Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom; Elbekai, Reem H
2014-01-01
Carcinogenicity studies have been performed in conventional 2-year rodent studies for at least 3 decades, whereas the short-term carcinogenicity studies in transgenic mice, such as Tg.rasH2, have only been performed over the last decade. In the 2-year conventional rodent studies, interlinked problems, such as increasing trends in the initial body weights, increased body weight gains, high incidence of spontaneous tumors, and low survival, that complicate the interpretation of findings have been well established. However, these end points have not been evaluated in the short-term carcinogenicity studies involving the Tg.rasH2 mice. In this article, we present retrospective analysis of data obtained from control groups in 26-week carcinogenicity studies conducted in Tg.rasH2 mice since 2004. Our analysis showed statistically significant decreasing trends in initial body weights of both sexes. Although the terminal body weights did not show any significant trends, there was a statistically significant increasing trend toward body weight gains, more so in males than in females, which correlated with increasing trends in the food consumption. There were no statistically significant alterations in mortality trends. In addition, the incidence of all common spontaneous tumors remained fairly constant with no statistically significant differences in trends. © The Author(s) 2014.
NASA Astrophysics Data System (ADS)
Sabino, C. P.; Deana, A. M.; Silva, D. F. T.; França, C. M.; Yoshimura, T. M.; Ribeiro, M. S.
2015-03-01
Red and near-infrared light have been widely employed in optical therapies. Skin is the most common optical barrier in non-invasive techniques and in many cases it is the target tissue itself. Consequently, to optimize the outcomes brought by lightbased therapies, the optical properties of skin tissue must be very well elucidated. In the present study, we evaluated the dorsal skin optical properties of albino (BALB/c) and pigmented (C57BL/6) mice using the Kubelka-Munk photon transport model. We evaluated samples from male and female young mice of both strains. Analysis was performed for wavelengths at 630, 660, 780, 810 and 905 nm due to their prevalent use in optical therapies, such as low-level light (or laser) and photodynamic therapies. Spectrophotometric measurements of diffuse transmittance and reflectance were performed using a single integrating sphere coupled to a proper spectrophotometer. Statistic analysis was made by two-way ANOVA, with Tukey as post-test and Levenne and Shapiro-Wilks as pre-tests. Statistical significance was considered when p<0.05. Our results show only a slight transmittance increment (<10 %) as wavelengths are increased from 630 to 905 nm, and no statistical significance was observed. Albino male mice present reduced transmittance levels for all wavelengths. The organization and abundance of skin composing tissues significantly influence its scattering optical properties although absorption remains constant. We conclude that factors such as subcutaneous adiposity and connective tissue structure can have statistically significant influence on mice skin optical properties and these factors have relevant variations among different gender and strains.
Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice
Pont, Isabel; Calatayud-Pascual, Aracely; López-Castellano, Alicia; Albelda, Elena P.; García-España, Enrique; Martí-Bonmatí, Luis; Frias, Juan C.
2018-01-01
Fumagillin-loaded liposomes were injected into ApoE-KO mice. The animals were divided into several groups to test the efficacy of this anti-angiogenic drug for early treatment of atherosclerotic lesions. Statistical analysis of the lesions revealed a decrease in the lesion size after 5 weeks of treatment. PMID:29338009
Lu, Yong Ping; Tsuprykov, Oleg; Vignon-Zellweger, Nicolas; Heiden, Susi; Hocher, Berthold
2016-01-01
ET-1 has independent effects on blood pressure regulation in vivo, it is involved in tubular water and salt excretion, promotes constriction of smooth muscle cells, modulates sympathetic nerve activity, and activates the liberation of nitric oxide. To determine the net effect of these partially counteracting mechanisms on blood pressure, a systematic meta-analysis was performed. Based on the principles of Cochrane systematic reviews, we searched in major literature databases - MEDLINE (PubMed), Embase, Google Scholar, and the China Biological Medicine Database (CBM-disc) - for articles relevant to the topic of the blood pressure phenotype of endothelin-1 transgenic (ET-1+/+) mice from January 1, 1988 to March 31, 2016. Review Manager Version 5.0 (Rev-Man 5.0) software was applied for statistical analysis. In total thirteen studies reported blood pressure data. The meta-analysis of blood pressure data showed that homozygous ET-1 transgenic mice (ET-1+/+ mice) had a significantly lower blood pressure as compared to WT mice (mean difference: -2.57 mmHg, 95% CI: -4.98∼ -0.16, P = 0.04), with minimal heterogeneity (P = 0.86). A subgroup analysis of mice older than 6 months revealed that the blood pressure difference between ET-1+/+ mice and WT mice was even more pronounced (mean difference: -6.19 mmHg, 95% CI: -10.76∼ -1.62, P = 0.008), with minimal heterogeneity (P = 0.91). This meta-analysis provides robust evidence that global ET-1 overexpression in mice lowers blood pressure in an age-dependent manner. Older ET-1+/+ mice have a somewhat more pronounced reduction of blood pressure. © 2016 The Author(s) Published by S. Karger AG, Basel.
Reproductive toxicity to male mice of nose only exposure to water- pipe smoke.
Ali, Badreldin H; Adham, Sirin A; Al Balushi, Khalid A; Shalaby, Asem; Waly, Mostafa I; Manoj, Priyadarsin; Beegam, Sumaya; Yuvaraju, Priya; Nemmar, Abderrahim
2015-01-01
Water-pipe smoking (WPS) is popular in the Middle East and is starting to gain popularity in several Western countries as well. It is widely and erroneously perceived to be less harmful than other forms of tobacco use. The reproductive adverse effects of cigarette smoking have been studied before with conflicting results, but data on the possible adverse reproductive effects of WPS are lacking. Here, we assessed the effects of nose-only exposure to mainstream WPS generated by commercially available honey-flavored "moasel" tobacco in mice. The duration of the session was 30 min/day for one month. Control mice were exposed to air. Twenty-four h after the last exposure, mice were killed and the testes and plasma removed for analysis. In testicular homogenates total protein, alkaline phosphatase activity, several indices of oxidative damage and Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) were quantified. The plasma concentrations of leptin, testosterone, estrogen and luteinizing hormone (LH) were also measured. Histological analysis of testes and lungs was also conducted. WPS caused statistically significant decreases in the plasma concentrations of leptin, testosterone, and LH, and in the concentrations of total protein and the antioxidant indices measured. A statistically non-significant decrease in VEGFR2 protein in the WPS--exposed mice compared to the control mice was also found. The body and testicular weights of mice exposed to WPS, as well as their testicular alkaline phosphatase activity and light microscopic histology, and plasma estrogen concentration were all not significantly affected by WPS. Further studies on the functional implications of these findings in mice exposed to WPS for longer durations are warranted.
Grant-Klein, Rebecca J; Van Deusen, Nicole M; Badger, Catherine V; Hannaman, Drew; Dupuy, Lesley C; Schmaljohn, Connie S
2012-11-01
We evaluated the immunogenicity and protective efficacy of DNA vaccines expressing the codon-optimized envelope glycoprotein genes of Zaire ebolavirus, Sudan ebolavirus, and Marburg marburgvirus (Musoke and Ravn). Intramuscular or intradermal delivery of the vaccines in BALB/c mice was performed using the TriGrid™ electroporation device. Mice that received DNA vaccines against the individual viruses developed robust glycoprotein-specific antibody titers as determined by ELISA and survived lethal viral challenge with no display of clinical signs of infection. Survival curve analysis revealed there was a statistically significant increase in survival compared to the control groups for both the Ebola and Ravn virus challenges. These data suggest that further analysis of the immune responses generated in the mice and additional protection studies in nonhuman primates are warranted.
Garrido-Acosta, Osvaldo; Meza-Toledo, Sergio Enrique; Anguiano-Robledo, Liliana; Valencia-Hernández, Ignacio; Chamorro-Cevallos, Germán
2014-01-01
We determined the median effective dose (ED50) values for the anticonvulsants phenobarbital and sodium valproate using a modification of Lorke's method. This modification allowed appropriate statistical analysis and the use of a smaller number of mice per compound tested. The anticonvulsant activities of phenobarbital and sodium valproate were evaluated in male CD1 mice by maximal electroshock (MES) and intraperitoneal administration of pentylenetetrazole (PTZ). The anticonvulsant ED50 values were obtained through modifications of Lorke's method that involved changes in the selection of the three first doses in the initial test and the fourth dose in the second test. Furthermore, a test was added to evaluate the ED50 calculated by the modified Lorke's method, allowing statistical analysis of the data and determination of the confidence limits for ED50. The ED50 for phenobarbital against MES- and PTZ-induced seizures was 16.3mg/kg and 12.7mg/kg, respectively. The sodium valproate values were 261.2mg/kg and 159.7mg/kg, respectively. These results are similar to those found using the traditional methods of finding ED50, suggesting that the modifications made to Lorke's method generate equal results using fewer mice while increasing confidence in the statistical analysis. This adaptation of Lorke's method can be used to determine median letal dose (LD50) or ED50 for compounds with other pharmacological activities. Copyright © 2014 Elsevier Inc. All rights reserved.
Expression of FLT4 in hypoxia-induced neovascular models in vitro and in vivo.
Liu, Jiao-Lian; Xia, Xiao-Bo; Xu, Hui-Zhuo
2011-01-01
To investigate the expression of FLT4 in retina with oxygen induced retinopathy (OIR) and in brain endothelial cell lines (bEnd3) under hypoxia conditions in mice. Fifty-two one-week-old C57BL/6J mice were divided into control group and hypoxia group. The mice of hypoxia group were exposed to 75% oxygen for 5 days and then returned to the room air to induce retinal neovascularization. Mice in control group were raised in the environment of room air at the same time. The expressions of FLT4 mRNA and protein were checked with RT-PCR and Western Blot analysis at postnatal day 14, 17 and 21 ( P14, P17 and P21) respectively. 125mmol/L CoCl(2) were added to the culture medium of bEnd3 cell, proteins were extracted in 12, 24, 48 and 72 hours and FLT4 levels were examined by Western Blot analysis. The mRNA and protein level of FLT4 expressed in P14 and P17 OIR mice retina statistically up-regulated as compared with those in control group, but there was no statistical difference between OIR group and control group at P21. FLT4 levels increased significantly in 12, 24 and 48 hours hypoxia intervened bEnd3 cells, its levels in 72 hours increased mildly but showed no significance. FLT4 levels increase in OIR mice retinas and bEnd3 cells in hypoxia. It may play an important role in endothelial cells proliferation in hypoxia and retinal neovascularization in OIR mice.
Expression of FLT4 in hypoxia-induced neovascular models in vitro and in vivo
Liu, Jiao-Lian; Xia, Xiao-Bo; Xu, Hui-Zhuo
2011-01-01
AIM To investigate the expression of FLT4 in retina with oxygen induced retinopathy (OIR) and in brain endothelial cell lines (bEnd3) under hypoxia conditions in mice. METHODS Fifty-two one-week-old C57BL/6J mice were divided into control group and hypoxia group. The mice of hypoxia group were exposed to 75% oxygen for 5 days and then returned to the room air to induce retinal neovascularization. Mice in control group were raised in the environment of room air at the same time. The expressions of FLT4 mRNA and protein were checked with RT-PCR and Western Blot analysis at postnatal day 14, 17 and 21 ( P14, P17 and P21) respectively. 125mmol/L CoCl2 were added to the culture medium of bEnd3 cell, proteins were extracted in 12, 24, 48 and 72 hours and FLT4 levels were examined by Western Blot analysis. RESULTS The mRNA and protein level of FLT4 expressed in P14 and P17 OIR mice retina statistically up-regulated as compared with those in control group, but there was no statistical difference between OIR group and control group at P21. FLT4 levels increased significantly in 12, 24 and 48 hours hypoxia intervened bEnd3 cells, its levels in 72 hours increased mildly but showed no significance. CONCLUSION FLT4 levels increase in OIR mice retinas and bEnd3 cells in hypoxia. It may play an important role in endothelial cells proliferation in hypoxia and retinal neovascularization in OIR mice. PMID:22553602
Srivastava, Sanjay K; Xiao, Dong; Lew, Karen L; Hershberger, Pamela; Kokkinakis, Demetrius M; Johnson, Candace S; Trump, Donald L; Singh, Shivendra V
2003-10-01
We have shown previously that allyl isothiocyanate (AITC), a constituent of cruciferous vegetables, significantly inhibits survival of PC-3 and LNCaP human prostate cancer cells in culture, whereas proliferation of a normal prostate epithelial cell line is minimally affected by AITC even at concentrations that are highly cytotoxic to the prostate cancer cells. The present studies were designed to test the hypothesis that AITC administration may retard growth of human prostate cancer xenografts in vivo. Bolus i.p. injection of 10 micromol AITC, three times per week (Monday, Wednesday and Friday) beginning the day of tumor cell implantation, significantly inhibited the growth of PC-3 xenograft (P < 0.05 by two-way ANOVA). For example, 26 days after tumor cell implantation, the average tumor volume in control mice (1025 +/- 205 mm3) was approximately 1.7-fold higher compared with AITC-treated mice. Histological analysis of tumors excised at the termination of the experiment revealed a statistically significant increase in number of apoptotic bodies with a concomitant decrease in cells undergoing mitosis in the tumors of AITC-treated mice compared with that of control mice. Western blot analysis indicated an approximately 70% reduction in the levels of anti-apoptotic protein Bcl-2 in the tumor lysate of AITC-treated mice compared with that of control mice. Moreover, the tumors from AITC-treated mice, but not control mice, exhibited cleavage of BID, which is known to promote apoptosis. Statistically significant reduction in the expression of several proteins that regulate G2/M progression, including cyclin B1, cell division cycle (Cdc)25B and Cdc25C (44, 45 and 90% reduction, respectively, compared with control), was also observed in the tumors of AITC-treated mice relative to control tumors. In conclusion, the results of the present study indicate that AITC administration inhibits growth of PC-3 xenografts in vivo by inducing apoptosis and reducing mitotic activity.
In vivo Comet assay--statistical analysis and power calculations of mice testicular cells.
Hansen, Merete Kjær; Sharma, Anoop Kumar; Dybdahl, Marianne; Boberg, Julie; Kulahci, Murat
2014-11-01
The in vivo Comet assay is a sensitive method for evaluating DNA damage. A recurrent concern is how to analyze the data appropriately and efficiently. A popular approach is to summarize the raw data into a summary statistic prior to the statistical analysis. However, consensus on which summary statistic to use has yet to be reached. Another important consideration concerns the assessment of proper sample sizes in the design of Comet assay studies. This study aims to identify a statistic suitably summarizing the % tail DNA of mice testicular samples in Comet assay studies. A second aim is to provide curves for this statistic outlining the number of animals and gels to use. The current study was based on 11 compounds administered via oral gavage in three doses to male mice: CAS no. 110-26-9, CAS no. 512-56-1, CAS no. 111873-33-7, CAS no. 79-94-7, CAS no. 115-96-8, CAS no. 598-55-0, CAS no. 636-97-5, CAS no. 85-28-9, CAS no. 13674-87-8, CAS no. 43100-38-5 and CAS no. 60965-26-6. Testicular cells were examined using the alkaline version of the Comet assay and the DNA damage was quantified as % tail DNA using a fully automatic scoring system. From the raw data 23 summary statistics were examined. A linear mixed-effects model was fitted to the summarized data and the estimated variance components were used to generate power curves as a function of sample size. The statistic that most appropriately summarized the within-sample distributions was the median of the log-transformed data, as it most consistently conformed to the assumptions of the statistical model. Power curves for 1.5-, 2-, and 2.5-fold changes of the highest dose group compared to the control group when 50 and 100 cells were scored per gel are provided to aid in the design of future Comet assay studies on testicular cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Kim, Jae-Hun; Ha, Tae Lin; Im, Geun Ho; Yang, Jehoon; Seo, Sang Won; Chung, Julius Juhyun; Chae, Sun Young; Lee, In Su; Lee, Jung Hee
2014-03-05
In this study, we have shown the potential of a voxel-based analysis for imaging amyloid plaques and its utility in monitoring therapeutic response in Alzheimer's disease (AD) mice using manganese oxide nanoparticles conjugated with an antibody of Aβ1-40 peptide (HMON-abAβ40). T1-weighted MR brain images of a drug-treated AD group (n=7), a nontreated AD group (n=7), and a wild-type group (n=7) were acquired using a 7.0 T MRI system before (D-1), 24-h (D+1) after, and 72-h (D+3) after injection with an HMON-abAβ40 contrast agent. For the treatment of AD mice, DAPT was injected intramuscularly into AD transgenic mice (50 mg/kg of body weight). For voxel-based analysis, the skull-stripped mouse brain images were spatially normalized, and these voxels' intensities were corrected to reduce voxel intensity differences across scans in different mice. Statistical analysis showed higher normalized MR signal intensity in the frontal cortex and hippocampus of AD mice over wild-type mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). After the treatment of AD mice, the normalized MR signal intensity in the frontal cortex and hippocampus decreased significantly in comparison with nontreated AD mice on D+1 and D+3 (P<0.01, uncorrected for multiple comparisons). These results were confirmed by histological analysis using a thioflavin staining. This unique strategy allows us to detect brain regions that are subjected to amyloid plaque deposition and has the potential for human applications in monitoring therapeutic response for drug development in AD.
Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission)
NASA Astrophysics Data System (ADS)
Proshchina, A. E.; Krivova, Y. S.; Saveliev, S. C.
2015-11-01
In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions.
