout mouse model for BCC reveals that macrophages and dendritic cells (DC) of the skin play an important role in BCC growth restraining processes. This is based on the observation that a clodronate-liposome mediated depletion of these cells in the tumor-bearing skin results in significant BCC enlargement. The depletion of these cells does not modulate Ki67 or K10 expression, but is accompanied by a decrease in collagen-producing cells in the tumor stroma. Together, the data suggest that cutaneous macrophages and DC in the tumor microenvironment exert an antitumor effect on BCC.

  4. Immune-Enhancing Effects of a High Molecular Weight Fraction of Cynanchum wilfordii Hemsley in Macrophages and Immunosuppressed Mice

    PubMed Central

    Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won

    2016-01-01

    The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089

  5. Transcriptomic signature of Leishmania infected mice macrophages: a metabolic point of view.

    PubMed

    Rabhi, Imen; Rabhi, Sameh; Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection.

  6. Transcriptomic Signature of Leishmania Infected Mice Macrophages: A Metabolic Point of View

    PubMed Central

    Ben-Othman, Rym; Rasche, Axel; Daskalaki, Adriani; Trentin, Bernadette; Piquemal, David; Regnault, Béatrice; Descoteaux, Albert; Guizani-Tabbane, Lamia

    2012-01-01

    We analyzed the transcriptional signatures of mouse bone marrow-derived macrophages at different times after infection with promastigotes of the protozoan parasite Leishmania major. Ingenuity Pathway Analysis revealed that the macrophage metabolic pathways including carbohydrate and lipid metabolisms were among the most altered pathways at later time points of infection. Indeed, L. major promastiogtes induced increased mRNA levels of the glucose transporter and almost all of the genes associated with glycolysis and lactate dehydrogenase, suggesting a shift to anaerobic glycolysis. On the other hand, L. major promastigotes enhanced the expression of scavenger receptors involved in the uptake of Low-Density Lipoprotein (LDL), inhibited the expression of genes coding for proteins regulating cholesterol efflux, and induced the synthesis of triacylglycerides. These data suggested that Leishmania infection disturbs cholesterol and triglycerides homeostasis and may lead to cholesterol accumulation and foam cell formation. Using Filipin and Bodipy staining, we showed cholesterol and triglycerides accumulation in infected macrophages. Moreover, Bodipy-positive lipid droplets accumulated in close proximity to parasitophorous vacuoles, suggesting that intracellular L. major may take advantage of these organelles as high-energy substrate sources. While the effect of infection on cholesterol accumulation and lipid droplet formation was independent on parasite development, our data indicate that anaerobic glycolysis is actively induced by L. major during the establishment of infection. PMID:22928052

  7. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice

    PubMed Central

    Welford, Abigail F.; Biziato, Daniela; Coffelt, Seth B.; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M.; Lewis, Claire E.

    2011-01-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies. PMID:21490397

  8. TIE2-expressing macrophages limit the therapeutic efficacy of the vascular-disrupting agent combretastatin A4 phosphate in mice.

    PubMed

    Welford, Abigail F; Biziato, Daniela; Coffelt, Seth B; Nucera, Silvia; Fisher, Matthew; Pucci, Ferdinando; Di Serio, Clelia; Naldini, Luigi; De Palma, Michele; Tozer, Gillian M; Lewis, Claire E

    2011-05-01

    Vascular-disrupting agents (VDAs) such as combretastatin A4 phosphate (CA4P) selectively disrupt blood vessels in tumors and induce tumor necrosis. However, tumors rapidly repopulate after treatment with such compounds. Here, we show that CA4P-induced vessel narrowing, hypoxia, and hemorrhagic necrosis in murine mammary tumors were accompanied by elevated tumor levels of the chemokine CXCL12 and infiltration by proangiogenic TIE2-expressing macrophages (TEMs). Inhibiting TEM recruitment to CA4P-treated tumors either by interfering pharmacologically with the CXCL12/CXCR4 axis or by genetically depleting TEMs in tumor-bearing mice markedly increased the efficacy of CA4P treatment. These data suggest that TEMs limit VDA-induced tumor injury and represent a potential target for improving the clinical efficacy of VDA-based therapies.

  9. Changes in numbers and types of mast cell colony-forming cells in the peritoneal cavity of mice after injection of distilled water: evidence that mast cells suppress differentiation of bone marrow-derived precursors

    SciTech Connect

    Kanakura, Y.; Kuriu, A.; Waki, N.; Nakano, T.; Asai, H.; Yonezawa, T.; Kitamura, Y.

