Science.gov

Sample records for mice peritoneal macrophages

  1. Haemorrhagic shock in mice--intracellular signalling and immunomodulation of peritoneal macrophages' LPS response.

    PubMed

    Rani, Meenakshi; Husain, Baher; Lendemans, Sven; Schade, Fritz U; Flohé, Sascha

    2006-01-01

    Haemorrhagic shock leads to decreased proinflammatory cytokine response which is associated with an increased susceptibility to bacterial infections. In the present study, the effect of GM-CSF on lipopolysaccharide (LPS)-induced TNF-alpha release and MAPkinase activation was analysed on the background of a possible immunostimulating activity of this substance. Male BALB/c mice were bled to a mean arterial blood pressure of 50 mmHg for 45 min followed by resuscitation. Peritoneal macrophages were isolated 20 h after haemorrhage and incubated with 10 ng/ml GM-CSF for 6h before LPS stimulation. TNF-alpha synthesis was studied in the culture supernatants using ELISA. Phosphorylation of ERK, p38MAPK and IkappaBalpha was detected by Western blotting. LPS-induced TNF-alpha production of peritoneal macrophages was significantly decreased 20 h after haemorrhage in comparison to the corresponding cells of sham-operated mice. In parallel the phosphorylation of IkappaBalpha was less in LPS-stimulated peritoneal macrophages from haemorrhagic mice. LPS-induced phosphorylation of ERK1/2 was also decreased in peritoneal macrophages isolated after haemorrhagic shock. In contrast, p38MAPK was phosphorylated more intensely after LPS-stimulation in macrophages collected from shocked mice. GM-CSF incubation elevated LPS-induced TNF-alpha response of macrophages from both sham-operated and shocked mice which was accompanied by an elevated IkappaB and ERK phosphorylation. In general, GM-CSF treatment in vitro enhanced peritoneal macrophages LPS-response both in terms of TNF-alpha synthesis and IkappaB and MAPK signalling, but the levels always stayed lower than those of GM-CSF-treated cells from sham-operated animals. In conclusion, GM-CSF preincubation could partly reactivate the depressed functions of peritoneal macrophages and may therefore exert immunostimulating properties after shock or trauma.

  2. Bacteroides fragilis induce necrosis on mice peritoneal macrophages: In vitro and in vivo assays

    SciTech Connect

    Vieira, J.M.B.D.; Seabra, S.H.; Vallim, D.C.; Americo, M.A.; Fracallanza, S.E.L.; Vommaro, R.C.; Domingues, R.M.C.P.

    2009-10-02

    Bacteroides fragilis is an anaerobic bacteria component of human intestinal microbiota and agent of infections. In the host B. fragilis interacts with macrophages, which produces toxic radicals like NO. The interaction of activated mice peritoneal macrophages with four strains of B. fragilis was evaluated on this study. Previously was shown that such strains could cause metabolic and morphologic alterations related to macrophage death. In this work propidium iodide staining showed the strains inducing macrophage necrosis in that the labeling was evident. Besides nitroblue tetrazolium test showed that B. fragilis stimulates macrophage to produce oxygen radicals. In vivo assays performed in BalbC mice have results similar to those for in vitro tests as well as scanning electron microscopy, which showed the same surface pore-like structures observed in vitro before. The results revealed that B. fragilis strains studied lead to macrophage death by a process similar to necrosis.

  3. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro.

  4. Comparative activation states of tumor-associated and peritoneal macrophages from mice bearing an induced fibrosarcoma.

    PubMed

    Valdez, J C; de Alderete, N; Meson, O E; Sirena, A; Perdigon, G

    1990-11-01

    Balb/c mice bearing a methylcholanthrene-induced fibrosarcoma were used to compare the activation levels of tumor-associated and peritoneal macrophages. Two stages of tumor growth were examined, namely "small" and "large" tumors, with average diameters of 10 and 30 mm, respectively. The activation state, determined by measurement of both phagocytic index and beta-glucuronidase content, was found to be markedly higher in tumor-associated macrophages than in their peritoneal counterparts and it was, in addition, independent of tumor progression. The percentage of tumor-associated macrophages, which were detected on the basis of Fc receptor expression, remained constant in the growing neoplasm, at approximately 23% of total cell population. None of these parameters were affected by inoculation with an immunopotentiating dose of heat-killed Candida albicans which, on the other hand, seemed not to alter the course of the tumor. These data suggest that within the tumor microenvironment macrophages would somehow be maintained at a constant proportion and at a highly activated state, while outside the tumor they would be at a lower activation level. Our results also suggest that TAM would not possess antitumor activity in vivo, although we have found this activity in vitro. PMID:2099903

  5. In vitro nicotine-induced oxidative stress in mice peritoneal macrophages: a dose-dependent approach.

    PubMed

    Mahapatra, Santanu Kar; Das, Subhasis; Bhattacharjee, Surajit; Gautam, N; Majumdar, Subrata; Roy, Somenath

    2009-02-01

    The immune cells use reactive oxygen species (ROS) for carrying out their normal functions while an excess amount of ROS can attack cellular components that lead to cell damage. In the present study, peritoneal macrophages (6 x 10(6) cells, >95% viable) isolated from male Swiss mice were treated with nicotine (1 mM, 5 mM, 10 mM, 25 mM, and 50 mM) in vitro for 12 h and the superoxide anion generation, lipid peroxidation, protein oxidation and antioxidant enzymes status were monitored. Maximum superoxide radical generation was found at the dose of 10 mM nicotine. The lipid peroxidation and protein oxidation were increased significantly (p < 0.05) along with the increasing dose of nicotine. The reduced glutathione level, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase activities were decreased significantly (p < 0.05), and oxidized glutathione level was increased significantly (p < 0.05) with the increasing dose of the nicotine. From these experiments, it was also observed that all the changes in peritoneal macrophages with 10 mM, 25 mM, and 50 mM nicotine had no significant difference. To observe the effect of nicotine in vivo, this study examined the liver and spleen antioxidant status after nicotine administration (1 mg/kg BW) intraperitoneally in mice and found the diminished SOD activity and GSH level. It may be concluded that nicotine is able to enhance the production of ROS that produced oxidative stress in murine peritoneal macrophages. It also suggested that, 10 mM in vitro nicotine treatment for 12 h is the effective dose. PMID:19778253

  6. Action of ubenimex on aminopeptidase activities in spleen cells and peritoneal macrophages from mice.

    PubMed

    Kuramochi, H; Motegi, A; Iwabuchi, M; Takahashi, K; Horinishi, H; Umezawa, H

    1987-11-01

    The action of ubenimex on aminopeptidase (APase) activity was studied in intact spleen cells and peritoneal macrophages from mice. Ubenimex strongly inhibited hydrolyzing activities against arginine-beta-naphtylamide (Arg-NA), Lys-NA and Pro-NA in both cells. Inhibition of hydrolysis of Leu-NA, Met-NA and Ala-NA was relatively small or not observed. When both cells were incubated in HANKS' solution, hydrolyzing activities against Arg-NA, Lys-NA and Pro-NA were released to the medium, while Leu-NA and Met-NA-hydrolyzing activities were mostly bound. In addition, the Leu-NA-hydrolyzing activity in the spleen cells was kinetically studied. The Arg-NA and Leu-NA-hydrolyzing activities in four fractions prepared from the homogenate of spleen cells were also studied kinetically. From these studies it was suggested that ubenimex inhibits aminopeptidase B and a Pro-NA-hydrolyzing enzyme more effectively than Leu-APase in intact spleen cells and peritoneal macrophages from mice.

  7. Effect of aqueous extract of Tinospora cordifolia on functions of peritoneal macrophages isolated from CCl4 intoxicated male albino mice

    PubMed Central

    2011-01-01

    Background The current practice of ingesting phytochemicals for supporting the immune system or fighting infections is based on centuries-old tradition. Macrophages are involved at all the stages of an immune response. The present study focuses on the immunostimulant properties of Tinospora cordifolia extract that are exerted on circulating macrophages isolated from CCl4 (0.5 ml/kg body weight) intoxicated male albino mice. Methods Apart from damaging the liver system, carbon tetrachloride also inhibits macrophage functions thus, creating an immunocompromised state, as is evident from the present study. Such cell functions include cell morphology, adhesion property, phagocytosis, enzyme release (myeloperoxidase or MPO), nitric oxide (NO) release, intracellular survival of ingested bacteria and DNA fragmentation in peritoneal macrophages isolated from these immunocompromised mice. T. cordifolia extract was tested for acute toxicity at the given dose (150 mg/kg body weight) by lactate dehydrogenase (LDH) assay. Results The number of morphologically altered macrophages was increased in mice exposed to CCl4. Administration of CCl4 (i.p.) also reduced the phagocytosis, cell adhesion, MPO release, NO release properties of circulating macrophages of mice. The DNA fragmentation of peritoneal macrophages was observed to be higher in CCl4 intoxicated mice. The bacterial killing capacity of peritoneal macrophages was also adversely affected by CCl4. However oral administration of aqueous fraction of Tinospora cordifolia stem parts at a dose of 40 mg/kg body weight (in vivo) in CCl4 exposed mice ameliorated the effect of CCl4, as the percentage of morphologically altered macrophages, phagocytosis activity, cell adhesion, MPO release, NO release, DNA fragmentation and intracellular killing capacity of CCl4 intoxicated peritoneal macrophages came closer to those of the control group. No acute toxicity was identified in oral administration of the aqueous extract of Tinospora

  8. NFATc1 releases BCL6-dependent repression of CCR2 agonist expression in peritoneal macrophages from Saccharomyces cerevisiae infected mice.

    PubMed

    Busch, Rhoda; Murti, Krisna; Liu, Jiming; Patra, Amiya K; Muhammad, Khalid; Knobeloch, Klaus-Peter; Lichtinger, Monika; Bonifer, Constanze; Wörtge, Simone; Waisman, Ari; Reifenberg, Kurt; Ellenrieder, Volker; Serfling, Edgar; Avots, Andris

    2016-03-01

    The link between the extensive usage of calcineurin (CN) inhibitors cyclosporin A and tacrolimus (FK506) in transplantation medicine and the increasing rate of opportunistic infections within this segment of patients is alarming. Currently, how peritoneal infections are favored by these drugs, which impair the activity of several signaling pathways including the Ca(++) /CN/NFAT, Ca(++) /CN/cofilin, Ca(++) /CN/BAD, and NF-κB networks, is unknown. Here, we show that Saccharomyces cerevisiae infection of peritoneal resident macrophages triggers the transient nuclear translocation of NFATc1β isoforms, resulting in a coordinated, CN-dependent induction of the Ccl2, Ccl7, and Ccl12 genes, all encoding CCR2 agonists. CN inhibitors block the CCR2-dependent recruitment of inflammatory monocytes (IM) to the peritoneal cavities of S. cerevisiae infected mice. In myeloid cells, NFATc1/β proteins represent the most prominent NFATc1 isoforms. NFATc1/β ablation leads to a decrease of CCR2 chemokines, impaired mobilization of IMs, and delayed clearance of infection. We show that, upon binding to a composite NFAT/BCL6 regulatory element within the Ccl2 promoter, NFATc1/β proteins release the BCL6-dependent repression of Ccl2 gene in macrophages. These findings suggest a novel CN-dependent cross-talk between NFAT and BCL6 transcription factors, which may affect the outcome of opportunistic fungal infections in immunocompromised patients. PMID:26631626

  9. Nucleosomes inhibit phagocytosis of apoptotic thymocytes by peritoneal macrophages from MRL+/+ lupus-prone mice.

    PubMed

    Laderach, D; Bach, J F; Koutouzov, S

    1998-12-01

    The nucleosome, the basic structure of chromatin and normal product of cell apoptosis, plays a pivotal role both in the induction and the pathogenesis of systemic lupus erythematosus (SLE). Nucleosomes have been found to circulate at high levels in patients with SLE and apoptosis of lymphoid cells is increased during human and murine lupus. In this study, we examined the presence of possible defects in clearance mechanisms of apoptotic cells in murine lupus, and questioned further whether nucleosomes could compromise this phagocytic process. There did not appear to be any intrinsic functional defect of macrophages from young MRL+/+ lupus-prone mice to recognize and phagocytose apoptotic thymocytes. Nucleosomes, as a mimic of increased cell apoptotsis in vivo, induced a strong, dose-dependent, inhibition of phagocytosis of apoptotic thymocytes by young, pre-autoimmune, macrophages of MRL+/+ mice, whereas macrophages of non-autoimmune C3H mice only exhibited a trend to inhibition. The nucleosome-elicited inhibitory effect persisted during the development of the autoimmune response and appeared to be specific for the molecular mechanisms involved in macrophage phagocytosis of apoptotic cells. Our data suggest that nucleosome elicited inhibition of phagocytosis of apoptotic cells by MRL+/+ macrophages before the onset of the autoimmune response contribute, in a positive loop, to sustain and/or augment the levels of circulating (and potentially immunogenic) nucleosomes in lupus.

  10. In vivo effect of fly ash on surface receptors of mice peritoneal macrophages

    SciTech Connect

    Dogra, S.; Khanna, A.K.; Kaw, J.L.

    1987-01-01

    Functional activity of macrophages was studied in mice up to 15 days after intraperitoneal injection of 2.5 and 5.0 mg of fly ash using in vitro parameters. Fly ash did not cause any variation in the type of cellular response. The total cell number decreased significantly by 4 days after fly ash treatment but recovered subsequently. The decrease was dose dependent. Fly ash also caused a 50% depression in the FC receptor mediated phagocytosis of IgG coated sheep erythrocytes (SRBC) by macrophages at 2 days of dust treatment. However, the recovery began earlier with 2.5 mg fly ash than with 5.0 mg fly ash. These changes were not associated with any marked changes in esterase activity of macrophages following phagocytosis of fly ash.

  11. Deletion of scavenger receptor A gene in mice resulted in protection from septic shock and modulation of TLR4 signaling in isolated peritoneal macrophages

    PubMed Central

    Drummond, Robert; Cauvi, David M; Hawisher, Dennis; Song, Donghuan; Niño, Diego F; Coimbra, Raul; Bickler, Stephen; De Maio, Antonio

    2015-01-01

    Scavenger receptor A (Sra), also known as macrophage scavenger receptor 1 (Msr1), is a surface glycoprotein preferentially present in macrophages that plays a primary role in innate immunity. Previous studies have shown that Sra is a modifier gene for the response to bacterial LPS in mice at the level of IL-10 production, in particular. In the present study, we found that Sra(−/−) mice are more resistant to septic shock induced by cecal ligation and puncture than wild-type C57BL/6 J (B6) mice. In addition, Sra(−/−) mice displayed initial elevated high density lipoprotein (HDL) circulating levels. Naïve peritoneal macrophages (PMϕs) were isolated from Sra(−/−) mice to understand the possible protective mechanism. Incubation of these cells with LPS was found to modulate TLR4 signaling, leading to a reduction in IL-10 and IL-6 mRNA levels, but not TNF-α expression, at low concentrations of LPS in comparison with PMϕs isolated from B6 mice. No differences were found in LPS binding between PMϕs derived from Sra(−/−) or B6 mice. The lack of Sra binding to LPS was confirmed after transfection of Chinese hamster ovary (CHO) cells with the Sra gene. The contribution of Sra to the outcome of sepsis may be a combination of changes in TLR4 signaling pathway and elevated levels of HDL in circulation, but also LPS toxicity. PMID:22751446

  12. Weight loss in obese mice persistently infected with lymphocytic choriomeningitis virus is not associated with elevated tumor necrosis factor/cachectin activity in peritoneal macrophages.

    PubMed Central

    Lathey, J. L.; Oldstone, M. B.

    1988-01-01

    C57BL/6 ob/ob (C57 ob/ob) mice infected persistently with lymphocytic choriomeningitis virus (LCMV) show cachexia as judged by a weight loss of greater than 20%. Virus persists in a subset of macrophages. Because a cachexic state occurs in several chronic debilitating diseases of humans, often accompanied by persistent microbial infections with macrophage/monocytic involvement and tumor necrosis factor (TNF) cachectin production, the role of TNF in the weightloss of ob/ob mice infected persistently with LCMV was investigated. TNF mRNA expression was not increased in peritoneal cells from such persistently-infected mice, nor did their serum levels of TNF rise above those in uninfected litter-mates. Furthermore, in vitro LCMV infection of adherent peritoneal cells from these C57 ob/ob mice did not enhance TNF mRNA or protein expression. Therefore, the cachexia-like weight loss observed in C57 ob/ob mice during a persistent LCMV infection is apparently not associated with a measurable increase in TNF. Images Figure 2 Figure 3 Figure 4 PMID:3414785

  13. Macrophage functions in Biozzi mice.

    PubMed Central

    Dockrell, H M; Taverne, J; Lelchuk, R; Depledge, P; Brown, I N; Playfair, J H

    1985-01-01

    The faster degradation of antigen by macrophages in Biozzi low (L) responder mice, compared to Biozzi high (H) responder mice, is thought to be responsible for their lower antibody response. We have measured four functions associated with macrophages to see whether macrophages from L mice were generally more active than those from H mice. Peritoneal macrophages obtained from normal mice were compared with those from groups of mice given Mycobacterium bovis BCG or Propionibacterium acnes. Cells from normal H mice gave a stronger oxidative burst when triggered with phorbol myristate acetate, and were more cytotoxic for tumour cells than cells from L mice. Cells from all mice injected with BCG or P. acnes gave a stronger oxidative burst, and were more cytotoxic for tumour cells; again, both responses were higher in H mice than in L mice. By contrast, when groups of mice that had received P. acnes were given endotoxin and bled, higher titres of tumour necrosis factor were found in the sera of L mice. Spleen cells from both lines of mice released similar levels of interleukin-1, both spontaneously and in response to lipopolysaccharide. Our results suggest that these various macrophage responses are expressed independently in H and L mice. PMID:3894222

  14. Single-cell analysis reveals new subset markers of murine peritoneal macrophages and highlights macrophage dynamics upon Staphylococcus aureus peritonitis.

    PubMed

    Accarias, Solène; Genthon, Clémence; Rengel, David; Boullier, Séverine; Foucras, Gilles; Tabouret, Guillaume

    2016-07-01

    Resident macrophages play a central role in maintaining tissue homeostasis and immune surveillance. Here, we used single cell-based qPCR coupled with flow cytometry analysis to further define the phenotypes of large and small resident peritoneal macrophages (LPMs and SPMs, respectively) in mice. We demonstrated that the expression of Cxcl13, IfngR1, Fizz-1 and Mrc-1 clearly distinguished between LPMs and SPMs subsets. Using these markers, the dynamics of peritoneal macrophages in a Staphylococcus aureus-induced peritonitis model were analyzed. We found that S. aureus infection triggers a massive macrophage disappearance reaction in both subsets. Thereafter, inflammatory monocytes rapidly infiltrated the cavity and differentiated to replenish the SPMs. Although phenotypically indistinguishable from resident SPMs by flow cytometry, newly recruited SPMs had a different pattern of gene expression dominated by M2 markers combined with M1 associated features (inos expression). Interestingly, S. aureus elicited SPMs showed a robust expression of Cxcl13, suggesting that these cells may endorse the role of depleted LPMs and contribute to restoring peritoneal homeostasis. These data provide information on both resident and recruited macrophages dynamics upon S. aureus infection and demonstrate that single-cell phenotyping is a promising and highly valuable approach to unraveling macrophage diversity and plasticity. PMID:27220602

  15. Intraperitoneal immunization with oligomannose-coated liposome-entrapped soluble leishmanial antigen induces antigen-specific T-helper type immune response in BALB/c mice through uptake by peritoneal macrophages.

    PubMed

    Shimizu, Y; Takagi, H; Nakayama, T; Yamakami, K; Tadakuma, T; Yokoyama, N; Kojima, N

    2007-05-01

    The present study demonstrates that the intraperitoneal administration of soluble leishmanial antigen (SLA) entrapped in liposomes coated with neoglycolipids containing oligomannose residues (mannopentaose or mannotriose) strongly induces an antigen-specific T-helper type 1 (Th1) immune response in BALB/c mice. In response to in vitro stimulation with SLA, spleen cells from mice that had received oligomannose-coated liposomes encasing SLA (SLA-OML) displayed greater interferon (IFN)-gamma and interleukin (IL)-2 production and lower IL-4 and IL-5 production than spleen cells from mice that had received SLA alone, indicating that the SLA-specific Th1 immune response had predominantly been induced in the mice that had received SLA-OML. After subsequent infection with Leishmania major, mice that had received SLA-OML were effectively protected against the disease, with a predominant production of IFN-gamma. OML were preferentially and rapidly incorporated into peritoneal macrophages, and the transplantation of macrophages containing SLA-OML into the peritoneal cavity also induced protection against L. major infection. Thus, SLA-OML were shown to successfully induce a specific Th1 immune response capable of controlling L. major infection in BALB/c mice through the effective uptake of OML by peritoneal macrophages.

  16. Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis.

    PubMed

    Linehan, Eimear; Dombrowski, Yvonne; Snoddy, Rachel; Fallon, Padraic G; Kissenpfennig, Adrien; Fitzgerald, Denise C

    2014-08-01

    Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.

  17. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP. PMID:26529190

  18. Activation effect of Ganoderma lucidum polysaccharides liposomes on murine peritoneal macrophages.

    PubMed

    Liu, Zhenguang; Xing, Jie; Huang, Yee; Bo, Ruonan; Zheng, Sisi; Luo, Li; Niu, Yale; Zhang, Yan; Hu, Yuanliang; Liu, Jiaguo; Wu, Yi; Wang, Deyun

    2016-01-01

    The activation of murine peritoneal macrophages by Ganoderma lucidum polysaccharides liposomes (GLPL) was investigated in vitro. After treatment with GLPL, the changes of the nitric oxide (NO) secretion and iNOS (inducible nitric oxide synthase) activity were evaluated. The results showed that NO production and iNOS activity of macrophages were enhanced compared to GLP and BL group. In addition, both the phagocytic activity and levels of cytokines IL-1β, TNF-α and IFN-γ were enhanced in the peritoneal macrophages of mice by stimulation of GLPL. The expression of the major histocompatibility complex class II molecule (MHC II) on the surface of peritoneal macrophages significantly increased. These indicated that GLPL could enhance the activation of peritoneal macrophages and their potential for use as a delivery system of GLP.

  19. Mast cells aggravate sepsis by inhibiting peritoneal macrophage phagocytosis

    PubMed Central

    Dahdah, Albert; Gautier, Gregory; Attout, Tarik; Fiore, Frédéric; Lebourdais, Emeline; Msallam, Rasha; Daëron, Marc; Monteiro, Renato C.; Benhamou, Marc; Charles, Nicolas; Davoust, Jean; Blank, Ulrich; Malissen, Bernard; Launay, Pierre

    2014-01-01

    Controlling the overwhelming inflammatory reaction associated with polymicrobial sepsis remains a prevalent clinical challenge with few treatment options. In septic peritonitis, blood neutrophils and monocytes are rapidly recruited into the peritoneal cavity to control infection, but the role of resident sentinel cells during the early phase of infection is less clear. In particular, the influence of mast cells on other tissue-resident cells remains poorly understood. Here, we developed a mouse model that allows both visualization and conditional ablation of mast cells and basophils to investigate the role of mast cells in severe septic peritonitis. Specific depletion of mast cells led to increased survival rates in mice with acute sepsis. Furthermore, we determined that mast cells impair the phagocytic action of resident macrophages, thereby allowing local and systemic bacterial proliferation. Mast cells did not influence local recruitment of neutrophils and monocytes or the release of inflammatory cytokines. Phagocytosis inhibition by mast cells involved their ability to release prestored IL-4 within 15 minutes after bacterial encounter, and treatment with an IL-4–neutralizing antibody prevented this inhibitory effect and improved survival of septic mice. Our study uncovers a local crosstalk between mast cells and macrophages during the early phase of sepsis development that aggravates the outcome of severe bacterial infection. PMID:25180604

  20. Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice.

    PubMed

    Nagai, Takuo; Doi, Shigehiro; Nakashima, Ayumu; Irifuku, Taisuke; Sasaki, Kensuke; Ueno, Toshinori; Masaki, Takao

    2016-01-01

    Recent studies have reported increases of methylglyoxal (MGO) in peritoneal dialysis patients, and that MGO-mediated inflammation plays an important role in the development of peritoneal fibrosis through production of transforming growth factor-β1 (TGF-β1). Linagliptin, a dipeptidyl peptidase-4 inhibitor, exerts anti-inflammatory effects independent of blood glucose levels. In this study, we examined whether linagliptin suppresses MGO-induced peritoneal fibrosis in mice. Male C57/BL6 mice were divided into three groups: control, MGO injection plus saline, and MGO injection plus linagliptin (n = 6 per group). Peritoneal fibrosis was induced by daily intraperitoneal injection of saline containing 40 mmol/L MGO for 21 days. Saline was administered intraperitoneally to the control group. Linagliptin (10 mg/kg) or saline were administrated by once-daily oral gavage from 3 weeks before starting MGO injections. Immunohistochemical staining revealed that linagliptin suppressed expression of α-smooth muscle actin and fibroblast-specific protein-1, deposition of type I and III collagen, and macrophage (F4/80) infiltration. Peritoneal equilibration testing showed improved peritoneal functions in mice treated with linagliptin. Peritoneal injection of MGO increased plasma levels of glucagon-like peptide-1 (GLP-1) in mice, and a further increase was observed in linagliptin-treated mice. Although MGO increased plasma glucose levels, linagliptin did not decrease plasma glucose levels. Moreover, linagliptin reduced the TGF-β1 concentration in the peritoneal fluid of MGO-treated mice. GLP-1 receptor (GLP-1R) was expressed in monocytes/macrophages and linagliptin suppressed GLP-1R expression in MGO-injected mice. These results suggest that oral administration of linagliptin ameliorates MGO-induced peritoneal fibrosis. PMID:27513960

  1. Linagliptin Ameliorates Methylglyoxal-Induced Peritoneal Fibrosis in Mice

    PubMed Central

    Nagai, Takuo; Doi, Shigehiro; Nakashima, Ayumu; Irifuku, Taisuke; Sasaki, Kensuke; Ueno, Toshinori; Masaki, Takao

    2016-01-01

    Recent studies have reported increases of methylglyoxal (MGO) in peritoneal dialysis patients, and that MGO-mediated inflammation plays an important role in the development of peritoneal fibrosis through production of transforming growth factor-β1 (TGF-β1). Linagliptin, a dipeptidyl peptidase-4 inhibitor, exerts anti-inflammatory effects independent of blood glucose levels. In this study, we examined whether linagliptin suppresses MGO-induced peritoneal fibrosis in mice. Male C57/BL6 mice were divided into three groups: control, MGO injection plus saline, and MGO injection plus linagliptin (n = 6 per group). Peritoneal fibrosis was induced by daily intraperitoneal injection of saline containing 40 mmol/L MGO for 21 days. Saline was administered intraperitoneally to the control group. Linagliptin (10 mg/kg) or saline were administrated by once-daily oral gavage from 3 weeks before starting MGO injections. Immunohistochemical staining revealed that linagliptin suppressed expression of α-smooth muscle actin and fibroblast-specific protein-1, deposition of type I and III collagen, and macrophage (F4/80) infiltration. Peritoneal equilibration testing showed improved peritoneal functions in mice treated with linagliptin. Peritoneal injection of MGO increased plasma levels of glucagon-like peptide-1 (GLP-1) in mice, and a further increase was observed in linagliptin-treated mice. Although MGO increased plasma glucose levels, linagliptin did not decrease plasma glucose levels. Moreover, linagliptin reduced the TGF-β1 concentration in the peritoneal fluid of MGO-treated mice. GLP-1 receptor (GLP-1R) was expressed in monocytes/macrophages and linagliptin suppressed GLP-1R expression in MGO-injected mice. These results suggest that oral administration of linagliptin ameliorates MGO-induced peritoneal fibrosis. PMID:27513960

  2. Immunostimulatory effect of spinach aqueous extract on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages.

    PubMed

    Ishida, Momoko; Ose, Saya; Nishi, Kosuke; Sugahara, Takuya

    2016-07-01

    We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.

  3. Protein-energy malnutrition decreases the expression of TLR-4/MD-2 and CD14 receptors in peritoneal macrophages and reduces the synthesis of TNF-alpha in response to lipopolysaccharide (LPS) in mice.

    PubMed

    Fock, Ricardo Ambrósio; Vinolo, Marco Aurélio Ramirez; de Moura Sá Rocha, Vanessa; de Sá Rocha, Luiz Carlos; Borelli, Primavera

    2007-11-01

    Protein-energy malnutrition (PEM) modifies resistance to infection, impairing a number of physiological processes, including hematopoiesis. In this study, we examined a few aspects of the inflammatory response to LPS in a model of PEM. We evaluated the cellularity of the blood, bone marrow and spleen, as well as phagocytic, fungicidal and spreading activity, the production in vivo and in vitro of TNF-alpha, IL-1alpha and IL-6, and the expression of CD14 and TLR-4/MD-2 receptors in macrophages. Two-month-old male Swiss mice were submitted to PEM with a low-protein diet containing 4% protein as compared to 20% protein in the control diet. When the experimental group had attained about 20% loss of their original body weight, they were used in the experiments. Malnourished animals presented anemia, leucopenia and severe reduction in bone marrow, spleen and peritoneal cavity cellularity. The production of TNF-alpha, IL-1alpha and IL-6 stimulated in vivo with LPS and the production of IL-6 in bone marrow cells cultured with LPS and the production of TNF-alpha in bone marrow, spleen and peritoneal cells cultured with LPS were significantly lower in malnourished animals. The expression of CD14 and TLR-4/MD-2 receptors was found to be significantly lower in macrophages of malnourished animals. These findings suggest that malnourished animals present a deficient response to LPS. The lower expression of the CD14 and TLR-4/MD-2 receptors may be partly responsible for the immunodeficiency observed in the malnourished mice. These data lead us to infer that the nutritional state interferes with the activation of macrophages and with the capacity to mount an immune response.

  4. Mice Lacking Endoglin in Macrophages Show an Impaired Immune Response

    PubMed Central

    Ojeda-Fernández, Luisa; Recio-Poveda, Lucía; Aristorena, Mikel; Lastres, Pedro; Blanco, Francisco J.; Sanz-Rodríguez, Francisco; Gallardo-Vara, Eunate; de las Casas-Engel, Mateo; Corbí, Ángel; Arthur, Helen M.; Bernabeu, Carmelo; Botella, Luisa M.

    2016-01-01

    Endoglin is an auxiliary receptor for members of the TGF-β superfamily and plays an important role in the homeostasis of the vessel wall. Mutations in endoglin gene (ENG) or in the closely related TGF-β receptor type I ACVRL1/ALK1 are responsible for a rare dominant vascular dysplasia, the Hereditary Hemorrhagic Telangiectasia (HHT), or Rendu-Osler-Weber syndrome. Endoglin is also expressed in human macrophages, but its role in macrophage function remains unknown. In this work, we show that endoglin expression is triggered during the monocyte-macrophage differentiation process, both in vitro and during the in vivo differentiation of blood monocytes recruited to foci of inflammation in wild-type C57BL/6 mice. To analyze the role of endoglin in macrophages in vivo, an endoglin myeloid lineage specific knock-out mouse line (Engfl/flLysMCre) was generated. These mice show a predisposition to develop spontaneous infections by opportunistic bacteria. Engfl/flLysMCre mice also display increased survival following LPS-induced peritonitis, suggesting a delayed immune response. Phagocytic activity is impaired in peritoneal macrophages, altering one of the main functions of macrophages which contributes to the initiation of the immune response. We also observed altered expression of TGF-β1 target genes in endoglin deficient peritoneal macrophages. Overall, the altered immune activity of endoglin deficient macrophages could help to explain the higher rate of infectious diseases seen in HHT1 patients. PMID:27010826

  5. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury. PMID:25650776

  6. Impaired macrophage autophagy increases the immune response in obese mice by promoting proinflammatory macrophage polarization.

    PubMed

    Liu, Kun; Zhao, Enpeng; Ilyas, Ghulam; Lalazar, Gadi; Lin, Yu; Haseeb, Muhammad; Tanaka, Kathryn E; Czaja, Mark J

    2015-01-01

    Recent evidence that excessive lipid accumulation can decrease cellular levels of autophagy and that autophagy regulates immune responsiveness suggested that impaired macrophage autophagy may promote the increased innate immune activation that underlies obesity. Primary bone marrow-derived macrophages (BMDM) and peritoneal macrophages from high-fat diet (HFD)-fed mice had decreased levels of autophagic flux indicating a generalized impairment of macrophage autophagy in obese mice. To assess the effects of decreased macrophage autophagy on inflammation, mice with a Lyz2-Cre-mediated knockout of Atg5 in macrophages were fed a HFD and treated with low-dose lipopolysaccharide (LPS). Knockout mice developed systemic and hepatic inflammation with HFD feeding and LPS. This effect was liver specific as knockout mice did not have increased adipose tissue inflammation. The mechanism by which the loss of autophagy promoted inflammation was through the regulation of macrophage polarization. BMDM and Kupffer cells from knockout mice exhibited abnormalities in polarization with both increased proinflammatory M1 and decreased anti-inflammatory M2 polarization as determined by measures of genes and proteins. The heightened hepatic inflammatory response in HFD-fed, LPS-treated knockout mice led to liver injury without affecting steatosis. These findings demonstrate that autophagy has a critical regulatory function in macrophage polarization that downregulates inflammation. Defects in macrophage autophagy may underlie inflammatory disease states such as the decrease in macrophage autophagy with obesity that leads to hepatic inflammation and the progression to liver injury.

  7. Anti-inflammatory effects of miR-21 in the macrophage response to peritonitis.

    PubMed

    Barnett, Rebecca Elise; Conklin, Daniel J; Ryan, Lindsey; Keskey, Robert C; Ramjee, Vikram; Sepulveda, Ernesto A; Srivastava, Sanjay; Bhatnagar, Aruni; Cheadle, William G

    2016-02-01

    We investigated the role of microRNA-21 in the macrophage response to peritonitis; microRNA-21 expression increases in peritoneal macrophages after lipopolysaccharide stimulation but is delayed until 48 hours after cecal ligation and puncture. MicroRNA-21-null mice and bone marrow-derived cell lines were exposed to cecal ligation and puncture or lipopolysaccharide, and survival, microRNA-21 levels, target messenger RNAs and proteins, and cytokines were assayed. Macrophages were also transfected with microRNA-21 mimics and antagomirs, and similar endpoints were measured. Survival in microRNA-21-null mice was significantly decreased after lipopolysaccharide-induced peritonitis but unchanged after cecal ligation and puncture compared with similarly treated wild-type mice. MicroRNA-21 expression, tumor necrosis factor-α, interleukin 6, and programmed cell death protein 4 levels were increased after lipopolysaccharide addition in peritoneal cells. Pelino1 and sprouty (SPRY) messenger RNAs were similarly increased early, whereas programmed cell death protein 4 messenger RNA was decreased after lipopolysaccharide, and all microR-21 target messenger RNAs were subsequently decreased by 24 hours after lipopolysaccharide. Transfection with mimics and antagomirs led to appropriate responses in microRNA-21 and tumor necrosis factor-α. Knockdown of microRNA-21 in bone marrow-derived cells showed increased tumor necrosis factor-α and decreased interleukin 10 in response to lipopolysaccharide. Target proteins were unaffected by knockdown as was extracellular signal-regulated kinase; however, the nuclear factor κB p65 subunit was increased after lipopolysaccharide in the microRNA-21 knockout cells. In contrast, there was little change in these parameters after cecal ligation and puncture induction between null and wild-type mice. MicroRNA-21 is beneficial to survival in mice following lipopolysaccharide peritonitis. Overexpression of microRNA-21 decreased tumor necrosis factor

  8. Elicitation of macrophages from the peritoneal cavity of channel catfish

    USGS Publications Warehouse

    Jenkins, J.A.; Klesius, P.H.

    1998-01-01

    Four chemicals were evaluated for elicitation of macrophages in peritoneal cavities of 250-300g healthy channel catfish Ictalurus punctatus. Cellular exudates were collected at 3, 5, 7, 10, 14, and 20 d following intraperitoneal injections with squalene, Freund's incomplete adjuvant (FIA), goat serum, thioglycollate, or as a control, phosphate-buffered saline. Injection with either squalene or FIA induced significantly greater (P ??? 0.0001) macrophage recruitment than the other chemicals. The effectiveness of squalene and FIA was compared further by macrophage collection daily for 7 d. Squalene and FIA elicited similarly high macrophage responses (P ??? 0.0450), the highest being 3.43 x 106 macrophages/mL (SE, 2.4 x l06) at 99% purity at day 2 and 2.1 X 106 macrophages/mL (SE, 0.7 x 106) at day 14 at 80% purity, respectively. In both experiments, the time after injection was not statistically significant, nor was there an interaction between time and chemicals. The occurrence of cells other than macrophages decreased with time to yield macrophage recoveries of 47-99% for squalene and 30-80% for FIA. Two subsets of macrophages were observed by means of flow cytometry. As demonstrated by chemiluminescence, the squalene-elicited cells produced high-energy oxygen compounds important to the phagocytic process.

  9. Inhibition of arachidonate release from rat peritoneal macrophage by biflavonoids.

    PubMed

    Lee, S J; Son, K H; Chang, H W; Kang, S S; Kim, H P

    1997-12-01

    Biflavonoid is one of unique classes of naturally-occurring bioflavonoid. Previously, certain biflavonoids were found to possess the inhibitory effects on phospholipase A(2) activity and lymphocytes proliferation(1) suggesting their anti-inflammatory/immunoregulatory potential. In this study, effects of several biflavonoids on arachidonic acid release from rat peritoneal macrophages were investigated, because arachidonic acid released from the activated macrophages is one of the indices of inflammatory conditions. When resident peritoneal macrophages labeled with [(3)H]arachidonic acid were activated by phorbol 12-myristate 13-acetate (PMA) or calcium ionophore, A23187, radioactivity released in the medium was increased approximately 4.1 approximately 7.3 fold after 120 min incubation compared to the spontaneous release in the control incubation. In this condition, biflavonoids (10 uM) such as ochnaflavone, ginkgetin and isoginkgetin, showed inhibition of arachidonate release from macrophages activated by PMA (32.5 approximately 40.0% inhibition) or A23187 (21.7 approximately 41.7% inhibition). Amentoflavone showed protection only against PMA-induced arachidonate release, while apigenin, a monomer of these biflavonoids, did not show the significant inhibition up to 10 uM. Staurosporin (1 uM), a protein kinase C inhibitor, showed an inhibitory effect only against PMA-induced arachidonate release (96.8% inhibition). Inhibition of arachidonate release from the activated macrophages may contribute to an anti-inflammatory potential of biflavonoidsin vivo.

  10. Stimulation of murine peritoneal macrophage functions by neuropeptide Y and peptide YY. Involvement of protein kinase C.

    PubMed Central

    De la Fuente, M; Bernaez, I; Del Rio, M; Hernanz, A

    1993-01-01

    The peptides neuropeptide Y (NPY) and peptide YY (PYY) at concentrations from 10(-12) M to 10(-8) M have been shown in this study to stimulate significantly, in vitro, several functions of resting peritoneal macrophages from BALB/c mice: adherence to substrate, chemotaxis, ingestion of inert particles (latex beads) and foreign cells (Candida albicans), and production of superoxide anion measured by nitroblue tetrazolium reduction. A dose-response relationship was observed, with a maximal stimulation of the macrophage functions studied at 10(-10) M. These effects seem to be produced by specific receptors for the neuropeptides studied in peritoneal macrophages. Whereas the two peptides induced no change of intracellular cyclic AMP, they caused a significant stimulation of protein kinase C (PKC) in murine macrophages. These results suggest that NPY and PYY produce their effects on macrophage function through PKC activation. PMID:8262554

  11. Effects of selenizing angelica polysaccharide and selenizing garlic polysaccharide on immune function of murine peritoneal macrophage.

    PubMed

    Gao, Zhenzhen; Liu, Kuanhui; Tian, Weijun; Wang, Hongchao; Liu, Zhenguang; Li, Youying; Li, Entao; Liu, Cui; Li, Xiuping; Hou, Ranran; Yue, Chanjuan; Wang, Deyun; Hu, Yuanliang

    2015-07-01

    The effects of two selenizing polysaccharides (sCAP2 and sGPS6) on immune function of murine peritoneal macrophages taking two non-selenizing polysaccharides (CAP and GPS) and modifier Na2SeO3 as control. In vitro test, the changes of selenizing polysaccharides, non-selenizing polysaccharides and Na2SeO3 on murine macrophages function were evaluated by phagocytosis and nitric oxide (NO) secretion tests. In vivo test, the mice were injected respectively with 0.2, 0.4 and 0.6 mg of sCAP2, sGPS6, CAP and GPS, or Na2SeO3 80 μg or normal saline 0.4 mL. The peritoneal macrophages were collected and cultured to determine the contents of TNF-α, IL-6 and IL-10 in supernatants by enzyme-linked immunosorbent assay. The results showed that sCAP2 and sGPS6 could significantly promote the phagocytosis and secretion of NO and three cytokines of macrophages in comparison with CAP and GPS. sCAP2 possessed the strongest activity. This indicates that selenylation modification can further improve the immune-enhancing activity of polysaccharide, and sCAP2 could be as a new immunopotentiator.

  12. Phorbal esters and calcium ionophore can prime murine peritoneal macrophages for tumor cell destruction

    SciTech Connect

    Somers, S.D.; Weiel, J.E.; Hamilton, T.A.; Adams, D.O.

    1986-06-01

    Murine macrophages from sites of inflammation develop toward tumoricidal competence by exposure to a macrophage-activating factor such as interferon-..gamma.. (IFN-..gamma..). To explore the biochemical transductional events initiated by IFN-..gamma.., peritoneal macrophages from C57BL/6J mice elicited by various sterile irritants were treated in vitro with two pharmacologic agents that mimic the action of certain second messengers. Phorbol myristate acetate (PMA) and the ionophore A23187 cooperatively reproduced the ability of IFN-..gamma.. to prime macrophages for tumoricidal function. Neither agent alone was able to prime macrophages. The two agents acted on the macrophages, and target susceptibility to kill was not altered by PMA and A23187. Only active phorbol esters, which are known to bind and stimulate protein kinase C, were able to cooperate with A23187 to induce priming. A cell-permeable synthetic diacylglycerol (sn-1,2-dioctanoyl glycerol) could also prime for cytolysis. In the presence of PMA, A23187, and EGTA, addition of Ca/sup + +/ was sufficient for priming, whereas the addition of Mg/sup + +/ was much less efficient. Priming by IFN-..gamma.., however, was not blocked by EGTA. Efflux of /sup 45/Ca/sup + +/ from preloaded cells was significantly increased by A23187 and by IFN-..gamma... Quin-2/AM, an intracellular chelator of Ca/sup + +/, blocked priming by IFN-..gamma...

  13. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites

    PubMed Central

    Irvine, Katharine M.; Banh, Xuan; Gadd, Victoria L.; Wojcik, Kyle K.; Ariffin, Juliana K.; Jose, Sara; Lukowski, Samuel; Baillie, Gregory J.; Sweet, Matthew J.; Powell, Elizabeth E.

    2016-01-01

    Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients. PMID:27699269

  14. CRIg-expressing peritoneal macrophages are associated with disease severity in patients with cirrhosis and ascites

    PubMed Central

    Irvine, Katharine M.; Banh, Xuan; Gadd, Victoria L.; Wojcik, Kyle K.; Ariffin, Juliana K.; Jose, Sara; Lukowski, Samuel; Baillie, Gregory J.; Sweet, Matthew J.; Powell, Elizabeth E.

    2016-01-01

    Infections are an important cause of morbidity and mortality in patients with decompensated cirrhosis and ascites. Hypothesizing that innate immune dysfunction contributes to susceptibility to infection, we assessed ascitic fluid macrophage phenotype and function. The expression of complement receptor of the immunoglobulin superfamily (CRIg) and CCR2 defined two phenotypically and functionally distinct peritoneal macrophage subpopulations. The proportion of CRIghi macrophages differed between patients and in the same patient over time, and a high proportion of CRIghi macrophages was associated with reduced disease severity (model for end-stage liver disease) score. As compared with CRIglo macrophages, CRIghi macrophages were highly phagocytic and displayed enhanced antimicrobial effector activity. Transcriptional profiling by RNA sequencing and comparison with human macrophage and murine peritoneal macrophage expression signatures highlighted similarities among CRIghi cells, human macrophages, and mouse F4/80hi resident peritoneal macrophages and among CRIglo macrophages, human monocytes, and mouse F4/80lo monocyte-derived peritoneal macrophages. These data suggest that CRIghi and CRIglo macrophages may represent a tissue-resident population and a monocyte-derived population, respectively. In conclusion, ascites fluid macrophage subset distribution and phagocytic capacity is highly variable among patients with chronic liver disease. Regulating the numbers and/or functions of these macrophage populations could provide therapeutic opportunities in cirrhotic patients.

  15. Macrophage autophagy protects against liver fibrosis in mice

    PubMed Central

    Lodder, Jasper; Denaës, Timothé; Chobert, Marie-Noële; Wan, JingHong; El-Benna, Jamel; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2015-01-01

    Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis. PMID:26061908

  16. Macrophage autophagy protects against liver fibrosis in mice.

    PubMed

    Lodder, Jasper; Denaës, Timothé; Chobert, Marie-Noële; Wan, JingHong; El-Benna, Jamel; Pawlotsky, Jean-Michel; Lotersztajn, Sophie; Teixeira-Clerc, Fatima

    2015-01-01

    Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5(fl/fl) LysM-Cre mice, referred to as atg5(-/-)) and their wild-type (Atg5(fl/fl), referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5(-/-) mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5(-/-) mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5(-/-) mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5(-/-) mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5(-/-) macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5(-/-) mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.

  17. Effects of protein-energy malnutrition on NF-kappaB signalling in murine peritoneal macrophages.

    PubMed

    Fock, Ricardo Ambrósio; Rogero, Marcelo Macedo; Vinolo, Marco Aurélio Ramirez; Curi, Rui; Borges, Maria Carolina; Borelli, Primavera

    2010-04-01

    Protein-energy malnutrition (PEM) is an important public health problem affecting millions of people worldwide. PEM decreases resistance to infection, impairing a number of physiological processes. In unstimulated cells, NF-kappaB is kept from binding to its consensus sequence by the inhibitor I kappaB alpha, which retains NF-kappaB in the cytoplasm. Upon various signals, such as lipopolysaccharide (LPS), I kappaB alpha is rapidly degraded and NF-kappaB is induced to translocate into the nucleus, where it activates expression of various genes that participate in the inflammatory response, including those involved in the synthesis of TNF-alpha. TRAF-6 is a cytoplasmic adapter protein that links the stimulatory signal from Toll like receptor-4 to NF-kappaB. The aim of this study was to evaluate the effect of malnutrition on induction of TNF-alpha by LPS in murine peritoneal macrophages. We evaluated peritoneal cellularity, the expression of MyD88, TRAF-6, IKK, I kappaB alpha and NF-kappaB, NF-kappaB activation and TNF-alpha mRNA and protein synthesis in macrophages. Two-month-old male BALB/C mice were submitted to PEM with a low-protein diet that contained 2% protein, compared to 12% protein in the control diet. When the experimental group had lost about 20% of the original body weight, it was used in the subsequent experiments. Malnourished animals presented anemia, leucopenia and severe reduction in peritoneal cavity cellularity. TNF-alpha mRNA and protein levels of macrophages stimulated with LPS were significantly lower in malnourished animals. PEM also decreased TRAF-6 expression and NF-kappaB activation after LPS stimulation. These results led us to conclude that PEM changes NF-kB signalling pathway in macrophages to LPS stimulus.

  18. The response of peritoneal macrophages after implantation of several ceramics as measured by the change of ectoenzyme activity.

    PubMed

    Otto, B; Ogilvie, A

    1998-06-01

    The bioactive calcium phosphate ceramics with various calcium: phosphorus ratios: Ca/P = 1.67 (hydroxyapatite, HA), Ca/P = 1.6 and Ca/P = 1.5 (tricalcium phosphate, beta-TCP), the bioinert aluminium oxide ceramic (Al2O3) and the toxic calcium oxide ceramic (CaO) have been investigated with respect to their ability to activate peritoneal macrophages of NMRI-mice and with respect to their influence on the extracellular nucleotide degradation of these macrophages. Two weeks after the intraperitoneal injection of a suspension of ceramic particles in an isotone salt solution (phosphate-buffered saline = PBS), we observed that the peritoneal macrophages were only slightly activated into the responsive state, independent of the type of ceramic. 5'Nucleotidase (5'N) ectoenzyme hydrolyses adenosine monophosphate (AMP) and a decrease of its activity is a general biochemical marker of activated macrophages. This ectoenzyme activity was slightly reduced after ceramic implantation. The lacking rise of the extracellular diadenosine tetraphosphate (Ap4A)-catabolism by the macrophage ectoenzyme alkaline phosphodiesterase I (APD) demonstrated that the peritoneal macrophages did not completely reach the responsive state. After the implantation of calcium phosphate ceramics the extracellular adenosine triphosphate (ATP)-reduction was slightly diminished. After the implantation of tricalcium phosphate ceramic about 30% more peritoneal exsudate cells (PEC) were obtained from the peritoneal cavity than after injections of pure PBS (used as non-inflammatory control). Similar to the phenomena following the injection of thioglycollate (Tg, inflammation producing control agent) a slightly but not significantly increased proportion of pseudopodia-building cells was observed after the implantation of the ceramic with Ca/P = 1.6.

  19. Estradiol Is a Critical Mediator of Macrophage-Nerve Cross Talk in Peritoneal Endometriosis

    PubMed Central

    Greaves, Erin; Temp, Julia; Esnal-Zufiurre, Arantza; Mechsner, Sylvia; Horne, Andrew W.; Saunders, Philippa T.K.

    2016-01-01

    Endometriosis occurs in approximately 10% of women and is associated with persistent pelvic pain. It is defined by the presence of endometrial tissue (lesions) outside the uterus, most commonly on the peritoneum. Peripheral neuroinflammation, a process characterized by the infiltration of nerve fibers and macrophages into lesions, plays a pivotal role in endometriosis-associated pain. Our objective was to determine the role of estradiol (E2) in regulating the interaction between macrophages and nerves in peritoneal endometriosis. By using human tissues and a mouse model of endometriosis, we demonstrate that macrophages in lesions recovered from women and mice are immunopositive for estrogen receptor β, with up to 20% being estrogen receptor α positive. In mice, treatment with E2 increased the number of macrophages in lesions as well as concentrations of mRNAs encoded by Csf1, Nt3, and the tyrosine kinase neurotrophin receptor, TrkB. By using in vitro models, we determined that the treatment of rat dorsal root ganglia neurons with E2 increased mRNA concentrations of the chemokine C-C motif ligand 2 that stimulated migration of colony-stimulating factor 1–differentiated macrophages. Conversely, incubation of colony-stimulating factor 1 macrophages with E2 increased concentrations of brain-derived neurotrophic factor and neurotrophin 3, which stimulated neurite outgrowth from ganglia explants. In summary, we demonstrate a key role for E2 in stimulating macrophage-nerve interactions, providing novel evidence that endometriosis is an estrogen-dependent neuroinflammatory disorder. PMID:26073038

  20. A potential role of the NOD genetic background in mouse peritoneal macrophages for the development of primary effusion lymphoma.

    PubMed

    Goto, Hiroki; Kariya, Ryusho; Matsuda, Kouki; Kudo, Eriko; Katano, Harutaka; Okada, Seiji

    2016-03-01

    Severe immunodeficient mice have become invaluable tools in human stem cell and tumor research. In this study, we compared the phagocytic activity of peritoneal macrophages against primary effusion lymphoma (PEL) among Rag-2/Jak3 double-deficient (Rag-2(-/-)Jak3(-/-)) mice with NOD and non-NOD (Balb/c and C57/BL6). We also evaluated lymphomatous effusion and infiltration in a PEL xenograft mouse model using these severe immunodeficient mice. In the phagocytic assay, peritoneal macrophages in the NOD background phagocytosed CFSE-labeled BCBL-1, a PEL cell line, less efficiently than those in the non-NOD background. BCBL-1 cells were successfully engrafted into both the NOD background and non-NOD background; however, the volume of ascites of the NOD background was significantly higher than that of the non-NOD background. Moreover, the organ invasion of PEL cells was suppressed in non-NOD background mice. Thus, the NOD genetic background is considered to contribute to more lymphomatous effusion and the infiltration of PEL cells than a non-NOD background. Our results showed that the NOD background allowed more lymphomatous effusion and infiltration than other backgrounds and peritoneal macrophages played a critical role in preventing the growth and infiltration of PEL cells. PMID:26859781

  1. Fish oil dietary supplementation reduces Ia expression in rat and mouse peritoneal macrophages.

    PubMed

    Mosquera, J; Rodríguez-Iturbe, B; Parra, G

    1990-07-01

    Preliminary studies suggest that administration of fish oil fatty acids may be beneficial in several immunological diseases; therefore, we studied the effect of fish oil dietary supplementation on the expression of Ia in stimulated murine peritoneal macrophages. Rats (n = 19) and mice (n = 27) on standard rodent feeding were separated in experimental (E) and control (C) groups that received fish oil or saline solution, respectively, daily for 4 weeks by esophageal gavage. Cholesterol serum levels were significantly lowered by fish oil (E vs C, P less than 0.01). E and C groups were injected intraperitoneally with Listeria monocytogenes (LM) and peritoneal cells were harvested 4 and 7 days after infection. Decreased expression of Ia induced by LM was found in rats (C = 49.68 +/- 5.09%, E = 16.95 +/- 4.3%, P less than 0.01) and mice (C = 47.38 +/- 7.63%, E = 26.66 +/- 1.92%, P less than 0.01). Animals with a more pronounced depression of serum cholesterol (reduction of 44.04 +/- 1.52% of baseline levels) had more depression of Ia expression (6.47 +/- 1.22%, P less than 0.001 vs control). Reduction of Ia expression was not related to PGE2 production by peritoneal cells. Reduction of Ia expression by fish oil could induce down-regulation of antigen presentation and alloreactivity.

  2. Group V Secretory Phospholipase A2 Translocates to the Phagosome after Zymosan Stimulation of Mouse Peritoneal Macrophages and Regulates Phagocytosis*

    PubMed Central

    Balestrieri, Barbara; Hsu, Victor W.; Gilbert, Huiya; Leslie, Christina C.; Han, Won K.; Bonventre, Joseph V.; Arm, Jonathan P.

    2006-01-01

    We have previously reported that group V secretory phospholipase A2 (sPLA2) amplifies the action of cytosolic phospholipase A2 (cPLA2) α in regulating eicosanoid biosynthesis by mouse peritoneal macrophages stimulated with zymosan (Satake, Y., Diaz, B. L., Balestrieri, B., Lam, B. K., Kanaoka, Y., Grusby, M. J., and Arm, J. P. (2004) J. Biol. Chem. 279, 16488–16494). To further understand the role of group V sPLA2, we studied its localization in resting mouse peritoneal macrophages before and after stimulation with zymosan and the effect of deletion of the gene encoding group V sPLA2 on phagocytosis of zymosan. We report that group V sPLA2 is present in the Golgi apparatus and recycling endosome in the juxtanuclear region of resting peritoneal macrophages. Upon ingestion of zymosan by mouse peritoneal macrophages, group V sPLA2 is recruited to the phagosome. There it co-localizes with cPLA2α, 5-lipoxygenase, 5-lipoxygenase-activating protein, and leukotriene C4 synthase. Using immunostaining for the cysteinyl leukotrienes in carbodiimide-fixed cells, we show, for the first time, that the phagosome is a site of cysteinyl leukotriene formation. Furthermore, peritoneal macrophages from group V sPLA2-null mice demonstrated a >50% attenuation in phagocytosis of zymosan particles, which was restored by adenoviral expression of group V sPLA2 but not group IIA sPLA2. These data demonstrate that group V sPLA2 contributes to the innate immune response both through regulation of eicosanoid generation in response to a phagocytic stimulus and also as a component of the phagocytic machinery. PMID:16407308

  3. Adoptive transfer of macrophages from adult mice reduces mortality in mice infected with human enterovirus 71.

    PubMed

    Liu, Jiangning; Li, Xiaoying; Fan, Xiaoxu; Ma, Chunmei; Qin, Chuan; Zhang, Lianfeng

    2013-02-01

    Human enterovirus 71 (EV71) causes hand, foot and mouth disease in children under 6 years of age, and the neurological complications of this virus can lead to death. Until now, no vaccines or drugs have been available for the clinical control of this epidemic. Macrophages can engulf pathogens and mediate a series of host immune responses that play a role in the defence against infectious diseases. Using immunohistochemistry, we observed the localizations of virus in muscle tissues of EV71-infected mice. The macrophages isolated from the adult mice could kill the virus gradually in vitro, as shown using quantitative real-time PCR (qRT-PCR) and virus titration. Co-localisation of lysosomes and virus within macrophages suggested that the lysosomes were possibly responsible for the phagocytosis of EV71. Activation of the macrophages in the peritoneal cavity of mice four days pre-infection reduced the mortality of mice upon lethal EV71 infection. The adoptive transfer of macrophages from adult mice inhibited virus replication in the muscle tissues of infected mice, and this was followed by a relief of symptoms and a significant reduction of mortality, which suggested that the adoptive transfer of macrophages from adult humans represents a potential strategy to treat EV71-infected patients.

  4. Intrinsic resistance of feline peritoneal macrophages to coronavirus infection correlates with in vivo virulence.

    PubMed

    Stoddart, C A; Scott, F W

    1989-01-01

    Cats infected with virulent feline coronavirus strains develop feline infectious peritonitis, an invariably fatal, immunologically mediated disease; avirulent strains cause either clinically inapparent infection or mild enteritis. Four virulent coronavirus isolates and five avirulent isolates were assessed by immunofluorescence and virus titration for their ability to infect and replicate in feline peritoneal macrophages in vitro. The avirulent coronaviruses infected fewer macrophages, produced lower virus titers, were less able to sustain viral replication, and spread less efficiently to other susceptible macrophages than the virulent coronaviruses. Thus, the intrinsic resistance of feline macrophages may play a pivotal role in the outcome of coronavirus infection in vivo.

  5. Effect of lipopolysaccharide on protein accumulation by murine peritoneal macrophages: the correlation to activation for macrophage tumoricidal function

    SciTech Connect

    Tannenbaum, C.S.

    1987-01-01

    The protein synthetic patterns of tumoricidal murine peritoneal macrophage populations have been compared to those of non-tumoricidal populations utilizing two dimensional polyacrylamide gel electrophoresis (2D PAGE) of (/sup 35/S)-methionine-labeled proteins. While the protein synthetic patterns exhibited by resident, inflammatory and activated macrophages had numerous common features which distinguished them from the other normal non-macrophage cell types examined, unique proteins also distinguished each macrophage population from the others. Peritoneal macrophages elicited by treatment with heat killed Propionibacterium acnes, the live, attenuated Mycobacterium bovis strain BCG, Listeria monocytogenes and the protozoan flagellate Trypanosoma rhodesiense, all exhibited tumoricidal activity in 16h or 72h functional assays, and shared a common protein synthetic profile which differentiated them from the synthetic patterns characteristic of the non-tumoricidal resident and inflammatory macrophages.

  6. In Vitro Study of Cytophysiological Characteristics of Multinuclear Macrophages from Intact and BCG-Infected Mice.

    PubMed

    Il'in, D A; Arkhipov, S A; Shkurupy, V A

    2016-03-01

    Peritoneal macrophages were isolated from intact and BCG-infected BALB/c mice and explanted in vitro. Multinuclear macrophages formed in these cultures differed by the number of nuclei, expression of apoptosis inductors and regulators (TNF-α, p53 protein, caspase 3, and Bcl-2 protein), and cytophysiological characteristics (phagocytic activity, ROS generation, and antimycobacterial properties). Our results indicate that the formation of multinuclear macrophages is accompanied by induction of apoptosis (p53 signaling pathway) and appearance of multinuclear macrophage-derived cells characterized by high phagocytic and antimycobacterial activity. PMID:27021088

  7. Screening of biomedical polymer biocompatibility in NMRI-mice peritoneal cavity: a comparison between ultra-high-molecular-weight polyethylene (UHMW-PE) and polyethyleneterephthalate (PET).

    PubMed

    Dahmen, K G; Maurin, N; Richter, H A; Mittermayer, C

    1997-05-01

    The peritoneal resident cell population is influenced by various inflammatory and immunogenic stimuli. The influence of intraperitoneal application of polyethyleneterephthalate (PET) (group A) and ultra-high-molecular-weight polyethylene (UHMW-PE) (group B) powders on peritoneal cell count and macrophage activity was investigated. Powders were tested to mimic wear particles from solid implant devices as these particles often cause chronic granulomatous inflammation. The results were compared with the inflammatory response following an abdominal midline incision (group C) and untreated animals (group D). On days 1, 7, 14 and 30 peritoneal cells were quantified and the number of active macrophages was assessed. Groups A and C mice showed a significant loss of macrophages in the peritoneal lavage at day 1 but this returned to normal values (group D) on day 7. In contrast, group B animals remained at low peritoneal cell counts but showed the highest number of active macrophages. Only in this latter group was adhesion formation and granulomatous clustering of polymer powder observed. Applying the parameters macrophage count and the number of active macrophages it can be concluded that PET elicits a weaker inflammatory reaction than UHMW-PE in mice peritoneal cavity. Thus this animal model may be used as a screening test for biomedical materials, especially their wear products. PMID:15348744

  8. Enhanced resistance against Listeria monocytogenes at an early phase of primary infection in pregnant mice: activation of macrophages during pregnancy.

    PubMed Central

    Watanabe, Y; Mitsuyama, M; Sano, M; Nakano, H; Nomoto, K

    1986-01-01

    We investigated the pregnancy-induced changes in macrophage activity which are important in the expression of host defense against infections. Several macrophage functions were examined by using Listeria monocytogenes. In pregnant mice, prolonged survival and enhanced in vivo elimination of bacteria were observed in the early phase of primary infection. Functions of peritoneal macrophages, including in vitro phagocytosis intracellular killing, glucose consumption, generation of superoxide anion, and intracellular beta-glucuronidase activity were shown to be enhanced in pregnant mice. These findings indicate that pregnancy enhances macrophage functions qualitatively. Possible mechanisms for this enhancement and the significance of macrophage activation for pregnant hosts are discussed. PMID:3011673

  9. Aging Enhances the Production of Reactive Oxygen Species and Bactericidal Activity in Peritoneal Macrophages by Upregulating Classical Activation Pathways

    SciTech Connect

    Smallwood, Heather S.; López-Ferrer, Daniel; Squier, Thomas C.

    2011-10-07

    Maintenance of macrophages in their basal state and their rapid activation in response to pathogen detection are central to the innate immune system, acting to limit nonspecific oxidative damage and promote pathogen killing following infection. To identify possible age-related alterations in macrophage function, we have assayed the function of peritoneal macrophages from young (3–4 months) and aged (14–15 months) Balb/c mice. In agreement with prior suggestions, we observe age-dependent increases in the extent of recruitment of macrophages into the peritoneum, as well as ex vivo functional changes involving enhanced nitric oxide production under resting conditions that contribute to a reduction in the time needed for full activation of senescent macrophages following exposure to lipopolysaccharides (LPS). Further, we observe enhanced bactericidal activity following Salmonella uptake by macrophages isolated from aged Balb/c mice in comparison with those isolated from young animals. Pathways responsible for observed phenotypic changes were interrogated using tandem mass spectrometry, which identified age-dependent increases in levels of proteins linked to immune cell pathways under basal conditions and following LPS activation. Immune pathways upregulated in macrophages isolated from aged mice include proteins critical to the formation of the immunoproteasome. Detection of these latter proteins is dramatically enhanced following LPS exposure for macrophages isolated from aged animals; in comparison, the identification of immunoproteasome subunits is insensitive to LPS exposure for macrophages isolated from young animals. Consistent with observed global changes in the proteome, quantitative proteomic measurements indicate that there are age-dependent abundance changes involving specific proteins linked to immune cell function under basal conditions. LPS exposure selectively increases the levels of many proteins involved in immune cell function in aged Balb/c mice

  10. Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro.

    PubMed

    Kar Mahapatra, Santanu; Chakraborty, Subhankari Prasad; Majumdar, Subrata; Bag, Braja Gopal; Roy, Somenath

    2009-11-25

    The present work is aimed at evaluating the protective effect of eugenol against in vitro nicotine-induced toxicity in murine peritoneal macrophages, compared with N-acetylcysteine. Eugenol was isolated from Ocimum gratissimum and characterized by HPLC, FTIR, (1)H NMR. To establish most effective protective support, we used five different concentrations of eugenol (1, 5, 10, 15, and 20microg/ml) and N-acetylcysteine (0.25, 0.5, 1.0, 2.0, and 5.0microg/ml) against 10mM nicotine in mice peritoneal macrophages. A dose-dependent protective effect was observed with all doses of eugenol and N-acetylcysteine, as evidenced by decreased level of superoxide anion generation and malondialdehyde, and also increased level of reduced glutathione, and superoxide dismutase activity. Moreover, maximum protection was observed at the concentration of 15.0microg/ml eugenol (0.09nM) and 1.0microg/ml N-acetylcysteine (0.006nM). Further, eugenol (15.0microg/ml) and N-acetylcysteine (1.0microg/ml) were tested against nicotine (10mM) toxicity by analyzing the radical generation, lipid, protein, DNA damage, and endogenous antioxidant status. There was a significant increase in the level of radical generation, NADPH oxidase and myeloperoxidase activity, lipid, protein, DNA damage and oxidized glutathione level in nicotine-treated group, which were significantly reduced by eugenol and N-acetylcysteine supplementation. Antioxidant status was significantly depleted in the nicotine-treated group, which was effectively restored by eugenol and N-acetylcysteine supplementation. The protection by eugenol against nicotine toxicity was merely equal effective to that of N-acetylcysteine. These findings suggest the potential use and benefit of eugenol isolated from O. gratissimum as a modulator of nicotine-induced cellular damage and it may be used as an immunomodulatory drug against nicotine toxicity.

  11. Eugenol protects nicotine-induced superoxide mediated oxidative damage in murine peritoneal macrophages in vitro.

    PubMed

    Kar Mahapatra, Santanu; Chakraborty, Subhankari Prasad; Majumdar, Subrata; Bag, Braja Gopal; Roy, Somenath

    2009-11-25

    The present work is aimed at evaluating the protective effect of eugenol against in vitro nicotine-induced toxicity in murine peritoneal macrophages, compared with N-acetylcysteine. Eugenol was isolated from Ocimum gratissimum and characterized by HPLC, FTIR, (1)H NMR. To establish most effective protective support, we used five different concentrations of eugenol (1, 5, 10, 15, and 20microg/ml) and N-acetylcysteine (0.25, 0.5, 1.0, 2.0, and 5.0microg/ml) against 10mM nicotine in mice peritoneal macrophages. A dose-dependent protective effect was observed with all doses of eugenol and N-acetylcysteine, as evidenced by decreased level of superoxide anion generation and malondialdehyde, and also increased level of reduced glutathione, and superoxide dismutase activity. Moreover, maximum protection was observed at the concentration of 15.0microg/ml eugenol (0.09nM) and 1.0microg/ml N-acetylcysteine (0.006nM). Further, eugenol (15.0microg/ml) and N-acetylcysteine (1.0microg/ml) were tested against nicotine (10mM) toxicity by analyzing the radical generation, lipid, protein, DNA damage, and endogenous antioxidant status. There was a significant increase in the level of radical generation, NADPH oxidase and myeloperoxidase activity, lipid, protein, DNA damage and oxidized glutathione level in nicotine-treated group, which were significantly reduced by eugenol and N-acetylcysteine supplementation. Antioxidant status was significantly depleted in the nicotine-treated group, which was effectively restored by eugenol and N-acetylcysteine supplementation. The protection by eugenol against nicotine toxicity was merely equal effective to that of N-acetylcysteine. These findings suggest the potential use and benefit of eugenol isolated from O. gratissimum as a modulator of nicotine-induced cellular damage and it may be used as an immunomodulatory drug against nicotine toxicity. PMID:19769960

  12. Methanol extract of Ocimum gratissimum protects murine peritoneal macrophages from nicotine toxicity by decreasing free radical generation, lipid and protein damage and enhances antioxidant protection

    PubMed Central

    Mahapatra, Santanu Kar; Chakraborty, Subhankari Prasad; Das, Subhasis

    2009-01-01

    In the present study, methanol extract of Ocimum gratissimum Linn (ME-Og) was tested against nicotine-induced murine peritoneal macrophage in vitro. Phytochemical analysis of ME-Og shown high amount of flavonoid and phenolic compound present in it. The cytotoxic effect of ME-Og was studied in murine peritoneal macrophages at different concentrations (0.1 to 100 µg/ml) using the 3-(4, 5-dimethylthiazol-2-yl)-2, 5 diphenyltetrazolium bromide (MTT) method. To establish the protective role of ME-Og against nicotine toxicity, peritoneal macrophages from mice were treated with nicotine (10 mM), nicotine + ME-Og (1 to 25 µg/ml) for 12 h in culture media. The significantly (p < 0.05) increased super oxide anion generation, reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity, myeloperoxidase (MPO) activity, lipid peroxidation, protein carbonyls, oxidized glutathione levels were observed in nicotine-treated group as compared to control group; those were significantly (p < 0.05) reduced in ME-Og supplemented groups in concentration dependent manner. More over, significantly (p < 0.05) reduced antioxidant status due to nicotine exposure was effectively ameliorated by ME-Og supplementation in murine peritoneal macrophages. Among the different concentration of ME-Og, maximum protective effect was observed by 25 µg/ml, which does not produce significant cell cytotoxicity in murine peritoneal macrophages. These findings suggest the potential use and beneficial role of O. gratissimum as a modulator of nicotine-induced free radical generation, lipid-protein damage and antioxidant status in important immune cell, peritoneal macrophages. PMID:20716908

  13. Different ratios of eicosapentaenoic and docosahexaenoic omega-3 fatty acids in commercial fish oils differentially alter pro-inflammatory cytokines in peritoneal macrophages from C57BL/6 female mice.

    PubMed

    Bhattacharya, Arunabh; Sun, Dongxu; Rahman, Mizanur; Fernandes, Gabriel

    2007-01-01

    The use of fish oil (FO) as a dietary supplement to prevent or reduce the severity of cardiovascular diseases and autoimmune disorders such as rheumatoid arthritis is receiving much attention. Several recent reports indicate that eating fish often or the use of small doses of FO capsules appears to have benefits against cardiovascular diseases. We have reported in the past that diets enriched with FO protect against renal diseases and prolong the life span of autoimmune-prone mice compared to corn oil (CO) diets. However, the optimum ratio of eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) in commercially available FOs to reduce the production of various pro-inflammatory cytokines has not been well established. We, therefore, obtained deodorized FO from three sources containing different EPA/DHA contents, fed them to C57BL/6 mice for 8 weeks in a 10% (vol/wt) diet (oil A, 11/10; oil B, 14/9; oil C, 23/14) and compared them with (10%) CO-fed mice as control. TNF-alpha, IL-6 and IL-1beta were measured by enzyme-linked immunosorbent assay in thioglycollate-induced macrophages, 8 and 24 h after lipopolysaccharide treatment. The results showed a significant decrease in TNF-alpha after only 8 h in oil C. After 24 h, TNF-alpha, IL-6 and IL-1beta levels decreased only in mice fed oil C, although nonsignificant decreases were seen in mice fed oil A compared to mice fed CO. The antioxidant enzymes, catalase and glutathione transferase, were higher in kidneys of mice fed oil C compared to mice fed CO. The study suggests that anti-inflammatory activity may vary among different sources of FO due to variations in EPA/DHA content.

  14. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  15. Anti-Inflammatory Effects of Hyptis albida Chloroform Extract on Lipopolysaccharide-Stimulated Peritoneal Macrophages.

    PubMed

    Sánchez Miranda, Elizabeth; Pérez Ramos, Julia; Fresán Orozco, Cristina; Zavala Sánchez, Miguel Angel; Pérez Gutiérrez, Salud

    2013-01-01

    We examined the effects of a chloroform extract of Hyptis albida (CHA) on inflammatory responses in mouse lipopolysaccharide (LPS) induced peritoneal macrophages. Our findings indicate that CHA inhibits LPS-induced production of tumor necrosis factor (TNF- α ) and interleukin-6 (IL-6). During the process, levels of cyclooxygenase-2 (COX-2), nitric oxide synthase (iNOS), and nitric oxide (NO) increased in the mouse peritoneal macrophages; however, the extract suppressed them significantly. These results provide novel insights into the anti-inflammatory actions of CHA and support its potential use in the treatment of inflammatory diseases. PMID:23970974

  16. Differences in peroxidase localization of rabbit peritoneal macrophages after surface adherence.

    PubMed Central

    Bodel, P. T.; Nichols, B. A.; Bainton, D. F.

    1978-01-01

    Unlike resident peritoneal macrophages, which contain peroxidase in the rough endoplasmic reticulum (RER) and perinuclear cisternae (PN), macrophages elicited into the rabbit peritoneal cavity by various stimulants lack the enzyme. Since we had previously found that such peroxidase reactivity rapidly appears in the RER and PN of blood monocytes after surface adherence in vitro, we wondered whether the enzyme could be similarly produced in elicited macrophages by adherence. Cells from peritoneal exudates (96 hours after endotoxin injection) were harvested, suspended in culture medium, and allowed to adhere to fibrin-coated or plastic surfaces. Following culture for various intervals, they were fixed, incubated for peroxidase, and examined by electron microscopy. We observed that these elicited cells, which initially contained no cytochemically detectable peroxidase, acquired peroxidatic activity in the RER and PN within 2 hours after adherence in culture. Thus macrophages, like blood monocytes, may rapidly acquire peroxidase reactivity as a consequence of plasma membrane: external surface interaction. In view of this finding, it would seem unwise to use peroxidase localization as the basis for advocating the existence of two separate lines of peritoneal macrophages, as has been proposed by previous investigators. Images Figure 2 Figure 3 Figure 1 PMID:645814

  17. Regulation of interleukin-1 synthesis by histamine produced by mouse peritoneal macrophages per se.

    PubMed Central

    Okamoto, H; Nakano, K

    1990-01-01

    The response of mouse peritoneal macrophages to Escherichia coli lipopolysaccharide (LPS) resulted in induction of histidine decarboxylase (HDC) and, consequently, of histamine production. Concanavalin A had no effect on the reactions. Alpha-fluoromethylhistidine, a suicide inhibitor of HDC, attenuated, in a dose-dependent manner, both spontaneous and LPS-stimulated IL-1 synthesis by macrophages. IL-1 production was significantly blocked by either an H1 anti-histamine, diphenhydramine, or H2 anti-histamine ranitidine, in the absence of any exogenous histamine. Addition of exogenous histamine accentuated the IL-1 production by macrophages as a function of its dose. These results suggest that IL-1 production by mouse peritoneal macrophages is regulated by histamine synthesized in the system per se and that the effect of histamine is dependent on both H1 and H2 histamine receptors located on the surface of the cells. PMID:2312155

  18. Macrophages as effector cells of protective immunity in murine schistosomiasis: macrophage activation in mice vaccinated with radiation-attenuated cercariae.