Gallistel, C. R.; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam
2014-01-01
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer. PMID:24637442
Gallistel, C R; Balci, Fuat; Freestone, David; Kheifets, Aaron; King, Adam
2014-02-26
We describe a high-throughput, high-volume, fully automated, live-in 24/7 behavioral testing system for assessing the effects of genetic and pharmacological manipulations on basic mechanisms of cognition and learning in mice. A standard polypropylene mouse housing tub is connected through an acrylic tube to a standard commercial mouse test box. The test box has 3 hoppers, 2 of which are connected to pellet feeders. All are internally illuminable with an LED and monitored for head entries by infrared (IR) beams. Mice live in the environment, which eliminates handling during screening. They obtain their food during two or more daily feeding periods by performing in operant (instrumental) and Pavlovian (classical) protocols, for which we have written protocol-control software and quasi-real-time data analysis and graphing software. The data analysis and graphing routines are written in a MATLAB-based language created to simplify greatly the analysis of large time-stamped behavioral and physiological event records and to preserve a full data trail from raw data through all intermediate analyses to the published graphs and statistics within a single data structure. The data-analysis code harvests the data several times a day and subjects it to statistical and graphical analyses, which are automatically stored in the "cloud" and on in-lab computers. Thus, the progress of individual mice is visualized and quantified daily. The data-analysis code talks to the protocol-control code, permitting the automated advance from protocol to protocol of individual subjects. The behavioral protocols implemented are matching, autoshaping, timed hopper-switching, risk assessment in timed hopper-switching, impulsivity measurement, and the circadian anticipation of food availability. Open-source protocol-control and data-analysis code makes the addition of new protocols simple. Eight test environments fit in a 48 in x 24 in x 78 in cabinet; two such cabinets (16 environments) may be controlled by one computer.
Pancreas of C57 black mice after long-term space flight (Bion-M1 Space Mission).
Proshchina, A E; Krivova, Y S; Saveliev, S C
2015-11-01
In this study, we analysed the pancreases of C57BL/6N mice in order to estimate the effects of long-term space flights. Mice were flown aboard the Bion-M1 biosatellite, or remained on ground in the control experiment that replicated environmental and housing conditions in the spacecraft. Vivarium control group was used to account for housing effects. Each of the groups included mice designated for recovery studies. Mice pancreases were dissected for histological and immunohistochemical examinations. Using a morphometry and statistical analysis, a strong correlation between the mean islet size and the mean body weight was revealed in all groups. Therefore, we propose that hypokinesia and an increase in nutrition play an important role in alterations of the endocrine pancreas, both in space flight and terrestrial conditions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Increased frequencies of aberrant sperm as indicators of mutagenic damage in mice.
Soares, E R; Sheridan, W; Haseman, J K; Segall, M
1979-02-01
We have tested the effects of TEM in 3 strains of mice using the sperm morphology assay. In addition, we have made an attempt to evaluate this test system with respect to experimental design, statistical problems and possible interlaboratory differences. Treatment with TEM results in significant increases in the percent of abnormally shaped sperm. These increases are readily detectable in sperm treated as spermatocytes and spermatogonial stages. Our data indicate possible problems associated with inter-laboratory variation in slide analysis. We have found that despite the introduction of such sources of variation, our data were consistent with respect to the effects of TEM. Another area of concern in the sperm morphology test is the presence of "outlier" animals. In our study, such animals comprised 4% of the total number of animals considered. Statistical analysis of the slides from these animals have shown that this problem can be dealt with and that when recognized as such, "outliers" do not effect the outcome of the sperm morphology assay.
Lang, Zhe; Chen, Gang; Wang, Dong-chang
2012-10-01
This study was designed to evaluate the inhibitory effect of nimesulide in combination with oxaliplatin on tumor growth, expression of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin, and lymphatic metastasis in lung cancer xenograft in nude mice, and to discuss the possible synergistic effect of nimesulide in combination with oxaliplatin. Human lung cancer A549 cells were injected into BALB/c nude mice subcutaneously. Thirty-three healthy male nude mice were randomly divided into 4 groups: the control group, nimesulide group, oxaliplatin group and nimesulide combined with oxaliplatin group. Transplanted tumor tissues were collected and the expressions of COX-2, VEGF-C, VEGFR-3, survivin, β-catenin protein were detected by immunohistochemistry, and RT-PCR assay was used to assess the expression of tumor COX-2, VEGF-C, VEGFR-3, survivin and β-catenin mRNA. SPSS 16.0 was used for statistical analysis. Data were present as (x(-) ± s), and the means were compared by analysis of variance test. Tumor inhibition rates of the nimesulide group, oxaliplatin group and nimesulide + oxaliplatin group were 39.73%, 48.04% and 65.94%, respectively. Immunohistochemical and RT-PCR analysis showed that compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide group were significantly reduced (all P < 0.05). Compared with the control group, statistical analysis of variance showed that the expression levels of COX-2, VEGF-C and VEGFR-3 of the oxaliplatin group were significantly increased (P < 0.05), the expression levels of survivin and β-catenin protein and mRNA of the oxaliplatin group were significantly reduced (P < 0.05). Compared with the control group, the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin of the nimesulide + oxaliplatin group were significantly reduced (all P < 0.05). Both nimesulide alone or in combination with oxaliplatin can significantly inhibit the growth of lung cancer xenografts in nude mice and the expression levels of COX-2, VEGF-C, VEGFR-3, survivin and β-catenin. Oxaliplatin can significantly inhibit the growth of lung cancer xenografts in nude mice, and the expression of survivin and β-catenin. Nimesulide in combination with oxaliplatin enhances the antitumor effect of oxaliplatin.
Cell therapy with bone marrow mononuclear cells in elastase-induced pulmonary emphysema.
Longhini-Dos-Santos, Nathalia; Barbosa-de-Oliveira, Valter Abraão; Kozma, Rodrigo Heras; Faria, Carolina Arruda de; Stessuk, Talita; Frei, Fernando; Ribeiro-Paes, João Tadeu
2013-04-01
Emphysema is characterized by destruction of alveolar walls with loss of gas exchange surface and consequent progressive dyspnea. This study aimed to evaluate the efficiency of cell therapy with bone marrow mononuclear cells (BMMC) in an animal model of elastase-induced pulmonary emphysema. Emphysema was induced in C57Bl/J6 female mice by intranasal instillation of elastase. After 21 days, the mice received bone marrow mononuclear cells from EGFP male mice with C57Bl/J6 background. The groups were assessed by comparison and statistically significant differences (p < 0.05) were observed among the groups treated with BMMC and evaluated after 7, 14 and 21 days. Analysis of the mean linear intercept (Lm) values for the different groups allowed to observe that the group treated with BMMC and evaluated after 21 days showed the most significant result. The group that received no treatment showed a statistically significant difference when compared to other groups, except the group treated and evaluated after 21 days, evidencing the efficacy of cell therapy with BMMC in pulmonary emphysema.
Stillson, Lindsey L; Platt, Thomas R
2007-04-01
Population density, or crowding, was examined to determine its effect on the morphometric variability of Echinostoma caproni (Digenea) in ICR mice. Six mice were infected with 25 and 100 metacercariae, and a single mouse was infected with 300 metacercariae. All mice were infected at necropsy 22 days postinfection with recoveries of 77%, 69%, and 7.3%, respectively. Whole mounts were prepared, and 31 characters were evaluated (25 direct measurements and 6 ratios). Univariate and multivariate statistical analysis revealed significant differences between adult worms from all 3 groups. Twenty-seven of 31 characters showed significant within-group differences, with the primary differences between worms from 25/100 versus 300 metacercariae infections. Discriminant function analysis yielded a 100% correct classification based on infection size, which is consistent with studies on distinct species of Echinostoma. The low recovery from the mouse infected with 300 metacercariae suggests inflammatory expulsion of juvenile worms and the possibility of immunity as a factor in the crowding effect. These results suggest that external factors may affect morphometric variability of digenetic trematodes to a larger degree than previously recognized.
Strong, Randy; Miller, Richard A; Astle, Clinton M; Baur, Joseph A; de Cabo, Rafael; Fernandez, Elizabeth; Guo, Wen; Javors, Martin; Kirkland, James L; Nelson, James F; Sinclair, David A; Teter, Bruce; Williams, David; Zaveri, Nurulain; Nadon, Nancy L; Harrison, David E
2013-01-01
The National Institute on Aging Interventions Testing Program (ITP) was established to evaluate agents that are hypothesized to increase life span and/or health span in genetically heterogeneous mice. Each compound is tested in parallel at three test sites. It is the goal of the ITP to publish all results, negative or positive. We report here on the results of lifelong treatment of mice, beginning at 4 months of age, with each of five agents, that is, green tea extract (GTE), curcumin, oxaloacetic acid, medium-chain triglyceride oil, and resveratrol, on the life span of genetically heterogeneous mice. Each agent was administered beginning at 4 months of age. None of these five agents had a statistically significant effect on life span of male or female mice, by log-rank test, at the concentrations tested, although a secondary analysis suggested that GTE might diminish the risk of midlife deaths in females only.
Miller, Richard A.; Astle, Clinton M.; Baur, Joseph A.; de Cabo, Rafael; Fernandez, Elizabeth; Guo, Wen; Javors, Martin; Kirkland, James L.; Nelson, James F.; Sinclair, David A.; Teter, Bruce; Williams, David; Zaveri, Nurulain; Nadon, Nancy L.; Harrison, David E.
2013-01-01
The National Institute on Aging Interventions Testing Program (ITP) was established to evaluate agents that are hypothesized to increase life span and/or health span in genetically heterogeneous mice. Each compound is tested in parallel at three test sites. It is the goal of the ITP to publish all results, negative or positive. We report here on the results of lifelong treatment of mice, beginning at 4 months of age, with each of five agents, that is, green tea extract (GTE), curcumin, oxaloacetic acid, medium-chain triglyceride oil, and resveratrol, on the life span of genetically heterogeneous mice. Each agent was administered beginning at 4 months of age. None of these five agents had a statistically significant effect on life span of male or female mice, by log-rank test, at the concentrations tested, although a secondary analysis suggested that GTE might diminish the risk of midlife deaths in females only. PMID:22451473
Rodent Biocompatibility Test Using the NASA Foodbar and Epoxy EP21LV
NASA Technical Reports Server (NTRS)
Tillman, J.; Steele, M.; Dumars, P.; Vasques, M.; Girten, B.; Sun, S. (Technical Monitor)
2002-01-01
Epoxy has been used successfully to affix NASA foodbars to the inner walls of the Animal Enclosure Module for past space flight experiments utilizing rodents. The epoxy used on past missions was discontinued, making it necessary to identify a new epoxy for use on the STS-108 and STS-107 missions. This experiment was designed to test the basic biocompatibility of epoxy EP21LV with male rats (Sprague Dawley) and mice (Swiss Webster) when applied to NASA foodbars. For each species, the test was conducted with a control group fed untreated foodbars and an experimental group fed foodbars applied with EP21LV. For each species, there were no group differences in animal health and no statistical differences (P<0.05) in body weights throughout the study. In mice, there was a 16% increase in heart weight in the epoxy group; this result was not found in rats. For both species, there were no statistical differences found in other organ weights measured. In rats, blood glucose levels were 15% higher and both total protein and globulin were 10% lower in the epoxy group. Statistical differences in these parameters were not found in mice. For both species, no statistical differences were found in other blood parameters tested. Food consumption was not different in rats but water consumption was significantly decreased 10 to 15% in the epoxy group. The difference in water consumption is likely due to an increased water content of the epoxy-treated foodbars. Finally, both species avoided consumption of the epoxy material. Based on the global analysis of the results, the few parameters found to be statistically different do not appear to be a physiologically relevant effect of the epoxy material, We conclude that the EP21LV epoxy is biocompatible with rodents.
Dragunsky, Eugenia; Nomura, Tatsuji; Karpinski, Kazimir; Furesz, John; Wood, David J.; Pervikov, Yuri; Abe, Shinobu; Kurata, Takeshi; Vanloocke, Olivier; Karganova, Galina; Taffs, Rolf; Heath, Alan; Ivshina, Anna; Levenbook, Inessa
2003-01-01
OBJECTIVE: Extensive WHO collaborative studies were performed to evaluate the suitability of transgenic mice susceptible to poliovirus (TgPVR mice, strain 21, bred and provided by the Central Institute for Experimental Animals, Japan) as an alternative to monkeys in the neurovirulence test (NVT) of oral poliovirus vaccine (OPV). METHODS: Nine laboratories participated in the collaborative study on testing neurovirulence of 94 preparations of OPV and vaccine derivatives of all three serotypes in TgPVR21 mice. FINDINGS: Statistical analysis of the data demonstrated that the TgPVR21 mouse NVT was of comparable sensitivity and reproducibility to the conventional WHO NVT in simians. A statistical model for acceptance/rejection of OPV lots in the mouse test was developed, validated, and shown to be suitable for all three vaccine types. The assessment of the transgenic mouse NVT is based on clinical evaluation of paralysed mice. Unlike the monkey NVT, histological examination of central nervous system tissue of each mouse offered no advantage over careful and detailed clinical observation. CONCLUSIONS: Based on data from the collaborative studies the WHO Expert Committee for Biological Standardization approved the mouse NVT as an alternative to the monkey test for all three OPV types and defined a standard implementation process for laboratories that wish to use the test. This represents the first successful introduction of transgenic animals into control of biologicals. PMID:12764491
Association between HIV-1 coreceptor usage and resistance to broadly neutralizing antibodies.
Pfeifer, Nico; Walter, Hauke; Lengauer, Thomas
2014-10-01
Recently discovered broadly neutralizing antibodies have revitalized hopes of developing a universal vaccine against HIV-1. Mainly responsible for new infections are variants only using CCR5 for cell entry, whereas CXCR4-using variants can become dominant in later infection stages. We performed a statistical analysis on two different previously published data sets. The first data set was a panel of 199 diverse HIV-1 isolates for which IC50 neutralization titers were determined for the broadly neutralizing antibodies VRC01, VRC-PG04, PG9, and PG16. The second data set contained env sequences of viral variants extracted from HIV-1-infected humanized mice treated with the antibody PGT128 and from untreated control mice. For the panel of 199 diverse HIV-1 isolates, we found a statistically significant association between viral resistance to PG9 and PG16 and CXCR4 coreceptor usage (P = 0.0011 and P = 0.0010, respectively). Our analysis of viral variants from HIV-1-infected humanized mice under treatment with the broadly neutralizing antibody PGT128 indicated that certain antibodies might drive a viral population toward developing CXCR4 coreceptor usage capability (P = 0.0011 for the comparison between PGT128 and control measurement). These analyses highlight the importance of accounting for a possible coreceptor usage bias pertaining to the effectiveness of an HIV vaccine and to passive antibody transfer as therapeutic approach.
[The effect of active immunization with Acanthamoeba culbertsoni in mice born to immune mother].
Kong, H H; Seo, S A; Shin, C O; Im, K I
1993-06-01
Acanthamoeba culbertsoni is a pathogenic free-living amoeba causing primary amoebic meningoencephalitis (PAME) in human and mouse. Several reports on the immune responses in mice with this amoebic infection have been published, but the effects of transferred passive immunity on the active immunization in offspring mice have not been demonstrated. This experiment was done to observe the effect of active immunization with Acanthamoeba culbertsoni in mice born to immune mothers. Acanthamoeba culbertsoni was cultured in the CGV medium axenically. Female BALB/c mice weighing about 20g were immunized through the intraperitoneal injection of Acanthamoeba culbertsoni trophozoites 1 x 10(6) each three times at the interval of one week. Offspring mice were immunized two times. The mice were inoculated intranasally with 1 x 10(4) trophozoites under secobarbital anesthesia. There was a statistical difference in mortality between the transferred immunity group and the active immunization group. Statistical differences were not demonstrated in antibody titer between both groups. But L3T4+ T cell/Ly2+ T cell ratio was increased in the transferred immunity group more than active immunization group of the offspring mice at the age of 5 weeks. There was no differences statistically in mortality between both groups. It was recognized that active immunization in offspring mice born to immune mother could modulate the immune status according to the time of immunization.
AhR-mediated gene expression in the developing mouse telencephalon.
Gohlke, Julia M; Stockton, Pat S; Sieber, Stella; Foley, Julie; Portier, Christopher J
2009-11-01
We hypothesize that TCDD-induced developmental neurotoxicity is modulated through an AhR-dependent interaction with key regulatory neuronal differentiation pathways during telencephalon development. To test this hypothesis we examined global gene expression in both dorsal and ventral telencephalon tissues in E13.5 AhR-/- and wildtype mice exposed to TCDD or vehicle. Consistent with previous biochemical, pathological and behavioral studies, our results suggest TCDD initiated changes in gene expression in the developing telencephalon are primarily AhR-dependent, as no statistically significant gene expression changes are evident after TCDD exposure in AhR-/- mice. Based on a gene regulatory network for neuronal specification in the developing telencephalon, the present analysis suggests differentiation of GABAergic neurons in the ventral telencephalon is compromised in TCDD exposed and AhR-/- mice. In addition, our analysis suggests Sox11 may be directly regulated by AhR based on gene expression and comparative genomics analyses. In conclusion, this analysis supports the hypothesis that AhR has a specific role in the normal development of the telencephalon and provides a mechanistic framework for neurodevelopmental toxicity of chemicals that perturb AhR signaling.
Malisch, Jessica L; deWolski, Karen; Meek, Thomas H; Acosta, Wendy; Middleton, Kevin M; Crino, Ondi L; Garland, Theodore
In vertebrates, acute stressors-although short in duration-can influence physiology and behavior over a longer time course, which might have important ramifications under natural conditions. In laboratory rats, for example, acute stress has been shown to increase anxiogenic behaviors for days after a stressor. In this study, we quantified voluntary wheel-running behavior for 22 h following a restraint stress and glucocorticoid levels 24 h postrestraint. We utilized mice from four replicate lines that have been selectively bred for high voluntary wheel-running activity (HR mice) for 60 generations and their nonselected control (C) lines to examine potential interactions between exercise propensity and sensitivity to stress. Following 6 d of wheel access on a 12L∶12D photo cycle (0700-1900 hours, as during the routine selective breeding protocol), 80 mice were physically restrained for 40 min, beginning at 1400 hours, while another 80 were left undisturbed. Relative to unrestrained mice, wheel running increased for both HR and C mice during the first hour postrestraint (P < 0.0001) but did not differ 2 or 3 h postrestraint. Wheel running was also examined at four distinct phases of the photoperiod. Running in the period of 1600-1840 hours was unaffected by restraint stress and did not differ statistically between HR and C mice. During the period of peak wheel running (1920-0140 hours), restrained mice tended to run fewer revolutions (-11%; two-tailed P = 0.0733), while HR mice ran 473% more than C (P = 0.0008), with no restraint × line type interaction. Wheel running declined for all mice in the latter part of the scotophase (0140-0600 hours), restraint had no statistical effect on wheel running, but HR again ran more than C (+467%; P = 0.0122). Finally, during the start of the photophase (0720-1200 hours), restraint increased running by an average of 53% (P = 0.0443) in both line types, but HR and C mice did not differ statistically. Mice from HR lines had statistically higher plasma corticosterone concentrations than C mice, with no statistical effect of restraint and no interaction between line type and restraint. Overall, these results indicate that acute stress can affect locomotor activity (or activity patterns) for many hours, with the most prominent effect being an increase in activity during a period of typical inactivity at the start of the photophase, 15-20 h poststressor.