    1988-03-01

    Two different types of cells in the peritoneal cavity of mice produce mast cell colonies in methylcellulose. Large mast cell colonies are produced by bone marrow-derived precursors resembling lymphoid cells by light microscopy (L-CFU-Mast), whereas medium and small mast cell colonies are produced by morphologically identifiable mast cells (M-CFU-Mast and S-CFU-Mast, respectively). In the present study we eradicated peritoneal mast cells by intraperitoneal (IP) injection of distilled water. The regeneration process was investigated to clarify the relationship between L-CFU-Mast, M-CFU-Mast, and S-CFU-Mast. After injection of distilled water, M-CFU-Mast and S-CFU-Mast disappeared, but L-CFU-Mast increased, and then M-CFU-Mast and S-CFU-Mast appeared, suggesting the presence of a hierarchic relationship. When purified peritoneal mast cells were injected two days after the water injection, the L-CFU-Mast did not increase. In the peritoneal cavity of WBB6F1-+/+ mice that had been lethally irradiated and rescued by bone marrow cells of C57BL/6-bgJ/bgJ (beige, Chediak-Higashi syndrome) mice, L-CFU-Mast were of bgJ/bgJ type, but M-CFU-Mast and S-CFU-Mast were of +/+ type. The injection of distilled water to the radiation chimeras resulted in the development of bgJ/bgJ-type M-CFU-Mast and then S-CFU-Mast. The presence of mast cells appeared to suppress the recruitment of L-CFU-Mast from the bloodstream and to inhibit the differentiation of L-CFU-Mast to M-CFU-Mast.

  10. The Role of Toll-Like Receptor 9 in Chronic Stress-Induced Apoptosis in Macrophage

    PubMed Central

    Xiang, Yanxiao; Yan, Hui; Zhou, Jun; Zhang, Qi; Hanley, Gregory; Caudle, Yi; LeSage, Gene; Zhang, Xiumei; Yin, Deling

    2015-01-01

    Emerging evidence implied that chronic stress has been exerting detrimental impact on immune system functions in both humans and animals. Toll-like receptors (TLRs) have been shown to play an essential role in modulating immune responses and cell survival. We have recently shown that TLR9 deficiency protects against lymphocyte apoptosis induced by chronic stress. However, the exact role of TLR9 in stress-mediated change of macrophage function remains unclear. The results of the current study showed that when BALB/c mice were treated with restraint stress (12 h daily for 2 days), the number of macrophages recruited to the peritoneal cavity was obviously increased. Results also demonstrated that the sustained effects of stress elevated cytokine IL-1β, TNF-α and IL-10 production yet diminished IFN-γ production from macrophage, which led to apoptotic cell death. However, TLR9 deficiency prevented the chronic stress-mediated accumulation of macrophages. In addition, knocking out TLR9 significantly abolished the chronic stress-induced imbalance of cytokine levels and apoptosis in macrophage. TLR9 deficiency was also found to reverse elevation of plasma IL-1β, IL-10 and IL-17 levels and decrease of plasma IFN-γ level under the condition of chronic stress. These results indicated that TLR9-mediated macrophage responses were required for chronic stress-induced immunosuppression. Further exploration showed that TLR9 deficiency prevented the increment of p38 MAPK phosphorylation and reduction of Akt/Gsk-3β phosphorylation; TLR9 deficiency also attenuated the release of mitochondrial cytochrome c into cytoplasm, caused upregulation of Bcl-2/Bax protein ratio, downregulation of cleavage of caspase-3 and PARP, as well as decreased TUNEL-positive cells in macrophage of stressed mice. Collectively, our studies demonstrated that deficiency of TLR9 maintained macrophage function by modulating macrophage accumulation and attenuating macrophage apoptosis, thus preventing

  11. Oral macrophage-like cells play a key role in tolerance induction following sublingual immunotherapy of asthmatic mice.

    PubMed

    Mascarell, L; Saint-Lu, N; Moussu, H; Zimmer, A; Louise, A; Lone, Y; Ladant, D; Leclerc, C; Tourdot, S; Van Overtvelt, L; Moingeon, P

    2011-11-01

    Sublingual allergen-specific immunotherapy (SLIT) is a safe and efficacious treatment for type 1 respiratory allergies. Herein, we investigated the key subset(s) of antigen-presenting cells (APCs) involved in antigen/allergen capture and tolerance induction during SLIT. Following sublingual administration, fluorochrome-labeled ovalbumin (OVA) is predominantly captured by oral CD11b⁺CD11c⁻ cells that migrate to cervical lymph nodes (CLNs) and present the antigen to naive CD4⁺ T cells. Conditional depletion with diphtheria toxin of CD11b⁺, but not CD11c⁺ cells, in oral tissues impairs CD4⁺ T-cell priming in CLNs. In mice with established asthma to OVA, specific targeting of the antigen to oral CD11b⁺ cells using the adenylate cyclase vector system reduces airway hyperresponsiveness (AHR), eosinophil recruitment in bronchoalveolar lavages (BALs), and specific Th2 responses in CLNs and lungs. Oral CD11b⁺CD11c⁻ cells resemble tolerogenic macrophages found in the lamina propria (LP) of the small intestine in that they express the mannose receptor CD206, as well as class-2 retinaldehyde dehydrogenase (RALDH2), and they support the differentiation of interferon-γ/interleukin-10 (IFNγ/IL-10)-producing Foxp3⁺ CD4⁺ regulatory T cells. Thus, among the various APC subsets present in oral tissues of mice, macrophage-like cells play a key role in tolerance induction following SLIT.