    PubMed Central

    James, S L; Natovitz, P C; Farrar, W L; Leonard, E J

    1984-01-01

    Cell-mediated immune responses contributing to macrophage activation were compared in mice that demonstrated partial resistance to challenge Schistosoma mansoni infection as a result of vaccination with radiation-attenuated cercariae or of ongoing low-grade primary infection. Vaccinated mice developed significant delayed hypersensitivity reactions to soluble schistosome antigens in vivo. Splenocytes from vaccinated animals responded to in vitro culture with various specific antigens (soluble adult worm extract, living or disrupted schistosomula) by proliferation and production of macrophage-activating lymphokines as did lymphocytes from S. mansoni-infected animals. Macrophage-activating factors produced by spleen cells from vaccinated mice upon specific antigen stimulation eluted as a single peak on Sephadex G-100 with a molecular weight of approximately 50,000 and contained gamma interferon activity. Moreover, peritoneal macrophages with larvicidal and tumoricidal activity were recovered from vaccinated mice after intraperitoneal challenge with soluble schistosome antigens, a procedure also observed to elicit activated macrophages in S. mansoni-infected animals. These observations demonstrate that vaccination with irradiated cercariae stimulates many of the same cellular responses observed after primary S. mansoni infection, and suggest that lymphokine-activated macrophages may participate in the effector mechanism of vaccine-induced and concomitant immunity to challenge schistosome infection. This is the first demonstration of a potential immune effector mechanism in the irradiated vaccine model. PMID:6609885

  19. The binding of rabbit IgG and its enzymatically derived fragments to homologous peritoneal macrophages.

    PubMed Central

    Ganczakowski, M; Leslie, R G

    1979-01-01

    Rabbit IgG and its Fab, Fc and pFc' fragments, prepared by papain or peptic digestion, were assayed for binding to homologous peritoneal macrophages. The binding affinity of IgG for the peritoneal macrophages (Ka = 5.9 +/- 1.6 x 10(5) L/M) was comparable to that recorded with alveolar macrophages (7.6 +/- 1.8 x 10(5) L/M, Arend & Mannik, 1973) but the number of receptor sites per peritoneal cell (4.6 +/- 2.1 x10(6)) was about four-fold greater than on the latter. Of the fragments, only Fc bound to macrophages with an affinity comparable to intact IgG; pFc' bound weakly and Fab was totally inactive. These data, taken with a recent study involving rabbit IgG and guinea-pig macrophages (Ovary, Saluk, Quijada & Lamm, 1976), indicate that the primary IgG binding site for macrophages is located in the C gamma 2 domain. PMID:437840

  20. Effects of immunomodulatory drugs on TNF-α and IL-12 production by purified epidermal langerhans cells and peritoneal macrophages

    PubMed Central

    2011-01-01

    Background Langerhans cells constitute a special subset of immature dendritic cells localized in the epidermis that play a key role in the skin's immune response. The production of cytokines is a key event in both the initiation and the regulation of immune responses, and different drugs can be used to remove or modify their production by DC and, therefore, alter immune responses in a broad spectrum of diseases, mainly in human inflammatory and autoimmune diseases. In the present study, we examined the effects of prednisone, thalidomide, cyclosporine A, and amitriptyline, drugs used in a variety of clinical conditions, on the production of TNF-α, IL-10, and IL-12 by purified epidermal Langerhans cells and peritoneal macrophages in BALB/c mice. Findings All drugs inhibited TNF-α production by Langerhans cells after 36 hours of treatment at two different concentrations, while prednisone and thalidomide decreased IL-12 secretion significantly, amitriptyline caused a less pronounced reduction and cyclosporine A had no effect. Additionally, TNF-α and IL-12 production by macrophages decreased, but IL-10 levels were unchanged after all treatments. Conclusions Our results demonstrate that these drugs modulate the immune response by regulating pro-inflammatory cytokine production by purified epidermal Langerhans cells and peritoneal macrophages, indicating that these cells are important targets for immunosuppression in various clinical settings. PMID:21276247

  1. Effects of Omega-3-Rich Harp Seal Oil on the Production of Pro-Inflammatory Cytokines in Mouse Peritoneal Macrophages.

    PubMed

    Choi, Myungwon; Ju, Jaehyun; Suh, Jae Soo; Park, Kun-Young; Kim, Kwang Hyuk

    2015-06-01

    Omega-3, a polyunsaturated fatty acid, is an essential fatty acid necessary for human health, and it protects against cardiovascular disease, inflammation, autoimmune diseases, and cancer. In the present study, we investigated the effects of omega-3-rich harp seal oil (HSO) on the production of nitric oxide (NO) and cytokines, such as tumor necrosis factor (TNF)-α, interleukin-(IL)-1β, IL-6, and IL-12/IL-23 (p40) in peritoneal macrophages of mice. The culture supernatants of murine macrophages exposed to lipopolysaccharide (LPS), HSO, or HSO+LPS were harvested to assay IL-1β, TNF-α, IL-6, and IL-12/IL-23 (p40) cytokines and NO. TNF-α, IL-1 β, and IL-12/IL-23 (p40) levels, except IL-6, were lower in the culture supernatants of mouse peritoneal macrophages exposed to LPS plus HSO than those of the groups exposed to LPS alone. These observations demonstrate that omega-3-rich harp seal oil downregulates the production of the pro-inflammatory cytokines such as IL-1β, TNF-α, and IL-12/IL-23 (p40). These results suggest that HSO could be potentially used as a preventive agent or as an adjunct in anti-inflammatory therapy, if more research results were accumulated. PMID:26175994

  2. Down-regulation of interleukin 1 production by macrophages of sarcoma-bearing mice.

    PubMed

    Moldawer, L L; Lonnroth, C; Mizel, S B; Lundholm, K G

    1987-06-15

    Peritoneal macrophages from mice bearing a transplantable methylcholanthrene-induced sarcoma produced progressively less IL 1 as tumor burden increased. The loss of activity was not explained by the production of any inhibitor of the mouse thymocyte comitogen bioassay. Immune precipitation with a polyclonal antibody confirmed the decline in IL 1 appearance. Although tumor-bearing animals lost approximately 17% of their carcass mass, the reduced production of IL 1 was not satisfactorily explained by coexistent malnutrition, since similarly depleted non-tumor-bearing mice were capable of producing IL 1. In addition to an altered IL 1 production by macrophages of tumor-bearing mice, SDS-polyacrylamide gel electrophoresis and autoradiography revealed that the pattern of secretory protein synthesis from LPS-stimulated and unstimulated peritoneal macrophages differed between tumor-bearing and control animals. Administration of LPS to tumor-bearing mice early after tumor transplantation resulted in reduced tumor growth and prevented the down-regulation of in vitro IL 1 production by peritoneal macrophages. These findings demonstrate a specific defect in IL 1 production associated with increasing tumor burden. Further studies are required to determine whether this defect in IL 1 synthesis contributes to the increased tumor growth.

  3. Role of macrophages in serum colony-stimulating factor induction by Lactobacillus casei in mice.

    PubMed Central

    Nanno, M; Shimizu, T; Mike, A; Ohwaki, M; Mutai, M

    1988-01-01

    Heat-killed Lactobacillus casei YIT9018 (LC9018), when injected intravenously into mice at a dose of 4 to 40 mg/kg, induced the production of serum colony-stimulating factor (CSF). Since this induction was observed in both C3H/HeJ and C3H/HeN mice, LC9018 was considered to act differently from lipopolysaccharide. The amount of serum CSF induced by LC9018 in nude mice and whole-body-X-ray-irradiated mice was similar to that in control mice, but the induction of serum CSF was suppressed by the previous administration of carrageenan, indicating that macrophages, but not T cells, were responsible for serum CSF induction by LC9018. To determine whether macrophages themselves produce CSF or help other cells produce CSF in response to LC9018, we prepared adherent cells from the peritoneal cavity of normal mice and examined CSF activity in their conditioned media. Peritoneal adherent cells did not produce CSF without LC9018, but when cultivated with 1 mg of LC9018 per ml, they produced CSF at the same time that serum CSF was induced after the intravenous administration of LC9018. Additionally, in vitro-induced CSF formed macrophage, granulocyte, and mixed colonies, as serum CSF did. CSF production by peritoneal adherent cells was completely inhibited by cycloheximide (50 micrograms/ml), and neither the elimination of T cells from the peritoneal adherent cells by treating them with anti-Thy-1.2 antibody plus complement nor the addition of T cells affected CSF production. These results suggest that heat-killed LC9018 induces serum CSF in mice via direct stimulation of macrophages to produce CSF de novo. PMID:3123388

  4. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages.

    PubMed

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects.

  5. The Immunomodulatory Activity of Jacaric Acid, a Conjugated Linolenic Acid Isomer, on Murine Peritoneal Macrophages

    PubMed Central

    Liu, Wai Nam; Leung, Kwok Nam

    2015-01-01

    This study aims at demonstrating the immunomodulatory property of jacaric acid, a conjugated linolenic acid (CLNA) isomer that is present in jacaranda seed oil, on murine peritoneal macrophages. Our results showed that jacaric acid exhibited no significant cytotoxicity on the thioglycollate-elicited murine peritoneal macrophages as revealed by the neutral red uptake assay, but markedly increased their cytostatic activity on the T-cell lymphoma MBL-2 cells as measured by the fluorometric CyQuant® NF Cell Proliferation Assay Kit. Flow cytometric analysis indicated that jacaric acid could enhance the endocytic activity of macrophages and elevated their intracellular production of superoxide anion. Moreover, jacaric acid-treated macrophages showed an increase in the production of nitric oxide which was accompanied by an increase in the expression level of inducible nitric oxide synthase protein. In addition, the secretion of several pro-inflammatory cytokines, including interferon-γ, interleukin-1β and tumor necrosis factor-α, was up-regulated. Collectively, our results indicated that the naturally-occurring CLNA isomer, jacaric acid, could exhibit immunomodulating activity on the murine peritoneal macrophages in vitro, suggesting that this CLNA isomer may act as an immunopotentiator which can be exploited for the treatment of some immunological disorders with minimal toxicity and fewer side effects. PMID:26629697

  6. Ingestion of yeast forms of Sporothrix schenckii by mouse peritoneal macrophages.

    PubMed Central

    Oda, L M; Kubelka, C F; Alviano, C S; Travassos, L R

    1983-01-01

    The ingestion by thioglycolate-elicited mouse peritoneal macrophages of yeast forms of two strains of Sporothrix schenckii was studied. Yeast forms opsonized with concanavalin A (ConA) were extensively phagocytized, and the phagocytic indexes depended on the concentration of ConA and apparently on the number of lectin receptors at the yeast surface as well. Neuraminidase treatment of S. schenckii increased the ingestion of unopsonized yeasts 7.7-fold. The addition of monosaccharides and derivatives partially inhibited phagocytosis. Mannose, rhamnose, and galactose, which are major constituents of S. schenckii surface antigens, reduced the phagocytic indexes by 40 to 50%. Glucosamine, N-acetylglucosamine, and N-acetylneuraminic acid were equally effective as inhibitors of phagocytosis. A mixture of five neutral sugars and glucosamine inhibited phagocytosis by 73%. The inhibitory effect of simple sugars could be amplified by using neuraminidase-treated yeast cells. Pentoses and glucose were inactive or slightly inhibitory. A purified rhamnomannan inhibited phagocytosis of the homologous strain, whereas partially purified peptidopolysaccharides were toxic to peritoneal macrophages. A partially purified galactomannan from S. schenckii was inhibitory (62% inhibition), and a peptidopolysaccharide fraction in which the O-linked carbohydrate chains had been removed neither was toxic to macrophages nor inhibited phagocytosis. Pretreatment of macrophages with simple sugars under conditions inhibiting ingestion or binding of S. schenckii did not affect phagocytosis of latex particles or sensitized sheep erythrocytes. The presence of receptors at the peritoneal macrophages which bind S. schenckii cell surface components is suggested. PMID:6832808

  7. Effects of microwave exposure on the hamster immune system. II. Peritoneal macrophage function

    SciTech Connect

    Rama Rao, G.; Cain, C.A.; Lockwood, J.; Tompkins, W.A.

    1983-01-01

    Acute exposure to hamsters to microwave energy (2.45 GHz; 25 mW/cm2 for 60 min) resulted in activation of peritoneal macrophages that were significantly more viricidal to vaccinia virus as compared to sham-exposed or normal (minimum-handling) controls. Macrophages from microwave-exposed hamsters became activated as early as 6 h after exposure and remained activated for up to 12 days. The activation of macrophages by microwave exposure paralleled the macrophage activation after vaccinia virus immunization. Activated macrophages from vaccinia-immunized hamsters did not differ in their viricidal activity when the hamsters were microwave- or sham-exposed. Exposure for 60 min at 15 mW/cm2 did not activate the macrophages while 40 mW/cm2 exposure was harmful to some hamsters. Average maximum core temperatures in the exposed (25 mW/cm2) and sham groups were 40.5 degrees C (+/- 0.35 SD) and 38.4 degrees C (+/- 0.5 SD), respectively. In vitro heating of macrophages to 40.5 degrees C was not as effective as in vivo microwave exposure in activating macrophages to the viricidal state. Macrophages from normal, sham-exposed, and microwave-exposed hamsters were not morphologically different, and they all phagocytosed India ink particles. Moreover, immune macrophage cytotoxicity for virus-infected or noninfected target cells was not suppressed in the microwave-irradiated group (25 mW/cm2, 1 h) as compared to sham-exposed controls, indicating that peritoneal macrophages were not functionally suppressed or injured by microwave hyperthermia.

  8. Peritonitis

    MedlinePlus

    Acute abdomen; Spontaneous bacterial peritonitis; SBP; Cirrhosis - spontaneous peritonitis ... management of adult patients with ascites due to cirrhosis 2012. Hepatology . 2013;57(4):1651-1653. PMID: ...

  9. Activation of peritoneal macrophages to cytoxicity against B16 melanoma cells by Serratia marcescens polyribosome fractions

    SciTech Connect

    Hoover, S.K.

    1985-01-01

    Serratia marcescens polyribosomes (SMPR) have been shown to elicit an anti-tumor response in vivo. The in-vitro effects of SMPR on macrophages as the nonspecific mediators of the anti-tumor response have not previously been examined. The first objective of this research project is to corroborate and analyze the in-vivo results by the development and application of an in-vitro cytotoxicity assay. The second objective is to examine the effect of SMPR upon previously unstimulated peritoneal macrophages as representing the mechanism of cytotoxicity. The third objective is to identify the minimal effective component of SMPR responsible for an effect on macrophages. Results revealed that SMPR preparations exert a number of effects upon macrophages. Morphologic changes included increased spreading and increased perinuclear vacuolization. Macrophages were shown to be metabolically activate by two lines of evidence. SMPR-treated macrophages exhibited increased cellular metabolism by the increased uptake of /sup 3/H-thymidine and by the increased levels of secreted leucine aminopeptidase as compared to control macrophages. Results also showed that SMPR activates macrophages to cytotoxicity against syngeneic tumor target cells. Buoyant-density fractions were isolated and assayed for macrophage activating ability. Results showed 50S ribosomal subunits to be the smallest fraction effective for macrophage activation. Both the RNA and protein were necessary for complete effectiveness.

  10. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    PubMed

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  11. IL-33 Priming Enhances Peritoneal Macrophage Activity in Response to Candida albicans.

    PubMed

    Tran, Vuvi G; Cho, Hong R; Kwon, Byungsuk

    2014-08-01

    IL-33 is a member of the IL-1 cytokine family and plays a role in the host defense against bacteria, viruses, and fungi. In this study, we investigated the function of IL-33 and its receptor in in vitro macrophage responses to Candida albicans. Our results demonstrate that pre-sensitization of isolated peritoneal macrophages with IL-33 enhanced their pro-inflammatory cytokine production and phagocytic activity in response to C. albicans. These macrophage activities were entirely dependent on the ST2-MyD88 signaling pathway. In addition, pre-sensitization with IL-33 also increased ROS production and the subsequent killing ability of macrophages following C. albicans challenge. These results indicate that IL-33 may increase anti-fungal activity against Candida through macrophage-mediated resistance mechanisms. PMID:25177252

  12. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox.

  13. [Effects of alkaloids from Coptidis Rhizoma on mouse peritoneal macrophages in vitro].

    PubMed

    Zhou, Xia; Peng, Yao-zong; Huang, Tao; Li, Ling; Mou, Shao-xia; Kou, Shu-ming; Li, Xue-gang

    2015-12-01

    This work was mainly studied the effects of the four alkaloids from Coptidis Rhizoma on the mouse peritoneal macrophages in vitro and preliminarily discussed the regulating mechanisms. The effect of alkaloids from Coptidis Rhizoma on the vitality of macrophages was measured by the MTT assay. The effect of alkaloids on the phagocytosis of macrophages was determined by neutral red trial and respiratory burst activity was tested by NBT. The expressions of respiratory-burst-associated genes influenced by alkaloids were detected by qRT-PCR. The conformation change of membrane protein in macrophages by the impact of alkaloids was studied by fluorospectro-photometer. Results showed that the four alkaloids from Coptidis Rhizoma could increase the phagocytosis of macrophages in different level and berberine had the best effect. Berberine, coptisine and palmatine had up-regulation effects on respiratory burst activity of mouse peritoneal macrophages stimulated by PMA and regulatory activity on the mRNA expression of PKC, p40phox or p47phox, whereas the epiberberine had no significant influence on respiratory burst. Moreover, alkaloids from Coptidis Rhizoma could change the conformation of membrane protein and the berberine showed the strongest activity. The results suggested that the four alkaloids from Coptidis Rhizoma might activate macrophages through changing the conformation of membrane protein of macrophages and then enhanced the phagocytosis and respiratory burst activity of macrophages. Furthermore, the regulatory mechanism of alkaloids on the respiratory burst activity of macrophages may be also related to the expression level of PKC, p40phox and p47phox. PMID:27141680

  14. Normal systemic iron homeostasis in mice with macrophage-specific deletion of transferrin receptor 2.

    PubMed

    Rishi, Gautam; Secondes, Eriza S; Wallace, Daniel F; Subramaniam, V Nathan

    2016-02-01

    Iron is an essential element, since it is a component of many macromolecules involved in diverse physiological and cellular functions, including oxygen transport, cellular growth, and metabolism. Systemic iron homeostasis is predominantly regulated by the liver through the iron regulatory hormone hepcidin. Hepcidin expression is itself regulated by a number of proteins, including transferrin receptor 2 (TFR2). TFR2 has been shown to be expressed in the liver, bone marrow, macrophages, and peripheral blood mononuclear cells. Studies from our laboratory have shown that mice with a hepatocyte-specific deletion of Tfr2 recapitulate the hemochromatosis phenotype of the global Tfr2 knockout mice, suggesting that the hepatic expression of TFR2 is important in systemic iron homeostasis. It is unclear how TFR2 in macrophages contributes to the regulation of iron metabolism. We examined the role of TFR2 in macrophages by analysis of transgenic mice lacking Tfr2 in macrophages by crossing Tfr2(f/f) mice with LysM-Cre mice. Mice were fed an iron-rich diet or injected with lipopolysaccharide to examine the role of macrophage Tfr2 in iron- or inflammation-mediated regulation of hepcidin. Body iron homeostasis was unaffected in the knockout mice, suggesting that macrophage TFR2 is not required for the regulation of systemic iron metabolism. However, peritoneal macrophages of knockout mice had significantly lower levels of ferroportin mRNA and protein, suggesting that TFR2 may be involved in regulating ferroportin levels in macrophages. These studies further elucidate the role of TFR2 in the regulation of iron homeostasis and its role in regulation of ferroportin and thus macrophage iron homeostasis.

  15. [Effect of low-frequency ultrasound on the chemotactic and phagocytic activity of peritoneal macrophages in rats].

    PubMed

    Kochemasova, Z N; Davydova, N V; Matveeva, E A; Dratvin, S A; Lobashevskiĭ, A L

    1983-12-01

    The influence of low-frequency ultrasound on the chemotactic, ingestive and digestive activity of peritoneal macrophages in rats was studied. The intraoperative treatment of the peritoneum with ultrasound enhanced chemotactic activity 3.3-fold in comparison with that in the control animals. The digestive function of peritoneal macrophages considerably increased, the stimulation of their ingestive capacity also occurred. The activation of the phagocytic function of macrophages was observed within 7 days after a single sonar treatment. The authors believe that the stimulation of the macrophage system is probably one of the mechanisms of the sanative action of ultrasound which is used at present in purulent surgery.

  16. Isolation of murine peritoneal macrophages to carry out gene expression analysis upon Toll-like receptors stimulation.

    PubMed

    Layoun, Antonio; Samba, Macha; Santos, Manuela M

    2015-01-01

    During infection and inflammation, circulating monocytes leave the bloodstream and migrate into tissues, where they differentiate into macrophages. Macrophages express surface Toll-like receptors (TLRs), which recognize molecular patterns conserved through evolution in a wide range of microorganisms. TLRs play a central role in macrophage activation which is usually associated with gene expression alteration. Macrophages are critical in many diseases and have emerged as attractive targets for therapy. In the following protocol, we describe a procedure to isolate murine peritoneal macrophages using Brewer's thioglycollate medium. The latter will boost monocyte migration into the peritoneum, accordingly this will raise macrophage yield by 10-fold. Several studies have been carried out using bone marrow, spleen or peritoneal derived macrophages. However, peritoneal macrophages were shown to be more mature upon isolation and are more stable in their functionality and phenotype. Thus, macrophages isolated from murine peritoneal cavity present an important cell population that can serve in different immunological and metabolic studies. Once isolated, macrophages were stimulated with different TLR ligands and consequently gene expression was evaluated.

  17. Apocynin suppresses the progression of atherosclerosis in apoE-deficient mice by inactivation of macrophages

    SciTech Connect

    Kinoshita, Hiroyuki; Matsumura, Takeshi; Ishii, Norio; Fukuda, Kazuki; Senokuchi, Takafumi; Motoshima, Hiroyuki; Kondo, Tatsuya; Taketa, Kayo; Kawasaki, Shuji; Hanatani, Satoko; Takeya, Motohiro; Nishikawa, Takeshi; Araki, Eiichi

    2013-02-08

    Highlights: ► We examined the anti-athrogenic effect of apocynin in atherosclerotic model mice. ► Apocynin prevented atherosclerotic lesion formation. ► Apocynin suppressed ROS production in aorta and in macrophages. ► Apocynin suppressed cytokine expression and cell proliferation in macrophages. ► Apocynin may be beneficial compound for the prevention of atherosclerosis. -- Abstract: Production of reactive oxygen species (ROS) and other proinflammatory substances by macrophages plays an important role in atherogenesis. Apocynin (4-hydroxy-3-methoxy-acetophenone), which is well known as a NADPH oxidase inhibitor, has anti-inflammatory effects including suppression of the generation of ROS. However, the suppressive effects of apocynin on the progression of atherosclerosis are not clearly understood. Thus, we investigated anti-atherosclerotic effects of apocynin using apolipoprotein E-deficient (apoE{sup –/–}) mice in vivo and in mouse peritoneal macrophages in vitro. In atherosclerosis-prone apoE{sup –/–} mice, apocynin suppressed the progression of atherosclerosis, decreased 4-hydroxynonenal-positive area in atherosclerotic lesions, and mRNA expression of monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) in aorta. In mouse peritoneal macrophages, apocynin suppressed the Ox-LDL-induced ROS generation, mRNA expression of MCP-1, IL-6 and granulocyte/macrophage colony-stimulating factor, and cell proliferation. Moreover, immunohistochemical studies revealed that apocynin decreased the number of proliferating cell nuclear antigen-positive macrophages in atherosclerotic lesions of apoE{sup –/–} mice. These results suggested that apocynin suppressed the formation of atherosclerotic lesions, at least in part, by inactivation of macrophages. Therefore, apocynin may be a potential therapeutic material to prevent the progression of atherosclerosis.

  18. Effect of Kramecyne on the Inflammatory Response in Lipopolysaccharide-Stimulated Peritoneal Macrophages

    PubMed Central

    Sánchez-Miranda, E.; Lemus-Bautista, J.; Pérez, S.; Pérez-Ramos, J.

    2013-01-01

    Kramecyne is a new peroxide, it was isolated from Krameria cytisoides, methanol extract, and this plant was mostly found in North and South America. This compound showed potent anti-inflammatory activity; however, the mechanisms by which this compound exerts its anti-inflammatory effect are not well understood. In this study, we examined the effects of kramecyne on inflammatory responses in mouse lipopolysaccharide- (LPS-) induced peritoneal macrophages. Our findings indicate that kramecyne inhibits LPS-induced production of tumor necrosis factor (TNF-α) and interleukin- (IL-) 6. During the inflammatory process, levels of cyclooxygenase- (COX-) 2, nitric oxide synthase (iNOS), and nitric oxide (NO) increased in mouse peritoneal macrophages; however, kramecyne suppressed them significantly. These results provide novel insights into the anti-inflammatory actions and support its potential use in the treatment of inflammatory diseases. PMID:23573152

  19. Leonurus sibiricus induces nitric oxide and tumor necrosis factor-alpha in mouse peritoneal macrophages.

    PubMed

    An, Hyo-Jin; Rim, Hong-Kun; Lee, Jong-Hyun; Suh, Se-Eun; Lee, Ji-Hyun; Kim, Na-Hyung; Choi, In-Young; Jeong, Hyun-Ja; Kim, Il Kwang; Lee, Ju-Young; An, Nyeon-Hyoung; Kim, Hyung-Ryong; Um, Jae-Young; Kim, Hyung-Min; Hong, Seung-Heon

    2008-10-01

    Using mouse peritoneal macrophages, we have examined the mechanism by which Leonurus sibiricus (LS) regulates nitric oxide (NO) production. When LS was used in combination with recombinant interferon-gamma (rIFN-gamma), there was a marked cooperative induction of NO production; however, LS by itself had no effect on NO production. The increased production of NO from rIFN-gamma plus LS-stimulated cells was almost completely inhibited by pretreatment with pyrrolidine dithiocarbamate (PDTC), an inhibitor of nuclear factor kappaB. Furthermore, treatment of peritoneal macrophages with rIFN-gamma plus LS caused a significant increase in tumor necrosis factor-alpha (TNF-alpha) production. PDTC also decreased the effect of LS on TNF-alpha production significantly. Because NO and TNF-alpha play an important role in immune function and host defense, LS treatment could modulate several aspects of host defense mechanisms as a result of stimulation of the inducible nitric oxide synthase.

  20. MiR-16 regulates mouse peritoneal macrophage polarization and affects T-cell activation.

    PubMed

    Jia, Xiaoqin; Li, Xiaomin; Shen, Yating; Miao, Junjun; Liu, Hao; Li, Guoli; Wang, Zhengbing

    2016-10-01

    MiR-16 is a tumour suppressor that is down-regulated in certain human cancers. However, little is known on its activity in other cell types. In this study, we examined the biological significance and underlying mechanisms of miR-16 on macrophage polarization and subsequent T-cell activation. Mouse peritoneal macrophages were isolated and induced to undergo either M1 polarization with 100 ng/ml of interferon-γ and 20 ng/ml of lipopolysaccharide, or M2 polarization with 20 ng/ml of interleukin (IL)-4. The identity of polarized macrophages was determined by profiling cell-surface markers by flow cytometry and cytokine production by ELISA. Macrophages were infected with lentivirus-expressing miR-16 to assess the effects of miR-16. Effects on macrophage-T cell interactions were analysed by co-culturing purified CD4(+) T cells with miR-16-expressing peritoneal macrophages, and measuring activation marker CD69 by flow cytometry and cytokine secretion by ELISA. Bioinformatics analysis was applied to search for potential miR-16 targets and understand its underlying mechanisms. MiR-16-induced M1 differentiation of mouse peritoneal macrophages from either the basal M0- or M2-polarized state is indicated by the significant up-regulation of M1 marker CD16/32, repression of M2 marker CD206 and Dectin-1, and increased secretion of M1 cytokine IL-12 and nitric oxide. Consistently, miR-16-expressing macrophages stimulate the activation of purified CD4(+) T cells. Mechanistically, miR-16 significantly down-regulates the expression of PD-L1, a critical immune suppressor that controls macrophage-T cell interaction and T-cell activation. MiR-16 plays an important role in shifting macrophage polarization from M2 to M1 status, and functionally activating CD4(+) T cells. This effect is potentially mediated through the down-regulation of immune suppressor PD-L1.

  1. A SIRT3/AMPK/autophagy network orchestrates the protective effects of trans-resveratrol in stressed peritoneal macrophages and RAW 264.7 macrophages.

    PubMed

    Duan, Wen-Jun; Li, Yi-Fang; Liu, Fang-Lan; Deng, Jie; Wu, Yan-Ping; Yuan, Wei-Lin; Tsoi, Bun; Chen, Jun-Li; Wang, Qi; Cai, Shao-Hui; Kurihara, Hiroshi; He, Rong-Rong

    2016-06-01

    Resveratrol gains a great interest for its strong antioxidant properties, while the molecular mechanisms underlie the beneficial effects on psychosocial stress remain controversial. In this study, we demonstrated that resveratrol protected peritoneal macrophages and RAW 264.7 cells from stress-induced decrease in the total cell count, phagocytic capability, reactive oxygen species generation, monodansylcadaverine and mitochondrial membrane potential in stressed mice. Resveratrol promoted stress-induced autophagy in both models. Modulation of autophagy by rapamycin or 3-methyladenine regulated the protective effect of resveratrol, suggesting a role of autophagy in the protective mechanisms of resveratrol. The comparison studies revealed that distinct mechanisms were implicated in the protective effect of resveratrol and other antioxidants (vitamin C and edaravone). Resveratrol promoted autophagy via upregulating SIRT3 expression and phosphorylation of AMP-activated protein kinase (AMPK). Knockdown of SIRT3 resulted in decreased autophagy and abolished protective effect of resveratrol. SIRT1 was also involved in the protective mechanism of resveratrol, although its effect on autophagy was unnoticeable. Pharmacological manipulation of autophagy modulated the effects of resveratrol on SIRT3 and AMPK, revealing the engagement of a positive feedback loop. In sharp contrast, vitamin C and edaravone effectively protected macrophages from stress-induced cytotoxicity, accompanied by downregulated SIRT3 expression and AMPK phosphorylation, and decreased level of autophagy response. Taken together, we conclude that a SIRT3/AMPK/autophagy network orchestrates in the protective effect of resveratrol in macrophages.

  2. Release of lysosomal enzymes in Candida albicans phagocytosis by rat peritoneal macrophages.

    PubMed

    Fontenla de Petrino, S E; Sirena, A

    1984-02-15

    The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: beta-glucuronidase, beta-galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of beta-galactosidase and acid phosphatase is higher than for beta-glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads to the rate down to 50% at 24 hr.

  3. Release of lysosomal enzymes in Candida albicans phagocytosis by rat peritoneal macrophages.

    PubMed

    Fontenla de Petrino, S E; Sirena, A

    1984-02-15

    The present paper reports the in vitro release of lysosomal enzymes in the supernatant of cultures of rat peritoneal macrophages, with the addition of Candida albicans cells. Macrophages were taken from the rat peritoneal cavity 72 hr after non-specific activation with Brain-Heart-Infusion (B.H.I.) broth containing 10% proteose-peptone No. 3. They were then cultured in Parker medium No. 199 (TC 199). After 24 hr a suspension of Candida albicans cells, in a determined concentration, was added to the peritoneal macrophage cultures. At that time, and during pre-determined periods, the following enzymes in the culture supernatants were studied using colorimetric methods: beta-glucuronidase, beta-galactosidase and acid phosphatase. It is concluded that, under identical conditions, the release of beta-galactosidase and acid phosphatase is higher than for beta-glucuronidase. The release rate of all three enzymes is the highest at a 6 hr incubation period, after which, a gradual decrease leads to the rate down to 50% at 24 hr. PMID:6425693

  4. Immunomodulatory effect of Glossogyne tenuifolia in murine peritoneal macrophages and splenocytes.

    PubMed

    Ha, Choi-Lan; Weng, Ching-Yi; Wang, Lisu; Lian, Tzi-Wei; Wu, Ming-Jiuan

    2006-08-11

    Glossogyne tenuifolia Cass., a medicinal plant native to Taiwan, is traditionally used as an anti-inflammatory remedy. Oleanolic acid and luteolin-7-glucoside have been previously identified as active components of Glossogyne tenuifolia in the murine macrophage-like cell line, RAW264.7. Current study investigates the effect and mechanism of the ethanol extract of Glossogyne tenuifolia (GT) and its major constituents on the release of inflammatory mediators in activated elicited murine peritoneal macrophages and splenocytes. Our results showed that GT (up to 0.15 mg/ml) inhibited the production of proinflammatory mediators, TNF-alpha, IL-1beta, IL-6, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in LPS-activated macrophages, and IFN-gamma in PHA-activated splenocytes. GT also inhibited LPS-activated murine iNOS and COX-2 promoter activities in transiently transfected RAW264.7 cells. The major constituents, oleanolic acid and luteolin-7-glucoside, as well as its aglycone, luteolin, inhibited the release of NO, PGE(2), TNF-alpha and IL-1beta in activated peritoneal macrophages. However, only luteolin-7-glucoside and luteolin were able to reduce IFN-gamma release in PHA-stimulated splenocytes. To further investigate the possible mechanisms that interfere with LPS- and PHA-signaling, this study focused on nuclear factor-kappaB activation signaling pathways. Our results demonstrate that GT (0.075-0.15 mg/ml) treatment reduces nuclear factor-kappaB (NF-kappaB) DNA binding activity, as demonstrated by electrophoretic mobility shift assay (EMSA). Collectively, the results suggest that GT inhibits proinflammatory mediator synthesis in activated murine peritoneal macrophages and splenocytes, in part through NF-kappaB-dependent pathways.

  5. Immunomodulatory effect of Glossogyne tenuifolia in murine peritoneal macrophages and splenocytes.

    PubMed

    Ha, Choi-Lan; Weng, Ching-Yi; Wang, Lisu; Lian, Tzi-Wei; Wu, Ming-Jiuan

    2006-08-11

    Glossogyne tenuifolia Cass., a medicinal plant native to Taiwan, is traditionally used as an anti-inflammatory remedy. Oleanolic acid and luteolin-7-glucoside have been previously identified as active components of Glossogyne tenuifolia in the murine macrophage-like cell line, RAW264.7. Current study investigates the effect and mechanism of the ethanol extract of Glossogyne tenuifolia (GT) and its major constituents on the release of inflammatory mediators in activated elicited murine peritoneal macrophages and splenocytes. Our results showed that GT (up to 0.15 mg/ml) inhibited the production of proinflammatory mediators, TNF-alpha, IL-1beta, IL-6, nitric oxide (NO) and prostaglandin E(2) (PGE(2)) in LPS-activated macrophages, and IFN-gamma in PHA-activated splenocytes. GT also inhibited LPS-activated murine iNOS and COX-2 promoter activities in transiently transfected RAW264.7 cells. The major constituents, oleanolic acid and luteolin-7-glucoside, as well as its aglycone, luteolin, inhibited the release of NO, PGE(2), TNF-alpha and IL-1beta in activated peritoneal macrophages. However, only luteolin-7-glucoside and luteolin were able to reduce IFN-gamma release in PHA-stimulated splenocytes. To further investigate the possible mechanisms that interfere with LPS- and PHA-signaling, this study focused on nuclear factor-kappaB activation signaling pathways. Our results demonstrate that GT (0.075-0.15 mg/ml) treatment reduces nuclear factor-kappaB (NF-kappaB) DNA binding activity, as demonstrated by electrophoretic mobility shift assay (EMSA). Collectively, the results suggest that GT inhibits proinflammatory mediator synthesis in activated murine peritoneal macrophages and splenocytes, in part through NF-kappaB-dependent pathways. PMID:16584857

  6. Biochemical mechanisms underlying the development of radioresistance by cultured peritoneal exudate macrophages

    SciTech Connect

    Lin, H.S.; Hsu, S.

    1989-01-01

    We investigated changes in radiosensitivity of peritoneal exudate macrophage colony-forming cells (PE-CFC) when exudative peritoneal macrophages were cultured in vitro. The change in the shape of the dose-response curve of PE-CFC to ionizing irradiation was partly dependent on the concentration of oxygen in the gas phase of the incubators. When cells were incubated in an environment containing 20% oxygen, the value of both Dq and D0 for PE-CFC increased. The dose-response curve of PE-CFC cultured for 3 days resembled that of alveolar macrophage colony-forming cells (AL-CFC). The changes in radiosensitivity were accompanied by an increase in the level of three antioxidant enzymes: superoxide dismutase, catalase, and glutathione peroxidase. However, when they were cultured in a 6% oxygen environment, only the value of Dq increased. When alveolar macrophages were incubated in vitro, no significant change in the shape of the dose-response curve of AL-CFC was noted whether they were cultured in gas phase containing either 20 or 6% oxygen. It is concluded that the radiosensitivity of PE-CFC changes when they are cultured in vitro. The increase in D0 appears to be related to the intracellular level of antioxidant enzymes.

  7. Specificity and inhibition of glucocorticoid-induced macrocortin secretion from rat peritoneal macrophages.

    PubMed Central

    Blackwell, G. J.

    1983-01-01

    The secretion of the phospholipase A2-inhibitor macrocortin and the binding of dexamethasone were studied in suspensions of rat peritoneal macrophages. Corticosteroid-induced macrocortin secretion was specific for glucocorticoids and did not occur in response to glucocorticoid antagonists or other steroids or in response to non-steroid macrophage activators (formyl-methionyl-leucyl-phenylalanine f-MLP), the calcium ionophore A23187, phorbol myristate acetate (PMA) and lipopolysaccharide-E.-coli(LPS) ). The apparent potency of competition by secretory glucocorticoids for dexamethasone binding to the macrophage parallelled their ability to induce secretion, implying that these binding sites represent the receptors by which macrocortin secretion is initiated. Agents which interfere with microtubule assembly (colchicine, vinblastine and trimethylcolchicinic acid) and prostacyclin and dibutyryl cyclic AMP inhibit macrocortin secretion. Inhibition studies of glucocorticoid-induced macrocortin secretion also suggest dependence upon metabolic energy, a source of Ca2+ and proteolysis and glycosylation prior to secretion. PMID:6317116

  8. The equine alveolar macrophage: Functional and phenotypic comparisons with peritoneal macrophages☆

    PubMed Central

    Karagianni, Anna E.; Kapetanovic, Ronan; McGorum, Bruce C.; Hume, David A.; Pirie, Scott R.

    2013-01-01

    Alveolar macrophages (AMs) constitute the first line of defence in the lung of all species, playing a crucial role in the regulation of immune responses to inhaled pathogens. A detailed understanding of the function and phenotype of AMs is a necessary pre-requisite to both elucidating their role in preventing opportunistic bacterial colonisation of the lower respiratory tract and developing appropriate preventative strategies. The purpose of the study was to characterise this important innate immune cell at the tissue level by making functional and phenotypic comparisons with peritoneal macrophages (PMs). We hypothesised that the tissue of origin determines a unique phenotype of AMs, which may constitute an appropriate therapeutic target for certain equine respiratory diseases. Macrophages isolated from the lung and the peritoneal cavity of 9 horses were stimulated with various toll like receptor (TLR) ligands and the production of nitrite, tumour necrosis factor alpha (TNFα), interleukin (IL) 10 and indoleamine 2,3-dioxygenase (IDO) were measured by the Griess reaction and enzyme linked immunosorbent assay (ELISA) and/or quantitative polymerase chain reaction, respectively. Cells were also compared on the basis of phagocytic-capacity and the expression of several cell surface markers. AMs, but not PMs, demonstrated increased TNFα release following stimulation with LPS, polyinosinic polycytidylic acid (Poly IC) and heat-killed Salmonella typhinurium and increased TNFα and IDO mRNA expression when stimulated with LPS. AMs showed high expression of the specific macrophage markers cluster of differentiation (CD) 14, CD163 and TLR4, whereas PMs showed high expression of TLR4 only. AMs, but not PMs, demonstrated efficient phagocytic activity. Our results demonstrate that AMs are more active than PMs when stimulated with various pro-inflammatory ligands, thus supporting the importance of the local microenvironment in the activation status of the macrophage. This

  9. Transcriptional switching in macrophages associated with the peritoneal foreign body response.

    PubMed

    Mooney, Jane E; Summers, Kim M; Gongora, Milena; Grimmond, Sean M; Campbell, Julie H; Hume, David A; Rolfe, Barbara E

    2014-07-01

    We previously demonstrated that myeloid cells are the source of fibrotic tissue induced by foreign material implanted in the peritoneal cavity. This study utilised the MacGreen mouse, in which the Csf1r promoter directs myeloid-specific enhanced green fluorescent protein (EGFP) expression, to determine the temporal gene expression profile of myeloid subpopulations recruited to the peritoneal cavity to encapsulate implanted foreign material (cubes of boiled egg white). Cells with high EGFP expression (EGFP(hi)) were purified from exudate and encapsulating tissue at different times during the foreign body response, gene expression profiles determined using cDNA microarrays, and data clustered using the network analysis tool, Biolayout Express(3D). EGFP(hi) cells from all time points expressed high levels of Csf1r, Emr1 (encoding F4/80), Cd14 and Itgam (encoding Mac-1) providing internal validation of their myeloid nature. Exudate macrophages (days 4-7) expressed a large cluster of cell cycle genes; these were switched off in capsule cells. Early in capsule formation, Csf1r-EGFP(hi) cells expressed genes associated with tissue turnover, but later expressed both pro- and anti-inflammatory genes alongside a subset of mesenchyme-associated genes, a pattern of gene expression that adds weight to the concept of a continuum of macrophage phenotypes rather than distinct M1/M2 subsets. Moreover, rather than transdifferentiating to myofibroblasts, macrophages contributing to later stages of the peritoneal foreign body response warrant their own classification as 'fibroblastoid' macrophages. PMID:24638066

  10. Contribution of complement component C3 and complement receptor type 3 to carbohydrate-dependent uptake of oligomannose-coated liposomes by peritoneal macrophages.

    PubMed

    Abe, Yu; Kuroda, Yasuhiro; Kuboki, Noritaka; Matsushita, Misao; Yokoyama, Naoaki; Kojima, Naoya

    2008-11-01

    Peritoneal macrophages (PEMs) preferentially and rapidly take up oligomannose-coated liposomes (OMLs) and subsequently mature to induce a Th-1 immune response following administration of OMLs into the peritoneal cavity. Here, we examine the contributions of complement component C3 and complement receptor type 3 (CR3) to carbohydrate-dependent uptake of OMLs by PEMs. Effective uptake of OMLs into PEMs in vitro was observed only in the presence of peritoneal fluid (PF), and OMLs incubated with PF were incorporated by PEMs in vitro in the absence of PF. These phenomena were inhibited by methyl-alpha-mannoside, N-acetylglucosamine or EDTA, but not by galactose. Pull-down analysis followed by peptide mass fingerprinting of PF-treated OMLs indicated that the OMLs were opsonized with complement fragment iC3b. In vivo uptake of OMLs by PEMs was inhibited by intraperitoneal injection of an antibody against CR3, a receptor for iC3b, and OML uptake by PEMs in the peritoneal cavity was not observed in C3-deficient mice. Thus, our results indicate that OMLs are opsonized with iC3b in a mannose-dependent manner in the peritoneal cavity and then incorporated into PEMs via CR3. PMID:18694897

  11. Effects of Calorie Restriction on Polymicrobial Peritonitis Induced by Cecum Ligation and Puncture in Young C57BL/6 Mice

    PubMed Central

    Sun, Dongxu; Muthukumar, Alagar Raju; Lawrence, Richard A.; Fernandes, Gabriel

    2001-01-01

    Calorie restriction (CR) is known to prolong the life span and maintain an active immune function in aged mice, but it is still not known if rodents under CR can respond optimally to bacterial infection. We report here on the influence of CR on the response of peritoneal macrophages to lipopolysaccharide, splenic NF-κB and NF–interleukin-6 (IL-6) activities, and mortality in polymicrobial sepsis induced by cecal ligation and puncture (CLP). Macrophages from 6-month-old C57BL/6 mice on a calorie-restricted diet were less responsive to lipopolysaccharide, as evidenced by lower levels of IL-12 and IL-6 protein and mRNA expression. Furthermore, in vitro lipopolysaccharide-stimulated macrophages from mice under CR also expressed decreased lipopolysaccharide receptor CD14 levels as well as Toll-like receptor 2 (TLR2) and TLR4 mRNA levels. In addition, the phagocytic capacity and class II (I-Ab) expression of macrophages were also found to be significantly lower in mice under CR. Mice under CR died earlier (P < 0.005) after sepsis induced by CLP, which appeared to be a result of increased levels in serum of the proinflammatory cytokines tumor necrosis factor alpha and IL-6 and splenic NF-κB and NF–IL-6 activation 4 h after CLP. However, mice under CR survived significantly (P < 0.005) longer than mice fed ad libitum when injected with paraquat, a free radical-inducing agent. These data suggest that young mice under CR may be protected against oxidative stress but may have delayed maturation of macrophage function and increased susceptibility to bacterial infection. PMID:11527818

  12. Anti-inflammatory action of γ-irradiated genistein in murine peritoneal macrophage

    NASA Astrophysics Data System (ADS)

    Sung, Nak-Yun; Byun, Eui-Baek; Song, Du-Sup; Jin, Yeung-Bae; Park, Jae-Nam; Kim, Jae-Kyung; Park, Jong-Heum; Song, Beom-Seok; Park, Sang-Hyun; Lee, Ju-Woon; Kim, Jae-Hun

    2014-12-01

    This present study was to examine the cytotoxicity and anti-inflammatory activity of gamma (γ)-irradiated genistein in murine peritoneal macrophage. Inflammation to macrophage was induced by adding the lipopolysaccharide (LPS). γ-Irradiated genistein significantly decreased the cytotoxicity to murine peritoneal macrophage in dose ranges from 5 to 10 μM than that of non-irradiated genistein. Anti-inflammatory activity within the doses less than 2 μM showed that γ-irradiated genistein treatment remarkably reduced the lipopolysaccharide-induced inflammation by decreasing the nitric oxide (NO) and cytokines (TNF-α, IL-6) production. In a structural analysis through the high pressure liquid chromatography (HPLC), γ-irradiated genistein showed a new peak production distinguished from main peak of genistein (non-irradiated). Therefore, increase of anti-inflammatory activity may closely mediate with structural changes induced by γ irradiation exposure. Based on the above result, γ-irradiation could be an effective tool for reduction of toxicity and increase of physiological activity of biomolecules.

  13. In vivo glucocorticoids regulate cyclooxygenase-2 but not cyclooxygenase-1 in peritoneal macrophages.

    PubMed

    Masferrer, J L; Reddy, S T; Zweifel, B S; Seibert, K; Needleman, P; Gilbert, R S; Herschman, H R

    1994-09-01

    Acute inflammatory stimuli elevate both the production of prostaglandins and the synthesis and activity of prostaglandin synthase/cyclooxygenase enzyme (COX) in murine peritoneal macrophages. Adrenalectomy also elevates prostaglandin production, COX synthesis and COX activity in these cells. We have utilized cDNA probes and antisera specific for the products of the prostaglandin synthase/cyclooxygenase-1 (COX-1) and TIS10/prostaglandin synthase-2/cyclooxygenase-2 (COX-2) genes to demonstrate that adrenalectomy causes elevation of mRNA and protein from the COX-2 gene, but not from the COX-1 gene, in peritoneal macrophages. Dexamethasone replacement suppressed the elevation of COX-2 mRNA message, COX-2 protein and the increased COX enzyme activity observed in adrenalectomized animals. In contrast, both COX-1 message and COX-1 protein levels were unaffected either by adrenalectomy or by dexamethasone administration. Thus, under normal physiological conditions, tonic glucocorticoid inhibition appears to play a major role in the in vivo regulation of the COX-2 gene. These data are consistent with COX-1 being the constitutive, housekeeping enzyme in macrophages in normal physiological conditions and with the enhanced prostaglandin synthesis seen after an inflammatory stimulus resulting from the rapid induction and activity of COX-2.

  14. Nanoparticles Containing Curcumin Useful for Suppressing Macrophages In Vivo in Mice.

    PubMed

    Amano, Chie; Minematsu, Hideki; Fujita, Kazuyo; Iwashita, Shinki; Adachi, Masaki; Igarashi, Koichi; Hinuma, Shuji

    2015-01-01

    To explore a novel method using liposomes to suppress macrophages, we screened food constituents through cell culture assays. Curcumin was one of the strongest compounds exhibiting suppressive effects on macrophages. We subsequently tried various methods to prepare liposomal curcumin, and eventually succeeded in preparing liposomes with sufficient amounts of curcumin to suppress macrophages by incorporating a complex of curcumin and bovine serum albumin. The diameter of the resultant nanoparticles, the liposomes containing curcumin, ranged from 60 to 100 nm. Flow cytometric analyses revealed that after intraperitoneal administration of the liposomes containing curcumin into mice, these were incorporated mainly by macrophages positive for F4/80, CD36, and CD11b antigens. Peritoneal cells prepared from mice injected in vivo with the liposomes containing curcumin apparently decreased interleukin-6-producing activities. Major changes in body weight and survival rates in the mice were not observed after administrating the liposomes containing curcumin. These results indicate that the liposomes containing curcumin are safe and useful for the selective suppression of macrophages in vivo in mice. PMID:26361331

  15. [Differential growth inhibition of mycobacteria by interferon-gamma-or tumor necrosis factor-alpha-treated murine peritoneal macrophages].

    PubMed

    Sato, K; Tomioka, H; Saito, H

    1996-11-01

    Growth inhibition of the intracellular mycobacteria such as Mycobacterium tuberculosis, M. bovis, M. kansasii, M. avium, M. intracellulare, M. fortuitum, and M. chelonae subsp. abscessus by interferon-gamma (IFN-gamma)- or tumor necrosis factor-alpha (TNF-alpha)-treated murine peritoneal macrophages elicited by proteose peptone was studied in vitro. Macrophages were infected with slowly growing mycobacteria and the extracellular mycobacteria were washed out. Then, macrophages were treated with IFN-gamma or TNF-alpha at a concentration of 10 to 1000 U/ml for 2 days. In another experiment, macrophages were pretreated with these cytokines for 1 day then infected with rapidly growing mycobacteria as before. Macrophages were cultured with or without IFN-gamma or TNF-alpha for additional day. Mycobacterial growth was assessed by determination of colony-forming units on 7H11 agar plates after destruction of the macrophages. Stimulation of macrophages with IFN-gamma reduced the growth of mycobacteria. However, except for M. tuberculosis and M. bovis, growth was not inhibited by macrophages treated with TNF-alpha. IFN-gamma seems to be an important cytokine for the activation of mycobactericidal mechanisms in murine macrophages. Stimulation with IFN-gamma or TNF-alpha and subsequent phagocytosis of M. tuberculosis or M. intracellulare increased O2- production, which was assayed by the method of cytochrome C reduction by murine peritoneal macrophages. Phorbol myristate acetate-triggered-O2- production was also elevated by the cytokine pretreatment of the macrophages, suggesting that mycobacterial growth inhibition did not parallel the production of reactive oxygen intermediates in TNF alpha-activated murine peritoneal macrophages. These data suggest that bactericidal mechanisms of murine macrophages against nontuberculous mycobacteria may not depend on reactive oxygen intermediates. PMID:8958673

  16. In vitro expression of IL-1α, GM-CSF, and TNF-α by multinucleated macrophages from BCG-infected mice.

    PubMed

    Iljine, D A; Arkhipov, S A; Shkurupy, V A

    2013-09-01

    Peritoneal cells from intact and BCG-infected mice were explanted in vitro. In these cultures, multinucleated macrophages in different number of nuclei were formed. The intensity of multinucleated cell formation was higher in cultures from BCG-infected mice. Increasing role of amitosis in the formation of multinucleated macrophages with relatively high number of nuclei was noted with presumable domination of cell fusion mechanism. Relatively high level of IL-1α expression was noted only in the population of binucleated macrophages of BCG-infected mice in comparison with mononuclear cells. It was found macrophages from BCG-infected mice demonstrate a kind of "lineage commitment" towards multinucleated cells, which manifested in culture in initially high and increasing (with increasing the number of nuclei in cells) expression of granulocyte-macrophage CSF and TNF-α as well as initially high amitotic activity of macrophages.

  17. Repeatedly administered antidepressant drugs modulate humoral and cellular immune response in mice through action on macrophages.

    PubMed

    Nazimek, Katarzyna; Kozlowski, Michael; Bryniarski, Pawel; Strobel, Spencer; Bryk, Agata; Myszka, Michal; Tyszka, Anna; Kuszmiersz, Piotr; Nowakowski, Jaroslaw; Filipczak-Bryniarska, Iwona

    2016-08-01

    Depression is associated with an altered immune response, which could be normalized by antidepressant drugs. However, little is known about the influence of antidepressants on the peripheral immune response and function of macrophages in individuals not suffering from depression. Our studies were aimed at determining the influence of antidepressant drugs on the humoral and cellular immune response in mice. Mice were treated intraperitoneally with imipramine, fluoxetine, venlafaxine, or moclobemide and contact immunized with trinitrophenyl hapten followed by elicitation and measurement of contact sensitivity by ear swelling response. Peritoneal macrophages from drug-treated mice were either pulsed with sheep erythrocytes or conjugated with trinitrophenyl and transferred into naive recipients to induce humoral or contact sensitivity response, respectively. Secretion of reactive oxygen intermediates, nitric oxide, and cytokines by macrophages from drug-treated mice was assessed, respectively, in chemiluminometry, Griess-based colorimetry and enzyme-linked immunosorbent assay, and the expression of macrophage surface markers was analyzed cytometrically. Treatment of mice with fluoxetine, venlafaxine, and moclobemide results in suppression of humoral and cell-mediated immunity with a reduction of the release of macrophage proinflammatory mediators and the expression of antigen-presentation markers. In contrast, treatment with imipramine enhanced the humoral immune response and macrophage secretory activity but slightly suppressed active contact sensitivity. Our studies demonstrated that systemically delivered antidepressant drugs modulate the peripheral humoral and cell-mediated immune responses, mostly through their action on macrophages. Imipramine was rather proinflammatory, whereas other tested drugs expressed immunosuppressive potential. Current observations may be applied to new therapeutic strategies dedicated to various disorders associated with excessive

  18. Surface expression and rapid internalization of macrosialin (mouse CD68) on elicited mouse peritoneal macrophages.

    PubMed

    Kurushima, H; Ramprasad, M; Kondratenko, N; Foster, D M; Quehenberger, O; Steinberg, D

    2000-01-01

    Macrosialin, the mouse homolog of human CD68, is a heavily glycosylated transmembrane protein found almost exclusively in macrophages. Its function remains uncertain. It has a high affinity for oxidized low-density lipoprotein (LDL) in ligand blots and antibodies against the human homolog, CD68, inhibit the binding of oxidized LDL to a human monocyte-derived cell line (THP-1). However, there is still controversy as to whether macrosialin, found predominantly in late endosomes, is expressed at all on the plasma membrane. The present studies, done in thioglycollate-elicited peritoneal macrophages, confirm that macrosialin is predominantly intracellular but show clearly that 10-15% of it is expressed on the cell surface. Exchange with intracellular pools occurs at an extremely high rate. The results are compatible with a surface function, including internalization of bound ligands or adhesion to surfaces.

  19. Metastatic Listeria monocytogenes infection of the peritoneum in mice with cyclosporine a-induced peritonitis.

    PubMed

    Prats, N; López, S; Domingo, M; Briones, V; Domínguez, L; Marco, A J

    2002-01-01

    Inoculation of mice with Listeria monocytogenes intragastrically or by parenteral routes has not been reported to cause peritonitis. In this study, however, severe listerial peritonitis was induced in mice infected subcutaneously and treated intraperitoneally with cyclosporin A (Cs A) in an oil carrier. In both uninfected and listeria-infected mice, intraperitoneal administration of Cs A consistently produced overexpression of P-selectin in the peritoneal microvasculature and pyogranulomatous inflammation of the peritoneum, suggesting that Cs A causes endothelial damage. We suggest that in listeria-infected mice the non-specific irritant peritonitis induced by the intraperitoneal administration of Cs A results in transfer of listeria-infected phagocytes from the liver and spleen to the peritoneal microvasculature, producing metastatic infection.

  20. Transfer to in vitro conditions influences expression and intracellular distribution of galectin-3 in murine peritoneal macrophages.

    PubMed

    Dumić, J; Lauc, G; Hadzija, M; Flögel, M

    2000-01-01

    Galectin-3 is a beta-galactoside-binding lectin that has been implicated in numerous physiological processes, including mRNA splicing, cell differentiation, tumor metastasis and the stress response. We have studied effects of transfer of resident murine peritoneal macrophages to in vitro conditions on galectin-3 in different cell compartments. Galectin-3 was purified by immunoprecipitation with rat monoclonal antibody M3/38, and analyzed by immunoblotting using the same antibody. Transfer to in vitro conditions nearly doubled the total amount of galectin-3 in cells, and caused significant alterations in its intracellular distribution, indicating that galectin-3 is involved in the adaptation of peritoneal macrophages to in vitro conditions.

  1. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  2. Stimulation of the ceramide pathway partially mimics lipopolysaccharide-induced responses in murine peritoneal macrophages.

    PubMed Central

    Barber, S A; Detore, G; McNally, R; Vogel, S N

    1996-01-01

    Recent studies have suggested that lipolysaccharide (LPS) stimulates cells by mimicking the second-messenger function of ceramide, a lipid generated in the cell by the action of sphingomyelinase (SMase). To examine this possibility further, we compared the abilities of LPS, SMase, and/or ceramide analogs to induce cytokine secretion, modulate gene expression, and induce endotoxin tolerance in macrophages. SMase and LPS induced secretion of tumor necrosis factor alpha (TNF-alpha) to comparable degrees; however, unlike LPS, SMase failed to stimulate detectable interferon activity. Cell-permeable analogs of ceramide induced the expression of many LPS-inducible genes; however, the expression of interferon-inducible protein 10 (IP-10) and interferon consensus sequence-binding protein (ICSBP) mRNAs was significantly lower than that induced by LPS. Both SMase-induced TNF-alpha secretion and LPS-induced TNF-alpha secretion were inhibited by pretreatment with a serine/threonine phosphatase inhibitor, calyculin A. Macrophages preexposed in vitro to LPS to induce a well-characterized state of endotoxin tolerance secreted little or no TNF-alpha upon secondary challenge with either LPS or SMase, whereas macrophages preexposed to SMase secreted high levels of TNF-alpha upon secondary stimulation with LPS or SMase. Collectively, these results suggest that ceramide activates a subset of LPS-induced signaling pathways in murine peritoneal exudate macrophages. PMID:8757882

  3. Stimulated arachidonate metabolism during foam cell transformation of mouse peritoneal macrophages with oxidized low density lipoprotein.

    PubMed Central

    Yokode, M; Kita, T; Kikawa, Y; Ogorochi, T; Narumiya, S; Kawai, C

    1988-01-01

    Changes in arachidonate metabolism were examined in mouse peritoneal macrophages incubated with various types of lipoproteins. Oxidized low density lipoprotein (LDL) was incorporated by macrophages and stimulated macrophage prostaglandin E2 (PGE2) and leukotriene C4 syntheses, respectively, 10.8- and 10.7-fold higher than by the control. Production of 6-keto-PGF1 alpha, a stable metabolite of prostacyclin, was also stimulated. No stimulation was found with native LDL, which was minimally incorporated by the cells. Acetylated LDL and beta-migrating very low density lipoprotein (beta-VLDL), though incorporated more efficiently than oxidized LDL, also had no stimulatory effect. When oxidized LDL was separated into the lipoprotein-lipid peroxide complex and free lipid peroxides, most of the stimulatory activity was found in the former fraction, indicating that stimulation of arachidonate metabolism in the cell is associated with uptake of the lipoprotein-lipid peroxide complex. These results suggest that peroxidative modification of LDL could contribute to the progression of atheroma by stimulating arachidonate metabolism during incorporation into macrophages. Images PMID:3125226

  4. Ouabain Modulates Zymosan-Induced Peritonitis in Mice

    PubMed Central

    Leite, Jacqueline Alves; Alves, Anne Kaliery De Abreu; Galvão, José Guilherme Marques; Teixeira, Mariana Pires; Rumjanek, Vivian Mary; Rodrigues-Mascarenhas, Sandra

    2015-01-01

    Ouabain, a potent inhibitor of the Na+, K+-ATPase, was identified as an endogenous substance. Recently, ouabain was shown to affect various immunological processes. We have previously demonstrated the ability of ouabain to modulate inflammation, but little is known about the mechanisms involved. Thus, the aim of the present work is to evaluate the immune modulatory role of ouabain on zymosan-induced peritonitis in mice. Our results show that ouabain decreased plasma exudation (33%). After induction of inflammation, OUA treatment led to a 46% reduction in the total number of cells, as a reflex of a decrease of polymorphonuclear leukocytes, which does not appear to be due to cell death. Furthermore, OUA decreased TNF-α (57%) and IL-1β (58%) levels, without interfering with IL-6 and IL-10. Also, in vitro experiments show that ouabain did not affect endocytic capacity. Moreover, electrophoretic mobility shift assay (EMSA) shows that zymosan treatment increased (85%) NF-κB binding activity and that ouabain reduced (30%) NF-κB binding activity induced by zymosan. Therefore, our data suggest that ouabain modulated acute inflammatory response, reducing the number of cells and cytokines levels in the peritoneal cavity, as well as NFκB activation, suggesting a new mode of action of this substance. PMID:26078492

  5. [The effect of silica on the development of experimental Acanthamoeba meningoencephalitis with reference to the macrophage role in mice].

    PubMed

    Lee, H S; Shin, H J; La, M S; Im, K

    1994-12-01

    The role of macrophages was observed in intranasally infected C3H/HeJ mice with trophozoites (3 x 10(5)) of Acanthamoeba culbertsoni which was a kind of free-living amoebae inducing meningoencephalitis in human and experimental animals. The mortality was 60% in the group of intraperitoneally injected mice with silica (0.5 mg/0.5 ml). It was much higher than that of 10% in the group of amoeba infected mice without silica administration. The phagocytic index of peritoneal macrophages co-cultured with Toxoplasma gondii was estimated daily. In contrast to the control and amoeba infected group which didn't show significant fluctuation of the phagocytic indices, the silica administrated group revealed under 3% until day 3, and gradual increase up to 24.7% in day 5 which was same level of amoeba infected group without silica administration. The level of interleukin-1b (IL-1b) measured by ELISA was the highest in the amoeba infected group without silica injection and the lowest in the amoeba infected group with silica administration. In the test of the amoebicidal activity of mice peritoneal macrophages in vitro, silica administration revealed reducing effect on amoebicidal activity of macrophages. In conclusion, macrophages were proven to play a significant role in defense mechanism against the development of experimentally induced Acanthamoeba meningoencephalitis. PMID:7834243

  6. Antiorthostatic suspension stimulates profiles of macrophage activation in mice

    NASA Technical Reports Server (NTRS)

    Miller, E. S.; Bates, R. A.; Koebel, D. A.; Sonnenfeld, G.

    1999-01-01

    The antiorthostatic suspension model simulates certain physiological effects of spaceflight. We have previously reported BDF1 mice suspended by the tail in the antiorthostatic orientation for 4 days express high levels of resistance to virulent Listeria monocytogenesinfection. In the present study, we examined whether the increased resistance to this organism correlates with profiles of macrophage activation, given the role of the macrophage in killing this pathogen in vivo. We infected BDF1 mice with a lethal dose of virulent L. monocytogenes on day 4 of antiorthostatic suspension and 24 h later constructed profiles of macrophage activation. Viable listeria could not be detected in mice suspended in the antiorthostatic orientation 24 h after infection. Flow cytometric analysis revealed the numbers of granulocytes and mononuclear phagocytes in the spleen of infected mice were not significantly altered as a result of antiorthostatic suspension. Splenocytes from antiorthostatically suspended infected mice produced increased titers of IL-1. Serum levels of neopterin, a nucleotide metabolite secreted by activated macrophages, were enhanced in mice infected during antiorthostatic suspension, but not in antiorthostatically suspended naive mice. Splenic macrophages from mice infected on day 4 of suspension produced enhanced levels of lysozyme. In contrast to the results from antiorthostatically suspended infected mice, macrophages from antiorthostatically suspended uninfected mice did not express enhanced bactericidal activities. The collective results indicate that antiorthostatic suspension can stimulate profiles of macrophage activation which correlate with increased resistance to infection by certain classes of pathogenic bacteria.

  7. Functions of mononuclear phagocytes in mice exposed to diethylstilbestrol: a model of aberrant macrophage development.

    PubMed

    Dean, J H; Lauer, L D; Murray, M J; Luster, M I; Neptun, D; Adams, D O

    1986-10-15

    Administration of the synthetic estrogen diethylstilbestrol (DES) lowers the systemic resistance of mice to challenge with either tumor cells or the facultative intracellular parasite Listeria monocytogenes. To assess the potential role of impaired mononuclear phagocyte system (MPS) function in this depression of host resistance, we addressed the question of systemic perturbations of the MPS induced by administration of DES. A panel of objective quantitative markers which have been previously shown to identify and characterize macrophages in the several stages of development of activation was employed. DES perturbed the resident population of peritoneal macrophages by increasing their number approximately twofold and by enhancing their competence for phagocytosis, cytostasis of tumor cells, and secretion of plasminogen activator. When we examined the competence of the MPS in DES-treated mice to respond to challenge with activating stimuli, we found that DES systemically suppressed the development of macrophages, in response to either pyran copolymer or BCG, to develop tumoricidal function and to gain competence for secretion of reactive oxygen intermediates such as H2O2. Since these data suggested that DES inhibited the development of macrophages from a precursor stage (i.e., responsive macrophages) to activated macrophages in vivo, we tested this possibility directly by applying known activating signals in vitro to responsive macrophages. Responsive macrophages from DES-treated mice did not become activated in response to the application of two known potent activating signals (i.e., MAF + LPS). Taken together, the data indicate that DES systemically perturbs the MPS and does so by enhancing development of the early stages of maturation and suppressing subsequent development. PMID:3802203

  8. Isofraxidin exhibited anti-inflammatory effects in vivo and inhibited TNF-α production in LPS-induced mouse peritoneal macrophages in vitro via the MAPK pathway.

    PubMed

    Niu, Xiaofeng; Xing, Wei; Li, Weifeng; Fan, Ting; Hu, Hua; Li, Yongmei

    2012-10-01

    Isofraxidin (IF) is a Coumarin compound that can be isolated from medicinal plants, such as Sarcandra glabra (Thunb.). Nakai is widely used in Asian countries for the treatment of anti-bacterial, anti-inflammatory and anti-tumour action. The present investigation was designed to evaluate the effect of IF on inflammation and nociception. In addition, we investigated a potential novel mechanism to explain the anti-inflammatory properties of IF. In vivo, xylene-induced mouse ear edema, carrageenan-induced rat paw edema, LPS-induced mouse endotoxic shock, acetic acid-induced mice writhing and formalin-induced mouse pain models were used to evaluate the anti-inflammatory activity of IF. In vitro, we examined the effects of IF inhibition on TNF-α production and the regulation of ERK1/2 and p38 phosphorylation activity in LPS-induced mouse peritoneal macrophages. Our results demonstrated that IF can significantly decrease xylene-induced ear edema, carrageenan-induced paw edema, acetic acid-induced writhing and formalin-induced pain. Moreover, IF greatly inhibited the production of TNF-α in the serum of LPS-stimulated mice and peritoneal macrophages, and it decreased phospho-p38 and ERK1/2 protein expression in LPS-stimulated mouse peritoneal macrophages. Overall, our data suggest that IF possesses significant analgesic and anti-inflammatory activities that may be mediated through the regulation of pro-inflammatory cytokines, TNF-α and the phosphorylation of p38 and ERK1/2.

  9. Bone marrow-derived and peritoneal macrophages have different inflammatory response to oxLDL and M1/M2 marker expression – implications for atherosclerosis research

    PubMed Central

    Bisgaard, Line S.; Mogensen, Christina K.; Rosendahl, Alexander; Cucak, Helena; Nielsen, Lars Bo; Rasmussen, Salka E.; Pedersen, Tanja X.

    2016-01-01

    Macrophages are heterogeneous and can polarize into specific subsets, e.g. pro-inflammatory M1-like and re-modelling M2-like macrophages. To determine if peritoneal macrophages (PEMs) or bone marrow derived macrophages (BMDMs) resembled aortic macrophages from ApoE−/− mice, their M1/M2 phenotype, inflammatory status, and lipid metabolism signatures were compared. oxLDL accumulation was similar in PEMs and BMDMs. On protein expression level, BMDMs showed an M2-like CD206highCD11clow profile, while cholesterol loading led to enhanced CD11c expression and reduced MCP-1 secretion. In contrast, PEMs expressed low levels of CD206 and CD11c, and responded to cholesterol loading by increasing CD11c expression and MCP-1 secretion. mRNA expression of M1/M2 markers was higher in PEMS than BMDMs, while lipid metabolism genes were similarly expressed. Whole aorta flow cytometry showed an accumulation of M2-like CD206highCD11clow macrophages in advanced versus early atherosclerotic disease in ApoE−/− mice. In isolated lesions, mRNA levels of the M2 markers Socs2, CD206, Retnla, and IL4 were downregulated with increasing disease severity. Likewise, mRNA expression of lipid metabolism genes (SREBP2, ACSL1, SRB1, DGAT1, and cpt1a) was decreased in advanced versus early lesions. In conclusion, PEMs and BMDMs are phenotypically distinct and differ from macrophages in lesions with respect to expression of M1/M2 markers and lipid metabolism genes. PMID:27734926

  10. Yeast mannans inhibit binding and phagocytosis of zymosan by mouse peritoneal macrophages.

    PubMed

    Sung, S S; Nelson, R S; Silverstein, S C

    1983-01-01

    We have examined the effects of various mannans, glycoproteins, oligosaccharides, monosaccharides, and sugar phosphates on the binding and phagocytosis of yeast cell walls (zymosan) by mouse peritoneal macrophages. A phosphonomannan (PO(4):mannose ratio = 1:8:6) from kloeckera brevis was the most potent inhibitor tested; it inhibited binding and phagocytosis by 50 percent at concentrations of approximately 3-5 mug/ml and 10 mug/ml, respectively. Removal of the phosphate from this mannan by mild acid and alkaline phosphatase treatment did not appreciably reduce its capacity to inhibit zymosan phagocytosis. The mannan from saccharomyces cerevisiae mutant LB301 inhibits phagocytosis by 50 percent at 0.3 mg/ml, and a neutral exocellular glucomannan from pichia pinus inhibited phagocytosis by 50 percent at 1 mg/ml. Cell wall mannans from wild type S. cervisiae X2180, its mnn2 mutant which contains mannan with predominantly 1(arrow)6- linked mannose residues, yeast exocellular mannans and O-phosphonomannans were less efficient inhibitors requiring concentrations of 1-5 mg/ml to achieve 50 percent reduction in phagocytosis. Horseradish peroxidase, which contains high-mannose type oligosaccharides, was also inhibitory. Mannan is a specific inhibitor of zymosan binding and phagocytosis. The binding and ingestion of zymosan but not of IgG- or complement-coated erythrocytes can be obliterated by plating macrophages on substrates coated with poly-L-lysin (PLL)-mannan. Zymosan uptake was completely abolished by trypsin treatment of the macrophages and reduced by 50-60 percent in the presence of 10 mM EGTA. Pretreatment of the macrophages with chloroquine inhibited zymosan binding and ingestion. These results support the proposal that the macrophage mannose/N-acetylglucosamine receptor (P. Stahl, J.S. Rodman, M.J. Miller, and P.H. Schlesinger, 1978, Proc. Natl. Acad. Sci. U.S.A. 75:1399-1403, mediates the phagocytosis of zymosan particles. PMID:6298248

  11. CYTOTOXIC EFFECTS OF SOME MINERAL DUSTS ON SYRIAN HAMSTER PERITONEAL MACROPHAGES

    PubMed Central

    Bey, Elke; Harington, J. S.

    1971-01-01

    Hamster peritoneal macrophages were grown in cell culture and their response to various conditions was examined. The cultures responded favorably to high concentrations of serum and to medium which had been preconditioned by contact with tumor cells. After 2–3 days of adaptation, they entered into a period of stability which lasted from the 4th to the 9th day. Macrophage cultures in this stable phase were treated with various samples of mineral dusts and their response determined by counting the number of viable macrophages/cm2 at intervals over a period of 72 hr. Crystalline silica Snowit was found to be nontoxic. Amorphous silica Fransil caused a characteristic cytotoxic effect and a rapid decline in cell population at doses less than 150 µg/5 x 105 cells. Of the three different kinds of asbestos used, chrysotile was toxic and amosite and crocidolite nontoxic at equivalent concentrations. A comparison of two preparations of chrysotile which differed in surface area showed that weight rather than surface area determines toxicity. Pretreatment of chrysotile with tryptose phosphate broth under drastic conditions accelerated but did not increase the final intensity of the cytotoxic effect. PMID:4101804

  12. Bothrops lanceolatus (Fer de lance) venom stimulates leukocyte migration into the peritoneal cavity of mice.

    PubMed

    Arruda, Vanessa Alves; de Queiroz Guimarães, Alessandra; Hyslop, Stephen; de Araújo, Paulo Maria Ferreira; Bon, Cassian; de Araújo, Albetiza Lôbo

    2003-01-01

    The ability of Bothrops lanceolatus venom to induce neutrophil migration into the peritoneal cavity of mice was investigated. Intraperitoneal injection of venom caused dose- and time-dependent neutrophil migration, which peaked with 750 ng of venom/cavity 4h after venom injection. The neutrophil migration was significantly reduced by pretreatment with dexamethasone (0.5 mg/kg, s.c.), an indirect inhibitor of phospholipase A(2) (PLA(2)), and AA861 (0.01 mg/kg, s.c.), a 5-lipoxygenase inhibitor, but in contrast, was not modified by pretreatment with indomethacin (2 mg/kg, s.c.), an inhibitor of the cyclooxygenase pathway, meloxicam (5 mg/kg, s.c.), an inhibitor of the cyclooxygenase-2 pathway, or the PAF inhibitor WEB2086 (40 mg/kg, s.c.). Dexamethasone and AA861 also inhibited the neutrophil migration by 60% when administered immediately after venom injection, and the coadministration of these two drugs caused a 75% reduction in migration. BLV-induced neutrophil migration was not due to contamination by endotoxin since polymyxin B-treated venom retained its activity. Heating the venom (97 degrees C, 2 min) reduced the PLA(2) activity by 64% and this was accompanied by a corresponding reduction (68%) in neutrophil migration. These results suggest that arachidonate-derived lipoxygenase metabolites (possibly leukotriene B(4)) are involved in the chemotaxis observed. Macrophages may be an important source of these metabolites since the migratory response to venom was potentiated in mice pretreated with thioglycollate, but reduced when the peritoneal cavity was washed with sterile saline. PMID:12467667

  13. Antibody-dependent cytolysis of chicken erythrocytes by an in vitro-established line of mouse peritoneal macrophages.

    PubMed

    Walker, W S; Demus, A

    1975-02-01

    An in vitro-established line of mouse peritoneal macrophages (IC-21) was tested for its ability to mediate the cytolysis of 51chromiun-labeled chicken erythrocytes. In the presence of specific antibody, but independently of complement, the macrophages phagocytized and lysed labeled erythrocytes. The phagocytic process proved to be functionally distinct from the cytolytic reaction as demonstrated by enhanced cytolysis in the presence of iodoacetate, an inhibitor of phagocytosis. This cell line, because of its effector activity in antibody-dependent cell-mediated immune reactions, will be useful in characterizing the mechanism(s) involved in macrophage-mediated cytolysis. PMID:1167563

  14. Infection of white rat peritoneal macrophages with Toxoplasma gondii, (Coccidia: Sarcocystidae) after Trypanosoma lewisi (Kinetoplastida: Trypanosomatidae) infection.

    PubMed

    Catarinella, G; Chinchilla, M; Guerrero, O M; Castro, A

    1999-09-01

    Peritoneal macrophages from Wistar rats, inoculated and non-inoculated with 10(6) T. lewisi trypomastigotes, were cultured and infected with 10(6) T. gondii tachyzoites. Multiplication rates of this parasite were studied after 1, 24 and 48 h of infection but there were not significant differences between the number of parasites found inside of macrophages coming, either from T. lewisi infected or non infected rats. On the other hand, in vivo studies of Toxoplasma multiplication inside peritoneal macrophages, showed that there is an increase of parasite number in cells from T. lewisi infected rats, as compared with those macrophages from non infected rats. This effect was statistically significant and was more evident after four days of infection. Therefore, it has been demonstrated that in vivo, but not in vitro T. lewisi infections, causes an important decrease of the natural resistance to T. gondii of the white rats, which is manifested by the major invasion and multiplication of the parasite inside of peritoneal macrophages.

  15. Evidence that Resorption of Bone by Rat Peritoneal Macrophages Occurs in an Acidic Environment

    NASA Technical Reports Server (NTRS)

    Blair, H. C.

    1985-01-01

    Skeletal loss in space, like any form of osteoporosis, reflects a relative imbalance of the activities of cells resorbing (degrading) or forming bone. Consequently, prevention of weightlessness induced bone loss may theoretically be accomplished by (1) stimulating bone formation or (2) inhibiting bone resorption. This approach, however, requires fundamental understanding of the mechanisms by which cells form or degrade bone, information not yet at hand. An issue central to bone resorption is the pH at which resorption takes place. The pH dependent spectral shift of a fluorescent dye (fluorescein isothiocyanate) conjugated to bone matrix was used to determine the pH at the resorptive cell bone matrix interface. Devitalized rat bone was used as the substrate, and rat peritoneal macrophages were used as the bone resorbing cells. The results suggest that bone resorption is the result of generation of an acidic microenvironment at the cell matrix junction.