Korolenko, Tatyana A; Johnston, Thomas P; Tuzikov, Fedor V; Tuzikova, Natalia A; Pupyshev, Alexandr B; Spiridonov, Victor K; Goncharova, Natalya V; Maiborodin, Igor V; Zhukova, Natalia A
2016-01-22
The aims of this study were to evaluate the effect of poloxamer 407 administration on atherogenic serum lipoprotein fractions and subfractions associated with cholesterol, triglycerides and phospholipids, as well as the onset of early atherosclerosis, in mice. Mice were administered either sterile saline or poloxamer 407 (to induce a dose-controlled hyperlipidemia) for 1 month and then sacrificed at 1, 4 and 10 days after the last dose of poloxamer 407. Systolic and diastolic blood pressure, the activity of a cysteine protease (cathepsin B) in cardiac and liver tissue, and histological/morphological examination of heart and liver specimens was performed for each group of mice at each time point. Lastly, small angle X-ray scattering was utilized to analyze the lipoprotein fractions and subfractions associated with cholesterol, triglycerides and phospholipids for both groups of mice at each time point. Statistical analysis was performed using one-way, analysis-of-variance with post hoc analysis to determine significantly different mean values, while correlation analysis employed the Spearman test. Poloxamer 407-treated mice revealed significant hyperlipidemia, moderately elevated blood pressure, general lipidosis in liver cells, increased cysteine protease activity in heart tissue, and contractile-type changes in cardiomyocytes. Similar to humans, the onset of atherosclerosis in poloxamer 407-treated mice was characterized by a steady increase in serum low-density, intermediate-density and very-low-density lipoprotein fractions, as well as very-low-density lipoprotein subfractions. We would propose that the sustained elevation of serum atherogenic lipoprotein fractions and subfractions induced by the administration of poloxamer 407 to mice resulted in the morphological changes we observed in both heart and liver cells, which are suggested to precede atherosclerosis, since this is a well-established mouse model of atherosclerosis. Since most of the cellular, biochemical and physiological changes documented in the present study using poloxamer 407-treated mice are related to the symptoms of early atherosclerosis in humans, it is suggested that the poloxamer 407-induced mouse model of hyperlipidemia and atherosclerosis might prove beneficial as an experimental animal model with which to evaluate the pathological features observed in early-stage atherosclerosis.
de Sousa, Aline A; Dos Reis, Renata R; de Lima, Camila M; de Oliveira, Marcus A; Fernandes, Taiany N; Gomes, Giovanni F; Diniz, Daniel G; Magalhães, Nara M; Diniz, Cristovam G; Sosthenes, Marcia C K; Bento-Torres, João; Diniz, José Antonio P; Vasconcelos, Pedro F da C; Diniz, Cristovam Wanderley P
2015-08-01
Many RNA virus CNS infections cause neurological disease. Because Piry virus has a limited human pathogenicity and exercise reduces activation of microglia in aged mice, possible influences of environment and aging on microglial morphology and behavior in mice sublethal encephalitis were investigated. Female albino Swiss mice were raised either in standard (S) or in enriched (EE) cages from age 2 to 6 months (young - Y), or from 2 to 16 months (aged - A). After behavioral tests, mice nostrils were instilled with Piry-virus-infected or with normal brain homogenates. Brain sections were immunolabeled for virus antigens or microglia at 8 days post-infection (dpi), when behavioral changes became apparent, and at 20 and 40 dpi, after additional behavioral testing. Young infected mice from standard (SYPy) and enriched (EYPy) groups showed similar transient impairment in burrowing activity and olfactory discrimination, whereas aged infected mice from both environments (EAPy, SAPy) showed permanent reduction in both tasks. The beneficial effects of an enriched environment were smaller in aged than in young mice. Six-hundred and forty microglial cells, 80 from each group were reconstructed. An unbiased, stereological sampling approach and multivariate statistical analysis were used to search for microglial morphological families. This procedure allowed distinguishing between microglial morphology of infected and control subjects. More severe virus-associated microglial changes were observed in young than in aged mice, and EYPy seem to recover microglial homeostatic morphology earlier than SYPy . Because Piry-virus encephalitis outcomes were more severe in aged mice, it is suggested that the reduced inflammatory response in those individuals may aggravate encephalitis outcomes. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Hayashi, Chie; Viereck, Jason; Hua, Ning; Phinikaridou, Alkystis; Madrigal, Andres G.; Gibson, Frank C.; Hamilton, James A.; Genco, Caroline A.
2011-01-01
Objective Studies in humans support a role for the oral pathogen Porphyromonas gingivalis in the development of inflammatory atherosclerosis. The goal of this study was to determine if P. gingivalis infection accelerates inflammation and atherosclerosis in the innominate artery of mice, an artery which has been reported to exhibit many features of human atherosclerotic disease, including plaque rupture. Methods and Results Apolipoprotein E-deficient (ApoE−/−) mice were orally infected with P. gingivalis, and Magnetic Resonance Imaging (MRI) was used to monitor the progression of atherosclerosis in live mice. P. gingivalis infected mice exhibited a statistically significant increase in atherosclerotic plaque in the innominate artery as compared to uninfected mice. Polarized light microscopy and immunohistochemistry revealed that the innominate arteries of infected mice had increased lipids, macrophages and T cells as compared to uninfected mice. Increases in plaque, total cholesterol esters and cholesterol monohydrate crystals, macrophages, and T cells were prevented by immunization with heat-killed P. gingivalis prior to pathogen exposure. Conclusions These are the first studies to demonstrate progression of inflammatory plaque accumulation in the innominate arteries by in-vivo MRI analysis following pathogen exposure, and to document protection from plaque progression in the innominate artery via immunization. PMID:21251656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groezinger, Gerd, E-mail: gerd.groezinger@med.uni-tuebingen.de; Schmehl, Joerg, E-mail: joerg.schmehl@med.uni-tuebingen.de; Bantleon, Ruediger, E-mail: ruediger.bantleon@med.uni-tuebingen.de
2012-12-15
Purpose: To evaluate in vivo the role of RAGE (receptor for advanced glycated end products) in the development of restenosis and neointimal proliferation in RAGE-deficient knockout (KO) mice compared with wild-type (WT) mice in an animal model. Materials and Methods: Sixteen WT and 15 RAGE-deficient mice underwent microvascular denudation of the common femoral artery under general anaesthesia. Contralateral arteries underwent a sham operation and served as controls. Four weeks after the intervention, all animals were killed, and paraformaldehyde-fixed specimens of the femoral artery were analysed with different stains (hematoxylin and eosin and Elastica van Gieson) and several different types ofmore » immunostaining (proliferating cell nuclear antigen, {alpha}-actin, collagen, von Willebrand factor, RAGE). Luminal area, area of the neointima, and area of the media were measured in all specimens. In addition, colony-formation assays were performed, and collagen production by WT smooth muscle cells (SMCs) and RAGE-KO SMCs was determined. For statistical analysis, P < 0.05 was considered statistically significant. Results: Four weeks after denudation, WT mice showed a 49.6% loss of luminal area compared with 14.9% loss of luminal area in RAGE-deficient mice (sham = 0% loss) (P < 0.001). The neointima was 18.2 (*1000 {mu}m{sup 2} [n = 15) in the WT group compared with only 8.4 (*1000 {mu}m{sup 2} [n = 16]) in the RAGE-KO group. RAGE-KO SMCs showed significantly decreased proliferation activity and production of extracellular matrix protein. Conclusion: RAGE may be shown to play a considerable role in the formation of neointima leading to restenosis after vascular injury.« less
NASA Astrophysics Data System (ADS)
Johri, Ansh; Schimel, Daniel; Noguchi, Audrey; Hsu, Lewis L.
2010-03-01
Imaging is a crucial clinical tool for diagnosis and assessment of pneumonia, but quantitative methods are lacking. Micro-computed tomography (micro CT), designed for lab animals, provides opportunities for non-invasive radiographic endpoints for pneumonia studies. HYPOTHESIS: In vivo micro CT scans of mice with early bacterial pneumonia can be scored quantitatively by semiautomated imaging methods, with good reproducibility and correlation with bacterial dose inoculated, pneumonia survival outcome, and radiologists' scores. METHODS: Healthy mice had intratracheal inoculation of E. coli bacteria (n=24) or saline control (n=11). In vivo micro CT scans were performed 24 hours later with microCAT II (Siemens). Two independent radiologists scored the extent of airspace abnormality, on a scale of 0 (normal) to 24 (completely abnormal). Using the Amira 5.2 software (Mercury Computer Systems), a histogram distribution of voxel counts between the Hounsfield range of -510 to 0 was created and analyzed, and a segmentation procedure was devised. RESULTS: A t-test was performed to determine whether there was a significant difference in the mean voxel value of each mouse in the three experimental groups: Saline Survivors, Pneumonia Survivors, and Pneumonia Non-survivors. It was found that the voxel count method was able to statistically tell apart the Saline Survivors from the Pneumonia Survivors, the Saline Survivors from the Pneumonia Non-survivors, but not the Pneumonia Survivors vs. Pneumonia Non-survivors. The segmentation method, however, was successfully able to distinguish the two Pneumonia groups. CONCLUSION: We have pilot-tested an evaluation of early pneumonia in mice using micro CT and a semi-automated method for lung segmentation and scoring system. Statistical analysis indicates that the system is reliable and merits further evaluation.
Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J; Cullen, Kathleen E
2017-04-15
In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential. Mice and non-human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies. Here we investigated the structure and statistics of the vestibular input experienced by mice versus non-human primates during natural behaviours, and found important differences. Our data establish that the structure and statistics of natural signals in non-human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input. These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self-motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self-motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self-motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power-law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self-motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self-motion stimuli are fundamentally different in rodents and primates. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
Carriot, Jérome; Jamali, Mohsen; Chacron, Maurice J.
2017-01-01
Key points In order to understand how the brain's coding strategies are adapted to the statistics of the sensory stimuli experienced during everyday life, the use of animal models is essential.Mice and non‐human primates have become common models for furthering our knowledge of the neuronal coding of natural stimuli, but differences in their natural environments and behavioural repertoire may impact optimal coding strategies.Here we investigated the structure and statistics of the vestibular input experienced by mice versus non‐human primates during natural behaviours, and found important differences.Our data establish that the structure and statistics of natural signals in non‐human primates more closely resemble those observed previously in humans, suggesting similar coding strategies for incoming vestibular input.These results help us understand how the effects of active sensing and biomechanics will differentially shape the statistics of vestibular stimuli across species, and have important implications for sensory coding in other systems. Abstract It is widely believed that sensory systems are adapted to the statistical structure of natural stimuli, thereby optimizing coding. Recent evidence suggests that this is also the case for the vestibular system, which senses self‐motion and in turn contributes to essential brain functions ranging from the most automatic reflexes to spatial perception and motor coordination. However, little is known about the statistics of self‐motion stimuli actually experienced by freely moving animals in their natural environments. Accordingly, here we examined the natural self‐motion signals experienced by mice and monkeys: two species commonly used to study vestibular neural coding. First, we found that probability distributions for all six dimensions of motion (three rotations, three translations) in both species deviated from normality due to long tails. Interestingly, the power spectra of natural rotational stimuli displayed similar structure for both species and were not well fitted by power laws. This result contrasts with reports that the natural spectra of other sensory modalities (i.e. vision, auditory and tactile) instead show a power‐law relationship with frequency, which indicates scale invariance. Analysis of natural translational stimuli revealed important species differences as power spectra deviated from scale invariance for monkeys but not for mice. By comparing our results to previously published data for humans, we found the statistical structure of natural self‐motion stimuli in monkeys and humans more closely resemble one another. Our results thus predict that, overall, neural coding strategies used by vestibular pathways to encode natural self‐motion stimuli are fundamentally different in rodents and primates. PMID:28083981
Boots, C.E.; Boudoures, A.; Zhang, W.; Drury, A.; Moley, K.H.
2016-01-01
STUDY QUESTION Does supplementation with co-enzyme Q10 (CoQ10) improve the oocyte mitochondrial abnormalities associated with obesity in mice? SUMMARY ANSWER In an obese mouse model, CoQ10 improves the mitochondrial function of oocytes. WHAT IS KNOWN ALREADY Obesity impairs oocyte quality. Oocytes from mice fed a high-fat/high-sugar (HF/HS) diet have abnormalities in mitochondrial distribution and function and in meiotic progression. STUDY DESIGN, SIZE, DURATION Mice were randomly assigned to a normal, chow diet or an isocaloric HF/HS diet for 12 weeks. After 6 weeks on the diet, half of the mice receiving a normal diet and half of the mice receiving a HF/HS diet were randomly assigned to receive CoQ10 supplementation injections for the remaining 6 weeks. PARTICIPANTS/MATERIALS, SETTING, METHODS Dietary intervention was initiated on C57Bl6 female mice at 4 weeks of age, CoQ10 versus vehicle injections were assigned at 10 weeks, and assays were conducted at 16 weeks of age. Mice were super-ovulated, and oocytes were collected and stained to assess mitochondrial distribution, quantify reactive oxygen species (ROS), assess meiotic spindle formation, and measure metabolites. In vitro fertilization was performed, and blastocyst embryos were transferred into control mice. Oocyte number, fertilization rate, blastulation rate and implantation rate were compared between the four cohorts. Bivariate statistics were performed appropriately. MAIN RESULTS AND THE ROLE OF CHANCE HF/HS mice weighed significantly more than normal diet mice (29 versus 22 g, P< 0.001). CoQ10 supplementation did not influence weight. Levels of ATP, citrate, and phosphocreatine were lower and ROS levels were higher in HF/HS mice than in controls (P< 0.001). CoQ10 supplementation significantly increased the levels of metabolites and decreased ROS levels in oocytes from normal diet mice but not in oocytes from HF/HS mice. However, CoQ10 completely prevented the mitochondrial distribution abnormalities observed in the HF/HS mice. Overall, CoQ10 supplementation significantly increased the percentage of normal spindle and chromosome alignment (92.3 versus 80.2%, P= 0.039). In the sub-analysis by diet, the difference did not reach statistical significance. When undergoing IVF, there were no statistically significant differences in the number of mature oocytes, the fertilization rate, blastocyst formation rates, implantation rates, resorption rates or litter size between HF/HS mice receiving CoQ10 or vehicle injections. LIMITATIONS, REASONS FOR CAUTION Experiments were limited to one species and strain of mice. The majority of experiments were performed after ovulation induction, which may not represent natural cycle fertility. WIDER IMPLICATIONS OF THE FINDINGS Improvement in oocyte mitochondrial distribution and function of normal, chow-fed mice and HF/HS-fed mice demonstrates the importance of CoQ10 and the efficiency of the mitochondrial respiratory chain in oocyte competence. Clinical studies are now needed to evaluate the therapeutic potential of CoQ10 in women's reproductive health. STUDY FUNDING/COMPETING INTEREST(S) C.E.B. received support from the National Research Training Program in Reproductive Medicine sponsored by the National Institute of Health (T32 HD040135-13) and the Scientific Advisory Board of Vivere Health. K.H.M received support from the American Diabetes Association and the National Institute of Health (R01 HD083895). There are no conflicts of interest to declare. TRIAL REGISTRATION NUMBER This study is not a clinical trial. PMID:27432748
Effects of Yangtze River source water on genomic polymorphisms of male mice detected by RAPD.
Zhang, Xiaolin; Zhang, Zongyao; Zhang, Xuxiang; Wu, Bing; Zhang, Yan; Yang, Liuyan; Cheng, Shupei
2010-02-01
In order to evaluate the environmental health risk of drinking water from Yangtze River source, randomly amplified polymorphic DNA (RAPD) markers were used to detect the effects of the source water on genomic polymorphisms of hepatic cell of male mice (Mus musculus, ICR). After the mice were fed with source water for 90 days, RAPD-polymerase chain reactions (PCRs) were performed on hepatic genomic DNA using 20 arbitrary primers. Totally, 189 loci were generated, including 151 polymorphic loci. On average, one PCR primer produced 5.3, 4.9 and 4.8 bands for each mouse in the control, the groups fed with source water and BaP solution, respectively. Compared with the control, feeding mice with Yangtze River source water caused 33 new loci to appear and 19 to disappear. Statistical analysis of RAPD printfingers revealed that Yangtze River source water exerted a significant influence on the hepatic genomic polymorphisms of male mice. This study suggests that RAPD is a reliable and sensitive method for the environmental health risk of Yangtze River source water.
Hepatic Metabolomics Investigation in Acute and Chronic Murine Toxoplasmosis.
Chen, Xiao-Qing; Elsheikha, Hany M; Hu, Rui-Si; Hu, Gui-Xue; Guo, Shu-Ling; Zhou, Chun-Xue; Zhu, Xing-Quan
2018-01-01
Toxoplasma gondii poses a great threat to human health, with no approved vaccine available for the treatment of T. gondii infection. T. gondii infections are not limited to the brain, and may also affect other organs especially the liver. Identification of host liver molecules or pathways involved in T. gondii replication process may lead to the discovery of novel anti- T. gondii targets. Here, we analyzed the metabolic profile of the liver of mice on 11 and 30 days postinfection (dpi) with type II T. gondii Pru strain. Global metabolomics using liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 389 significant metabolites from acutely infected mice; and 368 from chronically infected mice, when compared with control mice. Multivariate statistical analysis revealed distinct metabolic signatures from acutely infected, chronically infected and control mice. Infection influenced several metabolic processes, in particular those for lipids and amino acids. Metabolic pathways, such as steroid hormone biosynthesis, primary bile acid biosynthesis, bile secretion, and biosynthesis of unsaturated fatty acids were perturbed during the whole infection process, particularly during the acute stage of infection. The present results provide insight into hepatic metabolic changes that occur in BALB/c mice during acute and chronic T. gondii infection.