  12. Effects of Maternal Exposure to Ultrafine Carbon Black on Brain Perivascular Macrophages and Surrounding Astrocytes in Offspring Mice

    PubMed Central

    Onoda, Atsuto; Umezawa, Masakazu; Takeda, Ken; Ihara, Tomomi; Sugamata, Masao

    2014-01-01

    Perivascular macrophages (PVMs) constitute a subpopulation of resident macrophages in the central nervous system (CNS). They are located at the blood-brain barrier and can contribute to maintenance of brain functions in both health and disease conditions. PVMs have been shown to respond to particle substances administered during the prenatal period, which may alter their phenotype over a long period. We aimed to investigate the effects of maternal exposure to ultrafine carbon black (UfCB) on PVMs and astrocytes close to the blood vessels in offspring mice. Pregnant mice were exposed to UfCB suspension by intranasal instillation on gestational days 5 and 9. Brains were collected from their offspring at 6 and 12 weeks after birth. PVM and astrocyte phenotypes were examined by Periodic Acid Schiff (PAS) staining, transmission electron microscopy and PAS-glial fibrillary acidic protein (GFAP) double staining. PVM granules were found to be enlarged and the number of PAS-positive PVMs was decreased in UfCB-exposed offspring. These results suggested that in offspring, “normal” PVMs decreased in a wide area of the CNS through maternal UfCB exposure. The increase in astrocytic GFAP expression level was closely related to the enlargement of granules in the attached PVMs in offspring. Honeycomb-like structures in some PVM granules and swelling of astrocytic end-foot were observed under electron microscopy in the UfCB group. The phenotypic changes in PVMs and astrocytes indicate that maternal UfCB exposure may result in changes to brain blood vessels and be associated with increased risk of dysfunction and disorder in the offspring brain. PMID:24722459

  13. The Dipeptidyl Peptidases 4, 8, and 9 in Mouse Monocytes and Macrophages: DPP8/9 Inhibition Attenuates M1 Macrophage Activation in Mice.

    PubMed

    Waumans, Yannick; Vliegen, Gwendolyn; Maes, Lynn; Rombouts, Miche; Declerck, Ken; Van Der Veken, Pieter; Vanden Berghe, Wim; De Meyer, Guido R Y; Schrijvers, Dorien; De Meester, Ingrid

    2016-02-01

    Atherosclerosis remains the leading cause of death in Western countries. Dipeptidyl peptidase (DPP) 4 has emerged as a novel target for the prevention and treatment of atherosclerosis. Family members DPP8 and 9 are abundantly present in macrophage-rich regions of atherosclerotic plaques, and DPP9 inhibition attenuates activation of human M1 macrophages in vitro. Studying this family in a mouse model for atherosclerosis would greatly advance our knowledge regarding their potential as therapeutic targets. We found that DPP4 is downregulated during mouse monocyte-to-macrophage differentiation. DPP8 and 9 expression seems relatively low in mouse monocytes and macrophages. Viability of primary mouse macrophages is unaffected by DPP4 or DPP8/9 inhibition. Importantly, DPP8/9 inhibition attenuates macrophage activation as IL-6 secretion is significantly decreased. Mouse macrophages respond similarly to DPP inhibition, compared to human macrophages. This shows that the mouse could become a valid model species for the study of DPPs as therapeutic targets in atherosclerosis.

  14. C-type lectins on macrophages participate in the immunomodulatory response to Fasciola hepatica products

    PubMed Central

    Guasconi, Lorena; Serradell, Marianela C; Garro, Ana P; Iacobelli, Luciana; Masih, Diana T

    2011-01-01

    Fasciola hepatica releases excretory–secretory products (FhESP), and immunomodulatory properties have been described for the carbohydrates present in these parasite products. The interaction of FhESP with the innate immune cells, such as macrophages, is crucial in the early stage of infection. In this work we observed that peritoneal macrophages from naive BALB/c mice stimulated in vitro with FhESP presented: an increased arginase activity as well as Arginase I expression, and high levels of transforming growth factor-β and interleukin-10. A similar macrophage population was also observed in the peritoneum of infected mice. A partial inhibition of the immunomodulatory effects described above was observed when macrophages were pre-incubated with Mannan, anti-mannose receptor, Laminarin or anti-Dectin-1, and then stimulated with FhESP. In addition, we observed a partial inhibition of these effects in macrophages obtained from mice that were intraperitoneally injected with Mannan or Laminarin before being infected. Taken together, these results suggest the participation of at least two C-type lectin receptors, mannose receptor and Dectin-1, in the interaction of FhESP with macrophages, which allows this parasite to induce immunoregulatory effects on these important innate immune cells and may constitute a crucial event for extending its survival in the host. PMID:21595685

  15. Macrophage cell lines P388D1 and IC-21 stimulated with gamma interferon fail to inhibit the intracellular growth of Histoplasma capsulatum.