  16. Overload training inhibits phagocytosis and ROS generation of peritoneal macrophages: role of IGF-1 and MGF.

    PubMed

    Xiao, Weihua; Chen, Peijie; Wang, Ru; Dong, Jingmei

    2013-01-01

    We tested the hypothesis that overload training inhibits the phagocytosis and the reactive oxygen species (ROS) generation of peritoneal macrophages (Mϕs), and that insulin-like growth factor-1(IGF-1) and mechano-growth factor (MGF) produced by macrophages may contribute to this process. Rats were randomized to two groups, sedentary control group (n = 10) and overload training group (n = 10). The rats of overload training group were subjected to 11 weeks of experimental training protocol. Blood sample was used to determine the content of hemoglobin, testosterone, and corticosterone. The phagocytosis and the ROS generation of Mϕs were measured by the uptake of neutral red and the flow cytometry, respectively. IGF-1 and MGF mRNA levels in Mϕs were determined by real-time PCR. In addition, we evaluated the effects of IGF-1 and MGF peptide on phagocytosis and ROS generation of Mϕs in vitro. The data showed that overload training significantly decreased the body weight (19.3 %, P < 0.01), the hemoglobin (13.5 %, P < 0.01), the testosterone (55.3 %, P < 0.01) and the corticosterone (40.6 %, P < 0.01) in blood. Moreover, overload training significantly decreased the phagocytosis (27 %, P < 0.05) and the ROS generation (35 %, P < 0.01) of Mϕs. IGF-1 and MGF mRNA levels in Mϕs from overload training group increased significantly compared with the control group (21-fold and 92-fold, respectively; P < 0.01). In vitro experiments showed that IGF-1 had no significant effect on the phagocytosis and the ROS generation of Mϕs. Unlike IGF-1, MGF peptide impaired the phagocytosis of Mϕs in dose-independent manner. In addition, MGF peptide of some concentrations (i.e., 1, 10, 50, 100 ng/ml) significantly inhibited the ROS generation of Mϕs. These results suggest that overload training inhibits the phagocytosis and the ROS generation of peritoneal macrophages, and that MGF produced by macrophages may play a key role in this process. This may represent a novel mechanism of

  17. Peritoneal macrophages from patients with cirrhotic ascites show impaired phagocytosis and vigorous respiratory burst

    PubMed Central

    Ahmed, Abdel Motaal M.; Bomford, Adrian; Nouri-Aria, Kayhan T.; Davies, Ted; Smith, Roger; Williams, Roger

    2011-01-01

    Cirrhotic patients (CPs) are susceptible to spontaneous bacterial peritonitis (SBP). Aim of this study was to examine if this susceptibility was related to peritoneal macrophages' (PMs) altered host defence. Absorbance of phagocytosed particles by PMs from CPs was lower than that of control (31.88% vs. 77.2%). Particle opsonisation increased the absorbance to 41% in CPs' PMs, and this value remains lower than the control; 77.2%. Respiratory burst (RB) was expressed as fluorescence index values, and these were higher in PMs from CPs than in controls (82 vs. 41, 73 vs. 26 and 71 vs. 26). IFN-γ made no further increase of RB values in PMs from CPs. CD14 expression was also higher in CPs' PMs. IFN-γ significantly downregulated CD14 expression in both CPs' PMs and control. Reduced phagocytosis by predominantly CD14-positive PMs from CPs could be related to intense RB. Findings suggest altered host defence that could contribute to susceptibility to SBP. PMID:24371553

  18. Participation of protein kinases in staurosporine-induced interleukin-6 production by rat peritoneal macrophages

    PubMed Central

    Yamaki, Kouya; Ohuchi, Kazuo

    1999-01-01

    The incubation of rat peritoneal macrophages in the presence of staurosporine, a non-specific protein kinase inhibitor, induced interleukin-6 (IL-6) production in a time- and concentration-dependent manner at 6.3–63 nM, but at 210 nM, the stimulant effect on IL-6 production was reduced.The levels of IL-6 mRNA as determined by a reverse transcription-polymerase chain reaction were also increased by staurosporine in parallel with the ability to induce IL-6 production.Compounds structurally related to staurosporine including K-252a (non-specific protein kinase inhibitor) and KT-5720 (inhibitor of cyclic AMP-dependent protein kinase, PKA), did not increase IL-6 production by peritoneal macrophages.Staurosporine-induced increases in IL-6 production and expression of IL-6 mRNA were decreased by the PKC inhibitors, H-7 (2.7–27 μM), Ro 31-8425 (1–10 μM) and calphostin C (0.3–3 μM) and by the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor LY294002 (30–100 μM), but were further increased by the protein tyrosine kinase (PTK) inhibitor, genistein (12–37 μM).The staurosporine-induced increase in IL-6 production was not affected by the PKA inhibitor, H-89 (0.1–3 μM).These findings suggest that the induction of IL-6 production by staurosporine is secondary to elevation of IL-6 mRNA level, which, in turn, is positively regulated by the activation of PKC and PI 3-kinase and negatively regulated by the activation of PTK. PKA does not appear to play a significant role. PMID:10455280

  19. Piroxicam, indomethacin and aspirin action on a murine fibrosarcoma. Effects on tumour-associated and peritoneal macrophages.

    PubMed Central

    Valdéz, J C; Perdigón, G

    1991-01-01

    Growth of a methylcholanthrene-induced fibrosarcoma in BALB/c mice was accompanied by an increase in the activation state of tumour-associated macrophages (TAM), as measured by their FcIgG receptor expression, phagocytic index and beta-glucuronidase levels. All of these parameters were markedly higher in TAM than in peritoneal macrophages (PM) derived from the same animal. On the other hand, PM from tumour-bearing mice showed lower activation parameters than PM from normal animals. We also studied the effect on tumour development of three inhibitors of prostaglandin synthesis: indomethacin, piroxicam and aspirin. Intraperitoneal administration of these drugs during 8 d was followed by the regression of palpable tumours. Indomethacin (90 mg/d) induced 45% regression, while with piroxicam (two 400 mg/d doses and six 200 mg/d doses) and aspirin (1 mg/d) 32% and 30% regressions, respectively, were observed. The growth rate of nonregressing tumours, which had reached different volumes by the end of the treatment, was delayed to a similar extent by the three anti-inflammatory non-steroidal drugs (NSAID). With respect to TAM, the treatment did not induce any significant change in their activation state, though both piroxicam and indomethacin increased slightly the TAM number. In contrast, NSAID administration was followed by a remarkable increase in the activation parameters of PM when compared with PM from tumour-bearing mice receiving no treatment. Indeed, these parameters were in some cases higher than those of PM from normal mice. The leukocytosis (60,000/microliters) with neutrophilia (80%) induced by tumour growth on peripheral blood leukocytes (PBL) was reversed by the treatment to values close to normal, in parallel with the reduction of tumour size. A drop in haematocrit was also noted which was most probably a consequence of tumour growth rather than of the treatment. This study reveals that the three NSAID tested have a remarkable antitumour activity, which

  20. Anti-tissue transglutaminase antibody inhibits apoptotic cell clearance by macrophages in pregnant NOD mice.

    PubMed

    Sóñora, Cecilia; Mourglia-Ettlin, Gustavo; Calo, Guillermina; Hauk, Vanesa; Ramhorst, Rosanna; Hernández, Ana; Leirós, Claudia Pérez

    2014-06-01

    Autoimmunity is a feature of celiac disease (CD) with tissue transglutaminase (tTG) as a major autoantigen. A correlation between gynecological-obstetric disorders in CD patients and the presence of circulating antibodies anti-tTG that inhibited tTG activity was reported. Serum anti-tTG antibodies were detected in a non-obese diabetic (NOD) mouse model of type I insulin-dependent diabetes mellitus and Sjögren's syndrome, two comorbid states with CD. Since pregnancy complications have been described in NOD mice, we evaluated the ability of anti-tTG antibodies to affect the functions of tTG relevant to the normal course of an early pregnancy like extracellular matrix assembling and apoptotic cell phagocytosis by macrophages. Circulating IgG antibodies against tTG were detected in NOD mice with titers that decreased at early pregnancy; interestingly, the in vitro transamidating activity of tTG was reduced by NOD serum samples. Particularly, anti-tTG antibody inhibited apoptotic cell phagocytosis by peritoneal macrophages from pregnant NOD mice that express the enzyme on surface. Evidence provided support for a role for anti-tTG antibodies through reduced transamidating activity and reduced apoptotic cell clearance by the macrophages of pregnant NOD mice. PMID:24377394

  1. Antibacterial Responses by Peritoneal Macrophages Are Enhanced Following Vitamin D Supplementation

    PubMed Central

    Bacchetta, Justine; Chun, Rene F.; Gales, Barbara; Zaritsky, Joshua J.; Leroy, Sandrine; Wesseling-Perry, Katherine; Boregaard, Niels; Rastogi, Anjay; Salusky, Isidro B.; Hewison, Martin

    2014-01-01

    Patients with chronic kidney disease (CKD), who usually display low serum 25-hydroxyvitamin D (25D) and 1,25-dihydroxyvitamin D (1,25D), are at high risk of infection, notably those undergoing peritoneal dialysis (PD). We hypothesized that peritoneal macrophages from PD patients are an important target for vitamin D-induced antibacterial activity. Dialysate effluent fluid was obtained from 27 non-infected PD patients. Flow cytometry indicated that PD cells were mainly monocytic (37.9±17.7% cells CD14+/CD45+). Ex vivo analyses showed that PD cells treated with 25D (100 nM, 6 hrs) or 1,25D (5 nM, 6 hrs) induced mRNA for antibacterial cathelicidin (CAMP) but conversely suppressed mRNA for hepcidin (HAMP). PD cells from patients with peritonitis (n = 3) showed higher baseline expression of CAMP (18-fold±9, p<0.05) and HAMP (64-fold±7) relative to cells from non-infected patients. In 12 non-infected PD patients, oral supplementation with a single dose of vitamin D2 (100,000 IU) increased serum levels of 25D from 18±8 to 41±15 ng/ml (p = 0.002). This had no significant effect on PD cell CD14/CD45 expression, but mRNA for HAMP was suppressed significantly (0.5-fold, p = 0.04). Adjustment for PD cell CD14/CD45 expression using a mixed linear statistical model also revealed increased expression of CAMP (mRNA in PD cells and protein in effluent) in vitamin D-supplemented patients. These data show for the first time that vitamin D supplementation in vitro and in vivo promotes innate immune responses that may enhance macrophage antibacterial responses in patients undergoing PD. This highlights a potentially important function for vitamin D in preventing infection-related complications in CKD. PMID:25549329

  2. Changes in lymphocyte subsets and macrophage functions from high, short-term dietary ethanol in C57/BL6 mice

    SciTech Connect

    Watson, R.R.; Prabhala, R.H.; Abril, E.; Smith, T.L.

    1988-01-01

    Chronic administration of a diet containing 7% ethanol (36% of total calories) for 8 days to male C57/BL6 mice resulted in significant changes in functioning of macrophages. Peritoneal exudate macrophages from the ethanol-fed mice released more tumor cell cytotoxic materials upon culturing in vitro than cells from controls. However, peritoneal exudate cells continued to respond to exogenous beta carotene in vitro to produce additional cytotoxic materials. Phagocytosis of sheep red blood cells in vitro was suppressed in cells from ethanol treated mice. The number of splenic lymphocytes of various subsets was significantly changed by the ethanol exposure. Total T cells and T suppressor cells were lower, with a significant decrease in B cells containing IgM on their surface. The percentage of spleen cells showing markers for macrophage functions and their activation were significantly reduced. It is concluded that short-term chronic consumption of dietary ethanol, which was sufficient to produce physical dependence, results in significant alterations in lymphocyte subtypes and suppression of some macrophage functions.

  3. Amelioration of oxidative DNA damage in mouse peritoneal macrophages by Hippophae salicifolia due to its proton (H+) donation capability: Ex vivo and in vivo studies

    PubMed Central

    Chakraborty, Mainak; Karmakar, Indrajit; Haldar, Sagnik; Das, Avratanu; Bala, Asis; Haldar, Pallab Kanti

    2016-01-01

    Introduction: The present study evaluates the antioxidant effect of methanol extract of Hippophae salicifolia (MEHS) bark with special emphasis on its role on oxidative DNA damage in mouse peritoneal macrophages. Material and Methods: In vitro antioxidant activity was estimated by standard antioxidant assays whereas the antioxidant activity concluded the H+ donating capacity. Mouse erythrocytes’ hemolysis and peritoneal macrophages’ DNA damage were determined spectrophotometrically. In vivo antioxidant activity of MEHS was determined in carbon tetrachloride-induced mice by studying its effect on superoxide anion production in macrophages cells, superoxide dismutase in the cell lysate, DNA damage, lipid peroxidation, and reduces glutathione. Results: The extract showed good in vitro antioxidant activities whereas the inhibitory concentrations values ranged from 5.80 to 106.5 μg/ml. MEHS significantly (P < 0.05) attenuated the oxidative DNA damage. It also attenuated the oxidative conversion of hemoglobin to methemoglobin and elevation of enzymatic and nonenzymatic antioxidant in cells. Conclusion: The result indicates MEHS has good in vitro-in vivo antioxidant property as well as the protective effect on DNA and red blood cell may be due to its H+ donating property. PMID:27413349

  4. Effects of β-endorphin on the production of reactive oxygen species, IL-1β, Tnf-Α, and IL-10 by murine peritoneal macrophages in vivo.

    PubMed

    Gein, S V; Baeva, T A; Nebogatikov, V O

    2016-07-01

    It has been demonstrated that β-endorphin stimulates the zymosan-induced secretion of reactive oxygen species and suppresses the spontaneous production of IL-1β and IL-10 by murine peritoneal macrophages in vivo. PMID:27595832

  5. Modulation of peritoneal macrophage antimicrobial activity by peritoneal dialysis fluid, Ca++, and 1,25(OH)2D3 in CAPD patients.

    PubMed

    Carozzi, S; Nasini, M G; Schelotto, C; Caviglia, P M; Barocci, S; Cantaluppi, A; Salit, M

    1990-01-01

    Previous in vitro studies showed that Ca++ and 1,25(OH)2D3 modulate peritoneal macrophage (PM0) antimicrobial activity in CAPD patients. Twenty-four CAPD patients were evaluated in vivo (12 who had never had peritonitis, and 12 with an overall peritonitis incidence of more than one episode per 8 patient/months), for the effects of different peritoneal dialysis fluids (PDF) and Ca++ concentrations (1.25, 1.75, and 2.25 mmol/L) on PM0: cytoplasmic Ca++ concentration; superoxide generation; leukotriene B4 (LTB4) release; and bacterial killing for Staphylococcus epidermidis. The same parameters were also evaluated after adding 1,25(OH)2D3 (0.25 microgram/L) to the PDF. Results showed a direct correlation between the PDF Ca++ concentration and PM0 Ca++ levels, superoxide and LTB4 generation, and bacterial killing such that, with 2.25 mmol/L of Ca++, these values were significantly higher than those seen with 1.75 mmol/L. The addition of 1,25(OH)2D3 potentiated the Ca(++)-induced effects. On the other hand, with PDF Ca++ levels of 1,25 mmol/L, an inhibition of the aforementioned parameters was seen. However, this effect was reversed by the addition of 1,25(OH)2D3. These in vivo results confirm the importance of Ca++ and 1,25(OH)2D3 in PM0 antibacterial function in CAPD patients, and may be useful in determining the prophylaxis and therapy of peritonitis.

  6. Alpha-D-galactosylation of surface fucoglycoconjugate(s) upon stimulation/activation of murine peritoneal macrophages.

    PubMed

    Petryniak, J

    1992-04-01

    Murine resident macrophages express, on their surface, carbohydrate epitopes which undergo changes during their stimulation/activation as monitored by binding of 125I labelled Evonymus europaea and Griffonia simplicifolia I-B4 lectins. Treatment of the stimulated macrophages with coffee bean alpha-galactosidase abolished binding of the GS I-B4 isolectin and changed the binding pattern of the Evonymus lectin. The affinity (Ka) of Evonymus lectin for alpha-galactosidase-treated macrophages decreased approximately 23-fold, from 1.25 x 10(8) M-1 to 5.5 x 10(6) M-1. Subsequent digestion of alpha-galactosidase-treated macrophages with alpha-L-fucosidase from Trichomonas foetus, further reduced binding of Evonymus lectin. Resident macrophages showed the same pattern of Evonymus lectin binding, with the same affinity, as alpha-galactosidase-treated, stimulated macrophages. These results, together with a consideration of the carbohydrate binding specificity of the Evonymus lectin which, in the absence of alpha-D-galactosyl groups, requires alpha-L-fucosyl groups for binding, indicate the presence, on resident macrophages, of glycoconjugates with terminal alpha-L-fucosyl residues. It is also concluded that during macrophage stimulation/activation alpha-D-galactosyl residues are added to this glycoconjugate and that they form part of the receptor for Evonymus lectin. The same glycoconjugate(s) is/are also expressed on the activated macrophage IC-21 cell line which exhibits the same characteristics as that of stimulated peritoneal macrophages, i.e., it contains alpha-D-galactosyl end groups and is resistant to the action of trypsin. Both lectins were also specifically bound to Corynaebacterium parvum activated macrophages. PMID:1344714

  7. Macrophages regulate corpus luteum development during embryo implantation in mice

    PubMed Central

    Care, Alison S.; Diener, Kerrilyn R.; Jasper, Melinda J.; Brown, Hannah M.; Ingman, Wendy V.; Robertson, Sarah A.

    2013-01-01

    Macrophages are prominent in the uterus and ovary at conception. Here we utilize the Cd11b-Dtr mouse model of acute macrophage depletion to define the essential role of macrophages in early pregnancy. Macrophage depletion after conception caused embryo implantation arrest associated with diminished plasma progesterone and poor uterine receptivity. Implantation failure was alleviated by administration of bone marrow–derived CD11b+F4/80+ monocytes/macrophages. In the ovaries of macrophage-depleted mice, corpora lutea were profoundly abnormal, with elevated Ptgs2, Hif1a, and other inflammation and apoptosis genes and with diminished expression of steroidogenesis genes Star, Cyp11a1, and Hsd3b1. Infertility was rescued by exogenous progesterone, which confirmed that uterine refractoriness was fully attributable to the underlying luteal defect. In normally developing corpora lutea, macrophages were intimately juxtaposed with endothelial cells and expressed the proangiogenic marker TIE2. After macrophage depletion, substantial disruption of the luteal microvascular network occurred and was associated with altered ovarian expression of genes that encode vascular endothelial growth factors. These data indicate a critical role for macrophages in supporting the extensive vascular network required for corpus luteum integrity and production of progesterone essential for establishing pregnancy. Our findings raise the prospect that disruption of macrophage-endothelial cell interactions underpinning corpus luteum development contributes to infertility in women in whom luteal insufficiency is implicated. PMID:23867505

  8. Inhibition of peritoneal dissemination of tumor cells by cationized catalase in mice.

    PubMed

    Hyoudou, Kenji; Nishikawa, Makiya; Kobayashi, Yuki; Mukai, Sakiko; Ikemura, Mai; Kuramoto, Yukari; Yamashita, Fumiyoshi; Hashida, Mitsuru

    2007-05-14

    To inhibit peritoneal dissemination of tumor cells by destroying hydrogen peroxide, ethylenediamine-conjugated catalase (ED-catalase), a cationized derivative, was injected into the peritoneal cavity of mice. ED-catalase had about a 6-fold longer retention time within the cavity than unmodified catalase. Peritoneal dissemination was evaluated after intraperitoneal inoculation of B16-BL6/Luc, a melanoma clone stably expressing firefly luciferase, by measuring luciferase activity. An intraperitoneal injection of ED-catalase just before tumor inoculation significantly reduced the number of tumor cells in peritoneal organs. Catalase was less effective, confirming the importance of the retention of the enzyme within the cavity for the inhibition. ED-catalase injected 3 days after tumor inoculation was also effective in inhibiting tumor growth. A real-time quantitative PCR analysis revealed that ED-catalase significantly suppressed the expression of intercellular adhesion molecule-1. Daily dosing of ED-catalase for 7 days significantly prolonged the survival of tumor-bearing mice. These findings indicate that ED-catalase, which is retained for a long time within the peritoneal cavity, is highly effective in inhibiting the adhesion and proliferation of peritoneally disseminated tumor cells, and in increasing the survival of tumor-bearing mice. PMID:17382424

  9. Citral and eugenol modulate DNA damage and pro-inflammatory mediator genes in murine peritoneal macrophages.

    PubMed

    Porto, Marilia de Paula; da Silva, Glenda Nicioli; Luperini, Bruno Cesar Ottoboni; Bachiega, Tatiana Fernanda; de Castro Marcondes, João Paulo; Sforcin, José Maurício; Salvadori, Daisy Maria Fávero

    2014-11-01

    Citral and eugenol have been broadly studied because of their anti-inflammatory, antioxidant and antiparasitic potentials. In this study, the effects of citral (25, 50 and 100 µg/mL) and eugenol (0.31, 0.62, 1.24 and 2.48 µg/mL) on the expression (RT-PCR) of the pro-inflammatory mediator genes NF-κB1, COX-2 and TNF-α were evaluated in mouse peritoneal macrophages with or without activation by a bacterial lipopolysaccharide (LPS). Additionally, the genotoxic potentials of two compounds and their capacities to modulate the DNA damage induced by doxorubicin (DXR) were investigated using the comet assay. The data revealed that neither citral nor eugenol changed COX-2, NF-κB1 or TNF-α expression in resting macrophages. However, in LPS-activated cells, citral induced the hypoexpression of COX-2 (100 µg/mL) and TNF-α (50 and 100 µg/mL). Hypoexpression of TNF-α was also detected after cellular exposure to eugenol at the highest concentration (2.48 µg/mL). Both compounds exhibited genotoxic potential (citral at 50 and 100 µg/mL and eugenol at all concentrations) but also showed chemopreventive effects, in various treatment protocols. Both citral and eugenol might modulate inflammatory processes and DXR-induced DNA damage, but the use of these compounds must be viewed with caution because they are also able to induce primary DNA lesions.

  10. Pentamethoxyflavanone regulates macrophage polarization and ameliorates sepsis in mice.

    PubMed

    Feng, Lili; Song, Pingping; Zhou, Hang; Li, Ang; Ma, Yuxiang; Zhang, Xiong; Liu, Hailiang; Xu, Ge; Zhou, Yang; Wu, Xuefeng; Shen, Yan; Sun, Yang; Wu, Xudong; Xu, Qiang

    2014-05-01

    Macrophages, owning variable phenotypes and diverse functions, were becoming the target cells in inflammatory, infectious and autoimmune diseases. In the present study, we evaluated the effect of 5,7,3',4',5'-pentamethoxyflavanone (abbreviated as PMFA), a kind of flavonoid, on macrophage polarization, and investigated the underlying mechanism. We found that PMFA significantly inhibited M1 macrophage polarization and diminished the proinflammatory cytokines, meanwhile it greatly enhanced M2 macrophage related molecules. Moreover, PMFA facilitated the phenotype shift from M1 to M2. However, PMFA only slightly inhibited the activation of T and B cells. Further researches showed that the mechanisms can be attributed to PMFA's down-regulation on p-STAT1 and up-regulation on p-STAT6, the pivotal regulatory molecules for M1 and M2 polarization, respectively. In addition, PMFA ameliorated LPS- and cecal ligation and puncture (CLP)-induced sepsis in mice, as assessed by the raise of survival rate, descend of tissue damage and bronchoalveolar lavage fluid (BALF) cytokines. PMFA significantly decreased the expression of IL-1β, IL-6 and TNF-α and reduced the infiltration of M1 macrophages in lung. As expected, adoptive transfer of PMFA-pretreated M1 macrophages significantly increased survival rate of LPS-challenged mice compared with control mice. Taken together, the results indicate that PMFA regulates macrophage polarization via targeting the STAT1/STAT6 signals and its potential use in treatment of inflammatory disease.

  11. SIGNR1 ligation on murine peritoneal macrophages induces IL-12 production through NFkappaB activation.

    PubMed

    Kato, Chiaki; Kojima, Naoya

    2010-07-01

    We have previously shown that murine resident peritoneal macrophages (PEMs) are activated in response to uptake of oligomannose-coated liposomes (OMLs), leading to production of interleukin (IL)-12. To understand the mechanism of activation of PEMs by OMLs, in the present study we investigated the role of a mannose-binding C-type lectin receptor, SIGNR1, in production of proinflammatory cytokines by PEMs, in which SIGNR1 acts as a physiological receptor for OMLs. Engagement of SIGNR1 on PEMs with an anti-SIGNR1-specific rat IgM antibody, ERTR9, induced production of IL-12 and tumor necrosis factor (TNF)-alpha from PEMs, while secretion of IL-6 and IL-1beta was not detected with the same treatment. The level of phosphorylated IkappaB kinase in PEMs also increased in response to ERTR9 treatment of the cells. Treatment of PEMs with a specific nuclear factor kappa-B (NFkappaB) inhibitor, BAY11-7082, reduced ERTR9-dependent IL-12 production. Intraperitoneal treatment with BAY11-7082 also led to reduction of subsequent OML-induced IL-12 production from PEMs. These results indicate that SIGNR1-mediated intercellular signaling may induce production of cytokines such as IL-12 through NFkappaB activation.

  12. Adherence of Salmonella typhimurium to murine peritoneal macrophages is mediated by lipopolysaccharide and complement receptors.

    PubMed

    al-Bahry, S N; Pistole, T G

    1997-06-01

    Adherence of Salmonella typhimurium to mouse peritoneal macrophages (Mø) was monitored using a direct microscopic assay and flow cytometry. Competitive binding studies using wild-type lipopolysaccharide and derivatives confirmed a role for this moiety in bacterial adherence. Mø pretreated with 2-deoxy-D-glucose exhibited lower binding activity than did untreated controls, suggesting involvement of either Fc or complement receptors. Pre-exposing Mø to Fc fragments, however, failed to reduce bacterial binding, thus eliminating a role for Fc receptors in this process. Mø pretreated with neutrophil elastase exhibited a diminished ability to bind S. typhimurium, suggesting involvement of complement receptor 1. Monoclonal antibodies M1/70 and M18/2, specific for epitopes on the alpha and beta chains, respectively, of complement receptor 3, also blocked this adherence. In each case we were unable to eliminate completely bacterial adhesion to Mø. Monoclonal antibodies to two additional Mø receptors, Mac-2 and Mac-3, did not block bacterial attachment. These data indicate that multiple mechanisms are involved in the initial adhesion of S. typhimurium to mouse Mø.

  13. Correlation of Surface Toll-Like Receptor 9 Expression with IL-17 Production in Neutrophils during Septic Peritonitis in Mice Induced by E. coli

    PubMed Central

    Ren, Yunjia; Hao, Xu; Zhao, Peiyan; Yu, Yongli; Wang, Liying

    2016-01-01

    IL-17 is a proinflammatory cytokine produced by various immune cells. Polymorphonuclear neutrophils (PMNs) are the first line of defense in bacterial infection and express surface Toll-like receptor 9 (sTLR9). To study the relationship of sTLR9 and IL-17 in PMNs during bacterial infection, we infected mice with E. coli intraperitoneally to establish a septic peritonitis model for studying the PMNs response in peritoneal cavity. We found that PMNs and some of “giant cells” were massively accumulated in the peritoneal cavity of mice with fatal septic peritonitis induced by E. coli. Kinetically, the CD11b+ PMNs were increased from 20–40% at 18 hours to >80% at 72 hours after infection. After E. coli infection, sTLR9 expression on CD11b+ and CD11b− PMNs and macrophages in the PLCs were increased at early stage and deceased at late stage; IL-17 expression was also increased in CD11b+ PMNs, CD11b− PMNs, macrophages, and CD3+ T cells. Using experiments of in vitro blockage, qRT-PCR and cell sorting, we confirmed that PMNs in the PLCs did increase their IL-17 expression during E. coli infection. Interestingly, sTLR9−CD11b+Ly6G+ PMNs, not sTLR9+CD11b+Ly6G+ PMNs, were found to be able to increase their IL-17 expression. Together, the data may help understand novel roles of PMNs in septic peritonitis. PMID:27057095

  14. Isolation and culture of murine macrophages.

    PubMed

    Davies, John Q; Gordon, Siamon

    2005-01-01

    The two most convenient sources of primary murine macrophages are the bone marrow and the peritoneal cavity. Resident peritoneal macrophages can readily be harvested from mice and purified by adherence to tissue culture plastic. The injection of Bio-Gel polyacrylamide beads or thioglycollate broth into the peritoneal cavity produces an inflammatory response allowing the purification of large numbers of elicited macrophages. The production of an activated macrophage population can be achieved by using Bacillus-Calmette-Guerin as the inflammatory stimulus. Resident bone marrow macrophages can be isolated following enzymatic separation of cells from bone marrow plugs and enrichment on 30% fetal calf serum containing medium or Ficoll-Hypaque gradients. Bone marrow-derived macrophages can be produced by differentiating nonadherent macrophage precursors with medium containing macrophage colony-stimulating factor.

  15. MicroRNA-223 Induced Repolarization of Peritoneal Macrophages Using CD44 Targeting Hyaluronic Acid Nanoparticles for Anti-Inflammatory Effects

    PubMed Central

    Tran, Thanh-Huyen; Krishnan, Swathi; Amiji, Mansoor M.

    2016-01-01

    The aim of this study was to evaluate macrophages repolarization from pro-inflammatory M1 to anti-inflammatory M2 phenotype upon transfection with microRNA-223 (miR-223) duplexes and miR-223 expressing plasmid DNA encapsulated in CD44-targeting hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/miR-223 NPs with spherical shape and an average diameter of 200 nm were efficiently internalized by J774A.1 alveolar and primary peritoneal macrophages and non-cytotoxic at HA-PEI concentration less than 200 μg/mL. Transfection of HA-PEI/miR-223 NPs in J774A.1 macrophages showed significantly higher miR-223 expression than that with HA-PEI/plasmid DNA expressing miR-223 (pDNA-miR-223). HA-PEI/miR-223 NPs mediated transfection increased miR-223 expression to 90 fold in primary peritoneal macrophages compared to untreated cells. The overexpression of miR-223 in both J774A.1 and peritoneal macrophages induced a phenotypic change from M1 to M2 state as indicated by a decrease in iNOS-2 (M1 marker) and an increase in Arg-1 (M2 marker) levels compared to those in lipopolysaccharide (LPS) and interferon-gamma (IFN-γ)-stimulated macrophages (M1). The change in macrophage phenotype by HA-PEI/miR-223 NPs could suppress the inflammation in peritoneal macrophages induced by LPS as evidenced by a significant decrease in pro-inflammatory cytokine levels TNF-α, IL-1β and IL-6, compared to LPS-stimulated peritoneal macrophages without treatment. The results demonstrated that miR-223-encapsulated HA-PEI NPs modulated macrophage polarity toward an anti-inflammatory M2 phenotype, which has potential for the treatment of inflammatory diseases. PMID:27148749

  16. Effects of Macrophage Depletion on Sleep in Mice.

    PubMed

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  17. Effects of Macrophage Depletion on Sleep in Mice

    PubMed Central

    Ames, Conner; Boland, Erin; Szentirmai, Éva

    2016-01-01

    The reciprocal interaction between the immune system and sleep regulation has been widely acknowledged but the cellular mechanisms that underpin this interaction are not completely understood. In the present study, we investigated the role of macrophages in sleep loss- and cold exposure-induced sleep and body temperature responses. Macrophage apoptosis was induced in mice by systemic injection of clodronate-containing liposomes (CCL). We report that CCL treatment induced an immediate and transient increase in non-rapid-eye movement sleep (NREMS) and fever accompanied by decrease in rapid-eye movement sleep, motor activity and NREMS delta power. Chronically macrophage-depleted mice had attenuated NREMS rebound after sleep deprivation compared to normal mice. Cold-induced increase in wakefulness and decrease in NREMS, rapid-eye movement sleep and body temperature were significantly enhanced in macrophage-depleted mice indicating increased cold sensitivity. These findings provide further evidence for the reciprocal interaction among the immune system, sleep and metabolism, and identify macrophages as one of the key cellular elements in this interplay. PMID:27442442

  18. Green brazilian propolis action on macrophages and lymphoid organs of chronically stressed mice.

    PubMed

    Missima, Fabiane; Sforcin, José Maurício

    2008-03-01

    Stress is a generic term that summarizes how psychosocial and environmental factors influence physical and mental well-being. The interaction between stress and immunity has been widely investigated, involving the neuroendocrine system and several organs. Assays using natural products in stress models deserve further investigation. Propolis immunomodulatory action has been mentioned and it has been the subject of scientific investigation in our laboratory. The aim of this study was to evaluate if and how propolis activated macrophages in BALB/c mice submitted to immobilization stress, as well as the histopathological analysis of the thymus, bone marrow, spleen and adrenal glands. Stressed mice showed a higher hydrogen peroxide (H(2)O(2)) generation by peritoneal macrophages, and propolis treatment potentiated H(2)O(2) generation and inhibited nitric oxide (NO) production by these cells. Histopathological analysis showed no alterations in the thymus, bone marrow and adrenal glands, but increased germinal centers in the spleen. Propolis treatment counteracted the alterations found in the spleen of stressed mice. New research is being carried out in order to elucidate propolis immunomodulatory action during stress. PMID:18317551

  19. Posttranscriptional Suppression of Lipopolysaccharide-Stimulated Inflammatory Responses by Macrophages in Middle-Aged Mice: A Possible Role for Eukaryotic Initiation Factor 2 α.

    PubMed

    Shirato, Ken; Imaizumi, Kazuhiko

    2014-01-01

    The intensities of macrophage inflammatory responses to bacterial components gradually decrease with age. Given that a reduced rate of protein synthesis is a common age-related biochemical change, which is partially mediated by increased phosphorylation of eukaryotic initiation factor-2 α (eIF-2 α ), we investigated the mechanism responsible for the deterioration of macrophage inflammatory responses, focusing specifically on the age-related biochemical changes in middle-aged mice. Peritoneal macrophages isolated from 2-month-old (young) and 12-month-old (middle-aged) male BALB/c mice were stimulated with lipopolysaccharide (LPS). Although LPS-stimulated secretion of tumor necrosis factor- α (TNF- α ) by the macrophages from middle-aged mice was significantly lower than that from young mice, LPS caused marked increases in levels of TNF- α mRNA in macrophages from middle-aged as well as young mice. Moreover, LPS evoked similar levels of phosphorylation of c-Jun N-terminal kinase (JNK) and nuclear factor- κ B (NF- κ B) in young and middle-aged mice. In contrast, the basal level of phosphorylated eIF-2 α in macrophages from middle-aged mice was higher than that in macrophages from young mice. Salubrinal, an inhibitor of the phosphatase activity that dephosphorylates eIF-2 α , suppressed the LPS-stimulated inflammatory responses in a murine macrophage cell line RAW264.7. These results suggest that posttranscriptional suppression of macrophage inflammatory responses during middle age requires phosphorylation of eIF-2 α . PMID:24808968

  20. Lactobacillus plantarum CLP-0611 ameliorates colitis in mice by polarizing M1 to M2-like macrophages.

    PubMed

    Jang, Se-Eun; Han, Myung Joo; Kim, Se-Young; Kim, Dong-Hyun

    2014-07-01

    The TNF-α expression-inhibitory effect of lactic acid bacteria (LAB) isolated from kimchi were measured in lipopolysaccharide (LPS)-stimulated peritoneal macrophages. Among the LAB evaluated, Lactobacillus plantarum CLP-0611 inhibited the IL-1β and IL-6 expression, as well as the NF-κB and AP1 activation in LPS-stimulated peritoneal macrophages. Therefore, we investigated its inhibitory effect on 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. TNBS significantly induced colon shortening, as well as myeloperoxidase activity and macroscopic score. Oral administration of CLP-0611 significantly reduced TNBS-induced body weight loss, colon shortening, myeloperoxidase activity, IRAK-1 phosphorylation, NF-κB and MAP kinase (p38, ERK, JNK) activation, and iNOS and COX-2 expression. CLP-0611 also inhibited TNBS-induced expression of TNF-α, IL-1β, and IL-6. However, IL-10 expression was induced. CLP-0611 also induced the production of M2 macrophage markers (IL-10, arginase I and CD206). Based on these findings, CLP-0611 inhibits TLR-4-linked NF-κB and MAPK signaling pathways and polarizes M1 to M2-like macrophages, thus ameliorating colitis.

  1. Abdominal Distension and Escherichia coli Peritonitis in Mice Lacking Myeloid Differentiation Factor 88.

    PubMed

    Johnson, Linda K; Widi, Antin Yn; Rowarth, Serrin; Baxter, Alan G

    2015-04-01

    Here we describe the gross and microscopic findings of naturally occurring, β-hemolytic Escherichia coli peritonitis in B6.129-Myd88(tm1Aki) male and female mice. Over approximately 5 mo, 10 homozygous mutant mice deficient in myeloid differentiation factor 88 (C57BL/6 strain; male and female) that had not been used in research protocols developed rapid-onset abdominal swelling associated with copious viscous ascites. Each mouse developed an anterior peritonitis, primarily involving the parietal peritoneum and the visceral surface of the spleen, liver, diaphragm, and stomach. Inflammation was confined to the organ surfaces, with no indication of septicemia or grossly apparent gastrointestinal perforation or other tissue compromise that would initiate peritonitis. Peritonitis was likely attributable to compromised antibacterial innate immunity; cohoused, similarly immunodeficient littermates did not develop similar clinical signs. An unusual finding in all cases was mesothelial cell hyperplasia and hypertrophy. Although the underlying innate immune deficiency accounts for much of the observed pathology, the remarkable mesothelial cell morphology and the episodic nature of the peritonitis in some littermates and not others remain unexplained.

  2. Macrophage-specific expression of human apolipoprotein E reduces atherosclerosis in hypercholesterolemic apolipoprotein E-null mice.

    PubMed Central

    Bellosta, S; Mahley, R W; Sanan, D A; Murata, J; Newland, D L; Taylor, J M; Pitas, R E

    1995-01-01

    apoE deficiency causes hyperlipidemia and premature atherosclerosis. To determine if macrophage-specific expression of apoE would decrease the extent of atherosclerosis, we expressed human apoE in macrophages of apoE-null mice (apoE-/-) and assessed the effect on lipid accumulation in cells of the arterial wall. Macrophage-specific expression of human apoE in normal mice was obtained by use of the visna virus LTR. These animals were bred with apoE-/- mice to produce animals hemizygous for expression of human apoE in macrophages in the absence of murine apoE (apoE-/-,hTgE+/0). Low levels of human apoE mRNA were present in liver and spleen and high levels in lung and peritoneal macrophages. Human apoE was secreted by peritoneal macrophages and was detected in Kupffer cells of the liver. Human apoE in the plasma of apoE-/-,hTgE+/0 mice (n = 30) was inversely correlated (P < 0.005) with the plasma cholesterol concentration. After 15 wk on a normal chow diet, atherosclerosis was assessed in apoE-/-,hTgE+/0 animals and in apoE-/-,hTgE0/0 littermates matched for plasma cholesterol level (approximately 450 mg/dl) and lipoprotein profile. There was significantly less atherosclerosis in both the aortic sinus and in the proximal aorta (P < 0.0001) in the animals expressing the human apoE transgene. In apo-E-/-,hTgE+/0 animals, which had detectable atherosclerotic lesions, human apoE was detected in the secretory apparatus of macrophage-derived foam cells in the arterial wall. The data demonstrate that expression of apoE by macrophages is antiatherogenic even in the presence of high levels of atherogenic lipoproteins. The data suggest that apoE prevents atherosclerosis by promoting cholesterol efflux from cells of the arterial wall. Images PMID:7593602

  3. Expression of the Homeobox Gene HOXA9 in Ovarian Cancer Induces Peritoneal Macrophages to Acquire an M2 Tumor-Promoting Phenotype

    PubMed Central

    Ko, Song Yi; Ladanyi, Andras; Lengyel, Ernst; Naora, Honami

    2015-01-01

    Tumor-associated macrophages (TAMs) exhibit an M2 macrophage phenotype that suppresses anti-tumor immune responses and often correlates with poor outcomes in patients with cancer. Patients with ovarian cancer frequently present with peritoneal carcinomatosis, but the mechanisms that induce naïve peritoneal macrophages into TAMs are poorly understood. In this study, we found an increased abundance of TAMs in mouse i.p. xenograft models of ovarian cancer that expressed HOXA9, a homeobox gene that is associated with poor prognosis in patients with ovarian cancer. HOXA9 expression in ovarian cancer cells stimulated chemotaxis of peritoneal macrophages and induced macrophages to acquire TAM-like features. These features included induction of the M2 markers, CD163 and CD206, and the immunosuppressive cytokines, IL-10 and chemokine ligand 17, and down-regulation of the immunostimulatory cytokine, IL-12. HOXA9-mediated induction of TAMs was primarily due to the combinatorial effects of HOXA9-induced, tumor-derived transforming growth factor-β2 and chemokine ligand 2 levels. High HOXA9 expression in clinical specimens of ovarian cancer was strongly associated with increased abundance of TAMs and intratumoral T-regulatory cells and decreased abundance of CD8+ tumor-infiltrating lymphocytes. Levels of immunosuppressive cytokines were also elevated in ascites fluid of patients with tumors that highly expressed HOXA9. HOXA9 may, therefore, stimulate ovarian cancer progression by promoting an immunosuppressive microenvironment via paracrine effects on peritoneal macrophages. PMID:24332016

  4. Novel anti-inflammatory chalcone derivatives inhibit the induction of nitric oxide synthase and cyclooxygenase-2 in mouse peritoneal macrophages.

    PubMed

    Herencia, F; Ferrándiz, M L; Ubeda, A; Guillén, I; Dominguez, J N; Charris, J E; Lobo, G M; Alcaraz, M J

    1999-06-18

    In a previous work, we tested a series of chalcone derivatives as possible anti-inflammatory compounds. We now investigate the effects of three of those compounds, CHI, CH8 and CH12, on nitric oxide and prostanoid generation in mouse peritoneal macrophages stimulated with lipopolysaccharide and in the mouse air pouch injected with zymosan, where they showed a dose-dependent inhibition with inhibitory concentration 50% values in the microM range. This effect was not the consequence of a direct inhibitory action on enzyme activities. Our results demonstrated that chalcone derivatives inhibited de novo inducible nitric oxide synthase and cyclooxygenase-2 synthesis, being a novel therapeutic approach for inflammatory diseases.

  5. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease. PMID:27240856

  6. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    PubMed

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease.

  7. HJB-1, a 17-hydroxy-jolkinolide B derivative, inhibits LPS-induced inflammation in mouse peritoneal macrophages.

    PubMed

    Pan, Lei-Chang; Xu, Xiao-Han; Zhang, Na-Na; Liu, Ning; Wu, Dong-Lin; Wang, Yang; Peng, Qi-Sheng; Vandenplas, Michel; Wang, Hong-Bing; Sun, Wan-Chun

    2014-08-01

    Jolkinolide B (JB) and 17-hydroxy-JB (HJB) are diterpenoids from plants and it has been reported that the presence of a C-17 hydroxy group in JB significantly enhances the anti-inflammatory potency of JB. In this study, two HJB derivatives HJB-1 and HJB-2 were generated by the chemical modification of a 17-hydroxy group of HJB. HJB-1 more effectively inhibited TNF-α, IL-1β and IL-6 release in LPS-stimulated mouse peritoneal macrophages. In addition, HJB-1 reduced LPS-induced mRNA expression of TNF-α, IL-1β, IL-6, COX-2 and iNOS in a concentration-dependent manner, but did not alter IL-10 mRNA expression. LPS-induced NF-κB activation and MAPK phosphorylation were also effectively inhibited by HJB-1. These results demonstrate that HJB-1 exerts anti-inflammatory effects on LPS-activated mouse peritoneal macrophages by inhibiting NF-κB activation and MAPK phosphorylation and modification of a 17-hydroxy group of HJB may enhance the anti-inflammatory potency of HJB derivatives.

  8. Macrophage function in alloxan diabetic mice: expression of adhesion molecules, generation of monokines and oxygen and NO radicals

    PubMed Central

    Ptak, W; Klimek, M; Bryniarski, K; Ptak, M; Majcher, P

    1998-01-01

    The increased incidence of bacterial and mycotic infections in poorly controlled diabetic patients or animals is frequently attributed to impaired activities of professional phagocytes (granulocytes, macrophages) in hypoinsulinaemic milieu. We measured production of monokines (IL-6 and tumour necrosis factor-alpha (TNF-α)), active NO and reactive oxygen intermediates (ROIs), as well as expression of several cell surface adhesion molecules (Mac-1, -2 and -3, intercellular adhesion molecule-1 (ICAM-1) and FcγRII), by thioglycollate medium-induced peritoneal macrophages of normoglycaemic and alloxan diabetic CBA/J mice (blood glucose level in the range 300 or 500 mg/dl). Macrophages of animals with moderate diabetes (300 mg/dl) produced significantly more IL-6 and TNF-α and ROIs than cells of control mice and showed an increased expression of all cell surface molecules, except Mac-3. NO/NO2 production was not affected. Administration of insulin restored enhanced values to normal levels, except for the production of ROIs which remained unusually high. We conclude that two separate mechanisms influence macrophage physiology in diabetes—lack of saturation of insulin receptors on macrophages and an indirect effect due to formation of advanced glycosylation endproducts (AGE) on their surfaces. The latter is possibly responsible for increased generation of ROIs, since it cannot be down-regulated by prolonged insulin treatment. How the increased activity of macrophages of moderately diabetic mice (enhanced production of proinflammatory monokines and oxygen radicals as well as expression of molecules) is related to their ability to kill bacteria is now under investigation. PMID:9764597

  9. [The effect of products of plant and microbial origin on phagocytic function and on the release of oxygen free radicals by mouse peritoneal macrophages].

    PubMed

    Dolganiuc, A; Radu, L D; Olinescu, A

    1997-01-01

    The effect of in vivo stimulation with an aqueous extract obtained from roots of Symphytum officinale and Cantastim on mouse peritoneal macrophages was investigated. The results obtained showed that these products initially activated the respiratory burst of the cells and later inhibited it, activating the synthesis of catalase, SOD etc. These data suggest that macrophages challenged by various ingested antigens destroy them initially through oxygen dependent mechanisms and later through enzymatic digestion in order to retain unimpaired their epitopes. PMID:9235147

  10. Enzymatically-Processed Wheat Bran Enhances Macrophage Activity and Has in Vivo Anti-Inflammatory Effects in Mice

    PubMed Central

    Kang, Hee; Lee, Mi-Gi; Lee, Jae-Kang; Choi, Yong-Hyun; Choi, Yong-Seok

    2016-01-01

    Wheat bran is a rich source of dietary fiber, of which arabinoxylan is the most abundant non-starch polysaccharide. Arabinoxylan has been known to exert in vivo immunological activities. Based on prior findings, we pretreated wheat bran with enzymatic hydrolysis to increase the release of soluble arabinoxylan and investigated whether oral administration of wheat bran altered macrophage activity in a mouse model. After four weeks of treatment, we isolated peritoneal macrophages for phagocytic receptor analysis and lipopolysaccharide (LPS)-induced inflammatory changes. In the second experiment, mice given wheat bran were intraperitoneally stimulated with LPS and serum levels of pro- and anti-inflammatory cytokines were determined. The expression of SRA and CD36, and phagocytic activity increased (p < 0.05, respectively). Ex vivo stimulation of macrophages by LPS resulted in reduced surface expression of CD40 (p < 0.05) and decreased production of nitric oxide (p < 0.005), tumor necrosis factor (TNF)-α (p < 0.005), interleukin (IL)-6 (p < 0.01), and IL-12 (p < 0.05). Mice treated with wheat bran showed decreased levels of serum TNF-α and IL-6 (p < 0.05, respectively) and an increased level of serum anti-inflammatory IL-10 (p < 0.05) in response to intraperitoneal LPS. Enzymatically-processed wheat bran boosts macrophage phagocytic capacity possibly through up-regulation of scavenger receptors and confers anti-inflammatory effects, indicating its potential as an immuno-enhancing functional food. PMID:27043618

  11. Selective Blocking of TNF Receptor 1 Attenuates Peritoneal Dialysis Fluid Induced Inflammation of the Peritoneum in Mice

    PubMed Central

    Kälble, Florian; Damaske, Janine; Heide, Danijela; Arnold, Iris; Richter, Fabian; Maier, Olaf; Eisel, Ulrich; Scheurich, Peter; Pfizenmaier, Klaus; Zeier, Martin; Schwenger, Vedat; Ranzinger, Julia

    2016-01-01

    Chronic inflammatory conditions during peritoneal dialysis (PD)-treatment lead to the impairment of peritoneal tissue integrity. The resulting structural and functional reorganization of the peritoneal membrane diminishes ultrafiltration rate and thereby enhances mortality by limiting dialysis effectiveness over time. Tumour necrosis factor (TNF) and its receptors TNFR1 and TNFR2 are key players during inflammatory processes. To date, the role of TNFR1 in peritoneal tissue damage during PD-treatment is completely undefined. In this study, we used an acute PD-mouse model to investigate the role of TNFR1 on structural and morphological changes of the peritoneal membrane. TNFR1-mediated TNF signalling in transgenic mice expressing human TNFR1 was specifically blocked by applying a monoclonal antibody (H398) highly selective for human TNFR1 prior to PD-treatment. Cancer antigen-125 (CA125) plasma concentrations were measured by enzyme-linked immunosorbent assay (ELISA). Western blot analyses were applied to determine TNFR2 protein concentrations. Histological staining of peritoneal tissue sections was performed to assess granulocytes within the peritoneal membrane as well as the content of hyaluronic acid and collagen. We show for the first time that the number of granulocytes within the peritoneal membrane is significantly reduced in mice pre-treated with H398. Moreover, we demonstrate that blocking of TNFR1 not only influences CA125 values but also hyaluronic acid and collagen contents of the peritoneal tissue in these mice. These results strongly suggest that TNFR1 inhibition attenuates peritoneal damage caused by peritoneal dialysis fluid (PDF) and therefore may represent a new therapeutic approach in the treatment of PD-related side effects. PMID:27755542

  12. Suppression of developmental anomalies by maternal macrophages in mice

    SciTech Connect

    Nomura, T.; Hata, S.; Kusafuka, T. )

    1990-11-01

    We tested whether nonspecific tumoricidal immune cells can suppress congenital malformations by killing precursor cells destined to cause such defects. Pretreatment of pregnant ICR mice with synthetic (Pyran copolymer) and biological (Bacillus Calmette-Guerin) agents significantly suppressed radiation- and chemical-induced congenital malformations (cleft palate, digit anomalies, tail anomalies, etc.). Such suppressive effects were associated with the activation of maternal macrophages by these agents, but were lost either after the disruption of activated macrophages by supersonic waves or by inhibition of their lysosomal enzyme activity with trypan blue. These results indicate that a live activated macrophage with active lysosomal enzymes can be an effector cell to suppress maldevelopment. A similar reduction by activated macrophages was observed in strain CL/Fr, which has a high spontaneous frequency of cleft lips and palates. Furthermore, Pyran-activated maternal macrophages could pass through the placenta, and enhanced urethane-induced cell killing (but not somatic mutation) in the embryo. It is likely that a maternal immunosurveillance system eliminating preteratogenic cells allows for the replacement with normal totipotent blast cells during the pregnancy to protect abnormal development.

  13. Protective effect of recombinant murine granulocyte-macrophage colony-stimulating factor against Pseudomonas aeruginosa infection in leukocytopenic mice.

    PubMed Central

    Tanaka, T.; Okamura, S.; Okada, K.; Suga, A.; Shimono, N.; Ohhara, N.; Hirota, Y.; Sawae, Y.; Niho, Y.

    1989-01-01

    The effects of recombinant murine granulocyte-macrophage colony-stimulating factor (rmGM-CSF) against Pseudomonas aeruginosa infection in ICR mice were investigated. Mice were treated with cyclophosphamide (CPA) and were then injected intraperitoneally with rmGM-CSF three times daily, beginning on the day after CPA treatment, for 7 days. The number of peripheral blood leukocytes in both CPA- and rmGM-CSF-treated mice and control CPA-treated mice reached a nadir on day 4, when P. aeruginosa was injected intraperitoneally. The administration of rmGM-CSF significantly increased the proportion of survivors among mice infected with a lethal dose of P. aeruginosa. This effect was further analyzed by monitoring sequential changes in leukocyte count and bacterial growth in various organs. The number of bacteria in the peritoneal cavities, peripheral blood samples, and livers of GM-CSF-treated mice decreased to an undetectable level after a transient increase, and the number was significantly lower than that in control mice. In GM-CSF-treated mice, the neutrophil levels in peripheral blood started to increase 5 days after CPA administration and were consistently higher than those in controls. Furthermore, the neutrophils in GM-CSF-treated mice were more mature morphologically. Thus, the prophylactic effect of rmGM-CSF against P. aeruginosa infection may result from a rapid recovery of myelopoiesis and a partial enhancement of mature neutrophil function. PMID:2656523

  14. Immunogenicity of recombinant feline infectious peritonitis virus spike protein in mice and kittens.

    PubMed

    Vennema, H; de Groot, R J; Harbour, D A; Dalderup, M; Gruffydd-Jones, T; Horzinek, M C; Spaan, W J

    1990-01-01

    The gene encoding the fusogenic spike protein of the coronavirus causing feline infectious peritonitis (FIPV) was recombined into the genome of vaccinia virus, strain WR. The recombinant induced spike protein specific, in vitro neutralizing antibodies in mice. When kittens were immunized with the recombinant, low titers of neutralizing antibodies were obtained. After challenge with FIPV, these animals succumbed earlier than the vWR-immunized control group ("early death syndrome").

  15. Inflammation and adipose tissue macrophages in lipodystrophic mice.

    PubMed

    Herrero, Laura; Shapiro, Hagit; Nayer, Ali; Lee, Jongsoon; Shoelson, Steven E

    2010-01-01

    Lipodystrophy and obesity are opposites in terms of a deficiency versus excess of adipose tissue mass, yet these conditions are accompanied by similar metabolic consequences, including insulin resistance, dyslipidemia, hepatic steatosis, and increased risk for diabetes and atherosclerosis. Hepatic and myocellular steatosis likely contribute to metabolic dysregulation in both states. Inflammation and macrophage infiltration into adipose tissue also appear to participate in the pathogenesis of obesity-induced insulin resistance, but their contributions to lipodystrophy-induced insulin resistance have not been evaluated. We used aP2-nSREBP-1c transgenic (Tg) mice, an established model of lipodystrophy, to ask this question. Circulating cytokine elevations suggested systemic inflammation but even more dramatic was the number of infiltrating macrophages in all white and brown adipose tissue depots of the Tg mice; in contrast, there was no evidence of inflammatory infiltrates or responses in any other tissue including liver. Despite there being overt evidence of adipose tissue inflammation, antiinflammatory strategies including salicylate treatment and genetic suppression of myeloid NF-kappaB signaling that correct insulin resistance in obesity were ineffective in the lipodystrophic mice. We further showed that adipose tissue macrophages (ATMs) in lipodystrophy and obesity are very different in terms of activation state, gene expression patterns, and response to lipopolysaccharide. Although ATMs are even more abundant in lipodystrophy than in obesity, they have distinct phenotypes and likely roles in tissue remodeling, but do not appear to be involved in the pathogenesis of insulin resistance.

  16. Inflammation and adipose tissue macrophages in lipodystrophic mice

    PubMed Central

    Herrero, Laura; Shapiro, Hagit; Nayer, Ali; Lee, Jongsoon; Shoelson, Steven E.

    2009-01-01

    Lipodystrophy and obesity are opposites in terms of a deficiency versus excess of adipose tissue mass, yet these conditions are accompanied by similar metabolic consequences, including insulin resistance, dyslipidemia, hepatic steatosis, and increased risk for diabetes and atherosclerosis. Hepatic and myocellular steatosis likely contribute to metabolic dysregulation in both states. Inflammation and macrophage infiltration into adipose tissue also appear to participate in the pathogenesis of obesity-induced insulin resistance, but their contributions to lipodystrophy-induced insulin resistance have not been evaluated. We used aP2-nSREBP-1c transgenic (Tg) mice, an established model of lipodystrophy, to ask this question. Circulating cytokine elevations suggested systemic inflammation but even more dramatic was the number of infiltrating macrophages in all white and brown adipose tissue depots of the Tg mice; in contrast, there was no evidence of inflammatory infiltrates or responses in any other tissue including liver. Despite there being overt evidence of adipose tissue inflammation, antiinflammatory strategies including salicylate treatment and genetic suppression of myeloid NF-κB signaling that correct insulin resistance in obesity were ineffective in the lipodystrophic mice. We further showed that adipose tissue macrophages (ATMs) in lipodystrophy and obesity are very different in terms of activation state, gene expression patterns, and response to lipopolysaccharide. Although ATMs are even more abundant in lipodystrophy than in obesity, they have distinct phenotypes and likely roles in tissue remodeling, but do not appear to be involved in the pathogenesis of insulin resistance. PMID:20007767

  17. [Cytopathic effect of the tularemia microbe on a culture of peritoneal macrophages].

    PubMed

    Maslova, T N; Savel'eva, R A

    1977-10-01

    Morphological analysis of the process of interaction of tularemia microbe strains differing by virulence with macrophages demonstrated that all these strains produced a lethal effect on macrophages obtained from the animales sensitive to the infection. The macrophages obtained from the animals were but little sensitive to tularemia and were resistant to the action of the causative agent of this infection. The data obtained led to a supposition on the presence in the tularemia causative agent of a factor responsible for its lethal action on the macrophages.

  18. Interaction of plasma fibronectin (pFN) with membranous constituents of peritoneal exudate cells and pulmonary macrophages

    SciTech Connect

    Rovin, B.; Molnar, J.; Chevalier, D.; Ng, P.

    1984-11-01

    The prominent role of plasma fibronectin (pFN) in the host defense system as an opsonin for gelatin (collagen)-coated colloids has been established. In the present study the authors investigated the interaction of pFN and membrane isolates from cells devoid of collagen, as well as several tissues. In a liver slice assay system it was shown that subcellular membrane fractions from lung macrophages, peritoneal exudate cells, spleen, testis, and liver were able to competitively inhibit the pFN-mediated uptake of /sup 125/I-gelatin coated latex beads (gLtx) at low concentrations. Endocytosis of /sup 125/I-labeled membrane isolates by macrophage monolayers was also promoted by addition of pFN. In an attempt to characterize the membrane component(s) interacting with pFN, it was found that mild extraction procedure with 1 M KBr could release a significant amount of this inhibitory activity. Further studies demonstrated that the agent(s) responsible for inhibition of gLtx uptake was heat sensitive, not altered by trypsin treatment, and did not contain actin, a protein known to interact with pFN. This work indicates that pFN interacts specifically with an as yet unknown membrane component(s) and that such interaction will promote clearance of cellular debris by macrophages. This suggests that pFN may be an important opsonin for the reticuloendothelial system in clearance of collagenous and noncollagenous cellular debris once they are exposed to interact with it.

  19. Use of mice tolerant to lipopolysaccharide to demonstrate requirement of cooperation between macrophages and lymphocytes to generate lipopolysaccharide-induced colony-stimulating factor in vivo.

    PubMed Central

    Williams, Z; Hertogs, C F; Pluznik, D H

    1983-01-01

    Injection of lipopolysaccharide (LPS) into mice was followed by a rapid elevation of colony-stimulating factor (CSF) in the serum. A second, challenging injection of LPS given 3 to 4 days later failed to induce elevated levels of CSF in the serum. Such mice tolerant to LPS were used as an experimental tool to identify the CSF-producing cells which respond to LPS. We observed that generation of LPS-induced CSF in mice tolerant to LPS could be restored by an intraperitoneal injection of spleen cells 24 h before the challenging injection of LPS. Depletion of the adherent cells from the spleen cells reduced the ability of the splenic lymphocytes to restore the capacity of the mice tolerant to LPS to generate serum CSF. Reconstitution of the splenic lymphocytes with 5% thioglycolate-elicited peritoneal macrophages, however, reestablished the restorative capacity of these cells, whereas almost no restoration was observed after direct injection of elicited peritoneal macrophages. These data suggest that the spleen cells are active in generating CSF, provided that macrophages are present and can interact with the splenic lymphocytes to generate LPS-induced CSF in the serum. PMID:6602767

  20. Different Effects of the Immunomodulatory Drug GMDP Immobilized onto Aminopropyl Modified and Unmodified Mesoporous Silica Nanoparticles upon Peritoneal Macrophages of Women with Endometriosis

    PubMed Central

    Antsiferova, Yuliya; Sotnikova, Nataliya

    2013-01-01

    The aim of the present work was to compare in vitro the possibility of application of unmodified silica nanoparticles (UMNPs) and modified by aminopropyl groups silica nanoparticles (AMNPs) for topical delivery of immunomodulatory drug GMDP to the peritoneal macrophages of women with endometriosis. The absence of cytotoxic effect and high cellular uptake was demonstrated for both types of silica nanoparticles. The immobilization of GMDP on the UMNPs led to the suppression of the stimulatory effect of GMDP on the membrane expression of scavenger receptors SR-AI and SR-B, mRNAs expression of NOD2 and RAGE, and synthesis of proteolytic enzyme MMP-9 and its inhibitor TIMP-1. GMDP, immobilized onto AMNPs, enhanced the initially reduced membrane expression of SRs and increased NOD2, RAGE, and MMP-9 mRNAs expression by macrophages. Simultaneously high level of mRNAs expression of factors, preventing undesirable hyperactivation of peritoneal macrophages (SOCS1 and TIMP-1), was observed in macrophages incubated in the presence of GMDP, immobilized onto AMNPs. The effect of AMNPs immobilized GMDP in some cases exceeded the effect of free GMDP. Thus, among the studied types of silica nanoparticles, AMNPs are the most suitable nanoparticles for topical delivery of GMDP to the peritoneal macrophages. PMID:24455738

  1. In vitro immune toxicity of polybrominated diphenyl ethers on murine peritoneal macrophages: apoptosis and immune cell dysfunction.

    PubMed

    Lv, Qi-Yan; Wan, Bin; Guo, Liang-Hong; Zhao, Lixia; Yang, Yu

    2015-02-01

    Polybrominated diphenyl ethers (PBDEs) are widely used as flame retardants and are often detected in the environment, wildlife, and humans, presenting potential threats to ecosystem and human health. PBDEs can cause neurotoxicity, hepatotoxicity, and endocrine disruption. However, data on PBDE immunotoxicity are limited, and the toxicity mechanisms remain largely unknown. Both immune cell death and dysfunction can modulate the responses of the immune system. This study examined the toxic effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabromodiphenyl ether (BDE-209) on the immune system by using peritoneal macrophages as the model. The macrophages were exposed to PBDEs, and cell death was determined through flow cytometry and immunochemical blot. The results showed that after 24h of exposure, BDE-47 (>5 μM) and BDE-209 (>20 μM) induced cell apoptosis, increased intracellular reactive oxygen species (ROS) formation and depleted glutathione. BDE-47 was more potent than BDE-209; the cytotoxic concentrations for BDE-47 and BDE-209 were determined to be 5 μM and 20 μM, respectively, during 24h of exposure. However, pretreatment with n-acetyl-l-cysteine (ROS scavenger) partially reversed the cytotoxic effects. Further gene expression analyses on Caspase-3,-8,-9, TNFR1, and Bax revealed that both intrinsic and extrinsic apoptotic pathways were activated. More importantly, non-cytotoxic concentrations BDE-47 (<2 μM) and BDE-209 (<10 μM) could impair macrophage accessory cell function in a concentration-dependent manner, but no effects were observed on phagocytic responses. These revealed effects of PBDEs on macrophages may shed light on the toxicity mechanisms of PBDEs and suggest the necessity of evaluating cellular functionality during the risk assessment of PBDE immunotoxicity. PMID:25462306

  2. Relationship between membrane potential changes and superoxide-releasing capacity in resident and activated mouse peritoneal macrophages

    SciTech Connect

    Kitagawa, S.; Johnston, R.B. Jr.

    1985-11-01

    To understand better the molecular basis for the enhanced respiratory burst of activated macrophages (M phi), the relationship between the stimulus-induced changes in membrane potential and release of superoxide anion (O/sub 2//sup -/) in mouse peritoneal M phi was investigated. Resident M phi and M phi elicited by injection of lipopolysaccharide (LPS-M phi) or obtained from animals infected with bacille Calmette-Guerin (BCG-M phi) were used. LPS-M phi and BCG-M phi showed more pronounced changes in membrane potential (depolarization) and greater release of O/sub 2//sup -/ on contact with phorbol myristate acetate (PMA) than did resident macrophages. The lag time between addition of stimulus and onset of release of O/sub 2//sup -/ was reduced in activated compared with resident cells. Membrane potential changes began 60 to 90 sec before release of O/sub 2//sup -/ could be detected in each cell type. The dose-response curves for triggering of membrane potential changes and O/sub 2//sup -/ release by PMA were identical. The magnitude of membrane potential changes and of O/sub 2//sup -/ release in LPS-M phi and BCG-M phi declined progressively during in vitro culture, and values on day 3 approached those in resident macrophages (deactivation). Extracellular glucose was required for effective stimulated change in membrane potential and O/sub 2//sup -/ release. These findings indicate that membrane potential changes are closely associated with O/sub 2//sup -/-releasing capacity in macrophages, and that the systems that mediate membrane potential changes and production of O/sub 2//sup -/ develop or decline concomitantly during activation or deactivation of the cells.

  3. Involvement of proton-sensing receptor TDAG8 in the anti-inflammatory actions of dexamethasone in peritoneal macrophages

    SciTech Connect

    He, Xiao-dong; Tobo, Masayuki; Mogi, Chihiro; Nakakura, Takashi; Komachi, Mayumi; Murata, Naoya; Takano, Mutsumi; Tomura, Hideaki; Sato, Koichi; Okajima, Fumikazu

    2011-12-02

    Highlights: Black-Right-Pointing-Pointer Glucocorticoid (GC) induced the expression of proton-sensing TDAG8 in macrophages. Black-Right-Pointing-Pointer GC enhanced acidic pH-induced cAMP accumulation and inhibition of TNF-{alpha} production. Black-Right-Pointing-Pointer The enhancement of the GC-induced actions was lost by TDAG8 deficiency. Black-Right-Pointing-Pointer GC-induced anti-inflammatory actions are partly mediated by TDAG8 expression. -- Abstract: Dexamethasone (DEX), a potent glucocorticoid, increased the expression of T-cell death associated gene 8 (TDAG8), a proton-sensing G protein-coupled receptor, which is associated with the enhancement of acidic pH-induced cAMP accumulation, in peritoneal macrophages. We explored the role of increased TDAG8 expression in the anti-inflammatory actions of DEX. The treatment of macrophages with either DEX or acidic pH induced the cell death of macrophages; however, the cell death was not affected by TDAG8 deficiency. While DEX inhibited lipopolysaccharide-induced production of tumor necrosis factor-{alpha}, an inflammatory cytokine, which was independent of TDAG8, at neutral pH, the glucocorticoid enhanced the acidic pH-induced inhibition of tumor necrosis factor-{alpha} production in a manner dependent on TDAG8. In conclusion, the DEX-induced increase in TDAG8 expression is in part involved in the glucocorticoid-induced anti-inflammatory actions through the inhibition of inflammatory cytokine production under the acidic pH environment. On the other hand, the role of TDAG8 in the DEX-induced cell death is questionable.

  4. Regulation of the surface expression of the platelet-activating factor receptor in IC-21 peritoneal macrophages. Effects of lipopolysaccharide.

    PubMed

    Liu, H; Chao, W; Olson, M S

    1992-10-15

    The effect of bacterial lipopolysaccharide (LPS) on the expression of the receptor for platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; AGEPC) was examined in cultured IC-21 peritoneal macrophages. AGEPC binding to its receptors reached saturation within 20 min at 25 degrees C and was reversible. Scatchard analysis revealed a single class of AGEPC receptors with a Bmax of approximately 170 fmol/mg cellular protein and a Kd of 0.25 nM. Preincubation of IC-21 cells with LPS (0.01-1,000 ng/ml) induced an increase in the surface expression of AGEPC receptors in a time- and concentration-dependent fashion. The maximal effect of LPS on the AGEPC receptor was observed between 5 and 8 h, with a typical increase between 150 and 200%. Scatchard analysis indicated that LPS treatment of IC-21 cells increased the number of AGEPC receptors on the cell surface without any apparent change in the affinity of the receptor for the ligand. The effect of LPS on the surface expression of the AGEPC receptor was nearly abolished by cycloheximide (0.1 mM) and by actinomycin D (3 microM), suggesting the involvement of enhanced receptor protein synthesis and mRNA production in this event. Moreover, LPS treatment increased the capability of the IC-21 cell to respond to AGEPC addition by elevating intracellular free Ca2+ without causing an increase in the basal level of intracellular Ca2+. The present study demonstrates that IC-21 peritoneal macrophages possess high affinity AGEPC receptors and provides the evidence that the number of functional AGEPC receptors on a cell can be increased significantly upon exposure to LPS. PMID:1328211

  5. Dietary n-3 polyunsaturated fatty acids prevent the development of atherosclerotic lesions in mice. Modulation of macrophage secretory activities.

    PubMed

    Renier, G; Skamene, E; DeSanctis, J; Radzioch, D

    1993-10-01

    We examined the effects of dietary n-3 polyunsaturated and saturated fatty acids on the development of the atherogenic process in mice and on the macrophage ability to secrete several effector molecules that may be involved in the atherogenic process. The secretion of inflammatory proteins such as tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) and the production of lipoprotein lipase (LPL), nitrogen oxide (NO2), and prostaglandin E2 (PGE2) were evaluated in peritoneal macrophages isolated from atherosclerosis-susceptible C57BL/6J mice. The mice were assigned at random to three experimental groups: the first group was fed a semi-defined control diet (control diet); the second group was maintained on the control diet supplemented with 10% menhaden oil (menhaden diet); and the third group received the control diet supplemented with 10% palm oil plus 2% cholesterol (saturated fat diet). Macrophages derived from mice fed the menhaden diet showed a suppression of their basal TNF-alpha mRNA expression and production. They also presented a dramatically decreased ability to express TNF-alpha and IL-1 beta mRNAs in response to exposure to lipopolysaccharide (LPS) compared with the macrophages from the control group. LPL mRNA and protein expression were downregulated after 6 and 15 weeks of menhaden-diet feeding. Significantly higher NO2 production in response to interferon gamma was found, both after 6 and 15 weeks of diet feeding, in the menhaden group compared with the control group. In addition, prostaglandin production and macrophage tumoricidal activity in response to LPS were decreased in this group compared with the control group. Macrophages derived from the saturated fat group did not show any significant alterations in TNF-alpha, LPL, NO2, or PGE2 secretion compared with controls. Interestingly, we observed a progressive increase of the LPS-induced IL-1 beta gene expression and secretion among macrophages harvested from mice receiving

  6. β-(1→3)-Glucan of the Southern Bracket Mushroom, Ganoderma australe (Agaricomycetes), Stimulates Phagocytosis and Interleukin-6 Production in Mouse Peritoneal Macrophages.

    PubMed

    de Melo, Renan Henrique; do Amaral, Alex Evangelista; Menolli, Rafael Andrade; Ayala, Thais Soprani; de Cassia Garcia Simao, Rita; de Santana-Filho, Arquimedes Paixao; Sassaki, Guilherme Lanzi; Kadowaki, Marina Kimiko; da Conceicao Silva, Jose Luis

    2016-01-01

    Ganoderma australe was studied to determine the composition of the cell wall, and polysaccharide fraction SK5 was obtained after freeze-thawing an aqueous 5% potassium hydroxide extraction. The monosaccharide composition of the SK5 fraction revealed by gas chromatography-mass spectrometry showed 81.3% glucose, and analyses by 13C nuclear magnetic resonance spectroscopy confirmed a β-glucan with glycosidic links of the (1→3)-β type and most likely 4-O substituted. In addition, the biological effect of the β-glucan from G. australe was evaluated via in vitro cell cultures of peritoneal macrophages isolated from Swiss mice. Biological assays were assessed for toxicity and cell activation, interleukin-6 cytokine concentrations, and the ability to stimulate phagocytic activity. There was an increase in interleukin-6 by approximately 111% with 1.0 µg/mL of polysaccharide, and phagocyte activity was increased in all concentrations examined, obtaining 52.3% with 0.25 µg/mL polysaccharide. The results indicate that a β-(1→3)-glucan isolated from G. australe can be classified as a biological response modifier. PMID:27481297

  7. Effect of the native polysaccharide of cashew-nut tree gum exudate on murine peritoneal macrophage modulatory activities.

    PubMed

    Yamassaki, F T; Lenzi, R M; Campestrini, L H; Bovo, F; Seyfried, M; Soldera-Silva, A; Stevan-Hancke, F R; Zawadzki-Baggio, S F; Pettolino, F A; Bacic, A; Maurer, J B B

    2015-07-10

    The native polysaccharide of cashew-nut tree gum exudate (CNTG) and its arabinogalactan-protein component (CNTG-AGP) were tested by using immuno-stimulant and anti-inflammatory in vitro assays of murine peritoneal macrophage activities. In the assay for immuno-stimulant activity (without previous treatment with lipopolysaccharide; LPS), CNTG increased the production of interleukin (IL)-10 and both CNTG and CNTG-AGP decreased the concentrations of IL6. When the macrophages were incubated in the presence of LPS and CNTG a decrease in the levels of nitric oxide (NO(·)) and IFN-γ was observed. The results could explain the popular use of CNTG as an anti-inflammatory. In addition, CNTG is the main component of the cashew-nut tree gum exudate, which has been considered a versatile polymer with potential pharmaceutical and food industry applications. These data may contribute to the study of the immunomodulation activity of plant polysaccharides, as well as encourage future experiments in the field of cashew-nut tree gum exudate applications. PMID:25857980

  8. Effect of the native polysaccharide of cashew-nut tree gum exudate on murine peritoneal macrophage modulatory activities.

    PubMed

    Yamassaki, F T; Lenzi, R M; Campestrini, L H; Bovo, F; Seyfried, M; Soldera-Silva, A; Stevan-Hancke, F R; Zawadzki-Baggio, S F; Pettolino, F A; Bacic, A; Maurer, J B B

    2015-07-10

    The native polysaccharide of cashew-nut tree gum exudate (CNTG) and its arabinogalactan-protein component (CNTG-AGP) were tested by using immuno-stimulant and anti-inflammatory in vitro assays of murine peritoneal macrophage activities. In the assay for immuno-stimulant activity (without previous treatment with lipopolysaccharide; LPS), CNTG increased the production of interleukin (IL)-10 and both CNTG and CNTG-AGP decreased the concentrations of IL6. When the macrophages were incubated in the presence of LPS and CNTG a decrease in the levels of nitric oxide (NO(·)) and IFN-γ was observed. The results could explain the popular use of CNTG as an anti-inflammatory. In addition, CNTG is the main component of the cashew-nut tree gum exudate, which has been considered a versatile polymer with potential pharmaceutical and food industry applications. These data may contribute to the study of the immunomodulation activity of plant polysaccharides, as well as encourage future experiments in the field of cashew-nut tree gum exudate applications.

  9. Modulatory effects of alpha-linolenic acid on generation of reactive oxygen species in elaidic acid enriched peritoneal macrophages in rats.