Maruno, Mitsuru; Shinoda, Masamichi; Honda, Kuniya; Ito, Reio; Urata, Kentaro; Watanabe, Masahiro; Okada, Shinji; Lee, Jun; Gionhaku, Nobuhito; Iwata, Koichi
2017-01-01
To develop a tongue pain model with no mucosal pathologic changes and to examine whether phosphorylation of p38 in trigeminal ganglion (TG) neurons innervating the tongue is associated with tongue heat hypersensitivity in mice. Tongue heat sensitivity in mice was assessed following application of the irritant 2,4,6-trinitrobenzene sulfonic acid (TNBS) to the tongue. After TNBS application, the expressions of p38, phosphorylated p38 (pp38), and transient receptor potential vanilloid 1 (TRPV1) were examined in TG neurons innervating the tongue. To further assess changes in tongue heat sensitivity and TRPV1 expression, a specific inhibitor of p38 phosphorylation (SB203580) was also administered into the TG. Student t test or two-way repeated-measures analysis of variance followed by Sidak multiple comparison test were used for statistical analysis, and P < .05 was considered statistically significant. TNBS application to the tongue induced noninflammatory heat hypersensitivity accompanied by the enhancement of p38 phosphorylation in TG neurons innervating the tongue and by an increase in the number of TRPV1 and pp38-immunoreactive (IR) TG neurons innervating the tongue. Intra-TG administration of SB203580 suppressed the increase in the TRPV1 and pp38-IR TG neurons and alleviated the noninflammatory tongue heat hypersensitivity induced by TNBS. p38 signaling cascades are involved in tongue heat hyperalgesia in association with TRPV1 upregulation in TG neurons innervating the TNBS-treated tongue.
Gallagher, C H; Greenoak, G E; Reeve, V E; Canfield, P J; Baker, R S; Bonin, A M
1984-10-01
The mutagenicity of some samples of a commonly used sunscreen, 2-ethylhexyl-p-methoxycinnamate (2-EHMC), led to these studies of its potential carcinogenicity in the HRA/Skh hairless mouse. In a daily treatment regime, repeated for 9 weeks, groups of mice were painted on the dorsum with 2-EHMC, and were then exposed to low doses of one of two artificial ultraviolet (UV) light sources. Mice were also treated with UV alone and with 2-EHMC alone. The accumulated UV exposure alone produced tumours in 40-100% of mice. However, 2-EHMC-treated mice were protected. Subsequent treatment of the 2-EHMC-protected mice, and mice previously treated with 2-EHMC alone, with the tumour promoter, croton oil, produced tumours on a significant number of animals. We conclude that 2-EHMC protects from UV tumorigenesis in the absence of a tumour promoter. However, although tumours appeared on only 4 out of 160 2-EHMC-treated mice exposed to UV, the carcinogenic process had been initiated in others, as application of the tumour promoter, croton oil, produced tumours. Statistical analysis of the incidence of promoted tumours inferred that prior irradiation with UV may not have been implicated. Therefore, 2-EHMC itself may initiate tumours in this strain of hairless mouse.
Radioprotective effect of Ganoderma lucidum (Leyss. ex. Fr. ) Karst after X-ray irradiation in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsu, H.Y.; Lian, S.L.; Lin, C.C.
1990-01-01
Six to seven week old male mice of ICR strain were exposed to 500 or 650 cGy of X-ray during experiments to determine if Ganoderma lucidum could be a factor in modification of radiation damage. Continuous intraperitoneal injection of the extract from Ganoderma lucidum before or after irradiation of 500 and 650 cGy of X-ray was found to improve the 30-day survival fractions of ICR mice, but wasn't significant by statistical analysis. The administration also enhanced the recoveries of the body weights and increased the recovery of hemograms of irradiated mice from radiation damage by injecting before or after radiationmore » exposure, especially for the treatment of 500 cGy irradiation. The 10-day CFUs was significantly higher for Ganoderma lucidum treated groups than for untreated groups. However, the differences of radioprotective effect between the X-ray irradiated groups with Ganoderma lucidum pretreated and post-treated were not significant (p greater than 0.05).« less
Inhalation of Carbon Black Nanoparticles Aggravates Pulmonary Inflammation in Mice
Saputra, Devina; Yoon, Jin-ha; Park, Hyunju; Heo, Yongju; Yang, Hyoseon; Lee, Eun Ji; Lee, Sangjin; Song, Chang-Woo; Lee, Kyuhong
2014-01-01
An increasing number of recent studies have focused on the impact of particulate matter on human health. As a model for atmospheric particulate inhalation, we investigated the effects of inhaled carbon black nanoparticles (CBNP) on mice with bleomycin-induced pulmonary fibrosis. The CNBPs were generated by a novel aerosolization process, and the mice were exposed to the aerosol for 4 hours. We found that CBNP inhalation exacerbated lung inflammation, as evidenced by histopathology analysis and by the expression levels of interleukin-6 protein, fibronectin, and interferon-γ mRNAs in lung tissues. Notably, fibronectin mRNA expression showed a statistically significant increase in expression after CBNP exposure. These data suggest that the concentration of CBNPs delivered (calculated to be 12.5 μg/m3) can aggravate lung inflammation in mice. Our results also suggest that the inhalation of ultrafine particles like PM 2.5 is an impactful environmental risk factor for humans, particularly in susceptible populations with predisposing lung conditions. PMID:25071917
Roberson, Robin; Cameroni, Irene; Toso, Laura; Abebe, Daniel; Bissel, Stephanie; Spong, Catherine Y
2009-02-01
Fetal alcohol syndrome (FAS) is the leading cause of a spectrum of preventable nongenetic learning and behavioral disorders. In adult (FAS) mice, we measured phosphorylated cyclic adenosine monophosphate response element of binding protein (pCREB) staining in hippocampal subregions to evaluate a possible mechanism underlying FAS learning deficits. Pregnant C57BL6/J mice were treated on gestational day 8 with alcohol or control (saline). After learning assessment, the offspring were perfused for immunohistochemistry and brain sections probed using SER 133 pCREB antibody. Relative staining density was assessed using National Institutes of Health Image software. Statistical analysis included analysis of variance with P < .05 considered significant. In all hippocampal subregions, pCREB staining was greater in the control animals than in the alcohol-treated group (P < or = .0001). In utero alcohol exposure decreased pCREB activity in hippocampal subregions of adult mice. The dentate gyrus had the most robust cumulative decrease in pCREB staining, suggesting FAS adult learning deficits may correlate to enhanced dentate gyrus neurodegeneration.
Metabolomics Reveals that Momordica charantia Attenuates Metabolic Changes in Experimental Obesity.
Gong, Zhi-Gang; Zhang, Jianbing; Xu, Yong-Jiang
2017-02-01
Momordica charantia L., also known as bitter melon, has been shown to ameliorate obesity and insulin resistance. However, metabolic changes regulated by M. charantia in obesity are not clearly understood. In this study, serums obtained from obese and M. charantia-treated mice were analyzed by using gas and liquid chromatography-mass spectrometry, and multivariate statistical analysis was performed by Orthogonal partial least squares discriminant analysis. The results from this study indicated that body weight fat and insulin levels of obese mice are dramatically suppressed by 8 weeks of dietary supplementation of M. charantia. Metabolomic data revealed that overproductions of energy and nutrient metabolism in obese mice were restored by M. charantia treatment. The antiinflammatory and inhibition of insulin resistance effect of M. charantia in obesity was illustrated with the restoration of free fatty acids and eicosanoids. The findings achieved in this study further strengthen the therapeutic value of using M. charantia to treat obesity. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Rodrigues-Junior, Valnês S; Pail, Priscilla B; Villela, Anne D; Falcão, Virgínia C A; Dadda, Adílio S; Abbadi, Bruno L; Pesquero, João B; Santos, Diógenes S; Basso, Luiz A; Campos, Maria M
2018-03-01
The role, if any, played by the kinin system in tuberculosis infection models, either in vivo or in vitro, was investigated. The effects of Mycobacterium tuberculosis infection on C57BL/6 wild type, B 1 R-/-, B 2 R-/- and double B 1 R/B 2 R knockout mice were evaluated. Immunohistochemistry analysis was carried out to assess B 1 R and B 2 R expression in spleens and lungs of M. tuberculosis-infected mice. In addition, in vitro experiments with M. tuberculosis-infected macrophages were performed. The in vivo effects of HOE-140 and SSR240612 on the mice model of infection were also evaluated. Infected B 2 R-/- mice exhibited increased splenomegaly, whereas decreased spleen weight in infected double B 1 R/B 2 R knockout mice was observed. The bacterial load, determined as colony-forming units, did not differ in the spleens and lungs of the studied mouse strains. Importantly, immunohistochemical analysis revealed that B 1 R was upregulated in both spleens and lungs of infected mice. M. tuberculosis-infected macrophages incubated with SSR240612, alone or in combination with des-Arg 9 -BK, for four days, displayed a marked inhibitory effect on CFU counts. However, the pre-incubation of the selective B 1 R (des-Arg 9 -BK and SSR240612) and B 2 R (BK and HOE-140) agonists and antagonists, respectively, did not significantly affect the bacterial loads. A statistically significant reduction in the CFU of M. tuberculosis in lungs and spleens of animals treated with SSR240612, but not with HOE-140, was observed. Further efforts should be pursued to clarify whether or not SSR240612 might be considered an option for the treatment of tuberculosis. Copyright © 2018. Published by Elsevier Ltd.
The MICE grand challenge lightcone simulation - I. Dark matter clustering
NASA Astrophysics Data System (ADS)
Fosalba, P.; Crocce, M.; Gaztañaga, E.; Castander, F. J.
2015-04-01
We present a new N-body simulation from the Marenostrum Institut de Ciències de l'Espai (MICE) collaboration, the MICE Grand Challenge (MICE-GC), containing about 70 billion dark matter particles in a (3 Gpc h-1)3 comoving volume. Given its large volume and fine spatial resolution, spanning over five orders of magnitude in dynamic range, it allows an accurate modelling of the growth of structure in the universe from the linear through the highly non-linear regime of gravitational clustering. We validate the dark matter simulation outputs using 3D and 2D clustering statistics, and discuss mass-resolution effects in the non-linear regime by comparing to previous simulations and the latest numerical fits. We show that the MICE-GC run allows for a measurement of the BAO feature with per cent level accuracy and compare it to state-of-the-art theoretical models. We also use sub-arcmin resolution pixelized 2D maps of the dark matter counts in the lightcone to make tomographic analyses in real and redshift space. Our analysis shows the simulation reproduces the Kaiser effect on large scales, whereas we find a significant suppression of power on non-linear scales relative to the real space clustering. We complete our validation by presenting an analysis of the three-point correlation function in this and previous MICE simulations, finding further evidence for mass-resolution effects. This is the first of a series of three papers in which we present the MICE-GC simulation, along with a wide and deep mock galaxy catalogue built from it. This mock is made publicly available through a dedicated web portal, http://cosmohub.pic.es.
Body Weight Reducing Effect of Oral Boric Acid Intake
Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Yalvac, Mehmet Emir; Emre, Sinem Hocaoglu; Karaca, Cetin; Muslumanoglu, Mahmut
2011-01-01
Background: Boric acid is widely used in biology, but its body weight reducing effect is not researched. Methods: Twenty mice were divided into two equal groups. Control group mice drank standard tap water, but study group mice drank 0.28mg/250ml boric acid added tap water over five days. Total body weight changes, major organ histopathology, blood biochemistry, urine and feces analyses were compared. Results: Study group mice lost body weight mean 28.1% but in control group no weight loss and also weight gained mean 0.09% (p<0.001). Total drinking water and urine outputs were not statistically different. Cholesterol, LDL, AST, ALT, LDH, amylase and urobilinogen levels were statistically significantly high in the study group. Other variables were not statistically different. No histopathologic differences were detected in evaluations of all resected major organs. Conclusion: Low dose oral boric acid intake cause serious body weight reduction. Blood and urine analyses support high glucose, lipid and middle protein catabolisms, but the mechanism is unclear. PMID:22135611
Body weight reducing effect of oral boric acid intake.
Aysan, Erhan; Sahin, Fikrettin; Telci, Dilek; Yalvac, Mehmet Emir; Emre, Sinem Hocaoglu; Karaca, Cetin; Muslumanoglu, Mahmut
2011-01-01
Boric acid is widely used in biology, but its body weight reducing effect is not researched. Twenty mice were divided into two equal groups. Control group mice drank standard tap water, but study group mice drank 0.28mg/250ml boric acid added tap water over five days. Total body weight changes, major organ histopathology, blood biochemistry, urine and feces analyses were compared. Study group mice lost body weight mean 28.1% but in control group no weight loss and also weight gained mean 0.09% (p<0.001). Total drinking water and urine outputs were not statistically different. Cholesterol, LDL, AST, ALT, LDH, amylase and urobilinogen levels were statistically significantly high in the study group. Other variables were not statistically different. No histopathologic differences were detected in evaluations of all resected major organs. Low dose oral boric acid intake cause serious body weight reduction. Blood and urine analyses support high glucose, lipid and middle protein catabolisms, but the mechanism is unclear.
Bergt, Stefan; Wagner, Nana-Maria; Heidrich, Manja; Butschkau, Antje; Nöldge-Schomburg, Gabriele E F; Vollmar, Brigitte; Roesner, Jan P
2013-11-01
Toll-like receptors (TLRs) play a crucial role in early host defense against microorganisms. Toll-like receptor 2 (TLR2) polymorphisms have a prevalence of 10%; functional defects of TLR2 are associated with higher susceptibility toward gram-positive bacteria, and TLR2 deficiency has been associated with an impaired adrenal stress response. In the present study, we compared endogenous corticosterone production of wild-type (WT) and TLR2-deficient (TLR2) mice and analyzed survival after hydrocortisone therapy during sepsis induced by cecal ligation and puncture (CLP). Male C57BL/6J (WT); and B6.129-Tlr2tm1Kir/J (TLR2) mice were subjected to CLP or sham operation and randomly assigned to postoperative treatment with either hydrocortisone (5 mg/kg) or vehicle (n = 10 mice/group). Survival was documented for an observation period of 48 h. Endogenous corticosterone production following hydrocortisone treatment and lipoteichoic acid (LTA) exposure, interleukin 6 (IL-6) and IL-1β plasma levels, and blood counts were determined following sham operation or CLP using another n = 5 mice/group. Statistical analysis was performed using analysis of variance/Bonferroni. TLR2 mice exhibited a lack of suppression and an attenuated increase in endogenous corticosterone production following hydrocortisone or LTA treatment, respectively. After CLP, TLR2 mice exhibited an uncompromised adrenal stress response, higher IL-6 levels, and increased survival compared with WT controls (75 vs. 35%; P < 0.05). Hydrocortisone therapy of TLR2 mice completely abolished this advantage (decrease in survival to 45%, P < 0.05 vs. vehicle-treated TLR2 mice) and was associated with decreased IL-1β plasma concentrations. Toll-like receptor 2 deficiency is associated with an uncompromised adrenal stress response and increased survival rates during polymicrobial sepsis. Hydrocortisone treatment increases mortality of septic TLR2 mice, suggesting that hydrocortisone therapy might be harmful for individuals with functional TLR2 polymorphisms.
Alizadeh, Hamid; Bazgir, Behzad; Daryanoosh, Farhad; Koushki, Maryam; Sobhani, Vahid
2014-01-01
Exercise has positive and negative effects on immune system. Herein, we would like to investigate the effects of incremental aerobic training and fish oil supplementation on the plasma levels of CRP, CPK and IL-17 in trained mice. One of the major roles of immune system is to produce soluble or cellular components that provide the immunity against inflammatory agent. The purpose of this study is to investigate distinct and combine effects of incremental aerobic training and fish oil supplement on plasma levels of IL-17, CPK and CRP in trained male mice. Totally, 54 healthy male mice (2 months old, weight= 34±1 grams) were selected. At first 10 mice were killed to determine base line values, the rest of them were randomly divided into four groups, control group (C, n=11), supplement group (S, n=11), training group (T, n=11) and supplement-training group (ST, n=11).The supplement and supplement-training groups were fed with 0.2cc/day fish oil for 8 weeks. Training and supplement-training groups underwent exercise for 5 sessions per week for a period of 8 weeks on animal treadmill. SPSS 16.0 software and multivariate analysis of variance were used for statistical analysis of data Exercise and fish oil supplement lead to a decrease in CRP levels and subsequently causing a reduction in plasma levels of IL-17 and CK in mice (p<0.05). Combination of exercise and fish oil can reduce regulate inflammatory response caused by incremental exercise.
Muradian, Kh K; Utko, N O; Mozzhukhina, T H; Pishel', I M; Litoshenko, O Ia; Bezrukov, V V; Fraĭfel'd, V E
2002-01-01
Correlative and regressive relations between the gaseous exchange, thermoregulation and mitochondrial protein content were analyzed by two- and three-dimensional statistics in mice. It has been shown that the pair wise linear methods of analysis did not reveal any significant correlation between the parameters under exploration. However, it became evident at three-dimensional and non-linear plotting for which the coefficients of multivariable correlation reached and even exceeded 0.7-0.8. The calculations based on partial differentiation of the multivariable regression equations allow to conclude that at certain values of VO2, VCO2 and body temperature negative relations between the systems of gaseous exchange and thermoregulation become dominating.
[Effects of sildenafil citrate on mice hearing].