    PubMed Central

    Wu-Hsieh, B; Howard, D H

    1989-01-01

    Histoplasma capsulatum, a facultative intracellular parasite of macrophages, grows within mononuclear cells of the P388D1 and IC-21 cell lines with a generation time comparable to that with which it grows in normal resident peritoneal macrophages (10 +/- 2 h). Recombinant murine gamma interferon (rMuIFN-gamma) activates P388D1 cells to express la antigens but not to inhibit the intracellular growth of H. capsulatum, alone or in combination with lipopolysaccharide. IC-21 cells also could not be activated to fungistasis with rMuIFN-gamma. Explanted resident peritoneal macrophages of the C57BL/6 (from which the IC-21 cell line derives), C3H/HeJ, DBA/2 (from which the P388D1 cell line derives), A/J, and SJL/J strains of mice were all stimulated by rMuIFN-gamma to inhibit the fungus. PMID:2503448

  16. Cystathionine-gamma-lyase gene silencing with siRNA in monocytes/macrophages protects mice against acute pancreatitis.

    PubMed

    Badiei, A; Chambers, S T; Gaddam, R R; Fraser, R; Bhatia, M

    2016-01-01

    Hydrogen sulphide (H2S) is an endogenous inflammatory mediator produced by cystathionine-γ-lyase (CSE) in monocytes/macrophages. To determine the role of H2S and macrophages in inflammation, we used small interference RNA (siRNA) to target the CSE gene and investigated its effect in a mouse model of acute pancreatitis. Acute pancreatitis is characterised by increased levels of plasma amylase, myeloperoxidase (MPO) activity and pro-inflammatory cytokines and chemokines in the pancreas and lung. SiRNA treatment attenuated inflammation in the pancreas and lungs of mice following caerulein-induced acute pancreatitis. MPO activity increased in caerulein-induced acute pancreatitis (16.21 ± 3.571 SD fold increase over control) and treatment with siRNA significantly reduced this (mean 3.555 ± 2.522 SD fold increase over control) (p < 0.0001). Similarly, lung MPO activity increased following treatment with caerulein (3.56 ± 0.941 SD fold increase over control) while siRNA treatment significantly reduced MPO activity (0.8243 ± 0.4353 SD fold increase over control) (p < 0.0001). Caerulein treatment increased plasma amylase activity (7094 ± 207 U/l) and this significantly decreased following siRNA administration (5895 ± 115 U/l) (p < 0.0001). Cytokine and chemokine levels in caerulein-induced acute pancreatitis reduced following treatment with siRNA. For example, siRNA treatment significantly decreased pancreatic and lung monocyte chemoattractant protein (MCP)-1 (169.8 ± 59.75 SD; 90.01 ± 46.97 SD pg/ml, respectively) compared to caerulein-treated mice (324.7 ± 103.9 SD; 222.8 ± 85.37 SD pg/ml, pancreas and lun,g respectively) (p < 0.0001). These findings show a crucial pro-inflammatory role for H2S synthesised by CSE in macrophages in acute pancreatitis and suggest CSE gene silencing with siRNA as a potential therapeutic approach for this condition.

  17. Direct evidence in vivo of impaired macrophage-specific reverse cholesterol transport in ATP-binding cassette transporter A1-deficient mice.

    PubMed

    Calpe-Berdiel, Laura; Rotllan, Noemi; Palomer, Xavier; Ribas, Vicent; Blanco-Vaca, Francisco; Escolà-Gil, Joan Carles

    2005-12-30

    The ATP-binding cassette transporter A1 (ABCA1) is a key regulator of high-density lipoprotein (HDL) metabolism. There is strong evidence that ABCA1 is a key regulator of reverse cholesterol transport (RCT). However, this could not be proved in vivo since hepatobiliary cholesterol transport was unchanged in ABCA1-deficient mice (ABCA1-/-). We used ABCA1-/- mice to test the hypothesis that ABCA1 is a critical determinant of macrophage-specific RCT. Although this cell-specific RCT only accounts for a tiny part of total RCT, it is widely accepted that it may have a major impact on atherosclerosis susceptibility. [(3)H]cholesterol-labeled endogenous macrophages were injected intraperitoneally into wild-type ABCA1+/+, ABCA1+/- and ABCA1-/- mice maintained on a chow diet. A direct relationship was observed between ABCA1 gene dose and plasma [(3)H]cholesterol at 24 and 48 h after the injection of tracer into the mice. Forty-eight hours after this injection, ABCA1-/- mice had significantly reduced [(3)H]cholesterol in liver (2.8-fold), small intestine enterocytes (1.7-fold) and feces (2-fold). To our knowledge, this is the first direct in vivo quantitative evidence that ABCA1 is a critical determinant of macrophage-specific RCT.

  18. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  19. Transcriptomic analyses of murine resolution-phase macrophages

    PubMed Central

    Stables, Melanie J.; Shah, Sonia; Camon, Evelyn B.; Lovering, Ruth C.; Newson, Justine; Bystrom, Jonas; Farrow, Stuart; Gilroy, Derek W.