    PubMed

    Rao, Y Poorna Chandra; Lokesh, B R

    2014-09-01

    Fatty acids are known to influence the ability of macrophages to generate reactive oxygen species (ROS). However the effect of elaidic acid (EA, 18:1 trans fatty acid) on ROS generation is not well studied. Rat peritoneal macrophages were enriched with elaidic acid by incubating the cells with 80 1M EA. The macrophages containing EA generated higher amounts of superoxide anion (O2*-), hydrogen peroxide (H2O2) and nitric oxide (NO) by 54, 123 and 237%, respectively as compared to control cells which did not contain EA. To study the competition of other C18 fatty acids with EA macrophages were incubated with EA along with stearic acid (18:0), oleic acid (18:1), linoleic acid (18:2) and alpha-linolenic acid (ALA, 18:3). ALA significantly reduced the incorporation of EA into macrophage lipids. This also significantly reduced the generation of O2*-, H2O2, NO by macrophages. Studies were also conducted by feeding rats with diet containing partially hydrogenated vegetable fat (PHVF) as a source for EA and linseed oil (LSO) as a source for ALA. The rats were fed AIN-93 diet containing PHVF with 17% EA and incremental amounts of linseed oil for 10 weeks. The peritoneal macrophages from rats fed partially hydrogenated vegetable fat generated higher levels of O2*-, H2O2, NO by 46, 161 and 76% respectively, when compared to rats fed control diets containing ground nut oil. Macrophages from rats fed PHVF with incremental amounts of LSO produced significantly lower levels ROS in a dose dependent manner. Thus ALA reduces the higher levels of ROS generated by macrophages containing EA.

  10. Mechanisms of glucocorticoid induced suppression of phagocytosis in murine peritoneal macrophage cultures

    SciTech Connect

    Becker, J.L.

    1986-01-01

    Glucocorticoids suppress phagocytosis of heat killed Saccharomyces cerevisiae in macrophage cultures. In order to determine the mechanisms by which this response occurs, this investigation was initiated to examine whether the suppression of phagocytosis is mediated by a steroid induced phagocytosis inhibitory protein (PIP). Furthermore, it is postulated that these suppressive effects may be associated with alterations in macrophage phospholipid metabolism. To assess the association between phospholipid metabolism and phagocytosis, control and 1 ..mu..M dexamethasone treated macrophages were exposed to the phospholipase inhibitor bromophenacylbromide. The enzyme inhibitor suppressed phagocytosis in a time and dose dependent manner. However, supplying dexamethasone treated cultures with arachidonate did not reverse the steroid induced suppression of phagocytosis, whether the arachidonate was supplied alone or together with indomethacin and nordihydroguaiaretic acid. Control cells, prelabeled with /sup 3/H-arachidonate, exhibited an increased percentage of the radiolabeled fatty acid in neutral lipids following phagocytosis, with a corresponding decrease in the percentage associated with phosphatidylcholine.

  11. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice

    PubMed Central

    Pietrofesa, Ralph A.; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W.; Testa, Joseph R.; Hwang, Wei-Ting; Albelda, Steven M.

    2016-01-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2+/mu mice. Mice (n = 16–17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  12. Flaxseed lignans enriched in secoisolariciresinol diglucoside prevent acute asbestos-induced peritoneal inflammation in mice.

    PubMed

    Pietrofesa, Ralph A; Velalopoulou, Anastasia; Arguiri, Evguenia; Menges, Craig W; Testa, Joseph R; Hwang, Wei-Ting; Albelda, Steven M; Christofidou-Solomidou, Melpo

    2016-02-01

    Malignant mesothelioma (MM), linked to asbestos exposure, is a highly lethal form of thoracic cancer with a long latency period, high mortality and poor treatment options. Chronic inflammation and oxidative tissue damage caused by asbestos fibers are linked to MM development. Flaxseed lignans, enriched in secoisolariciresinol diglucoside (SDG), have antioxidant, anti-inflammatory and cancer chemopreventive properties. As a prelude to chronic chemoprevention studies for MM development, we tested the ability of flaxseed lignan component (FLC) to prevent acute asbestos-induced inflammation in MM-prone Nf2(+/mu) mice. Mice (n = 16-17 per group) were placed on control (CTL) or FLC-supplemented diets initiated 7 days prior to a single intraperitoneal bolus of 400 µg of crocidolite asbestos. Three days post asbestos exposure, mice were evaluated for abdominal inflammation, proinflammatory/profibrogenic cytokine release, WBC gene expression changes and oxidative and nitrosative stress in peritoneal lavage fluid (PLF). Asbestos-exposed mice fed CTL diet developed acute inflammation, with significant (P < 0.0001) elevations in WBCs and proinflammatory/profibrogenic cytokines (IL-1ß, IL-6, TNFα, HMGB1 and active TGFß1) relative to baseline (BL) levels. Alternatively, asbestos-exposed FLC-fed mice had a significant (P < 0.0001) decrease in PLF WBCs and proinflammatory/profibrogenic cytokine levels relative to CTL-fed mice. Importantly, PLF WBC gene expression of cytokines (IL-1ß, IL-6, TNFα, HMGB1 and TGFß1) and cytokine receptors (TNFαR1 and TGFßR1) were also downregulated by FLC. FLC also significantly (P < 0.0001) blunted asbestos-induced nitrosative and oxidative stress. FLC reduces acute asbestos-induced peritoneal inflammation, nitrosative and oxidative stress and may thus prove to be a promising agent in the chemoprevention of MM. PMID:26678224

  13. A quantitative method for measuring the adherence of group B streptococci to murine peritoneal exudate macrophages.

    PubMed

    Sloan, A R; Pistole, T G

    1992-10-01

    We have developed a solid phase, direct binding, enzyme-linked immunosorbent assay (ELISA) to detect and quantify the adherence of group B streptococci to murine macrophages. The assay correlated well with direct microscopic quantification of adherence. As few as 3.8 x 10(4) bacteria/assay well or less than one bacterium per macrophage could be detected. This assay is both quantitative and selective, and is readily adaptable for multiple sample analysis. It provides a valuable alternative to visual detection of bacterial adherence.

  14. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells.

    PubMed

    Hall, Brandon M; Balan, Vitaly; Gleiberman, Anatoli S; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B; Gudkov, Andrei V

    2016-07-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-gal(pH6)), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-gal(pH6)-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-gal(pH6)-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-gal(pH6)-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-gal(pH6)-positive cells and reconsideration of potential cellular target for anti-aging treatment.

  15. Aging of mice is associated with p16(Ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells

    PubMed Central

    Hall, Brandon M.; Balan, Vitaly; Gleiberman, Anatoli S.; Strom, Evguenia; Krasnov, Peter; Virtuoso, Lauren P.; Rydkina, Elena; Vujcic, Slavoljub; Balan, Karina; Gitlin, Ilya; Leonova, Katerina; Polinsky, Alexander; Chernova, Olga B.; Gudkov, Andrei V.

    2016-01-01

    Senescent cells (SCs) have been considered a source of age-related chronic sterile systemic inflammation and a target for anti-aging therapies. To understand mechanisms controlling the amount of SCs, we analyzed the phenomenon of rapid clearance of human senescent fibroblasts implanted into SCID mice, which can be overcome when SCs were embedded into alginate beads preventing them from immunocyte attack. To identify putative SC killers, we analyzed the content of cell populations in lavage and capsules formed around the SC-containing beads. One of the major cell types attracted by secretory factors of SCs was a subpopulation of macrophages characterized by p16(Ink4a) gene expression and β-galactosidase activity at pH6.0 (β-galpH6), thus resembling SCs. Consistently, mice with p16(Ink4a) promoter-driven luciferase, developed bright luminescence of their peritoneal cavity within two weeks following implantation of SCs embedded in alginate beads. p16(Ink4a)/β-galpH6-expressing cells had surface biomarkers of macrophages F4/80 and were sensitive to liposomal clodronate used for the selective killing of cells capable of phagocytosis. At the same time, clodronate failed to kill bona fide SCs generated in vitro by genotoxic stress. Old mice with elevated proportion of p16(Ink4a)/β-galpH6-positive cells in their tissues demonstrated reduction of both following systemic clodronate treatment, indicating that a significant proportion of cells previously considered to be SCs are actually a subclass of macrophages. These observations point at a significant role of p16(Ink4a)/β-galpH6-positive macrophages in aging, which previously was attributed solely to SCs. They require re-interpretation of the mechanisms underlying rejuvenating effects following eradication of p16(Ink4a)/β-galpH6-positive cells and reconsideration of potential cellular target for anti-aging treatment. PMID:27391570

  16. Intracellularly survived Staphylococcus aureus after phagocytosis are more virulent in inducing cytotoxicity in fresh murine peritoneal macrophages utilizing TLR-2 as a possible target.

    PubMed

    Nandi, Ajeya; Bishayi, Biswadev

    2016-08-01

    Staphylococcus aureus with high virulence potential is contributing to a current public health crisis in both hospital and community settings. TLR-2 and generation of reactive oxygen species (ROS) by phagocytic cells is thought to be an important component of the host's immunity against S. aureus infection. However, response of S. aureus against modulation of host-derived ROS in absence of TLR-2 during acute staphylococcal infection is still remains unclear. Peritoneal macrophages were pretreated with either inhibitors of superoxide dismutase (SOD) or catalase in presence or absence of anti TLR-2 antibody and were infected with S. aureus strain AG-789. Bacteria were recovered after time dependent phagocytosis; intracellular killing, level and expression of SOD and catalase were measured. Phagocytosed bacteria from respective groups were further used for infection to fresh peritoneal macrophages as well as for in vivo infection. Levels of ROS, cytokine, lysozyme, antioxidant enzymes activity and TLR-2 expression were measured. Results revealed that more bacteria were escaped killing in SOD and catalase inhibitor pretreated TLR-2 neutralized macrophages, found to express more catalase and are antibiotic resistant. Infection of fresh macrophages with S. aureus, recovered from SOD and catalase inhibited TLR-2 neutralized macrophages induced lower ROS, lysozyme and cytokine production and caused increased bacterial count. Furthermore, bacterial antioxidants by modulating host-derived ROS could regulate the cell surface TLR-2 expression in murine peritoneal macrophages. So, in the early phase of infection, TLR-2 participates in the innate immune response and targeting bacterial antioxidants might be useful in the alleviation of Staphylococcus aureus infection. PMID:27270212

  17. A murine platelet-activating factor receptor gene: cloning, chromosomal localization and up-regulation of expression by lipopolysaccharide in peritoneal resident macrophages.

    PubMed Central

    Ishii, S; Matsuda, Y; Nakamura, M; Waga, I; Kume, K; Izumi, T; Shimizu, T

    1996-01-01

    A murine gene encoding a platelet-activating factor receptor (PAFR) was cloned. The gene was mapped to a region of the D2.2 band of chromosome 4 both by fluorescence in situ hybridization and by molecular linkage analysis. Northern blot analysis showed a high expression of the PAFR message in peritoneal macrophages. When C3H/HeN macrophages were treated with bacterial lipopolysaccharide (LPS) or synthetic lipid A, the PAFR gene expression was induced. Bacterial LPS, but not lipid A, induced the level of PAFR mRNA in LPS unresponsive C3H/HeJ macrophages. These induction patterns were parallel to those of tumor necrosis factor-alpha mRNA. Thus the PAFR in macrophages is important in LPS-induced pathologies. PMID:8670084

  18. Protective effects of macrophage-derived interferon against encephalomyocarditis virus-induced diabetes mellitus in mice.

    PubMed

    Hirasawa, K; Ogiso, Y; Takeda, M; Lee, M J; Itagaki, S; Doi, K

    1995-12-01

    The involvement of macrophages in protection against diabetes mellitus in mice of BALB/c (susceptible) and C57BL (resistant) strains infected with the B (non-diabetogenic) or D (highly diabetogenic) variant of encephalomyocarditis (EMC) virus was examined. Pretreatment with the B variant of EMC virus (EMC-B), avirulent interferon (IFN) inducer, or Corynebacterium parvum inhibited diabetes in BALB/c mice infected with the D variant of EMC virus (EMC-D). Treatment of C57BL mice with carrageenan to compromise macrophage function rendered C57BL mice susceptible to EMC-D-induced diabetes. In macrophage culture for BALB/c mice, EMC-B induced IFN at an earlier stage than did EMC-D. The C57BL mouse-derived macrophages produced more IFN than did BALB/c mouse-derived macrophages after stimulation with EMC-D. Moreover, C. parvum increased IFN production in macrophage cultures from BALB/c mice, whereas carrageenan inhibited that in macrophage cultures from C57BL mice. These results suggest that IFN derived from macrophages may have an important role in protecting mice against EMC virus infection. PMID:8746525

  19. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production.

    PubMed

    González-Mateo, Guadalupe T; Fernández-Míllara, Vanessa; Bellón, Teresa; Liappas, Georgios; Ruiz-Ortega, Marta; López-Cabrera, Manuel; Selgas, Rafael; Aroeira, Luiz S

    2014-01-01

    Fibrosis is a significant health problem associated with a chronic inflammatory reaction. The precise mechanisms involved in the fibrotic process are still poorly understood. However, given that inflammation is a major causative factor, immunomodulation is a possible therapeutic approach to reduce fibrosis. The vitamin D receptor (VDR) that is present in all hematopoietic cells has been associated with immunomodulation. We investigated whether the intraperitoneal administration of paricalcitol, a specific activator of the VDR, modulates peritoneal dialysis fluid (PDF)-induced peritoneal fibrosis. We characterized the inflammatory process in the peritoneal cavity of mice treated or not treated with paricalcitol and analyzed the ensuing fibrosis. The treatment reduced peritoneal IL-17 levels, which strongly correlated with a significantly lower peritoneal fibrotic response. In vitro studies demonstrate that both CD4+ and CD8+ regulatory T cells appear to impact the regulation of IL-17. Paricalcitol treatment resulted in a significantly increased frequency of CD8+ T cells showing a regulatory phenotype. The frequency of CD4+ Tregs tends to be increased, but it did not achieve statistical significance. However, paricalcitol treatment increased the number of CD4+ and CD8+ Treg cells in vivo. In conclusion, the activation of immunological regulatory mechanisms by VDR signaling could prevent or reduce fibrosis, as shown in peritoneal fibrosis induced by PDF exposure in mice.

  20. Influence of cadmium on isolated peritoneal macrophage populations: cadmium inhibits Fc receptor internalization

    SciTech Connect

    Cook, G.B.

    1985-01-01

    In vitro experiments were performed to examine the effect of cadmium on adherent phagocytic cell populations. The authors were able to demonstrate, in vitro, a phagocytic defect that was originally observed in an in vivo system. Using in vitro methodologies, cadmium was found to inhibit opsonin-dependent but not opsonin-independent phagocytosis in two different populations of macrophages. The receptors through which the opsonized /sup 51/Cr-ElgG were internalized were characterized as Fc receptors. They were able to demonstrate that cadmium could reversibly inhibit internalization of Fc receptors. This mechanism, rather than an alteration of the receptors' binding capabilities, was responsible for the observed inhibition of Fc mediated (opsonin-dependent) phagocytosis in both populations of macrophages tested. The defect was not specific for cadmium per se. Zinc treatment caused a similar inhibition of Fc receptor mediated phagocytosis.

  1. Culture of mouse peritoneal macrophages with mouse serum induces lipid bodies that associate with the parasitophorous vacuole and decrease their microbicidal capacity against Toxoplasma gondii.

    PubMed

    Mota, Laura Azeredo Miranda; Roberto Neto, João; Monteiro, Verônica Gomes; Lobato, Caroliny Samary Silva; Oliveira, Marco Antonio de; Cunha, Maura da; D'Ávila, Heloisa; Seabra, Sérgio Henrique; Bozza, Patrícia Torres; DaMatta, Renato Augusto

    2014-09-01

    Lipid bodies [lipid droplets (LBs)] are lipid-rich organelles involved in lipid metabolism, signalling and inflammation. Recent findings suggest a role for LBs in host response to infection; however, the potential functions of this organelle in Toxoplasma gondii infection and how it alters macrophage microbicidal capacity during infection are not well understood. Here, we investigated the role of host LBs in T. gondii infection in mouse peritoneal macrophages in vitro. Macrophages cultured with mouse serum (MS) had higher numbers of LBs than those cultured in foetal bovine serum and can function as a model to study the role of LBs during intracellular pathogen infection. LBs were found in association with the parasitophorous vacuole, suggesting that T. gondii may benefit from this lipid source. Moreover, increased numbers of macrophage LBs correlated with high prostaglandin E2 (PGE2) production and decreased nitric oxide (NO) synthesis. Accordingly, LB-enriched macrophages cultured with MS were less efficient at controlling T. gondii growth. Treatment of macrophages cultured with MS with indomethacin, an inhibitor of PGE2 production, increased the microbicidal capacity against T. gondii. Collectively, these results suggest that culture with MS caused a decrease in microbicidal activity of macrophages against T. gondii by increasing PGE2 while lowering NO production.

  2. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages

    PubMed Central

    Chávez Enciso, N. A.; Coy-barrera, E. D.; Patiño, O. J.; Cuca, L. E.; Delgado, Gabriela

    2014-01-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis. PMID:25035529

  3. Evaluation of the Leishmanicidal Activity of Rutaceae and Lauraceae Ethanol Extracts on Golden Syrian Hamster (Mesocricetus auratus) Peritoneal Macrophages.

    PubMed

    Chávez Enciso, N A; Coy-Barrera, E D; Patiño, O J; Cuca, L E; Delgado, Gabriela

    2014-05-01

    Traditional medicine has provided a number of therapeutic solutions for the control of infectious agents, cancers, and other diseases. After screening a wide variety of Colombian plant extracts, we have identified promising antileishmanial activity in ethanol extracts from Ocotea macrophylla (Lauraceae) and Zanthoxyllum monophyllum (Rutaceae). In this study, we evaluated the in vitro activity of two ethanol extracts, one from Ocotea macrophylla and the other from Zanthoxyllum monophyllum and one alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum, on peritoneal macrophages isolated from golden Syrian hamsters (Mesocricetus auratus) infected with Leishmania panamensis and Leishmania major promastigotes. All of the extracts studied displayed promising (≥2) selectivity indices (S/I), the most significant of which were for ethanol extract of Zanthoxyllum monophyllum against Leishmania panamensis (S/I=12) and alkaloid fraction of ethanol extract of Zanthoxyllum monophyllum against Leishmania major (S/I=11). These results support the use of ethanol extracts and alkaloid fractions isolated from Ocotea macrophylla and Zanthoxyllum monophyllum, respectively; as therapeutic options for cutaneous leishmaniasis. PMID:25035529

  4. Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator.

    PubMed

    Patel, Om V; Wilson, William B; Qin, Zhenyu

    2013-06-01

    Copper chelation regulates the production of inflammatory mediators in vivo during vascular inflammation and atherogenesis. Little is known about how the copper egress pump ATP7A regulates the production of these mediators. In this study, we isolated ATP7A deficient macrophages (MΦ) from the peritoneal cavity of blotchy mice and identified the lipopolysaccharide (LPS)-induced inflammatory mediators that were altered by ATP7A deficiency. These results were compared with the effect of neocuproine (a copper chelator) treatment on both ATP7A deficient and control MΦ. Seven of the 24 inflammatory mediators examined in this study had significant changes in expression in the ATP7A deficient MΦ compared to controls; 16 of these mediators were significantly reduced in MΦ treated with neocuproine compared to controls. Both neocuproine treatment and ATP7A deficiency reduced IFN-γ, MCP-1, MCP-3, and VEGF-A levels. Interestingly, the production of KC/GRO was upregulated by ATP7A deficiency but downregulated by neocuproine treatment. Neocuproine, but not ATP7A deficiency, reduced the production of FGF-9, IL-1α, IL-12p70, IL-2, IL-3, IL-4, IL-6, MIP-1β, MIP-2, RANTES, and TNFα. ATP7A deficiency but not neocuproine treatment reduced IP-10 and MCP-5 levels. In addition, both ATP7A deficiency and neocuproine treatment had no effect on GM-CSF, IL-10, IL-11, IL-7, OSM, and SCF. Together, these findings provide evidence that MΦ ATP7A selectively regulates LPS-induced inflammatory mediators, in part, via modulation of cellular copper availability, whereas neocuproine generally inhibits the production of inflammatory mediators. These results also imply that although copper chelation and ATP7A downregulation may result in different copper concentrations, gradients, and/or distribution in the cells, they may not lead to opposite biological effects on inflammatory mediator production.

  5. Inflammatory mechanisms in sepsis: elevated invariant natural killer T-cell numbers in mouse and their modulatory effect on macrophage function.

    PubMed

    Heffernan, Daithi S; Monaghan, Sean F; Thakkar, Rajan K; Tran, Mai L; Chung, Chun-Shiang; Gregory, Stephen H; Cioffi, William G; Ayala, Alfred

    2013-08-01

    Invariant natural killer T cells (iNKT) cells are emerging as key mediators of innate immune cellular and inflammatory responses to sepsis and peritonitis. Invariant natural killer T cells mediate survival following murine septic shock. Macrophages are pivotal to survival following sepsis. Invariant natural killer T cells have been shown to modulate various mediators of the innate immune system, including macrophages. We demonstrate sepsis-inducing iNKT-cell exodus from the liver appearing in the peritoneal cavity, the source of the sepsis. This migration was affected by programmed death receptor 1. Programmed death receptor 1 is an inhibitory immune receptor, reported as ubiquitously expressed at low levels on iNKT cells. Programmed death receptor 1 has been associated with markers of human critical illness. Programmed death receptor 1-deficient iNKT cells failed to demonstrate similar migration. To the extent that iNKT cells affected peritoneal macrophage function, we assessed peritoneal macrophages' ability to phagocytose bacteria. Invariant natural killer T(-/-) mice displayed dysfunctional macrophage phagocytosis and altered peritoneal bacterial load. This dysfunction was reversed when peritoneal macrophages from iNKT(-/-) mice were cocultured with wild-type iNKT cells. Together, our results indicate that sepsis induces liver iNKT-cell exodus into the peritoneal cavity mediated by programmed death receptor 1, and these peritoneal iNKT cells appear critical to regulation of peritoneal macrophage phagocytic function. Invariant natural killer T cells offer therapeutic targets for modulating immune responses and detrimental effects of sepsis.

  6. Differential effects of osteopontin on the cytotoxic activity of macrophages from young and old mice.

    PubMed Central

    Rollo, E E; Denhardt, D T

    1996-01-01

    Osteopontin (OPN) is a secreted phosphoprotein found in body fluids (e.g. plasma, urine, milk) and in mineralized tissues. Its expression is increased in many transformed cells and in normal cells exposed to various cytokines. When stimulated with the inflammatory mediators lipopolysaccharide and interferon-gamma, mouse macrophages secrete nitric oxide (NO) as a cytotoxic agent effective against microbial invaders and tumour cells. This report documents (1) that thioglycollate-elicited peritoneal macrophages, activated with the inflammatory mediators, produced less NO and exhibited reduced cytotoxicity towards target cells when they were obtained from old animals than when they were obtained from young animals; and (2) that OPN was able to inhibit both the induced NO synthesis and cytotoxicity, but more effectively in macrophages from the young animals than those from the old animals. This may be due to the observed higher level of OPN expression in macrophages from old animals. Images Figure 1 Figure 2 PMID:8881770

  7. Toll-like receptor 4-positive macrophages protect mice from Pasteurella pneumotropica-induced pneumonia

    NASA Technical Reports Server (NTRS)

    Hart, Marcia L.; Mosier, Derek A.; Chapes, Stephen K.

    2003-01-01

    This study investigates Toll-like receptor 4 (TLR4)-positive macrophages in early recognition and clearance of pulmonary bacteria. TLR4 is a trans-membrane receptor that is the primary recognition molecule for lipopolysaccharide of gram-negative bacteria. The TLR4(Lps-del) mouse strains C57BL10/ScN (B10) and STOCK Abb(tm1) TLR4(Lps-del) Slc11a1(s)(B10 x C2D) are susceptible to pulmonary infections and develop pneumonia when naturally or experimentally infected by the opportunistic bacterium Pasteurella pneumotropica. Since these mice have the TLR4(Lps-del) genotype, we hypothesized that reconstitution of mice with TLR4-positive macrophages would provide resistance to this bacterium. A cultured macrophage cell line (C2D macrophages) and bone marrow cells from C2D mice were adoptively transferred to B10 and B10 x C2D mice by intraperitoneal injection. C2D macrophages increased B10 and B10 x C2D mouse resistance to P. pneumotropica. In C2D-recipient mice there was earlier transcription of tumor necrosis factor alpha and chemokines JE and macrophage inflammatory protein 2 (MIP-2) in the lungs of B10 and B10 x C2D mice, and there was earlier transcription of KC and MIP-1alpha in B10 x C2D mice. In addition, the course of inflammation following experimental Pasteurella challenge was altered in C2D recipients. C2D macrophages also protected B10 x C2D mice, which lack CD4(+) T cells. These data indicate that macrophages are critical for pulmonary immunity and can provide host resistance to P. pneumotropica. This study indicates that TLR4-positive macrophages are important for early recognition and clearance of pulmonary bacterial infections.

  8. [Electron microscopic and immunological study of influenza virus interaction with murine peritoneal microphages].

    PubMed

    Kirillova, F M; Berdinskikh, M S; Kiseleva, A S; Avakian, A A; Kosiakov, P N

    1980-01-01

    Electron microscopic and immunological investigations of influenza virus HONI interactions with peritoneal macrophages of intact and immune mice were carried out. Both intact and immune macrophages exert phagocytosis and disintegration of virions in phagolysosomes as early as 10 and 30 min after the end of adsorption. This process is most active with eosinophils, less in neutrophils and the least in basophils. Titration of the infectious virus in chick embryos showed that immune macrophages contained considerably less virus than the intact ones.

  9. Niacin reduces plasma CETP levels by diminishing liver macrophage content in CETP transgenic mice.

    PubMed

    Li, Zhaosha; Wang, Yanan; van der Sluis, Ronald J; van der Hoorn, José W A; Princen, Hans M G; Van Eck, Miranda; Van Berkel, Theo J C; Rensen, Patrick C N; Hoekstra, Menno

    2012-09-15

    The anti-dyslipidemic drug niacin has recently been shown to reduce the hepatic expression and plasma levels of CETP. Since liver macrophages contribute to hepatic CETP expression, we investigated the role of macrophages in the CETP-lowering effect of niacin in mice. In vitro studies showed that niacin does not directly attenuate CETP expression in macrophages. Treatment of normolipidemic human CETP transgenic mice, fed a Western-type diet with niacin for 4 weeks, significantly reduced the hepatic cholesterol concentration (-20%), hepatic CETP gene expression (-20%), and plasma CETP mass (-30%). Concomitantly, niacin decreased the hepatic expression of CD68 (-44%) and ABCG1 (-32%), both of which are specific markers for the hepatic macrophage content. The decrease in hepatic CETP expression was significantly correlated with the reduction of hepatic macrophage markers. Furthermore, niacin attenuated atherogenic diet-induced inflammation in liver, as evident from decreased expression of TNF-alpha (-43%). Niacin similarly decreased the macrophage markers and absolute macrophage content in hyperlipidemic APOE*3-Leiden.CETP transgenic mice on a Western-type diet. In conclusion, niacin decreases hepatic CETP expression and plasma CETP mass by attenuating liver inflammation and macrophage content in response to its primary lipid-lowering effect, rather than by attenuating the macrophage CETP expression level.

  10. CD36 and Proteoglycan-Mediated Pathways for (n-3) Fatty Acid–Enriched Triglyceride-Rich Particle Blood Clearance in Mouse Models In Vivo and in Peritoneal Macrophages In Vitro1,2

    PubMed Central

    Densupsoontorn, Narumon; Carpentier, Yvon A.; Racine, Radjini; Murray, Faith M.; Seo, Toru; Ramakrishnan, Rajasekhar; Deckelbaum, Richard J.

    2008-01-01

    Because the mechanisms of (n-3) fatty acid–enriched triglyceride-rich particle [(n-3)-TGRP] uptake are not well characterized, we questioned whether (n-3)-TGRP are removed via “nonclassical” pathways, e.g., pathways other than an LDL receptor and/or involving apolipoprotein E (apoE). Chylomicron-sized model (n-3)-TGRP labeled with [3H]cholesteryl ether were injected into wild-type (WT) and CD36 knockout (CD36−/−) mice at low, nonsaturating and high, saturating doses. Blood clearance of (n-3)-TGRP was determined by calculating fractional catabolic rates. At saturating doses, blood clearance of (n-3)-TGRP was slower in CD36−/− mice relative to WT mice, suggesting that in part CD36 contributes to (n-3)-TGRP uptake. To further examine the potential nonclassical clearance pathways, peritoneal-elicited macrophages from WT and CD36−/− mice were incubated with (n-3)-TGRP in the presence of apoE, lactoferrin, and/or sodium chlorate. Cellular (n-3)-TGRP uptake was measured to test the roles of apoE-mediated pathways and/or proteoglycans. ApoE-mediated pathways compensated in part for defective (n-3)-TGRP uptake in CD36−/− cells. Lactoferrin decreased (n-3)-TGRP uptake in the presence of apoE. Inhibition of cell proteoglycan synthesis by chlorate reduced (n-3)-TGRP uptake in both groups of macrophages, and chlorate effects were independent of apoE. We conclude that although CD36 is involved, it is not the primary contributor to the blood clearance of (n-3)-TGRP. The removal of (n-3)-TGRP likely relies more on nonclassical pathways, such as proteoglycan-mediated pathways. PMID:18203888

  11. Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARα, β/δ, and γ

    PubMed Central

    Li, Andrew C.; Binder, Christoph J.; Gutierrez, Alejandra; Brown, Kathleen K.; Plotkin, Christine R.; Pattison, Jennifer W.; Valledor, Annabel F.; Davis, Roger A.; Willson, Timothy M.; Witztum, Joseph L.; Palinski, Wulf; Glass, Christopher K.

    2004-01-01

    PPARα, β/δ, and γ regulate genes involved in the control of lipid metabolism and inflammation and are expressed in all major cell types of atherosclerotic lesions. In vitro studies have suggested that PPARs exert antiatherogenic effects by inhibiting the expression of proinflammatory genes and enhancing cholesterol efflux via activation of the liver X receptor–ABCA1 (LXR-ABCA1) pathway. To investigate the potential importance of these activities in vivo, we performed a systematic analysis of the effects of PPARα, β, and γ agonists on foam-cell formation and atherosclerosis in male LDL receptor–deficient (LDLR–/–) mice. Like the PPARγ agonist, a PPARα-specific agonist strongly inhibited atherosclerosis, whereas a PPARβ-specific agonist failed to inhibit lesion formation. In concert with their effects on atherosclerosis, PPARα and PPARγ agonists, but not the PPARβ agonist, inhibited the formation of macrophage foam cells in the peritoneal cavity. Unexpectedly, PPARα and PPARγ agonists inhibited foam-cell formation in vivo through distinct ABCA1-independent pathways. While inhibition of foam-cell formation by PPARα required LXRs, activation of PPARγ reduced cholesterol esterification, induced expression of ABCG1, and stimulated HDL-dependent cholesterol efflux in an LXR-independent manner. In concert, these findings reveal receptor-specific mechanisms by which PPARs influence macrophage cholesterol homeostasis. In the future, these mechanisms may be exploited pharmacologically to inhibit the development of atherosclerosis. PMID:15578089

  12. Immunotherapy of BALB/c mice bearing Ehrlich ascites tumor with vitamin D-binding protein-derived macrophage activating factor.

    PubMed

    Yamamoto, N; Naraparaju, V R

    1997-06-01

    Vitamin D3-binding protein (DBP; human DBP is known as Gc protein) is the precursor of macrophage activating factor (MAF). Treatment of mouse DBP with immobilized beta-galactosidase or treatment of human Gc protein with immobilized beta-galactosidase and sialidase generated a remarkably potent MAF, termed DBPMAF or GcMAF, respectively. The domain of Gc protein responsible for macrophage activation was cloned and enzymatically converted to the cloned MAF, designated CdMAF. In Ehrlich ascites tumor-bearing mice, tumor-specific serum alpha-N-acetylgalactosaminidase (NaGalase) activity increased linearly with time as the transplanted tumor cells grew in the peritoneal cavity. Therapeutic effects of DBPMAF, GcMAF, and CdMAF on mice bearing Ehrlich ascites tumor were assessed by survival time, the total tumor cell count in the peritoneal cavity, and serum NaGalase activity. Mice that received a single administration of DBPMAF or GcMAF (100 pg/mouse) on the same day after transplantation of tumor (1 x 10(5) cells) showed a mean survival time of 35 +/- 4 days, whereas tumor-bearing controls had a mean survival time of 16 +/- 2 days. When mice received the second DBPMAF or GcMAF administration at day 4, they survived more than 50 days. Mice that received two DBPMAF administrations, at days 4 and 8 after transplantation of 1 x 10(5) tumor cells, survived up to 32 +/- 4 days. At day 4 posttransplantation, the total tumor cell count in the peritoneal cavity was approximately 5 x 10(5) cells. Mice that received two DBPMAF administrations, at days 0 and 4 after transplantation of 5 x 10(5) tumor cells, also survived up to 32 +/- 4 days, while control mice that received the 5 x 10(5) ascites tumor cells only survived for 14 +/- 2 days. Four DBPMAF, GcMAF, or CdMAF administrations to mice transplanted with 5 x 10(5) Ehrlich ascites tumor cells with 4-day intervals showed an extended survival of at least 90 days and an insignificantly low serum NaGalase level between days 30 and 90

  13. Houttuynia cordata Thunb. volatile oil exhibited anti-inflammatory effects in vivo and inhibited nitric oxide and tumor necrosis factor-α production in LPS-stimulated mouse peritoneal macrophages in vitro.

    PubMed

    Li, Weifeng; Fan, Ting; Zhang, Yanmin; Fan, Te; Zhou, Ping; Niu, Xiaofeng; He, Langchong

    2013-11-01

    Houttuynia cordata Thunb. (HC) is a medicinal herb that generally used in traditional Chinese medicine for treating allergic inflammation. The present study investigated the inhibitory effect of the volatile oil from HC Thunb. on animal models of inflammation and the production of inflammatory mediators in vivo and in vitro. In vivo, xylene-induced mouse ear edema, formaldehyde-induced paw edema and carrageenan-induced mice paw edema were significantly decreased by HC volatile oil. HC volatile oil showed pronounced inhibition of prostaglandin (PG) E2 and malondialdehyde production in the edematous exudates. In vitro exposure of mouse resident peritoneal macrophages to 1, 10, 100 and 1000 µg/mL of HC volatile oil significantly suppressed lipopolysaccharide (LPS)-stimulated production of NO and tumor necrosis factor-α (TNF-α) in a dose-dependent manner. Exposure to HC volatile oil had no effect on cell viability and systemic toxicity. Furthermore, HC volatile oil inhibited the production of NO and TNF-α by down-regulating LPS-stimulated iNOS and TNF-α mRNA expression. Western blot analysis showed that HC volatile oil attenuated LPS-stimulated synthesis of iNOS and TNF-α protein in the macrophages, in parallel. These findings add a novel aspect to the biological profile of HC and clarify its anti-inflammatory mechanism. PMID:23280586

  14. Phagocytosis of latex beads by alveolar macrophages from mice exposed to cigarette smoke.

    PubMed

    Ortega, E; Hueso, F; Collazos, M E; Pedrera, M I; Barriga, C; Rodríguez, A B

    1992-04-01

    Cigarette smoking is known to alter the numerical presence and function of alveolar macrophages. It has been speculated that these cigarette-smoke-induced alterations contribute to the depressed pulmonary defence mechanism commonly demonstrated in smokers. Studies of the phagocytic and bactericidal activities of alveolar macrophages from smokers and non-smokers have yielded conflicting results. The purpose of this study was to investigate the phagocytic capacity of alveolar macrophages from mice exposed to cigarette smoke in relation to the ability to ingest inert particles (latex beads). Measurements were made before (basal values), immediately after, and 1, 12 or 24 h after exposure. Significant decreases were observed in the number of latex beads ingested by 100 macrophages (phagocytic index) and in the phagocytic efficiency for ingesting latex (mean number of latex beads ingested per activated macrophages) immediately after and 1 h after exposure, and in the number of activated macrophages (those with phagocytic activity) immediately after exposure. PMID:1563261

  15. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c.

    PubMed

    Almeida-Souza, Fernando; de Souza, Celeste da Silva Freitas; Taniwaki, Noemi Nosomi; Silva, João José Mendes; de Oliveira, Renata Mondêgo; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-31

    Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 μg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 μg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes.

  16. Morinda citrifolia Linn. fruit (Noni) juice induces an increase in NO production and death of Leishmania amazonensis amastigotes in peritoneal macrophages from BALB/c.

    PubMed

    Almeida-Souza, Fernando; de Souza, Celeste da Silva Freitas; Taniwaki, Noemi Nosomi; Silva, João José Mendes; de Oliveira, Renata Mondêgo; Abreu-Silva, Ana Lúcia; Calabrese, Kátia da Silva

    2016-08-31

    Leishmaniasis is a complex disease that is considered a serious public health problem. Due to the absence of an effective vaccine and debilitating chemotherapy better therapies are urgently needed. This situation has stimulated the search for alternative treatments such as the use of herbal medicines. Several studies conducted with Morinda citrifolia Linn. have shown various biological activities such as antitumor, immunomodulation and antileishmanial activity, however its mechanisms of action are still unknown. This study aimed to analyze the activity of M. citrifolia fruit juice against Leishmania amazonensis and its action on peritoneal macrophages from BALB/c infected with L. amazonensis. Activity against the promastigote forms showed IC50 at 275.3 μg/mL. Transmission electron microscopy was used to evaluate the ultrastructural alterations in the promastigotes treated with the juice and the results showed cytoplasmic vacuolization, lipid inclusion and increased activity of exocytosis. The juice treatment presented an IC50 at 208.4 μg/mL against intracellular amastigotes and led to an increased nitrite production in infected and non-infected macrophages. When macrophages were pre-treated with iNOS inhibitors, aminoguanidine or 1400W, the intracellular amastigotes increased, demonstrating the important role of NO production in M. citrifolia fruit activity. In conclusion, our results reveal that treatment with M. citrifolia fruit juice can increase NO production in peritoneal macrophages and this ability has an important role in the killing of L. amazonensis intracellular amastigotes. PMID:27328771

  17. Parturition and recruitment of macrophages in cervix of mice lacking the prostaglandin F receptor.

    PubMed

    Yellon, Steven M; Ebner, Charlotte A; Sugimoto, Yukihiko

    2008-03-01

    Parturition does not occur in transgenic mice lacking the prostaglandin F receptor (Ptgfr(-/-)) because luteolysis is forestalled and progesterone production persists. Ovariectomy of pregnant Ptgfr(-/-) mice leads to a decline in circulating progesterone and delivery of live pups. The objective of the present study was to test the hypothesis that immigration of macrophages and increased innervation of the cervix of Ptgfr(-/-) mice was associated with ripening and parturition. The cervix of pregnant Ptgfr(-/-) mice was studied on Days 15-21 after breeding; additional groups were ovariectomized on Day 19 of pregnancy, and the cervix obtained on Day 20 of pregnancy before birth or the next day at about 24 h after birth. On Days 18-19 of pregnancy, macrophage numbers and nerve fiber density increased more than 3-fold compared with findings in nonpregnant or Day 15 or 21 pregnant Ptgfr(-/-) mice. The magnitude and time course of these changes were comparable to those found in wild-type controls that delivered on Day 19 after breeding. Thus, the mechanism regulating macrophage immigration, innervation, and cervical remodeling in Ptgfr(-/-) mice with delayed parturition is similar to wild-type controls that deliver at term. By contrast, ovariectomy forestalled the decrease in cervical macrophages in Ptgfr(-/-) mice. By Day 21 after breeding, macrophage numbers more than double those after ovariectomy, relative to those found in pregnant Ptgfr(-/-) mice, whereas nerve fiber density was the same regardless of birth. Density of collagen structure in these mice directly matched macrophage traffic in the cervix. The findings indicate that the prostaglandin F(2alpha) receptor and progesterone withdrawal are a necessary part of the final common pathway for ripening of the cervix and the process of parturition.

  18. Role of Macrophage Scavenger Receptors in Response to Listeria monocytogenes Infection in Mice

    PubMed Central

    Ishiguro, Takuro; Naito, Makoto; Yamamoto, Takashi; Hasegawa, Go; Gejyo, Fumitake; Mitsuyama, Masao; Suzuki, Hiroshi; Kodama, Tatsuhiko

    2001-01-01

    Type I and type II macrophage scavenger receptors (SR-A I/II) recognize a variety of polyanions including bacterial cell-wall products such as lipopolysaccharide, suggesting a role for SR-A I/II in immunity against bacterial infection. SR-A I/II-deficient (MSR-A−/−) mice were more susceptible to infection with listeriolysin-O (LLO)-producing Listeria monocytogenes. After infection, Kupffer cells in wild-type (MSR-A+/+) mice phagocytized larger numbers of Listeria than those in MSR-A−/− mice. The number and the diameter of hepatic granulomas were larger in MSR-A−/− mice than MSR-A+/+ mice. L. monocytogenes replicated at higher levels in the liver of MSR-A−/− mice compared with MSR-A+/+ mice, and macrophages from MSR-A−/− mice showed impaired ability to kill Listeria in vitro. However, macrophages from MSR-A+/+ and MSR-A−/− mice showed similar levels of listericidal activity against isogenic mutant L. monocytogenes with an inactivated LLO gene. The listerial phagocytic activities of MSR-A+/+ macrophages treated with an anti-SR-A I/II antibody (2F8) and MSR-A−/− macrophages were significantly impaired compared with untreated MSR-A+/+ macrophages, indicating that SR-A I/II function as a receptor for L. monocytogenes. Electron microscopy revealed that most L. monocytogenes had been eliminated from the lysosomes of MSR-A+/+ macrophages in vivo and in vitro. In contrast, L. monocytogenes rapidly lysed the phagosomal membrane and escaped to the cytosol in MSR-A−/− macrophages and in MSR-A+/+ macrophages treated with 2F8 before phagosome-lysosome fusion. These findings imply that SR-A I/II plays a crucial role in host defense against listerial infection not only by functioning as a receptor but also by mediating listericidal mechanisms through the regulation of LLO-dependent listerial escape from the macrophages. PMID:11141491

  19. Prostaglandin E2, thromboxane B2, and leukotriene B4 release from peritoneal macrophages by different osmotic agents in nonuremic guinea pigs.

    PubMed

    Hain, H; Jörres, A; Kögel, B; Mahiout, A; Gahl, G M; Kessel, M

    1988-01-01

    Interleukin-1 (Il-1), prostaglandins, and leukotrienes have been identified as inflammatory parameters in the setting of peritoneal dialysis. Recently, it was postulated that chronic overstimulation of peritoneal macrophages (PM) may result in fibrosis and loss of ultrafiltration. The aim of the present study was to investigate whether alternative osmotic agents (polyglucose, amino acids, glycerol, bicarbonate/glucose, gelatine, hydroxyethyl starch) provoke greater eicosanoid release by PMs than glucose. Fifty milliliters of sterile dialysate containing different osmotic agents were injected intraperitoneally into nonuremic guinea pigs. After 4 hours of dwell time, prostaglandin E2 (PGE2), thromboxane B2 (TXB2), and leukotriene B4 (LTB4) production was analyzed in peritoneal effluents using specific radioimmunoassays (RIA) after liquid extraction. Cyclooxygenase products were generated with all osmotic agents: PGE2 concentrations ranged from 0.9 to 2.8 ng/4h, and TXB2 levels ranged from 39 to 49 ng/4h. In addition, the lipoxygenase product LTB4 was found in concentrations between 1.8 and 3.5 ng/4h. There were no significant differences in eicosanoid release among the osmotic agents. Thus, in this experimental setting, the capacity of PM to release inflammatory mediators did not correlate with the chemical composition of the dialysis solutions.

  20. The role of IgG subclass of mouse monoclonal antibodies in antibody-dependent enhancement of feline infectious peritonitis virus infection of feline macrophages.

    PubMed

    Hohdatsu, T; Tokunaga, J; Koyama, H

    1994-01-01

    Antibody-dependent enhancement (ADE) of feline infectious peritonitis virus (FIPV) infection was studied in feline alveolar macrophages and human monocyte cell line U937 using mouse neutralizing monoclonal antibodies (MAbs) directed to the spike protein of FIPV. Even among the MAbs that have been shown to recognize the same antigenic site, IgG 2a MAbs enhanced FIPV infection strongly, whereas IgG 1 MAbs did not. These IgG 2a MAbs enhanced the infection even when macrophages pretreated with the MAb were washed and then inoculated with the virus. Immunofluorescence flow cytometric analysis of the macrophages treated with each of the MAbs showed that the IgG 2a MAbs but not the IgG 1 MAbs bound to feline alveolar macrophages. Treatment of the IgG 2a MAb with protein A decreased the binding to the macrophages and, in parallel, diminished the ADE activity. Although no infection was observed by inoculation of FIPV to human monocyte cell line U937 cells, FIPV complexed with either the IgG 2a MAb or the IgG 1 MAb caused infection in U937 cells which are shown to express Fc gamma receptor (Fc gamma R) I and II that can bind mouse IgG 2a and IgG 1, respectively. These results suggest that the enhancing activity of MAb is closely correlated with IgG subclass and that the correlation is involved in binding of MAb to Fc gamma R on feline macrophage.

  1. The toxic effects of indoor atmospheric fine particulate matter collected from allergic and non-allergic families in Wuhan on mouse peritoneal macrophages.

    PubMed

    Yan, Biao; Li, Jinquan; Guo, Junhui; Ma, Ping; Wu, Zhuo; Ling, ZhenHao; Guo, Hai; Hiroshi, Yoshino; Yanagi, U; Yang, Xu; Zhu, Shengwei; Chen, Mingqing

    2016-04-01

    Recent studies have shown that fine particulate matter (PM2.5) is associated with multiple adverse health outcomes and PM2.5-induced oxidative stress is now commonly known as a proposed mechanism of PM2.5-mediated toxicity. However, the association between allergic symptoms in children and exposure to PM2.5 has not been fully elucidated, particularly the role of PM2.5 on the indoor environment involved in allergy or non-allergy is unknown. The aim of the present study was to explore whether indoor PM2.5 from the homes of children with allergic symptoms had more increased risks of allergy than that of healthy ones and then compare the toxicity and inflammatory response of them. In this study, indoor PM2.5 was collected from the homes of schoolchildren with allergic symptoms and those of healthy ones respectively, and components of PM2.5 were analyzed. PM2.5-mediated oxidative damage and inflammatory response were further evaluated in mouse peritoneal macrophages based on its effects on the levels of reactive oxygen species accumulation, lipid peroxidation, DNA damage or cytokine production. It seems that oxidative stress may contribute to PM2.5-induced toxicity, and PM2.5 from the allergic indoor environment produced more serious toxic effects and an inflammatory response on mouse peritoneal macrophages than that from a non-allergic indoor environment. PMID:26304222

  2. DNMT1-PPARγ pathway in macrophages regulates chronic inflammation and atherosclerosis development in mice

    PubMed Central

    Yu, Jie; Qiu, Youzhu; Yang, Jie; Bian, Shizhu; Chen, Guozhu; Deng, Mengyang; Kang, Huali; Huang, Lan

    2016-01-01

    The DNA methyltransferase-mediated proinflammatory activation of macrophages is causally linked to the development of atherosclerosis (AS). However, the role of DNMT1, a DNA methylation maintenance enzyme, in macrophage polarization and AS development remains obscure. Here, we established transgenic mice with macrophage-specific overexpression of DNMT1 (TgDNMT1) or PPAR-γ (TgPPAR-γ) to investigate their effects on AS progression in ApoE-knockout mice fed an atherogenic diet. Primary macrophages were extracted to study the role of the DNMT1/PPAR-γ pathway in regulating inflammatory cytokine production. We demonstrated that TgDNMT1 significantly increased proinflammatory cytokine production in macrophages and plasma, and it accelerated the progression of AS in the atherogenic diet-treated ApoE-knockout mice. Further, we found that the DNA methylation status of the proximal PPAR-γ promoter was regulated by DNMT1 in macrophages. Notably, additional TgPPAR-γ or pharmacological activation of PPAR-γ effectively prevented TgDNMT1-induced proinflammatory cytokine production in macrophages and AS development in the mouse model. Finally, we demonstrated that elevated DNMT1 was correlated with decreased PPAR-γ, and increased proinflammatory cytokine production in the peripheral blood monocytes isolated from the patients with AS, compared to those of healthy donors. Our findings shed light on a novel strategy for the prevention and therapy of AS. PMID:27530451

  3. Crude extract of Polygonum cuspidatum promotes immune responses in leukemic mice through enhancing phagocytosis of macrophage and natural killer cell activities in vivo.

    PubMed

    Chueh, Fu-Shin; Lin, Jen-Jyh; Lin, Jing-Pin; Yu, Fu-Shun; Lin, Ju-Hwa; Ma, Yi-Shih; Huang, Yi-Ping; Lien, Jin-Cherng; Chung, Jing-Gung

    2015-01-01

    Polygonum cuspidatum is a traditional Chinese herbal medicine used in the treatment of various diseases. In the present study, we investigated whether the crude extract of Polygonum cuspidatum (CEPC) could affect immune responses of murine leukemia cells in vivo. Normal BALB/c mice were i.p. injected with WEHI-3 cells to generate leukemic mice and then were treated orally with CEPC at 0, 50, 100 and 200 mg/kg for three weeks. Animals were weighed and blood, liver, spleen samples were collected for further analyses. Results indicated that CEPC did not significantly affect the body and liver weight of animals, but reduced the weight of spleen when compared to control groups. Flow cytometric assay demonstrated that CEPC increased the percentage of CD3- (T-cell marker) and CD19- (B-cell marker) positive cells, but reduced that of CD11b-positive ones (monocytes). However, it did not significantly affect the proportion of Mac-3-positive cells (macrophages), compared to control groups. Results indicated that CEPC promoted phagocytosis by macrophages from blood samples at all examined doses but did not affect that of macrophages from the peritoneal cavity. CEPC also promoted natural killer cell activity of splenocytes at 200 mg/kg of CEPC. CEPC promoted B-cell proliferation at 200 mg/kg treatment when cells were stimulated with lipopolysaccharides but did not promote T-cell proliferation at three doses of CEPC treatment on concanavalin A stimulation. PMID:25792654

  4. Constant replenishment from circulating monocytes maintains the macrophage pool in the intestine of adult mice.

    PubMed

    Bain, Calum C; Bravo-Blas, Alberto; Scott, Charlotte L; Gomez Perdiguero, Elisa; Geissmann, Frederic; Henri, Sandrine; Malissen, Bernard; Osborne, Lisa C; Artis, David; Mowat, Allan McI

    2014-10-01

    The paradigm that macrophages that reside in steady-state tissues are derived from embryonic precursors has never been investigated in the intestine, which contains the largest pool of macrophages. Using fate-mapping models and monocytopenic mice, together with bone marrow chimera and parabiotic models, we found that embryonic precursor cells seeded the intestinal mucosa and demonstrated extensive in situ proliferation during the neonatal period. However, these cells did not persist in the intestine of adult mice. Instead, they were replaced around the time of weaning by the chemokine receptor CCR2-dependent influx of Ly6C(hi) monocytes that differentiated locally into mature, anti-inflammatory macrophages. This process was driven largely by the microbiota and had to be continued throughout adult life to maintain a normal intestinal macrophage pool.

  5. Polydatin Inhibits Formation of Macrophage-Derived Foam Cells

    PubMed Central

    Wu, Min; Liu, Meixia; Guo, Gang; Zhang, Wengao; Liu, Longtao

    2015-01-01

    Rhizoma Polygoni Cuspidati, a Chinese herbal medicine, has been widely used in traditional Chinese medicine for a long time. Polydatin, one of the major active ingredients in Rhizoma Polygoni Cuspidati, has been recently shown to possess extensive cardiovascular pharmacological activities. In present study, we examined the effects of Polydatin on the formation of peritoneal macrophage-derived foam cells in Apolipoprotein E gene knockout mice (ApoE−/−) and explored the potential underlying mechanisms. Peritoneal macrophages were collected from ApoE−/− mice and cultured in vitro. These cells sequentially were divided into four groups: Control group, Model group, Lovastatin group, and Polydatin group. Our results demonstrated that Polydatin significantly inhibits the formation of foam cells derived from peritoneal macrophages. Further studies indicated that Polydatin regulates the metabolism of intracellular lipid and possesses anti-inflammatory effects, which may be regulated through the PPAR-γ signaling pathways. PMID:26557864

  6. Analysis of Nitric Oxide-Dependent Antimicrobial Actions in Macrophages and Mice

    PubMed Central

    Vazquez-Torres, Andrés; Stevanin, Tania; Jones-Carson, Jessica; Castor, Margaret; Read, Robert C.; Fang, Ferric C.

    2009-01-01

    Nitric oxide (NO•) is a critical component of mammalian host defense that is produced in macrophages and other cells comprising the innate immune system. Isolated mammalian macrophages have been utilized to measure the kinetics of NO production and to demonstrate NO-related antimicrobial actions. Some microorganisms possess enzymes to detoxify nitrogen oxides, and mutant strains lacking these enzymes can be used to demonstrate the importance of these mechanisms for intracellular bacterialsurvival. This chapter describes techniques with which to analyze the antimicrobial actions of nitric oxide in murine and human macrophages and in laboratory mice. PMID:18433645

  7. Immunologic Effects Of Peritoneal Photodynamic Treatment

    NASA Astrophysics Data System (ADS)

    Lynch, David H.; Haddad, Sandra; Jolles, Christopher J.; King, Vernon J.; Ott, Mark J.; Robertson, Bekkie; Straight, Richard C.

    1989-06-01

    One of the side effects of peritoneal photodynamic treatment (PDT) of mice is a systemic suppression of contact hypersensitivity (CH) responses. Treatment with either laser alone or the photosensitizer, Photofrin II (PFII), alone does not cause suppression of CH responses. Immunosuppression of CH responses is an active process that is adoptively transferable using viable cells, but not serum, from PDT-treated mice. The induction of adoptively transferable suppressor cells in PDT-treated mice requires exposure to an antigenic stimulus, yet the suppressor cells are antigen non-specific in their function. T cell function in PDT-treated mice, as measured by the ability of splenic lymphoid cells to generate allogeneic cytotoxic T lymphocyte responses, is comparable to that detected in normal mice. However, the ability of spleen cells from PDT-treated mice to act as stimulators in a mixed lymhocyte reaction is dramatically impaired, suggesting that the major cell type affected by peritoneal PDT is of the macrophage lineage. Support for this concept is provided by experiments in which spleen cells from PDT-treated mice were chromatographically separated into populations of T cells, B cells and macrophages prior to adoptive transfer into naive recipients. The results indicate that the cell type mediating adoptively transferable suppression of CH responsiveness is of the macrophage lineage. Analysis of hematologic parameters revealed that induction of suppression by PDT-treatment was associated with a marked neutrophilia and lymphocytosis, and was also accompanied by a 5-fold increase in concentration of the acute phase protein, Serum Amyloid P. Finally, attempts to ameliorate PDT-induced immunosuppression by pharmacologic intervention have proved successful using implants of pellets that release indomethacin at a rate of 1.25µg/day. Thus, the data suggest that PDT-treatment induces macrophages to produce factors (e.g., prostaglandins) that are known to be potently

  8. Endurance interval training in obese mice reduces muscle inflammation and macrophage content independently of weight loss

    PubMed Central

    Samaan, M. Constantine; Marcinko, Katarina; Sikkema, Sarah; Fullerton, Morgan D.; Ziafazeli, Tahereh; Khan, Mohammad I.; Steinberg, Gregory R.

    2014-01-01

    Abstract Obesity is associated with chronic low‐grade inflammation that involves infiltration of macrophages into metabolic organs such as skeletal muscle. Exercise enhances skeletal muscle insulin sensitivity independently of weight loss; but its role in regulating muscle inflammation is not fully understood. We hypothesized that exercise training would inhibit skeletal muscle inflammation and alter macrophage infiltration into muscle independently of weight loss. Wild type C57BL/6 male mice were fed a chow diet or a high‐fat diet (HFD, 45% calories fat) for 6 weeks. Then, mice maintained on the HFD either remained sedentary (HFD Sed) or exercised (HFD Ex) on a treadmill for another 6 weeks. The exercise training protocol involved conducting intervals of 2 min in duration followed by 2 min of rest for 60 min thrice weekly. Chow‐fed control mice remained sedentary for the entire 12 weeks. Muscle cytokine and macrophage gene expression analysis were conducted using qRT‐PCR, and muscle macrophage content was also measured using immunohistochemistry. Muscle cytokine protein content was quantified using a cytokine array. The HFD increased adiposity and weight gain compared to chow‐fed controls. HFD Sed and HFD Ex mice had similar body mass as well as total and visceral adiposity. However, despite similar adiposity, exercise reduced inflammation and muscle macrophage infiltration. We conclude that Endurance exercise training modulates the immune‐metabolic crosstalk in obesity independently of weight loss, and may have potential benefits in reducing obesity‐related muscle inflammation. PMID:24843075

  9. Osteopontin Deficiency Accelerates Spontaneous Colitis in Mice with Disrupted Gut Microbiota and Macrophage Phagocytic Activity

    PubMed Central

    Toyonaga, Takahiko; Nakase, Hiroshi; Ueno, Satoru; Matsuura, Minoru; Yoshino, Takuya; Honzawa, Yusuke; Itou, Ayako; Namba, Kazuyoshi; Minami, Naoki; Yamada, Satoshi; Koshikawa, Yorimitsu; Uede, Toshimitsu; Chiba, Tsutomu; Okazaki, Kazuichi

    2015-01-01

    Background Osteopontin (OPN) is a multifunctional protein expressed in a variety of tissues and cells. Recent studies revealed increased OPN expression in the inflamed intestinal tissues of patients with inflammatory bowel disease (IBD). The role of OPN in the pathophysiology of IBD, however, remains unclear. Aims To investigate the role of OPN in the development of intestinal inflammation using a murine model of IBD, interleukin-10 knock out (IL-10 KO) mice. Methods We compared the development of colitis between IL-10 KO and OPN/IL-10 double KO (DKO) mice. OPN expression in the colonic tissues of IL-10 KO mice was examined by fluorescence in situ hybridization (FISH) analysis. Enteric microbiota were compared between IL-10 KO and OPN/IL-10 DKO mice by terminal restriction fragment length polymorphism analysis. The effect of OPN on macrophage phagocytic function was evaluated by phagocytosis assay. Results OPN/IL-10 DKO mice had an accelerated onset of colitis compared to IL-10 KO mice. FISH analysis revealed enhanced OPN synthesis in the colonic epithelial cells of IL-10 KO mice. OPN/IL-10 DKO mice had a distinctly different enteric bacterial profile with a significantly lower abundance of Clostridium subcluster XIVa and a greater abundance of Clostridium cluster XVIII compared to IL-10 KO mice. Intracellular OPN deletion in macrophages impaired phagocytosis of fluorescence particle-conjugated Escherichia coli in vitro. Exogenous OPN enhanced phagocytosis by OPN-deleted macrophages when administered at doses of 1 to 100 ng/ml, but not 1000 ng/ml. Conclusions OPN deficiency accelerated the spontaneous development of colitis in mice with disrupted gut microbiota and macrophage phagocytic activity. PMID:26274807

  10. Impaired differentiation of macrophage lineage cells attenuates bone remodeling and inflammatory angiogenesis in Ndrg1 deficient mice

    PubMed Central

    Watari, Kosuke; Shibata, Tomohiro; Nabeshima, Hiroshi; Shinoda, Ai; Fukunaga, Yuichi; Kawahara, Akihiko; Karasuyama, Kazuyuki; Fukushi, Jun-ichi; Iwamoto, Yukihide; Kuwano, Michihiko; Ono, Mayumi

    2016-01-01

    N-myc downstream regulated gene 1 (NDRG1) is a responsible gene for a hereditary motor and sensory neuropathy-Lom (Charcot–Marie–Tooth disease type 4D). This is the first study aiming to assess the contribution of NDRG1 to differentiation of macrophage lineage cells, which has important implications for bone remodeling and inflammatory angiogenesis. Ndrg1 knockout (KO) mice exhibited abnormal curvature of the spine, high trabecular bone mass, and reduced number of osteoclasts. We observed that serum levels of macrophage colony-stimulating factor (M-CSF) and macrophage-related cytokines were markedly decreased in KO mice. Differentiation of bone marrow (BM) cells into osteoclasts, M1/M2-type macrophages and dendritic cells was all impaired. Furthermore, KO mice also showed reduced tumor growth and angiogenesis by cancer cells, accompanied by decreased infiltration of tumor-associated macrophages. The transfer of BM-derived macrophages from KO mice into BM-eradicated wild type (WT) mice induced much less tumor angiogenesis than observed in WT mice. Angiogenesis in corneas in response to inflammatory stimuli was also suppressed with decreased infiltration of macrophages. Taken together, these results indicate that NDRG1 deficiency attenuates the differentiation of macrophage lineage cells, suppressing bone remodeling and inflammatory angiogenesis. This study strongly suggests the crucial role of NDRG1 in differentiation process for macrophages. PMID:26778110

  11. Structure-activity relationships of 1'S-1'-acetoxychavicol acetate for inhibitory effect on NO production in lipopolysaccharide-activated mouse peritoneal macrophages.

    PubMed

    Matsuda, Hisashi; Ando, Shin; Morikawa, Toshio; Kataoka, Shinya; Yoshikawa, Masayuki

    2005-04-01

    1'S-1'-Acetoxychavicol acetate from the rhizomes of Alpinia galanga inhibited nitric oxide (NO) production in lipopolysaccharide-activated mouse peritoneal macrophages with an IC(50) value of 2.3 microM. To clarify the structure-activity relationship of 1'S-1'-acetoxychavicol acetate, various natural and synthetic phenylpropanoids and synthetic phenylbutanoids were examined, and the following structural requirements were clarified. (1) The para or ortho substitution of the acetoxyl and 1-acetoxypropenyl groups at the benzene ring was essential. (2) The S configuration of the 1'-acetoxyl group was preferable. (3) The presence of the 3-methoxyl group and disappearance of the 2'-3' double bond by hydrogenation reduced the activity. (4) The substitution of acetyl groups with propionyl or methyl groups reduced the activity. (5) Lengthening of the carbon chain between the 1'- and 2'-positions reduced the activity.

  12. Isolation and partial characterization of a pectic polysaccharide from the fruit pulp of Spondias cytherea and its effect on peritoneal macrophage activation.

    PubMed

    Iacomini, Marcello; Serrato, Rodrigo V; Sassaki, Guilherme L; Lopes, Luciana; Buchi, Dorly F; Gorin, Phillip A J

    2005-12-01

    The total carbohydrate content of the intact pulp of Spondias cytherea was 41%. Polysaccharides were obtained via hot aqueous extraction after defatting with organic solvents. The aqueous extract was treated with excess ethanol to form a precipitate, which was then solubilized in water. The material precipitated upon acidification when HCl was removed. The resulting supernatant fraction was submitted to freeze-thawing treatment yielding a soluble fraction (sFTS). This fraction had Ara, Rha, Gal and GalA in its structure as determined by GC-MS. 13C NMR analysis showed signals assigned to alpha-L-Araf, beta-D-Galp, alpha-D-GalpA and alpha-L-Rhap units, in addition to galacturonic acid units, which were present also as methyl ester. These results suggest a type I rhamnogalacturonan with arabinogalactan branches. Cell eliciting activity in a dose-depending pattern was observed in vitro on peritoneal macrophages treated with sFTS.

  13. Phenotypic plasticity of male Schistosoma mansoni from the peritoneal cavity and hepatic portal system of laboratory mice and hamsters.

    PubMed

    Mati, V L T; Freitas, R M; Bicalho, R S; Melo, A L

    2015-05-01

    Morphometric analysis of Schistosoma mansoni male worms obtained from AKR/J and Swiss mice was carried out. Rodents infected by the intraperitoneal route with 80 cercariae of the schistosome (LE strain) were killed by cervical dislocation at 45 and 60 days post-infection and both peritoneal lavage and perfusion of the portal system were performed for the recovery of adult worms. Characteristics including total body length, the distance between oral and ventral suckers, extension of testicular mass and the number of testes were considered in the morphological analysis. Changes that occurred in S. mansoni recovered from the peritoneal cavity or from the portal system of AKR/J and Swiss mice included total body length and reproductive characteristics. Significant morphometric alterations were also observed when worms recovered from the portal system of both strains of mice were compared with the schistosomes obtained from hamsters (Mesocricetus auratus), the vertebrate host in which the LE strain had been adapted and maintained by successive passages for more than four decades. The present results reinforce the idea that S. mansoni has high plastic potential and adaptive capacity.

  14. Dietary omega-3 fatty acids enhance the B1 but not the B2 cell immune response in mice with antigen-induced peritonitis.

    PubMed

    Tomasdottir, Valgerdur; Thorleifsdottir, Sigrun; Vikingsson, Arnor; Hardardottir, Ingibjorg; Freysdottir, Jona

    2014-02-01

    The effects of omega-3 fatty acids on the adaptive immune response have mainly been analysed in vitro with varying results. How omega-3 fatty acids affect the adaptive immune response in vivo is largely unknown. This study examined the effects of dietary fish oil on the adaptive immune response in antigen-induced inflammation in mice, focusing on its effects on B cells and B cell subsets. Mice were fed a control diet with or without 2.8% fish oil, immunized twice with methylated BSA (mBSA) and peritonitis induced by intraperitoneal injection of mBSA. Serum, spleen and peritoneal exudate were collected prior to and at different time points after induction of peritonitis. Serum levels of mBSA-specific antibodies were determined by ELISA and the number of peritoneal and splenic lymphocytes by flow cytometry. The levels of germinal center B cells and IgM(+), IgG(+) and CD138(+) cells in spleen were evaluated by immunoenzyme staining. Mice fed the fish oil diet had more peritoneal B1 cells, more IgM(+) cells in spleen and higher levels of serum mBSA-specific IgM antibodies compared with that in mice fed the control diet. However, dietary fish oil did not affect the number of peritoneal B2 cells, splenic IgG(+) or CD138(+) cells or serum levels of mBSA-specific IgG antibodies in mice with mBSA-induced peritonitis. These results indicate that dietary fish oil can enhance the adaptive immune response, specifically the B1 cell response, which may lead to better protection against secondary infection as well as improvement in reaching homeostasis following antigenic challenge.

  15. Gallium arsenide differentially affects processing of phagolysosomal targeted antigen by macrophages.

    PubMed

    Lewis, T A; Hartmann, C B; McCoy, K L

    1998-03-01

    Gallium arsenide, a semiconductor utilized in the electronics industry, causes immunosuppression in animals. The chemical's effect on macrophages to process antigen for activating pigeon cytochrome-specific helper T cell hybridoma was investigated. Mice were administered 200 mg/kg gallium arsenide or vehicle intraperitoneally. Five-day exposure suppressed processing by splenic macrophages but augmented processing by thioglycollate-elicited and resident peritoneal macrophages. Cytochrome coupled to latex beads was targeted to phagolysosomes to examine processing in lysosomes. Cytochrome beads required phagocytosis for processing and were located in phagolysosomes. Gallium arsenide did not alter the phagocytic ability of macrophages. Peritoneal macrophages normally processed the targeted antigen, indicating that gallium arsenide influenced compartment(s) preceding lysosomes. However, the processing efficiency of exposed splenic macrophages depended on the size of particulate cytochrome, suggesting that processing varied in phagolysosomes of different sizes. Gallium arsenide impacted different intracellular compartments in these macrophages, perhaps contributing to systemic immunotoxicity and local inflammation caused by exposure.

  16. Naringin Decreases TNF-α and HMGB1 Release from LPS-Stimulated Macrophages and Improves Survival in a CLP-Induced Sepsis Mice

    PubMed Central

    Hong, Sang Bum; Lee, Kyung Jin

    2016-01-01

    Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis. PMID:27716835

  17. Functional modifications of macrophage activity after sublethal irradiation. [Toxoplasma gondii

    SciTech Connect

    Swartz, R.P.

    1982-01-01

    The modifications of macrophage activity following sublethal irradiation, both in vivo and in vitro, were studied using spreading and C3b-receptor-mediated ingestion assays. Nonelicited peritoneal washout cells were examined for changes in activity and selected population characteristics. The cells from irradiated mice were from a resident peritoneal population and not immigrating cells. The macrophage population showed enhanced activity early with a refractory period (24-48) when the macrophages were unresponsive to stimulation by irradiated lymphocytes. The enhanced activity was inversely dose dependent on macrophage. The lymphocytes showed a regulatory function(s) on the time post irradiation at which they were examined. Early lymphocytes exhibited the ability to enhance the activity of normal macrophages while lymphocytes removed 24 hours post irradiation could suppress the activity of already activated macrophages. The effect(s) of the various lymphocyte populations were reproduced with cell-free supernatants which was indicative of the production of lymphokines. Separation on nylon wool columns indicated that the activity resided primarily in the T-cell population of lymphocytes. In vitro irradiation indicated that stimulation of the lymphocytes is macrophage dependent. Additional work indicated that sublethally irradiated macrophages did not inhibit replication of the coccidian protozoon Toxoplasma gondii although they did show increased phagocytosis. Examination of the serum from whole body irradiated mice showed the presence of a postirradiation substance which enhanced the phagocytosis of normal macrophages. It was not present in the serum of normal mice and was not endotoxin.

  18. Pristane-induced granulocyte recruitment promotes phenotypic conversion of macrophages and protects against diffuse pulmonary hemorrhage in Mac-1 deficiency.

    PubMed

    Shi, Yiqin; Tsuboi, Naotake; Furuhashi, Kazuhiro; Du, Qiuna; Horinouchi, Asuka; Maeda, Kayaho; Kosugi, Tomoki; Matsuo, Seiichi; Maruyama, Shoichi

    2014-11-15

    Diffuse pulmonary hemorrhage (DPH) is an uncommon but critical complication of systemic lupus erythematosus. Peritoneal administration of 2,6,10,14-tetramethylpentadecane (pristane) can recapitulate a lupus-like syndrome in mice, which can develop into DPH within a few weeks, especially in C57BL/6 mice. Mac-1 (CD11b/CD18), a leukocyte adhesion molecule, is known to play a role in inflammation by regulating migration of leukocytes into injured tissue. In this study, we aimed to clarify the role of Mac-1 in pristane-induced DPH, using Mac-1(-/-) and wild-type (WT) mice on a C57BL/6 background. After pristane injection, Mac-1(-/-) mice showed reduced prevalence of DPH and attenuated peritonitis compared with WT mice. Analysis of the peritoneal lavage on days 5 and 10 after pristane treatment revealed increased numbers of eosinophils and alternatively activated macrophages, but decreased numbers of neutrophils and classically activated macrophages in Mac-1(-/-) mice compared with WT. Enhanced production of IL-4 and IL-13, both key mediators of macrophage polarization toward the mannose receptor(+) (MMR(+)) phenotype, was observed in the peritoneal cavity of Mac-1(-/-) mice. Depletion of neutrophils and eosinophils or adoptive transfer of classically activated macrophages resulted in the exacerbation of pristane-mediated DPH in both WT and Mac-1(-/-) mice. Moreover, peritoneal transfer of F4/80(high)MMR(+) alternatively activated macrophages successfully reduced the prevalence of DPH in WT mice. Collectively, Mac-1 promoted acute inflammatory responses in the peritoneal cavity and the lungs by downregulating granulocyte migration and subsequent phenotypic conversion of macrophages in a pristane-induced systemic lupus erythematosus model.

  19. Leukocytes recruited by tumor-derived HMGB1 sustain peritoneal carcinomatosis.

    PubMed

    Cottone, Lucia; Capobianco, Annalisa; Gualteroni, Chiara; Monno, Antonella; Raccagni, Isabella; Valtorta, Silvia; Canu, Tamara; Di Tomaso, Tiziano; Lombardo, Angelo; Esposito, Antonio; Moresco, Rosa Maria; Maschio, Alessandro Del; Naldini, Luigi; Rovere-Querini, Patrizia; Bianchi, Marco E; Manfredi, Angelo A

    2016-05-01

    The factors that determine whether disseminated transformed cells in vivo yield neoplastic lesions have only been partially identified. We established an ad hoc model of peritoneal carcinomatosis by injecting colon carcinoma cells in mice. Tumor cells recruit inflammatory leukocytes, mostly macrophages, and generate neoplastic peritoneal lesions. Phagocyte depletion via clodronate treatment reduces neoplastic growth. Colon carcinoma cells release a prototypic damage-associated molecular pattern (DAMP)/alarmin, High Mobility Group Box1 (HMGB1), which attracts leukocytes. Exogenous HMGB1 accelerates leukocyte recruitment, macrophage infiltration, tumor growth and vascularization. Lentiviral-based HMGB1 knockdown or pharmacological interference with its extracellular impair macrophage recruitment and tumor growth. Our findings provide a preclinical proof of principle that strategies based on preventing HMGB1-driven recruitment of leukocytes could be used for treating peritoneal carcinomatosis. PMID:27467932

  20. Stimulation of macrophages with IFN gamma or TNF alpha shuts off the suppressive effect played by PGE2.

    PubMed

    Zicari, A; Lipari, M; Di Renzo, L; Salerno, A; Losardo, A; Pontieri, G M

    1995-09-01

    PGE2 has been shown to be able to interfere with various lymphocyte and macrophage functions, but its effects on macrophage activation are still unclear. In this study, carried out on peritoneal macrophages obtained from healthy, tumour-bearing and Corynebacterium parvum-treated mice, we demonstrated that PGE2 is involved in the down-regulation of macrophage activation, but it cannot exert its inhibiting effect when macrophages are further stimulated with activating cytokines, such as IFN gamma and TNF alpha. Our findings provide new insight into how macrophage tumoricidal activity may be induced and maintained even in presence of significant levels of PGE2. PMID:8582790

  1. 1'S-1'-Acetoxychavicol acetate as a new type inhibitor of interferon-beta production in lipopolysaccharide-activated mouse peritoneal macrophages.

    PubMed

    Ando, Shin; Matsuda, Hisashi; Morikawa, Toshio; Yoshikawa, Masayuki

    2005-05-01

    1'S-1'-Acetoxychavicol acetate from the rhizomes of Alpinia galanga was known to show potent inhibitory effect on the production of nitric oxide (NO) in lipopolysaccharide-activated mouse peritoneal macrophages. To clarify its mechanism of action, the effects of 1'S-1'-acetoxychavicol acetate on the expression of interferon-beta (IFN-beta) mRNA and activation of nuclear factor-kappaB (NF-kappaB), both of which participate in the induction of inducible NO synthase, were examined in lipopolysaccharide-activated macrophages. The results were compared with those of two inhibitors of the NF-kappaB activation, costunolide and caffeic acid phenethyl ester. 1'S-1'-Acetoxychavicol acetate inhibited IFN-beta mRNA expression as well as NF-kappaB activation, and two related compounds, (+/-)-1-acetoxy-1-(2-acetoxyphenyl)-2-propene and (+/-)-1-acetoxy-1-(4-acetoxyphenol)-3-butene, also inhibited IFN-beta mRNA expression. In addition, 1'S-1'-acetoxychavicol acetate inhibited the production of NO stimulated by poly(I:C) via Toll-like receptor 3.

  2. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth.

    PubMed

    Zhao, Gang; Liu, Liping; Peek, Richard M; Hao, Xishan; Polk, D Brent; Li, Hui; Yan, Fang

    2016-09-23

    EGF receptor (EGFR) in tumor cells serves as a tumor promoter. However, information about EGFR activation in macrophages in regulating M2 polarization and tumor development is limited. This study aimed to investigate the effects of EGFR activation in macrophages on M2 polarization and development of gastrointestinal tumors. IL-4, a cytokine to elicit M2 polarization, stimulated release of an EGFR ligand, HB-EGF, and transactivation and down-regulation of EGFR in Raw 264.7 cells and peritoneal macrophages from WT mice. Knockdown of HB-EGF in macrophages inhibited EGFR transactivation by IL-4. IL-4-stimulated STAT6 activation, Arg1 and YM1 gene expression, and HB-EGF production were further enhanced by inhibition of EGFR activity in Raw 264.7 cells using an EGFR kinase inhibitor and in peritoneal macrophages from Egfr(wa5) mice with kinase inactive EGFR and by knockdown of EGFR in peritoneal macrophages from Egfr(fl/fl) LysM-Cre mice with myeloid cell-specific EGFR deletion. Chitin induced a higher level of M2 polarization in peritoneal macrophages in Egfr(fl/fl) LysM-Cre mice than that in Egfr(fl/fl) mice. Accordingly, IL-4-conditioned medium stimulated growth and epithelial-to-mesenchymal transition in gastric epithelial and colonic tumor cells, which were suppressed by that from Raw 264.7 cells with HB-EGF knockdown but promoted by that from Egfr(wa5) and Egfr(fl/fl) LysM-Cre peritoneal macrophages. Clinical assessment revealed that the number of macrophages with EGFR expression became less, indicating decreased inhibitory effects on M2 polarization, in late stage of human gastric cancers. Thus, IL-4-stimulated HB-EGF-dependent transactivation of EGFR in macrophages may mediate inhibitory feedback for M2 polarization and HB-EGF production, thereby inhibiting gastrointestinal tumor growth.