Luo, Xiaoqin; Guo, Xuyao; Chen, Lin; Chen, Xiaohong; Zhang, Xueyuan; Yuan, Wei
2014-06-01
The purpose of this investigation was to study the effects of the Sildenafil citrate on mice hearing. Seven-week-old adult male Kunming mice were used. The mice were randomly divided into four groups with 10 mice in each group.Sildenafil groups were orally administered daily with sildenafil [0.1 mg/(kg·d), 1 mg/(kg·d), 10 mg/(kg·d)] and control group was orally administered with normal saline. Then mice were tested for auditory brainstem response (ABR) to observe the changes of ABR's thresholds at before administration and 1, 5, 10, 15, 20 day afterwards. The mice basilar membrane samples were studied by immunofluorescent labeling.High performance liquid chromatography was used for determination the concentration of sildenafil in endolymph of mice cochlea. Statistical analysis was performed using SPSS 13.0. After 30 min following administration, the Sildenafil in endolymph of mice cochlear could be assayed by high performance liquid chromatography, and it was dose-related.Sildenafil increased the hearing thresholds with the time of administration. Hearing thresholds increased significantly in the sildenafil group at 20 d compared to the control group (P < 0.05). After administered high dose of Sildenafil, on the 20th day, the ABR thresholds average threshold was (60.0 ± 10.0) dBnHL, and the control group was (14.5 ± 6.0) dBnHL.Hair cells damages in the base ring of cochlea could be observed in experimental group in a concentration-dependent manner. Sildenafil can pass through blood-labyrinth barrier to the inner ear, and doses of sildenafil administration can induce hearing impairment in mice.
Kamali, Mahsa; Bahmanpour, Soghra
2016-05-01
One of the major problems of the aged women or older than 35 is getting pregnant in the late fertility life. Fertility rates begin to decline gradually at the age of 30, more so at 35, and markedly at 40. Even with fertility treatments such as in vitro fertilization, women have more difficulty in getting pregnant or may deliver abnormal fetus. The purpose of this study was to assess the effects of flax seed hydroalcoholic extract on the fetal brain of aged mice and its comparison with young mice. In this experimental study, 32 aged and 32 young mice were divided into 4 groups. Controls received no special treatment. The experimental mice groups, 3 weeks before mating, were fed with flax seed hydroalcoholic extract by oral gavages. After giving birth, the brains of the fetus were removed. Data analysis was performed by statistical test ANOVA using SPSS version 18 (P<0.05). The mean fetus brain weight of aged mother groups compared to the control group was increased significantly (P<0.05). This study showed that flax seed hydroalcoholic extract could improve fetal brain weights in the aged groups.
Li, Xiao-guang; Wang, Xu-xia; Li, Teng-yu; Wang, Yan-xiu; Gao, Jing; Ni, Chun-xiao
2012-12-01
To investigate the inhibitory effect of VEGF antisense phosphorothioate oligodeoxynucleoiides on the growth of human salivary adenoid cystic carcinoma (SACC) xenografts in nude mice. The VEGF-ASODN was synthesised artificially. After the model of human SACC xenografts in nude mice was established, they were random1y divided into three groups: antisense group, scrambled group and normal saline group. A control group without cancer was also established. Antisense(66 μg), scrambled sequence(66 μg) and normal saline(once every 3 days and 7 times in all) were injected in three experimental groups, respectively. Two days after therapy, the mice were sacrificed. Serums were used for detection of VEGF protein. All tumors were measured and weighted. The quantity of VEGF mRNA and protein and PLI, MVD was detected by hybridization in situ and immunohistochemistry. SPSS13.0 software package was used for statistical analysis. The VEGF-ASODN could suppress the expression of VEGF in human SACC xenografts in nude mice and reduce VEGF protein in serum of nude mice significantly. It cou1d also reduce the volume and weight of xenografts and could reduce the expression of VEGF mRNA and its protein, PCNA and CD34. By inhibiting the expression of VEGF, VEGF-ASODN can inhabit proliferation of human SACC xenografts in nude mice.
Bennett, Brian J.; Davis, Richard C.; Civelek, Mete; Orozco, Luz; Wu, Judy; Qi, Hannah; Pan, Calvin; Packard, René R. Sevag; Eskin, Eleazar; Yan, Mujing; Kirchgessner, Todd; Wang, Zeneng; Li, Xinmin; Gregory, Jill C.; Hazen, Stanley L.; Gargalovic, Peter S.; Lusis, Aldons J.
2015-01-01
Common forms of atherosclerosis involve multiple genetic and environmental factors. While human genome-wide association studies have identified numerous loci contributing to coronary artery disease and its risk factors, these studies are unable to control environmental factors or examine detailed molecular traits in relevant tissues. We now report a study of natural variations contributing to atherosclerosis and related traits in over 100 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP). The mice were made hyperlipidemic by transgenic expression of human apolipoprotein E-Leiden (APOE-Leiden) and human cholesteryl ester transfer protein (CETP). The mice were examined for lesion size and morphology as well as plasma lipid, insulin and glucose levels, and blood cell profiles. A subset of mice was studied for plasma levels of metabolites and cytokines. We also measured global transcript levels in aorta and liver. Finally, the uptake of acetylated LDL by macrophages from HMDP mice was quantitatively examined. Loci contributing to the traits were mapped using association analysis, and relationships among traits were examined using correlation and statistical modeling. A number of conclusions emerged. First, relationships among atherosclerosis and the risk factors in mice resemble those found in humans. Second, a number of trait-loci were identified, including some overlapping with previous human and mouse studies. Third, gene expression data enabled enrichment analysis of pathways contributing to atherosclerosis and prioritization of candidate genes at associated loci in both mice and humans. Fourth, the data provided a number of mechanistic inferences; for example, we detected no association between macrophage uptake of acetylated LDL and atherosclerosis. Fifth, broad sense heritability for atherosclerosis was much larger than narrow sense heritability, indicating an important role for gene-by-gene interactions. Sixth, stepwise linear regression showed that the combined variations in plasma metabolites, including LDL/VLDL-cholesterol, trimethylamine N-oxide (TMAO), arginine, glucose and insulin, account for approximately 30 to 40% of the variation in atherosclerotic lesion area. Overall, our data provide a rich resource for studies of complex interactions underlying atherosclerosis. PMID:26694027
A new technique for quantitative analysis of hair loss in mice using grayscale analysis.
Ponnapakkam, Tulasi; Katikaneni, Ranjitha; Gulati, Rohan; Gensure, Robert
2015-03-09
Alopecia is a common form of hair loss which can occur in many different conditions, including male-pattern hair loss, polycystic ovarian syndrome, and alopecia areata. Alopecia can also occur as a side effect of chemotherapy in cancer patients. In this study, our goal was to develop a consistent and reliable method to quantify hair loss in mice, which will allow investigators to accurately assess and compare new therapeutic approaches for these various forms of alopecia. The method utilizes a standard gel imager to obtain and process images of mice, measuring the light absorption, which occurs in rough proportion to the amount of black (or gray) hair on the mouse. Data that has been quantified in this fashion can then be analyzed using standard statistical techniques (i.e., ANOVA, T-test). This methodology was tested in mouse models of chemotherapy-induced alopecia, alopecia areata and alopecia from waxing. In this report, the detailed protocol is presented for performing these measurements, including validation data from C57BL/6 and C3H/HeJ strains of mice. This new technique offers a number of advantages, including relative simplicity of application, reliance on equipment which is readily available in most research laboratories, and applying an objective, quantitative assessment which is more robust than subjective evaluations. Improvements in quantification of hair growth in mice will improve study of alopecia models and facilitate evaluation of promising new therapies in preclinical studies.
Natori, K; Tamari, M; Watanabe, O; Onouchi, Y; Shiomoto, Y; Kubo, S; Nakamura, Y
1999-01-01
The NOA (Naruto Research Institute Otsuka Atrichia) mouse is an animal model of allergic or atopic dermatitis, a condition characterized by ulcerative skin lesions with accumulation of mast cells and increased serum IgE. These features of the murine disease closely resemble human atopy and atopic disorders. We performed linkage analysis in NOA back-cross progeny, as a step toward identifying and isolating a gene responsible for the NOA phenotype. We crossed NOA mice with five other murine strains (C57BL/6J, IQI, C3H/HeJ, DBA/2J, and BALB/cByJ) and then bred back-cross animals. Using microsatellite markers, we scanned the entire genomes of 559 N2 offspring from the five parental strains. Linkage analysis revealed a significant association between ulcerative skin lesions and markers on murine chromosome 14. Statistical analysis indicated that the critical region was assigned to the vicinity of D14Mit236 and D14Mit160.
Panaite, Petrica-Adrian; Kuntzer, Thierry; Gourdon, Geneviève; Lobrinus, Johannes Alexander; Barakat-Walter, Ibtissam
2013-01-01
SUMMARY Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1. PMID:23180777
Valentine, Rudolph; Bamberger, J R; Szostek, B; Frame, S R; Hansen, J F; Bogdanffy, M S
2002-06-01
Chronic administration of vinyl acetate (VA) in drinking water to rats and mice has produced upper digestive tract neoplasms. These tumors were believed to arise from the intracellular metabolism of VA by carboxylesterases to cytotoxic and genotoxic compounds. We hypothesized that prolonged VA exposure at high concentrations would induce cytotoxicity and a restorative cell proliferation (CP). These endpoints were measured in F-344 rats and BDF1 mice administered drinking water containing 0, 1000, 5000, 10,000, or 24,000 ppm VA for 92 days. On test days, Days 1, 8, 29, and 92, upper digestive tract histopathology and oral cavity CP (pulsed 5-bromodeoxyuridine [BrdU] to measure S-phase DNA synthesis) were evaluated. Analysis of test solutions showed that VA spontaneously hydrolyzed, slowly releasing acetic acid and thereby lowering pH. Statistically significant, concentration-related increases in CP occurred in basal cells of the mandibular oral cavity mucosa of mice at 10,000 and 24,000 ppm but only after 92 days. CP increases were approximately 2.4- and 3.4-fold above controls and were considered to be toxicologically significant. Some statistically significant increases in CP were also measured in the oral cavity mucosa of rats; however, these changes were considered to be of equivocal biological relevance. No histopathological evidence of mucosal injury was seen in either species. The absence of cytotoxicity in the upper digestive tract mucosa suggests that the increased CP at high administered VA concentrations may be due to a mitogenic response, ostensibly from the loss of cell growth controls in oral cavity mucosa.
Doulames, Vanessa; Lee, Sangmook; Shea, Thomas B
2014-05-01
Environmental stimulation and increased social interactions stimulate cognitive performance, while decrease in these parameters can exacerbate cognitive decline as a function of illness, injury, or age. We examined the impact of environmental stimulation and social interactions on cognitive performance in healthy adult C57B1/6J mice. Mice were housed for 1 month individually or in groups of three (to prevent or allow social interaction) in either a standard environment (SE) or an enlarged cage containing nesting material and items classically utilized to stimulate exploration and activity ("enriched environment"; EE). Cognitive performance was tested by Y maze navigation and Novel Object Recognition (NOR; which compares the relative amount of time mice spent investigating a novel vs. a familiar object). Mice maintained for 1 month under isolated conditions in the SE statistically declined in performance versus baseline in the Y maze (p < 0.02; ANOVA). Performance under all other conditions did not change from baseline. Maintenance in groups in the SE statistically improved NOR (p < 0.01), whereas maintenance in isolation in the SE did not alter performance from baseline. Maintenance in the EE statistically improved performance in NOR for mice housed in groups and individually (p < 0.01). Maintenance under isolated conditions slightly increased reactive oxygen/nitrogen species (ROS/RNS) in brain. Environmental enrichment did not influence ROS/RNS. These findings indicate that environmental and social enrichment can positively influence cognitive performance in healthy adult mice, and support the notion that proactive approaches may delay age-related cognitive decline.
Zeidler-Erdely, Patti C; Battelli, Lori A; Salmen-Muniz, Rebecca; Li, Zheng; Erdely, Aaron; Kashon, Michael L; Simeonova, Petia P; Antonini, James M
2011-01-01
Stainless steel welding produces fumes that contain carcinogenic metals. Therefore, welders may be at risk for the development of lung cancer, but animal data are inadequate in this regard. Our main objective was to examine lung tumor production and histopathological alterations in lung-tumor-susceptible (A/J) and -resistant C57BL/6J (B6) mice exposed to manual metal arc-stainless steel (MMA-SS) welding fume. Male mice were exposed to vehicle or MMA-SS welding fume (20 mg/kg) by pharyngeal aspiration once per month for 4 mo. At 78 wk postexposure, gross tumor counts and histopathological changes were assessed and metal analysis was done on extrapulmonary tissue (aorta, heart, kidney, and liver). At 78 wk postexposure, gross lung tumor multiplicity and incidence were unremarkable in mice exposed to MMA-SS welding fume. Histopathology revealed that only the exposed A/J mice contained minimal amounts of MMA-SS welding fume in the lung and statistically increased lymphoid infiltrates and alveolar macrophages. A significant increase in tumor multiplicity in the A/J strain was observed at 78 wk. Metal analysis of extrapulmonary tissue showed that only the MMA-SS-exposed A/J mice had elevated levels of Cr, Cu, Mn, and Zn in kidney and Cr in liver. In conclusion, this study further supports that MMA-SS welding fume does not produce a significant tumorigenic response in an animal model, but may induce a chronic lung immune response. In addition, long-term extrapulmonary tissue alterations in metals in the susceptible A/J mouse suggest that the adverse effects of this fume might be cumulative.
Mesa-Gresa, Patricia; Ramos-Campos, Marta; Redolat, Rosa
2016-05-01
Environmental enrichment (EE) is an experimental model which is believed to counteract some of the effects induced by stressors, although few studies have exposed rodents simultaneously to EE and stress. Our aim was to compare the short- and long-term effects of different housing conditions in mice submitted to chronic stress. 128 NMRI male mice arrived at our laboratory on postnatal day (PND) 21. During Phase I (PND 28), animals were randomly assigned to four experimental conditions: 1) EE+STRESS: mice housed in EE and submitted to social stress (n=32); 2) EE+NO STRESS: mice housed in EE without stress (n=32); 3) SE+STRESS: mice maintained in standard conditions (SE) and submitted to social stress (n=32); and 4) SE+NO STRESS (n=32). At the end of Phase I (PND 77), one cohort of 32 animals was used for behavioral assessment whereas another cohort of 32 was sacrificed for corticosterone analysis. Results indicated that EE animals showed less body weight, higher water and food intake, diminished anxiety response and decreased motor and exploratory behavior than SE mice. Mice exposed to stress gained less body weight, showed higher food and fluid intake and displayed decreased exploratory behavior than non-stressed mice. Furthermore, EE+STRESS group displayed significantly higher corticosterone levels than EE+NO STRESS group whereas EE+NO STRESS group showed lower levels than SE+NO STRESS. On PND 83, Phase II of the study began. Animals (n=96) were assigned to two different housing conditions: EE (n=48) and SE (n=48). On PND 112, corticosterone analysis (n=32) and behavioral study (n=64) were done. The factor "Housing Phase II" reached statistical significance. Results indicated that EE animals showed lower body weight and higher fluid intake than SE group, as well as decreased anxiety. No clear effects on motor and exploratory behavior or learning were observed. When long-term effects were analyzed, results indicated that "Initial Housing" condition was significant: animals allocated in EE during Phase I of the study showed higher corticosterone levels, lower body weight and higher fluid intake than SE mice. "Initial Stress" had significant long-term actions on food intake and exploratory behavior: animals initially reared under stress conditions displayed higher food intake and lower exploration levels on the hole-board test than non-stressed mice. In the elevated plus-maze, there were significant interactions between factors "Initial Housing" and "Initial Stress". These factors did not reach statistical significance for motor activity or learning task. We can conclude that both short- and long-term effects of housing conditions are evident for corticosterone levels, body weight and fluid intake. Social stress induced short-term effects on body weight, food and fluid intake and exploratory behavior whereas long-acting effects were reflected on food intake and exploratory behavior. Further studies are needed in order to explore more in depth behavioral and physiological consequences of social stress and environmental enrichment. Copyright © 2016. Published by Elsevier Inc.
Borner, Roseane; Bento-Torres, João; Souza, Diego RV; Sadala, Danyelle B; Trevia, Nonata; Farias, José Augusto; Lins, Nara; Passos, Aline; Quintairos, Amanda; Diniz, José Antônio; Perry, Victor Hugh; Vasconcelos, Pedro Fernando; Cunningham, Colm
2011-01-01
Behavioral and neuropathological changes have been widely investigated in murine prion disease but stereological based unbiased estimates of key neuropathological features have not been carried out. After injections of ME7 infected (ME7) or normal brain homogenates (NBH) into dorsal CA1 of albino Swiss mice and C57BL6, we assessed behavioral changes on hippocampal-dependent tasks. We also estimated by optical fractionator at 15 and 18 weeks post-injections (w.p.i.) the total number of neurons, reactive astrocytes, activated microglia and perineuronal nets (PN) in the polymorphic layer of dentate gyrus (PolDG), CA1 and septum in albino Swiss mice. On average, early behavioral changes in albino Swiss mice start four weeks later than in C57BL6. Cluster and discriminant analysis of behavioral data in albino Swiss mice revealed that four of nine subjects start to change their behavior at 12 w.p.i. and reach terminal stage at 22 w.p.i and the remaining subjects start at 22 w.p.i. and reach terminal stage at 26 w.p.i. Biotinylated dextran-amine BDA-tracer experiments in mossy fiber pathway confirmed axonal degeneration and stereological data showed that early astrocytosis, microgliosis and reduction in the perineuronal nets are independent of a change in the number of neuronal cell bodies. Statistical analysis revealed that the septal region had greater levels of neuroinflammation and extracellular matrix damage than CA1. This stereological and multivariate analysis at early stages of disease in an outbred model of prion disease provided new insights connecting behavioral changes and neuroinflammation and seems to be important to understand the mechanisms of prion disease progression. PMID:21862877
Microarray Analysis of Iris Gene Expression in Mice with Mutations Influencing Pigmentation
Trantow, Colleen M.; Cuffy, Tryphena L.; Fingert, John H.; Kuehn, Markus H.