    2017-01-01

    Macrophages are either classically (M1) or alternatively-activated (M2). While this nomenclature was generated from monocyte-derived macrophages treated in vitro with defined cytokine stimuli, the phenotype of in vivo-derived macrophages is less understood. We completed Affymetrix-based transcriptomic analysis of macrophages from the resolution-phase of a zymosan-induced peritonitis. Compared to macrophages from hyper-inflamed mice possessing a pro-inflammatory nature as well as naive macrophages from the un-inflamed peritoneum, resolution-phase macrophages (rM) are similar to monocytes-derived dendritic cells (DC), being CD209a positive but lack CD11c. They are enriched for antigen processing/presentation (MHC-II [H2-Eb1, H2-Ab1, H2-Ob, H2-Aa], CD74, CD86), secrete T- and B-lymphocyte chemokines (Xcl1, Ccl5, Cxcl13) as well as factors that enhance macrophage/DC development and promote DC/T cells synapse formation (Clec2i, Tnfsf4, Clcf1). rM are also enriched for cell cycle/proliferation genes as well as Alox15, Timd4 and Tgfb2, key systems in the termination of leukocyte trafficking and clearance of inflammatory cells. Finally, comparison with in vitro-derived M1/M2 shows that rM are neither classically nor alternatively activated but possess aspects of both definitions consistent with an immune regulatory phenotype. We propose that macrophage in situ cannot be rigidly categorised as they can express many shades of the inflammatory spectrum determined by tissue, stimulus and phase-of-inflammation. PMID:22012065

  20. [Pathophysiology of peritonitis].

    PubMed

    Beyer, K; Menges, P; Keßler, W; Heidecke, C-D

    2016-01-01

    Despite intensive research efforts peritonitis leading to subsequent sepsis remains associated with a high mortality. The initial effector cells are the locally residing cells of the peritoneum, such as mesothelial cells, mast cells, macrophages and lymphocytes. Through the secretion of chemokines, an influx of neutrophils initially takes place followed by monocytes. The latter can differentiate into inflammatory macrophages. The non-directed activity of neutrophilic granulocytes is limited by the induction of apoptotic programs. Through the breaching of cytokines, bacteria and microbial products into the circulation, a systemic reaction in the sense of systemic inflammatory response syndrome (SIRS) or sepsis arises. This is viewed as a concomitant derailing of inflammatory as well as anti-inflammatory responses, which leads to extensive apoptosis of lymphocytes. The presentation of apoptotic cells leads to a strong immunosuppression. Due to the coexistence of hyperinflammation and immunosuppression, exact knowledge of the current immune status of the patient is a prerequisite in the development of immunotherapies for the treatment of sepsis.

  1. Two distinct types of cellular mechanisms in the development of delayed hypersensitivity in mice: requirement of either mast cells or macrophages for elicitation of the response.

    PubMed Central

    Torii, I; Morikawa, S; Harada, T; Kitamura, Y

    1993-01-01

    Using mast cell-deficient mutant W/Wv mice and their normal counterpart we re-evaluated the significance of participation of mast cells in allergic inflammatory response. W/Wv mice developed immediate hypersensitivity (IH) footpad reaction (FPR) to a somewhat lesser degree than the normal mice, suggesting that the mast cell might amplify the response. To exert classical tuberculin (tbc) delayed-type hypersensitivity (DTH) mast cells were not an essential cellular component. Vasoactive amines were essential to develop the response, but it did not necessarily originate from mast cells. When mice were immunized with methylated human serum albumin (MHSA) emulsified in incomplete Freund's adjuvant (IFA), mast cells were required to elicit DTH FPR. This was confirmed by the lack of the response in W/Wv mice, and the restoration of FPR by local transplantation of mature mast cells into mutant mice. This mast cell-dependent (MD) DTH was different from tbc DTH as follows: mast cell dependency, macrophage dependency as revealed by ferritin sensitivity, kinetics of sensitization, effect of host's age and histopathology. Thus we concluded that there are two types of DTH in mice; one is macrophage-dependent tbc and the other is mast cell-dependent DTH. The correspondence of the DTH to the Jones-Mote (JM) DTH is discussed, although the dominance of mast cells in MD DTH lesion was not observed. Images Figure 2 Figure 4 PMID:8478030

  2. Dysregulated Type I Interferon and Inflammatory Monocyte-Macrophage Responses Cause Lethal Pneumonia in SARS-CoV-Infected Mice.

    PubMed

    Channappanavar, Rudragouda; Fehr, Anthony R; Vijay, Rahul; Mack, Matthias; Zhao, Jincun; Meyerholz, David K; Perlman, Stanley

    2016-02-10

    Highly pathogenic human respiratory coronaviruses cause acute lethal disease characterized by exuberant inflammatory responses and lung damage. However, the factors leading to lung pathology are not well understood. Using mice infected with SARS (severe acute respiratory syndrome)-CoV, we show that robust virus replication accompanied by delayed type I interferon (IFN-I) signaling orchestrates inflammatory responses and lung immunopathology with diminished survival. IFN-I remains detectable until after virus titers peak, but early IFN-I administration ameliorates immunopathology. This delayed IFN-I signaling promotes the accumulation of pathogenic inflammatory monocyte-macrophages (IMMs), resulting in elevated lung cytokine/chemokine levels, vascular leakage, and impaired virus-specific T cell responses. Genetic ablation of the IFN-αβ receptor (IFNAR) or IMM depletion protects mice from lethal infection, without affecting viral load. These results demonstrate that IFN-I and IMM promote lethal SARS-CoV infection and identify IFN-I and IMMs as potential therapeutic targets in patients infected with pathogenic coronavirus and perhaps other respiratory viruses.