  3. Increased macrophage colony-stimulating factor in neonatal and adult autoimmune MRL-lpr mice.

    PubMed Central

    Yui, M. A.; Brissette, W. H.; Brennan, D. C.; Wuthrich, R. P.; Rubin-Kelley, V. E.

    1991-01-01

    Abnormal macrophages in MRL-lpr mice are implicated in the pathogenesis of autoimmune disease. These mice die of lupus nephritis by 5 to 6 months of age. This study reports that MRL-lpr mice have an increased level of circulating macrophage colony-stimulating factor (M-CSF) detectable as early as 1 week of age. Macrophage colony-stimulating factor decreased between 2 and 4 months and then steadily increased beginning at 4 months of age. In contrast, M-CSF was not detected in sera from congenic MRL-++ mice, normal C3H/FeJ mice, two other mouse strains with the lpr gene (B6-lpr and C3H-lpr), or another lupus model, the NZB/W mouse. These observations indicate that the lpr gene alone is not responsible for inducing this growth factor, and elevated M-CSF is not required for all forms of murine lupus. The entire source of serum M-CSF is not clear. The unique T cells regulated by the lpr gene are not responsible for the increased serum M-CSF levels, as no M-CSFs could be detected in supernatants from cultured lymph nodes from MRL-lpr mice, and the steady-state levels of M-CSF mRNA in lymph nodes and spleens in MRL-lpr, C3H-lpr mice and in their respective congenic strains were similar. The steady-state M-CSF mRNA transcripts in liver, lung, and bone marrow in MRL-lpr, MRL-++, and C3H/FeJ mice were also similar. Macrophage colony-stimulating factor transcripts were clearly elevated in the kidneys of MRL-lpr mice, suggesting a renal source of circulating M-CSF. The increase of M-CSF might be responsible for the increased numbers and enhanced functions of macrophages, which in turn cause tissue destruction in MRL-lpr mice. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:1867317

  4. [Peritoneal biofilms: microscopic features].

    PubMed

    Maloman, E; Lepadatu, C; Ciornâi, A; Sainsus, Natalia; Balica, I; Gladun, N

    2007-01-01

    Antibiotherapy remains one of the basic clinical tools, which can influence the evolution of severe peritonitis. Peritoneal biofilm formation may minimize the antibiotic effects due to dramatic growth of Minimum Inhibitory Concentrations (MIC) and Minimum Bactericidal Concentrations (MBC) for matrix-enclosed bacteria. In this paper we demonstrate the presence and evolution of bacterial biofilms on the peritoneal surface during the course of severe secondary peritonitis using an experimental model and clinical material. Cecal Ligation Puncture was performed in 20 mice Swiss Webster. Peritoneal samples were studied at optic and electronic microscope at 10, 24, 48 and 72 hours postoperative. Clinical samples were taken from 10 patients with diffuse peritonitis. At 24 hours after the onset of the peritonitis bacterial colonies were detected on the peritoneal surface. The formation of mature multilayer polymicrobial biofilms with deep penetration in abdominal wall by 48-72 hours was documented. The bacterial biofilms appear in first 24 hours in the course of experimental generalized peritonitis. Our experimental and clinical data demonstrate formation of the mature polymicrobial biofilm in 48-72 hours after the onset of peritonitis. The possibility of resistant biofilm formation in secondary diffuse peritonitis should be taken into consideration in elaboration of treatment schemes.

  5. Immunoregulation by macrophages II. Separation of mouse peritoneal macrophages having tumoricidal and bactericidal activities and those secreting PGE and interleukin I

    SciTech Connect

    Hopper, K.E.; Cahill, J.M.

    1983-06-01

    Macrophage subpopulations having bactericidal or tumoricidal activities and secreting interleukin I (IL1) or prostaglandin E (PGE) were identified through primary or secondary infection with Salmonella enteritidis and separated by sedimentation velocity. Bactericidal activity was measured by (3H)-thymidine release from Listeria monocytogenes and tumoricidal activity by 51Cr-release from C-4 fibrosarcoma or P815 mastocytoma cells. Macrophages with bactericidal activity were distinguished from those with tumoricidal activity a) during secondary infection when cytolytic activity occurred only at days 1-4 post injection and bactericidal activity remained high throughout and b) after sedimentation velocity separation. Cytolysis was consistently greatest among adherent cells of low sedimentation velocity, whereas cells with bactericidal activity increased in size during the infection. Tumour cytostasis (inhibition and promotion of (3H)-thymidine uptake) differed from cytolysis in that the former was more prolonged during infection and was also detected among large cells. Secretion of immunoregulatory molecules PGE and IL1 occurred maximally among different macrophage subpopulations separated by sedimentation velocity and depending on the type of stimulus used in vitro. There was an inverse correlation between IL1 production and PGE production after stimulation with C3-zymosan or lipopolysaccharide (LPS). The development of immunity during infection may therefore be dependent upon the relative proportions of effector and regulatory macrophage subpopulations and the selective effects of environmental stimuli on these functions.

  6. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria.

    PubMed Central

    Tomita, T; Blumenstock, E; Kanegasaki, S

    1981-01-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria. Images PMID:6788707

  7. Phagocytic and chemiluminescent responses of mouse peritoneal macrophages to living and killed Salmonella typhimurium and other bacteria

    SciTech Connect

    Tomita, T.; Blumenstock, E.; Kanegasaki, S.

    1981-06-01

    In the presence of luminol, resident as well as thioglycolate-induced and immunized macrophages emitted chemiluminescence more efficiently when the cells were exposed to living Salmonella typhimurium than when they were exposed to the same bacterium killed by ultraviolet light or heat. This phenomenon was observed whether or not the bacterium was opsonized. The different response to living and killed bacteria was also found with Escherichia coli, Pseudomonas aeruginosa, Proteus morganii, and Enterobacter aerogenes, but not with Shigella sonnei, Klebsiella pneumoniae, and Propionibacterium acnes. The results suggest that macrophages respond better to living, motile bacteria than to nonmotile or killed bacteria. The experimental results obtained with motility mutants of S. typhimurium, E. coli, and P. aeruginosa confirm that macrophages exposed to the motile bacteria emit chemiluminescence more efficiently and ingest the motile bacteria at a much faster rate than the nonmotile bacteria.

  8. Rheb1-mTORC1 maintains macrophage differentiation and phagocytosis in mice.

    PubMed

    Wang, Xiaomin; Li, Minghao; Gao, Yanan; Gao, Juan; Yang, Wanzhu; Liang, Haoyue; Ji, Qing; Li, Yanxin; Liu, Hanzhi; Huang, Jian; Cheng, Tao; Yuan, Weiping

    2016-06-10

    Ras homolog enriched in brain (Rheb1) is a small GTPase and is known to be a direct activator of mTORC1. Dysregulation of Rheb1 has been shown to impair the cellular-energetic state and cell homeostasis. However, the role of Rheb1 in monocytes/macrophages differentiation and maturation is not clear. Here, we investigate the role of Rheb1 in mouse myelopoiesis using a Rheb1 conditional deletion murine model. We found that the absolute number of macrophages decreased in the bone marrow (BM) of Rheb1-deficient mice. Loss of Rheb1 inhibited the monocyte-to-macrophage differentiation process. Additionally, Rheb1 deletion reduced phagocytosis ability of macrophages by inhibiting the mTORC1 signaling pathway. Furthermore, 3BDO (an activator of mTORC1) rescued the phagocytosis ability of Rheb1-deficient macrophages. Thus, Rheb1 is critical for macrophage production and phagocytosis and executes these activities possibly via mTORC1-dependent pathway.

  9. IL-2 gene-modified tumour vaccines: monitoring of IL-2 levels in serum and peritoneal cavity of vaccinated mice.

    PubMed

    Indrová, M; Pajtasz-Piasecka, E; Jandlová, T; Símová, J; Bubeník, J; Radzikowski, C

    1999-01-01

    IL-2 kinetics was assessed in mice vaccinated with irradiated syngeneic tumour vaccines carrying an inserted IL-2 gene and producing constitutively IL-2. For comparison, the kinetics of i.v. administered recombinant IL-2 was also examined. During regular time intervals after the vaccination or administration of recombinant IL-2, samples of serum and peritoneal fluid were collected and examined, using CTLL bioassay or its MTT modification. After i.p. administration of irradiated IL-2-producing plasmacytoma (X63-m-IL-2) vaccine, the levels of IL-2 were substantially higher in the peritoneal fluid than in the serum. Both in the peritoneal fluid and in the serum, the IL-2 level was increasing up to 60 min after administration and then it gradually decreased. The last time point when IL-2 was still detectable both in the peritoneal fluid and in the serum was 30 h. Almost identical results were obtained when the IL-2 levels were detected by the conventional CTLL assay, in which DNA synthesis was monitored by 3H-thymidine labeling, and by the isotope-free MTT modification of the CTLL assay, in which the DNA synthesis was monitored by staining. The MTT modification has the advantage of an isotope-free method. Comparison of two different IL-2-producing vaccines, a murine plasmacytoma X63-m-IL-2, with high IL-2 production, and murine sarcoma MC12-IL-2, with low IL-2 production, revealed that whereas after i.p. administration of the high producers, the peak of IL-2 was reached both in the peritoneal fluid and in the serum after 1 h, the administration of low producers gave the peak level of IL-2 later, 5 h after i.p. administration. Comparison of IL-2 levels obtained after i.p. administration of live and irradiated X63-m-IL-2 vaccine revealed that the irradiated vaccine produced both in vitro and in vivo higher amounts of IL-2. As compared to i.p. administration, the kinetics after i.v. administration of the X63-m-IL-2 vaccine was different. The maximum level of recombinant

  10. Silencing CCR2 in Macrophages Alleviates Adipose Tissue Inflammation and the Associated Metabolic Syndrome in Dietary Obese Mice

    PubMed Central

    Kim, Jongkil; Chung, Kunho; Choi, Changseon; Beloor, Jagadish; Ullah, Irfan; Kim, Nahyeon; Lee, Kuen Yong; Lee, Sang-Kyung; Kumar, Priti

    2016-01-01

    Adipose tissue macrophage (ATM)-mediated inflammation is a key feature contributing to the adverse metabolic outcomes of dietary obesity. Recruitment of macrophages to obese adipose tissues (AT) can occur through the engagement of CCR2, the receptor for MCP-1 (monocyte chemoattractant protein-1), which is expressed on peripheral monocytes/macrophages. Here, we show that i.p. administration of a rabies virus glycoprotein-derived acetylcholine receptor-binding peptide effectively delivers complexed siRNA into peritoneal macrophages and ATMs in a mouse model of high-fat diet-induced obesity. Treatment with siRNA against CCR2 inhibited macrophage infiltration and accumulation in AT and, therefore, proinflammatory cytokines produced by macrophages. Consequently, the treatment significantly improved glucose tolerance and insulin sensitivity profiles, and also alleviated the associated symptoms of hepatic steatosis and reduced hepatic triglyceride production. These results demonstrate that disruption of macrophage chemotaxis to the AT through cell-targeted gene knockdown strategies can provide a therapeutic intervention for obesity-related metabolic diseases. The study also highlights a siRNA delivery approach for targeting specific monocyte subsets that contribute to obesity-associated inflammation without affecting the function of other tissue-resident macrophages that are essential for host homeostasis and survival. PMID:26812653

  11. Preadipocyte conversion to macrophage. Evidence of plasticity.

    PubMed

    Charrière, Guillaume; Cousin, Béatrice; Arnaud, Emmanuelle; André, Mireille; Bacou, Francis; Penicaud, Luc; Casteilla, Louis

    2003-03-14

    Preadipocytes are present throughout adult life in adipose tissues and can proliferate and differentiate into mature adipocytes according to the energy balance. An increasing number of reports demonstrate that cells from adipose lineages (preadipocytes and adipocytes) and macrophages share numerous functional or antigenic properties. No large scale comparison reflecting the phenotype complexity has been performed between these different cell types until now. We used profiling analysis to define the common features shared by preadipocyte, adipocyte, and macrophage populations. Our analysis showed that the preadipocyte profile is surprisingly closer to the macrophage than to the adipocyte profile. From these data, we hypothesized that in a macrophage environment preadipocytes could effectively be converted into macrophages. We injected labeled stroma-vascular cells isolated from mouse white adipose tissue or 3T3-L1 preadipocyte cell line into the peritoneal cavity of nude mice and investigated changes in their phenotype. Preadipocytes rapidly and massively acquired high phagocytic activity and index. 60-70% of preadipocytes also expressed five macrophage-specific antigens: F4/80, Mac-1, CD80, CD86, and CD45. These values were similar to those observed for peritoneal macrophages. In vitro experiments showed that cell-to-cell contact between preadipocytes and peritoneal macrophages partially induced this preadipocyte phenotype conversion. Overall, these results suggest that preadipocyte and macrophage phenotypes are very similar and that preadipocytes have the potential to be very efficiently and rapidly converted into macrophages. This work emphasizes the great cellular plasticity of adipose precursors and reinforces the link between adipose tissue and innate immunity processes. PMID:12519759

  12. An efferocytosis-induced, IL-4-dependent macrophage-iNKT cell circuit suppresses sterile inflammation and is defective in murine CGD.

    PubMed

    Zeng, Melody Yue; Pham, Duy; Bagaitkar, Juhi; Liu, Jianyun; Otero, Karel; Shan, Ming; Wynn, Thomas A; Brombacher, Frank; Brutkiewicz, Randy R; Kaplan, Mark H; Dinauer, Mary C

    2013-04-25

    Efferocytosis of apoptotic neutrophils by macrophages following tissue injury is fundamental to the resolution of inflammation and initiation of tissue repair. Using a sterile peritonitis model in mice, we identified interleukin (IL)-4-producing efferocytosing macrophages in the peritoneum that activate invariant natural killer T (iNKT) cells to produce cytokines including IL-4, IL-13, and interferon-γ. Importantly, IL-4 from macrophages contributes to alternative activation of peritoneal exudate macrophages and augments type 2 cytokine production from NKT cells to suppress inflammation. The increased peritonitis in mice deficient in IL-4, NKT cells, or IL-4Rα expression on myeloid cells suggested that each is a key component for resolution of sterile inflammation. The reduced NAD phosphate oxidase is also critical for this model, because in mice with X-linked chronic granulomatous disease (X-CGD) that lack oxidase subunits, activation of iNKT cells by X-CGD peritoneal exudate macrophages was impaired during sterile peritonitis, resulting in enhanced and prolonged inflammation in these mice. Therefore, efferocytosis-induced IL-4 production and activation of IL-4-producing iNKT cells by macrophages are immunomodulatory events in an innate immune circuit required to resolve sterile inflammation and promote tissue repair.

  13. Dietary n-3 fatty acids increase spleen size and postendotoxin circulating TNF in mice; role of macrophages, macrophage precursors, and colony-stimulating factor-1.

    PubMed

    Blok, W L; de Bruijn, M F; Leenen, P J; Eling, W M; van Rooijen, N; Stanley, E R; Buurman, W A; van der Meer, J W

    1996-12-15

    In experimental studies in mice, dietary supplementation with n-3 fatty acids (FA) alleviates inflammation and increases resistance to infection. Nevertheless, TNF production capacity was found to be increased in n-3 FA-fed mice. We previously found increased relative spleen weights in n-3 FA-fed mice. In this study, the nature of this increased spleen size was further investigated. Spleen cellularity was increased significantly in mice fed n-3 FA (fish oil 15% w/w), compared with controls fed corn oil (15%) or normal lab chow (p < 0.05). Experiments with T cell-deficient nude mice and experiments using macrophage depletion through liposomal dichloromethylene-biphosphonate revealed that the increase in spleen cellularity is T cell independent and largely due to macrophage accumulation in the spleen. Accumulation of marginal zone and red pulp macrophages was histologically and immunohistochemically confirmed. n-3 FA induced peripheral blood monocytosis and an aspecific increase in bone marrow cellularity. Postendotoxin circulating TNF concentrations were increased significantly in n-3 FA-fed mice compared with controls. Splenectomy did not abolish this increase in circulating TNF. However, after macrophage depletion through liposomal dichloromethylene-biphosphonate, circulating TNF was not detectable after endotoxin challenge. Circulating concentrations of CSF-1 did not differ between the various experimental groups. It is suggested that the cellular changes observed relate to increased constitutive production of TNF.

  14. Ovarian steroid hormone-regulated uterine remodeling occurs independently of macrophages in mice.

    PubMed

    Care, Alison S; Ingman, Wendy V; Moldenhauer, Lachlan M; Jasper, Melinda J; Robertson, Sarah A

    2014-09-01

    Macrophages are abundant in the uterine stroma and are intimately juxtaposed with other cell lineages comprising the uterine epithelial and stromal compartments. We postulated that macrophages may participate in mediating or amplifying the effects of ovarian steroid hormones to facilitate the uterine remodeling that is a characteristic feature of every estrus cycle and is essential for pregnancy. Using the Cd11b-Dtr transgenic mouse model with an ovariectomy and hormone replacement strategy, we depleted macrophages to determine their role in hormone-driven proliferation of uterine epithelial and stromal cells and uterine vascular development. Following diphtheria toxin (DT) administration, approximately 85% of EMR1-positive (EMR1⁺) macrophages, as well as 70% of CD11C⁺ dendritic cells, were depleted from Cd11b-Dtr mice. There was no change in bromodeoxyuridine incorporation into epithelial cells induced to proliferate by administration of 17beta-estradiol (E2) to ovariectomized mice or into stromal cells induced to proliferate in response to E2 and progesterone (P4), and the resulting sizes and structures of the luminal epithelial and stromal cell compartments were not altered compared with those of leukocyte replete controls. Depletion of CD11B⁺ myeloid cells failed to alter the density or pattern of distribution of uterine blood vessels, as identified by staining PECAM1-positive endothelial cells in the uterine stroma of E2- or E2 combined with P4 (E2P4)-treated ovariectomized mice. These experiments support the interpretation that macrophages are dispensable to regulation of proliferative events induced by steroid hormones in the cycling and early pregnant mouse uterus to establish the epithelial, stromal, and vascular architecture which is critical for normal reproductive competence. PMID:25061095

  15. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ε-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml‑1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml‑1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  16. Action of the anti-tumoral zinc(II)phthalocyanine in solution or encapsulated into nanoparticles of poly-ɛ-caprolactone internalized by peritoneal macrophages

    NASA Astrophysics Data System (ADS)

    da Silva Abe, Amanda Santos Franco; Ricci-Júnior, Eduardo; Teixeira Lima Castelo Branco, Morgana; de Brito Gitirana, Lycia

    2016-09-01

    Nanoparticles (NPs) have been used as drug delivery systems (DDS) exhibiting high cell penetration power. As an antitumor photosensitizer, zinc(II) phthalocyanine (ZnPc) was applied in photodynamic therapy (PDT) since its phototoxic activity promotes death of tumor cells in the presence of laser light. Since drugs do not interact only with tumor cells in living organisms, this study aimed to analyze the action of ZnPc-loaded in nanoparticles (ZnPc-NPs) and in solution (free ZnPc) using peritoneal macrophages as a model of non-neoplastic cells that inhabit the tumoral stroma. NPs were produced by emulsion and evaporation of solvent and characterized by dynamic light scattering and transmission electron microscopy. Assays as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, light microscopy and laser scanning confocal microscopy were performed to evaluate the drug effects in the presence or absence of laser light applied in PDT. NPs exhibited dimensions between 290 and 350 nm and rounded shape. Empty NP did not affect cell viability, showing that these nanocarriers are biocompatible DDS. Free ZnPc was randomly distributed in the cytoplasm, while ZnPc-NP was preferably located near the nucleus. At 5 μg ml-1, free ZnPc caused greater loss of cell viability in the absence of laser when compared to ZnPc-NPs, in the presence or absence of irradiation. In contrast, free ZnPc and ZnPc-NPs (0.5 μg ml-1) promoted cell death to the same extent in cells treated with laser light or not. This demonstrates that the performance of this drug is dose dependent in its free form, but not in its nanoencapsulated form. Cells irradiated with laser (100 mW) and treated with free ZnPc or with ZnPc-NPs showed morphological changes. These observations show that both free ZnPc and ZnPc-NPs irradiated with laser light cause cell damage in peritoneal macrophages.

  17. Macrophages promote vasculogenesis of retinal neovascularization in an oxygen-induced retinopathy model in mice.

    PubMed

    Gao, Xiang; Wang, Yu-Sheng; Li, Xiao-Qin; Hou, Hui-Yuan; Su, Jing-Bo; Yao, Li-Bo; Zhang, Jian

    2016-06-01

    To investigate the role of macrophages in oxygen-induced retinal neovascularization (NV) in mice, particularly the involvement of bone marrow-derived cells (BMCs) and the underlying mechanisms, BMCs from green fluorescent protein (GFP) transgenic mice were transplanted into postnatal day (P) 1 mice after irradiation. The mice were exposed to 75 % oxygen from P7 to P12 to initiate oxygen-induced retinopathy (OIR). The macrophages were depleted by injection of clodronate-liposomes (lip) intraperitoneally. The eyes were collected at P12 and P17. Retinal flatmounts and histopathological cross-sections were performed to analyze the severity of retinal NV and BMC recruitment. BMCs immunopositive for CD31 (PECAM-1; endothelial cell marker) and α-SMA (smooth muscle cell marker) antigens were detected using a confocal microscope. Expression of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1 (SDF-1) mRNA was detected by RT-PCR. The VEGF, SDF-1, CXCR4 and CD45 protein expression was detected by western blot examination. The retinal avascular area in OIR mice at P12 was unaffected after macrophage depletion carried out twice (38.27 ± 1.92 % reduction) using clodronate-lip. The retinal avascular area and the NV area at P17 were reduced after macrophage depletion four times (79.53 ± 1.02 % reduction); these findings were supported by retinal flatmounts and histopathological cross-sections. Macrophage depletion led to significant inhibition of BMC recruitment into the NV tufts at P17, with decreased expression of retinal VEGF, SDF-1, CXCR4 and CD45. The recruited BMCs differentiated primarily into CD31-positive endothelial cells (ECs) and α-SMA-positive smooth muscle cells (SMCs). This study suggested that macrophages promoted the vasculogenesis of retinal NV, particularly the contribution of BMCs in the mouse OIR model, which might be triggered by VEGF and SDF-1 production. PMID:26841878

  18. Altered Arachidonate Distribution in Macrophages from Caveolin-1 Null Mice Leading to Reduced Eicosanoid Synthesis*

    PubMed Central

    Astudillo, Alma M.; Pérez-Chacón, Gema; Meana, Clara; Balgoma, David; Pol, Albert; del Pozo, Miguel A.; Balboa, María A.; Balsinde, Jesús

    2011-01-01

    In this work we have studied the effect of caveolin-1 deficiency on the mechanisms that regulate free arachidonic acid (AA) availability. The results presented here demonstrate that macrophages from caveolin-1-deficient mice exhibit elevated fatty acid incorporation and remodeling and a constitutively increased CoA-independent transacylase activity. Mass spectrometry-based lipidomic analyses reveal stable alterations in the profile of AA distribution among phospholipids, manifested by reduced levels of AA in choline glycerophospholipids but elevated levels in ethanolamine glycerophospholipids and phosphatidylinositol. Furthermore, macrophages from caveolin-1 null mice show decreased AA mobilization and prostaglandin E2 and LTB4 production upon cell stimulation. Collectively, these results provide insight into the role of caveolin-1 in AA homeostasis and suggest an important role for this protein in the eicosanoid biosynthetic response. PMID:21852231

  19. Role of the tumor suppressor ARF in macrophage polarization: Enhancement of the M2 phenotype in ARF-deficient mice.

    PubMed

    Herranz, Sandra; Través, Paqui G; Luque, Alfonso; Hortelano, Sonsoles

    2012-11-01

    The ARF locus is frequently inactivated in human cancer. The oncosuppressor ARF has indeed been described as a general sensor for different situation of cellular stress. We have previously demonstrated that ARF deficiency severely impairs inflammatory responses in vitro and in vivo, establishing a role for ARF in the regulation of innate immunity. The aim of the present work was to get further insights into the immune functions of ARF and to evaluate its possible contribution to the polarization of macrophages toward the M1 or M2 phenotype. Our results demonstrate that resting Arf(-/-) macrophages express high levels of Ym1 and Fizz-1, two typical markers of alternatively-activated macrophages (M2). Additionally, Arf(-/-) peritoneal macrophages showed an impaired response to lipopolysaccharide (a classical inducer of M1 polaryzation) and a reduced production of pro-inflammatory cytokines/chemokines. Moreover, upon stimulation with interleukin-4 (IL-4), an inducer of the M2 phenotype, well established M2 markers such as Fizz-1, Ym1 and arginase-1 were upregulated in Arf(-/-) as compared with wild type macrophages. Accordingly, the cytokine and chemokine profile associated with the M2 phenotype was significantly overexpressed in Arf(-/-) macrophages responding to IL-4. In addition, multiple pro-angiogenic factors such as VEGF and MMP-9 were also increased. In summary, these results indicate that ARF contributes to the polarization and functional plasticity of macrophages.

  20. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    PubMed

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections. PMID:26926145

  1. Monoclonal Antibody Targeting Staphylococcus aureus Surface Protein A (SasA) Protect Against Staphylococcus aureus Sepsis and Peritonitis in Mice.

    PubMed

    Yang, Yilong; Qian, Mengying; Yi, Shaoqiong; Liu, Shuling; Li, Bing; Yu, Rui; Guo, Qiang; Zhang, Xiaopeng; Yu, Changming; Li, Jianmin; Xu, Junjie; Chen, Wei

    2016-01-01

    Epidemic methicillin-resistant Staphylococcus aureus (MRSA) imposes an increasing impact on public health. Due to multi-antibiotics resistance in MRSA strains, there is an urgent need to develop novel therapeutics such as effective monoclonal antibodies (mAbs) against MRSA infections. Staphylococcus aureus surface protein A (SasA), a large surface-located protein (~240 kDa), is one of MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) and a potential target for immunotherapeutic approaches against S. aureus infections. In the present study, we analyzed the sequence of SasA with bioinformatics tools and generated a protective monoclonal antibody (2H7) targeting the conserved domain of SasA. 2H7 was shown to recognize wild-type S. aureus and promote opsonophagocytic killing of S. aureus. In both sepsis and peritoneal infection models, prophylactic administration of 2H7 improved the survival of BALB/c mice challenged by S. aureus strain USA300 and ST239 (prevalent MRSA clones in North America and Asian countries, respectively) and enhanced bacterial clearance in kidneys. Additionally, 2H7 prophylaxis prevented the formation of intraperitoneal abscess in a murine model of peritoneal infection and therapeutic administration of 2H7 showed protective efficacy in a murine sepsis model. Our results presented here provide supporting evidences that an anti-SasA mAb might be a potential component in an antibody-based immunotherapeutic treatment of MRSA infections.

  2. Alterations in Marginal Zone Macrophages and Marginal Zone B Cells in Old Mice

    PubMed Central

    Birjandi, Shirin Z.; Ippolito, Jill A.; Ramadorai, Anand K.; Witte, Pamela L.

    2012-01-01

    Marginal zones (MZs) are architecturally organized for clearance of and rapid response against blood-borne Ags entering the spleen. MZ macrophages (MZMs) and MZ B cells are particularly important in host defense against T-independent pathogens and may be crucial for the prevention of diseases, such as streptococcal pneumonia, that are devastating in older patients. Our objective was to determine whether there are changes in the cellular components of the MZ between old and young mice. Using immunocytochemistry and a blinded scoring system, we observed gross architectural changes in the MZs of old mice, including reduction in the abundance of MZMs surrounding the MZ sinus as well as disruptions in positioning of mucosal addressin cell adhesion molecule 1 (MAdCAM-1)+ sinus lining cells and metallophilic macrophages. Loss of frequency of MZMs was corroborated by flow cytometry. A majority of old mice also showed reduced frequency of MZ B cells, which correlated with decreased abundance of MZM in individual old mice. The spleens of old mice showed less deposition of intravenously injected dextran particles within the MZ, likely because of the decreased frequency in MZMs, because SIGN-R1 expression was not reduced on MZM from old mice. The phagocytic ability of individual MZMs was examined using Staphylococcus aureus bioparticles, and no differences in phagocytosis were found between macrophages from young or old spleens. In summary, an anatomical breakdown of the MZ occurs in advanced age, and a reduction in frequency of MZM may affect the ability of the MZM compartment to clear blood-borne Ags and mount proper T-independent immune responses. PMID:21307289

  3. [Growth stimulation in a Ewing sarcoma after "macrophage blockade" in athymic (nude) mice].

    PubMed

    Torhorst, J

    1981-09-01

    Inoculation of cell suspensions of a Ewing sarcoma (1.5 to 2.0 x 10(8) viable cells/mouse) into thymus less nude mice bred under conventional conditions gave a 90% take rate after subcutaneous injection and 35% after intraperitoneal. Intraperitoneal take rate is raised to 90% by intraperitoneal pretreatment with India ink. The same pretreatment shortens the tumor doubling time after subcutaneous inoculation. Both events are probably caused by inhibition of macrophages and/or natural killer cells.

  4. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages.

  5. Arctigenin ameliorates inflammation in vitro and in vivo by inhibiting the PI3K/AKT pathway and polarizing M1 macrophages to M2-like macrophages.

    PubMed

    Hyam, Supriya R; Lee, In-Ah; Gu, Wan; Kim, Kyung-Ah; Jeong, Jin-Ju; Jang, Se-Eun; Han, Myung Joo; Kim, Dong-Hyun

    2013-05-15

    Seeds of Arctium lappa, containing arctigenin and its glycoside arctiin as main constituents, have been used as a diuretic, anti-inflammatory and detoxifying agent in Chinese traditional medicine. In our preliminary study, arctigenin inhibited IKKβ and NF-κB activation in peptidoglycan (PGN)- or lipopolysaccharide (LPS)-induced peritoneal macrophages. To understand the anti-inflammatory effect of arctigenin, we investigated its anti-inflammatory effect in LPS-stimulated peritoneal macrophages and on LPS-induced systemic inflammation as well as 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice. Arctigenin inhibited LPS-increased IL-1β, IL-6 and TNF-α expression in LPS-stimulated peritoneal macrophages, but increased LPS-reduced IL-10 and CD204 expression. Arctigenin inhibited LPS-induced PI3K, AKT and IKKβ phosphorylation, but did not suppress LPS-induced IRAK-1 phosphorylation. However, arctigenin did not inhibit NF-κB activation in LPS-stimulated PI3K siRNA-treated peritoneal macrophages. Arctigenin suppressed the binding of p-PI3K antibody and the nucleus translocation of NF-κB p65 in LPS-stimulated peritoneal macrophages. Arctigenin suppressed blood IL-1β and TNF-α level in mice systemically inflamed by intraperitoneal injection of LPS. Arctigenin also inhibited colon shortening, macroscopic scores and myeloperoxidase activity in TNBS-induced colitic mice. Arctigenin inhibited TNBS-induced IL-1β, TNF-α and IL-6 expression, as well as PI3K, AKT and IKKβ phosphorylation and NF-κB activation in mice, but increased IL-10 and CD204 expression. However, it did not affect IRAK-1 phosphorylation. Based on these findings, arctigenin may ameliorate inflammatory diseases, such as colitis, by inhibiting PI3K and polarizing M1 macrophages to M2-like macrophages. PMID:23375938

  6. Adiponectin deficiency promotes tumor growth in mice by reducing macrophage infiltration.

    PubMed

    Sun, Yutong; Lodish, Harvey F

    2010-08-05

    Adiponectin is an adipocyte-derived plasma protein that has been implicated in regulating angiogenesis, but the role of adiponectin in regulating this process is still controversial. In this study, in order to determine whether adiponectin affects tumor growth and tumor induced vascularization, we implanted B16F10 melanoma and Lewis Lung Carcinoma cells subcutaneously into adiponectin knockout and wild-type control mice, and found that adiponectin deficiency markedly promoted the growth of both tumors. Immunohistochemical analyses indicated that adiponectin deficiency reduced macrophage recruitment to the tumor, but did not affect cancer cell mitosis, apoptosis, or tumor-associated angiogenesis. In addition, treatment with recombinant adiponectin did not affect the proliferation of cultured B16F10 tumor cells. Importantly, the restoration of microphage infiltration at an early stage of tumorigenesis by means of co-injection of B16F10 cells and macrophages reversed the increased tumor growth in adiponectin knockout mice. Thus, we conclude that the enhanced tumor growth observed in adiponectin deficient mice is likely due to the reduction of macrophage infiltration rather than enhanced angiogenesis.

  7. Chronic administration of dexamethasone results in Fc receptor up-regulation and inhibition of class I antigen expression on macrophages from MRL/lpr autoimmune mice.

    PubMed Central

    Zuckerman, S H; Evans, G F; Bryan, N

    1997-01-01

    The MRL/lpr mouse develops, after approximately 8 weeks of age, a severe autoimmune syndrome with many features resembling human systemic lupus erythematosus, including autoantibodies against DNA and basement membranes resulting in immune complexes, vasculitis, and multiorgan disease. While this murine model of lupus has been used for the identification of therapeutics with potential efficacy in human autoimmune disease, the long-term impact of chronic immunosuppressive therapy on macrophage function in this paradigm is not understood. To this end, MRL/lpr mice were treated prophylactically with dexamethasone at 0.01, 0.1, and 1 mg/kg of body weight for 20 weeks or were allowed to develop autoimmune disease and, at 15 weeks of age, treated therapeutically with 1-mg/kg dexamethasone for 8 additional weeks. Analysis of surface antigens on resident peritoneal macrophages demonstrated a progressive loss in class I expression with a concomitant increase in Fc receptor expression. Neither phagocytosis nor CD11b expression was modulated with chronic steroid treatment. Furthermore, dexamethasone treatment was associated with a reduction in anti-DNA antibodies and total immunoglobulin G and yet an elevation in serum cholesterol due to an increase in high-density lipoproteins. Therefore, the MRL/lpr mouse serves not only as a small-animal model of autoimmune disease but also as one in which the negative and positive sequelae associated with chronic immunosuppression can be further understood. PMID:9302207

  8. Peritoneal Disorders

    MedlinePlus

    ... of the peritoneum are not common. They include Peritonitis - an inflammation of the peritoneum Cancer Complications from ... peritoneal fluid to diagnose the problem. Treatment of peritoneal disorders depends on the cause.

  9. Effect of swainsonine on the processing and turnover of lysosomal beta-galactosidase and beta-glucuronidase from mouse peritoneal macrophages.

    PubMed

    Tropea, J E; Swank, R T; Segal, H L

    1988-03-25

    The effect of swainsonine, an inhibitor of Golgi alpha-mannosidase II and lysosomal alpha-mannosidase, on the synthesis, processing, and turnover of two glycoproteins, lysosomal beta-galactosidase and lysosomal beta-glucuronidase, has been studied in cultured mouse peritoneal macrophages. No effect of the inhibitor on the relative rates of synthesis of the precursor form of either enzyme was observed. On the other hand, carbohydrate processing of beta-galactosidase and beta-glucuronidase was markedly altered by swainsonine, consistent with a blockage by the inhibitor of the removal of the alpha-1,3- and alpha-1,6-linked mannose residues which occurs in normal processing. In homogenates of both normal and swainsonine-treated cells, the precursor forms of the enzymes were found exclusively in the light membrane fraction on Percoll gradients and the mature forms exclusively in the lysosomal fractions indicating that translocation from Golgi to lysosomes and proteolytic processing in the lysosome were not impaired by the presence of abnormal oligosaccharide side chains. There was no detectable effect of swainsonine during a 4-day chase period on the total cellular turnover of these enzymes which involves two processes, secretion and degradation. In the absence of swainsonine, secretion represented about 40% of the total turnover of beta-galactosidase and about 50% with beta-glucuronidase. The presence of swainsonine increased these proportions to about 60 and 70%, respectively.

  10. Choroidal Neovascularization Is Inhibited in Splenic-Denervated or Splenectomized Mice with a Concomitant Decrease in Intraocular Macrophage

    PubMed Central

    Tan, Xue; Fujiu, Katsuhito; Manabe, Ichiro; Nishida, Junko; Yamagishi, Reiko; Terashima, Yuya; Matsushima, Kouji; Kaburaki, Toshikatsu; Nagai, Ryozo; Yanagi, Yasuo

    2016-01-01

    Purpose To determine the involvement of sympathetic activity in choroidal neovascularization (CNV) using laser-induced CNV in a mouse model. Methods We investigated changes in the proportions of intraocular lymphocytes, granulocytes, and three macrophage subtypes (Ly6Chi, Ly6Cint, and Ly6Clo) after laser injury in mice using flow cytometry, and evaluated CNV lesion size in mice lacking inflammatory cells. Further, we evaluated the lesion size in mice administered the β3 receptor antagonist, splenic-denervated and splenectomized mice. We also assessed changes in the proportions of intraocular macrophages and peripheral blood monocytes in splenic-denervated and splenectomized mice. Lastly, lesion size was compared between splenic-denervated mice with or without adoptive transfer of macrophages following laser injury. After Ly5.1 mice spleen-derived Ly6Chi cells were transferred into Ly5.2 mice, the proportions of intraocular Ly5.1+Ly6Chi cells were compared. Results In WT mice, the proportion of CD4+ T cells recruited into the eye increased progressively from day 3 to day 7 after laser injury, whereas, intraocular CD8+ T cells did not change significantly. Proportions of B220+ cells, granulocytes, and two subtypes of intraocular macrophages (Ly6Chi and Ly6Clo) peaked at day 3 following laser injury. In contrast, Ly6Cint/loCD64+ subtype showed a significantly higher percentage at day 7 after laser injury. There were no differences in lesion size between CD4–/–or Rag2–/–mice and controls, whereas lesion size was significantly reduced in CCR2−/− mice and clodronate liposome-treated mice. CNV lesion area was significantly reduced in mice with β3 blocker treatment, splenic-denervated and splenectomized mice compared with controls. Intraocular Ly6Chi macrophages were also reduced by splenic denervation or splenectomy. Adoptive transfer of spleen-derived Ly6Chi cells increased the lesion size in splenic-denervated mice. Compared with controls, intraocular

  11. Sex-associated expression of co-stimulatory molecules CD80, CD86, and accessory molecules, PDL-1, PDL-2 and MHC-II, in F480+ macrophages during murine cysticercosis.

    PubMed

    Togno-Peirce, Cristián; Nava-Castro, Karen; Terrazas, Luis Ignacio; Morales-Montor, Jorge

    2013-01-01

    Macrophages are critically involved in the interaction between T. crassiceps and the murine host immune system. Also, a strong gender-associated susceptibility to murine cysticercosis has been reported. Here, we examined the sex-associated expression of molecules MHC-II, CD80, CD86, PD-L1, and PD-L2 on peritoneal F4/80(hi) macrophages of BALB/c mice infected with Taenia crassiceps. Peritoneal macrophages from both sexes of mice were exposed to T. crassiceps total extract (TcEx). BALB/c Females mice recruit higher number of macrophages to the peritoneum. Macrophages from infected animals show increased expression of PDL2 and CD80 that was dependent from the sex of the host. These findings suggest that macrophage recruitment at early time points during T. crassiceps infection is a possible mechanism that underlies the differential sex-associated susceptibility displayed by the mouse gender.

  12. Sex-Associated Expression of Co-Stimulatory Molecules CD80, CD86, and Accessory Molecules, PDL-1, PDL-2 and MHC-II, in F480+ Macrophages during Murine Cysticercosis

    PubMed Central

    Togno-Peirce, Cristián; Nava-Castro, Karen; Terrazas, Luis Ignacio; Morales-Montor, Jorge

    2013-01-01

    Macrophages are critically involved in the interaction between T. crassiceps and the murine host immune system. Also, a strong gender-associated susceptibility to murine cysticercosis has been reported. Here, we examined the sex-associated expression of molecules MHC-II, CD80, CD86, PD-L1, and PD-L2 on peritoneal F4/80hi macrophages of BALB/c mice infected with Taenia crassiceps. Peritoneal macrophages from both sexes of mice were exposed to T. crassiceps total extract (TcEx). BALB/c Females mice recruit higher number of macrophages to the peritoneum. Macrophages from infected animals show increased expression of PDL2 and CD80 that was dependent from the sex of the host. These findings suggest that macrophage recruitment at early time points during T. crassiceps infection is a possible mechanism that underlies the differential sex-associated susceptibility displayed by the mouse gender. PMID:23533995

  13. Host and Bacterial Factors Involved in the Innate Ability of Mouse Macrophages To Eliminate Internalized Unopsonized Escherichia coli

    PubMed Central

    Hamrick, Terri S.; Havell, Edward A.; Horton, John R.; Orndorff, Paul E.

    2000-01-01

    In an effort to better understand genetic and cellular factors that influence innate immunity, we examined host and bacterial factors involved in the nonopsonic phagocytosis and killing of Escherichia coli K-12 by mouse macrophages. Unelicited (resident) peritoneal macrophages from five different mouse strains, BALB/c, C57BL/6, CD-1, C3H/HeJ, and C3H/HeN, were employed. Additional macrophage populations were obtained from CD-1 mice (bone marrow-derived macrophages). Also, for BALB/c and C57BL/6 mice, peritoneal macrophages elicited with either thioglycolate or proteose peptone, bone marrow-derived macrophages, and macrophage-like cell lines derived from the two strains were employed. Two E. coli K-12 strains that differed specifically in their abilities to produce type 1 pili containing the adhesive protein FimH were examined. The parameters used to assess macrophage bacteriocidal activity were (i) the killing of internalized (gentamicin-protected) E. coli during the approximately 4-h assay and (ii) the initial rate at which internalized E. coli were eliminated. Data on these parameters allowed the following conclusions: (i) unelicited or proteose peptone-elicited peritoneal macrophages were significantly better at eliminating internalized bacteria than thioglycolate-elicited peritoneal macrophages, bone marrow-derived macrophages, or macrophage cell lines; (ii) the host genetic background had no significant effect upon the ability of unelicited peritoneal macrophages to kill E. coli (even though the mouse strains differ widely in their in vivo susceptibilities to bacterial infection); and (iii) the FimH phenotype had no significant effect upon E. coli survival once the bacterium was inside a macrophage. Additionally, there was no correlation between the bacteriocidal effectiveness of a macrophage population and the number of bacteria bound per macrophage. However, macrophage populations that were the least bacteriocidal tended to bind higher ratios of FimH+ to Fim

  14. Tumor necrosis factor-α accelerates the resolution of established pulmonary fibrosis in mice by targeting profibrotic lung macrophages.

    PubMed

    Redente, Elizabeth F; Keith, Rebecca C; Janssen, William; Henson, Peter M; Ortiz, Luis A; Downey, Gregory P; Bratton, Donna L; Riches, David W H

    2014-04-01

    Idiopathic pulmonary fibrosis (IPF) is a relentless, fibrotic parenchymal lung disease in which alternatively programmed macrophages produce profibrotic molecules that promote myofibroblast survival and collagen synthesis. Effective therapies to treat patients with IPF are lacking, and conventional therapy may be harmful. We tested the hypothesis that therapeutic lung delivery of the proinflammatory cytokine tumor necrosis factor (TNF)-α into wild-type fibrotic mice would reduce the profibrotic milieu and accelerate the resolution of established pulmonary fibrosis. Fibrosis was assessed in bleomycin-instilled wild-type and TNF-α(-/-) mice by measuring hydroxyproline levels, static compliance, and Masson's trichrome staining. Macrophage infiltration and programming status was assessed by flow cytometry of enzymatically digested lung and in situ immunostaining. Pulmonary delivery of TNF-α to wild-type mice with established pulmonary fibrosis was found to reduce their fibrotic burden, to improve lung function and architecture, and to reduce the number and programming status of profibrotic alternatively programmed macrophages. In contrast, fibrosis and alternative macrophage programming were prolonged in bleomycin-instilled TNF-α(-/-) mice. To address the role of the reduced numbers of alternatively programmed macrophages in the TNF-α-induced resolution of established pulmonary fibrosis, we conditionally depleted macrophages in MAFIA (MAcrophage Fas-Induced Apoptosis) mice. Conditional macrophage depletion phenocopied the resolution of established pulmonary fibrosis observed after therapeutic TNF-α delivery. Taken together, our results show for the first time that TNF-α is involved in the resolution of established pulmonary fibrosis via a mechanism involving reduced numbers and programming status of profibrotic macrophages. We speculate that pulmonary delivery of TNF-α or augmenting its signaling pathway represent a novel therapeutic strategy to resolve

  15. Heme oxygenase-2 deletion impairs macrophage function: implication in wound healing.

    PubMed

    Bellner, Lars; Marrazzo, Giuseppina; van Rooijen, Nico; Dunn, Michael W; Abraham, Nader G; Schwartzman, Michal L

    2015-01-01

    Heme oxygenase (HO)-2 deficiency impairs wound healing and exacerbates inflammation following injury. We examine the impact of HO-2 deficiency on macrophage function and the contribution of macrophage HO-2 to inflammatory and repair responses to injury. Corneal epithelial debridement was performed in control and macrophage-depleted HO-2(-/-) and wild-type (WT) mice and in bone marrow chimeras. Peritoneal macrophages were collected for determination of phagocytic activity and classically activated macrophage (M1)-alternatively activated macrophage (M2) polarization. Depletion of macrophages delayed corneal healing (13.2%) and increased neutrophil infiltration (54.1%) by day 4 in WT mice, whereas in HO-2(-/-) mice, it did not worsen the already impaired wound healing and exacerbated inflammation. HO-2(-/-) macrophages displayed an altered M1 phenotype with no significant expression of M2 or M2-like activated cells and a 31.3% reduction in phagocytic capacity that was restored by inducing HO-1 activity or supplementing biliverdin. Macrophage depletion had no effect, whereas adoptive transfer of WT bone marrow improved wound healing (34% on day 4) but did not resolve the exaggerated inflammatory response in HO-2(-/-) mice. These findings indicate that HO-2-deficient macrophages are dysfunctional and that macrophage HO-2 is required for proper macrophage function but is insufficient to correct the impaired healing of the HO-2(-/-) cornea, suggesting that corneal epithelial expression of HO-2 is a key to resolution and repair in wound healing.

  16. Akt3 Deficiency in Macrophages Promotes Foam Cell Formation and Atherosclerosis in Mice

    PubMed Central

    Ding, Liang; Biswas, Sudipta; Morton, Richard E.; Smith, Jonathan D.; Hay, Nissim; Byzova, Tatiana; Febbraio, Maria; Podrez, Eugene

    2012-01-01

    Summary Akt, a serine-threonine protein kinase, exists as three isoforms. The Akt signaling pathway controls multiple cellular functions in the cardiovascular system, and the atheroprotective endothelial cell dependent role of Akt1 has been recently demonstrated. The role of Akt3 isoform in cardiovascular pathophysiology is not known. We explored the role of Akt3 in atherosclerosis using mice with a genetic ablation of the Akt3 gene. Using hyperlipidemic ApoE−/− mice, we demonstrated a macrophage dependent, atheroprotective role for Akt3. In vitro experiments demonstrated differential subcellular localization of Akt1 and Akt3 in macrophages, and showed that Akt3 specifically inhibits macrophage cholesteryl ester accumulation and foam cell formation, a critical early event in atherogenesis. Mechanistically, Akt3 suppresses foam cell formation by reducing lipoprotein uptake and promoting ACAT-1 degradation via the ubiquitin-proteasome pathway. These studies demonstrate the non-redundant atheroprotective role for Akt3 exerted via the previously unknown link between the Akt signaling pathway and cholesterol metabolism. PMID:22632897

  17. FNDC4 acts as an anti-inflammatory factor on macrophages and improves colitis in mice

    PubMed Central

    Bosma, Madeleen; Gerling, Marco; Pasto, Jenny; Georgiadi, Anastasia; Graham, Evan; Shilkova, Olga; Iwata, Yasunori; Almer, Sven; Söderman, Jan; Toftgård, Rune; Wermeling, Fredrik; Boström, Elisabeth Almer; Boström, Pontus Almer

    2016-01-01

    FNDC4 is a secreted factor sharing high homology with the exercise-associated myokine irisin (FNDC5). Here we report that Fndc4 is robustly upregulated in several mouse models of inflammation as well as in human inflammatory conditions. Specifically, FNDC4 levels are increased locally at inflamed sites of the intestine of inflammatory bowel disease patients. Interestingly, administration of recombinant FNDC4 in the mouse model of induced colitis markedly reduces disease severity compared with mice injected with a control protein. Conversely, mice lacking Fndc4 develop more severe colitis. Analysis of binding of FNDC4 to different immune cell types reveals strong and specific binding to macrophages and monocytes. FNDC4 treatment of bone marrow-derived macrophages in vitro results in reduced phagocytosis, increased cell survival and reduced proinflammatory chemokine expression. Hence, treatment with FNDC4 results in a state of dampened macrophage activity, while enhancing their survival. Thus, we have characterized FNDC4 as a factor with direct therapeutic potential in inflammatory bowel disease and possibly other inflammatory diseases. PMID:27066907

  18. Chronic intermittent psychological stress promotes macrophage reverse cholesterol transport by impairing bile acid absorption in mice

    PubMed Central

    Silvennoinen, Reija; Quesada, Helena; Kareinen, Ilona; Julve, Josep; Kaipiainen, Leena; Gylling, Helena; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-01-01

    Psychological stress is a risk factor for atherosclerosis, yet the pathophysiological mechanisms involved remain elusive. The transfer of cholesterol from macrophage foam cells to liver and feces (the macrophage-specific reverse cholesterol transport, m-RCT) is an important antiatherogenic pathway. Because exposure of mice to physical restraint, a model of psychological stress, increases serum levels of corticosterone, and as bile acid homeostasis is disrupted in glucocorticoid-treated animals, we investigated if chronic intermittent restraint stress would modify m-RCT by altering the enterohepatic circulation of bile acids. C57Bl/6J mice exposed to intermittent stress for 5 days exhibited increased transit through the large intestine and enhanced fecal bile acid excretion. Of the transcription factors and transporters that regulate bile acid homeostasis, the mRNA expression levels of the hepatic farnesoid X receptor (FXR), the bile salt export pump (BSEP), and the intestinal fibroblast growth factor 15 (FGF15) were reduced, whereas those of the ileal apical sodium-dependent bile acid transporter (ASBT), responsible for active bile acid absorption, remained unchanged. Neither did the hepatic expression of cholesterol 7α-hydroxylase (CYP7A1), the key enzyme regulating bile acid synthesis, change in the stressed mice. Evaluation of the functionality of the m-RCT pathway revealed increased fecal excretion of bile acids that had been synthesized from macrophage-derived cholesterol. Overall, our study reveals that chronic intermittent stress in mice accelerates m-RCT specifically by increasing fecal excretion of bile acids. This novel mechanism of m-RCT induction could have antiatherogenic potential under conditions of chronic stress. PMID:25969465

  19. Metalloproteinase-mediated Shedding of Integrin β2 Promotes Macrophage Efflux from Inflammatory Sites*

    PubMed Central

    Gomez, Ivan G.; Tang, Jingjing; Wilson, Carole L.; Yan, Wei; Heinecke, Jay W.; Harlan, John M.; Raines, Elaine W.

    2012-01-01

    Macrophage exiting from inflammatory sites is critical to limit the local innate immune response. With tissue insult, resident tissue macrophages rapidly efflux to lymph nodes where they modulate the adaptive immune response, and inflammatory macrophages attracted to the site of injury then exit during the resolution phase. However, the mechanisms that regulate macrophage efflux are poorly understood. This study has investigated soluble forms of integrin β2 whose levels are elevated in experimental peritonitis at times when macrophages are exiting the peritoneum, suggesting that its proteolytic shedding may be involved in macrophage efflux. Both constitutive and inducible metalloproteinase-dependent shedding of integrin β2 from mouse macrophages are demonstrated. Soluble integrin β2 is primarily released as a heterodimeric complex with αM that retains its ability to bind its ligands intracellular adhesion molecule-1, fibrin, and collagen and thus may serve as a soluble antagonist. In a model of accelerated exiting, administration of a metalloproteinase inhibitor prevents macrophage efflux by 50% and impedes loss of macrophage integrin β2 from the cell surface. Exiting of peritoneal macrophages in mice lacking integrin β2 is accelerated, and antibody disruption of integrin β2-substrate interactions can reverse 50% of the metalloprotease inhibitor blockade of macrophage exiting. Thus, our study demonstrates the ability of metalloproteinase-mediated shedding of integrin β2 to promote macrophage efflux from inflammatory sites, and the release of soluble integrin heterodimers may also limit local inflammation. PMID:22170060

  20. Myeloid Heme Oxygenase-1 Haploinsufficiency Reduces High Fat Diet-Induced Insulin Resistance by Affecting Adipose Macrophage Infiltration in Mice

    PubMed Central

    Huang, Jun-Yuan; Chiang, Ming-Tsai; Yet, Shaw-Fang; Chau, Lee-Young

    2012-01-01

    Increased adipose tissue macrophages contribute to obesity-induced metabolic syndrome. Heme oxygenase-1 (HO-1) is a stress-inducible enzyme with potent anti-inflammatory and proangiogenic activities in macrophages. However, the role of macrophage HO-1 on obesity-induced adipose inflammation and metabolic syndrome remains unclear. Here we show that high-fat diet (HFD) feeding in C57BL/6J mice induced HO-1 expression in the visceral adipose tissue, particularly the stromal vascular fraction. When the irradiated C57BL/6J mice reconstituted with wild-type or HO-1+/− bone marrow were fed with HFD for over 24 weeks, the HO-1+/− chimeras were protected from HFD-induced insulin resistance and this was associated with reduced adipose macrophage infiltration and angiogenesis, suggesting that HO-1 affects myeloid cell migration toward adipose tissue during obesity. In vivo and in vitro migration assays revealed that HO-1+/− macrophages exhibited an impaired migration response. Chemoattractant-induced phosphorylation of p38 and focal adhesion kinase (FAK) declined faster in HO-1+/− macrophages. Further experiments demonstrated that carbon monoxide and bilirubin, the byproducts derived from heme degradation by HO-1, enhanced macrophage migration by increasing phosphorylation of p38 and FAK, respectively. These data disclose a novel role of hematopoietic cell HO-1 in promoting adipose macrophage infiltration and the development of insulin resistance during obesity. PMID:22761690

  1. Intestinal Alkaline Phosphatase Inhibits the Translocation of Bacteria of Gut-Origin in Mice with Peritonitis: Mechanism of Action

    PubMed Central

    Wang, Wei; Chen, Shan-Wen; Zhu, Jing; Zuo, Shuai; Ma, Yuan-Yuan; Chen, Zi-Yi; Zhang, Jun-Ling; Chen, Guo-Wei; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-01-01

    Exogenous intestinal alkaline phosphatase (IAP), an enzyme produced endogenously at the brush edge of the intestinal mucosa, may mitigate the increase in aberrant intestinal permeability increased during sepsis. The aim of this study was to test the efficacy of the inhibitory effect of IAP on acute intestinal inflammation and to study the molecular mechanisms underlying IAP in ameliorating intestinal permeability. We used an in vivo imaging method to evaluate disease status and the curative effect of IAP. Two Escherichia coli (E.coli) B21 strains, carrying EGFP labeled enhanced green fluorescent protein (EGFP) and RFP labeled red fluorescent protein (RFP), were constructed as tracer bacteria and were administered orally to C57/B6N mice to generate an injection peritonitis (IP) model. The IP model was established by injecting inflammatory lavage fluid. C57/B6N mice bearing the tracer bacteria were subsequently treated with (IP+IAP group), or without IAP (IP group). IAP was administered to the mice via tail vein injections. The amount of tracer bacteria in the blood, liver, and lungs at 24 h post-injection was analyzed via flow cytometry (FCM), in vivo imaging, and Western blotting. Intestinal barrier function was measured using a flux assay with the macro-molecule fluorescein isothiocyanate dextran, molecular weight 40kD, (FD40). To elucidate the molecular mechanism underlying the effects of IAP, we examined the levels of ERK phosphorylation, and the expression levels of proteins in the ERK-SP1-VEGF and ERK-Cdx-2-Claudin-2 pathways. We observed that IAP inhibited the expression of Claudin-2, a type of cation channel-forming protein, and VEGF, a cytokine that may increase intestinal permeability by reducing the levels of dephosphorylated ERK. In conclusion, exogenous IAP shows a therapeutic effect in an injection peritonitis model. This including inhibition of bacterial translocation. Moreover, we have established an imaging methodology for live-animals can

  2. Intestinal alkaline phosphatase inhibits the translocation of bacteria of gut-origin in mice with peritonitis: mechanism of action.

    PubMed

    Wang, Wei; Chen, Shan-Wen; Zhu, Jing; Zuo, Shuai; Ma, Yuan-Yuan; Chen, Zi-Yi; Zhang, Jun-Ling; Chen, Guo-Wei; Liu, Yu-Cun; Wang, Peng-Yuan

    2015-01-01

    Exogenous intestinal alkaline phosphatase (IAP), an enzyme produced endogenously at the brush edge of the intestinal mucosa, may mitigate the increase in aberrant intestinal permeability increased during sepsis. The aim of this study was to test the efficacy of the inhibitory effect of IAP on acute intestinal inflammation and to study the molecular mechanisms underlying IAP in ameliorating intestinal permeability. We used an in vivo imaging method to evaluate disease status and the curative effect of IAP. Two Escherichia coli (E.coli) B21 strains, carrying EGFP labeled enhanced green fluorescent protein (EGFP) and RFP labeled red fluorescent protein (RFP), were constructed as tracer bacteria and were administered orally to C57/B6N mice to generate an injection peritonitis (IP) model. The IP model was established by injecting inflammatory lavage fluid. C57/B6N mice bearing the tracer bacteria were subsequently treated with (IP+IAP group), or without IAP (IP group). IAP was administered to the mice via tail vein injections. The amount of tracer bacteria in the blood, liver, and lungs at 24 h post-injection was analyzed via flow cytometry (FCM), in vivo imaging, and Western blotting. Intestinal barrier function was measured using a flux assay with the macro-molecule fluorescein isothiocyanate dextran, molecular weight 40kD, (FD40). To elucidate the molecular mechanism underlying the effects of IAP, we examined the levels of ERK phosphorylation, and the expression levels of proteins in the ERK-SP1-VEGF and ERK-Cdx-2-Claudin-2 pathways. We observed that IAP inhibited the expression of Claudin-2, a type of cation channel-forming protein, and VEGF, a cytokine that may increase intestinal permeability by reducing the levels of dephosphorylated ERK. In conclusion, exogenous IAP shows a therapeutic effect in an injection peritonitis model. This including inhibition of bacterial translocation. Moreover, we have established an imaging methodology for live-animals can

  3. Macrophage ABCA5 deficiency influences cellular cholesterol efflux and increases susceptibility to atherosclerosis in female LDLr knockout mice

    SciTech Connect

    Ye, Dan; Meurs, Illiana; Ohigashi, Megumi; Calpe-Berdiel, Laura; Habets, Kim L.L.; Zhao, Ying; Kubo, Yoshiyuki; Yamaguchi, Akihito; Van Berkel, Theo J.C.; Nishi, Tsuyoshi; Van Eck, Miranda

    2010-05-07

    Objectives: To determine the role of macrophage ATP-binding cassette transporter A5 (ABCA5) in cellular cholesterol homeostasis and atherosclerotic lesion development. Methods and results: Chimeras with dysfunctional macrophage ABCA5 (ABCA5{sup -M/-M}) were generated by transplantation of bone marrow from ABCA5 knockout (ABCA5{sup -/-}) mice into irradiated LDLr{sup -/-} mice. In vitro, bone marrow-derived macrophages from ABCA5{sup -M/-M} chimeras exhibited a 29% (P < 0.001) decrease in cholesterol efflux to HDL, whereas a 21% (P = 0.07) increase in cholesterol efflux to apoA-I was observed. Interestingly, expression of ABCA1, but not ABCG1, was up-regulated in absence of functional ABCA5 in macrophages. To induce atherosclerosis, the transplanted LDLr{sup -/-} mice were fed a high-cholesterol Western-type diet (WTD) for 6, 10, or 18 weeks, allowing analysis of effects on initial as well as advanced lesion development. Atherosclerosis development was not affected in male ABCA5{sup -M/-M} chimeras after 6, 10, and 18 weeks WTD feeding. However, female ABCA5{sup -M/-M} chimeras did develop significantly (P < 0.05) larger aortic root lesions as compared with female controls after 6 and 10 weeks WTD feeding. Conclusions: ABCA5 influences macrophage cholesterol efflux, and selective disruption of ABCA5 in macrophages leads to increased atherosclerotic lesion development in female LDLr{sup -/-} mice.

  4. Antitumor effect of vitamin D-binding protein-derived macrophage activating factor on Ehrlich ascites tumor-bearing mice.

    PubMed

    Koga, Y; Naraparaju, V R; Yamamoto, N

    1999-01-01

    Cancerous cells secrete alpha-N-acetylgalactosaminidase (NaGalase) into the blood stream, resulting in deglycosylation of serum vitamin D3-binding protein (known as Gc protein), which is a precursor for macrophage activating factor (MAF). Incubation of Gc protein with immobilized beta-galactosidase and sialidase generates the most potent macrophage activating factor (designated GcMAF). Administration of GcMAF to cancer-bearing hosts can bypass the inactivated MAF precursor and act directly on macrophages for efficient activation. Therapeutic effects of GcMAF on Ehrlich ascites tumor-bearing mice were assessed by survival time and serum NaGalase activity, because serum NaGalase activity was proportional to tumor burden. A single administration of GcMAF (100 pg/mouse) to eight mice on the same day after transplantation of the tumor (5 x 10(5) cells) showed a mean survival time of 21 +/- 3 days for seven mice, with one mouse surviving more than 60 days, whereas tumor-bearing controls had a mean survival time of 13 +/- 2 days. Six of the eight mice that received two GcMAF administrations, at Day 0 and Day 4 after transplantation, survived up to 31 +/- 4 days whereas, the remaining two mice survived for more than 60 days. Further, six of the eight mice that received three GcMAF administrations with 4-day intervals showed an extended survival of at least 60 days, and serum NaGalase levels were as low as those of control mice throughout the survival period. The cure with subthreshold GcMAF-treatments (administered once or twice) of tumor-bearing mice appeared to be a consequence of sustained macrophage activation by inflammation resulting from the macrophage-mediated tumoricidal process. Therefore, a protracted macrophage activation induced by a few administrations of minute amounts of GcMAF eradicated the murine ascites tumor. PMID:9893164

  5. Liver regeneration is impaired in macrophage colony stimulating factor deficient mice after partial hepatectomy: the role of M-CSF-induced macrophages.

    PubMed

    Amemiya, Hidetake; Kono, Hiroshi; Fujii, Hideki

    2011-01-01

    Macrophage colony stimulating factor (M-CSF), which induces maturation of macrophages, is notably expressed in the liver. Thus, the specific purpose of this study was to investigate the role of M-CSF in liver regeneration after partial hepatectomy (PH). Osteopetrotic (op/op) mice, genetically lacking functional M-CSF, or their littermate mice underwent 70% PH. Animals were sacrificed at the designated time points after PH, and remnant liver tissues were harvested for further investigations. Proliferation of hepatocytes was evaluated by the expression of BrdU and the liver-body weight ratio. The mRNA expression levels of TNF-α and IL-6 and protein expression levels of phosphorylated (p) STAT3 were measured. The number of Kupffer cells (KCs) was determined by immunohistochemistry. Furthermore, KCs were isolated from op/op mice or littermate mice, and mRNA expression levels of TNF- α and IL-6 were assessed after stimulation with LPS. In littermate mice, steady liver regeneration was observed. The number of KCs reduced markedly by about 60% in the op/op mice compared with littermates as reported previously. Furthermore, these cells were morphologically small and immature. In littermate mice, the peak expression levels of TNF-α and IL-6 in the liver was observed 1h after PH, which was consistent with data in previous reports. In contrast, in op/op mice, the peak expression levels were observed 3 h after PH and were significantly lower compared with littermate mice. As a result, the proliferation of hepatocytes was significantly impaired in op/op mice. The mRNA expression level of IL-6, but not TNF-α,was significantly reduced in isolated KCs from op/op mice compared with the littermates after stimulation with LPS, suggesting that the function of KCs is different between op/op mice and littermate mice. To clarify the role of M-CSF in liver regeneration, op/op mice received intraperitoneally, mouse recombinant M-CSF 2 d before PH, and liver regeneration was also

  6. Alveolar Macrophage Recruitment and Activation by Chronic Second Hand Smoke Exposure in Mice

    PubMed Central

    Ellwanger, Almut; Solon, Margaret; Cambier, Christopher J.; Pinkerton, Kent E.; Koth, Laura L.

    2010-01-01

    Background Approximately 15% of cases of COPD occur in non-smokers. Among the potential risk factors for COPD in non-smokers is second hand smoke (SHS) exposure. However, the Surgeon General reported in 2006 that the evidence linking second hand smoke and COPD is insufficient to infer a causal relationship, largely because current evidence does not establish a biological link. Objectives The goal of this study was to determine whether SHS exposure can induce alveolar macrophage recruitment and expression of activation markers that we have previously demonstrated in human smokers and in mouse models of emphysema. To achieve these goals, we studied mice exposed to an ambient mixture of predominantly [89%] sidestream smoke at increasing doses over 3 months. Results We found that second hand smoke exposure induced a dose-dependent increase in alveolar macrophage recruitment (mean ± sd; 224,511 ± 52,330 vs 166,152 ± 47,989 macrophages/ml of bronchoalveolar lavage in smoke-exposed vs air-exposed controls at 3 months, p=0.003). We also found increased expression of several markers of alveolar macrophage activation (PLA2g7, dkfzp434l142, Trem-2, and pirin, all p<0.01 at 3 months) and increased lavage levels of two inflammatory mediators associated with COPD (CCL2 [MCP-1], 58 ± 12 vs. 43 ± 22 pg/ml, p=0.03; and TNFα, 138 ± 43 vs 88 ± 78 pg/ml, p=0.04 at 3 months). Conclusions These findings indicate that second smoke exposure can cause macrophage recruitment and activation, providing a biological link between second hand smoke exposure and the development of inflammatory processes linked to COPD. PMID:19378221

  7. TRPA1 mediates trigeminal neuropathic pain in mice downstream of monocytes/macrophages and oxidative stress.

    PubMed

    Trevisan, Gabriela; Benemei, Silvia; Materazzi, Serena; De Logu, Francesco; De Siena, Gaetano; Fusi, Camilla; Fortes Rossato, Mateus; Coppi, Elisabetta; Marone, Ilaria Maddalena; Ferreira, Juliano; Geppetti, Pierangelo; Nassini, Romina

    2016-05-01

    Despite intense investigation, the mechanisms of the different forms of trigeminal neuropathic pain remain substantially unidentified. The transient receptor potential ankyrin 1 channel (encoded by TRPA1) has been reported to contribute to allodynia or hyperalgesia in some neuropathic pain models, including those produced by sciatic nerve constriction. However, the role of TRPA1 and the processes that cause trigeminal pain-like behaviours from nerve insult are poorly understood. The role of TRPA1, monocytes and macrophages, and oxidative stress in pain-like behaviour evoked by the constriction of the infraorbital nerve in mice were explored. C57BL/6 and wild-type (Trpa1(+/+)) mice that underwent constriction of the infraorbital nerve exhibited prolonged (20 days) non-evoked nociceptive behaviour and mechanical, cold and chemical hypersensitivity in comparison to sham-operated mice (P < 0.05-P < 0.001). Both genetic deletion of Trpa1 (Trpa1(-/-)) and pharmacological blockade (HC-030031 and A-967079) abrogated pain-like behaviours (both P < 0.001), which were abated by the antioxidant, α-lipoic acid, and the nicotinamide adenine dinucleotide phosphate oxidase inhibitor, apocynin (both P < 0.001). Nociception and hypersensitivity evoked by constriction of the infraorbital nerve was associated with intra- and perineural monocytic and macrophagic invasion and increased levels of oxidative stress by-products (hydrogen peroxide and 4-hydroxynonenal). Attenuation of monocyte/macrophage increase by systemic treatment with an antibody against the monocyte chemoattractant chemokine (C-C motif) ligand 2 (CCL2) or the macrophage-depleting agent, clodronate (both P < 0.05), was associated with reduced hydrogen peroxide and 4-hydroxynonenal perineural levels and pain-like behaviours (all P < 0.01), which were abated by perineural administration of HC-030031, α-lipoic acid or the anti-CCL2 antibody (all P < 0.001). The present findings propose that, in the constriction of the

  8. A novel CD14(high) CD16(high) subset of peritoneal macrophages from cirrhotic patients is associated to an increased response to LPS.

    PubMed

    Ruiz-Alcaraz, Antonio José; Tapia-Abellán, Ana; Fernández-Fernández, María Dolores; Tristán-Manzano, María; Hernández-Caselles, Trinidad; Sánchez-Velasco, Eduardo; Miras-López, Manuel; Martínez-Esparza, María; García-Peñarrubia, Pilar

    2016-04-01

    The aim of this study was to characterize monocyte-derived macrophages (M-DM) from blood and ascites of cirrhotic patients comparatively with those obtained from blood of healthy controls. The phenotypic profile based on CD14/CD16 expression was analyzed by flow cytometry. Cells were isolated and stimulated in vitro with LPS and heat killed Candida albicans. Phosphorylation of ERK, c-Jun, p38 MAPK, and PKB/Akt was analyzed by Western blotting. A novel CD14(high)CD16(high) M-DM subpopulation is present in ascites (∼33%). The CD14(++)CD16(+) intermediate subset is increased in the blood of cirrhotic patients (∼from 4% to 11%) and is predominant in ascites (49%), while the classical CD14(++)CD16(-) subpopulation is notably reduced in ascites (18%). Basal hyperactivation of ERK and JNK/c-Jun pathways observed in ascites M-DM correlates with CD14/CD16 high expressing subsets, while PI3K/PKB does it with the CD16 low expressing cells. In vitro LPS treatment highly increases ERK1/2, PKB/Akt and c-Jun phosphorylation, while that of p38 MAPK is decreased in M-DM from ascites compared to control blood M-DM. Stimulation of healthy blood M-DM with LPS and C. albicans induced higher phosphorylation levels of p38 than those from ascites. Regarding cytokines secretion, in vitro activated M-DM from ascites of cirrhotic patients produced significantly higher amounts of IL-6, IL-10 and TNF-α, and lower levels of IL-1β and IL-12 than control blood M-DM. In conclusion, a new subpopulation of CD14(high)CD16(high) peritoneal M-DM has been identified in ascites of cirrhotic patients, which is very sensitive to LPS stimulation. PMID:26938502

  9. A novel CD14(high) CD16(high) subset of peritoneal macrophages from cirrhotic patients is associated to an increased response to LPS.

    PubMed

    Ruiz-Alcaraz, Antonio José; Tapia-Abellán, Ana; Fernández-Fernández, María Dolores; Tristán-Manzano, María; Hernández-Caselles, Trinidad; Sánchez-Velasco, Eduardo; Miras-López, Manuel; Martínez-Esparza, María; García-Peñarrubia, Pilar

    2016-04-01

    The aim of this study was to characterize monocyte-derived macrophages (M-DM) from blood and ascites of cirrhotic patients comparatively with those obtained from blood of healthy controls. The phenotypic profile based on CD14/CD16 expression was analyzed by flow cytometry. Cells were isolated and stimulated in vitro with LPS and heat killed Candida albicans. Phosphorylation of ERK, c-Jun, p38 MAPK, and PKB/Akt was analyzed by Western blotting. A novel CD14(high)CD16(high) M-DM subpopulation is present in ascites (∼33%). The CD14(++)CD16(+) intermediate subset is increased in the blood of cirrhotic patients (∼from 4% to 11%) and is predominant in ascites (49%), while the classical CD14(++)CD16(-) subpopulation is notably reduced in ascites (18%). Basal hyperactivation of ERK and JNK/c-Jun pathways observed in ascites M-DM correlates with CD14/CD16 high expressing subsets, while PI3K/PKB does it with the CD16 low expressing cells. In vitro LPS treatment highly increases ERK1/2, PKB/Akt and c-Jun phosphorylation, while that of p38 MAPK is decreased in M-DM from ascites compared to control blood M-DM. Stimulation of healthy blood M-DM with LPS and C. albicans induced higher phosphorylation levels of p38 than those from ascites. Regarding cytokines secretion, in vitro activated M-DM from ascites of cirrhotic patients produced significantly higher amounts of IL-6, IL-10 and TNF-α, and lower levels of IL-1β and IL-12 than control blood M-DM. In conclusion, a new subpopulation of CD14(high)CD16(high) peritoneal M-DM has been identified in ascites of cirrhotic patients, which is very sensitive to LPS stimulation.

  10. Role of CC chemokine CCL6/C10 as a monocyte chemoattractant in a murine acute peritonitis.

    PubMed Central

    LaFleur, Andrew M; Lukacs, Nicholas W; Kunkel, Steven L; Matsukawa, Akihiro

    2004-01-01

    The aim of this study was to determine the role of CC chemokine CCL6/C10 in acute inflammation. Intraperitoneal injection of thioglycollate increased peritoneal CCL6, which peaked at 4 h and remained elevated at 48 h. Neutralization of CCL6 significantly inhibited the macrophage infiltration (34-48% reduction), but not other cell types, without decreasing the other CC chemokines known to attract monocytes/macrophages. CCL6 was expressed in peripheral eosinophils and elicited macrophages, but not in elicited neutrophils. Peritoneal CCL6 level was not decreased in granulocyte-depleted mice where eosinophil influx was significantly impaired. Thus, CCL6 appears to contribute to the macrophage infiltration that is independent of other CC chemokines. Eosinophils pre-store CCL6, but do not release CCL6 in the peritoneum in this model of inflammation. PMID:15770051

  11. Role of CD11b+ Macrophages in Intraperitoneal Lipopolysaccharide-Induced Aberrant Lymphangiogenesis and Lymphatic Function in the Diaphragm

    PubMed Central

    Kim, Kyung Eun; Koh, Young-Jun; Jeon, Bong-Hyun; Jang, Cholsoon; Han, Jinah; Kataru, Raghu P.; Schwendener, Reto A.; Kim, Jin-Man; Koh, Gou Young

    2009-01-01

    Lymphatic vessels in the diaphragm are essential for draining peritoneal fluid, but little is known about their pathological changes during inflammation. Here we characterized diaphragmatic lymphatic vessels in a peritonitis model generated by daily i.p. administration of lipopolysaccharide (LPS) in mice. Intraperitoneal LPS increased lymphatic density, branching, sprouts, connections, and network formation in the diaphragm in time- and dose-dependent manners. These changes were reversible on discontinuation of LPS administration. The LPS-induced lymphatic density and remodeling occur mainly through proliferation of lymphatic endothelial cells. CD11b+ macrophages were massively accumulated and closely associated with the lymphatic vessels changed by i.p. LPS. Both RT-PCR assays and experiments with vascular endothelial growth factor-C/D blockade and macrophage-depletion indicated that the CD11b+ macrophage-derived lymphangiogenic factors vascular endothelial growth factor-C/D could be major mediators of LPS-induced lymphangiogenesis and lymphatic remodeling through paracrine activity. Functional assays with India ink and fluorescein isothiocyanate-microspheres indicated that impaired peritoneal fluid drainage in diaphragm of LPS-induced peritonitis mice was due to inflammatory fibrosis and massive attachment of CD11b+ macrophages on the peritoneal side of the diaphragmatic lymphatic vessels. These findings reveal that CD11b+ macrophages play an important role in i.p. LPS-induced aberrant lymphangiogenesis and lymphatic dysfunction in the diaphragm. PMID:19762711

  12. Commercial naphthenic acids and the organic fraction of oil sands process water induce different effects on pro-inflammatory gene expression and macrophage phagocytosis in mice.