2011-01-01
Purpose. Several ocular diseases involve the iris, notably including oculocutaneous albinism, pigment dispersion syndrome, and exfoliation syndrome. To screen for candidate genes that may contribute to the pathogenesis of these diseases, genome-wide iris gene expression patterns were comparatively analyzed from mouse models of these conditions. Methods. Iris samples from albino mice with a Tyr mutation, pigment dispersion–prone mice with Tyrp1 and Gpnmb mutations, and mice resembling exfoliation syndrome with a Lyst mutation were compared with samples from wild-type mice. All mice were strain (C57BL/6J), age (60 days old), and sex (female) matched. Microarrays were used to compare transcriptional profiles, and differentially expressed transcripts were described by functional annotation clustering using DAVID Bioinformatics Resources. Quantitative real-time PCR was performed to validate a subset of identified changes. Results. Compared with wild-type C57BL/6J mice, each disease context exhibited a large number of statistically significant changes in gene expression, including 685 transcripts differentially expressed in albino irides, 403 in pigment dispersion–prone irides, and 460 in exfoliative-like irides. Conclusions. Functional annotation clusterings were particularly striking among the overrepresented genes, with albino and pigment dispersion–prone irides both exhibiting overall evidence of crystallin-mediated stress responses. Exfoliative-like irides from mice with a Lyst mutation showed overall evidence of involvement of genes that influence immune system processes, lytic vacuoles, and lysosomes. These findings have several biologically relevant implications, particularly with respect to secondary forms of glaucoma, and represent a useful resource as a hypothesis-generating dataset. PMID:20739468
Genetic and Modeling Approaches Reveal Distinct Components of Impulsive Behavior
Nautiyal, Katherine M; Wall, Melanie M; Wang, Shuai; Magalong, Valerie M; Ahmari, Susanne E; Balsam, Peter D; Blanco, Carlos; Hen, René
2017-01-01
Impulsivity is an endophenotype found in many psychiatric disorders including substance use disorders, pathological gambling, and attention deficit hyperactivity disorder. Two behavioral features often considered in impulsive behavior are behavioral inhibition (impulsive action) and delayed gratification (impulsive choice). However, the extent to which these behavioral constructs represent distinct facets of behavior with discrete biological bases is unclear. To test the hypothesis that impulsive action and impulsive choice represent statistically independent behavioral constructs in mice, we collected behavioral measures of impulsivity in a single cohort of mice using well-validated operant behavioral paradigms. Mice with manipulation of serotonin 1B receptor (5-HT1BR) expression were included as a model of disordered impulsivity. A factor analysis was used to characterize correlations between the measures of impulsivity and to identify covariates. Using two approaches, we dissociated impulsive action from impulsive choice. First, the absence of 5-HT1BRs caused increased impulsive action, but not impulsive choice. Second, based on an exploratory factor analysis, a two-factor model described the data well, with measures of impulsive action and choice separating into two independent factors. A multiple-indicator multiple-causes analysis showed that 5-HT1BR expression and sex were significant covariates of impulsivity. Males displayed increased impulsivity in both dimensions, whereas 5-HT1BR expression was a predictor of increased impulsive action only. These data support the conclusion that impulsive action and impulsive choice are distinct behavioral phenotypes with dissociable biological influences that can be modeled in mice. Our work may help inform better classification, diagnosis, and treatment of psychiatric disorders, which present with disordered impulsivity. PMID:27976680
Noel, Sanjeev; Arend, Lois J; Bandapalle, Samatha; Reddy, Sekhar P; Rabb, Hamid
2016-08-02
Transcription factor Nrf2 protects from experimental acute kidney injury (AKI) and is promising to limit progression in human chronic kidney disease (CKD) by upregulating multiple antioxidant genes. We recently demonstrated that deletion of Keap1, the endogenous inhibitor of Nrf2, in T lymphocytes significantly protects from AKI. In this study, we investigated the effect of Keap1 deletion on Nrf2 mediated antioxidant response in the renal tubular epithelial cells. We deleted Keap1 exon 2 and 3 in the renal tubular epithelial cells by crossing Ksp-Cre mice with Keap1 floxed (Keap1 (f/f)) mice. Deletion of Keap1 gene in the kidney epithelial cells of Ksp-Keap1 (-/-) mice and its effect on Nrf2 target gene expression was performed using PCR and real-time PCR respectively. Histological evaluation was performed on H&E stained sections. Complete blood count, serum and urine analysis were performed to assess systemic effects of defective kidney development. Student's T test was used to determine statistical difference between the groups. Ksp-Cre resulted in the deletion of Keap1 exon 2 and 3 and subsequent upregulation of Nrf2 target genes, Nqo1, Gclm and Gclc in the kidney epithelial cells of Ksp-Keap1 (-/-) mice at baseline. Renal epithelial cell specific deletion of Keap1 in Ksp-Keap1 (-/-) mice caused marked renal pelvic expansion and significant compression of medullary parenchyma consistent with hydronephrosis in both (3 month-old) males and females. Kidneys from 6 month-old Ksp-Keap1 (-/-) mice showed progressive hydronephrosis. Hematological, biochemical and urinary analysis showed significantly higher red blood cell count (p = 0.04), hemoglobin (p = 0.01), hematocrit (p = 0.02), mean cell volume (p = 0.02) and mean cell hemoglobin concentration (p = 0.003) in Ksp-Keap1 (-/-) mice in comparison to Keap1 (f/f) mice. These unexpected findings demonstrate that Keap1 deletion in renal tubular epithelial cells results in an abnormal kidney development consistent with hydronephrosis and reveals a novel Keap1 mediated signaling pathway in renal development.
Assessment of Acridine Orange and SYTO 16 for in vivo imaging of the peritoneal tissues in mice
Udovich, Joshua Anthony; Besselsen, David G.; Gmitro, Arthur F.
2009-01-01
The effect of peritoneal injection of Acridine Orange (AO) and SYTO 16 in mice was investigated. Images of peritoneal tissues stained with these dyes and obtained through a confocal microendoscope are presented. Seventy-five Balb/c mice were split into five groups and given peritoneal injections of dye or saline. The proportions of negative outcomes in each group were compared using confidence intervals and the Fisher's exact statistical test. A statistically significant increase in adverse events due to dye injection was not observed.These data provide an initial investigation into the safety of AO and SYTO 16 for in vivo imaging. PMID:19397741
A practical tool for maximal information coefficient analysis.
Albanese, Davide; Riccadonna, Samantha; Donati, Claudio; Franceschi, Pietro
2018-04-01
The ability of finding complex associations in large omics datasets, assessing their significance, and prioritizing them according to their strength can be of great help in the data exploration phase. Mutual information-based measures of association are particularly promising, in particular after the recent introduction of the TICe and MICe estimators, which combine computational efficiency with superior bias/variance properties. An open-source software implementation of these two measures providing a complete procedure to test their significance would be extremely useful. Here, we present MICtools, a comprehensive and effective pipeline that combines TICe and MICe into a multistep procedure that allows the identification of relationships of various degrees of complexity. MICtools calculates their strength assessing statistical significance using a permutation-based strategy. The performances of the proposed approach are assessed by an extensive investigation in synthetic datasets and an example of a potential application on a metagenomic dataset is also illustrated. We show that MICtools, combining TICe and MICe, is able to highlight associations that would not be captured by conventional strategies.
Sex difference in EGFR pathways in mouse kidney-potential impact on the immune system.
Liu, Fengxia; Jiao, Yan; Jiao, Yun; Garcia-Godoy, Franklin; Gu, Weikuan; Liu, Qingyi
2016-11-24
Epidermal growth factor receptor (Egfr) has been the target of several drugs for cancers. The potential gender differences in genes in the Egfr axis have been suggested in humans and in animal models. Female and male mice from the same recombinant inbred (RI) strain have the same genomic components except the sex difference. A population of different RI mouse strains allows to conduct precise analysis of molecular pathways and regulation of Egfr between female and male mice. The whole genome expression profiles of 70 genetically diverse RI strains of mice were used to compare three major molecular aspects of Egfr gene: the relative expression levels, gene network and expression quantitative trait loci (eQTL) that regulate the expression of Egfr between female and male mice. Our data showed that there is a significant sex difference in the expression levels in kidney. A considerable number of genes in the gene network of Egfr are sex differentially expressed. The expression levels of Egfr in mice are statistical significant different between C57BL/6 J (B6) and DBA/2 J (D2) genotypes in male while no difference in female mice. The eQTLs that regulate the expression levels of Egfr between female and male mice are also different. Furthermore, the differential expression levels of Egfr showed significantly different correlations with two known biological traits between male and female mice. Overall there is a substantial sex difference in the Egfr pathways in mice. These data may have significant impact on drug target design, development, formulation, and dosage determinant for women and men in clinical trials.
Fet, N; Alizai, P H; Fragoulis, A; Wruck, C; Pufe, T; Tolba, R H; Neumann, U P; Klinge, U
2014-06-01
Hernia repair with prosthetic meshes represents one of the most common surgical procedures in the field of surgery. This intervention is always associated with an ensuing inflammatory response, angiogenesis and fibrotic encapsulation forming a foreign body granuloma (FBG) around the mesh fibres. Several studies have described this inflammatory reaction by characterising inflammatory cell infiltrate around the FBG after mesh explantation. However, very little is known about the real-time progression of such an inflammatory response. The aim of this study was to investigate the feasibility of monitoring the ongoing inflammatory response to mesh implantation using bioluminescence in vivo. Three luciferase transgenic mice strains (FVB/N-Tg(Vegfr2-luc)-Xen, BALB/C-Tg(NFκB-RE-luc)-Xen and Tg(INS/EpRE-Luc)T20Rbl) were used. Mice were anaesthetized with 2 % isoflurane, and two incisions were made on the left and right sides of the abdomen of the mice. A 1-cm(2) propylene mesh was implanted subcutaneously in the right incision wound of each mouse, and the left wound served as control. Two hundred microliters of D-luciferin was injected into the mice, and bioluminescence measurements were done prior to the surgical intervention and subsequently every 3 days. After mesh explantation, histological analysis was done. Statistical analysis was done using prism GraphPad software. Bioluminescence results revealed different time points of maximum signal for the different mice strains. VEGFR2 gene expression peaked on day 6, NFkB on day 12 and ARE on day 3 post mesh implantation. We also observed much higher bioluminescent signal around the FBG surrounding the mesh as compared to the control wound, with p < 0.05 for all the different mice strains. Our results prove the possibility of monitoring the inflammatory reaction after mesh implantation in vivo using bioluminescence signal release. This provides a novel method of accessing and accurately describing the ongoing inflammatory response over a given period of time.
Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos
2015-06-01
To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fresquez, Philip R.
Field mice are effective indicators of contaminant presence. This paper reports the concentrations of various radionuclides, heavy metals, polychlorinated biphenyls, high explosives, perchlorate, and dioxin/furans in field mice (mostly deer mice) collected from regional background areas in northern New Mexico. These data, represented as the regional statistical reference level (the mean plus three standard deviations = 99% confidence level), are used to compare with data from field mice collected from areas potentially impacted by Laboratory operations, as per the Environmental Surveillance Program at Los Alamos National Laboratory.
CHOO, Z.W.; CHAKRAVARTHI, S.; WONG, S.F.; NAGARAJA, H.S.; THANIKACHALAM, P.M.; MAK, J.W.; RADHAKRISHNAN, A.; TAY, A.
2010-01-01
Systemic candidiasis is a fungal infection which coupled with solid malignancies places patients at high risk of succumbing to the disease. Few studies have shown evidence of the relationship between systemic candidiasis and malignancy-induced immunosuppression disease especially in breast cancer. At present, animal studies that exclusively demonstrate this relationship have yet to be conducted. The exact causative mechanism of systemic candidiasis is currently under much speculation. This study therefore aimed to demonstrate this relationship by observing the histopathological changes of organs harvested from female Balb/c mice which were experimentally induced with breast cancer and inoculated with systemic candidiasis. The mice were randomly assigned to five different groups (n=12). The first group (group 1) was injected with phosphate buffer solution, the second (group 2) with systemic candidiasis, the third (group 3) with breast cancer and the final two groups (groups 4 and 5) had both candidiasis and breast cancer at two different doses of candidiasis, respectively. Inoculation of mice with systemic candidiasis was performed by an intravenous injection of Candida albicans via the tail vein following successful culture methods. Induction of mice with breast cancer occurred via injection of 4T1 cancer cells at the right axillary mammary fatpad after effective culture methods. The prepared slides with organ tissues were stained with hematoxylin and eosin, periodic acidic schiff and gomori methenamine silver stains for a histopathological analysis. Grading of primary tumour and identification of metastatic deposits, as well as scoring of inflammation and congestion in all the respective organs was conducted. Statistical tests performed to compare groups 2 and 4 showed that group 4 exhibited a highly statistically significant increase in organ inflammation and congestion (p<0.01). The median severity of candidiasis in the kidneys and liver also increased in group 4 as compared to group 2. In conclusion, based on the above evidence, systemic candidiasis significantly increased in mice with breast cancer. PMID:22966285
Mueller matrix mapping of biological polycrystalline layers using reference wave
NASA Astrophysics Data System (ADS)
Dubolazov, A.; Ushenko, O. G.; Ushenko, Yu. O.; Pidkamin, L. Y.; Sidor, M. I.; Grytsyuk, M.; Prysyazhnyuk, P. V.
2018-01-01
The paper consists of two parts. The first part is devoted to the short theoretical basics of the method of differential Mueller-matrix description of properties of partially depolarizing layers. It was provided the experimentally measured maps of differential matrix of the 1st order of polycrystalline structure of the histological section of brain tissue. It was defined the statistical moments of the 1st-4th orders, which characterize the distribution of matrix elements. In the second part of the paper it was provided the data of statistic analysis of birefringence and dichroism of the histological sections of mice liver tissue (normal and with diabetes). It were defined the objective criteria of differential diagnostics of diabetes.
Klaeger, C; de Sa, L; Klaeger, A J; Carlson, E J; Good, W V; Epstein, C J
1996-05-01
To determine whether a higher level of copper zinc superoxide dismutase (CuZnSOD) can reduce the severity of oxygen induced retinopathy (OIR) in a mouse model. CuZnSOD transgenic mice with a threefold increase in CuZnSOD activity and control non-transgenic mice were exposed to 90% oxygen for 12 hours a day during the first 5 days of life. After oxygen treatment, all mice were reared in room air for 10 days. Another group of transgenic and non-transgenic mice were kept in room air for 15 days and served as control groups for the oxygen effect. At day 15, all mice were killed and perfused with India ink. The retinas were flat mounted on slides and examined with a light microscope. There was a statistically significant increase in the incidence of OIR in mice exposed to high levels of oxygen, whether or not they were transgenic. However, there was no statistically significant difference in the severity of OIR between oxygen treated transgenic and non-transgenic mice. A threefold higher CuZnSOD activity does not protect against OIR in mice. This is an unexpected finding, since oxygen radicals are considered a major factor causing OIR, and increased CuZnSOD activity has reduced oxygen radical induced damage in several neuronal and non-neuronal systems. The possibility of a damaging role for other radicals not affected by CuZnSOD cannot be excluded.
Interval Timing Accuracy and Scalar Timing in C57BL/6 Mice
Buhusi, Catalin V.; Aziz, Dyana; Winslow, David; Carter, Rickey E.; Swearingen, Joshua E.; Buhusi, Mona C.
2010-01-01
In many species, interval timing behavior is accurate—appropriate estimated durations—and scalar—errors vary linearly with estimated durations. While accuracy has been previously examined, scalar timing has not been yet clearly demonstrated in house mice (Mus musculus), raising concerns about mouse models of human disease. We estimated timing accuracy and precision in C57BL/6 mice, the most used background strain for genetic models of human disease, in a peak-interval procedure with multiple intervals. Both when timing two intervals (Experiment 1) or three intervals (Experiment 2), C57BL/6 mice demonstrated varying degrees of timing accuracy. Importantly, both at individual and group level, their precision varied linearly with the subjective estimated duration. Further evidence for scalar timing was obtained using an intraclass correlation statistic. This is the first report of consistent, reliable scalar timing in a sizable sample of house mice, thus validating the PI procedure as a valuable technique, the intraclass correlation statistic as a powerful test of the scalar property, and the C57BL/6 strain as a suitable background for behavioral investigations of genetically engineered mice modeling disorders of interval timing. PMID:19824777
Impact of Momordica charantia extract on kidney function and structure in mice.
Mardani, Saeed; Nasri, Hamid; Hajian, Shabnam; Ahmadi, Ali; Kazemi, Reyhane; Rafieian-Kopaei, Mahmoud
2014-01-01
Bitter Melon (BM) is known for its hypoglycemic effect and is commonly used in populations. This study examined the effects and safety of bitter melon fruit in laboratory mice. In this experimental study 70 male mice (25-30 gr) were randomly divided into 7 groups. The mice were injected intraperitoneally with single doses of 0, 100, 500, 1000, 2000 and 4000 mg/kg and multiple doses 500 mg/kg daily for 7 days. The mice were then observed for 72 hours before sacrificing. Immediately kidneys were taken out for histological examinations. Tubular cell vacuolization and flattening as well as hyaline casts, debris and dilatation of tubular lumen were the morphologic lesions which were assessed with scores from 0 to 4, while zero score addressed normal renal tissue. Serum samples were assayed for kidney function (creatinine; Cr and Blood Urea Nitrogen; BUN). Blood and bitter melon antioxidant activities were measured, too. Data were analyzed with Stata software (Stata Corp. 2011. Stata Statistical Software: Release 12. College Station, TX: Stata Corp LP)using ANOVA and Bonferroni tests. All single dose groups showed normal behavior after the dosing and no statistical changes were observed in blood parameters (p>0.05). Histological examinations revealed normal organ structures, however, the group treated for 7 days showed statistically a significant change in BUN (p=0.002) and a borderline significance in Cr (p=0.051). Administration of up to 4000 mg/kg did not have any effect on the mice kidney function and histology, however chronic administration were nephrotoxic. More studies with different dosage regimens are suggested.