  3. Chlorogenic acid protects against atherosclerosis in ApoE-/- mice and promotes cholesterol efflux from RAW264.7 macrophages.

    PubMed

    Wu, Chongming; Luan, Hong; Zhang, Xue; Wang, Shuai; Zhang, Xiaopo; Sun, Xiaobo; Guo, Peng

    2014-01-01

    Chlorogenic acid (CGA) is one of the most abundant polyphenols in the human diet and is suggested to be a potential antiatherosclerotic agent due to its proposed hypolipidemic, anti-inflammatory and antioxidative properties. The aim of this study was to evaluate the effect of CGA on atherosclerosis development in ApoE(-/-) mice and its potential mechanism. ApoE(-/-) mice were fed a cholesterol-rich diet without (control) or with CGA (200 and 400 mg/kg) or atorvastatin (4 mg/kg) for 12 weeks. During the study plasma lipid and inflammatory parameters were determined. Treatment with CGA (400 mg/kg) reduced atherosclerotic lesion area and vascular dilatation in the aortic root, comparable to atorvastatin. CGA (400 mg/kg) also significantly decreased plasma levels of total cholesterol, triglycerides and low-density lipoprotein-cholesterol as well as inflammatory markers. Supplementation with CGA or CGA metabolites-containing serum suppressed oxidized low-density lipoprotein (oxLDL)-induced lipid accumulation and stimulated cholesterol efflux from RAW264.7 cells. CGA significantly increased the mRNA levels of PPARγ, LXRα, ABCA1 and ABCG1 as well as the transcriptional activity of PPARγ. Cholesterol efflux assay showed that three major metabolites, caffeic, ferulic and gallic acids, significantly stimulated cholesterol efflux from RAW264.7 cells. These results suggest that CGA potently reduces atherosclerosis development in ApoE(-/-) mice and promotes cholesterol efflux from RAW264.7 macrophages. Caffeic, ferulic and gallic acids may be the potential active compounds accounting for the in vivo effect of CGA.

  4. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway.

  5. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice

    PubMed Central

    Hosono, Kanako; Isonaka, Risa; Kawakami, Tadashi; Narumiya, Shuh; Majima, Masataka

    2016-01-01

    Lymphangiogenesis plays an important role in homeostasis, metabolism, and immunity, and also occurs during wound-healing. Here, we examined the roles of prostaglandin E2 (PGE2) receptor (EP) signaling in enhancement of lymphangiogenesis in wound healing processes. The hole-punch was made in the ears of male C57BL/6 mice using a metal ear punch. Healing process and lymphangiogenesis together with macrophage recruitment were analyzed in EP knockout mice. Lymphangiogenesis was up-regulated in the granulation tissues at the margins of punched-hole wounds in mouse ears, and this increase was accompanied by increased expression levels of COX-2 and microsomal prostaglandin E synthase-1. Administration of celecoxib, a COX-2 inhibitor, suppressed lymphangiogenesis in the granulation tissues and reduced the induction of the pro-lymphangiogenic factors, vascular endothelial growth factor (VEGF) -C and VEGF-D. Topical applications of selective EP receptor agonists enhanced the expressions of lymphatic vessel endothelial hyaluronan receptor-1 and VEGF receptor-3. The wound-healing processes and recruitment of CD11b-positive macrophages, which produced VEGF-C and VEGF-D, were suppressed under COX-2 inhibition. Mice lacking either EP3 or EP4 exhibited reduced wound-healing, lymphangiogenesis and recruitment of M2 macrophages, compared with wild type mice. Proliferation of cultured human lymphatic endothelial cells was not detected under PGE2 stimulation. Lymphangiogenesis and recruitment of M2 macrophages that produced VEGF-C/D were suppressed in mice treated with a COX-2 inhibitor or lacking either EP3 or EP4 during wound healing. COX-2 and EP3/EP4 signaling may be novel targets to control lymphangiogenesis in vivo. PMID:27711210

  6. Signaling of Prostaglandin E Receptors, EP3 and EP4 Facilitates Wound Healing and Lymphangiogenesis with Enhanced Recruitment of M2 Macrophages in Mice.

    PubMed

    Hosono, Kanako; Isonaka, Risa; Kawakami, Tadashi; Narumiya, Shuh; Majima, Masataka