    PubMed

    Garcia-Garcia, Erick; Pun, Jonathan; Hodgkinson, Jordan; Perez-Estrada, Leonidas A; El-Din, Mohamed Gamal; Smith, Daniel W; Martin, Jonathan W; Belosevic, Miodrag

    2012-12-01

    Naphthenic acids (NAs) are believed to be the major toxic component of oil sands process water (OSPW). Different OSPW preparations have distinct NA compositions, and additional organics, that differ from the commercial NAs (C-NAs) often used for toxicology studies. To evaluate whether C-NAs are an adequate model to study OSPW toxicity in complex organisms, we compared the effects of C-NAs and the extractable organic fraction of OSPW (OSPW-OF) on mice immune mechanisms. Mice were orally exposed to different C-NA doses, or OSPW-OF at the same NA dose, for up to 8 weeks, and the expression of pro-inflammatory genes in different organs was determined using quantitative PCR. C-NAs and OSPW-OF altered the expression of pro-inflammatory genes, inducing either expression down-regulation or up-regulation, depending on the organ examined and time after exposure. The time at which gene expression alterations occurred, and the specific sets of genes whose expression was altered, were very different between animals exposed to C-NAs or to OSPW-OF. We evaluated the ability of mouse peritoneal macrophages to phagocytose yeast cell wall, as a measure of the ability of mice to mount a central function of the innate immune response. Phagocytosis was significantly reduced in animals exposed to C-NAs, but enhanced in mice exposed to OSPW-OF. Our results indicate that studies using C-NAs may not necessarily reflect the possible effects induced in animals by process water from tailing ponds.

  13. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on tumor necrosis factor (TNF) production by peritoneal cells.

    PubMed

    Moos, A B; Oughton, J A; Kerkvliet, N I

    1997-02-01

    Recent studies in mice have demonstrated that TNF plays a critical role in mediating the TCDD-induced enhanced inflammatory response to intraperitoneal (i.p.) sheep red blood cells. The current studies were designed to evaluate the effects of TCDD on TNF production by ex-vivo peritoneal cells and a peritoneal macrophage cell line (IC-21) stimulated with LPS. In support of the hypothesis that TCDD can act directly on the peritoneal macrophage to increase TNF production, following pretreatment with TCDD, both ex-vivo peritoneal cells and IC-21 cells produced increased levels of bioactive TNF when stimulated with LPS. Flow cytometric analyses of IC-21 cells indicate that TCDD exposure increases intracellular production and secretion of TNF but does not alter levels of membrane associated TNF. PMID:9067482

  14. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI. PMID:26726878

  15. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice.

    PubMed

    Arai, Satoko; Kitada, Kento; Yamazaki, Tomoko; Takai, Ryosuke; Zhang, Xizhong; Tsugawa, Yoji; Sugisawa, Ryoichi; Matsumoto, Ayaka; Mori, Mayumi; Yoshihara, Yasunori; Doi, Kent; Maehara, Natsumi; Kusunoki, Shunsuke; Takahata, Akiko; Noiri, Eisei; Suzuki, Yusuke; Yahagi, Naoki; Nishiyama, Akira; Gunaratnam, Lakshman; Takano, Tomoko; Miyazaki, Toru

    2016-02-01

    Acute kidney injury (AKI) is associated with prolonged hospitalization and high mortality, and it predisposes individuals to chronic kidney disease. To date, no effective AKI treatments have been established. Here we show that the apoptosis inhibitor of macrophage (AIM) protein on intraluminal debris interacts with kidney injury molecule (KIM)-1 and promotes recovery from AKI. During AKI, the concentration of AIM increases in the urine, and AIM accumulates on necrotic cell debris within the kidney proximal tubules. The AIM present in this cellular debris binds to KIM-1, which is expressed on injured tubular epithelial cells, and enhances the phagocytic removal of the debris by the epithelial cells, thus contributing to kidney tissue repair. When subjected to ischemia-reperfusion (IR)-induced AKI, AIM-deficient mice exhibited abrogated debris clearance and persistent renal inflammation, resulting in higher mortality than wild-type (WT) mice due to progressive renal dysfunction. Treatment of mice with IR-induced AKI using recombinant AIM resulted in the removal of the debris, thereby ameliorating renal pathology. We observed this effect in both AIM-deficient and WT mice, but not in KIM-1-deficient mice. Our findings provide a basis for the development of potentially novel therapies for AKI.

  16. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization

    PubMed Central

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  17. Berberine Inhibits Intestinal Polyps Growth in Apc (min/+) Mice via Regulation of Macrophage Polarization.

    PubMed

    Piao, Meiyu; Cao, Hailong; He, NaNa; Yang, Boli; Dong, Wenxiao; Xu, Mengque; Yan, Fang; Zhou, Bing; Wang, Bangmao

    2016-01-01

    Antitumor effect of berberine has been reported in a wide spectrum of cancer, however, the mechanisms of which are not fully understood. The aim of this study was to investigate the hypothesis that berberine suppresses tumorigenesis in the familial adenomatous polyposis (FAP) by regulating the macrophage polarization in Apc (min/+) mouse model. Berberine was given to Apc (min/+) mice for 12 weeks. Primary macrophages were isolated; after berberine treatment, the change in signaling cascade was determined. The total number and size of polyps were reduced remarkably in berberine group, compared with control group. A significant decrease in protein levels of F4/80, mannose receptor (MR), and COX-2 in stroma of intestinal polyps and an increase in the level of iNOS were observed after berberine treatment. The mRNA level of MR and Arg-1 in berberine group was significantly lower than those in IL-10 or IL-4 group, while no significant difference in mRNA levels of iNOS and CXCL10 was observed. The migration and invasiveness assays in vitro showed that berberine could reduce the capability of migration and invasiveness. These findings suggest that berberine attenuates intestinal tumorigenesis by inhibiting the migration and invasion of colorectal tumor cells via regulation of macrophage polarization. PMID:27493671

  18. Macrophages block insulin action in adipocytes by altering expression of signaling and glucose transport proteins.

    PubMed

    Lumeng, Carey N; Deyoung, Stephanie M; Saltiel, Alan R

    2007-01-01

    Obesity leads to a proinflammatory state with immune responses that include infiltration of adipose tissue with macrophages. These macrophages are believed to alter insulin sensitivity in adipocytes, but the mechanisms that underlie this effect have not been characterized. We have explored the interaction between macrophages and adipocytes in the context of both indirect and direct coculture. Macrophage-secreted factors blocked insulin action in adipocytes via downregulation of GLUT4 and IRS-1, leading to a decrease in Akt phosphorylation and impaired insulin-stimulated GLUT4 translocation to the plasma membrane. GLUT1 was upregulated with a concomitant increase in basal glucose uptake. These changes recapitulate those seen in adipose tissue from insulin-resistant humans and animal models. TNF-alpha-neutralizing antibodies partially reversed the insulin resistance produced by macrophage-conditioned media. Peritoneal macrophages and macrophage-enriched stromal vascular cells from adipose tissue also attenuated responsiveness to insulin in a manner correlating with inflammatory cytokine secretion. Adipose tissue macrophages from obese mice have an F4/80(+)CD11b(+)CD68(+)CD14(-) phenotype and form long cellular extensions in culture. Peritoneal macrophages take on similar characteristics in direct coculture with adipocytes and induce proinflammatory cytokines, suggesting that macrophage activation state is influenced by contact with adipocytes. Thus both indirect/secreted and direct/cell contact-mediated factors derived from macrophages influence insulin sensitivity in adipocytes.

  19. Regulation of macrophage-mediated larvicidal activity in Echinococcus granulosus and Mesocestoides corti (Cestoda) infection in mice.

    PubMed

    Jenkins, P; Dixon, J B; Rakha, N K; Carter, S D

    1990-04-01

    Killing of metacestodes by normal or post-infection macrophages and the regulation of this activity by cytokines were studied in vitro. The protoscolecidal activity of normal macrophages against Echinococcus granulosus was inhibited by a product of naive T-enriched lymphocytes co-cultured with protoscoleces (PSC). By contrast, supernates from co-cultures of Mesocestoides corti tetrathyridia (MCT) and T-enriched or B-enriched normal lymphocytes increased killing of MCT by normal macrophages. Larvicidal activity (against both PSC and MCT) was enhanced by high concentrations of macrophage-activating factors produced by Con A-stimulated rat lymphocytes (Con A-LK), but was reduced by low concentrations of these factors. Activation by synergism between Con A-LK and recombinant interferon-gamma(r. IFN-gamma) was demonstrated in macrophage-mediated killing of MCT at high effector to target ratio. Cytokine-activation of normal or post-MCT infection macrophages was compared. Macrophages from both 8 and 20 week post-infection mice were refractory to lymphokines from lymphocyte-MCT cultures and displayed greatly reduced killing of MCT. Macrophage activation by Con A-LK and r.IFN-gamma was also impaired, implying a general defect in the ability of these post-infection macrophages to respond to macrophage activating signals. The data indicate that two different mechanisms may exist by which metacestodes regulate potentially larvicidal effector mechanisms. E. granulosus can elicit the production of lymphokines suppressive for PSC killing, whereas M. corti appears directly to induce a refractory state in effector macrophages.

  20. Ability of spleen, peritoneal cavity, and lymph node B cells to reconstitute serum immunoglobulin in SCID mice.

    PubMed Central

    Riggs, J; Stowers, R

    1996-01-01

    The impact of intrinsic B lymphocyte heterogeneity and of microenvironmental influences on serum immunoglobulin production by B cells was examined by intravenous (i.v.) and intraperitoneal (i.p.) transfer of BALB/c and BALB.xid (X-chromosome-linked immunedefective; XID) lymph node (LN), splenic (SP) and peritoneal cavity (PerC) cells into severe-combined immune-defective (SCID) mice. The results indicate that each B-cell source restores all immunoglobulin classes within 5 weeks of transfer, the rates for each isotype, however, differ between the B-cell sources. Serum IgM levels were restored most rapidly by PerC cell transfer, followed by SP and LN cell transfer. In addition, normal immunoglobulin levels were reached in the absence of complete lymphoid reconstitution. Serum immunoglobulin phenotypes characteristic of the donor strain, e.g. reduced IgM and IgG3 production by XID B cells, were maintained after transfer into the SCID recipient. Microenvironmental influences were indicated by reduced immunoglobulin production after i.p. transfer and after i.v. transfer into irradiated SCID recipients. The data show that both B-cell type and microenvironment play significant roles in generating the heterogeneous pool of B cells required for humoral immunity. PMID:8707345

  1. Treatment of dextran sodium sulfate-induced experimental colitis by adoptive transfer of peritoneal cells

    PubMed Central

    Liu, Ting; Ren, Jun; Wang, Wei; Wei, Xia-wei; Shen, Guo-bo; Liu, Yan-tong; Luo, Min; Xu, Guang-chao; Shao, Bin; Deng, Sen-yi; He, Zhi-yao; Liang, Xiao; Liu, Yu; Wen, Yan-Zhu; Xiang, Rong; Yang, Li; Deng, Hong-xin; Wei, Yu-quan

    2015-01-01

    The adoptive transfer of the natural regulatory B cells and macrophages should be a useful treatment for inflammation and autoimmune disease. However, it is usually difficult to isolate these cells from the tissues and expand them. Here, we investigated the feasibility of adoptively transferring peritoneal cells (PCs) as a treatment for DSS-induced colitis. We found that peritoneal cavity can provide an easily accessible site for harvesting enough number of PCs, namely, two-dose PCs for the treatment from a mouse in one operation. Adoptive therapy of these cells from healthy mice or those with disease is effectively in reducing the disease activity score. The natural B cells and macrophages of the infused PCs can selectively migrate to lesion sites and regulate the expression of Stat3, NF−κB, Smad3 and Smad7. Additionally, PCs exert dual activity of IL-10 and TGF-β secreted spontaneously by both peritoneal B cells and macrophages, which in turn enhance the induction of regulatory B cells and Macrophages in microenvironment of inflammation. Moreover, PCs can re-establish immunological tolerance in the OVA-immunized mice. Thus, our findings provide a new strategy for colitis therapy and could be of importance in additional exploration of other inflammation and autoimmune diseases therapy. PMID:26565726

  2. Hepatic lipase- and endothelial lipase-deficiency in mice promotes macrophage-to-feces RCT and HDL antioxidant properties.

    PubMed

    Escolà-Gil, Joan Carles; Chen, Xiangyu; Julve, Josep; Quesada, Helena; Santos, David; Metso, Jari; Tous, Monica; Jauhiainen, Matti; Blanco-Vaca, Francisco

    2013-04-01

    Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol (HDLc) levels and presumably could affect two main HDL atheroprotective functions, macrophage-to-feces reverse cholesterol transport (RCT) and HDL antioxidant properties. In this study, we assessed the effects of both HL and EL deficiency on macrophage-specific RCT process and HDL ability to protect against LDL oxidation. HL- and EL-deficient and wild-type mice were injected intraperitoneally with [(3)H]cholesterol-labeled mouse macrophages, after which the appearance of [(3)H]cholesterol in plasma, liver, and feces was determined. The degree of HDL oxidation and the protection of oxidative modification of LDL co-incubated with HDL were evaluated by measuring conjugated diene kinetics. Plasma levels of HDLc, HDL phospholipids, apoA-I, and platelet-activated factor acetyl-hydrolase were increased in both HL- and EL-deficient mice. These genetically modified mice displayed increased levels of radiolabeled, HDL-bound [(3)H]cholesterol 48h after the label injection. The magnitude of macrophage-derived [(3)H]cholesterol in feces was also increased in both the HL- and EL-deficient mice. HDL from the HL- and EL-deficient mice was less prone to oxidation and had a higher ability to protect LDL from oxidation, compared with the HDL derived from the wild-type mice. These changes were correlated with plasma apoA-I and apoA-I/HDL total protein levels. In conclusion, targeted inactivation of both HL and EL in mice promoted macrophage-to-feces RCT and enhanced HDL antioxidant properties. PMID:23328279

  3. Monocyte/macrophage lineage commitment and distribution are affected by the lack of regulatory T cells in scurfy mice.

    PubMed

    Skuljec, Jelena; Cabanski, Maciej; Surdziel, Ewa; Lachmann, Nico; Brennig, Sebastian; Pul, Refik; Jirmo, Adan C; Habener, Anika; Visic, Julia; Dalüge, Kathleen; Hennig, Christian; Moritz, Thomas; Happle, Christine; Hansen, Gesine

    2016-07-01

    Foxp3(+) regulatory T (Treg) cells play a pivotal role in maintaining immunological tolerance. Loss-of-function mutations in the Foxp3 gene result in multiorgan inflammation known as immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome in humans and scurfy (Sf) disease in mice. While the impact of missing Treg cells on adaptive immune cells is well documented, their role in regulation of myeloid cells remains unclear. Here we report that Sf mice exhibit an altered composition of stem and progenitor cells, characterized by increased numbers of myeloid precursors and higher efficiency of macrophage generation ex vivo. The proportion of monocytes/macrophages in the bone marrow, blood, and spleen was significantly elevated in Sf mice, which was accompanied with tissue-specific monocyte expression of homing receptor and phagocytic activity. Sf mice displayed high levels of M-CSF and other inflammatory cytokines, including monocyte-recruiting chemokines. Adoptive transfer of WT CD4(+) cells and in vivo neutralization of M-CSF normalized frequencies of monocyte subsets and their progenitors and reduced high levels of monocyte-related cytokines in Sf mice, while Treg cell transfer to RAG2(-/-) mice had no effect on myelopoiesis and monocyte/macrophage counts. Our findings illustrate that deregulated myelopoiesis in Sf mice is mainly caused by the inflammatory reaction resulting from the lack of Treg cells.

  4. Effects of Nanosized Lithium Carbonate Particles on the Functional Activity of Macrophages During Development of Hepatocarcinoma 29.

    PubMed

    Konenkov, V I; Borodin, Yu I; Makarova, O P; Bgatova, N P; Rachkovskaya, L N

    2015-08-01

    The functional activity of macrophages in response to injection of nanosized lithium carbonate particles after initiation of hepatocarcinoma 29 in male CBA mice was evaluated by the production of NO, arginase activity, and absorption of zymosan granules. In intact animals, NO production by peritoneal macrophages increased by 4 times and arginase activity 3.1 times in response to a single injection of nanosized particles into the hip muscle. The level of NO production by macrophages remained high after 4 and 5 injections, while arginase activity returned to normal. The level of phagocytic peritoneal macrophages increased by 1.4 times after 5 injections of the particles. The level of NO production by macrophages gradually increased in animals with hepatocarcinoma developing in the hip muscle: by 1.6 times on day 3, 3.2 times on day 7, and by 2.6 times on day 13 in comparison with the corresponding parameters in intact animals. The increase of NO production by peritoneal macrophages after tumor process initiation was not paralleled by changes in arginase activity and absorption of zymosan granules. The results indicated that injection of nanosized lithium carbonate particles after inoculation of hepatocarcinoma 29 cells in the right hip muscle tissue was inessential for the function of peritoneal macrophages by the studied parameters. PMID:26388569

  5. Myeloid-Specific Blockade of Notch Signaling Attenuates Choroidal Neovascularization through Compromised Macrophage Infiltration and Polarization in Mice

    PubMed Central

    Dou, Guo-Rui; Li, Na; Chang, Tian-Fang; Zhang, Ping; Gao, Xiang; Yan, Xian-Chun; Liang, Liang; Han, Hua; Wang, Yu-Sheng

    2016-01-01

    Macrophages have been recognized as an important inflammatory component in choroidal neovascularization (CNV). However, it is unclear how these cells are activated and polarized, how they affect angiogenesis and what the underlining mechanisms are during CNV. Notch signaling has been implicated in macrophage activation. Previously we have shown that inducible disruption of RBP-J, the critical transcription factor of Notch signaling, in adult mice results in enhanced CNV, but it is unclear what is the role of macrophage-specific Notch signaling in the development of CNV. In the current study, by using the myeloid specific RBP-J knockout mouse model combined with the laser-induced CNV model, we show that disruption of Notch signaling in macrophages displayed attenuated CNV growth, reduced macrophage infiltration and activation, and alleviated angiogenic response after laser induction. The inhibition of CNV occurred with reduced expression of VEGF and TNF-α in infiltrating inflammatory macrophages in myeloid specific RBP-J knockout mice. These changes might result in direct inhibition of EC lumen formation, as shown in an in vitro study. Therefore, clinical intervention of Notch signaling in CNV needs to pinpoint myeloid lineage to avoid the counteractive effects of global inhibition. PMID:27339903

  6. Macrophage lipoprotein lipase modulates the development of atherosclerosis but not adiposity

    PubMed Central

    Takahashi, Manabu; Yagyu, Hiroaki; Tazoe, Fumiko; Nagashima, Shuichi; Ohshiro, Taichi; Okada, Kenta; Osuga, Jun-ichi; Goldberg, Ira J.; Ishibashi, Shun

    2013-01-01

    The role of macrophage lipoprotein lipase (LpL) in the development of atherosclerosis and adiposity was examined in macrophage LpL knockout (MLpLKO) mice. MLpLKO mice were generated using cre-loxP gene targeting. Loss of LpL in macrophages did not alter plasma LpL activity or lipoprotein levels. Incubation of apolipoprotein E (ApoE)-deficient β-VLDL with peritoneal macrophages from ApoE knockout mice lacking macrophage LpL (MLpLKO/ApoEKO) led to less cholesteryl ester formation than that found with ApoEKO macrophages. MLpLKO/ApoEKO macrophages had reduced intracellular triglyceride levels, with decreased CD36 and carnitine palmitoyltransferase-1 mRNA levels compared with ApoEKO macrophages, when incubated with VLDL. Although both MLpLKO/ApoEKO and ApoEKO mice developed comparable hypercholesterolemia in response to feeding with a Western-type diet for 12 weeks, atherosclerosis was less in MLpLKO/ApoEKO mice. Epididymal fat mass and gene expression levels associated with inflammation did not differ between the two groups. In conclusion, macrophage LpL plays an important role in the development of atherosclerosis but not adiposity. PMID:23378601

  7. Regulatory role of PI3K-protein kinase B on the release of interleukin-1β in peritoneal macrophages from the ascites of cirrhotic patients.

    PubMed

    Tapia-Abellán, A; Ruiz-Alcaraz, A J; Antón, G; Miras-López, M; Francés, R; Such, J; Martínez-Esparza, M; García-Peñarrubia, P

    2014-12-01

    Great effort has been paid to identify novel targets for pharmaceutical intervention to control inflammation associated with different diseases. We have studied the effect of signalling inhibitors in the secretion of the proinflammatory and profibrogenic cytokine interleukin (IL)-1β in monocyte-derived macrophages (M-DM) obtained from the ascites of cirrhotic patients and compared with those obtained from the blood of healthy donors. Peritoneal M-DM were isolated from non-infected ascites of cirrhotic patients and stimulated in vitro with lipopolysaccharide (LPS) and heat-killed Candida albicans in the presence or absence of inhibitors for c-Jun N-terminal kinase (JNK), mitogen-activated protein kinase kinase 1 (MEK1), p38 mitogen-activated protein kinase (MAPK) and phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K). The IL1B and CASP1 gene expression were evaluated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). The expression of IL-1β and caspase-1 were determined by Western blot. IL-1β was also assayed by enzyme-linked immunosorbent assay (ELISA) in cell culture supernatants. Results revealed that MEK1 and JNK inhibition significantly reduced the basal and stimulated IL-1β secretion, while the p38 MAPK inhibitor had no effect on IL-1β levels. On the contrary, inhibition of PI3K increased the secretion of IL-1β from stimulated M-DM. The activating effect of PI3K inhibitor on IL-1β release was mediated mainly by the enhancement of the intracellular IL-1β and caspase-1 content release to the extracellular medium and not by increasing the corresponding mRNA and protein expression levels. These data point towards the role of MEK1 and JNK inhibitors, in contrast to the PI3K-protein kinase B inhibitors, as potential therapeutic tools for pharmaceutical intervention to diminish hepatic damage by reducing the inflammatory response mediated by IL-1β associated with liver failure.

  8. Macrophage TCF-4 co-activates p65 to potentiate chronic inflammation and insulin resistance in mice.

    PubMed

    Kang, Xia; Hou, Along; Wang, Rui; Liu, Da; Xiang, Wei; Xie, Qingyun; Zhang, Bo; Gan, Lixia; Zheng, Wei; Miao, Hongming

    2016-07-01

    Transcription factor 4 (TCF-4) was recently identified as a candidate gene for the cause of type 2 diabetes, although the mechanisms have not been fully elucidated. In the present study, we demonstrated that the TCF-4 transgene in macrophages aggravated high-fat diet (HFD)-induced insulin resistance and chronic inflammation, characterized by the elevation of proinflammatory cytokines in the blood, liver and white adipose tissue, as well as a proinflammatory profile of immune cells in visceral fats in mice. Mechanistically, TCF-4 functioned as a co-activator of p65 to amplify the saturated free fatty acid (FFA)-stimulated promoter activity, mRNA transcription and secretion of proinflammatory cytokines in primary macrophages. Blockage of p65 with a specific interfering RNA or inhibitor could prevent TCF-4-enhanced expression of proinflammatory cytokines in FFA/lipopolysaccharide-treated primary macrophages. The p65 inhibitor could abolish macrophage TCF-4 transgene-aggravated systemic inflammation, glucose intolerance and insulin resistance in HFD-treated mice. In addition, we demonstrated that the mRNA expression of TCF-4 in the peripheral blood monocytes from humans was positively correlated to the levels of interleukin (IL)-1β, tumour necrosis factor α, IL-6 and fasting plasma glucose. In summary, we identified TCF-4 as a co-activator of p65 in the potentiation of proinflammatory cytokine production in macrophages and aggravation of HFD-induced chronic inflammation and insulin resistance in mice. PMID:27129186

  9. The Salmonella virulence plasmid enhances Salmonella-induced lysis of macrophages and influences inflammatory responses.

    PubMed Central

    Guilloteau, L A; Wallis, T S; Gautier, A V; MacIntyre, S; Platt, D J; Lax, A J

    1996-01-01

    The Salmonella dublin virulence plasmid mediates systemic infection in mice and cattle. Here, we analyze the interaction between wild-type and plasmid-cured Salmonella strains with phagocytes in vitro and in vivo. The intracellular recovery of S. dublin from murine peritoneal and bovine alveolar macrophages cultured in the presence of gentamicin in vitro was not related to virulence plasmid carriage. However, the virulence plasmid increased the lytic activity of S. dublin, Salmonella typhimurium, and Salmonella choleraesuis for resident or activated mouse peritoneal macrophages. Lysis was not mediated by spv genes and was abolished by cytochalasin D treatment. Peritoneal and splenic macrophages were isolated from mice 4 days after intraperitoneal infection with wild-type or plasmid-cured S. dublin strains. The wild-type strain was recovered in significantly higher numbers than the plasmid-cured strain. However, the intracellular killing rates of such cells cultured in vitro for both S. dublin strains were not significantly different. Four days after infection, there was a lower increase of phagocyte numbers in the peritoneal cavities and spleens of mice infected with the wild-type strain compared with the plasmid-cured strain. The virulence plasmid influenced the survival of macrophages in vitro following infection in vivo as assessed by microscopy. Cells from mice infected with the plasmid-cured strain survived better than those from mice infected with the wild-type strain. This is the first report demonstrating an effect of the virulence plasmid on the interaction of Salmonella strains with macrophages. Plasmid-mediated macrophage dysfunction could influence the recruitment and/or the activation of phagocytic cells and consequently the net growth of Salmonella strains during infection. PMID:8757880

  10. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    PubMed

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-03-10

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema.

  11. Alendronate inhalation ameliorates elastase-induced pulmonary emphysema in mice by induction of apoptosis of alveolar macrophages.

    PubMed

    Ueno, Manabu; Maeno, Toshitaka; Nishimura, Satoshi; Ogata, Fusa; Masubuchi, Hiroaki; Hara, Kenichiro; Yamaguchi, Kouichi; Aoki, Fumiaki; Suga, Tatsuo; Nagai, Ryozo; Kurabayashi, Masahiko

    2015-01-01

    Alveolar macrophages play a crucial role in the pathogenesis of emphysema, for which there is currently no effective treatment. Bisphosphonates are widely used to treat osteoclast-mediated bone diseases. Here we show that delivery of the nitrogen-containing bisphosphonate alendronate via aerosol inhalation ameliorates elastase-induced emphysema in mice. Inhaled, but not orally ingested, alendronate inhibits airspace enlargement after elastase instillation, and induces apoptosis of macrophages in bronchoalveolar fluid via caspase-3- and mevalonate-dependent pathways. Cytometric analysis indicates that the F4/80(+)CD11b(high)CD11c(mild) population characterizing inflammatory macrophages, and the F4/80(+)CD11b(mild)CD11c(high) population defining resident alveolar macrophages take up substantial amounts of the bisphosphonate imaging agent OsteoSense680 after aerosol inhalation. We further show that alendronate inhibits macrophage migratory and phagocytotic activities and blunts the inflammatory response of alveolar macrophages by inhibiting nuclear factor-κB signalling. Given that the alendronate inhalation effectively induces apoptosis in both recruited and resident alveolar macrophages, we suggest this strategy may have therapeutic potential for the treatment of emphysema. PMID:25757189

  12. Mast cell–macrophage dynamics in modulation of dengue virus infection in skin

    PubMed Central

    Chu, Ya-Ting; Wan, Shu-Wen; Anderson, Robert; Lin, Yee-Shin

    2015-01-01

    Dengue virus (DENV) infection causes dengue fever, dengue haemorrhagic fever, or dengue shock syndrome. Mast cells have been speculated to play a role in DENV disease although their precise roles are unclear. In this study, we used mast cell-deficient KitW-sh/W-sh mice to investigate the involvement of mast cells after intradermal DENV infection. An approximately two- to three-fold higher level of DENV NS3 antigen was detected at the skin inoculation site in DENV-infected KitW-sh/W-sh mice than in DENV-infected wild-type (WT) mice (using a dose of 1 × 109 plaque-forming units/mouse). Moreover, as an indicator of heightened pathogenesis, a more prolonged bleeding time was observed in DENV-infected KitW-sh/W-sh mice than in WT mice. Monocytes/macrophages are considered to be important targets for DENV infection, so we investigated the susceptibility and chemokine response of DENV-infected peritoneal macrophages from KitW-sh/W-sh and WT mice both ex vivo and in vivo. There was a tendency for higher DENV infection and higher secretion of CCL2 (MCP-1) from peritoneal macrophages isolated from KitW-sh/W-sh mice than those from WT mice. In vivo studies using intradermal inoculation of DENV showed about twofold higher levels of infiltrating macrophages and CCL2 (MCP-1) at the inoculation site in both mock control and DENV-inoculated KitW-sh/W-sh mice than in corresponding WT mice. In summary, compared with WT mice, KitW-sh/W-sh mice show enhanced DENV infection and macrophage infiltration at the skin inoculation site as well as increased DENV-associated bleeding time. The results indicate an intriguing interplay between mast cells and tissue macrophages to restrict DENV replication in the skin. PMID:26059780

  13. Mast cell-macrophage dynamics in modulation of dengue virus infection in skin.

    PubMed

    Chu, Ya-Ting; Wan, Shu-Wen; Anderson, Robert; Lin, Yee-Shin

    2015-09-01

    Dengue virus (DENV) infection causes dengue fever, dengue haemorrhagic fever, or dengue shock syndrome. Mast cells have been speculated to play a role in DENV disease although their precise roles are unclear. In this study, we used mast cell-deficient Kit(W-sh/W-sh) mice to investigate the involvement of mast cells after intradermal DENV infection. An approximately two- to three-fold higher level of DENV NS3 antigen was detected at the skin inoculation site in DENV-infected Kit(W-sh/W-sh) mice than in DENV-infected wild-type (WT) mice (using a dose of 1 × 10(9) plaque-forming units/mouse). Moreover, as an indicator of heightened pathogenesis, a more prolonged bleeding time was observed in DENV-infected Kit(W-sh/W-sh) mice than in WT mice. Monocytes/macrophages are considered to be important targets for DENV infection, so we investigated the susceptibility and chemokine response of DENV-infected peritoneal macrophages from Kit(W-sh/W-sh) and WT mice both ex vivo and in vivo. There was a tendency for higher DENV infection and higher secretion of CCL2 (MCP-1) from peritoneal macrophages isolated from Kit(W-sh/W-sh) mice than those from WT mice. In vivo studies using intradermal inoculation of DENV showed about twofold higher levels of infiltrating macrophages and CCL2 (MCP-1) at the inoculation site in both mock control and DENV-inoculated Kit(W-sh/W-sh) mice than in corresponding WT mice. In summary, compared with WT mice, Kit(W-sh/W-sh) mice show enhanced DENV infection and macrophage infiltration at the skin inoculation site as well as increased DENV-associated bleeding time. The results indicate an intriguing interplay between mast cells and tissue macrophages to restrict DENV replication in the skin.

  14. Differential Transcriptome Networks between IDO1-Knockout and Wild-Type Mice in Brain Microglia and Macrophages

    PubMed Central

    Gonzalez-Pena, Dianelys; Nixon, Scott E.; Southey, Bruce R.; Lawson, Marcus A.; McCusker, Robert H.; Hernandez, Alvaro G.; Dantzer, Robert; Kelley, Keith W.; Rodriguez-Zas, Sandra L.

    2016-01-01

    Microglia in the brain and macrophages in peripheral organs are cell types responsible for immune response to challenges. Indoleamine 2,3-dioxygenase 1 (IDO1) is an immunomodulatory enzyme of the tryptophan pathway that is expressed in the brain. The higher activity of IDO1 in response to immune challenge has been implicated in behavioral disorders. The impact of IDO1 depletion on the microglia transcriptome has not been studied. An investigation of the transcript networks in the brain microglia from IDO1-knockout (IDO1-KO) mice was undertaken, relative to peripheral macrophages and to wild-type (WT) mice under unchallenged conditions. Over 105 transcript isoforms were differentially expressed between WT and IDO1-KO within cell type. Within microglia, Saa3 and Irg1 were over-expressed in IDO1-KO relative to WT. Within macrophages, Csf3 and Sele were over-expressed in IDO1-KO relative to WT. Among the genes differentially expressed between strains, enriched biological processes included ion homeostasis and ensheathment of neurons within microglia, and cytokine and chemokine expression within macrophages. Over 11,110 transcript isoforms were differentially expressed between microglia and macrophages and of these, over 10,800 transcripts overlapped between strains. Enriched biological processes among the genes over- and under-expressed in microglia relative to macrophages included cell adhesion and apoptosis, respectively. Detected only in microglia or macrophages were 421 and 43 transcript isoforms, respectively. Alternative splicing between cell types based on differential transcript isoform abundance was detected in 210 genes including Phf11d, H2afy, and Abr. Across strains, networks depicted a predominance of genes under-expressed in microglia relative to macrophages that may be a precursor for the different response of both cell types to challenges. The detected transcriptome differences enhance the understanding of the role of IDO1 in the microglia transcriptome

  15. Macrophage-dependent clearance of systemically administered B16BL6-derived exosomes from the blood circulation in mice

    PubMed Central

    Imai, Takafumi; Takahashi, Yuki; Nishikawa, Makiya; Kato, Kana; Morishita, Masaki; Yamashita, Takuma; Matsumoto, Akihiro; Charoenviriyakul, Chonlada; Takakura, Yoshinobu

    2015-01-01

    Previous studies using B16BL6-derived exosomes labelled with gLuc–lactadherin (gLuc-LA), a fusion protein of Gaussia luciferase (a reporter protein) and lactadherin (an exosome-tropic protein), showed that the exosomes quickly disappeared from the systemic circulation after intravenous injection in mice. In the present study, the mechanism of rapid clearance of intravenously injected B16BL6 exosomes was investigated. gLuc-LA-labelled exosomes were obtained from supernatant of B16BL6 cells after transfection with a plasmid DNA encoding gLuc-LA. Labelling was stable when the exosomes were incubated in serum. By using B16BL6 exosomes labelled with PKH26, a lipophilic fluorescent dye, it was demonstrated that PKH26-labelled B16BL6 exosomes were taken up by macrophages in the liver and spleen but not in the lung, while PKH26-labelled exosomes were taken up by the endothelial cells in the lung. Subsequently, gLuc-LA-labelled B16BL6 exosomes were injected into macrophage-depleted mice prepared by injection with clodronate-containing liposomes. The clearance of the intravenously injected B16BL6 exosomes from the blood circulation was much slower in macrophage-depleted mice than that in untreated mice. These results indicate that macrophages play important roles in the clearance of intravenously injected B16BL6 exosomes from the systemic circulation. PMID:25669322

  16. Paeoniflorin inhibits macrophage-mediated lung cancer metastasis.

    PubMed

    Wu, Qi; Chen, Gang-Ling; Li, Ya-Juan; Chen, Yang; Lin, Fang-Zhen

    2015-12-01

    Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases (paeoniflorin 10, 30, 100 μmol·L(-1), P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells (paeoniflorin 100 μmol·L(-1), P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4 (paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P < 0.01 vs control group). These results suggest that paeoniflorin could reduce

  17. Paeoniflorin inhibits macrophage-mediated lung cancer metastasis.

    PubMed

    Wu, Qi; Chen, Gang-Ling; Li, Ya-Juan; Chen, Yang; Lin, Fang-Zhen

    2015-12-01

    Alternatively activated macrophages are more frequently involved in tumor growth, angiogenesis, and immunosuppression. A previous study showed that paeoniflorin, the major active constituent of Paeonia lactiflora Pallas, can inhibit tumor growth and lung metastases of Lewis lung tumor-bearing mice. This study tried to investigate whether paeoniflorin inhibited lung cancer metastasis by inhibiting the alternative activation of macrophages (M2 macrophage). Using a viability assay, the cytotoxicity of paeoniflorin on Lewis lung cancer cells and peritoneal macrophages were investigated. In vitro scratch wound and in vivo lung metastasis experiments were used to test the ability to inhibit the migration of paeoniflorin and the function of M2 macrophages. Flow cytometry was performed to test the cell cycle of Lewis lung cancer cells, and to test the M2 macrophages in peritoneal macrophages and subcutaneous transplantable tumor. It was found that paeoniflorin showed no inhibitory effect on the growth of Lewis lung cancer cells and peritoneal macrophages of mouse in vitro. Paeoniflorin could attenuate the migration of LLC stimulated by alternatively activated macrophages (stimulated for 24 h and 48 h, paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 or P < 0.05 vs control group). Paeoniflorin could decrease the cell populations at S phases (paeoniflorin 10, 30, 100 μmol·L(-1), P < 0.05 vs control group) and increase the cell populations at G0-G1 phases of Lewis lung cancer cells (paeoniflorin 100 μmol·L(-1), P < 0.05 vs control group) and reduce the numbers of M2 macrophages in peritoneal macrophages induced by IL-4 (paeoniflorin 1, 3, 10, 30, 100 μmol·L(-1), P < 0.01 vs Control group). Paeoniflorin could reduce lung metastasis of Lewis lung cancer cells xenograft and decrease the numbers of M2 macrophages in subcutaneous xenograft tumour in vivo (paeoniflorin 20, 40 mg·kg(-1), P < 0.01 vs control group). These results suggest that paeoniflorin could reduce

  18. C9orf72 is required for proper macrophage and microglial function in mice.

    PubMed

    O'Rourke, J G; Bogdanik, L; Yáñez, A; Lall, D; Wolf, A J; Muhammad, A K M G; Ho, R; Carmona, S; Vit, J P; Zarrow, J; Kim, K J; Bell, S; Harms, M B; Miller, T M; Dangler, C A; Underhill, D M; Goodridge, H S; Lutz, C M; Baloh, R H

    2016-03-18

    Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9orf72 gene are the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia. Decreased expression of C9orf72 is seen in expansion carriers, suggesting that loss of function may play a role in disease. We found that two independent mouse lines lacking the C9orf72 ortholog (3110043O21Rik) in all tissues developed normally and aged without motor neuron disease. Instead, C9orf72 null mice developed progressive splenomegaly and lymphadenopathy with accumulation of engorged macrophage-like cells. C9orf72 expression was highest in myeloid cells, and the loss of C9orf72 led to lysosomal accumulation and altered immune responses in macrophages and microglia, with age-related neuroinflammation similar to C9orf72 ALS but not sporadic ALS human patient tissue. Thus, C9orf72 is required for the normal function of myeloid cells, and altered microglial function may contribute to neurodegeneration in C9orf72 expansion carriers. PMID:26989253

  19. Regulation of Macrophage Motility by the Water Channel Aquaporin-1: Crucial Role of M0/M2 Phenotype Switch

    PubMed Central

    Tyteca, Donatienne; Nishino, Tomoya; Debaix, Huguette; Van Der Smissen, Patrick; N'Kuli, Francisca; Hoffmann, Delia; Cnops, Yvette; Rabolli, Virginie; van Loo, Geert; Beyaert, Rudi; Huaux, François; Devuyst, Olivier; Courtoy, Pierre J.

    2015-01-01

    The water channel aquaporin-1 (AQP1) promotes migration of many cell types. Although AQP1 is expressed in macrophages, its potential role in macrophage motility, particularly in relation with phenotype polarization, remains unknown. We here addressed these issues in peritoneal macrophages isolated from AQP1-deficient mice, either undifferentiated (M0) or stimulated with LPS to orientate towards pro-inflammatory phenotype (classical macrophage activation; M1). In non-stimulated macrophages, ablation of AQP1 (like inhibition by HgCl2) increased by 2–3 fold spontaneous migration in a Src/PI3K/Rac-dependent manner. This correlated with cell elongation and formation of lamellipodia/ruffles, resulting in membrane lipid and F4/80 recruitment to the leading edge. This indicated that AQP1 normally suppresses migration of resting macrophages, as opposed to other cell types. Resting Aqp1-/- macrophages exhibited CD206 redistribution into ruffles and increased arginase activity like IL4/IL13 (alternative macrophage activation; M2), indicating a M0-M2 shift. In contrast, upon M1 orientation by LPS in vitro or peritoneal inflammation in vivo, migration of Aqp1-/- macrophages was reduced. Taken together, these data indicate that AQP1 oppositely regulates macrophage migration, depending on stimulation or not by LPS, and that macrophage phenotypic and migratory changes may be regulated independently of external cues. PMID:25719758

  20. Lysophosphatidylcholine Triggers TLR2- and TLR4-Mediated Signaling Pathways but Counteracts LPS-Induced NO Synthesis in Peritoneal Macrophages by Inhibiting NF-κB Translocation and MAPK/ERK Phosphorylation

    PubMed Central

    Carneiro, Alan Brito; Iaciura, Bruna Maria Ferreira; Nohara, Lilian Lie; Lopes, Carla Duque; Veas, Esteban Mauricio Cordero; Mariano, Vania Sammartino; Bozza, Patricia Torres; Lopes, Ulisses Gazos; Atella, Georgia Correa; Almeida, Igor Correia; Silva-Neto, Mário Alberto Cardoso

    2013-01-01

    Background Lysophosphatidylcholine (LPC) is the main phospholipid component of oxidized low-density lipoprotein (oxLDL) and is usually noted as a marker of several human diseases, such as atherosclerosis, cancer and diabetes. Some studies suggest that oxLDL modulates Toll-like receptor (TLR) signaling. However, effector molecules that are present in oxLDL particles and can trigger TLR signaling are not yet clear. LPC was previously described as an attenuator of sepsis and as an immune suppressor. In the present study, we have evaluated the role of LPC as a dual modulator of the TLR-mediated signaling pathway. Methodology/Principal Findings HEK 293A cells were transfected with TLR expression constructs and stimulated with LPC molecules with different fatty acid chain lengths and saturation levels. All LPC molecules activated both TLR4 and TLR2-1 signaling, as evaluated by NF-қB activation and IL-8 production. These data were confirmed by Western blot analysis of NF-қB translocation in isolated nuclei of peritoneal murine macrophages. However, LPC counteracted the TLR4 signaling induced by LPS. In this case, NF-қB translocation, nitric oxide (NO) synthesis and the expression of inducible nitric oxide synthase (iNOS) were blocked. Moreover, LPC activated the MAP Kinases p38 and JNK, but not ERK, in murine macrophages. Interestingly, LPC blocked LPS-induced ERK activation in peritoneal macrophages but not in TLR-transfected cells. Conclusions/Significance The above results indicate that LPC is a dual-activity ligand molecule. It is able to trigger a classical proinflammatory phenotype by activating TLR4- and TLR2-1-mediated signaling. However, in the presence of classical TLR ligands, LPC counteracts some of the TLR-mediated intracellular responses, ultimately inducing an anti-inflammatory phenotype; LPC may thus play a role in the regulation of cell immune responses and disease progression. PMID:24312681

  1. Akt2 deficiency protects from acute lung injury via alternative macrophage activation and miR-146a induction in mice.

    PubMed

    Vergadi, Eleni; Vaporidi, Katerina; Theodorakis, Emmanuel E; Doxaki, Christina; Lagoudaki, Eleni; Ieronymaki, Eleftheria; Alexaki, Vassilia I; Helms, Mike; Kondili, Eumorfia; Soennichsen, Birte; Stathopoulos, Efstathios N; Margioris, Andrew N; Georgopoulos, Dimitrios; Tsatsanis, Christos

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a major cause of respiratory failure, with limited effective treatments available. Alveolar macrophages participate in the pathogenesis of ARDS. To investigate the role of macrophage activation in aseptic lung injury and identify molecular mediators with therapeutic potential, lung injury was induced in wild-type (WT) and Akt2(-/-) mice by hydrochloric acid aspiration. Acid-induced lung injury in WT mice was characterized by decreased lung compliance and increased protein and cytokine concentration in bronchoalveolar lavage fluid. Alveolar macrophages acquired a classical activation (M1) phenotype. Acid-induced lung injury was less severe in Akt2(-/-) mice compared with WT mice. Alveolar macrophages from acid-injured Akt2(-/-) mice demonstrated the alternative activation phenotype (M2). Although M2 polarization suppressed aseptic lung injury, it resulted in increased lung bacterial load when Akt2(-/-) mice were infected with Pseudomonas aeruginosa. miR-146a, an anti-inflammatory microRNA targeting TLR4 signaling, was induced during the late phase of lung injury in WT mice, whereas it was increased early in Akt2(-/-) mice. Indeed, miR-146a overexpression in WT macrophages suppressed LPS-induced inducible NO synthase (iNOS) and promoted M2 polarization, whereas miR-146a inhibition in Akt2(-/-) macrophages restored iNOS expression. Furthermore, miR-146a delivery or Akt2 silencing in WT mice exposed to acid resulted in suppression of iNOS in alveolar macrophages. In conclusion, Akt2 suppression and miR-146a induction promote the M2 macrophage phenotype, resulting in amelioration of acid-induced lung injury. In vivo modulation of macrophage phenotype through Akt2 or miR-146a could provide a potential therapeutic approach for aseptic ARDS; however, it may be deleterious in septic ARDS because of impaired bacterial clearance.

  2. Modulation of Macrophage Functional Polarity towards Anti-Inflammatory Phenotype with Plasmid DNA Delivery in CD44 Targeting Hyaluronic Acid Nanoparticles

    PubMed Central

    Tran, Thanh-Huyen; Rastogi, Ruchir; Shelke, Juili; Amiji, Mansoor M.

    2015-01-01

    The purpose of this study was to modulate macrophage polarity from the pro-inflammatory M1 to anti-inflammatory M2 phenotype using plasmid DNA (pDNA) expressing interleukin-4 (IL4) or interleukin-10 (IL10)-encapsulated in hyaluronic acid-poly(ethyleneimine) (HA-PEI) nanoparticles (NPs). The HA-PEI/pDNA NPs with spherical shape, average size of 186 nm were efficiently internalized by J774A.1 macrophages. Transfection of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 NPs increased IL4 and IL10 gene expression in J774 macrophages which could re-program the macrophages from M1 to M2 phenotype as evidenced by a significant increase in the Arg/iNOS level, and upregulation of CD206 and CD163 compared to untreated macrophages. Following intraperitoneal (IP) injection to C57BL/6 mice, HA-PEI NPs effectively targeted peritoneal macrophages over-expressing CD44 receptor. In an in vivo model of stimulated peritoneal macrophages, IP administration of HA-PEI/pDNA-IL4 and HA-PEI/pDNA-IL10 to C57BL/6 mice significantly increased the Arg/iNOS ratio and CD163 expression in the cells. Furthermore, HA-PEI/pDNA-IL10 NPs significantly increased peritoneal and serum IL10 levels which effectively suppressed LPS-induced inflammation by reducing level of TNF-α and IL-1β in peritoneal macrophages and in the peritoneal fluid. The results demonstrated that pDNA-IL10-encapsulate HA-PEI NPs skewed macrophage functional polarity from M1 toward an anti-inflammatory M2 phenotype which may be a promising platform for the treatment of inflammatory diseases. PMID:26577684

  3. Targeting arginase-II protects mice from high-fat-diet-induced hepatic steatosis through suppression of macrophage inflammation

    PubMed Central

    Liu, Chang; Rajapakse, Angana G.; Riedo, Erwin; Fellay, Benoit; Bernhard, Marie-Claire; Montani, Jean-Pierre; Yang, Zhihong; Ming, Xiu-Fen

    2016-01-01

    Nonalcoholic fatty liver disease (NAFLD) associates with obesity and type 2 diabetes. Hypoactive AMP-activated protein kinase (AMPK), hyperactive mammalian target of rapamycin (mTOR) signaling, and macrophage-mediated inflammation are mechanistically linked to NAFLD. Studies investigating roles of arginase particularly the extrahepatic isoform arginase-II (Arg-II) in obesity-associated NAFLD showed contradictory results. Here we demonstrate that Arg-II−/− mice reveal decreased hepatic steatosis, macrophage infiltration, TNF-α and IL-6 as compared to the wild type (WT) littermates fed high fat diet (HFD). A higher AMPK activation (no difference in mTOR signaling), lower levels of lipogenic transcription factor SREBP-1c and activity/expression of lipogenic enzymes were observed in the Arg-II−/− mice liver. Moreover, release of TNF-α and IL-6 from bone marrow-derived macrophages (BMM) of Arg-II−/− mice is decreased as compared to WT-BMM. Conditioned medium from Arg-II−/−-BMM exhibits weaker activity to facilitate triglyceride synthesis paralleled with lower expression of SREBP-1c and SCD-1 and higher AMPK activation in hepatocytes as compared to that from WT-BMM. These effects of BMM conditioned medium can be neutralized by neutralizing antibodies against TNF-α and IL-6. Thus, Arg-II-expressing macrophages facilitate diet-induced NAFLD through TNF-α and IL-6 in obesity. PMID:26846206

  4. Labeling of macrophages using bacterial magnetosomes and their characterization by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Hartung, Annegret; Lisy, Marcus R.; Herrmann, Karl-Heinz; Hilger, Ingrid; Schüler, Dirk; Lang, Claus; Bellemann, Matthias E.; Kaiser, Werner A.; Reichenbach, Jürgen R.

    2007-04-01

    This work investigated macrophages labeled with magnetosomes for the possible detection of inflammations by MR molecular imaging. Pure magnetosomes and macrophages containing magnetosomes were analyzed using a clinical 1.5 T MR-scanner. Relaxivities of magnetosomes and relaxation rates of cells containing magnetosomes were determined. Peritonitis was induced in two mice. T1, T2 and T2* weighted images were acquired following injection of the probes. Pure magnetosomes and labeled cells showed slight effects on T1, but strong effects on T2 and T2* images. Labeled macrophages were located with magnetic resonance imaging (MRI) in the colon area, thus demonstrating the feasibility of the proposed approach.

  5. Secretion of lysosomal hydrolases by stimulated and nonstimulated macrophages

    PubMed Central

    1978-01-01

    Peritoneal macrophages were obtained from untreated mice and from mice treated with thioglycollate medium (TA), proteose peptone medium (PP), or a suspension of streptococcus A cell wall material (SA). The biochemical and secretory properties of these cells in long term cultures (up to 2 wk) were compared. TA-elicited macrophages contained more protein, lactate dehydrogenase, lysosomal hydrolases, and in particular, more plasminogen activator than the other cells studied. All types of macrophages studied were found to release considerable amounts of lysosomal hydrolases (beta-glucuronidase, N-acetyl-beta- glucosaminidase, alpha-mannosidase, and acid phosphatase) into the medium. Release was independent of phagocytosis and must, therefore, be regarded as true secretion. In both elicited and nonelicited macrophages, the rates of lysosomal enzyme secretion were virtually identical in the presence and in the absence of serum, and they were not enhanced by increasing serum concentrations. Lysosomal enzyme secretion in macrophages appears to depend on protein synthesis, since it was blocked by low concentrations of cycloheximide which neither affected cell viability nor lowered the intracellular enzyme levels. The amounts of lysosomal hydrolases secreted were highest in TA- elicited macrophages. The rates of secretion of PP- or SA-elicited and of nonelicited macrophages were about one-fourth of that of the TA- elicited cells. This difference, although significant, is much smaller than that observed for the secretion of plasminogen activator which was 20-50 times higher in TA-elicited cells. Acid glycosidases were also found in the peritoneal lavage media used for cell harvesting from both treated and nontreated mice. This indicates that active secretion of lysosomal hydrolases may be an in vivo property of the macrophage. PMID:29935

  6. Non-covalent pomegranate (Punica granatum) hydrolyzable tannin-protein complexes modulate antigen uptake, processing and presentation by a T-cell hybridoma line co-cultured with murine peritoneal macrophages.

    PubMed

    Madrigal-Carballo, Sergio; Haas, Linda; Vestling, Martha; Krueger, Christian G; Reed, Jess D

    2016-12-01

    In this work we characterize the interaction of pomegranate hydrolyzable tannins (HT) with hen egg-white lysozyme (HEL) and determine the effects of non-covalent tannin-protein complexes on macrophage endocytosis, processing and presentation of antigen. We isolated HT from pomegranate and complex to HEL, the resulting non-covalent tannin-protein complex was characterized by gel electrophoresis and MALDI-TOF MS. Finally, cell culture studies and confocal microscopy imaging were conducted on the non-covalent pomegranate HT-HEL protein complexes to evaluate its effect on macrophage antigen uptake, processing and presentation to T-cell hybridomas. Our results indicate that non-covalent pomegranate HT-HEL protein complexes modulate uptake, processing and antigen presentation by mouse peritoneal macrophages. After 4 h of pre-incubation, only trace amounts of IL-2 were detected in the co-cultures treated with HEL alone, whereas a non-covalent pomegranate HT-HEL complex had already reached maximum IL-2 expression. Pomegranate HT may increase rate of endocytose of HEL and subsequent expression of IL-2 by the T-cell hybridomas. PMID:27406472

  7. Xuebijing Injection Promotes M2 Polarization of Macrophages and Improves Survival Rate in Septic Mice

    PubMed Central

    Liu, Yan-Cun; Yao, Feng-Hua; Chai, Yan-Fen; Dong, Ning; Sheng, Zhi-Yong; Yao, Yong-Ming

    2015-01-01

    Xuebijing (XBJ) injection, a concoction of several Chinese herbs, has been widely used as an immunomodulator for the treatment of severe sepsis in China. However, the precise mechanisms responsible for its efficacy have not been fully elucidated. In our study, we determined the flow cytometry markers (F4/80, CD11c, and CD206), the levels of secreted cytokines (TNF-α, IL-6, and IL-10), and the expression of specific proteins of M2 (Ym1, Fizz1, and Arg1) to assess macrophage polarization. Treatment with XBJ lowered M1 associated cytokine levels and increased the level of M2 associated cytokine level. The percentage of M2 phenotype cells of XBJ group was much higher than that of the control group. Expressions of phosphorylated Janus kinase 1 (JAK1) and signal transducer and activator of transcription 6 (STAT6) were markedly enhanced after the administration of XBJ; on the other hand, the M2 associated cytokines and proteins were decreased following treatment with JAK1 or STAT6 inhibitor. In addition, the treatment of XBJ significantly improved the survival rate of septic mice. These studies demonstrate that XBJ can markedly promote M2 polarization and improve the survival rate of septic mice, thereby contributing to therapeutic effect in the treatment of septic complications. PMID:26064161

  8. MDP(Lysyl)GDP, a nontoxic muramyl dipeptide derivative, inhibits cytokine production by activated macrophages and protects mice from phorbol ester- and oxazolone-induced inflammation.

    PubMed

    Zunic, M; Bahr, G M; Mudde, G C; Meingassner, J G; Lam, C

    1998-07-01

    High levels of pro-inflammatory cytokines and nitric oxide are proposed to orchestrate pathophysiologic mechanism(s) associated with various inflammatory dermatoses. This study examines whether a water soluble 3-O-[N-acetylmuramyl-L-lysyl-D-iso]-2-di-on-glycine [MDP(Lysyl)GDP], a nontoxic and nonpyrogenic derivative of muramyl dipeptide (MDP), can inhibit the in vitro production of inflammatory mediators by lipopolysaccharide- or interferon-gamma-activated macrophages, and whether such an inhibitory effect can translate into in vivo protection of mice from irritant and allergic contact dermatitis. Thioglycollate-elicited peritoneal macrophages cultured in medium alone or in medium supplemented with MDP(Lysyl)GDP (1-100 microg per ml) expressed neither mRNA transcripts for inducible nitric oxide synthase, interleukin-1beta, and tumor necrosis factor-alpha, nor cytokine proteins and nitric oxide activity. Incubation of the cells with either lipopolysaccharide or interferon-gamma for 6 h resulted in a significant induction of inducible nitric oxide synthase, interleukin-1beta, and tumor necrosis factor-alpha mRNA, and the accumulation of high levels of monokines and nitrites in cultures by 24 h. Co-incubation of the macrophages with lipopolysaccharide or interferon-gamma and MDP(Lysyl)GDP (1-100 microg per ml) resulted in a concentration-dependent suppression of the steady-state mRNA transcripts for inducible nitric oxide synthase, tumor necrosis factor-alpha, and interleukin-1beta, induced by lipopolysaccharide, but not by interferon-gamma. In mouse models of phorbol ester- and oxazolone-induced ear inflammation, topical application of MDP(Lysyl)GDP significantly suppressed ear swelling in a dose-dependent manner. Likewise, oral treatment with MDP(Lysyl)GDP at days -3, -2, and -1 before elicitation with oxazolone also significantly inhibited ear inflammation. Taken together, our findings suggest that MDP(Lysyl)GDP has the potential to be a therapeutic application in

  9. Susceptibility and resistance to Echinococcus granulosus infection: Associations between mouse strains and early peritoneal immune responses.

    PubMed

    Mourglia-Ettlin, Gustavo; Merlino, Alicia; Capurro, Rafael; Dematteis, Sylvia

    2016-03-01

    In helminth infections, there are no easy associations between host susceptibility and immune responses. Interestingly, immunity to cestodes - unlike most helminths - seems to require Th1-type effectors. In this sense, we reported recently that Balb/c and C57Bl/6 mice are high and low susceptible strains, respectively, to experimental infection by Echinococcus granulosus. However, the role of the early cellular peritoneal response in such differential susceptibility is unknown. Here, we analyzed the kinetics of cytokines expression and cellular phenotypes in peritoneal cells from infected Balb/c and C57Bl/6 mice. Additionally, Principal Components Analysis (PCA) were conducted to highlight the most relevant differences between strains. Finally, the anti-parasite activities of peritoneal cells were assessed through in vitro systems. PCAs clustered C57Bl/6 mice by their early mixed IL-5/TNF-α responses and less intense expression of Th2-type cytokines. Moreover, they exhibited lower counts of eosinophils and higher numbers of macrophages and B cells. Functional studies showed that peritoneal cells from infected C57Bl/6 mice displayed greater anti-parasite activities, in accordance with higher rates of NO production and more efficient ADCC responses. In conclusion, mild Th2-responses and active cellular mechanisms are key determinants in murine resistance to E. granulosus infection, supporting the cestode immune exception among helminth parasites. PMID:26658113

  10. Susceptibility and resistance to Echinococcus granulosus infection: Associations between mouse strains and early peritoneal immune responses.

    PubMed

    Mourglia-Ettlin, Gustavo; Merlino, Alicia; Capurro, Rafael; Dematteis, Sylvia

    2016-03-01

    In helminth infections, there are no easy associations between host susceptibility and immune responses. Interestingly, immunity to cestodes - unlike most helminths - seems to require Th1-type effectors. In this sense, we reported recently that Balb/c and C57Bl/6 mice are high and low susceptible strains, respectively, to experimental infection by Echinococcus granulosus. However, the role of the early cellular peritoneal response in such differential susceptibility is unknown. Here, we analyzed the kinetics of cytokines expression and cellular phenotypes in peritoneal cells from infected Balb/c and C57Bl/6 mice. Additionally, Principal Components Analysis (PCA) were conducted to highlight the most relevant differences between strains. Finally, the anti-parasite activities of peritoneal cells were assessed through in vitro systems. PCAs clustered C57Bl/6 mice by their early mixed IL-5/TNF-α responses and less intense expression of Th2-type cytokines. Moreover, they exhibited lower counts of eosinophils and higher numbers of macrophages and B cells. Functional studies showed that peritoneal cells from infected C57Bl/6 mice displayed greater anti-parasite activities, in accordance with higher rates of NO production and more efficient ADCC responses. In conclusion, mild Th2-responses and active cellular mechanisms are key determinants in murine resistance to E. granulosus infection, supporting the cestode immune exception among helminth parasites.

  11. Microbiological aspects of peritonitis associated with continuous ambulatory peritoneal dialysis.

    PubMed Central

    von Graevenitz, A; Amsterdam, D

    1992-01-01

    The process of continuous ambulatory peritoneal dialysis has provided a useful, relatively inexpensive, and safe alternative for patients with end-stage renal disease. Infectious peritonitis, however, has limited a more widespread acceptance of this technique. The definition of peritonitis in this patient population is not universally accepted and does not always include the laboratory support of a positive culture (or Gram stain). In part, the omission of clinical microbiological findings stems from the lack of sensitivity of earlier microbiological efforts. Peritonitis results from decreased host phagocytic efficiency with depressed phagocytosis and bactericidal capacity of peritoneal macrophages. During episodes of peritonitis, fluid movement is reversed, away from the lymphatics and peritoneal membrane and toward the cavity. As a result, bloodstream infections are rare. Most peritonitis episodes are caused by bacteria. Coagulase-negative staphylococci are the most frequently isolated organisms, usually originating from the skin flora, but a wide array of microbial species have been documented as agents of peritonitis. Clinical microbiology laboratories need to be cognizant of the diverse agents so that appropriate primary media can be used. The quantity of dialysate fluid that is prepared for culture is critical and should constitute at least 10 ml. The sensitivity of the cultural approach depends on the volume of dialysate, its pretreatment (lysis or centrifugation), the media used, and the mode of incubation. The low concentration of microorganisms in dialysate fluids accounts for negative Gram stain results. Prevention of infection in continuous ambulatory peritoneal dialysis patients is associated with the socioeconomic status of the patient, advances in equipment (catheter) technology, and, probably least important, the application of prophylactic antimicrobial agents. PMID:1735094

  12. Annexin V decreases PS-mediated macrophage efferocytosis and deteriorates elastase-induced pulmonary emphysema in mice.

    PubMed

    Yoshida, S; Minematsu, N; Chubachi, S; Nakamura, H; Miyazaki, M; Tsuduki, K; Takahashi, S; Miyasho, T; Iwabuchi, T; Takamiya, R; Tateno, H; Mouded, M; Shapiro, S D; Asano, K; Betsuyaku, T

    2012-11-15

    Efferocytosis is believed to be a key regulator for lung inflammation in chronic obstructive pulmonary disease. In this study we pharmacologically inhibited efferocytosis with annexin V and attempted to determine its impact on the progression of pulmonary emphysema in mouse. We first demonstrated in vitro and in vivo efferocytosis experiments using annexin V, an inhibitor for phosphatidylserine-mediated efferocytosis. We then inhibited efferocytosis in porcine pancreatic elastase (PPE)-treated mice. PPE-treated mice were instilled annexin V intranasally starting from day 8 until day 20. Mean linear intercept (Lm) was measured, and cell apoptosis was assessed in lung specimen obtained on day 21. Cell profile, apoptosis, and mRNA expression of matrix metalloproteinases (MMPs) and growth factors were evaluated in bronchoalveolar lavage (BAL) cells on day 15. Annexin V attenuated macrophage efferocytosis both in vitro and in vivo. PPE-treated mice had a significant higher Lm, and annexin V further increased that by 32%. More number of macrophages was found in BAL fluid in this group. Interestingly, cell apoptosis was not increased by annexin V treatment both in lung specimens and BAL fluid, but macrophages from mice treated with both PPE and annexin V expressed higher MMP-2 mRNA levels and had a trend for higher MMP-12 mRNA expression. mRNA expression of keratinocyte growth factor tended to be downregulated. We showed that inhibited efferocytosis with annexin V worsened elastase-induced pulmonary emphysema in mice, which was, at least partly, attributed to a lack of phenotypic change in macrophages toward anti-inflammatory one.

  13. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.

    PubMed

    Wang, Xianwei; Ding, Zufeng; Lin, Juntang; Guo, Zhikun; Mehta, Jawahar L

    2015-11-01

    Previous studies have shown that oxidized low-density lipoprotein (ox-LDL) inhibits macrophage migration, but the precise mechanisms remain unclear. Lectin-like ox-LDL receptor-1 (LOX-1) is a scavenger receptor that is expressed in macrophages and binds ox-LDL. Calpains, a family of calcium-dependent proteases, influence several aspects of cell migration. In this study, we investigated the role of LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains in this process. Peritoneal macrophages from wild type C57BL/6 mice were exposed to different concentrations of ox-LDL (1-20 μg/mL), and expression of LOX-1 and calpain-1 and -2, cell migration and intracellular calcium (Ca(2+)in) were measured. Our results showed that ox-LDL stimulated LOX-1 and calpain-2 expression, and inhibited calpain-1 expression in a dose- and time-dependent manner. Further, ox-LDL inhibited macrophage migration and increased Ca(2+)in concentration in macrophages. To further elucidate the role of LOX-1 in ox-LDL-impaired macrophage migration, we isolated peritoneal macrophages from LOX-1 knockout mice, and treated them with ox-LDL. Interestingly, calpain-1 expression was much higher, and calpain-2 expression was lower in LOX-1 knockout macrophages than in wild-type macrophages following exposure to ox-LDL. LOX-1 deletion significantly improved macrophage migration and decreased Ca(2+)in concentration. These data indicate that LOX-1 is, at least in part, responsible for the inhibitory effect of ox-LDL on macrophage migration and this process involves calpain-1 and -2. PMID:26393906

  14. LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains.

    PubMed

    Wang, Xianwei; Ding, Zufeng; Lin, Juntang; Guo, Zhikun; Mehta, Jawahar L

    2015-11-01

    Previous studies have shown that oxidized low-density lipoprotein (ox-LDL) inhibits macrophage migration, but the precise mechanisms remain unclear. Lectin-like ox-LDL receptor-1 (LOX-1) is a scavenger receptor that is expressed in macrophages and binds ox-LDL. Calpains, a family of calcium-dependent proteases, influence several aspects of cell migration. In this study, we investigated the role of LOX-1 in macrophage migration in response to ox-LDL and the involvement of calpains in this process. Peritoneal macrophages from wild type C57BL/6 mice were exposed to different concentrations of ox-LDL (1-20 μg/mL), and expression of LOX-1 and calpain-1 and -2, cell migration and intracellular calcium (Ca(2+)in) were measured. Our results showed that ox-LDL stimulated LOX-1 and calpain-2 expression, and inhibited calpain-1 expression in a dose- and time-dependent manner. Further, ox-LDL inhibited macrophage migration and increased Ca(2+)in concentration in macrophages. To further elucidate the role of LOX-1 in ox-LDL-impaired macrophage migration, we isolated peritoneal macrophages from LOX-1 knockout mice, and treated them with ox-LDL. Interestingly, calpain-1 expression was much higher, and calpain-2 expression was lower in LOX-1 knockout macrophages than in wild-type macrophages following exposure to ox-LDL. LOX-1 deletion significantly improved macrophage migration and decreased Ca(2+)in concentration. These data indicate that LOX-1 is, at least in part, responsible for the inhibitory effect of ox-LDL on macrophage migration and this process involves calpain-1 and -2.

  15. Reducing Peritoneal Dialysis-Related Peritonitis Rate

    PubMed Central

    Shetty, Anupkumar

    2014-01-01

    Background Peritoneal dialysis-related peritonitis is an important negative risk of peritoneal dialysis. Peritonitis results when organisms enter the normally sterile peritoneal space, and the peritoneal immune system is unable to prevent the proliferation of the organisms. Methods The process of reducing the rate of peritonitis includes identification of the need for reducing peritonitis, identification of the cause of the high peritonitis rate through root cause analysis, and intervention. Results Interventions vary depending upon the type of organism causing peritonitis. Nonenterococcal gram-positive peritonitis and Pseudomonas peritonitis are related to contamination and are potentially preventable; enteric peritonitis is difficult to prevent. Conclusion The rate of peritonitis can be reduced through a strong continuous quality improvement team because the majority of peritonitis episodes can be prevented. PMID:25249805

  16. BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice.

    PubMed

    Singla, Dinender K; Singla, Reetu; Wang, Jing

    2016-01-01

    Inflammation plays a fundamental role in the inception and development of atherosclerosis (ATH). Mechanisms of inflammation include the infiltration of monocytes into the injured area and subsequent differentiation into either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. We have previously published data suggesting bone morphogenetic protein-7 (BMP-7) enhances M2 macrophage differentiation and anti-inflammatory cytokine secretion in vitro. In this regard, we hypothesized BMP-7 would inhibit plaque formation in an animal model of ATH through monocytic plasticity mediation. ATH was generated in male and female Apo E(-/-) mice via partial left carotid artery (PLCA) ligation and mice were divided into 3 groups: Sham, PLCA, and PLCA+BMP-7 (200 ug/kg; i.v.). Our data suggest that BMP-7 inhibits plaque formation and increases arterial systolic velocity. Furthermore, we report inhibition of monocyte infiltration and a decrease in associated pro-inflammatory cytokines (MCP-1, TNF-α, and IL-6) in the PLCA+BMP-7 mice. In contrast, our data suggest a significant (p<0.05) increase in M2 macrophage populations with consequential enhanced anti-inflammatory cytokine (IL-1RA, IL-10, and Arginase 1) expression following BMP-7 treatment. We have also observed that mechanisms promoting monocyte into M2 macrophage differentiation by BMP-7 involve the upregulation and activation of the BMP-7 receptor (BMP-7RII). In conclusion, we report that BMP-7 has the potential to mediate cellular plasticity and mitigate the inflammatory immune response, which results in decreased plaque formation and improved blood velocity. PMID:26824441

  17. BMP-7 Treatment Increases M2 Macrophage Differentiation and Reduces Inflammation and Plaque Formation in Apo E-/- Mice

    PubMed Central

    Singla, Dinender K.; Singla, Reetu; Wang, Jing

    2016-01-01

    Inflammation plays a fundamental role in the inception and development of atherosclerosis (ATH). Mechanisms of inflammation include the infiltration of monocytes into the injured area and subsequent differentiation into either pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. We have previously published data suggesting bone morphogenetic protein-7 (BMP-7) enhances M2 macrophage differentiation and anti-inflammatory cytokine secretion in vitro. In this regard, we hypothesized BMP-7 would inhibit plaque formation in an animal model of ATH through monocytic plasticity mediation. ATH was generated in male and female Apo E-/- mice via partial left carotid artery (PLCA) ligation and mice were divided into 3 groups: Sham, PLCA, and PLCA+BMP-7 (200ug/kg; i.v.). Our data suggest that BMP-7 inhibits plaque formation and increases arterial systolic velocity. Furthermore, we report inhibition of monocyte infiltration and a decrease in associated pro-inflammatory cytokines (MCP-1, TNF-α, and IL-6) in the PLCA+BMP-7 mice. In contrast, our data suggest a significant (p<0.05) increase in M2 macrophage populations with consequential enhanced anti-inflammatory cytokine (IL-1RA, IL-10, and Arginase 1) expression following BMP-7 treatment. We have also observed that mechanisms promoting monocyte into M2 macrophage differentiation by BMP-7 involve the upregulation and activation of the BMP-7 receptor (BMP-7RII). In conclusion, we report that BMP-7 has the potential to mediate cellular plasticity and mitigate the inflammatory immune response, which results in decreased plaque formation and improved blood velocity. PMID:26824441

  18. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice

    PubMed Central

    Wang, T; Wang, Z; Yang, P; Xia, L; Zhou, M; Wang, S; Du, Jie; Zhang, J

    2016-01-01

    The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1−/− mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury. PMID:27054331

  19. PER1 prevents excessive innate immune response during endotoxin-induced liver injury through regulation of macrophage recruitment in mice.

    PubMed

    Wang, T; Wang, Z; Yang, P; Xia, L; Zhou, M; Wang, S; Du, Jie; Zhang, J

    2016-01-01

    The severity of acute liver failure (ALF) induced by bacterial lipopolysaccharide (LPS) is associated with the hepatic innate immune response. The core circadian molecular clock modulates the innate immune response by controlling rhythmic pathogen recognition by the innate immune system and daily variations in cytokine gene expression. However, the molecular link between circadian genes and the innate immune system has remained unclear. Here, we showed that mice lacking the clock gene Per1 (Period1) are more susceptible to LPS/d-galactosamine (LPS/GalN)-induced macrophage-dependent ALF compared with wild-type (WT) mice. Per1 deletion caused a remarkable increase in the number of Kupffer cells (KCs) in the liver, resulting in an elevation of the levels of pro-inflammatory cytokines after LPS treatment. Loss of Per1 had no effect on the proliferation or apoptosis of macrophages; however, it enhanced the recruitment of macrophages, which was associated with an increase in CC chemokine receptor 2 (Ccr2) expression levels in monocytes/macrophages. Deletion of Ccr2 rescued d-GalN/LPS-induced liver injury in Per1(-/-) mice. We demonstrated that the upregulation of Ccr2 expression by Per1 deletion could be reversed by the synthetic peroxisome proliferator-activated receptor gamma (PPAR-γ) antagonist GW9662. Further analysis indicated that PER1 binds to PPAR-γ on the Ccr2 promoter and enhanced the inhibitory effect of PPAR-γ on Ccr2 expression. These results reveal that Per1 reduces hepatic macrophage recruitment through interaction with PPAR-γ and prevents an excessive innate immune response in endotoxin-induced liver injury. PMID:27054331

  20. Exercise-induced stimulation of murine macrophage chemotaxis: role of corticosterone and prolactin as mediators.

    PubMed Central

    Ortega, E; Forner, M A; Barriga, C

    1997-01-01

    1. Exercise provokes changes in the immune system, including macrophage activity. Chemotaxis is a necessary function of macrophages if they are to reach the focus of infection and strenuous acute exercise may modulate chemotaxis. However, the precise mechanisms remain unknown. 2. Three experiments were performed in the present study. (1) The effect of strenuous acute exercise (swimming until exhaustion) on the chemotactic capacity of macrophages was evaluated. (2) Peritoneal macrophages from control mice were incubated with plasma from exercised mice or control (no exercise) mice. The differences in the resulting chemotactic capacity were measured. (3) Changes in the concentration of plasma corticosterone and prolactin after exercise were also measured, and the effect of incubation with the post-exercise levels of plasma corticosterone and prolactin on the chemotactic capacity of the peritoneal macrophages was then studied in vitro. 3. Exercise induced an increase in the macrophage chemotaxis index (103 +/- 8 vs. 47 +/- 11 in controls). Incubation with plasma from exercised mice led to an increased level of chemotaxis (68 +/- 18 vs. 40 +/- 6 with plasma from controls). Incubation with concentrations of corticosterone and prolactin similar to those observed in plasma immediately after exercise (corticosterone, 0.72 mumol l-1; prolactin, 88 pmol l-1) raised the chemotactic capacity with respect to that following incubation with the basal concentrations of the hormones in control animals (90 +/- 9 vs. 37 +/- 4 for corticosterone; 72 +/- 9 vs. 41 +/- 4 for prolactin). 4. It is concluded that corticosterone and prolactin may mediate the increased chemotaxis of peritoneal macrophages induced by exercise. Images Figure 3 Figure 4 PMID:9051584

  1. Programmed death 1 deficiency induces the polarization of macrophages/microglia to the M1 phenotype after spinal cord injury in mice.

    PubMed

    Yao, Anhui; Liu, Fangfang; Chen, Kun; Tang, Liang; Liu, Ling; Zhang, Kun; Yu, Caiyong; Bian, Ganlan; Guo, Hongmin; Zheng, Jingjing; Cheng, Peng; Ju, Gong; Wang, Jian

    2014-07-01

    The inflammatory response following spinal cord injury (SCI) involves the activation of resident microglia and the infiltration of macrophages. Macrophages and microglia can be polarized into the classically activated proinflammatory M1 phenotype or the alternatively activated anti-inflammatory M2 phenotype. Programmed cell death 1 (PD-1) is a critical immune inhibitory receptor involved in innate and adaptive immune responses. However, whether PD-1 is involved in the modulation of macrophage/microglial polarization is unknown. In this study, the mRNA levels of pd1 gradually increased after SCI, and PD-1 protein was found in macrophages/microglia in injured spinal cord sections. PD-1 knockout (KO) mice showed poor locomotor recovery after spinal cord crushing compared with wild-type mice. M1-type macrophages/microglia accumulated in greater numbers in the injured spinal cord of PD-1-KO mice. Under polarized stimulation, induced expression of PD-1 occurred in cultured macrophages and microglia. PD-1 suppressed M1 polarization by reducing the phosphorylation of signal transducer and activator of transcription 1 (STAT1) and promoted M2 polarization by increasing STAT6 phosphorylation. In PD-1-KO mice, the M1 response was enhanced via the activation of STAT1 and nuclear factor-kappa B. Furthermore, PD-1 played various roles in phagocytosis in macrophages and microglia. Therefore, our results suggest that PD-1 signaling plays an important role in the regulation of macrophage/microglial polarization. Thus, deregulated PD-1 signaling may induce the polarization of macrophages/microglia toward the M1 phenotype. Overall, our results provide new insights into the modulatory mechanisms of macrophage/microglial polarization, thereby possibly facilitating the development of new therapies for SCI via the regulation of macrophage/microglial polarization through PD-1 signaling.