NASA Astrophysics Data System (ADS)
Bhattacharjee, Tanmoy; Maru, Girish; Ingle, Arvind; Krishna, C. Murali
2013-04-01
Raman spectroscopy (RS) has been extensively explored as an alternative diagnostic tool for breast cancer. This can be attributed to its sensitivity to malignancy-associated biochemical changes. However, biochemical changes due to nonmalignant conditions like benign lesions, inflammatory diseases, aging, menstrual cycle, pregnancy, and lactation may act as confounding factors in diagnosis of breast cancer. Therefore, in this study, the efficacy of RS to classify pregnancy and lactation-associated changes as well as its effect on breast tumor diagnosis was evaluated. Since such studies are difficult in human subjects, a mouse model was used. Spectra were recorded transcutaneously from the breast region of six Swiss bare mice postmating, during pregnancy, and during lactation. Data were analyzed using multivariate statistical tool Principal Component-Linear Discriminant Analysis. Results suggest that RS can differentiate breasts of pregnant/lactating mice from those of normal mice, the classification efficiencies being 100%, 60%, and 88% for normal, pregnant, and lactating mice, respectively. Frank breast tumors could be classified with 97.5% efficiency, suggesting that these physiological changes do not affect the ability of RS to detect breast tumors.
1976-07-01
Histopathology , Statistical Analysis, and Normal Values ..... ...... ........... 131 I Ii A.mmALIAN TOXICITY OF MUNITION COMPOUNDS PHASE II: Effects of...chemistry tests and histopathology , and the normal values are given in Appendix I. The concentrations of Ca 2+, Mg2 +, Na+ and K+ in serum were determined...mice fed 2,6-DNT included focal epicarditis or myocarditis, focal cystitis, chronic murine pneumonia or bronchopneumonia, metritis and focal myositis
Jeyaseeli, L; Dasgupta, A; Dastidar, S G; Molnar, J; Amaral, L
2012-06-01
Previously, the antipsychotic, non-antibiotic compound flupenthixol dihydrochloride (Fp) was shown to exhibit distinct in vitro antibacterial activity against Gram-positive and Gram-negative bacteria and to significantly protect Swiss albino mice challenged with a known mouse virulent salmonella. The present study was designed to ascertain whether this drug could efficiently augment the action of an antibiotic or a non-antibiotic when tested in combination. A total of 12 bacterial strains belonging to various genera were selected for this study and were sensitive to the antibiotics penicillin (Pc), ampicillin, chloramphenicol, tetracycline, streptomycin, gentamicin, erythromycin, ciprofloxacin, and to the non-antibiotics methdilazine, triflupromazine, promethazine, and Fp. Pronounced and statistically significant synergism (p < 0.01) was observed when Fp was combined with Pc following the disc diffusion assay system. With the help of the checkerboard method, the fractional inhibitory concentration (FIC) index of this pair was found to be 0.375, confirming synergism. This pair of Fp+ Pc was then subjected to in vivo experiments in mice challenged with Salmonella enterica serovar Typhimurium NCTC 74. Statistical analysis of the mouse protection test suggested that this combination was highly synergistic (p < 0.001, Chi-squared analysis). Fp also revealed augmentation of its antimicrobial property when combined with streptomycin, gentamicin, ciprofloxacin, and the non-antibiotic methdilazine. The results of this study may provide alternatives for the therapy of problematic infections such as those associated with Salmonella spp.
Tucker, Laura B.; Fu, Amanda H.
2016-01-01
Abstract To date, clinical trials have failed to find an effective therapy for victims of traumatic brain injury (TBI) who live with motor, cognitive, and psychiatric complaints. Pre-clinical investigators are now encouraged to include male and female subjects in all translational research, which is of particular interest in the field of neurotrauma given that circulating female hormones (progesterone and estrogen) have been demonstrated to exert neuroprotective effects. To determine whether behavior of male and female C57BL6/J mice is differentially impaired by TBI, male and cycling female mice were injured by controlled cortical impact and tested for several weeks with functional assessments commonly employed in pre-clinical research. We found that cognitive and motor impairments post-TBI, as measured by the Morris water maze (MWM) and rotarod, respectively, were largely equivalent in male and female animals. However, spatial working memory, assessed by the y-maze, was poorer in female mice. Female mice were generally more active, as evidenced by greater distance traveled in the first exposure to the open field, greater distance in the y-maze, and faster swimming speeds in the MWM. Statistical analysis showed that variability in all behavioral data was no greater in cycling female mice than it was in male mice. These data all suggest that with careful selection of tests, procedures, and measurements, both sexes can be included in translational TBI research without concern for effect of hormones on functional impairments or behavioral variability. PMID:25951234
Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice
Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa
2015-01-01
Background Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif−/− mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif−/− mice. Results First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif−/− mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif−/− mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif−/− testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif−/− mice compared with wild-type mice, although this was not statistically significant. Conclusions Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues. PMID:26207632
Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.
Mizuhashi, Koji; Chaya, Taro; Kanamoto, Takashi; Omori, Yoshihiro; Furukawa, Takahisa
2015-01-01
Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119), encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice. First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS) and osteoid maturation time (Omt), and significantly decreased mineral apposition rate (MAR) and bone formation rate per bone surface (BFR/BS). In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant. Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.
Koopmans, Bastijn; Smit, August B; Verhage, Matthijs; Loos, Maarten
2017-04-04
Systematic, standardized and in-depth phenotyping and data analyses of rodent behaviour empowers gene-function studies, drug testing and therapy design. However, no data repositories are currently available for standardized quality control, data analysis and mining at the resolution of individual mice. Here, we present AHCODA-DB, a public data repository with standardized quality control and exclusion criteria aimed to enhance robustness of data, enabled with web-based mining tools for the analysis of individually and group-wise collected mouse phenotypic data. AHCODA-DB allows monitoring in vivo effects of compounds collected from conventional behavioural tests and from automated home-cage experiments assessing spontaneous behaviour, anxiety and cognition without human interference. AHCODA-DB includes such data from mutant mice (transgenics, knock-out, knock-in), (recombinant) inbred strains, and compound effects in wildtype mice and disease models. AHCODA-DB provides real time statistical analyses with single mouse resolution and versatile suite of data presentation tools. On March 9th, 2017 AHCODA-DB contained 650 k data points on 2419 parameters from 1563 mice. AHCODA-DB provides users with tools to systematically explore mouse behavioural data, both with positive and negative outcome, published and unpublished, across time and experiments with single mouse resolution. The standardized (automated) experimental settings and the large current dataset (1563 mice) in AHCODA-DB provide a unique framework for the interpretation of behavioural data and drug effects. The use of common ontologies allows data export to other databases such as the Mouse Phenome Database. Unbiased presentation of positive and negative data obtained under the highly standardized screening conditions increase cost efficiency of publicly funded mouse screening projects and help to reach consensus conclusions on drug responses and mouse behavioural phenotypes. The website is publicly accessible through https://public.sylics.com and can be viewed in every recent version of all commonly used browsers.
Bressanello, Davide; Liberto, Erica; Collino, Massimo; Chiazza, Fausto; Mastrocola, Raffaella; Reichenbach, Stephen E; Bicchi, Carlo; Cordero, Chiara
2018-04-01
This study exploits the information potential of comprehensive two-dimensional gas chromatography configured with a parallel dual secondary column-dual detection by mass spectrometry and flame ionization (GC×2GC-MS/FID) to study changes in urinary metabolic signatures of mice subjected to high-fructose diets. Samples are taken from mice fed with normal or fructose-enriched diets provided either in aqueous solution or in solid form and analyzed at three stages of the dietary intervention (1, 6, and 12 weeks). Automated Untargeted and Targeted fingerprinting for 2D data elaboration is adopted for the most inclusive data mining of GC×GC patterns. The UT fingerprinting strategy performs a fully automated peak-region features fingerprinting and combines results from pre-targeted compounds and unknowns across the sample-set. The most informative metabolites, with statistically relevant differences between sample groups, are obtained by unsupervised multivariate analysis (MVA) and cross-validated by multi-factor analysis (MFA) with external standard quantitation by GC-MS. Results indicate coherent clustering of mice urine signatures according to dietary manipulation. Notably, the metabolite fingerprints of mice fed with liquid fructose exhibited greater derangement in fructose, glucose, citric, pyruvic, malic, malonic, gluconic, cis-aconitic, succinic and 2-keto glutaric acids, glycine acyl derivatives (N-carboxy glycine, N-butyrylglycine, N-isovaleroylglycine, N-phenylacetylglycine), and hippuric acid. Untargeted fingerprinting indicates some analytes which were not a priori pre-targeted which provide additional insights: N-acetyl glucosamine, N-acetyl glutamine, malonyl glycine, methyl malonyl glycine, and glutaric acid. Visual features fingerprinting is used to track individual variations during experiments, thereby extending the panorama of possible data elaboration tools. Graphical abstract ᅟ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heicklen, J.; Lundgard, R.; Partymiller, K.
1982-04-01
Institute of Cancer Research Swiss strain mice were subjected to the inhalation of 10.3 +/- 3.7 ppm diethylhydroxylamine, 10.1 +/- 4.1 ppm nitroethane, and the vapor of diethylamine hydrogen sulfite for over 2 years. Histopathologic evaluation of all organs indicated only a few significant findings. The incidence of all tumors, as well as subcutaneous tumors (principally fibrosarcomas), increased in exposed males with marginal statistical significance (P = 0.12 and 0.048, respectively). The incidence of all tumors in exposed females decreased with marked statistical significance (P < 0.0005).
Polato, Federica; Rusconi, Paolo; Zangrossi, Stefano; Morelli, Federica; Boeri, Mattia; Musi, Alberto; Marchini, Sergio; Castiglioni, Vittoria; Scanziani, Eugenio; Torri, Valter; Broggini, Massimo
2014-04-01
p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53(-/-) and 107 p53(+/-) mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan-Meier curves and the Mantel-Haenszel test. All statistical tests were two-sided. We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO(-/-) mice are viable without macroscopic alterations. However, in p53(-/-) or p53(+/-) mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53(-/-) or p53(+/-) mice bearing wild-type DRAGO alleles (p53(-/-), DRAGO(-/-) mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53(+/-), DRAGO(-/-) mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO(+/+) counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional-through p53 (and p73) and methylation-dependent control-and post-transcriptional levels by miRNAs. DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions.
Polato, Federica; Rusconi, Paolo
2014-01-01
Background p53 influences genomic stability, apoptosis, autophagy, response to stress, and DNA damage. New p53-target genes could elucidate mechanisms through which p53 controls cell integrity and response to damage. Methods DRAGO (drug-activated gene overexpressed, KIAA0247) was characterized by bioinformatics methods as well as by real-time polymerase chain reaction, chromatin immunoprecipitation and luciferase assays, time-lapse microscopy, and cell viability assays. Transgenic mice (94 p53−/− and 107 p53+/− mice on a C57BL/6J background) were used to assess DRAGO activity in vivo. Survival analyses were performed using Kaplan–Meier curves and the Mantel–Haenszel test. All statistical tests were two-sided. Results We identified DRAGO as a new p53-responsive gene induced upon treatment with DNA-damaging agents. DRAGO is highly conserved, and its ectopic overexpression resulted in growth suppression and cell death. DRAGO−/− mice are viable without macroscopic alterations. However, in p53−/− or p53+/− mice, the deletion of both DRAGO alleles statistically significantly accelerated tumor development and shortened lifespan compared with p53−/− or p53+/− mice bearing wild-type DRAGO alleles (p53−/−, DRAGO−/− mice: hazard ratio [HR] = 3.25, 95% confidence interval [CI] = 1.7 to 6.1, P < .001; p53+/−, DRAGO−/− mice: HR = 2.35, 95% CI = 1.3 to 4.0, P < .001; both groups compared with DRAGO+/+ counterparts). DRAGO mRNA levels were statistically significantly reduced in advanced-stage, compared with early-stage, ovarian tumors, but no mutations were found in several human tumors. We show that DRAGO expression is regulated both at transcriptional—through p53 (and p73) and methylation-dependent control—and post-transcriptional levels by miRNAs. Conclusions DRAGO represents a new p53-dependent gene highly regulated in human cells and whose expression cooperates with p53 in tumor suppressor functions. PMID:24652652
Xia, Hongjun; Wu, Lingling; Chu, Mengying; Feng, Huimin; Lu, Chunliang; Wang, Qinghe; He, Minghai; Ge, Xiaoqun
2017-07-01
Herba Erigerontis has long been used to cure apoplexy hemiplegia and precordial pain in China. In addition, the bioactivities of its total flavonoids-breviscapine included inhibiting amyloid beta (Aβ) fibril formation, antioxidation and metal chelating, which are beneficial to treat Alzheimer's disease (AD). Hence, A HPLC-QTOF-MS based plasma metabonomics approach was applied to investigate the neuroprotective effects of breviscapine on intracerebroventricular injection of aggregated Aβ 1-42 induced AD mice for the first time in the study. Ten potential biomarkers were screened out by multivariate statistical analysis, eight of which were further identified as indoleacrylic acid, C16 sphinganine, LPE (22:6), sulfolithocholic acid, LPC (16:0), PA (22:1/0:0), taurodeoxycholic acid, and PC (0:0/18:0). According to their metabolic pathways, it was supposed that breviscapine ameliorated the learning and memory deficits of AD mice predominantly by regulating phospholipids metabolism, elevating serotonin level and lowering cholesterols content in vivo. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Leffa, Daniela Dimer; dos Santos, Carla Eliete Iochims; Debastiani, Rafaela; Amaral, Livio; Yoneama, Maria Lucia; Dias, Johnny Ferraz; Andrade, Vanessa Moraes
2014-01-01
The importance of trace elements in human health is well known and their main source is daily diet. Nowadays, one of the biggest issues is the presence of these micronutrients in levels much higher than required, leading to potential toxic effects. The aim of this work was to investigate the elemental content in organs of mice fed with cafeteria or standard diet using PIXE. Twelve male Swiss mice were divided into two groups: control group (standard chow) and cafeteria group (high-caloric diet). After 17 weeks, samples of different organs (kidney and liver) were collected and prepared for PIXE analysis. The Fe concentration in kidney and liver was statistically higher in animals that received the cafeteria diet (p < 0.001). The Al and Si kidney contents were significantly higher for cafeteria diet in relation to standard diet (p < 0.05). Moreover, the standard diet showed significant differences for Cl and K (p < 0.05) in comparison to cafeteria diet in kidney, and for P, S and Zn (p < 0.005) in liver.
Khairnar, Amit; Latta, Peter; Drazanova, Eva; Ruda-Kucerova, Jana; Szabó, Nikoletta; Arab, Anas; Hutter-Paier, Birgit; Havas, Daniel; Windisch, Manfred; Sulcova, Alexandra; Starcuk, Zenon; Rektorova, Irena
2015-11-01
Evidence suggests that accumulation and aggregation of α-synuclein contribute to the pathogenesis of Parkinson's disease (PD). The aim of this study was to evaluate whether diffusion kurtosis imaging (DKI) will provide a sensitive tool for differentiating between α-synuclein-overexpressing transgenic mouse model of PD (TNWT-61) and wild-type (WT) littermates. This experiment was designed as a proof-of-concept study and forms a part of a complex protocol and ongoing translational research. Nine-month-old TNWT-61 mice and age-matched WT littermates underwent behavioral tests to monitor motor impairment and MRI scanning using 9.4 Tesla system in vivo. Tract-based spatial statistics (TBSS) and the DKI protocol were used to compare the whole brain white matter of TNWT-61 and WT mice. In addition, region of interest (ROI) analysis was performed in gray matter regions such as substantia nigra, striatum, hippocampus, sensorimotor cortex, and thalamus known to show higher accumulation of α-synuclein. For the ROI analysis, both DKI (6 b-values) protocol and conventional (2 b-values) diffusion tensor imaging (cDTI) protocol were used. TNWT-61 mice showed significant impairment of motor coordination. With the DKI protocol, mean, axial, and radial kurtosis were found to be significantly elevated, whereas mean and radial diffusivity were decreased in the TNWT-61 group compared to that in the WT controls with both TBSS and ROI analysis. With the cDTI protocol, the ROI analysis showed decrease in all diffusivity parameters in TNWT-61 mice. The current study provides evidence that DKI by providing both kurtosis and diffusivity parameters gives unique information that is complementary to cDTI for in vivo detection of pathological changes that underlie PD-like symptomatology in TNWT-61 mouse model of PD. This result is a crucial step in search for a candidate diagnostic biomarker with translational potential and relevance for human studies.
Tsutsui, Haruhito; Maeda, Toshio; Toyo'oka, Toshimasa; Min, Jun Zhe; Inagaki, Shinsuke; Higashi, Tatsuya; Kagawa, Yoshiyuki
2010-08-06
The number of diabetic patients has recently been increasing worldwide. Thus, the discovery of potential diabetic biomarker(s), leading to the early detection and/or prevention of diabetes mellitus, is strongly required. The diagnosis of the prediabetic state in humans is a very difficult issue because of the lifestyle differences in each person and ethical consideration. Upon the basis of these considerations, animal experiments using ddY strain mice (ddY-H), which undergo naturally occurring diabetes along with age, were carried out in this study. Biomarker discovery based upon a metabonome study is now quite common, the same as that in the proteome analysis. Reversed-phase liquid chromatography-mass spectrometry (LC-MS) has mainly been used for the extensive analysis of low-molecular mass compounds including metabolites. The metabolites in the plasma of diabetic mice (ddY-H) and normal mice (ddY-L) were exhaustively separated and detected by ultraperformance liquid chromatography along with electrospray ionization time-of-flight mass spectrometry (UPLC-ESI-TOF-MS) using T3-C18 and HS-F5 columns. The biomarker candidates related to diabetes mellitus were extracted from the metabolite profiling of ddY-H and ddY-L at 5, 9 13, and 20 weeks old using a multivariate statistical analysis such as orthogonal partial least-squares-discriminant analysis (OPLS-DA). Various metabolites and unknown compounds were detected as biomarker candidates related to diabetic mellitus. Furthermore, the concentration of several metabolites on Lysine biosynthesis and Lysine degradation pathways were remarkably changed between the 9-week old ddY-H and ddY-L mice. Because a couple of biomarker candidates related to the prediabetic state were identified using the present approach, the metabolite profiling study could be helpful for understanding the abnormal state of various diseases.
Mugunthan, Narayanaperumal; Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan
2016-08-01
The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice.