    2016-01-01

    Lymphangiogenesis plays an important role in homeostasis, metabolism, and immunity, and also occurs during wound-healing. Here, we examined the roles of prostaglandin E2 (PGE2) receptor (EP) signaling in enhancement of lymphangiogenesis in wound healing processes. The hole-punch was made in the ears of male C57BL/6 mice using a metal ear punch. Healing process and lymphangiogenesis together with macrophage recruitment were analyzed in EP knockout mice. Lymphangiogenesis was up-regulated in the granulation tissues at the margins of punched-hole wounds in mouse ears, and this increase was accompanied by increased expression levels of COX-2 and microsomal prostaglandin E synthase-1. Administration of celecoxib, a COX-2 inhibitor, suppressed lymphangiogenesis in the granulation tissues and reduced the induction of the pro-lymphangiogenic factors, vascular endothelial growth factor (VEGF) -C and VEGF-D. Topical applications of selective EP receptor agonists enhanced the expressions of lymphatic vessel endothelial hyaluronan receptor-1 and VEGF receptor-3. The wound-healing processes and recruitment of CD11b-positive macrophages, which produced VEGF-C and VEGF-D, were suppressed under COX-2 inhibition. Mice lacking either EP3 or EP4 exhibited reduced wound-healing, lymphangiogenesis and recruitment of M2 macrophages, compared with wild type mice. Proliferation of cultured human lymphatic endothelial cells was not detected under PGE2 stimulation. Lymphangiogenesis and recruitment of M2 macrophages that produced VEGF-C/D were suppressed in mice treated with a COX-2 inhibitor or lacking either EP3 or EP4 during wound healing. COX-2 and EP3/EP4 signaling may be novel targets to control lymphangiogenesis in vivo.

  7. The tumor-educated-macrophage increase of malignancy of human pancreatic cancer is prevented by zoledronic acid.

    PubMed

    Hiroshima, Yukihiko; Maawy, Ali; Hassanein, Mohamed K; Menen, Rhiana; Momiyama, Masashi; Murakami, Takashi; Miwa, Shinji; Yamamoto, Mako; Uehara, Fuminari; Yano, Shuya; Mori, Ryutaro; Matsuyama, Ryusei; Chishima, Takashi; Tanaka, Kuniya; Ichikawa, Yasushi; Bouvet, Michael; Endo, Itaru; Hoffman, Robert M

    2014-01-01

    We previously defined macrophages harvested from the peritoneal cavity of nude mice with subcutaneous human pancreatic tumors as "tumor-educated-macrophages" (Edu) and macrophages harvested from mice without tumors as "naïve-macrophages" (Naïve), and demonstrated that Edu-macrophages promoted tumor growth and metastasis. In this study, Edu- and Naïve-macrophages were compared for their ability to enhance pancreatic cancer malignancy at the cellular level in vitro and in vivo. The inhibitory efficacy of Zoledronic acid (ZA) on Edu-macrophage-enhanced metastasis was also determined. XPA1 human pancreatic cancer cells in Gelfoam co-cultured with Edu-macrophages proliferated to a greater extent compared to XPA1 cells cultured with Naïve-macrophages (P = 0.014). XPA1 cells exposed to conditioned medium harvested from Edu culture significantly increased proliferation (P = 0.016) and had more migration stimulation capability (P<0.001) compared to cultured cancer cells treated with the conditioned medium from Naïve. The mitotic index of the XPA1 cells, expressing GFP in the nucleus and RFP in the cytoplasm, significantly increased in vivo in the presence of Edu- compared to Naïve-macrophages (P = 0.001). Zoledronic acid (ZA) killed both Edu and Naïve in vitro. Edu promoted tumor growth and metastasis in an orthotopic mouse model of the XPA1 human pancreatic cancer cell line. ZA reduced primary tumor growth (P = 0.006) and prevented metastasis (P = 0.025) promoted by Edu-macrophages. These results indicate that ZA inhibits enhanced primary tumor growth and metastasis of human pancreatic cancer induced by Edu-macrophages.

  8. IL-13 induces disease-promoting type 2 cytokines, alternatively activated macrophages and allergic inflammation during pulmonary infection of mice with Cryptococcus neoformans.

    PubMed

    Müller, Uwe; Stenzel, Werner; Köhler, Gabriele; Werner, Christoph; Polte, Tobias; Hansen, Gesine; Schütze, Nicole; Straubinger, Reinhard K; Blessing, Manfred; McKenzie, Andrew N J; Brombacher, Frank; Alber, Gottfried

    2007-10-15

    In the murine model of Cryptococcus neoformans infection Th1 (IL-12/IFN-gamma) and Th17 (IL-23/IL-17) responses are associated with protection, whereas an IL-4-dependent Th2 response exacerbates disease. To investigate the role of the Th2 cytokine IL-13 during pulmonary infection with C. neoformans, IL-13-overexpressing transgenic (IL-13Tg(+)), IL-13-deficient (IL-13(-/-)), and wild-type (WT) mice were infected intranasally. Susceptibility to C. neoformans infection was found when IL-13 was induced in WT mice or overproduced in IL-13Tg(+) mice. Infected IL-13Tg(+) mice had a reduced survival time and higher pulmonary fungal load as compared with WT mice. In contrast, infected IL-13(-/-) mice were resistant and 89% of these mice survived the entire period of the experiment. Ag-specific production of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with a significant type 2 cytokine shift but only minor changes in IFN-gamma production. Consistent with enhanced type 2 cytokine production, high levels of serum IgE and low ratios of serum IgG2a/IgG1 were detected in susceptible WT and IL-13Tg(+) mice. Interestingly, expression of IL-13 by susceptible WT and IL-13Tg(+) mice was associated with reduced IL-17 production. IL-13 was found to induce formation of alternatively activated macrophages expressing arginase-1, macrophage mannose receptor (CD206), and YM1. In addition, IL-13 production led to lung eosinophilia, goblet cell metaplasia and elevated mucus production, and enhanced airway hyperreactivity. This indicates that IL-13 contributes to fatal allergic inflammation during C. neoformans infection.