  2. Gpr97 is dispensable for metabolic syndrome but is involved in macrophage inflammation in high-fat diet-induced obesity in mice

    PubMed Central

    Shi, Jueping; Zhang, Xiaoyu; Wang, Shaoying; Wang, Jinjin; Du, Bing; Wang, Zhugang; Liu, Mingyao; Jiang, Wenzheng; Qian, Min; Ren, Hua

    2016-01-01

    Local inflammation in tissues is one of primary causes in development of metabolic disorder in obesity. The accumulation of macrophages in some tissues can induce inflammatory reactions in obesity. Gpr97 is highly expressed in some immunocytes, but its potential role in inflammatory regulation has not been revealed clearly. In our research, we investigated Gpr97 in regulating macrophage inflammation and metabolic dysfunction in the high-fat diet (HFD)-induced obese mice. The major metabolic phenotyping were not different after Gpr97 knockout in HFD-fed mice. Similar pathological alterations in adipose tissue, liver, and kidney were observed in Gpr97−/− HFD mice compared with WT-HFD mice. In white adipose tissue, loss of Gpr97 reduced the ratio of M1-macrophages and increased the M2-macrophage ratio, which was opposite to that seen in the wild-type HFD mice. More macrophages invaded in the liver and kidney after Gpr97 knockout in HFD mice. Furthermore, the levels of TNF-α were higher in the liver and kidney of Gpr97−/− HFD mice compared to those in wild-type HFD mice. The data indicate that Gpr97 might be required for local inflammation development in obesity-relative tissues, but does not play a role in metabolic disorder in HFD-induced obesity. PMID:27089991

  3. Endotoxin Disrupts Circadian Rhythms in Macrophages via Reactive Oxygen Species

    PubMed Central

    Wang, Yusi; Pati, Paramita; Xu, Yiming; Chen, Feng; Stepp, David W.; Huo, Yuqing; Rudic, R. Daniel; Fulton, David J. R.

    2016-01-01

    The circadian clock is a transcriptional network that functions to regulate the expression of genes important in the anticipation of changes in cellular and organ function. Recent studies have revealed that the recognition of pathogens and subsequent initiation of inflammatory responses are strongly regulated by a macrophage-intrinsic circadian clock. We hypothesized that the circadian pattern of gene expression might be influenced by inflammatory stimuli and that loss of circadian function in immune cells can promote pro-inflammatory behavior. To investigate circadian rhythms in inflammatory cells, peritoneal macrophages were isolated from mPer2luciferase transgenic mice and circadian oscillations were studied in response to stimuli. Using Cosinor analysis, we found that LPS significantly altered the circadian period in peritoneal macrophages from mPer2luciferase mice while qPCR data suggested that the pattern of expression of the core circadian gene (Bmal1) was disrupted. Inhibition of TLR4 offered protection from the LPS-induced impairment in rhythm, suggesting a role for toll-like receptor signaling. To explore the mechanisms involved, we inhibited LPS-stimulated NO and superoxide. Inhibition of NO synthesis with L-NAME had no effect on circadian rhythms. In contrast, inhibition of superoxide with Tempol or PEG-SOD ameliorated the LPS-induced changes in circadian periodicity. In gain of function experiments, we found that overexpression of NOX5, a source of ROS, could significantly disrupt circadian function in a circadian reporter cell line (U2OS) whereas iNOS overexpression, a source of NO, was ineffective. To assess whether alteration of circadian rhythms influences macrophage function, peritoneal macrophages were isolated from Bmal1-KO and Per-TKO mice. Compared to WT macrophages, macrophages from circadian knockout mice exhibited altered balance between NO and ROS release, increased uptake of oxLDL and increased adhesion and migration. These results

  4. Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds.

    PubMed

    Kim, Ha Won; Chan, Qilin; Afton, Scott E; Caruso, Joseph A; Lai, Barry; Weintraub, Neal L; Qin, Zhenyu

    2012-02-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.

  5. Human Macrophage ATP7A is Localized in the trans-Golgi Apparatus, Controls Intracellular Copper Levels, and Mediates Macrophage Responses to Dermal Wounds

    PubMed Central

    Kim, Ha Won; Chan, Qilin; Afton, Scott E.; Caruso, Joseph A.; Lai, Barry; Weintraub, Neal L.; Qin, Zhenyu

    2013-01-01

    The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound

  6. Effects of Amphotericin B on Macrophages and Their Precursor Cells

    PubMed Central

    Lin, Hsiu-San; Medoff, Gerald; Kobayashi, George S.

    1977-01-01

    The effect of amphotericin B (AmB) treatment on the mononuclear phagocyte system of mice was investigated. Peritoneal macrophages from mice that received AmB treatment showed a higher phagocytic and antibacterial activity than those from normal untreated mice. When the levels of macrophage precursor cells in bone marrow and spleen were followed in mice after AmB treatment, an eightfold increase in the splenic content of limited stem cells for both macrophages and granulocytes (colony-forming units in culture) and a threefold increase in the number of pluripotent hemopoietic stem cells (colony-forming units in spleen) were observed on day 4. These were also accompanied by a slight increase in the colony-forming units in spleen and in culture in femoral marrows. AmB was capable of inducing a large number of peritoneal colony-forming cells in the peritoneum, and caused a significant rise in the serum level of colony-stimulating factor. No significant change in the level of blood monocytes was noted, although a transient increase in the proportion of neutrophils was observed within 24 h after AmB treatment. PMID:836011

  7. γδ T Cells Are Required for M2 Macrophage Polarization and Resolution of Ozone-Induced Pulmonary Inflammation in Mice.

    PubMed

    Mathews, Joel A; Kasahara, David I; Ribeiro, Luiza; Wurmbrand, Allison P; Ninin, Fernanda M C; Shore, Stephanie A

    2015-01-01

    We examined the role of γδ T cells in the induction of alternatively activated M2 macrophages and the resolution of inflammation after ozone exposure. Wildtype (WT) mice and mice deficient in γδ T cells (TCRδ-/- mice) were exposed to air or to ozone (0.3 ppm for up to 72h) and euthanized immediately or 1, 3, or 5 days after cessation of exposure. In WT mice, M2 macrophages accumulated in the lungs over the course of ozone exposure. Pulmonary mRNA abundance of the M2 genes, Arg1, Retnla, and Clec10a, also increased after ozone. In contrast, no evidence of M2 polarization was observed in TCRδ-/- mice. WT but not TCRδ-/- mice expressed the M2c polarizing cytokine, IL-17A, after ozone exposure and WT mice treated with an IL-17A neutralizing antibody exhibited attenuated ozone-induced M2 gene expression. In WT mice, ozone-induced increases in bronchoalveolar lavage neutrophils and macrophages resolved quickly after cessation of ozone exposure returning to air exposed levels within 3 days. However, lack of M2 macrophages in TCRδ-/- mice was associated with delayed clearance of inflammatory cells after cessation of ozone and increased accumulation of apoptotic macrophages in the lungs. Delayed restoration of normal lung architecture was also observed in TCRδ-/- mice. In summary, our data indicate that γδ T cells are required for the resolution of ozone-induced inflammation, likely because γδ T cells, through their secretion of IL-17A, contribute to changes in macrophage polarization that promote clearance of apoptotic cells.

  8. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages

    PubMed Central

    Lillis, Anna P.; Muratoglu, Selen Catania; Au, Dianaly T.; Migliorini, Mary; Lee, Mi-Jeong; Fried, Susan K.; Mikhailenko, Irina; Strickland, Dudley K.

    2015-01-01

    Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis. PMID:26061292

  9. Peritonitis - secondary

    MedlinePlus

    ... blood pressure. Tests may include: Blood culture Blood chemistry, including pancreatic enzymes Complete blood count Liver and kidney function tests X-rays or CT scan Peritoneal fluid culture Urinalysis

  10. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    PubMed

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages. PMID:27611972

  11. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages

    PubMed Central

    Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages. PMID:27611972

  12. Activation of Cannabinoid Receptor 2 Ameliorates DSS-Induced Colitis through Inhibiting NLRP3 Inflammasome in Macrophages.

    PubMed

    Ke, Ping; Shao, Bo-Zong; Xu, Zhe-Qi; Wei, Wei; Han, Bin-Ze; Chen, Xiong-Wen; Su, Ding-Feng; Liu, Chong

    2016-01-01

    Activation of cannabinoid receptor 2 (CB2R) ameliorates inflammation, but the underlying mechanism remains unclear. In the present study, we examined whether activation of CB2R could suppress the nucleotide-binding domain and leucine-rich repeat protein 3 (NLRP3) inflammasome. In peritoneal macrophages isolated from C57BL/6 mice, LPS/DSS challenge for 24 h increased the expression of the components of NLRP3 inflammasome NLRP3, Casp-1 p20/Casp-1 p45 ratio, proIL-1β and IL-1β and also enhanced autophagy (LC3-II/LC3-I ratio, Beclin-1 and SQSTM1). Pretreatment of peritoneal macrophages with HU 308, a selective CB2R agonist, attenuated LPS/DSS-induced NLRP3 inflammasome activation, but further enhanced autophagy. In comparison with wild-type (WT) control, peritoneal macrophages from CB2R knockout (KO) mice had more robust NLRP3 inflammasome activation and attenuated autophagy upon LPS/DSS challenge. Knockdown autophagy-related gene 5 (Atg5) with a siRNA in peritoneal macrophages attenuated the inhibitory effects of HU 308 on LPS/DSS-induced NLRP3 inflammasome activation in vitro. In vivo, HU308 treatment attenuated DSS-induced colitis mice associated with reduced colon inflammation and inhibited NLRP3 inflammasome activation in wild-type mice. In CB2R KO mice, DSS-induced inflammation and NLRP3 inflammasome activation were more pronounced than those in WT control. Finally, we demonstrated that AMPK-mTOR-P70S6K signaling pathway was involved in this CB2R-mediated process. We conclude that activation of CB2R ameliorates DSS-induced colitis through enhancing autophagy that may inhibit NLRP3 inflammasome activation in macrophages.

  13. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response

    PubMed Central

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  14. Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response.

    PubMed

    Hu, Yaoqin; Qin, Chaojin; Zheng, Guoping; Lai, Dengming; Tao, Huikang; Zhang, Yan; Qiu, Guanguan; Ge, Menghua; Huang, Lanfang; Chen, Lina; Cheng, Baoli; Shu, Qiang; Xu, Jianguo

    2016-01-01

    Both bone marrow and adipose-derived mesenchymal stem cells (ASCs) have immunomodulatory effects. The goal of this study was to determine whether ASCs-educated macrophages could directly ameliorate LPS-induced systemic response in a mouse model. Mouse peritoneal macrophages were cocultured with ASCs in a Transwell system for 2 days to educate macrophages. Mice were divided into 5 groups: control, LPS, LPS + ASCs, LPS + untreated macrophages, and LPS + educated macrophages. Educated macrophages decreased lung inflammation, weight loss, pulmonary edema, and inflammatory cytokine response. In vitro, ASCs increased expression of M2 macrophages independent of direct cell-to-cell contact when macrophages were treated with LPS or serum from patients with acute respiratory distress syndrome (ARDS). When macrophages were cultured with serum from ARDS patients who were treated with ASCs or placebo in our previous clinical trial, there was no difference in M2 macrophage levels before and after ASCs treatment indicating a suboptimal response to the treatment protocol. ASCs also reduced the levels of LPS-induced proinflammatory cytokines in vitro which were mimicked by IL-10 and blocked by antibodies for IL-10 and IL-10 receptor supporting the notion that educated macrophages exert their anti-inflammatory effects via IL-10-dependent mechanisms. PMID:27546994

  15. Lactobacillus rhamnosus GG improves glucose tolerance through alleviating ER stress and suppressing macrophage activation in db/db mice

    PubMed Central

    Park, Kun-Young; Kim, Bobae; Hyun, Chang-Kee

    2015-01-01

    Although recent studies have reported that Lactobacillus rhamnosus GG (LGG), the most extensively studied probiotic strain, exerts an anti-hyperglycemic effect on several rodent models, the underlying mechanism remains unclear. In this study, twenty male C57BL/KsJ-db/db (db/db) mice were divided into 2 groups, LGG-treated and control group, which received a daily dose of LGG (1 × 108 CFU per mouse) and PBS orally for 4 weeks, respectively. We observed that glucose tolerance was significantly improved in LGG-treated db/db mice. Insulin-stimulated Akt phosphorylation and GLUT4 translocation were higher in skeletal muscle of LGG-treated mice relative to their controls. It was also observed that LGG treatment caused significant reductions in endoplasmic reticulum (ER) stress in skeletal muscle and M1-like macrophage activation in white adipose tissues. Our results indicate that the anti-diabetic effect of LGG in db/db mice is associated with alleviated ER stress and suppressed macrophage activation, resulting in enhanced insulin sensitivity. These findings suggest a therapeutic potential of probiotics for prevention and treatment of type 2 diabetes. PMID:26060355

  16. Bacterial phagocytosis by macrophages from lipopolysaccharide responder and nonresponder mouse strains.

    PubMed Central

    Cuffini, A; Carlone, N A; Forni, G

    1980-01-01

    The phagocytic capacity of macrophages from C3H/H3J mice was assessed against lipopolysaccharide-producing (Escherichia coli) and -nonproducing (Staphylococcus aureus) bacteria. Despite their gene-coded unresponsiveness to lipopolysaccharide endotoxin and lymphokines and their defective tumoricidal activity, proteose peptone-induced C3H/HeJ macrophages did not display a defective phagocytic capacity, but rather displayed an enhanced phagocytosis of both bacterial strains compared with macrophages from closely related C3H/HeN mice. Unstimulated peritoneal resident C3H/HeJ macrophages, on the other hand, displayed a normal phagocytic activity toward E. coli and enhanced phagocytosis toward S. aureus. PMID:6995321

  17. Different patterns of expression and of IL-10 modulation of inflammatory mediators from macrophages of Lyme disease-resistant and -susceptible mice.

    PubMed

    Gautam, Aarti; Dixit, Saurabh; Embers, Monica; Gautam, Rajeev; Philipp, Mario T; Singh, Shree R; Morici, Lisa; Dennis, Vida A

    2012-01-01

    C57BL/6J (C57) mice develop mild arthritis (Lyme disease-resistant) whereas C3H/HeN (C3H) mice develop severe arthritis (Lyme disease-susceptible) after infection with the spirochete Borrelia burgdorferi. We hypothesized that susceptibility and resistance to Lyme disease, as modeled in mice, is associated with early induction and regulation of inflammatory mediators by innate immune cells after their exposure to live B. burgdorferi spirochetes. Here, we employed multiplex ELISA and qRT-PCR to investigate quantitative differences in the levels of cytokines and chemokines produced by bone marrow-derived macrophages from C57 and C3H mice after these cells were exposed ex vivo to live spirochetes or spirochetal lipoprotein. Upon stimulation, the production of both cytokines and chemokines was up-regulated in macrophages from both mouse strains. Interestingly, however, our results uncovered two distinct patterns of spirochete- and lipoprotein-inducible inflammatory mediators displayed by mouse macrophages, such that the magnitude of the chemokine up-regulation was larger in C57 cells than it was in C3H cells, for most chemokines. Conversely, cytokine up-regulation was more intense in C3H cells. Gene transcript analyses showed that the displayed patterns of inflammatory mediators were associated with a TLR2/TLR1 transcript imbalance: C3H macrophages expressed higher TLR2 transcript levels as compared to those expressed by C57 macrophages. Exogenous IL-10 dampened production of inflammatory mediators, especially those elicited by lipoprotein stimulation. Neutralization of endogenously produced IL-10 increased production of inflammatory mediators, notably by macrophages of C57 mice, which also displayed more IL-10 than C3H macrophages. The distinct patterns of pro-inflammatory mediator production, along with TLR2/TLR1 expression, and regulation in macrophages from Lyme disease-resistant and -susceptible mice suggests itself as a blueprint to further investigate

  18. Kharon1 Null Mutants of Leishmania mexicana Are Avirulent in Mice and Exhibit a Cytokinesis Defect within Macrophages

    PubMed Central

    Sanchez, Marco A.; Valli, Jessica; Gluenz, Eva; Landfear, Scott M.

    2015-01-01

    In a variety of eukaryotes, flagella play important roles both in motility and as sensory organelles that monitor the extracellular environment. In the parasitic protozoan Leishmania mexicana, one glucose transporter isoform, LmxGT1, is targeted selectively to the flagellar membrane where it appears to play a role in glucose sensing. Trafficking of LmxGT1 to the flagellar membrane is dependent upon interaction with the KHARON1 protein that is located at the base of the flagellar axoneme. Remarkably, while Δkharon1 null mutants are viable as insect stage promastigotes, they are unable to survive as amastigotes inside host macrophages. Although Δkharon1 promastigotes enter macrophages and transform into amastigotes, these intracellular parasites are unable to execute cytokinesis and form multinucleate cells before dying. Notably, extracellular axenic amastigotes of Δkharon1 mutants replicate and divide normally, indicating a defect in the mutants that is only exhibited in the intra-macrophage environment. Although the flagella of Δkharon1 amastigotes adhere to the phagolysomal membrane of host macrophages, the morphology of the mutant flagella is often distorted. Additionally, these null mutants are completely avirulent following injection into BALB/c mice, underscoring the critical role of the KHARON1 protein for viability of intracellular amastigotes and disease in the animal model of leishmaniasis. PMID:26266938

  19. Nerve Growth Factor Regulation by TNF-α and IL-1β in Synovial Macrophages and Fibroblasts in Osteoarthritic Mice.

    PubMed

    Takano, Shotaro; Uchida, Kentaro; Miyagi, Masayuki; Inoue, Gen; Fujimaki, Hisako; Aikawa, Jun; Iwase, Dai; Minatani, Atsushi; Iwabuchi, Kazuya; Takaso, Masashi

    2016-01-01

    To investigate the role of macrophages as a regulator and producer of nerve growth factor (NGF) in the synovial tissue (ST) of osteoarthritis (OA) joints, the gene expression profiles of several inflammatory cytokines in the ST, including synovial macrophages and fibroblasts, of OA mice (STR/Ort) were characterized. Specifically, real-time polymerase chain reaction analysis was used to evaluate the expression of tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and NGF in CD11b+ and CD11b- cells isolated from the ST of a murine OA model. The effects of TNF-α, IL-1β, and IL-6 on the expression of NGF in cultured synovial cells were also examined. The expression of TNF-α, IL-1β, IL-6, and NGF in the ST of STR/Ort was higher than that in C57/BL6J mice. Compared to the CD11b- cell fraction, higher expression levels of TNF-α, IL-1β, and IL-6 were detected in the CD11b+ cell fraction, whereas no differences in the expression of NGF were detected between the two cell fractions. Notably, TNF-α upregulated NGF expression in synovial fibroblasts and macrophages and IL-1β upregulated NGF expression in synovial fibroblasts. IL-1β and TNF-α may regulate NGF signaling in OA joints and be suitable therapeutic targets for treating OA pain. PMID:27635406

  20. Nerve Growth Factor Regulation by TNF-α and IL-1β in Synovial Macrophages and Fibroblasts in Osteoarthritic Mice

    PubMed Central

    Takano, Shotaro; Inoue, Gen; Aikawa, Jun; Iwase, Dai; Minatani, Atsushi; Iwabuchi, Kazuya; Takaso, Masashi

    2016-01-01

    To investigate the role of macrophages as a regulator and producer of nerve growth factor (NGF) in the synovial tissue (ST) of osteoarthritis (OA) joints, the gene expression profiles of several inflammatory cytokines in the ST, including synovial macrophages and fibroblasts, of OA mice (STR/Ort) were characterized. Specifically, real-time polymerase chain reaction analysis was used to evaluate the expression of tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and NGF in CD11b+ and CD11b– cells isolated from the ST of a murine OA model. The effects of TNF-α, IL-1β, and IL-6 on the expression of NGF in cultured synovial cells were also examined. The expression of TNF-α, IL-1β, IL-6, and NGF in the ST of STR/Ort was higher than that in C57/BL6J mice. Compared to the CD11b– cell fraction, higher expression levels of TNF-α, IL-1β, and IL-6 were detected in the CD11b+ cell fraction, whereas no differences in the expression of NGF were detected between the two cell fractions. Notably, TNF-α upregulated NGF expression in synovial fibroblasts and macrophages and IL-1β upregulated NGF expression in synovial fibroblasts. IL-1β and TNF-α may regulate NGF signaling in OA joints and be suitable therapeutic targets for treating OA pain.

  1. Nerve Growth Factor Regulation by TNF-α and IL-1β in Synovial Macrophages and Fibroblasts in Osteoarthritic Mice

    PubMed Central

    Takano, Shotaro; Inoue, Gen; Aikawa, Jun; Iwase, Dai; Minatani, Atsushi; Iwabuchi, Kazuya; Takaso, Masashi

    2016-01-01

    To investigate the role of macrophages as a regulator and producer of nerve growth factor (NGF) in the synovial tissue (ST) of osteoarthritis (OA) joints, the gene expression profiles of several inflammatory cytokines in the ST, including synovial macrophages and fibroblasts, of OA mice (STR/Ort) were characterized. Specifically, real-time polymerase chain reaction analysis was used to evaluate the expression of tumor necrosis factor- (TNF-) α, interleukin- (IL-) 1β, IL-6, and NGF in CD11b+ and CD11b– cells isolated from the ST of a murine OA model. The effects of TNF-α, IL-1β, and IL-6 on the expression of NGF in cultured synovial cells were also examined. The expression of TNF-α, IL-1β, IL-6, and NGF in the ST of STR/Ort was higher than that in C57/BL6J mice. Compared to the CD11b– cell fraction, higher expression levels of TNF-α, IL-1β, and IL-6 were detected in the CD11b+ cell fraction, whereas no differences in the expression of NGF were detected between the two cell fractions. Notably, TNF-α upregulated NGF expression in synovial fibroblasts and macrophages and IL-1β upregulated NGF expression in synovial fibroblasts. IL-1β and TNF-α may regulate NGF signaling in OA joints and be suitable therapeutic targets for treating OA pain. PMID:27635406

  2. In vitro inhibition of murine macrophage migration by Bordetella pertussis lymphocytosis-promoting factor.

    PubMed Central

    Meade, B D; Kind, P D; Ewell, J B; McGrath, P P; Manclark, C R

    1984-01-01

    Lymphocytosis promoting factor (LPF) of Bordetella pertussis is a protein toxin which may have a role in the pathogenesis of pertussis. Since macrophages have an important role in the control of respiratory infections, the in vitro effects of LPF on macrophages from C3H/HeN and C3H/HeJ mice and on a murine macrophage-like cell line, RAW264, were examined. LPF inhibited random migration of resident peritoneal macrophages as well as the chemotaxis of peritoneal macrophages and the cell line. Fifty percent inhibition of chemotaxis occurred at 0.2 to 0.3 ng of LPF per ml for the macrophages and at 1 to 2 ng of LPF per ml for the cell line. When LPF was either heated at 80 degrees C for 5 min or premixed with specific antibodies, it failed to inhibit migration. At 20 ng/ml, LPF inhibited chemotaxis by more than 80% and also decreased Fc-mediated phagocytosis by 25 to 35%. At this dose, LPF was not a chemoattractant for murine macrophages and did not reduce macrophage viability, adherence, or opsonized zymosan-stimulated superoxide release. When LPF-treated macrophages were added to tissue culture dishes and then examined microscopically after 4 h, the LPF-treated cells adhered but failed to spread and elongate as well as control macrophages. These data indicate that LPF specifically inhibits macrophage migration in vitro and suggest that a possible role for LPF in pathogenesis is to inhibit migration of macrophages to the site of B. pertussis infection. Images PMID:6088394

  3. Amelioration of obesity-associated inflammation and insulin resistance in c57bl/6 mice via macrophage polarization by fish oil supplementation.

    PubMed

    Bashir, Samina; Sharma, Yadhu; Elahi, Asif; Khan, Farah

    2016-07-01

    Enormous phenotypic plasticity makes macrophages the target cells in obesity-associated inflammatory diseases. Thus, nutritional components that polarize macrophages toward antiinflammatory phenotype can partially reverse inflammatory diseases like insulin resistance. In the present study, macrophage-polarizing and insulin-sensitizing properties of fish oil (FO) were evaluated in obese insulin-resistant c57bl/6 mice fed high-fat diet (HFD-IR) after oral supplementation with FO (4, 8 or 16mg/kg body weight) and compared to lean and HFD-IR mice. FO-supplemented HFD-IR mice exhibited reduced adiposity index, serum cholesterol and triglycerides and increased insulin sensitization and showed improved adipose tissue physiology under light and transmission electron microscopy. NF-κB/P65 expression showed a downward shift on FO supplementation. The surface marker of M1 macrophages (CD-86) and the TLR-4 expression reduced with the increased supplementation of FO. Expression of arginase 1, an important marker of M2 macrophages, increased in a dose-dependent manner in response to FO dosage, which was observed at protein level by the western blotting and at mRNA level by real-time PCR. The cytokine profile of adipose tissue macrophages showed a steep shift toward antiinflammatory ones (IL-4 and IL-10) from the inflammatory TNF-α, IFN-γ, IL-2 and IL-1β. Thus, macrophage polarization seems to be the plausible mechanism via which FO alleviates obesity-induced inflammation and insulin resistance. PMID:27260471

  4. A unique role for p53 in the regulation of M2 macrophage polarization.

    PubMed

    Li, L; Ng, D S W; Mah, W-C; Almeida, F F; Rahmat, S A; Rao, V K; Leow, S C; Laudisi, F; Peh, M T; Goh, A M; Lim, J S Y; Wright, G D; Mortellaro, A; Taneja, R; Ginhoux, F; Lee, C G; Moore, P K; Lane, D P

    2015-07-01

    P53 is critically important in preventing oncogenesis but its role in inflammation in general and in the function of inflammatory macrophages in particular is not clear. Here, we show that bone marrow-derived macrophages exhibit endogenous p53 activity, which is increased when macrophages are polarized to the M2 (alternatively activated macrophage) subtype. This leads to reduced expression of M2 genes. Nutlin-3a, which destabilizes the p53/MDM2 (mouse double minute 2 homolog) complex, promotes p53 activation and further downregulates M2 gene expression. In contrast, increased expression of M2 genes was apparent in M2-polarized macrophages from p53-deficient and p53 mutant mice. Furthermore, we show, in mice, that p53 also regulates M2 polarization in peritoneal macrophages from interleukin-4-challenged animals and that nutlin-3a retards the development of tolerance to Escherichia coli lipopolysaccharide. P53 acts via transcriptional repression of expression of c-Myc (v-myc avian myelocytomatosis viral oncogene homolog) gene by directly associating with its promoter. These data establish a role for the p53/MDM2/c-MYC axis as a physiological 'brake' to the M2 polarization process. This work reveals a hitherto unknown role for p53 in macrophages, provides further insight into the complexities of macrophage plasticity and raises the possibility that p53-activating drugs, many of which are currently being trialled clinically, may have unforeseen effects on macrophage function. PMID:25526089

  5. Some biochemical and functional characteristics of macrophages activated by Tetrahymena pyriformis.

    PubMed

    Makioka, A; Kobayashi, A

    1984-01-01

    Phagocytosis, enzyme activities and capacity to release hydrogen peroxide (H2O2) and superoxide anion (O2-) of peritoneal macrophages from mice inoculated with Tetrahymena pyriformis, a free-living ciliate, were examined in comparison with resident and BCG-activated macrophages. Fc receptor-mediated phagocytosis of sheep erythrocytes was markedly increased in Tetrahymena-activated macrophages to the same level as that seen in BCG-activated ones. Tetrahymena-activated macrophages showed an increased level of acid phosphatase (lysosomal enzyme) and a reduced level of alkaline phosphodiesterase I (plasma membrane ectoenzyme) as compared with resident macrophages. Similar changes in the activities of the two enzymes were also observed in BCG-activated macrophages. Both Tetrahymena- and BCG-activated macrophages exhibited more enhanced capacity to release H2O2 and O2- than resident macrophages when stimulated with phorbol myristate acetate. In the macrophages from mice inoculated with varying doses of Tetrahymena, a significant correlation was observed between the increased capacity of H2O2 and O2- release as observed in the present study, and the enhanced toxoplasmacidal activity as observed in a previous study, in a dose-dependent fashion.

  6. A unique role for p53 in the regulation of M2 macrophage polarization.

    PubMed

    Li, L; Ng, D S W; Mah, W-C; Almeida, F F; Rahmat, S A; Rao, V K; Leow, S C; Laudisi, F; Peh, M T; Goh, A M; Lim, J S Y; Wright, G D; Mortellaro, A; Taneja, R; Ginhoux, F; Lee, C G; Moore, P K; Lane, D P

    2015-07-01

    P53 is critically important in preventing oncogenesis but its role in inflammation in general and in the function of inflammatory macrophages in particular is not clear. Here, we show that bone marrow-derived macrophages exhibit endogenous p53 activity, which is increased when macrophages are polarized to the M2 (alternatively activated macrophage) subtype. This leads to reduced expression of M2 genes. Nutlin-3a, which destabilizes the p53/MDM2 (mouse double minute 2 homolog) complex, promotes p53 activation and further downregulates M2 gene expression. In contrast, increased expression of M2 genes was apparent in M2-polarized macrophages from p53-deficient and p53 mutant mice. Furthermore, we show, in mice, that p53 also regulates M2 polarization in peritoneal macrophages from interleukin-4-challenged animals and that nutlin-3a retards the development of tolerance to Escherichia coli lipopolysaccharide. P53 acts via transcriptional repression of expression of c-Myc (v-myc avian myelocytomatosis viral oncogene homolog) gene by directly associating with its promoter. These data establish a role for the p53/MDM2/c-MYC axis as a physiological 'brake' to the M2 polarization process. This work reveals a hitherto unknown role for p53 in macrophages, provides further insight into the complexities of macrophage plasticity and raises the possibility that p53-activating drugs, many of which are currently being trialled clinically, may have unforeseen effects on macrophage function.

  7. Attenuation of atherosclerotic lesions in diabetic apolipoprotein E-deficient mice using gene silencing of macrophage migration inhibitory factor

    PubMed Central

    Sun, Hui; Zhang, XianJun; Zhao, Lei; Zhen, Xi; Huang, ShanYing; Wang, ShaSha; He, Hong; Liu, ZiMo; Xu, NaNa; Yang, FaLin; Qu, ZhongHua; Ma, ZhiYong; Zhang, Cheng; Zhang, Yun; Hu, Qin

    2015-01-01

    Macrophage migration inhibitory factor (MIF) involves the pathogenesis of atherosclerosis (AS) and increased plasma MIF levels in diabetes mellitus (DM) patients are associated with AS. Here, we have been suggested that MIF could be a critical contributor for the pathological process of diabetes-associated AS by using adenovirus-mediated RNA interference. First, streptozotocin (STZ)-induced diabetic animal model was constructed in 114 apolipoprotein E-deficient mice (apoE−/− mice) fed on a regular chow diet. Then, the animals were randomly divided into three groups: Adenovirus-mediated MIF interference (Ad-MIFi), Ad-enhanced green fluorescent protein (EGFP) and normal saline (NS) group (n ≈ 33/group). Non-diabetic apoE−/− mice (n = 35) were served as controls. Ad-MIFi, Ad-EGFP and NS were, respectively, injected into the tail vein of mice from Ad-MIFi, Ad-EGFP and NS group, which were injected repeatedly 4 weeks later. Physical, biochemical, morphological and molecular parameters were measured. The results showed that diabetic apoE−/− mice had significantly aggravated atherosclerotic lesions. MIF gene interference attenuated atherosclerotic lesions and stabilized atheromatous plaque, accompanied by the decreased macrophages and lipids deposition and inflammatory cytokines production, improved glucose intolerance and plasma cholesterol level, the decreased ratio of matrix matalloproteinase-2/tissue inhibitor of metalloproteinase-1 and plaque instability index. An increased expression of MIF and its ligand CD74 was also detected in the diabetic patients with coronary artery disease. The results suggest that MIF gene interference is able to inhibit atherosclerotic lesions and increase plaque stability in diabetic apoE−/−mice. MIF inhibition could be a novel and promising approach to the treatment of DM-associated AS. PMID:25661015

  8. Prevention of Encephalomyocarditis Virus-Induced Diabetes in Mice by Inhibition of the Tyrosine Kinase Signalling Pathway and Subsequent Suppression of Nitric Oxide Production in Macrophages

    PubMed Central

    Hirasawa, K.; Jun, H. S.; Han, H. S.; Zhang, M. L.; Hollenberg, M. D.; Yoon, J. W.

    1999-01-01

    Macrophages comprise the major population of cells infiltrating pancreatic islets during the early stages of infection in DBA/2 mice by the D variant of encephalomyocarditis virus (EMC-D virus). Inactivation of macrophages prior to viral infection almost completely prevents EMC-D virus-induced diabetes. This investigation was initiated to determine whether a tyrosine kinase signalling pathway might be involved in the activation of macrophages by EMC-D virus infection and whether tyrosine kinase inhibitors might, therefore, abrogate EMC-D virus-induced diabetes in vivo. When isolated macrophages were infected with EMC-D virus, inducible nitric oxide synthase mRNA was expressed and nitric oxide was subsequently produced. Treatment of macrophages with the tyrosine kinase inhibitor tyrphostin AG126, but not tyrphostin AG556, prior to EMC-D virus infection blocked the production of nitric oxide. The infection of macrophages with EMC-D virus also resulted in the activation of the mitogen-activated protein kinases (MAPKs) p42MAPK/ERK2/p44MAPK/ERK1, p38MAPK, and p46/p54JNK. In accord with the greater potency of AG126 than of AG556 in blocking EMC-D virus-mediated macrophage activation, the incidence of diabetes in EMC-D virus-infected mice treated with AG126 (25%) was much lower than that in AG556-treated (75%) or vehicle-treated (88%) control mice. We conclude that EMC-D virus-induced activation of macrophages resulting in macrophage-mediated β-cell destruction can be prevented by the inhibition of a tyrosine kinase signalling pathway involved in macrophage activation. PMID:10482607

  9. Vitamin D binding protein-macrophage activating factor (DBP-maf) inhibits angiogenesis and tumor growth in mice.

    PubMed

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  10. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-maf) Inhibits Angiogenesis and Tumor Growth in Mice1

    PubMed Central

    Kisker, Oliver; Onizuka, Shinya; Becker, Christian M; Fannon, Michael; Flynn, Evelyn; D'Amato, Robert; Zetter, Bruce; Folkman, Judah; Ray, Rahul; Swamy, Narasimha; Pirie-Shepherd, Steven

    2003-01-01

    Abstract We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf) generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is antiproliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09). At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy. PMID:12659668

  11. Effect of farmorubicin both free and associated with poly(butylcyanoacrylate) nanoparticles on phagocytic and NK activity of peritoneal exudate cells from tumor-bearing mice.

    PubMed

    Simeonova, Margarita Y; Antcheva, Margarita N

    2007-05-01

    The effect of Epirubicin (farmorubicin, FR), either free or associated with poly(butylcyanoacrylate) nanoparticles (PBCN) upon the phagocytic and natural killer (NK) activity of peritoneal exudate cells (PECs) harvested from Lewis lung carcinoma (LLC)-bearing-mice was investigated. Phagocytic and NK activity were tested 72 and 96 h, respectively after the last four intraperitoneal (i.p.) injections of the tested compounds have been administered to the mice. Phagocytic activity was evaluated in vitro by phagocytic index and ingestion capacity using a phagocytic assay. NK activity was evaluated in a direct cytotoxic test, in which PECs were used as effector cells while human erythroleukemic K-562 cells were used as target cells. The phagocytic activity of PECs, harvested from tumor-bearing mice, was stimulated after treatment with FR free, FR associated with polymer nanoparticles and with unloaded PBCN. The NK activity of PECs was strongly stimulated by unloaded PBCN. FR both free and encapsulated into the polymer matrix during the polymerization of n-butylcyanoacrylate (n-BCA) stimulated the NK activity of PECs, while FR adsorbed onto nanoparticles restrained it. These results suggest that the association of FR with nanoparticles modifies selectively its immunomodulating ability without producing any significant immunological disturbances. The toxicity of some of FR polymer forms towards PECs, displaying NK activity, probably comes from the enhanced local drug concentration on the membrane surface of the immune cells. However, it is insufficient to preclude the use of nanoparticles as drug delivery system.

  12. Ninjurin1 inhibits colitis-mediated colon cancer development and growth by suppression of macrophage infiltration through repression of FAK signaling

    PubMed Central

    Kang, Ju-Hee; Hwang, Jong-Ik; Seong, Je Kyung; Lee, Sang-Jin; Jeon, Sejin; Oh, Goo Taeg

    2016-01-01

    Macrophage infiltration promotes tumorigenesis. However, the macrophage infiltration regulatory molecules have not been fully determined. Nerve injury-induced protein 1 (ninjurin1) is a homophilic cell surface adhesion molecule that plays an important role in cell migration and attachment. Although ninjurin1 is believed to play a role in several malignancies, it is unclear whether ninjurin1 expression contributes to cancer progression. We used transgenic mice (tg mice) that overexpressed ninjurin1 on macrophages. We subjected ninjurin1 tg mice to a well-known mouse model of colitis-associated colon cancer in which animals are treated with azoxymethane (AOM) and dextran sulfate sodium (DSS). After AOM and DSS treatment, ninjurin1 tg mice developed fewer and smaller tumors compared with wild-type (wt) mice. Ninjurin1 tg mice also showed reduced infiltration of macrophages and suppressed angiogenesis in the tumor mass. We therefore explored whether ninjurin1 decreases macrophage migration into the tumor sites. After adoptive transfer to tumor-bearing recipients, wild type and ninjurin1 tg mice's peritoneal macrophages were freshly isolated and labeled with carboxyfluorescein succinimidyl ester (CFSE). As expected, compared with that of wt type macrophages, tumor infiltration of ninjurin1-overexpressing macrophages was significantly decreased. We also found that ninjurin1 overexpression suppressed FAK activity. In addition, knockdown of ninjurin1 enhanced FAK activity and migration activity of RAW264.7 cells. Ninjurin1 overexpression on macrophage inhibits tumor growth by suppression of macrophage infiltration through repression of FAK signaling. Ninjurin1 is a key regulator molecule for macrophage migration and Tumor-associated macrophages (TAM) mediated tumorigenesis in vivo. PMID:27127177

  13. Ozone-enhanced pulmonary infection with Streptococcus zooepidemicus in mice. The role of alveolar macrophage function and capsular virulence factors

    SciTech Connect

    Gilmour, M.I.; Park, P.; Selgrade, M.K. )

    1993-03-01

    Ozone exposure has been shown to increase the susceptibility of mice to pulmonary bacterial infection. We report here the differences in susceptibility of two strains of mice (C3H/HeJ and C57Bl/6) to pulmonary challenge with Streptococcus zooepidemicus, and demonstrate an association between O3 exposure, reduced alveolar macrophage (AM) function, and increased mortality to infection. After a 3-h exposure to air or to 0.4 or 0.8 ppm O3, mice received an infection of bacteria by aerosol. Subsequent mortality observed over a 20-day period for any given exposure concentration was greater in the C3H/HeJ mice than in the C57Bl/6 mice. Phagocytosis assays identified the AM from O3-exposed lungs as having an impaired ability to engulf the bacteria. Baseline phagocytic activity in C3H/HeJ mice was lower than that in C57Bl/6 mice. Microbiologic assessment of the lungs at various times after infection revealed that the streptococci proliferated rapidly in the lungs of O3-exposed mice, grew more quickly upon isolation, and displayed a mucoid colony appearance indicative of increased encapsulation. In vitro assays confirmed that the encapsulated isolates prevented binding of the bacteria to AM, and reinfection of nonexposed mice with the encapsulated isolate resulted in increased mortality compared with infection with similar numbers of the original unencapsulated bacteria. We have demonstrated that O3 inhalation impairs AM activity in the lung. The streptococci are then able to proliferate and more fully express virulence factors, in particular, the antiphagocytic capsule, which prohibits the ingestion of bacteria by pulmonary phagocytes and leads to increased severity of infection.

  14. ACAT1 deletion in murine macrophages associated with cytotoxicity and decreased expression of collagen type 3A1

    SciTech Connect

    Rodriguez, Annabelle . E-mail: arodrig5@jhmi.edu; Ashen, M. Dominique; Chen, Edward S.

    2005-05-27

    In contrast to some published studies of murine macrophages, we previously showed that ACAT inhibitors appeared to be anti-atherogenic in primary human macrophages in that they decreased foam cell formation without inducing cytotoxicity. Herein, we examined foam cell formation and cytotoxicity in murine ACAT1 knockout (KO) macrophages in an attempt to resolve the discrepancies. Elicited peritoneal macrophages from normal C57BL6 and ACAT1 KO mice were incubated with DMEM containing acetylated LDL (acLDL, 100 {mu}g protein/ml) for 48 h. Cells became cholesterol enriched and there were no differences in the total cholesterol mass. Esterified cholesterol mass was lower in ACAT1 KO foam cells compared to normal macrophages (p < 0.04). Cytotoxicity, as measured by the cellular release of [{sup 14}C]adenine from macrophages, was approximately 2-fold greater in ACAT1 KO macrophages as compared to normal macrophages (p < 0.0001), and this was independent of cholesterol enrichment. cDNA microarray analysis showed that ACAT1 KO macrophages expressed substantially less collagen type 3A1 (26-fold), which was confirmed by RT-PCR. Total collagen content was also significantly reduced (57%) in lung homogenates isolated from ACAT1 KO mice (p < 0.02). Thus, ACAT1 KO macrophages show biochemical changes consistent with increased cytotoxicity and also a novel association with decreased expression of collagen type 3A1.

  15. β-Carotene Attenuates Angiotensin II-Induced Aortic Aneurysm by Alleviating Macrophage Recruitment in Apoe−/− Mice

    PubMed Central

    Gopal, Kaliappan; Nagarajan, Perumal; Jedy, Jose; Raj, Avinash T.; Gnanaselvi, S. Kalai; Jahan, Parveen; Sharma, Yogendra; Shankar, Esaki M.; Kumar, Jerald M.

    2013-01-01

    Abdominal aortic aneurysm (AAA) is a common chronic degenerative disease characterized by progressive aortic dilation and rupture. The mechanisms underlying the role of α-tocopherol and β-carotene on AAA have not been comprehensively assessed. We investigated if α-tocopherol and β-carotene supplementation could attenuate AAA, and studied the underlying mechanisms utilized by the antioxidants to alleviate AAA. Four-months-old Apoe−/− mice were used in the induction of aneurysm by infusion of angiotensin II (Ang II), and were orally administered with α-tocopherol and β-carotene enriched diet for 60 days. Significant increase of LDL, cholesterol, triglycerides and circulating inflammatory cells was observed in the Ang II-treated animals, and gene expression studies showed that ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9 and MMP-12 were upregulated in the aorta of aneurysm-induced mice. Extensive plaques, aneurysm and diffusion of inflammatory cells into the tunica intima were also noticed. The size of aorta was significantly (P = 0.0002) increased (2.24±0.20 mm) in the aneurysm-induced animals as compared to control mice (1.17±0.06 mm). Interestingly, β-carotene dramatically controlled the diffusion of macrophages into the aortic tunica intima, and circulation. It also dissolved the formation of atheromatous plaque. Further, β-carotene significantly decreased the aortic diameter (1.33±0.12 mm) in the aneurysm-induced mice (β-carotene, P = 0.0002). It also downregulated ICAM-1, VCAM-1, MCP-1, M-CSF, MMP-2, MMP-9, MMP-12, PPAR-α and PPAR-γ following treatment. Hence, dietary supplementation of β-carotene may have a protective function against Ang II-induced AAA by ameliorating macrophage recruitment in Apoe−/− mice. PMID:23826202

  16. Spontaneous rejection of intradermally transplanted non-engineered tumor cells by neutrophils and macrophages from syngeneic strains of mice.

    PubMed

    Ibata, Minenori; Takahashi, Takeshi; Shimizu, Tetsunosuke; Inoue, Yoshihiro; Maeda, Shogo; Tashiro-Yamaji, Junko; Okada, Masashi; Ueda, Koichi; Kubota, Takahiro; Yoshida, Ryotaro

    2011-10-01

    It is not surprising that tumors arising spontaneously are rarely rejected by T cells, because in general they lack molecules to elicit a primary T-cell response. In fact, cytokine-engineered tumors can induce granulocyte infiltration leading to tumor rejection. In the present study, we i.d. injected seven kinds of non-engineered tumor cells into syngeneic strains of mice. Three of them (i.e. B16, KLN205, and 3LL cells) continued to grow, whereas four of them (i.e. Meth A, I-10, CL-S1, and FM3A cells) were spontaneously rejected after transient growth or without growth. In contrast to the i.d. injection of B16 cells into C57BL/6 mice, which induces infiltration of TAMs into the tumors, the i.d. injection of Meth A cells into BALB/c mice induced the invasion of cytotoxic inflammatory cells, but not of TAMs, into or around the tumors leading to an IFN-γ-dependent rejection. On day 5, the cytotoxic activity against the tumor cells reached a peak; and the effector cells were found to be neutrophils and macrophages. The i.d. Meth A or I-10 cell-immunized, but not non-immunized, mice rejected i.p.- or i.m.-transplanted Meth A or I-10 cells without growth, respectively. The main effector cells were CTLs; and there was no cross-sensitization between these two kinds of tumor cells, suggesting specific rejection of tumor cells by CTLs from i.d. immunized mice. These results indicate that infiltration of cytotoxic myeloid cells (i.e. neutrophils and macrophages, but not TAMs) into or around tumors is essential for their IFN-γ-dependent spontaneous rejection.

  17. Genetically determined resistance to listeriosis is associated with increased accumulation of inflammatory neutrophils and macrophages which have enhanced listericidal activity.

    PubMed Central

    Czuprynski, C J; Canono, B P; Henson, P M; Campbell, P A

    1985-01-01

    The C57BL/6 and A/J inbred strains of mice differ markedly in their resistance to the facultative intracellular bacterium Listeria monocytogenes. One possible explanation for this genetically determined resistance is that phagocytes from Listeria-resistant strains of mice can kill L. monocytogenes more effectively than phagocytes from Listeria-susceptible strains of mice. We report here that inflammatory neutrophils and macrophages from Listeria-resistant mice (C57BL/6) exhibit a slight but significantly enhanced ability to kill L. monocytogenes in vitro as compared to inflammatory phagocytes from Listeria-susceptible mice (A/J). More importantly, however, Listeria-resistant mice recruited more inflammatory neutrophils and macrophages to the peritoneal cavity in response to i.p. injection of heat-killed Listeria than did Listeria-susceptible mice. These data suggest that genetically determined resistance to listeriosis is dependent on the enhanced inflammatory responsiveness of Listeria-resistant mice. Further support for this hypothesis was provided by experiments in which the passive transfer to A/J mice (C5-deficient) of plasma from C57BL/6 mice (C5-sufficient) enhanced the ability of the recipient A/J mice both to recruit inflammatory neutrophils to the peritoneal cavity in response to i.p. injection of heat-killed Listeria, and to clear L. monocytogenes from the spleen after a sublethal challenge of viable Listeria. PMID:4018836

  18. Tuberculous peritonitis

    PubMed Central

    Srivastava, Udayan; Almusa, Omar; Tung, Ka-wah; Heller, Matthew T.

    2015-01-01

    Tuberculous peritonitis is a serious condition with rising prevalence in recent years. It is especially common in those patients with risk factors such as an immunocompromised state, chronic kidney disease, or cirrhosis/liver disease. Spread is typically hematogenous from pulmonary foci. We report on a 34-year-old man who presented with initial complaints of cough, low-grade fevers, abdominal pain, and nausea/vomiting. Chest x-ray showed a cluster of nodular opacities on the right upper lobe, and a CT scan showed diffuse thickening and nodularity of the omentum with prominent mesenteric lymph nodes, consistent with tuberculous peritonitis. PMID:27186257

  19. Chryseobacterium indologenes peritonitis in peritoneal dialysis

    PubMed Central

    Afshar, Mehdi; Nobakht, Ehsan; Lew, Susie Q

    2013-01-01

    Peritoneal dialysis-related peritonitis remains a major complication of peritoneal dialysis in patients with end-stage renal disease. Chryseobacterium indologenes is a rare organism that has been reported to cause infections mostly in hospitalised patients with severe underlying diseases. We report the first case of C indologenes peritonitis in a patient on peritoneal dialysis outside of Asia. Our patient with end-stage renal disease on peritoneal dialysis grew C indologenes from peritoneal fluid when he presented with abdominal pain and cloudy effluent. The patient responded well to intraperitoneal antibiotic therapy. Tenckhoff catheter did not require removal. This case demonstrates the importance of considering rare causes of peritonitis, such as C indologenes, in patients on peritoneal dialysis. Given the resistance of such organisms to commonly used broad-spectrum antibiotics, antimicrobial susceptibility testing must be assessed as early as possible to assure appropriate antibiotic coverage to avoid untreated peritonitis leading to peritoneal dialysis failure. PMID:23709544

  20. Chryseobacterium indologenes peritonitis in peritoneal dialysis.

    PubMed

    Afshar, Mehdi; Nobakht, Ehsan; Lew, Susie Q

    2013-05-24

    Peritoneal dialysis-related peritonitis remains a major complication of peritoneal dialysis in patients with end-stage renal disease. Chryseobacterium indologenes is a rare organism that has been reported to cause infections mostly in hospitalised patients with severe underlying diseases. We report the first case of C indologenes peritonitis in a patient on peritoneal dialysis outside of Asia. Our patient with end-stage renal disease on peritoneal dialysis grew C indologenes from peritoneal fluid when he presented with abdominal pain and cloudy effluent. The patient responded well to intraperitoneal antibiotic therapy. Tenckhoff catheter did not require removal. This case demonstrates the importance of considering rare causes of peritonitis, such as C indologenes, in patients on peritoneal dialysis. Given the resistance of such organisms to commonly used broad-spectrum antibiotics, antimicrobial susceptibility testing must be assessed as early as possible to assure appropriate antibiotic coverage to avoid untreated peritonitis leading to peritoneal dialysis failure.

  1. The role of macrophages in the cytotoxic killing of tumour cells in vitro

    PubMed Central

    Zembala, M.; Ptak, W.; Hanczakowska, Maria

    1973-01-01

    Lymph node and spleen cells from normal mice were cultured for 3 days with polyoma virus-induced tumour, Ehrlich's ascites tumour or leukaemia L 1210 cells. This resulted in in vitro immunization of the lymphocytes, which were then transferred to irradiated target cells labelled with 51Cr. Normal, i.e. non-immune thioglycollate-stimulated peritoneal macrophages were also added to some tubes. Non-immune macrophages mixed with immunized lymphocytes showed a significantly increased ability to destroy tumour cells as compared with macrophages in the absence of immunized lymphocytes. The immunized lymphocytes were almost entirely inactive alone. When the number of macrophages was kept constant the cytotoxicity was dependent on the number of viable immunized lymphocytes placed on the target cells. Immunized lymphocytes, in the presence of macrophages, only exhibited strong killing of the target cells against which they had been immunized; some lysis of `bystander' cells was, however, seen provided specific target cells were present. Macrophage monolayers exposed to immunized lymphocytes upon contact with specific antigen became `armed' and showed a significant cytotoxicity for specific target cells. When immunized lymphocytes and normal macrophages were treated with actinomycin D and puromycin, cytotoxicity was inhibited in the immunized lymphocytes but not in the macrophages. The possible mechanism of normal macrophage cooperation with immunized lymphocytes in the cytotoxic killing reaction is discussed. Results presented in this paper favour the view that immunologically specific cytophilic factor (presumptive cytophilic antibody) is involved in the macrophage-mediated cytotoxicity in the system studied. PMID:4356674

  2. LPS-inducible factor(s) from activated macrophages mediates cytolysis of Naegleria fowleri amoebae

    SciTech Connect

    Cleary, S.F.; Marciano-Cabral, F.

    1986-03-01

    Soluble cytolytic factors of macrophage origin have previously been described with respect to their tumoricidal activity. The purpose of this study was to investigate the mechanism and possible factor(s) responsible for cytolysis of the amoeba Naegleria fowleri by activated peritoneal macrophages from B6C3F1 mice. Macrophages or conditioned medium (CM) from macrophage cultures were incubated with /sup 3/H-Uridine labeled amoebae. Percent specific release of label served as an index of cytolysis. Bacille Calmette-Guerin (BCG) and Corynebacterium parvum macrophages demonstrated significant cytolysis of amoebae at 24 h with an effector to target ratio of 10:1. Treatment of macrophages with inhibitors of RNA or protein synthesis blocked amoebicidal activity. Interposition of a 1 ..mu..m pore membrane between macrophages and amoebae inhibited killing. Inhibition in the presence of the membrane was overcome by stimulating the macrophages with LPS. CM from SPS-stimulated, but not unstimulated, cultures of activated macrophages was cytotoxic for amoebae. The activity was heat sensitive and was recovered from ammonium sulfate precipitation of the CM. Results indicate that amoebicidal activity is mediated by a protein(s) of macrophage origin induced by target cell contact or stimulation with LPS.

  3. Prodigiosin isolated from Hahella chejuensis suppresses lipopolysaccharide-induced NO production by inhibiting p38 MAPK, JNK and NF-kappaB activation in murine peritoneal macrophages.

    PubMed

    Huh, Jung-Eun; Yim, Joung-Han; Lee, Hong-Kum; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2007-12-15

    Prodigiosin was isolated from marine bacteria Hahella chejuensis which has been recently discovered from Marado, Cheju Island, Republic of Korea. Immunosuppressive properties have been reported for prodigiosin members such as undecylprodigiosin, metacycloprodigiosin, prodigiosin and its synthetic analogue PNU156804 (PNU). However, the effect of this agent on macrophage function has not been characterized in detail. In the present study, we examined the effects of prodigiosin on the production of inflammatory cytokines and nitric oxide (NO) in lipopolysaccharide (LPS)-activated murine macrophage. When thioglycollate-elicited macrophages pre-exposed to prodigiosin (1-100 ng/ml) were stimulated with LPS, pretreatment with prodigiosin resulted in the inhibition of NO production and inducible nitric oxide synthase (iNOS) protein and mRNA expression in a concentration-dependent manner. In contrast, the production of pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and IL-6 was not altered. Inhibition of iNOS protein expression appears to be at the transcriptional level, since prodigiosin decreased LPS-induced NF-kappaB activity through preventing the degradation of IkBalpha, with significant inhibition achieved following pretreatment with prodigiosin. However, prodigiosin did not exert any effect on AP-1 activity. Prodigiosin blocked phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun NH(2)-terminal kinase (JNK), but not that of extracellular signal-regulated kinase 1/2 (ERK 1/2). These results indicate that the inhibition of these signaling molecules expression was correlated with the reduced production of NO in macrophages. Taken together, the present data suggest that prodigiosin reduces NO production and iNOS expression by inhibiting LPS-triggered p38 MAPK and JNK phosphorylation and NF-kappaB activation, thereby implicating a mechanism by which prodigiosin may exert its immunosuppressive effects.

  4. Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis

    PubMed Central

    Babaev, Vladimir R.; Chew, Joshua D.; Ding, Lei; Davis, Sarah; Breyer, Matthew D.; Breyer, Richard M.; Oates, John A.; Fazio, Sergio; Linton, MacRae F.

    2009-01-01

    Prostagladin (PG) E2, a major product of activated macrophages, has been implicated in atherosclerosis and plaque rupture. The PGE2 receptors, EP2 and EP4, are expressed in atherosclerotic lesions and are known to inhibit apoptosis in cancer cells. To examine the roles of macrophage EP4 and EP2 in apoptosis and early atherosclerosis, fetal liver cell transplantation was used to generate LDLR−/− mice chimeric for EP2−/− or EP4−/− hematopoietic cells. After 8-weeks on a Western diet, EP4−/− → LDLR−/− mice, but not EP2−/− → LDLR−/− mice, had significantly reduced aortic atherosclerosis with increased apoptotic cells in the lesions. EP4−/− peritoneal macrophages had increased sensitivity to pro-apoptotic stimuli, including palmitic acid and free cholesterol loading, which was accompanied by suppression of activity of p-Akt, p-Bad and NF-kB-regulated genes. Thus, EP4 deficiency inhibits the PI3K/Akt and NF-kB pathways compromising macrophage survival and suppressing early atherosclerosis, identifying macrophage EP4 signaling pathways as molecular targets for modulating the development of atherosclerosis. PMID:19041765

  5. [Commemorative lecture of receiving Imamura Memorial Prize. Characterization of immunosuppressive macrophages induced in mice infected with Mycobacterium intracellulare].

    PubMed

    Tomioka, H

    1993-12-01

    Functional changes in T lymphocytes and macrophages (M phi s) in host mice during the course of Mycobacterium intracellulare infection were studied. In both strains of mice, BALB/c or C57BL/6 (susceptible to M. avium complex) and CBA/JN or C3H/He (resistant to M. avium complex), the smooth, opaque and dome-shaped colonial (SmD) variants of M. intracellulare were easily eliminated from the sites after week 2 of infection. In contrast, the smooth, transparent and irregularly shaped colonial (SmT) variants showed steady growth in the former strains of mice and persisted for long time even in the latter strains of mice. No difference was found between persistence of the organisms in euthymic (+/+) and athymic (nu/nu) BALB/c mice during the first 4 weeks after infection. Thereafter, more rapid growth was seen in the spleens and lungs of nu/nu mice. Thus, matured T cells may be important for the prevention of the progression of M. intracellulare infection to the terminal state. Next, the profiles of generation and characteristics of splenic M phi s which suppress the Con A mitogenic response of splenic T cells in host CBA/JN or BALB/c mice during the course of M. intracellulare infection were investigated. In M. intracellulare--infected mice, reduction in some cellular functions of host splenic T cells, such as the Con A mitogenic response and mixed leucocyte reaction, were seen around 2 weeks after infection, and this was accompanied by appearance of immunosuppressive M phi s in spleen cells (SPCs).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8301920

  6. Flow cytometric quantification of radiation responses of murine peritoneal cells

    SciTech Connect

    Tokita, N.; Raju, M.R.

    1982-01-01

    Methods have been developed to distinguish subpopulations of murine peritoneal cells, and these were applied to the measurement of early changes in peritoneal cells after irradiation. The ratio of the two major subpopulations in the peritoneal fluid, lymphocytes and macrophages, was measured rapidly by means of cell volume distribution analysis as well as by hypotonic propidium iodide (PI) staining. After irradiation, dose and time dependent changes were noted in the cell volume distributions: a rapid loss of peritoneal lymphocytes, and an increase in the mean cell volume of macrophages. The hypotonic PI staining characteristics of the peritoneal cells showed two or three distinctive G/sub 1/ peaks. The ratio of the areas of these peaks was also found to be dependent of the radiation dose and the time after irradiation. These results demonstrate that these two parameters may be used to monitor changes induced by irradiation (biological dosimetry), and to sort different peritoneal subpopulations.

  7. Persistent Macrophage/Microglial Activation and Myelin Disruption after Experimental Autoimmune Encephalomyelitis in Tissue Inhibitor of Metalloproteinase-1-Deficient Mice

    PubMed Central

    Crocker, Stephen J.; Whitmire, Jason K.; Frausto, Ricardo F.; Chertboonmuang, Parntip; Soloway, Paul D.; Whitton, J. Lindsay; Campbell, Iain L.

    2006-01-01

    Increased leukocyte trafficking into the parenchyma during inflammatory responses in the central nervous system (CNS) is facilitated by the extracellular proteolytic activities of matrix metalloproteinases that are regulated, in part, by the endogenous tissue inhibitors of metalloproteinases (TIMPs). In experimental autoimmune encephalomyelitis (EAE), TIMP-1 gene expression is induced in astrocytes surrounding inflammatory lesions in the CNS. The physiological importance of this temporal and spatial relationship is not clear. Herein, we have addressed the functional role of TIMP-1 in a myelin oligodendrocyte glycoprotein (MOG35-55)-induced model of EAE using TIMP-1-deficient (TIMP-1−/−) C57BL/6 mice. Although CD4+ T-cell immune responses to myelin in wild-type (WT) and TIMP-1−/− mice were similar, analysis of CNS tissues from TIMP-1−/− mice after EAE revealed more severe myelin pathology than that of WT mice. This disruption of myelin was associated with both increased lymphocyte infiltration and microglial/macrophage accumulation in the brain parenchyma. These findings suggest that induction of TIMP-1 by astrocytes during EAE in WT mice represents an inherent cytoprotective response that mitigates CNS myelin injury through the regulation of both immune cell infiltration and microglial activation. PMID:17148673

  8. Modulation of Macrophage Polarization and HMGB1-TLR2/TLR4 Cascade Plays a Crucial Role for Cardiac Remodeling in Senescence-Accelerated Prone Mice.

    PubMed

    Karuppagounder, Vengadeshprabhu; Giridharan, Vijayasree V; Arumugam, Somasundaram; Sreedhar, Remya; Palaniyandi, Suresh S; Krishnamurthy, Prasanna; Quevedo, Joao; Watanabe, Kenichi; Konishi, Tetsuya; Thandavarayan, Rajarajan A

    2016-01-01

    The aim of this study was to investigate the role of macrophage polarization in aging heart. Macrophage differentiation is pathogenically linked to many inflammatory and immune disorders. It is often preceded by myocardial inflammation, which is characterized by increased cardiac damage and pro-inflammatory cytokine levels. Therefore, we investigated the hypothesis that senescence accelerated-prone (SAMP8) mice cardiac tissue would develop macrophage polarization compared with senescence-resistant control (SAMR1) mice. Both SAMP8 and SAMR1 mice were sacrificed when they became six month old. We evaluated, histo-pathological changes and modifications in protein expression by Western blotting and immuno-histochemical staining for M1 and M2 macrophage markers, high mobility group protein (HMG)B1 and its cascade proteins, pro-inflammatory factors and inflammatory cytokines in cardiac tissue. We observed significant upregulation of HMGB1, toll-like receptor (TLR)2, TLR4, nuclear factor (NF)κB p65, tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, interferon (IFN)γ, interleukin (IL)-1β, IL-6 and M1 like macrophage specific marker cluster of differentiation (CD)68 expressions in SAMP8 heart. In contrast, M2 macrophage specific marker CD36, and IL-10 expressions were down-regulated in SAMP8 mice. The results from the study demonstrated that, HMGB1-TLR2/TLR4 signaling cascade and induction of phenotypic switching to M1 macrophage polarization in SAMP8 mice heart would be one of the possible reasons behind the cardiac dysfunction and thus it could become an important therapeutic target to improve the age related cardiac dysfunction.

  9. Modulation of Macrophage Polarization and HMGB1-TLR2/TLR4 Cascade Plays a Crucial Role for Cardiac Remodeling in Senescence-Accelerated Prone Mice

    PubMed Central

    Arumugam, Somasundaram; Sreedhar, Remya; Palaniyandi, Suresh S.; Krishnamurthy, Prasanna; Quevedo, Joao; Watanabe, Kenichi; Konishi, Tetsuya; Thandavarayan, Rajarajan A.

    2016-01-01

    The aim of this study was to investigate the role of macrophage polarization in aging heart. Macrophage differentiation is pathogenically linked to many inflammatory and immune disorders. It is often preceded by myocardial inflammation, which is characterized by increased cardiac damage and pro-inflammatory cytokine levels. Therefore, we investigated the hypothesis that senescence accelerated-prone (SAMP8) mice cardiac tissue would develop macrophage polarization compared with senescence-resistant control (SAMR1) mice. Both SAMP8 and SAMR1 mice were sacrificed when they became six month old. We evaluated, histo-pathological changes and modifications in protein expression by Western blotting and immuno-histochemical staining for M1 and M2 macrophage markers, high mobility group protein (HMG)B1 and its cascade proteins, pro-inflammatory factors and inflammatory cytokines in cardiac tissue. We observed significant upregulation of HMGB1, toll-like receptor (TLR)2, TLR4, nuclear factor (NF)κB p65, tumor necrosis factor (TNF)α, cyclooxygenase (COX)2, interferon (IFN)γ, interleukin (IL)-1β, IL-6 and M1 like macrophage specific marker cluster of differentiation (CD)68 expressions in SAMP8 heart. In contrast, M2 macrophage specific marker CD36, and IL-10 expressions were down-regulated in SAMP8 mice. The results from the study demonstrated that, HMGB1-TLR2/TLR4 signaling cascade and induction of phenotypic switching to M1 macrophage polarization in SAMP8 mice heart would be one of the possible reasons behind the cardiac dysfunction and thus it could become an important therapeutic target to improve the age related cardiac dysfunction. PMID:27070323

  10. Changes of Regulatory T Cells in the Early Stage of Obesity Mice and Their Modulation on Macrophage Subtypes in Visceral Adipose Tissue.

    PubMed

    Li, Xia; Tang, Xiao-Han; Tang, Li-Li; Yu, Hai-Bo; Xie, Zhi-Guo; Zhou, Zhi-Guang

    2016-08-01

    Objective To investigate the changes of regulatory T cells (Tregs) and whether Tregs can modulate the distribution of macrophage subtypes in visceral adipose tissue in the early stage of obesity.Methods After C57BL/6 mice obesity models were successfully established,metabolic parameters and numbers of Tregs and M1/M2 macrophage were measured at 4,10,and 20 weeks.The changes of metabolic parameters and adipose tissue inflammation in obesity mice after rapamycin intervention were evaluated. Results The early-stage obesity models were successfully established.Compared with normal diet mice,high fat diet mice had significantly higher epididymal adipose tissue mass and serum leptin levels(P<0.05).However,there was no statistical difference in blood glucose and insulin levels between these two groups(All P>0.05). Macrophages infiltration in adipose tissue in high fat diet mice gradually increased with time,coincident with decrease in Treg numbers. Increased numbers of Treg,improved metabolic parameters,and decreased ratio of M1/M2 can be seen after rapamycin intervention in mice.Conclusion The decrease of Tregs in the early stage of obesity may contribute to abnormal distribution of macrophage subtypes in visceral adipose. PMID:27594151

  11. Safrole-modulated immune response is mediated through enhancing the CD11b surface marker and stimulating the phagocytosis by macrophages in BALB/c mice.

    PubMed

    Fan, M-J; Lin, S-Y; Yu, C-C; Tang, N-Y; Ho, H-C; Chung, H-K; Yang, J-S; Huang, Y-P; Ip, S-W; Chung, J-G

    2012-09-01

    Safrole, a component of piper betle inflorescence, is a documented rodent hepatocarcinogen and inhibits bactericidal activity and the release of superoxide anion (O(2-)) by polymorphonuclear leukocytes (PMNs). In the present study, we investigated the effects of safrole on immune responses, including natural killer (NK) cell cytotoxicity, phagocytic activity and population distribution of leukocytes from normal BALB/c mice. The cells population (cell surface markers) and phagocytosis by macrophages and monocytes from the peripheral blood mononuclear cells (PBMCs) were determined, and NK cell cytotoxicity from splenocytes of mice after oral treatment with safrole was performed using flow cytometric assay. Results indicated that safrole did not affect the weights of body, spleen and liver when compared with the normal mice group. Safrole also promoted the levels of CD11b (monocytes) and Mac-3 (macrophages) that might be the reason for promoting the activity of phagocytosis. However, safrole reduced the cell population such as CD3 (T cells) and CD19 (B cells) of safrole-treated normal mice by oral administration. Furthermore, safrole elevated the uptake of Escherichia coli-labelled fluorescein isothiocyanate (FITC) by macrophages from blood and significantly stimulated the NK cell cytotoxicity in normal mice in vivo. In conclusions, alterations of the cell population (the increase in monocytes and macrophages, respectively) in safrole-treated normal BALB/c mice might indirectly influence the immune responses in vivo.

  12. Progression of Alport Kidney Disease in Col4a3 Knock Out Mice Is Independent of Sex or Macrophage Depletion by Clodronate Treatment

    PubMed Central

    Kim, Munkyung; Piaia, Alessandro; Shenoy, Neeta; Kagan, David; Gapp, Berangere; Kueng, Benjamin; Weber, Delphine; Dietrich, William; Ksiazek, Iwona

    2015-01-01

    Alport syndrome is a genetic disease of collagen IV (α3, 4, 5) resulting in renal failure. This study was designed to investigate sex-phenotype correlations and evaluate the contribution of macrophage infiltration to disease progression using Col4a3 knock out (Col4a3KO) mice, an established genetic model of autosomal recessive Alport syndrome. No sex differences in the evolution of body mass loss, renal pathology, biomarkers of tubular damage KIM-1 and NGAL, or deterioration of kidney function were observed during the life span of Col4a3KO mice. These findings confirm that, similar to human autosomal recessive Alport syndrome, female and male Col4a3KO mice develop renal failure at the same age and with similar severity. The specific contribution of macrophage infiltration to Alport disease, one of the prominent features of the disease in human and Col4a3KO mice, remains unknown. This study shows that depletion of kidney macrophages in Col4a3KO male mice by administration of clodronate liposomes, prior to clinical onset of disease and throughout the study period, does not protect the mice from renal failure and interstitial fibrosis, nor delay disease progression. These results suggest that therapy targeting macrophage recruitment to kidney is unlikely to be effective as treatment of Alport syndrome. PMID:26555339

  13. Dialysis - peritoneal

    MedlinePlus

    ... The number of exchanges and amount of dwell time depends on the method of PD you use and other factors. Your ... PD: Continuous ambulatory peritoneal dialysis (CAPD) . For this ... routine until it is time to drain the fluid. You are not hooked ...

  14. Peritoneal tuberculosis.

    PubMed

    Guirat, A; Koubaa, M; Mzali, R; Abid, B; Ellouz, S; Affes, N; Ben Jemaa, M; Frikha, F; Ben Amar, M; Beyrouti, M I

    2011-01-01

    The peritoneum is one of the locations outside the most common pulmonary tuberculosis. Peritoneal tuberculosis poses a public health problem in endemic regions of the world. The phenomenon of migration, the increased use of immunosuppressive therapy and the epidemic of AIDS have contributed to a resurgence of this disease in regions where it was previously controlled. The aim of this review is to expose the clinical, biologic end radiologic futures of the peritoneal tuberculosis and to present the methods of diagnosis and treatment. The diagnosis of this disease is difficult and still remains a challenge because of its insidious nature, the variability of presentation and limitations of available diagnostic tests. The disease usually presents a picture of lymphocytic exudative ascites. There are many complementary tests with variable sensitivities and specificities to confirm the diagnosis of peritoneal tuberculosis. Isolation of mycobacteria by culture of ascitic fluid or histological examination of peritoneal biopsy ideally performed by laparoscopy remains the investigation of choice. The role of PCR, ascitic adenosine deaminase, interferon gamma and the radiometric BACTEC system can improve the diagnostic yield. An antituberculous treatment with group 1 of the WHO for 6 months is sufficient in most cases.

  15. Effects of lipopolysaccharide on the catabolic activity of macrophages

    SciTech Connect

    Cluff, C.; Ziegler, H.K.

    1986-03-05

    The ability of macrophages to degrade and catabolize antigens is of relevance both as a means to process complex antigens prior to presentation to T cells, as well as a way to down regulate immune responses by destroying the antigenicity of polypeptides. With these considerations, the authors have investigated the regulation of macrophage catabolic activity by lipopolysaccharide (LPS). Catabolic activity was quantitated by following the distribution and molecular form of /sup 125/-I labelled surface components of heat-killed Listeria monocytogenes (HKLM) subsequent to their uptake by macrophages. They have compared the catabolic activity of macrophages from peritoneal exudates of mice injected i.p. with saline or LPS and have found that LPS-elicited macrophages display a greatly enhanced (3 fold) rate of catabolism. This increase in catabolic activity peaks 3 days after LPS injection and steadily declines thereafter, approaching a baseline level after 3 weeks. The enhancement of catabolic activity is under LPS gene control. LPS-elicited macrophages rapidly destroy the antigenicity of bacterial antigens and function poorly as antigen presenting cells in vitro. These results suggest that LPS elicits a macrophage population specialized for antigen degradation functions with negative regulatory effects on the induction of specific immune responses.

  16. Transplantation of mesenchymal stem cells recruits trophic macrophages to induce pancreatic beta cell regeneration in diabetic mice.

    PubMed

    Cao, Xiaocang; Han, Zhi-Bo; Zhao, Hui; Liu, Qiang

    2014-08-01

    Alleviation of hyperglycemia in chemical-induced diabetic mice has been reported after bone marrow transplantation. Nevertheless, the underlying mechanism remains elusive. In the present study, we transplanted genetically labeled primary mouse mesenchymal stem cells into the pancreas of the streptozotocin-treated hyperglycemic isogeneic mice, resulting in a decrease in blood glucose due to a recovery in beta cell mass. Further analysis revealed that the increase in beta cell mass was predominantly attributable to beta cell replication. The grafted mesenchymal stem cells did not transdifferentiate into beta cells themselves but recruited and polarized macrophages in a Stromal cell-derived factor 1-dependent manner, which in turn promoted beta cell replication. Our finding thus suggests that transplantation of autogenic mesenchymal stem cells may increase functional beta cell mass by boosting beta cell replication in diabetes. PMID:24915493

  17. The Induction of Tumor Necrosis Factor-alpha , Supeoxide Anion, Myeloperoxidase, and Superoxide Dismutase in the Peritoneal Lavage Cells of Mice after Prolonged Exposure to Dichloroacetate and Trichloroacetate

    PubMed Central

    Spildener, Jessica; Cearfoss, Jacquelyn

    2010-01-01

    The induction of phagocytic activation in response to prolonged treatment with different doses of dichloroacetate (DCA) and trichloroacetate (TCA) has been investigated in mice. Groups of B6C3F1 male mice were administered 7.7, 77, 154 and 410 mg of DCA or TCA/ kg/day , post orally, for 4- and 13-weeks. Peritoneal lavage cells (PLCs) were isolated and assayed for the different biomarkers of phagocytyic activation, including superoxide anion (SA), tumor necrosis factor-alpha (TNF-α), and myeloperoxidase (MPO). In addition, the role of superoxide dismutase (SOD) in the SA production was also assessed. DCA and TCA produced significant and dose-dependent increases in SA and TNF-α production and in MPO activity but the increases in response to the high doses of the compounds (> 77 mg/kg/day) in the 13-week treatment period were less significant than those produced in the 4-week treatment period. Also, dose-dependent increases in SOD activity were observed in both periods of treatments. In general, the results demonstrate significant induction of the biomarkers of phagocytic activation by doses of DCA and TCA that were previously shown to be non carcinogenic, with significantly greater increases observed at the earlier period of exposure, as compared with later period. These findings may argue against the contribution of those mechanisms to the hepatotoxicity/hepatocarcinogenicity of the compounds and suggest them to be early adaptive/ protective mechanisms against their long term effects. PMID:20391627

  18. Anti-I-J alloantisera elicited by immunization of B10.A(3R) (I-Jb) mice with bone marrow-derived macrophages from B10.A(5R) (I-Jk) mice.

    PubMed

    Bradley, L M; Shiigi, S M; Malley, A

    1986-03-01

    In this paper we describe production of alloantisera specific for determinants encoded by I-J gene loci expressed on macrophages. B10.A(3R) (I-Jb) mice were hyperimmunized with pure macrophages grown in vitro from bone marrow stem cells of congenic B10.A(5R) mice. The antisera contained predominantly IgM antibody that was non-adherent to protein-A-Sepharose with a minor component of IgG1, and IgG2a antibodies that were adherent to protein-A-Sepharose. The protein-A non-adherent antibody completely blocked the in vitro generation of humoral immune responses to sheep erythrocytes by spleen cell from B10.A(5R) mice and from inbred strains that share the I-Jk haplotypes, but did not alter the responses of spleen cells of the I-Jb haplotype. In the presence of complement, both protein-A adherent and protein-A non-adherent antibodies eliminated the capacity of B10.A(5R) spleen cells to generate humoral and proliferative responses, but the functional activity of B10.A(3R) cells was unaffected. These data indicate the I-Jk specificity of the antisera. The capacity of the anti-macrophage antibody to block humoral immune induction was removed by absorption with bone marrow-derived macrophages from B10.A(5R) mice, but not from B10.A(3R) mice. Further, the B10.A(5R) macrophages completely restored the humoral responses of antibody- and complement-treated B10.A(5R) spleen cells, but B10.A(3R) macrophages showed only partial restoration that was consistent with a factor-mediated allogeneic effect. These data demonstrate the specificity of our anti-I-J sera for macrophages and indicate that bone marrow-derived macrophages express surface I-J encoded molecules.

  19. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype.

    PubMed

    Zhu, Wei; Jin, Zaishun; Yu, Jianbo; Liang, Jun; Yang, Qingdong; Li, Fujuan; Shi, Xuekui; Zhu, Xiaodong; Zhang, Xiaoli

    2016-06-01

    Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders of the intestinal tract. Baicalin, originally isolated from the root of the Chinese herb Huangqin (Scutellaria baicalensis Georgi) and its main active ingredient, has a protective effect against inflammatory responses in several diseases. The present study investigated the effects of baicalin on macrophage polarization and its therapeutic role in IBD. Murine peritoneal macrophages and mice with colitis were treated with baicalin. Macrophage subset distribution, M1 and M2 macrophage-associated mRNA expression, and interferon regulatory factor 4 and 5 (IRF4 and IRF5) expression were analyzed. siRNA transfection into mouse peritoneal macrophages was utilized to suppress IRF4. Fluorescence-activated cell sorting, western blot, and real-time PCR analyses were performed. Baicalin (50μM) limited lipopolysaccharide (LPS)-induced M1 macrophage polarization; decreased LPS-induced tumor necrosis factor α, interleukin (IL)-23, and IRF5 expression; and increased IL-10, arginase-1 (Arg-1), and IRF4 expression. siRNA-mediated IRF4 silencing significantly impaired baicalin activity. Furthermore, pretreatment with baicalin (100mg/kg) in mice with dextran sodium sulfate (DSS)-induced colitis ameliorated the severity of colitis and significantly decreased the disease activity index (baicalin group, 3.33±0.52 vs. DSS group, 5.67±1.03). Baicalin (100mg/kg) also repressed IRF5 protein expression and promoted IRF4 protein expression in the lamina propria mononuclear cells, and induced macrophage polarization to the M2 phenotype. In summary, our results showed that baicalin upregulates IRF4 protein expression and reverses LPS-induced macrophage subset redistribution. Thus, baicalin alleviates DSS-induced colitis by modulating macrophage polarization to the M2 phenotype.

  20. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages.

    PubMed

    Reyes, José L; Wang, Arthur; Fernando, Maria R; Graepel, Rabea; Leung, Gabriella; van Rooijen, Nico; Sigvardsson, Mikael; McKay, Derek M

    2015-01-01

    Helminth parasites provoke multicellular immune responses in their hosts that can suppress concomitant disease. The gut lumen-dwelling tapeworm Hymenolepis diminuta, unlike other parasites assessed as helminth therapy, causes no host tissue damage while potently suppressing murine colitis. With the goal of harnessing the immunomodulatory capacity of infection with H. diminuta, we assessed the putative generation of anti-colitic regulatory B cells following H. diminuta infection. Splenic CD19(+) B cells isolated from mice infected 7 [HdBc(7(d))] and 14 d (but not 3 d) previously with H. diminuta and transferred to naive mice significantly reduced the severity of dinitrobenzene sulfonic acid (DNBS)-, oxazolone-, and dextran-sodium sulfate-induced colitis. Mechanistic studies with the DNBS model, revealed the anti-colitic HdBc(7(d)) was within the follicular B cell population and its phenotype was not dependent on IL-4 or IL-10. The HdBc(7(d)) were not characterized by increased expression of CD1d, CD5, CD23, or IL-10 production, but did spontaneously, and upon LPS plus anti-CD40 stimulation, produce more TGF-β than CD19(+) B cells from controls. DNBS-induced colitis in RAG1(-/-) mice was inhibited by administration of HdBc(7(d)), indicating a lack of a requirement for T and B cells in the recipient; however, depletion of macrophages in recipient mice abrogated the anti-colitic effect of HdBc(7(d)). Thus, in response to H. diminuta, a putatively unique splenic CD19(+) B cell with a functional immunoregulatory program is generated that promotes the suppression of colitis dominated by TH1, TH2, or TH1-plus-TH2 events, and may do so via the synthesis of TGF-β and the generation of, or cooperation with, a regulatory macrophage.

  1. Recent developments in the assessment of the immune response to malaria, especially as related to vaccination: Lethal Plasmodium yoelii malaria: the role of macrophages in normal and immunized mice

    PubMed Central

    Playfair, J. H. L.

    1979-01-01

    Mice were injected with silica or Corynebacterium parvum, which, respectively, inhibit and stimulate macrophages in vivo, in an attempt to study the role of macrophages in lethal Plasmodium yoelii infection and in mice protected by immunization. In the normal infection, macrophages were able to control parasitaemia for up to 1 week, whereas in immunized mice they appeared to inhibit the sterilizing immune response. A model is proposed in which this dual role of activated macrophages may account for the chronic non-sterilizing course of natural malaria infections. PMID:317443

  2. Aqueous extract of Gracilaria tenuistipitata suppresses LPS-induced NF-κB and MAPK activation in RAW 264.7 and rat peritoneal macrophages and exerts hepatoprotective effects on carbon tetrachloride-treated rat.

    PubMed

    Tseng, Chin-Kai; Lin, Chun-Kuang; Chang, Hsueh-Wei; Wu, Yu-Hsuan; Yen, Feng-Lin; Chang, Fang-Rong; Chen, Wei-Chun; Yeh, Chi-Chen; Lee, Jin-Ching

    2014-01-01

    In addition to the previous investigations of bioactivity of aqueous extract of the edible Gracilaria tenuistipitata (AEGT) against H2O2-induced DNA damage and hepatitis C virus replication, the purpose of this study is to evaluate the potential therapeutic properties of AEGT against inflammation and hepatotoxicity using lipopolysaccharide (LPS)-stimulated mouse RAW 264.7 cells, primary rat peritoneal macrophages and carbon tetrachloride (CCl4)-induced acute hepatitis model in rats. AEGT concentration-dependently inhibited the elevated RNA and protein levels of inducible nitric oxide synthase and cyclooxygenase-2, thereby reducing nitric oxide and prostaglandin E2 levels, respectively. Moreover, AEGT significantly suppressed the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α. These inhibitory effects were associated with the suppression of nuclear factor-kappa B activation and mitogen-activated protein kinase phosphorylation by AEGT in LPS-stimulated cells. In addition, we highlighted the hepatoprotective and curative effects of AEGT in a rat model of CCl4-intoxicated acute liver injury, which was evident from reduction in the elevated serum aspartate aminotransferase and alanine aminotransferase levels as well as amelioration of histological damage by pre-treatment or post-treatment of AEGT. In conclusion, the results demonstrate that AEGT may serve as a potential supplement in the prevention or amelioration of inflammatory diseases.

  3. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G.

  4. Fluorescent Ly6G antibodies determine macrophage phagocytosis of neutrophils and alter the retrieval of neutrophils in mice.

    PubMed

    Bucher, Kirsten; Schmitt, Fee; Autenrieth, Stella E; Dillmann, Inken; Nürnberg, Bernd; Schenke-Layland, Katja; Beer-Hammer, Sandra

    2015-09-01

    Fluorescently labeled Ly6G antibodies enable the tracking of neutrophils in mice, whereas purified anti-Ly6G rapidly depletes neutrophils from the circulation. The mechanisms underlying neutrophil depletion are still under debate. Here, we examined how identical Ly6G antibodies coupled to different fluorochromes affect neutrophil fate in vivo. BM cells stained with Ly6G antibodies were injected into mice. The number of retrieved anti-Ly6G-FITC(+) cells was reduced significantly in comparison with anti-Ly6G-APC(+) or anti-Ly6G-PE(+) cells. Flow cytometry and multispectral imaging flow cytometry analyses revealed that anti-Ly6G-FITC(+) neutrophils were preferentially phagocytosed by BMMs in vitro and by splenic, hepatic, and BM macrophages in vivo. Direct antibody injection of anti-Ly6G-FITC but not anti-Ly6G-PE depleted neutrophils to the same degree as purified anti-Ly6G, indicating that the FITC-coupled antibody eliminates neutrophils by a similar mechanism as the uncoupled antibody. With the use of a protein G-binding assay, we demonstrated that APC and PE but not FITC coupling inhibited access to interaction sites on the anti-Ly6G antibody. We conclude the following: 1) that neutrophil phagocytosis by macrophages is a central mechanism in anti-Ly6G-induced neutrophil depletion and 2) that fluorochrome-coupling can affect functional properties of anti-Ly6G antibodies, thereby modifying macrophage uptake of Ly6G-labeled neutrophils and neutrophil retrieval following adoptive cell transfer or injection of fluorescent anti-Ly6G. PMID:26019296

  5. Autoimmune Kidney Disease and Impaired Engulfment of Apoptotic Cells in Mice with Macrophage Peroxisome Proliferator-Activated Receptor γ or Retinoid X Receptor α Deficiency

    PubMed Central

    Rőszer, Tamás; Menéndez-Gutiérrez, María P.; Lefterova, Martina I.; Alameda, Daniel; Núñez, Vanessa; Lazar, Mitchell A.; Fischer, Thierry; Ricote, Mercedes

    2014-01-01

    Autoimmune glomerulonephritis is a common manifestation of systemic lupus erythematosus (SLE). In this study, we show that mice lacking macrophage expression of the heterodimeric nuclear receptors PPARγ or RXRα develop glomerulonephritis and autoantibodies to nuclear Ags, resembling the nephritis seen in SLE. These mice show deficiencies in phagocytosis and clearance of apoptotic cells, and they are unable to acquire an anti-inflammatory phenotype upon feeding of apoptotic cells, which is critical for the maintenance of self-tolerance. These results demonstrate that stimulation of PPARγ and RXRα in macrophages facilitates apoptotic cell engulfment, and they provide a potential strategy to avoid autoimmunity against dying cells and to attenuate SLE. PMID:21135166

  6. Epigenetic Modulation in Periodontitis: Interaction of Adiponectin and JMJD3-IRF4 Axis in Macrophages.

    PubMed

    Xuan, Dongying; Han, Qianqian; Tu, Qisheng; Zhang, Lan; Yu, Liming; Murry, Dana; Tu, Tianchi; Tang, Yin; Lian, Jane B; Stein, Gary S; Valverde, Paloma; Zhang, Jincai; Chen, Jake

    2016-05-01

    Emerging evidence suggests an important role for epigenetic mechanisms in modulating signals during macrophage polarization and inflammation. JMJD3, a JmjC family histone demethylase necessary for M2 polarization is also required for effective induction of multiple M1 genes by lipopolysaccharide (LPS). However, the effects of JMJD3 to inflammation in the context of obesity remains unknown. To address this deficiency, we firstly examined the expression of JMJD3 in macrophage isolated from bone marrow and adipose tissue of diet induced obesity (DIO) mice. The results indicated that JMJD3 was down-regulated in obesity. Adiponectin (APN), a factor secreted by adipose tissue which is down-regulated in obesity, functions to switch macrophage polarization from M1 to M2, thereby attenuating chronic inflammation. Intriguingly, our results indicated that APN contributed to JMJD3 up-regulation, reduced macrophage infiltration in obese adipose tissue, and abolished the up-regulation of JMJD3 in peritoneal macrophages isolated from DIO mice when challenged with Porphyromonas gingivalis LPS (pg.lps). To elucidate the interaction of APN and JMJD3 involved in macrophage transformation in the context of inflammation, we designed the loss and gain-function experiments of APN in vivo with APN(-/-) mice with experimental periodontitis and in vitro with macrophage isolated from APN(-/-) mice. For the first time, we found that APN can help to reduce periodontitis-related bone loss, modulate JMJD3 and IRF4 expression, and macrophage infiltration. Therefore, it can be inferred that APN may contribute to anti-inflammation macrophage polarization by regulating JMJD3 expression, which provides a basis for macrophage-centered epigenetic therapeutic strategies.

  7. Apolipoprotein E4 impairs macrophage efferocytosis and potentiates apoptosis by accelerating endoplasmic reticulum stress.

    PubMed

    Cash, James G; Kuhel, David G; Basford, Joshua E; Jaeschke, Anja; Chatterjee, Tapan K; Weintraub, Neal L; Hui, David Y

    2012-08-10

    Apolipoprotein (apo) E4 is a major genetic risk factor for a wide spectrum of inflammatory metabolic diseases, including atherosclerosis, diabetes, and Alzheimer disease. This study compared diet-induced adipose tissue inflammation as well as functional properties of macrophages isolated from human APOE3 and APOE4 mice to identify the mechanism responsible for the association between apoE4 and inflammatory metabolic diseases. The initial study confirmed previous reports that APOE4 gene replacement mice were less sensitive than APOE3 mice to diet-induced body weight gain but exhibited hyperinsulinemia, and their adipose tissues were similarly inflamed as those in APOE3 mice. Peritoneal macrophages isolated from APOE4 mice were defective in efferocytosis compared with APOE3 macrophages. Increased cell death was also observed in APOE4 macrophages when stimulated with LPS or oxidized LDL. Western blot analysis of cell lysates revealed that APOE4 macrophages displayed elevated JNK phosphorylation indicative of cell stress even under basal culturing conditions. Significantly higher cell stress due mainly to potentiation of endoplasmic reticulum (ER) stress signaling was also observed in APOE4 macrophages after LPS and oxidized LDL activation. The defect in efferocytosis and elevated apoptosis sensitivity of APOE4 macrophages was ameliorated by treatment with the ER chaperone tauroursodeoxycholic acid. Taken together, these results showed that apoE4 expression causes macrophage dysfunction and promotes apoptosis via ER stress induction. The reduction of ER stress in macrophages may be a viable option to reduce inflammation and inflammation-related metabolic disorders associated with the apoE4 polymorphism.

  8. Role of macrophage migration inhibitory factor (MIF) in pollen-induced allergic conjunctivitis and pollen dermatitis in mice.

    PubMed

    Nagata, Yuka; Yoshihisa, Yoko; Matsunaga, Kenji; Rehman, Mati Ur; Kitaichi, Nobuyoshi; Kitaichi, Nobuyuki; Shimizu, Tadamichi

    2015-01-01

    Pollen is a clinically important airborne allergen and one of the major causes of allergic conjunctivitis. A subpopulation of patients with atopic dermatitis (AD) are also known to have exacerbated skin eruptions on the face, especially around the eyelids, after contact with pollen. This pollen-induced skin reaction is now known as pollen dermatitis. Macrophage migration inhibitory factor (MIF) is a pluripotent cytokine that plays an essential role in allergic inflammation. Recent findings suggest that MIF is involved in several allergic disorders, including AD. In this study, MIF knockout (KO), MIF transgenic (Tg) and WT littermate mice were immunized with ragweed (RW) pollen or Japanese cedar (JC) pollen and challenged via eye drops. We observed that the numbers of conjunctiva- and eyelid-infiltrating eosinophils were significantly increased in RW and JC pollen-sensitized MIF Tg compared with WT mice or MIF KO mice. The mRNA expression levels of eotaxin, interleukin (IL)-5 and IL-13 were increased in pollen-sensitized eyelid skin sites of MIF Tg mice. An in vitro analysis revealed that high eotaxin expression was induced in dermal fibroblasts by MIF combined with stimulation of IL-4 or IL-13. This eotaxin expression was inhibited by the treatment with CD74 siRNA in fibroblasts. These findings indicate that MIF can induce eosinophil accumulation in the conjunctiva and eyelid dermis exposed to pollen. Therefore, targeted inhibition of MIF might result as a new option to control pollen-induced allergic conjunctivitis and pollen dermatitis.

  9. Differential effects of chronic monocyte depletion on macrophage populations

    SciTech Connect

    Volkman, A.; Chang, N.C.; Strausbauch, P.H.; Morahan, P.S.

    1983-09-01

    The administration of the bone-seeking isotope, /sup 89/Sr, to mice results in severe monocytopenia without any apparent effect on the numbers of resident peritoneal macrophages (M luminal diameter). An explanation for this dichotomy was sought by determining whether the residual blood monocytes were still an effective source of M luminal diameter after /sup 89/Sr treatment. Stem cell enumeration showed that a 90% fall in bone marrow macrophage colony-forming cells after /sup 89/Sr was accompanied by a 10-fold rise in splenic M-CFC. Splenectomy performed before /sup 89/Sr treatment, however, resulted in little additional monocytopenia and had no affect on the numbers of resident peritoneal M luminal diameter even when sampling was extended to 31 days, an interval beyond the accepted half-time for peritoneal M luminal diameter. Intraperitoneal injections of thioglycollate or Corynebacterium parvum elicited few or no monocyte-M luminal diameter during respective intervals of 4 and 7 days. Elicitation with thioglycollate was attempted in tritiated thymidine-labeled mice 26 days after /sup 89/Sr. Four days later only a 2-fold increase in labeled peritoneal M luminal diameter was found in the /sup 89/Sr-treated mice compared with a 150-fold increase in the controls. Studies of the ectoenzymes 5'-nucleotidase, alkaline phosphodiesterase I, and leucine aminopeptidase in such elicitation experiments suggested that the observed changes in activities reflected the direct stimulation of resident M luminal diameter rather than monocyte immigration. Overall, the results indicate that treatment with /sup 89/Sr distinguishes two large populations of M luminal diameter on the basis of their dependence on bone marrow. M luminal diameter of inflammation reflect the monocytopenia and are severely and rapidly depleted by such treatment.

  10. The significance of T cells, B cells, antibodies and macrophages against encephalomyocarditis (EMC)-D virus-induced diabetes in mice.

    PubMed

    Kounoue, Etsushi; Izumi, Ken-ichi; Ogawa, Shuichiro; Kondo, Shiori; Katsuta, Hitoshi; Akashi, Tomoyuki; Niho, Yoshiyuki; Harada, Mine; Tamiya, Sadafumi; Kurisaki, Hironori; Nagafuchi, Seiho

    2008-01-01

    In order to clarify the significance of protective mechanisms against encephalomyocarditis (EMC) virus-induced diabetes in mice, we studied the relative importance of T cells, B cells, antibodies and macrophages in the prevention of virus-induced diabetes. Neither T cell-deficient athymic nude mice nor B cell-deficient microMT/microMT mice showed an enhanced clinical course of EMC-D virus-induced diabetes, indicating that neither T cells nor B cells played a major role in the protection against EMC-D-virus-induced diabetes. Transfer of a large amount of antiserum to EMC-D-virus-infected mice protected the development of diabetes only when transferred within 36 h of infection, the timing of which was earlier than that for the production of natural neutralizing antibodied. Since pretreatment of mice with the macrophage-activating immunopotentiator Corynebacterium parvum (CP) completely prevented the development of diabetes, we studied the clinical outcome of EMC-D-virus-infected mice pretreated with CP. Mice treated with CP showed reduced proliferation of EMC-D virus in the affected organs, including the pancreas, while the levels of development of neutralizing antibody and serum interferon were not enhanced compared with the controls. Finally, we studied the macrophages derived from mice pretreated with CP and found that they inhibited the growth of EMC-D virus in vitro more than those derived from non-treated and thioglycolate-treated mice. Taken together, it can be suggested that neither T cells nor B cells, which have to do with adaptive immunity, play a significant role in the pathogenesis of EMC-D-virus-induced diabetes, while innate immunity, which is dependent on activated macrophages, contributes to in vivo resistance against EMC-D-virus-induced diabetes. PMID:18500429

  11. Role of activation in alveolar macrophage-mediated suppression of the plaque-forming cell response.

    PubMed Central

    Mbawuike, I N; Herscowitz, H B

    1988-01-01

    Alveolar macrophages (AM) are highly suppressive of the in vitro plaque-forming cell (PFC) response of spleen cells obtained from mice primed with sheep erythrocytes. Comparison of macrophage populations obtained from disparate anatomical sites revealed that although in both cases there was a cell-concentration-dependent suppression of the PFC response, resident AM or AM activated as a result of intravenous injection of Mycobacterium bovis BCG were equally suppressive at the doses examined. Although there was a similar dose-dependent suppression with peritoneal macrophages, BCG-activated cells were more suppressive of the PFC response than were resident cells. In contrast, splenic macrophages at comparable concentrations were not at all suppressive. Resident AM exhibited significantly lower levels of 5'-nucleotidase activity than did resident peritoneal macrophages. Macrophage-mediated suppression of the in vitro PFC response could not be attributed to the release of toxic oxygen metabolites (H2O2, O2- ,and .OH) or prostaglandins, since the addition of catalase, superoxide dismutase, 2-mercaptoethanol, or indomethacin did not completely reverse suppression. These results suggest that the lung microenvironment may maintain AM in an activated state which contributes to their potential immunoregulatory functions. PMID:2830191

  12. Neonatal lead exposure changes quality of sperm and number of macrophages in testes of BALB/c mice.

    PubMed

    Pace, Beata M; Lawrence, David A; Behr, Melissa J; Parsons, Patrick J; Dias, James A

    2005-06-01

    BALB/c mice were exposed to 0.1 ppm lead acetate in the drinking water from postnatal day (PND) 1 for 6 weeks. Until PND21, lead exposure was from mother's milk; thereafter, it was directly from the drinking water. The blood lead levels were the highest in pups before weaning (59.5+/-0.9 microg/dL) and significantly lower between PND21 and PND42 (20.3+/-4.7 microg/dL). At PND42, lead-exposed male mice were tested for fertility, sperm DNA, and macrophage number. Mating of lead-treated males with non-treated females confirmed the reduction of fertility in the exposed males. Flow cytometric studies of testicular preparations indicated that the sperm count was not different between lead-exposed and control males; however, the lead-treated mice had a significant increase in the number of testicular cells having a < 1n amount of DNA, which coincided with a decrease in the number of testicular cells with a 2n and 4n amount of DNA. The number of testicular macrophages also was decreased in lead-exposed males, which could reflect altered levels of CSF-1 or response to CSF-1, as previously reported [Kowolenko, M., Tracy, L., Lawrence, D.A., 1989. Lead-induced alterations of in vitro bone marrow cell responses to colony stimulating factor-1. J. Leukoc. Biol. 45, 198-206]. Our study showed that exposure to 0.1 ppm of lead during the neonatal and adolescent period is sufficient to reduce fertility in adult male mice; however, it did not affect sperm count on PND42. The presence of an increased number of apoptotic (< 1n amount of DNA) testicular cells may be diagnostic of defective sperm function. Thus, an administered dose of 0.1 ppm via drinking water ingestion by neonatal male BALB/c mice sufficient to produce PbB of 20-60 mg/dL compromised reproductive function in these mice as adults. PMID:15840438

  13. Neonatal lead exposure changes quality of sperm and number of macrophages in testes of BALB/c mice.

    PubMed

    Pace, Beata M; Lawrence, David A; Behr, Melissa J; Parsons, Patrick J; Dias, James A

    2005-06-01

    BALB/c mice were exposed to 0.1 ppm lead acetate in the drinking water from postnatal day (PND) 1 for 6 weeks. Until PND21, lead exposure was from mother's milk; thereafter, it was directly from the drinking water. The blood lead levels were the highest in pups before weaning (59.5+/-0.9 microg/dL) and significantly lower between PND21 and PND42 (20.3+/-4.7 microg/dL). At PND42, lead-exposed male mice were tested for fertility, sperm DNA, and macrophage number. Mating of lead-treated males with non-treated females confirmed the reduction of fertility in the exposed males. Flow cytometric studies of testicular preparations indicated that the sperm count was not different between lead-exposed and control males; however, the lead-treated mice had a significant increase in the number of testicular cells having a < 1n amount of DNA, which coincided with a decrease in the number of testicular cells with a 2n and 4n amount of DNA. The number of testicular macrophages also was decreased in lead-exposed males, which could reflect altered levels of CSF-1 or response to CSF-1, as previously reported [Kowolenko, M., Tracy, L., Lawrence, D.A., 1989. Lead-induced alterations of in vitro bone marrow cell responses to colony stimulating factor-1. J. Leukoc. Biol. 45, 198-206]. Our study showed that exposure to 0.1 ppm of lead during the neonatal and adolescent period is sufficient to reduce fertility in adult male mice; however, it did not affect sperm count on PND42. The presence of an increased number of apoptotic (< 1n amount of DNA) testicular cells may be diagnostic of defective sperm function. Thus, an administered dose of 0.1 ppm via drinking water ingestion by neonatal male BALB/c mice sufficient to produce PbB of 20-60 mg/dL compromised reproductive function in these mice as adults.

  14. Resveratrol attenuates intermittent hypoxia-induced macrophage migration to visceral white adipose tissue and insulin resistance in male mice.

    PubMed

    Carreras, Alba; Zhang, Shelley X L; Almendros, Isaac; Wang, Yang; Peris, Eduard; Qiao, Zhuanhong; Gozal, David

    2015-02-01

    Chronic intermittent hypoxia during sleep (IH), as occurs in sleep apnea, promotes systemic insulin resistance. Resveratrol (Resv) has been reported to ameliorate high-fat diet-induced obesity, inflammation, and insulin resistance. To examine the effect of Resv on IH-induced metabolic dysfunction, male mice were subjected to IH or room air conditions for 8 weeks and treated with either Resv or vehicle (Veh). Fasting plasma levels of glucose, insulin, and leptin were obtained, homeostatic model assessment of insulin resistance index levels were calculated, and insulin sensitivity tests (phosphorylated AKT [also known as protein kinase B]/total AKT) were performed in 2 visceral white adipose tissue (VWAT) depots (epididymal [Epi] and mesenteric [Mes]) along with flow cytometry assessments for VWAT macrophages and phenotypes (M1 and M2). IH-Veh and IH-Resv mice showed initial reductions in food intake with later recovery, with resultant lower body weights after 8 weeks but with IH-Resv showing better increases in body weight vs IH-Veh. IH-Veh and IH-Resv mice exhibited lower fasting glucose levels, but only IH-Veh had increased homeostatic model assessment of insulin resistance index vs all 3 other groups. Leptin levels were preserved in IH-Veh but were significantly lower in IH-Resv. Reduced VWAT phosphorylated-AKT/AKT responses to insulin emerged in both Mes and Epi in IH-Veh but normalized in IH-Resv. Increases total macrophage counts and in M1 to M2 ratios occurred in IH-Veh Mes and Epi compared all other 3 groups. Thus, Resv ameliorates food intake and weight gain during IH exposures and markedly attenuates VWAT inflammation and insulin resistance, thereby providing a potentially useful adjunctive therapy for metabolic morbidity in the context of sleep apnea. PMID:25406018

  15. Microarray-based detection of Salmonella enterica serovar Typhimurium transposon mutants that cannot survive in macrophages and mice.

    PubMed

    Chan, Kaman; Kim, Charles C; Falkow, Stanley

    2005-09-01

    DNA microarrays provide an opportunity to combine the principles of signature-tagged mutagenesis (STM) with microarray technology to identify potentially important bacterial virulence genes. The scope of DNA microarrays allows for less laborious screening on a much larger scale than possible by STM alone. We have adapted a microarray-based transposon tracking strategy for use with a Salmonella enterica serovar Typhimurium cDNA microarray in order to identify genes important for survival and replication in RAW 264.7 mouse macrophage-like cells or in the spleens of BALB/cJ mice. A 50,000-CFU transposon library of S. enterica serovar Typhimurium strain SL1344 was serially passaged in cultured macrophages or intraperitoneally inoculated into BALB/cJ mice. The bacterial genomic DNA was isolated and processed for analysis on the microarray. The novel application of this approach to identify mutants unable to survive in cultured cells resulted in the identification of components of Salmonella pathogenicity island 2 (SPI2), which is known to be critical for intracellular survival and replication. In addition, array results indicated that a number of SPI1-associated genes, currently not associated with intracellular survival, are negatively selected. However, of the SPI1-associated mutants individually tested for intracellular survival, only a sirA mutant exhibited reduced numbers relative to those of wild-type bacteria. Of the mutants unable to survive in mice, significant proportions are either components of the SPI2 pathogenicity island or involved in lipopolysaccharide synthesis. This observation is in agreement with results obtained in the original S. enterica serovar Typhimurium STM screen, illustrating the utility of this approach for the high-throughput identification of virulence factors important for survival in the host.

  16. Participation of the Salmonella OmpD porin in the infection of RAW264.7 macrophages and BALB/c mice.

    PubMed

    Ipinza, Francisco; Collao, Bernardo; Monsalva, Debbie; Bustamante, Victor H; Luraschi, Roberto; Alegría-Arcos, Melissa; Almonacid, Daniel E; Aguayo, Daniel; Calderón, Iván L; Gil, Fernando; Santiviago, Carlos A; Morales, Eduardo H; Calva, Edmundo; Saavedra, Claudia P

    2014-01-01

    Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host.

  17. Participation of the Salmonella OmpD Porin in the Infection of RAW264.7 Macrophages and BALB/c Mice

    PubMed Central

    Monsalva, Debbie; Bustamante, Victor H.; Luraschi, Roberto; Alegría-Arcos, Melissa; Almonacid, Daniel E.; Aguayo, Daniel; Calderón, Iván L.; Gil, Fernando; Santiviago, Carlos A.; Morales, Eduardo H.; Calva, Edmundo; Saavedra, Claudia P.

    2014-01-01

    Salmonella Typhimurium is the etiological agent of gastroenteritis in humans and enteric fever in mice. Inside these hosts, Salmonella must overcome hostile conditions to develop a successful infection, a process in which the levels of porins may be critical. Herein, the role of the Salmonella Typhimurium porin OmpD in the infection process was assessed for adherence, invasion and proliferation in RAW264.7 mouse macrophages and in BALB/c mice. In cultured macrophages, a ΔompD strain exhibited increased invasion and proliferation phenotypes as compared to its parental strain. In contrast, overexpression of ompD caused a reduction in bacterial proliferation but did not affect adherence or invasion. In the murine model, the ΔompD strain showed increased ability to survive and replicate in target organs of infection. The ompD transcript levels showed a down-regulation when Salmonella resided within cultured macrophages and when it colonized target organs in infected mice. Additionally, cultured macrophages infected with the ΔompD strain produced lower levels of reactive oxygen species, suggesting that down-regulation of ompD could favor replication of Salmonella inside macrophages and the subsequent systemic dissemination, by limiting the reactive oxygen species response of the host. PMID:25360745

  18. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice.

    PubMed

    Browne, Sara H; Hasegawa, Patricia; Okamoto, Sharon; Fierer, Joshua; Guiney, Donald G

    2008-03-01

    The Salmonella SpvB protein possesses ADP-ribosyl transferase activity. SpvB, acting as an intracellular toxin, covalently modifies monomeric actin, leading to loss of F-actin filaments in Salmonella-infected human macrophages. Using defined Salmonella mutants, different functional components of the SPI-2 type three secretion system (TTSS), ssaV, spiC, sseB, sseC, and sseD, were found to be required for SpvB-mediated actin depolymerization in human macrophages. Expression of SpvB protein in Salmonella was not affected by any of the SPI-2 mutants and the effects of these loci were not due to reduced numbers of intracellular bacteria. Interestingly, the major SPI-2 virulence effector, SifA, is not required for SpvB action. Further, caspase-3 activation is an additional marker of cytotoxicity in Salmonella-infected human macrophages. Caspase-3 activity depended on SpvB and SPI-2 TTSS function, but not on SifA. These human macrophage cell culture results were corroborated by virulence studies in mice. Using competitive infection of mice with mixed inocula of single and double mutants, spvBmut1 mutation did not have an effect independent of ssaJ mutation, essential for SPI-2 TTSS function. In contrast, competitive infection studies in mice confirmed that SpvB and SifA have independent virulence effects, as predicted by the macrophage studies.

  19. 3AE8: monoclonal antibody defining inflammatory macrophages in three species.

    PubMed

    Chen, Z; Yen, S E; Walker, W S

    1984-01-01

    A mouse monoclonal antibody (MAb 3AE8) of the IgG1 isotype was prepared against rabbit splenocytes and was found by indirect immunofluorescence and direct binding assays to react, in the rabbit, primarily with oil-induced peritoneal exudate macrophages (PEM phi). This MAb did not bind to rabbit T cells, B cells, polymorphonuclear leukocytes, or resident alveolar or peritoneal M phi but it did bind to a subpopulation of rabbit splenocytes with surface characteristics of null cells. The antibody also recognized mouse and rat PEM phi as well as the murine M phi cell lines P388D1 and IC-21. Consistent with findings in the rabbit, it did not bind to M phi obtained from the peritoneal cavities of rats or mice. The addition of MAb 3AE8 to mouse PEM phi caused a marked enhancement in the phagocytic uptake of erythrocyte target cells sensitized with a mouse antierythrocyte antiserum. PMID:6480022

  20. In Vitro Administration of Gold Nanoparticles Functionalized with MUC-1 Protein Fragment Generates Anticancer Vaccine Response via Macrophage Activation and Polarization Mechanism

    PubMed Central

    Mocan, Teodora; Matea, Cristian; Tabaran, Flaviu; Iancu, Cornel; Orasan, Remus; Mocan, Lucian

    2015-01-01

    Therapeutic cancer vaccines (or active immunotherapy) aim to guide the patient's personal immune system to eradicate cancer cells. An exciting approach to cancer vaccines has been offered by nanoscale drug delivery systems containing tumor associated antigens (TAAs). Their capacity to stimulate the immune system has been suggested during late years. However, the role of the macrophages as key-elements in antigen-presentation process following TAAs-containing nanosystems is not completely understood. We aimed to evaluate the effect of gold nanoparticles functionalized with mucin-1 peptide (MUC-1) on murine peritoneal macrophages. Gold nanoparticles, obtained using a modified Turkevich method, were functionalized with MUC-1 protein using Clealand's reagent. The obtained GNP-MUC-1 solution was used to treat at various concentrations monolayers of peritoneum-derived macrophages that were further analyzed using confocal and hyperspectral microscopy, ELISA assays and spectroscopic techniques. The GNP-MUC-1 nano-construct had proven to function as a powerful macrophage activator with consequent release of cytokines such as: TNF-ɑ, IL-6, IL-10 and IL-12 on peritoneal macrophages we have isolated from mice. Our results demonstrate optimization of antigen-presenting process and predominant M1 polarization following exposure GNP-MUC-1. To our best knowledge this is the first study to evaluate the anticancer effects of a newly designed nano-biocompound on the complex antigen- processing apparatus of peritoneal macrophages. PMID:26000051

  1. Pyruvate anions neutralize peritoneal dialysate cytotoxicity.

    PubMed

    Mahiout, A; Brunkhorst, R

    1995-01-01

    A new peritoneal dialysate containing pyruvate anions was developed in order to avoid cytotoxic effect of conventional lactate-based dialysate. The dialysate has a final pH of 5.4 to 5.6 and is composed of 1.36-3.86% glucose-monohydrate; 132 mmol/l sodium; 1.75 mmol/l calcium; 0.75 mmol/l magnesium; 102 mmol/l chloride and 35 mmol/l pyruvate. For cytotoxicity testing peritoneal macrophages, and mesothelial cells (MC) were exposed to conventional lactate dialysate, and pyruvate dialysate. We investigated the O2- generation and cytokine synthesis after endotoxin stimulation in peritoneal macrophages and the proliferation of mesothelial cells of cultured human MC. After exposure to lactate dialysate O2- generation and cytokine synthesis in peritoneal macrophages and proliferation of mesothelial cells were inhibited when compared to solution containing pyruvate and the control solution. After preincubation with 3.86% glucose containing solutions, all negative effects became even more pronounced in the lactate group whereas after pre-exposure to pyruvate containing solution the toxic effects were absent. These results suggest that the acute toxic effects of commercially available peritoneal dialysates can be avoided by the use of sodium pyruvate instead of sodium lactate.

  2. Proliferation and colony-forming ability of peritoneal exudate cells in liquid culture.

    PubMed

    Stewart, C C; Lin, H S; Adles, C

    1975-05-01

    Peritoneal exudate cells, obtained from mice injected with thioglycollate medium and cultured in medium containing L-cell-conditioned medium, will proliferate in an exponential fashion for 18 days with a doubling time of 68 h. After a 2 h pulse of tritiated thymidine, labeled adherent cells increased to a maximum of 22-34% during the 1st and 2nd wk of culture. Increasing the cell concentration from 2 times 10-3 to 2 times 10-5 cells/culture reduced exponential growth to 10 days and the doubling time was increased to 81.6 h. Under these culture conditions, peritoneal exudate cells were shown to form colonies on the surface of culture dishes when plated at low density. The cells within the colony were shown to be macrophages using yeast and antibody-coated sheep erythrocytes as a test for phagocytic function. The plating efficiolonies arose from a single precursor cell. The adherent cell population contains the colony-forming precursors. These precursors can be stimulated to form colonies for at least 2 wk by the addition of conditioned medium to cultures at various times after plating. While very few colony-forming cells could be demonstrated in the unstimulated peritoneal lavage, their numbers begin to increase in the exudate 4 h after injection of thioglycollate medium and reach a maximum by day 3 and then decrease. Isolated colonies may be useful in studying the function of macrophages. PMID:1092793

  3. M2 macrophage accumulation in the aortic wall during angiotensin II infusion in mice is associated with fibrosis, elastin loss, and elevated blood pressure.

    PubMed

    Moore, Jeffrey P; Vinh, Antony; Tuck, Kellie L; Sakkal, Samy; Krishnan, Shalini M; Chan, Christopher T; Lieu, Maggie; Samuel, Chrishan S; Diep, Henry; Kemp-Harper, Barbara K; Tare, Marianne; Ricardo, Sharon D; Guzik, Tomasz J; Sobey, Christopher G; Drummond, Grant R

    2015-09-01

    Macrophages accumulate in blood vessels during hypertension. However, their contribution to vessel remodeling is unknown. In the present study, we examined the polarization state of macrophages (M1/M2) in aortas of mice during hypertension and investigated whether antagonism of chemokine receptors involved in macrophage accumulation reduces vessel remodeling and blood pressure (BP). Mice treated with ANG II (0.7 mg·kg(-1)·day(-1), 14 days) had elevated systolic BP (158 ± 3 mmHg) compared with saline-treated animals (122 ± 3 mmHg). Flow cytometry revealed that ANG II infusion increased numbers of CD45(+)CD11b(+)Ly6C(hi) monocytes and CD45(+)CD11b(+)F4/80(+) macrophages by 10- and 2-fold, respectively. The majority of macrophages were positive for the M2 marker CD206 but negative for the M1 marker inducible nitric oxide synthase. Expression of other M2 genes (arginase-1, Fc receptor-like S scavenger receptor, and receptor-1) was elevated in aortas from ANG II-treated mice, whereas M1 genes [TNF and chemokine (C-X-C motif) ligand 2] were unaltered. A PCR array to identify chemokine receptor targets for intervention revealed chemokine (C-C motif) receptor 2 (CCR2) to be upregulated in aortas from ANG II-treated mice, while flow cytometry identified Ly6C(hi) monocytes as the main CCR2-expressing cell type. Intervention with a CCR2 antagonist (INCB3344; 30 mg·kg(-1)·day(-1)), 7 days after the commencement of ANG II infusion, reduced aortic macrophage numbers. INCB334 also reduced aortic collagen deposition, elastin loss, and BP in ANG II-treated mice. Thus, ANG II-dependent hypertension in mice is associated with Ly6C(hi) monocyte and M2 macrophage accumulation in the aorta. Inhibition of macrophage accumulation with a CCR2 antagonist prevents ANG II-induced vessel fibrosis and elevated BP, highlighting this as a promising approach for the future treatment of vessel remodeling/stiffening in hypertension.

  4. Notch-Hes-1 axis controls TLR7-mediated autophagic death of macrophage via induction of P62 in mice with lupus.

    PubMed

    Li, Xiaojing; Liu, Fei; Zhang, Xuefang; Shi, Guoping; Ren, Jing; Ji, Jianjian; Ding, Liang; Fan, Hongye; Dou, Huan; Hou, Yayi

    2016-01-01

    The increased death of macrophages has been considered as a pathogenic factor for systemic lupus erythematosus (SLE), and dysfunction of autophagy may contribute to improper cell death. However, the effect of autophagy on macrophage during the pathogenesis of SLE is still unclear. Here we found that the death rate and autophagy level of macrophages significantly increased in MRL/lpr lupus-prone mice. Activation of toll-like receptor 7 (TLR7) triggered macrophage death in an autophagy-dependent but caspase-independent way in vitro. Moreover, P62/SQSTM1 is thought to have an essential role in selective autophagy. We also demonstrated that P62/SQSTM1 was required for TLR7-induced autophagy, and knockdown of P62 suppressed R848-induced cell death and LC3II protein accumulation. As an important mediator for cell-cell communication, Notch signaling is responsible for cell-fate decisions. Our results showed that activation of TLR7 also upregulated the expression of Notch1, especially its downstream target gene Hairy and enhancer of split 1 (Hes-1) in macrophages. Of note, we found that Hes-1, as a transcriptional factor, controlled TLR7-induced autophagy by regulating P62 expression. Furthermore, to confirm the above results in vivo, TLR7 agonist imiquimod (IMQ)-induced lupus mouse model was prepared. Splenic macrophages from IMQ-treated mice exhibited increased autophagy and cell death as well as enhanced expressions of Notch1 and Hes-1. Our results indicate that Notch1-Hes-1 signaling controls TLR7-induced autophagic death of macrophage via regulation of P62 in mice with lupus. PMID:27537524

  5. Organic cation transporter Octn1-mediated uptake of food-derived antioxidant ergothioneine into infiltrating macrophages during intestinal inflammation in mice.

    PubMed

    Shimizu, Takuya; Masuo, Yusuke; Takahashi, Saki; Nakamichi, Noritaka; Kato, Yukio

    2015-06-01

    OCTN1/SLC22A4 is expressed on apical membranes of small intestine, and is involved in gastrointestinal absorption of its substrates, including the food-derived antioxidant ergothioneine (ERGO). ERGO concentration in circulating blood of patients with inflammatory bowel disease (Crohn's disease) is lower than that in healthy volunteers; thus, circulating ERGO is a potential diagnostic marker, although the mechanisms underlying low ERGO concentration in patients are unknown. Here, we focused on intestinal macrophages, which infiltrate sites of inflammation, and examined possible first-pass uptake of ERGO by macrophages. ERGO concentration in blood was lower in mice with dextran sodium sulfate (DSS)-induced colitis than in controls. On the other hand, expression of octn1 gene product and ERGO concentration in intestinal tissues of DSS-treated mice were higher than in controls. Interestingly, lamina propria mononuclear cells (LPMCs) isolated from DSS-treated mice contained ERGO and showed [(3)H]ERGO uptake and Octn1 expression, whereas ERGO was undetectable in LPMCs of control mice. Functional expression of OCTN1 was also confirmed in LPS-stimulated human macrophage-like cell line, THP-1. In conclusion, OCTN1 is functionally expressed on activated intestinal macrophages, and ERGO uptake into these immune cells could contribute at least in part to the altered disposition of ERGO in intestinal inflammation.

  6. Cellular Renewal and Improvement of Local Cell Effector Activity in Peritoneal Cavity in Response to Infectious Stimuli

    PubMed Central

    dos Anjos Cassado, Alexandra; de Albuquerque, José Antônio Tavares; Sardinha, Luiz Roberto; de Lima Buzzo, Carina; Faustino, Lucas; Nascimento, Rogério; Ghosn, Eliver Eid Bou; D'Império Lima, Maria Regina; Alvarez, Jose Maria Mosig; Bortoluci, Karina Ramalho

    2011-01-01

    The peritoneal cavity (PerC) is a singular compartment where many cell populations reside and interact. Despite the widely adopted experimental approach of intraperitoneal (i.p.) inoculation, little is known about the behavior of the different cell populations within the PerC. To evaluate the dynamics of peritoneal macrophage (MØ) subsets, namely small peritoneal MØ (SPM) and large peritoneal MØ (LPM), in response to infectious stimuli, C57BL/6 mice were injected i.p. with zymosan or Trypanosoma cruzi. These conditions resulted in the marked modification of the PerC myelo-monocytic compartment characterized by the disappearance of LPM and the accumulation of SPM and monocytes. In parallel, adherent cells isolated from stimulated PerC displayed reduced staining for β-galactosidase, a biomarker for senescence. Further, the adherent cells showed increased nitric oxide (NO) and higher frequency of IL-12-producing cells in response to subsequent LPS and IFN-γ stimulation. Among myelo-monocytic cells, SPM rather than LPM or monocytes, appear to be the central effectors of the activated PerC; they display higher phagocytic activity and are the main source of IL-12. Thus, our data provide a first demonstration of the consequences of the dynamics between peritoneal MØ subpopulations by showing that substitution of LPM by a robust SPM and monocytes in response to infectious stimuli greatly improves PerC effector activity. PMID:21799778

  7. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury.

  8. Proinsulin-producing, hyperglycemia-induced adipose tissue macrophages underlie insulin resistance in high fat-fed diabetic mice.

    PubMed

    Buras, Eric Dale; Yang, Lina; Saha, Pradip; Kim, Jongoh; Mehta, Pooja; Yang, Yisheng; Hilsenbeck, Susan; Kojima, Hideto; Chen, Wenhao; Smith, C Wayne; Chan, Lawrence

    2015-08-01

    Adipose tissue macrophages (ATMs) play an important role in the pathogenesis of obese type 2 diabetes. High-fat diet (HFD)-induced obesity has been shown to lead to ATM accumulation in rodents; however, the impact of hyperglycemia on ATM dynamics in HFD-fed type 2 diabetic models has not been studied. We previously showed that hyperglycemia induces the appearance of proinsulin (PI)-producing proinflammatory bone marrow (BM)-derived cells (PI-BMDCs) in rodents. We fed a 60% HFD to C57BL6/J mice to produce an obese type 2 diabetes model. Absent in chow-fed animals, PI-BMDCs account for 60% of the ATMs in the type 2 diabetic mice. The PI-ATM subset expresses TNF-α and other inflammatory markers, and is highly enriched within crownlike structures (CLSs). We found that amelioration of hyperglycemia by different hypoglycemic agents forestalled PI-producing ATM accumulation and adipose inflammation in these animals. We developed a diphtheria toxin receptor-based strategy to selectively ablate PI-BMDCs among ATMs. Application of the maneuver in HFD-fed type 2 diabetic mice was found to lead to near total disappearance of complex CLSs and reversal of insulin resistance and hepatosteatosis in these animals. In sum, we have identified a novel ATM subset in type 2 diabetic rodents that underlies systemic insulin resistance. PMID:25953849

  9. Calcitriol inhibits tumor necrosis factor alpha and macrophage inflammatory protein-2 during lipopolysaccharide-induced acute lung injury in mice.

    PubMed

    Tan, Zhu-Xia; Chen, Yuan-Hua; Xu, Shen; Qin, Hou-Ying; Wang, Hua; Zhang, Cheng; Xu, De-Xiang; Zhao, Hui

    2016-08-01

    Acute lung injury is a common complication of sepsis in intensive care unit patients with an extremely high mortality. The present study investigated the effects of calcitriol, the active form of vitamin D, on tumor necrosis factor alpha (TNF-α) and macrophage inflammatory protein-2 (MIP-2) in sepsis-induced acute lung injury. Mice were intraperitoneally (i.p.) injected with lipopolysaccharide (LPS, 1.0mg/kg) to establish the animal model of sepsis-induced acute lung injury. Some mice were i.p. injected with calcitriol (1.0μg/kg) before LPS injection. An obvious infiltration of inflammatory cells in the lungs was observed beginning at 1h after LPS injection. Correspondingly, TNF-α and MIP-2 in sera and lung homogenates were markedly elevated in LPS-treated mice. Interestingly, calcitriol obviously alleviated LPS-induced infiltration of inflammatory cells in the lungs. Moreover, calcitriol markedly attenuated LPS-induced elevation of TNF-α and MIP-2 in sera and lung homogenates. Further analysis showed that calcitriol repressed LPS-induced p38 mitogen-activated protein kinase (MAPK) and protein kinase B (Akt) phosphorylation. In addition, calcitriol blocked LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 and p50 subunit in the lungs. Taken together, these results suggest that calcitriol inhibits inflammatory cytokines production in LPS-induced acute lung injury. PMID:27216047

  10. The Macrophage-depleting Agent Clodronate Promotes Durable Hematopoietic Chimerism and Donor-specific Skin Allograft Tolerance in Mice

    PubMed Central

    Li, Zhanzhuo; Xu, Xin; Feng, Xingmin; Murphy, Philip M.

    2016-01-01

    Hematopoietic chimerism is known to promote donor-specific organ allograft tolerance; however, clinical translation has been impeded by the requirement for toxic immunosuppression and large doses of donor bone marrow (BM) cells. Here, we investigated in mice whether durable chimerism might be enhanced by pre-treatment of the recipient with liposomal clodronate, a macrophage depleting agent, with the goal of vacating BM niches for preferential reoccupation by donor hematopoietic stem cells (HSC). We found that liposomal clodronate pretreatment of C57BL/6 mice permitted establishment of durable hematopoietic chimerism when the mice were given a low dose of donor BM cells and transient immunosuppression. Moreover, clodronate pre-treatment increased durable donor-specific BALB/c skin allograft tolerance. These results provide proof-of-principle that clodronate is effective at sparing the number of donor BM cells required to achieve durable hematopoietic chimerism and donor-specific skin allograft tolerance and justify further development of a tolerance protocol based on this principle. PMID:26917238

  11. [Studies on cell signaling immunomodulated murine peritoneal suppressor macrophages: LPS and PMA mediate the activation of RAF-1, MAPK p44 and MAPK p42 and p38 MAPK].

    PubMed

    Chang, Z L; Lin, M Q; Wang, M Z; Yao, Z

    1997-03-01

    38 MAPK (mammalian equivalents of HOG1 in yeast) and JNK MAPK have been discovered. The requirement for activation of p38 MAPK for both Thr-180 and Tyr-182 (at TGY motif) has been shown. p38 MAPK is important in certain transcriptional regulatory pathways, since it can phosphorylate the following transcriptional factors: 1) Elk at Ser 383/389 for binding with SRE motif; 2). ATF 2 at Ser 69/71, forming a complex with Myc for DNA binding at CRE motif; 3) Max at Ser-62 to combine DNA of E-Box motif. p38 MAPK can be activated by LPS, inflammatory cytokines, such as TNF and IL-1, osmolarity. To examine the possibility that whether activation of Raf-1 and ERK 1, ERK2 and p38 MAPK can be regulated directly or/and differently by PKC and PKA pathways, herbimycin A (Ki = 0.9 mumol/L), a potent PTK inhibitor (J. Immunol. 155:3944-4003, 1995) at 2 mumol/L concentration was utilized to block Ras/Raf-1/MAPK cascade. After pre-incubation of macrophages with herbimycin A for 30 min or 90 min, cells were treated with LPS (10 micrograms/ml) and PMA (100 nmol/L) for 15 min. No inhibition of phosphorylation of Raf-1, MAPK p44 and MAPK p42 in response to LPS and PMA was observed (Fig. 1 and 3). However, forskolin, a cAMP inducer for protein kinase A (PKA) activation, inhibited the phosphorylation of LPS- and PMA-stimulated Raf-1, MAPK p44 and MAPK p42 (Fig. 2 and 4). Similarly, in agreement with a very recent report from David, M et al in NIH, in which they indicated that forskolin (30 mumol/L) inhibited IFN-beta-stimulated ERK activity by U 266 cells (J. Biol. Chem. 271: 4585-4588 1996), we found that the levels of phosphorylations of Raf-1 and ERK1 and ERK2 were declined when forskolin (30 mumol/L) was added to macrophages for 20 min at 37 degrees C prior to the stimulation by LPS and PMA. Interestingly, under the same condition, forskolin (30 mumol/L) stimulated the phosphorylation of LPS- and PMA-triggered p38 MAPK of murine peritoneal suppressor macrophages, suggesting that

  12. Alpha-phellandrene promotes immune responses in normal mice through enhancing macrophage phagocytosis and natural killer cell activities.

    PubMed

    Lin, Jen-Jyh; Lin, Ju-Hwa; Hsu, Shu-Chun; Weng, Shu-Wen; Huang, Yi-Ping; Tang, Nou-Ying; Lin, Jaung-Geng; Chung, Jing-Gung

    2013-01-01

    α-Phellandrene, a natural compound from natural plants, has been used in the food and perfume industry. We investigated the effects of α-phellandrene on the immune responses on normal murine cells in vivo. Normal BALB/c mice were treated orally with or without α-phellandrene at 0, 1, 5 and 25 mg/kg and olive oil as a positive control for two weeks. Results indicated that α-phellandrene did not change the weight of animals when compared to olive oil (vehicle for α-phellandrene)-treated groups. After flow cytometric assay of blood samples it was shown that α-phellandrene increased the percentage of CD3 (T-cell marker), CD11b (monocytes) and MAC3 (macrophages), but reduced the percentage of CD19 (B-cell marker) cell surface markers in α-phellandrene-treated groups, compared to untreated groups. α-Phellandrene promoted the phagocytosis of macrophages from blood samples at 5 and 25 mg/kg treatment and promoted natural killer cell activity from splenocytes at 25 mg/kg. Furthermore, α-phellandrene increased B-cell proliferation at 25 mg/kg with or without stimulation but promoted cell proliferation only at 25 mg/kg treatment with stimulation. Based on these observations, 25 mg/kg with α-phellandrene seems to have promoted immune responses in this murine model.

  13. Immune-Enhancing Effects of a High Molecular Weight Fraction of Cynanchum wilfordii Hemsley in Macrophages and Immunosuppressed Mice

    PubMed Central

    Jang, Mi; Lim, Tae-Gyu; Ahn, Sungeun; Hong, Hee-Do; Rhee, Young Kyoung; Kim, Kyung-Tack; Lee, Eunjung; Lee, Jeong Hoon; Lee, Yun Ji; Jung, Chan Sik; Lee, Dae Young; Cho, Chang-Won

    2016-01-01

    The objective of this study was to investigate the immune-enhancing activity of a high molecular weight fraction (HMF) of Cynanchum wilfordii in RAW 264.7 macrophages and the cyclophosphamide (CYC)-induced mouse model of immunosuppression. To identify the bioactive substances of HMF, a crude polysaccharide (HMFO) was obtained and treated with sodium periodate (an oxidation agent) or digested with protease. In macrophages, HMF treatment enhanced the production of nitric oxide (NO) and cytokines (tumor necrosis factor alpha (TNF-α), interleukin 6 (IL-6), and interleukin 1β (IL-1β)), as well as phagocytic ability. In CYC-immunosuppressed mice, HMF improved relative spleen and thymus weights, natural killer (NK) cell activity, and splenic lymphocyte proliferation. These increases in NO and cytokines were mediated by up-regulation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Periodate treatment, but not protease treatment, decreased the immune-enhancing activity of HMFO, suggesting that polysaccharides are the active ingredients in C. wilfordii extract. PMID:27690089

  14. Macrophage cell lines P388D1 and IC-21 stimulated with gamma interferon fail to inhibit the intracellular growth of Histoplasma capsulatum.

    PubMed

    Wu-Hsieh, B; Howard, D H

    1989-09-01

    Histoplasma capsulatum, a facultative intracellular parasite of macrophages, grows within mononuclear cells of the P388D1 and IC-21 cell lines with a generation time comparable to that with which it grows in normal resident peritoneal macrophages (10 +/- 2 h). Recombinant murine gamma interferon (rMuIFN-gamma) activates P388D1 cells to express la antigens but not to inhibit the intracellular growth of H. capsulatum, alone or in combination with lipopolysaccharide. IC-21 cells also could not be activated to fungistasis with rMuIFN-gamma. Explanted resident peritoneal macrophages of the C57BL/6 (from which the IC-21 cell line derives), C3H/HeJ, DBA/2 (from which the P388D1 cell line derives), A/J, and SJL/J strains of mice were all stimulated by rMuIFN-gamma to inhibit the fungus. PMID:2503448

  15. Macrophage cell lines P388D1 and IC-21 stimulated with gamma interferon fail to inhibit the intracellular growth of Histoplasma capsulatum.

    PubMed Central

    Wu-Hsieh, B; Howard, D H

    1989-01-01

    Histoplasma capsulatum, a facultative intracellular parasite of macrophages, grows within mononuclear cells of the P388D1 and IC-21 cell lines with a generation time comparable to that with which it grows in normal resident peritoneal macrophages (10 +/- 2 h). Recombinant murine gamma interferon (rMuIFN-gamma) activates P388D1 cells to express la antigens but not to inhibit the intracellular growth of H. capsulatum, alone or in combination with lipopolysaccharide. IC-21 cells also could not be activated to fungistasis with rMuIFN-gamma. Explanted resident peritoneal macrophages of the C57BL/6 (from which the IC-21 cell line derives), C3H/HeJ, DBA/2 (from which the P388D1 cell line derives), A/J, and SJL/J strains of mice were all stimulated by rMuIFN-gamma to inhibit the fungus. PMID:2503448

  16. Safrole suppresses murine myelomonocytic leukemia WEHI-3 cells in vivo, and stimulates macrophage phagocytosis and natural killer cell cytotoxicity in leukemic mice.

    PubMed

    Yu, Fu-Shun; Yang, Jai-Sing; Yu, Chun-Shu; Chiang, Jo-Hua; Lu, Chi-Cheng; Chung, Hsiung-Kwang; Yu, Chien-Chih; Wu, Chih-Chung; Ho, Heng-Chien; Chung, Jing-Gung

    2013-11-01

    Many anticancer drugs are obtained from phytochemicals and natural products. However, some phytochemicals have mutagenic effects. Safrole, a component of Piper betle inflorescence, has been reported to be a carcinogen. We have previously reported that safrole induced apoptosis in human oral cancer cells in vitro and inhibited the human oral tumor xenograft growth in vivo. Until now, there is no information addressing if safrole promotes immune responses in vivo. To evaluate whether safrole modulated immune function, BALB/c mice were intraperitoneally injected with murine myelomonocytic WEHI-3 leukemia cells to establish leukemia and then were treated with or without safrole at 4 and 16 mg/kg. Animals were sacrificed after 2 weeks post-treatment with safrole for examining the immune cell populations, phagocytosis of macrophages and the natural killer (NK) cells' cytotoxicity. Results indicated that safrole increased the body weight, and decreased the weights of spleen and liver in leukemic mice. Furthermore, safrole promoted the activities of macrophages phagocytosis and NK cells' cytotoxicity in leukemic mice when compared with untreated leukemic mice. After determining the cell marker population, we found that safrole promoted the levels of CD3 (T cells), CD19 (B cells) and Mac-3 (macrophages), but it did not affect CD11b (monocytes) in leukemic mice. In conclusion, safrole altered the immune modulation and inhibited the leukemia WEHI-3 cells in vivo.

  17. ets-2 Is a Target for an Akt (Protein Kinase B)/Jun N-Terminal Kinase Signaling Pathway in Macrophages of motheaten-viable Mutant Mice

    PubMed Central

    Smith, James L.; Schaffner, Alicia E.; Hofmeister, Joseph K.; Hartman, Matthew; Wei, Guo; Forsthoefel, David; Hume, David A.; Ostrowski, Michael C.

    2000-01-01

    The transcription factor ets-2 was phosphorylated at residue threonine 72 in a colony-stimulating factor 1 (CSF-1)- and mitogen-activated protein kinase-independent manner in macrophages isolated from motheaten-viable (me-v) mice. The CSF-1 and ets-2 target genes coding for Bcl-x, urokinase plasminogen activator, and scavenger receptor were also expressed at high levels independent of CSF-1 addition to me-v cells. Akt (protein kinase B) was constitutively active in me-v macrophages, and an Akt immunoprecipitate catalyzed phosphorylation of ets-2 at threonine 72. The p54 isoform of c-jun N-terminal kinase–stress-activated kinase (JNK- SAPK) coimmunoprecipitated with Akt from me-v macrophages, and treatment of me-v cells with the specific phosphatidylinositol 3-kinase inhibitor LY294002 decreased cell survival, Akt and JNK kinase activities, ets-2 phosphorylation, and Bcl-x mRNA expression. Therefore, ets-2 is a target for phosphatidylinositol 3-kinase–Akt–JNK action, and the JNK p54 isoform is an ets-2 kinase in macrophages. Constitutive ets-2 activity may contribute to the pathology of me-v mice by increasing expression of genes like the Bcl-x gene that promote macrophage survival. PMID:11027273

  18. Pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice.

    PubMed

    Chono, Sumio; Tauchi, Yoshihiko; Morimoto, Kazuhiro

    2006-02-01

    In order to evaluate the efficacy of liposomes as a drug carrier for atherosclerotic therapy, a pharmacokinetic analysis of the uptake of liposomes by macrophages and foam cells in vitro and their distribution to atherosclerotic lesions in mice was carried out. In brief, liposomes of three particle sizes (500, 200 and 70 nm) were prepared, and the uptake of liposomes by these cells in vitro and the aortic distribution following intravenous administration to atherogenic mice were examined. The internalization rate constant calculated by measuring uptake and binding was size-dependent in both types of cells in vitro. The aortic clearance (CL(a)) was size-independent in atherogenic mice and the CL(a) of 200 nm particles was the highest. Surprisingly, the aortic distribution in vivo did not correspond with the internalization to macrophages and foam cells in vitro. These results suggest that there is an optimal size for the distribution of liposomes to atherosclerotic lesions.

  19. Bacterial growth and killing in chronic ambulatory peritoneal dialysis fluids.

    PubMed Central

    Verbrugh, H A; Keane, W F; Conroy, W E; Peterson, P K

    1984-01-01

    We determined the ability of Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli to survive and grow in peritoneal dialysis fluids from patients undergoing chronic ambulatory peritoneal dialysis. Staphylococci did not survive in commercially available dialysis solutions but grew readily in peritoneal effluents obtained from patients after the dialysis dwell time. The number of CFU doubled 6 and 13 times in 24 h for S. epidermidis and S. aureus, respectively. E. coli grew well in both the pre- and postdialysis peritoneal fluid. Peritoneal macrophages as well as peripheral blood leukocytes inhibited bacterial growth in peritoneal dialysis fluid. However, 10(6) phagocytes per ml were minimally required to obtain a bacteriostatic effect. The addition of serum to peritoneal dialysis fluid increased the antibacterial activity of macrophages and blood leukocytes. The capacity of the aminoglycoside antibiotic tobramycin to reduce bacterial CFU in peritoneal dialysis fluid was only 10% of its bactericidal capacity in standard Mueller-Hinton brush. Peritoneal dialysis fluid had no effect on the antibacterial activity of imipenem. PMID:6386844

  20. Endocytic uptake of advanced glycation end products by mouse liver sinusoidal endothelial cells is mediated by a scavenger receptor distinct from the macrophage scavenger receptor class A.

    PubMed Central

    Matsumoto, K; Sano, H; Nagai, R; Suzuki, H; Kodama, T; Yoshida, M; Ueda, S; Smedsrød, B; Horiuchi, S

    2000-01-01

    Previous studies with peritoneal macrophages obtained from macrophage scavenger receptor class A (MSR-A) knock-out mice showed that the endocytic uptake of advanced glycation end products (AGE) by macrophages was mediated mainly by MSR-A. However, it is controversial whether the endocytic uptake of intravenously injected AGE proteins by liver sinusoidal endothelial cells (LECs) is similarly explained by receptor-mediated endocytosis via MSR-A. The present study was conducted to compare the capacity to endocytose AGE proteins in LECs and peritoneal macrophages obtained from MSR-A knock-out and littermate wild-type mice. The endocytic degradation capacity of MSR-A knock-out LECs for AGE-BSA was indistinguishable from that of wild-type LECs, whereas that of MSR-A knock-out peritoneal macrophages for AGE-BSA was decreased to 30% of that in wild-type cells. Similarly, the endocytic degradation of MSR-A knock-out LECs for acetylated low-density lipoprotein (acetyl-LDL) did not differ from that of wild-type LECs, whereas the endocytic degradation of acetyl-LDL by MSR-A knock-out peritoneal macrophages was less than 20% of that in wild-type cells. Furthermore, formaldehyde-treated serum albumin (f-Alb), a ligand known to undergo scavenger-receptor-mediated endocytosis by LECs, was effectively taken up by MSR-A knock-out LECs at a capacity that did not differ from that of wild-type LECs. Moreover, the endocytic uptake of AGE-BSA by LECs was effectively competed for by unlabelled f-Alb or acetyl-LDL. These results indicate that the scavenger-receptor ligands AGE proteins, acetyl-LDL and f-Alb are endocytosed by LECs through a non-MSR-A pathway. PMID:11062078

  1. Water channels in peritoneal dialysis.

    PubMed

    Devuyst, Olivier

    2010-01-01

    Peritoneal dialysis involves diffusive and convective transports and osmosis through the highly vascularized peritoneal membrane. Several lines of evidence have demonstrated that the water channel aquaporin-1 (AQP1) corresponds to the ultrasmall pore predicted by the modelization of peritoneal transport. Proof-of-principle studies have shown that up-regulation of the expression of AQP1 in peritoneal capillaries is reflected by increased water permeability and ultrafiltration, without affecting the osmotic gradient and the permeability for small solutes. Inversely, studies in Aqp1 mice have shown that haploinsufficiency in AQP1 is reflected by significant attenuation of water transport. Recent studies have identified lead compounds that could act as agonists of aquaporins, as well as putative binding sites and potential mechanisms of gating the water channel. By modulating water transport, these pharmacological agents could have clinically relevant effects in targeting specific tissues or disease states. These studies on the peritoneal membrane also provide an experimental framework to investigate the role of water channels in the endothelium and various cell types.

  2. Extract of the seed coat of Tamarindus indica inhibits nitric oxide production by murine macrophages in vitro and in vivo.

    PubMed

    Komutarin, T; Azadi, S; Butterworth, L; Keil, D; Chitsomboon, B; Suttajit, M; Meade, B J

    2004-04-01

    The seed coat extract of Tamarindus indica, a polyphenolic flavonoid, has been shown to have antioxidant properties. The present studies investigated the inhibitory effect of the seed coat extract of T. indica on nitric oxide production in vitro using a murine macrophage-like cell line, RAW 264.7, and in vitro and in vivo using freshly isolated B6C3F1 mouse peritoneal macrophages. In vitro exposure of RAW 264.7 cells or peritoneal macrophages to 0.2-200 microg/mL of T. indica extract significantly attenuated (as much as 68%) nitric oxide production induced by lipopolysaccharide (LPS) and interferon gamma (IFN-gamma) in a concentration-dependent manner. In vivo administration of T. indica extract (100-500 mg/kg) to B6C3F1 mice dose-dependently suppressed TPA, LPS and/or IFN-gamma induced production of nitric oxide in isolated mouse peritoneal macrophages in the absence of any effect on body weight. Exposure to T. indica extract had no effect on cell viability as assessed by the MTT assay. In B6C3F1 mice, preliminary safety studies demonstrated a decrease in body weight at only the highest dose tested (1000 mg/kg) without alterations in hematology, serum chemistry or selected organ weights or effects on NK cell activity. A significant decrease in body weight was observed in BALB/c mice exposed to concentrations of extract of 250 mg/kg or higher. Oral exposure of BALB/c mice to T. indica extract did not modulate the development of T cell-mediated sensitization to DNFB or HCA as measured by the local lymph node assay, or dermal irritation to nonanoic acid or DNFB. These studies suggest that in mice, T. indica extract at concentrations up to 500 mg/kg may modulate nitric oxide production in the absence of overt acute toxicity.

  3. TLR-mediated secretion of endoplasmic reticulum aminopeptidase 1 from macrophages.

    PubMed

    Goto, Yoshikuni; Ogawa, Kenji; Nakamura, Takahiro J; Hattori, Akira; Tsujimoto, Masafumi

    2014-05-01

    Macrophages play an important role in host defense under several immunological, inflammatory, and/or infectious conditions. In our previous work, we demonstrated that endoplasmic reticulum aminopeptidase 1 (ERAP1) was secreted from macrophages in response to LPS and IFN-γ, and it enhanced their phagocytic activity. In this study, we analyzed the mechanism of LPS/IFN-γ-induced ERAP1 secretion. LPS/IFN-γ-induced secretion of the enzyme from the murine macrophage cell line RAW264.7 was suppressed by polymyxin B. Several agonists of TLRs, such as Pam3CSK4, FSL-1, and ODN1826, induced its secretion. In contrast, neutralizing Abs to IFN-β and TNF-α receptor type 1 suppressed its secretion. Using murine peritoneal macrophages derived from TNF-α and type 1 IFNR knockout mice, we confirmed the involvement of these two cytokines in ERAP1 secretion. In addition, secretion of ERAP1 from both RAW264.7 cells and murine peritoneal macrophages was induced by A23187 and thapsigargin and inhibited by BAPTA-AM and the calmodulin inhibitor W7. These results suggest that LPS/IFN-γ-induced secretion of ERAP1 is mediated by TLRs via induction of intermediate cytokines such as IFN-β and TNF-α, which in turn lead to enhanced cytosolic Ca(2+) levels and calmodulin activation.

  4. Three-dimensional migration of macrophages requires Hck for podosome organization and extracellular matrix proteolysis

    PubMed Central

    Cougoule, Céline; Le Cabec, Véronique; Poincloux, Renaud; Al Saati, Talal; Mège, Jean-Louis; Tabouret, Guillaume; Lowell, Clifford A.; Laviolette-Malirat, Nathalie

    2010-01-01

    Tissue infiltration of phagocytes exacerbates several human pathologies including chronic inflammations or cancers. However, the mechanisms involved in macrophage migration through interstitial tissues are poorly understood. We investigated the role of Hck, a Src-family kinase involved in the organization of matrix adhesion and degradation structures called podosomes. In Hck−/− mice submitted to peritonitis, we found that macrophages accumulated in interstitial tissues and barely reached the peritoneal cavity. In vitro, 3-dimensional (3D) migration and matrix degradation abilities, 2 protease-dependent properties of bone marrow–derived macrophages (BMDMs), were affected in Hck−/− BMDMs. These macrophages formed few and undersized podosome rosettes and, consequently, had reduced matrix proteolysis operating underneath despite normal expression and activity of matrix metalloproteases. Finally, in fibroblasts unable to infiltrate matrix, ectopic expression of Hck provided the gain–of–3D migration function, which correlated positively with formation of podosome rosettes. In conclusion, spatial organization of podosomes as large rosettes, proteolytic degradation of extracellular matrix, and 3D migration appeared to be functionally linked and regulated by Hck in macrophages. Hck, as the first protein combining a phagocyte-limited expression with a role in 3D migration, could be a target for new anti-inflammatory and antitumor molecules. PMID:19897576

  5. Radioprotection of mice with interleukin-1: Relationship to the number of erythroid and granulocyte-macrophage colony-forming cells

    SciTech Connect

    Schwartz, G.N.; Patchen, M.L.; Neta, R.; MacVittie, T.J.

    1990-01-01

    This report presents the results of an investigation of changes in the number of erythroid and granulocyte-macrophage colony forming cells (GM-CFC) that had occurred in tissues of normal B6D2F1 mice 20 h after administration of a radioprotective dose (150 ng) of human recombinant interleukin-1 (rIL-1). Neutrophilia in the peripheral blood and changes in the tissue distribution of GM-CFC demonstrated that cells were mobilized from the bone marrow in response to rIL-1 injection. For example, 20 h after rIL-1 injection marrow GM-CFC numbers were 80% of the numbers in bone marrow from saline-injected mice. Associated with this decrease there was a twofold increase in the number of peripheral blood and splenic GM-CFC. Also, as determined by hydroxyurea injection, there was an increase in the number of GM-CFC in S phase of the cell cycle in the spleen, but not in the bone marrow. Data in this report suggest that when compared to the spleen, stimulation of granulopoiesis after rIL-1 injection is delayed in the bone marrow.

  6. Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells.

    PubMed

    Kovacic, Boris; Hoelbl-Kovacic, Andrea; Fischhuber, Katrin M; Leitner, Nicole R; Gotthardt, Dagmar; Casanova, Emilio; Sexl, Veronika; Müller, Mathias

    2014-06-01

    Considerable effort has been expended to identify genes that account for myeloid lineage commitment and development. However, currently available non-invasive mouse models utilize myeloid-specific reporters that are significantly expressed in hematopoietic stem cells as well as lymphoid compartments. Here, we describe a myeloid-specific marker that is not shared by any other lineage. We show that lactotransferrin mRNA is expressed by Gr-1(+)/CD11b(+) cells in the bone marrow, as opposed to hematopoietic stem cells or any peripheral cell population. To follow the progeny of lactotransferrin-expressing bone marrow cells, we generated a mouse model in which a reporter gene is irreversibly activated from the lactotransferrin-promoter. We found that lactotransferrin-reporter labels a majority of neutrophils, monocytes, macrophages and distinct subtypes of dendritic cells, while excluding T, B, natural killer cells, interferon-producing killer dendritic cells, plasmacytoid dendritic cells, erythrocytes and eosinophils. Lactotransferrin-reporter(-) bone marrow cells retain lymphoid, erythroid and long-term repopulating potential, while lactotransferrin-reporter(+) bone marrow cells confer only myeloid, but not lymphoid potential. We conclude that lactotransferrin represents a late stage differentiation marker of neutrophils, macrophages and distinct subtypes of dendritic cells.

  7. Lactotransferrin-Cre reporter mice trace neutrophils, monocytes/macrophages and distinct subtypes of dendritic cells

    PubMed Central

    Kovacic, Boris; Hoelbl-Kovacic, Andrea; Fischhuber, Katrin M.; Leitner, Nicole R.; Gotthardt, Dagmar; Casanova, Emilio; Sexl, Veronika; Müller, Mathias

    2014-01-01

    Considerable effort has been expended to identify genes that account for myeloid lineage commitment and development. However, currently available non-invasive mouse models utilize myeloid-specific reporters that are significantly expressed in hematopoietic stem cells as well as lymphoid compartments. Here, we describe a myeloid-specific marker that is not shared by any other lineage. We show that lactotransferrin mRNA is expressed by Gr-1+/CD11b+ cells in the bone marrow, as opposed to hematopoietic stem cells or any peripheral cell population. To follow the progeny of lactotransferrin-expressing bone marrow cells, we generated a mouse model in which a reporter gene is irreversibly activated from the lactotransferrin-promoter. We found that lactotransferrin-reporter labels a majority of neutrophils, monocytes, macrophages and distinct subtypes of dendritic cells, while excluding T, B, natural killer cells, interferon-producing killer dendritic cells, plasmacytoid dendritic cells, erythrocytes and eosinophils. Lactotransferrin-reporter− bone marrow cells retain lymphoid, erythroid and long-term repopulating potential, while lactotransferrin-reporter+ bone marrow cells confer only myeloid, but not lymphoid potential. We conclude that lactotransferrin represents a late stage differentiation marker of neutrophils, macrophages and distinct subtypes of dendritic cells. PMID:24561791

  8. Modulation of cellular immune response by orbifloxacin in noninfected and E. coli-infected mice.

    PubMed

    Szczypka, Marianna; Gaweda, Bartosz; Obmińska-Mrukowicz, Bozena

    2005-01-01

    The studies were conducted on noninfected and Escherichia (E) coli-infected mice treated with orbifloxacin administered orally 10 times at 24-hr intervals at a dose of 2.5 mg/kg. Orbifloxacin did not change the activity of peritoneal macrophages in noninfected mice. Administration of orbifloxacin in E. coli-infected mice modulated the effects of infection on the percentage of phagocyting macrophages, the percentage of NBT-positive cells, and nitric oxide production. Orbifloxacin did not affect the synthesis and release of interleukin-1 by macrophages. Orbifloxacin exerted a modulating effect on the subsets of lymphocytes in thymus, spleen, and mesenteric lymph node cells in noninfected and E. coli-infected mice.

  9. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway. PMID:25242651

  10. Loss of monocyte chemoattractant protein-1 alters macrophage polarization and reduces NFκB activation in the foreign body response.

    PubMed

    Moore, Laura Beth; Sawyer, Andrew J; Charokopos, Antonios; Skokos, Eleni A; Kyriakides, Themis R

    2015-01-01

    Implantation of biomaterials elicits a foreign body response characterized by fusion of macrophages to form foreign body giant cells and fibrotic encapsulation. Studies of the macrophage polarization involved in this response have suggested that alternative (M2) activation is associated with more favorable outcomes. Here we investigated this process in vivo by implanting mixed cellulose ester filters or polydimethylsiloxane disks in the peritoneal cavity of wild-type (WT) and monocyte chemoattractant protein-1 (MCP-1) knockout mice. We analyzed classical (M1) and alternative (M2) gene expression via quantitative polymerase chain reaction, immunohistochemistry and enzyme-linked immunosorbent assay in both non-adherent cells isolated by lavage and implant-adherent cells. Our results show that macrophages undergo unique activation that displays features of both M1 and M2 polarization including induction of tumor necrosis factor α (TNF), which induces the expression and nuclear translocation of p50 and RelA determined by immunofluorescence and Western blot. Both processes were compromised in fusion-deficient MCP-1 KO macrophages in vitro and in vivo. Furthermore, inclusion of BAY 11-7028, an inhibitor of NFκB activation, reduced nuclear translocation of RelA and fusion in WT macrophages. Our studies suggest that peritoneal implants elicit a unique macrophage polarization phenotype leading to induction of TNF and activation of the NFκB pathway.

  11. Loss of MCP-1 alters macrophage polarization and reduces NFκB activation in the foreign body response