  9. Enhancement of natural killer cell activity of aged mice by modified arabinoxylan rice bran (MGN-3/Biobran).

    PubMed

    Ghoneum, Mamdooh; Abedi, Sarah

    2004-12-01

    The present study is aimed to examine the possibility of enhancement of natural killer (NK) cell activity in aged C57BL/6 and C3H mice using MGN-3, a modified arabinoxylan from rice bran. Intraperitoneal injection of MGN-3 (10 mg kg(-1) per day) caused a remarkable increase in the peritoneal NK activity as early as 2 days (35.2 lytic units), and the level remained elevated through day 14. The control aged mice had a level of 5.8 lytic units. Enhancement in NK activity was associated with an increase in both the binding capacity of NK cells to tumour targets and in the granular content as measured by BLT-esterase activity. Treatment did not alter the percentage of peritoneal NK cells. Data showed that peritoneal macrophages inhibit NK activity. In conclusion, MGN-3 enhances murine NK activity of aged mice and may be useful for enhancing NK function in aged humans.

  10. CSF-1 deficiency in the op/op mouse has differential effects on macrophage populations and differentiation stages.

    PubMed

    Wiktor-Jedrzejczak, W; Ratajczak, M Z; Ptasznik, A; Sell, K W; Ahmed-Ansari, A; Ostertag, W

    1992-09-01

    Osteopetrosis and the absence of colony-stimulating factor 1 (CSF-1) in op/op mice are associated with decreased cellularity of the bone marrow (to one tenth of the normal), a very significant reduction in the number of cells recovered from peritoneal, pleural, and alveolar lavages, moderate leukopenia, and a slight decrease in the number of cells per spleen and thymus. Furthermore, op/op mice possess deficiencies in the number of macrophages in various organs. These cells are apparently absent in the bone marrow, severely reduced (5%-15% of the normal number) in peritoneal and pleural cavities and in the lungs. In addition, a marked decrease in the frequency and total number of circulating monocytes is present (5% of the normal). The deficiency of macrophages is less severe in the liver, spleen, and thymus of op/op mice (approximately 30% of those seen in normal). There is a concomitant redistribution of macrophage progenitor cells (granulocyte-macrophage colony-forming units, CFU-GM) in op/op mice from the marrow to the spleen and liver, associated with an increased sensitivity to interleukin 3 (IL-3). Their total number is decreased at least threefold compared to control mice. Moreover, op/op mice have at least a fivefold reduction in the total number of day-11 spleen colony-forming units (CFU-S) associated with their redistribution to the spleen and liver. These data suggest that the macrophage system in op/op mice is reduced at all levels tested, that is, at the level of mature macrophages, the level of progenitors, and the level of stem cells, whereas the redistribution of progenitor and stem cells could be viewed as a secondary consequence of osteopetrosis. Furthermore, these data suggest that macrophage dependency in vivo on CSF-1 is limited and different in various organs. Particularly in the liver, spleen, and thymus, other growth factors may significantly compensate for CSF-1 deficiency. Based on the relative decrease in the number of CFU-GM in the op

  11. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Adipose tissue macrophages play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet-induced obesity has been shown to lead to adipose tissue macrophages accumulation in rodents;however, the impact of hyperglycemia on adipose tissue macrophages dynamics in high-fat diet-fed ...

  12. Plaque Size Is Decreased but M1 Macrophage Polarization and Rupture Related Metalloproteinase Expression Are Maintained after Deleting T-Bet in ApoE Null Mice

    PubMed Central

    Tsaousi, Aikaterini; Hayes, Elaine M.; Di Gregoli, Karina; Bond, Andrew R.; Bevan, Laura

    2016-01-01

    Background Thelper1 (Th1) lymphocytes have been previously implicated in atherosclerotic plaque growth but their role in plaque vulnerability to rupture is less clear. We investigated whether T-bet knockout that prevents Th1 lymphocyte differentiation modulates classical (M1) macrophage activation or production of matrix degrading metalloproteinases (MMPs) and their tissue inhibitors, TIMPs. Methods & Results We studied the effect of T-bet deletion in apolipoproteinE (ApoE) knockout mice fed a high fat diet (HFD) or normal chow diet (ND). Transcript levels of M1/M2 macrophage polarization markers, selected MMPs and TIMPs were measured by RT-qPCR in macrophages isolated from subcutaneous granulomas or in whole aortae. Immunohistochemistry of aortic sinus (AS) and brachiocephalic artery (BCA) plaques was conducted to quantify protein expression of the same factors. Deletion of T-bet decreased mRNA for the M1 marker NOS-2 in granuloma macrophages but levels of M2 markers (CD206, arginase-1 and Ym-1), MMPs-2, -9, -12, -13, -14 and -19 or TIMPs-1 to -3 were unchanged. No mRNA differences were observed in aortic extracts from mice fed a HFD for 12 weeks. Moreover, AS and BCA plaques were similarly sized between genotypes, and had similar areas