Chmielewski, Nicole N; Caressi, Chongshan; Giedzinski, Erich; Parihar, Vipan K; Limoli, Charles L
2016-06-01
Growing evidence suggests that radiation-induced oxidative stress directly affects a wide range of biological changes with an overall negative impact on CNS function. In the past we have demonstrated that transgenic mice over-expressing human catalase targeted to the mitochondria (MCAT) exhibit a range of neuroprotective phenotypes following irradiation that include improved neurogenesis, dendritic complexity, and cognition. To determine the extent of the neuroprotective phenotype afforded by MCAT expression in different hippocampal regions, we analyzed subiculum neurons for changes in neuronal structure and synaptic integrity after exposure to low dose (0.5 Gy) 150 MeV proton irradiation. One month following irradiation of WT and MCAT mice, a range of morphometric parameters were quantified along Golgi-Cox impregnated neurons. Compared with WT mice, subiculum neurons from MCAT mice exhibited increased trends (albeit not statistically significant) toward increased dendritic complexity in both control and irradiated cohorts. However, Sholl analysis of MCAT mice revealed significantly increased arborization of the distal dendritic tree, indicating a protective effect on secondary and tertiary branching. Interestingly, radiation-induced increases in postsynaptic density protein (PSD-95) puncta were not as pronounced in MCAT compared with WT mice, and were significantly lower after the 0.5 Gy dose. As past data has linked radiation exposure to reduced dendritic complexity, elevated PSD-95 and impaired cognition, reductions in mitochondrial oxidative stress have proven useful in ameliorating many of these radiation-induced sequelae. Data presented here shows similar trends, and again points to the potential benefits of reducing oxidative stress in the brain to attenuate radiation injury. Environ. Mol. Mutagen. 57:364-371, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-03-06
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week-old EAAT3 knockout (EAAT3 -/- ) mice and their wild-type littermates received 3 intraperitoneal injections of 10mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4mg/kg riluzole, an EAAT activator, 30min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3 -/- mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8-9days in wild-type mice, while this extinction occurred 6days after discontinuation of morphine injection in EAAT3 -/- mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3 -/- mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Wan, Li; Bi, Jiangjiang; Li, Jun; Zuo, Zhiyi
2017-01-01
Glutamate transporters (EAAT) have been implicated in the drug addiction behavior. We determined whether EAAT type 3 (EAAT3) played a role in morphine addiction. Six- to eight-week old EAAT3 knockout (EAAT3−/−) mice and their wild-type littermates received 3 intraperitoneal injections of 10 mg/kg morphine, each on an alternative day, to induce conditioned place preference (CPP). Two days after the place preference returned to baseline, mice received 2.5 mg/kg morphine to induce reinstatement. Some mice received intraperitoneal injection of 4 mg/kg riluzole, an EAAT activator, 30 min before morphine or saline injection. Hippocampus, medial prefrontal cortex, nucleus accumbens and ventral tegmental area were harvested for Western analysis 24 h after the last dose of morphine was injected. Morphine induced CPP in wild-type and EAAT3−/− mice. Gender is not a statistically significant factor to influence this behavior. This conditioned behavior extinguished after morphine administration was stopped for 8 to 9 days in wild-type mice, while this extinction occurred 6 days after discontinuation of morphine injection in EAAT3−/− mice. A small dose of morphine similarly reinstated the conditioned behavior in the wild-type and EAAT3−/− mice. Riluzole abolished morphine-induced CPP during the initial place preference. Morphine increased EAAT3 expression in the plasma membrane of medial prefrontal cortex, nucleus accumbens and ventral tegmental area but did not affect EAAT3 expression in the hippocampus. These results suggest that EAAT3 delays the extinction of morphine-induced CPP. EAAT activation may prevent the formation of morphine-induced CPP. PMID:28049029
Xu, Fuyi; Hu, Shixian; Chao, Tianzhu; Wang, Maochun; Li, Kai; Zhou, Yuxun; Xu, Hongyan; Xiao, Junhua
2017-10-01
Both natural and artificial selection play a critical role in animals' adaptation to the environment. Detection of the signature of selection in genomic regions can provide insights for understanding the function of specific phenotypes. It is generally assumed that laboratory mice may experience intense artificial selection while wild mice more natural selection. However, the differences of selection signature in the mouse genome and underlying genes between wild and laboratory mice remain unclear. In this study, we used two mouse populations: chromosome 1 (Chr 1) substitution lines (C1SLs) derived from Chinese wild mice and mouse genome project (MGP) sequenced inbred strains and two selection detection statistics: Fst and Tajima's D to identify the signature of selection footprint on Chr 1. For the differentiation between the C1SLs and MGP, 110 candidate selection regions containing 47 protein coding genes were detected. A total of 149 selection regions which encompass 7.215 Mb were identified in the C1SLs by Tajima's D approach. While for the MGP, we identified nearly twice selection regions (243) compared with the C1SLs which accounted for 13.27 Mb Chr 1 sequence. Through functional annotation, we identified several biological processes with significant enrichment including seven genes in the olfactory transduction pathway. In addition, we searched the phenotypes associated with the 47 candidate selection genes identified by Fst. These genes were involved in behavior, growth or body weight, mortality or aging, and immune systems which align well with the phenotypic differences between wild and laboratory mice. Therefore, the findings would be helpful for our understanding of the phenotypic differences between wild and laboratory mice and applications for using this new mouse resource (C1SLs) for further genetics studies.
Bahmanpour, Soghra; Kamali, Mahsa
2016-05-01
Flax is a food and fiber crop that is grown in some regions of the world. Its value will account for its great popularity as a food, medical and cosmetic applications. Flax fibers are taken from the stem of the plant and are two to three times as strong as cotton. In this study, we compared brain weight and plasma sex hormone levels in young and aged mice after the administration of Linum usitatissimum (flax seed) hydro alcoholic extract. In this study, 32 aged and 32 young mice were divided into 4 groups. Controls remained untreated and experimental groups were fed with flax seed hydroalcoholic extract by oral gavages during 3 weeks. After 3 weeks, the brain was removed and blood samples were collected to measure sex hormone levels by ELISA. Data analysis was done by statistical ANOVA test using SPSS version 18 (P<0.05). The results of this study shows that the brain weight of mice did not change significantly, but the sex hormone levels in the experimental groups in comparison with the control groups increased significantly (P<0.05). The hydroalcoholic extract of flax seed had no effect on the brain weight, but this extract improved the sexual hormone levels.
Kim, Yumi; Lee, In-Seung; Kim, Kang-Hoon; Park, Jiyoung; Lee, Ji-Hyun; Bang, Eunjung; Jang, Hyeung-Jin; Na, Yun-Cheol
2016-01-01
Artemisia Capillaris (AC) and Alisma Rhizome (AR) are natural products for the treatment of liver disorders in oriental medicine clinics. Here, we report metabolomic changes in the evaluation of the treatment effects of AC and AR on fatty livers in diabetic mice, along with a proposition of the underlying metabolic pathway. Hydrophobic and hydrophilic metabolites extracted from mouse livers were analyzed using HPLC-QTOF and CE-QTOF, respectively, to generate metabolic profiles. Statistical analysis of the metabolites by PLS-DA and OPLA-DA fairly discriminated between the diabetic, and the AC- and AR-treated mice groups. Various PEs mostly contributed to the discrimination of the diabetic mice from the normal mice, and besides, DG (18:1/16:0), TG (16:1/16:1/20:1), PE (21:0/20:5), and PA (18:0/21:0) were also associated with discrimination by s-plot. Nevertheless, the effects of AC and AR treatment were indistinct with respect to lipid metabolites. Of the 97 polar metabolites extracted from the CE-MS data, 40 compounds related to amino acid, central carbon, lipid, purine, and pyrimidine metabolism, with [Formula: see text] values less than 0.05, were shown to contribute to liver dysregulation. Following treatment with AC and AR, the metabolites belonging to purine metabolism preferentially recovered to the metabolic state of the normal mice. The AMP/ATP ratio of cellular energy homeostasis in AR-treated mice was more apparently increased ([Formula: see text]) than that of AC-treated mice. On the other hand, amino acids, which showed the main alterations in diabetic mice, did not return to the normal levels upon treatment with AR or AC. In terms of metabolomics, AR was a more effective natural product in the treatment of liver dysfunction than AC. These results may provide putative biomarkers for the prognosis of fatty liver disorder following treatment with AC and AR extracts.
Li, Bo; Guo, Kenan; Zeng, Li; Zeng, Benhua; Huo, Ran; Luo, Yuanyuan; Wang, Haiyang; Dong, Meixue; Zheng, Peng; Zhou, Chanjuan; Chen, Jianjun; Liu, Yiyun; Liu, Zhao; Fang, Liang; Wei, Hong; Xie, Peng
2018-01-31
Major depressive disorder (MDD) is a common mood disorder. Gut microbiota may be involved in the pathogenesis of depression via the microbe-gut-brain axis. Liver is vulnerable to exposure of bacterial products translocated from the gut via the portal vein and may be involved in the axis. In this study, germ-free mice underwent fecal microbiota transplantation from MDD patients and healthy controls. Behavioral tests verified the depression model. Metabolomics using gas chromatography-mass spectrometry, nuclear magnetic resonance, and liquid chromatography-mass spectrometry determined the influence of microbes on liver metabolism. With multivariate statistical analysis, 191 metabolites were distinguishable in MDD mice from control (CON) mice. Compared with CON mice, MDD mice showed lower levels for 106 metabolites and higher levels for 85 metabolites. These metabolites are associated with lipid and energy metabolism and oxidative stress. Combined analyses of significantly changed proteins in livers from another depression model induced by chronic unpredictive mild stress returned a high score for the Lipid Metabolism, Free Radical Scavenging, and Molecule Transports network, and canonical pathways were involved in energy metabolism and tryptophan degradation. The two mouse models of depression suggest that changes in liver metabolism might be involved in the pathogenesis of MDD. Conjoint analyses of fecal, serum, liver, and hippocampal metabolites from fecal microbiota transplantation mice suggested that aminoacyl-tRNA biosynthesis significantly changed and fecal metabolites showed a close relationship with the liver. These findings may help determine the biological mechanisms of depression and provide evidence about "depression microbes" impacting on liver metabolism.
Western diet increases wheel running in mice selectively bred for high voluntary wheel running.
Meek, T H; Eisenmann, J C; Garland, T
2010-06-01
Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.
Haney, J T; Connor, T H; Li, L
1999-04-01
Single-strand breaks (SSBs) in DNA have been used a biomarker of oxidative damage. The comet assay, also known as single-cell gel electrophoresis, was used to investigate the ability of ozone (O(3)) to induce DNA SSBs in murine bronchoalveolar lavage (BAL) cells. The comet assay is more sensitive than other techniques currently utilized for detecting SSBs and requires fewer cells. In the present study, 3 mice were exposed for 3 h to 0.25 ppm of O(3), and 3 to 0.5 ppm of O(3) for 3 h. Two air-exposed mice served as negative controls. All mice were euthanized 3 h after exposure, at which time BAL cells were recovered from the lungs and stained with ethidium bromide. BAL cells recovered from an air-exposed mouse were exposed to various concentrations of H(2)O(2) in vitro for 1 h at 4 degrees C. Excluding cells from the H(2)O(2) group (n = 25), 50 randomly selected BAL cells were graded by comet tail length into 1 of 4 categories: no damage (0 mm), low damage (1-10 mm), medium damage (11-30 mm), and high damage (31 + mm). The nonparametric Wilcoxon rank-sum test was used for statistical analysis, and p values lower than .05 were considered significant. The H(2)O(2) and the 0.25 and 0.5 ppm O3 groups showed statistically significant increases in DNA SSBs as compared to air-exposed controls. The results of this study indicate that (1) O(3) induces DNA strand breaks in murine BAL cells at 0.25 and 0.5 ppm, as evidenced by statistically significant increases in the length of comet tails for O(3)-exposed groups, and (2) the comet assay can be used to assess O(3)-induced SSBs for in vivo exposures. Therefore, it has the potential as a biomarker for in vivo oxidant exposures.
Lian, Bin; Xia, Jinjun; Yang, Xun; Zhou, Chanjuan; Gong, Xue; Gui, Siwen; Mao, Qiang; Wang, Ling; Li, Pengfei; Huang, Cheng; Qi, Xunzhong; Xie, Peng
2018-06-13
In the present study, we used a gas chromatography-mass spectrometry-based metabolomics method to evaluate the effects of ketamine on mice hippocampi. Multivariate statistical analysis and ingenuity pathway analysis were then used to identify and explore the potential mechanisms and biofunction of ketamine. Compared with the control (CON) group, 14 differential metabolites that involved amino acid metabolism, energy metabolism, and oxidative stress metabolism were identified. After combination with 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo[f]quinoxaline-2,3-dione (NBQX) administration, six of the 14 metabolites remained significantly differentially expressed between the ketamine (KET) and KET+NBQX groups, including glycine, alanine, glutamine, aspartic acid, myoinositol, and ascorbate, whereas no difference was found in the levels of the other eight metabolites between the KET and KET+NBQX groups, including phosphate, 4-aminobutyric acid, urea, creatine, L-malic acid, galactinol, inosine, and aminomalonic. Our findings indicate that ketamine exerts antidepressant effects through an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition-dependent mechanism and a mechanism not affected by α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid inhibition. Which provides further insight into the therapeutic mechanisms of ketamine in the hippocampus.
Hepatic SILAC proteomic data from PANDER transgenic model.
Athanason, Mark G; Stevens, Stanley M; Burkhardt, Brant R
2016-12-01
This article contains raw and processed data related to research published in "Quantitative Proteomic Profiling Reveals Hepatic Lipogenesis and Liver X Receptor Activation in the PANDER Transgenic Model" (M.G. Athanason, W.A. Ratliff, D. Chaput, C.B. MarElia, M.N. Kuehl, S.M., Jr. Stevens, B.R. Burkhardt (2016)) [1], and was generated by "spike-in" SILAC-based proteomic analysis of livers obtained from the PANcreatic-Derived factor (PANDER) transgenic mouse (PANTG) under various metabolic conditions [1]. The mass spectrometry output of the PANTG and wild-type B6SJLF mice liver tissue and resulting proteome search from MaxQuant 1.2.2.5 employing the Andromeda search algorithm against the UniprotKB reference database for Mus musculus has been deposited to the ProteomeXchange Consortium (http://www.proteomexchange.org) via the PRIDE partner repository with dataset identifiers PRIDE: PXD004171 and doi:10.6019/PXD004171. Protein ratio values representing PANTG/wild-type obtained by MaxQuant analysis were input into the Perseus processing suite to determine statistical significance using the Significance A outlier test (p<0.05). Differentially expressed proteins using this approach were input into Ingenuity Pathway Analysis to determined altered pathways and upstream regulators that were altered in PANTG mice.
NASA Astrophysics Data System (ADS)
Smirnova, O. A.
A biophysical model is developed which describes the mortality dynamics in mammalian populations unexposed and exposed to radiation The model relates statistical biometric functions mortality rate life span probability density and life span probability with statistical characteristics and dynamics of a critical body system in individuals composing the population The model describing the dynamics of thrombocytopoiesis in nonirradiated and irradiated mammals is also developed this hematopoietic line being considered as the critical body system under exposures in question The mortality model constructed in the framework of the proposed approach was identified to reproduce the irradiation effects on populations of mice The most parameters of the thrombocytopoiesis model were determined from the data available in the literature on hematology and radiobiology the rest parameters were evaluated by fitting some experimental data on the dynamics of this system in acutely irradiated mice The successful verification of the thrombocytopoiesis model was fulfilled by the quantitative juxtaposition of the modeling predictions and experimental data on the dynamics of this system in mice exposed to either acute or chronic irradiation at wide ranges of doses and dose rates It is important that only experimental data on the mortality rate in nonirradiated population and the relevant statistical characteristics of the thrombocytopoiesis system in mice which are also available in the literature on radiobiology are needed for the final identification of
Bartley, P M; Wright, S E; Maley, S W; Buxton, D; Nath, M; Innes, E A
2009-07-01
Balb/c mice were inoculated intraperitoneally (i.p.) with either 5 x 10(6) live virulent (group 1) or 5 x 10(6) live attenuated (group 2) tachyzoites, or Vero cells (group 3). Animals were killed at 0, 14, 28 and 42 days post-inoculation (p.i.), with the remaining mice receiving a lethal challenge on day 48 p.i. Serum, spleen and brain samples were collected post-mortem to examine humoral and cell-mediated immune responses as well as pathological lesions and to quantify parasite loads. On day 14 p.i. group 2 (attenuated) demonstrated statistically significant (P < 0.001) lower levels of mean morbidity and weight loss, while also showing significantly (P = 0.01) higher levels of splenocyte proliferation and IFN-gamma production (P = 0.003), compared to group 1 (virulent). Histology of brain samples showed milder lesions and a lower incidence of positive immunohistochemistry, demonstrating tachyzoites and tissue cysts, and statistically significant (P = 0.03) lower mean burdens of parasite DNA in group 2 (attenuated) compared to group 1 (virulent). All mice in group 2 were protected following challenge on day 48 p.i. whereas naïve control mice succumbed to the challenge. No mice from group 1 (virulent) survived beyond day 24 p.i. so they were not included in the challenge.
Ravosa, Matthew J; López, Elisabeth K; Menegaz, Rachel A; Stock, Stuart R; Stack, M Sharon; Hamrick, Mark W
2008-09-01
Knockout mice lacking myostatin (Mstn), a negative regulator of the growth of skeletal muscle, develop significant increases in the relative mass of masticatory muscles as well as the ability to generate higher maximal muscle forces. Wild-type and Mstn-deficient mice were compared to investigate the postnatal influence of elevated masticatory loads due to increased jaw-adductor and bite forces on the biomineralization of mandibular articular and cortical bone, the internal structure of the jaw joints, and the composition of temporomandibular joint (TMJ) articular cartilage. To provide an interspecific perspective on the long-term responses of mammalian jaw joints to altered loading conditions, the findings on mice were compared to similar data for growing rabbits subjected to long-term dietary manipulation. Statistically significant differences in joint proportions and bone mineral density between normal and Mstn-deficient mice, which are similar to those observed between rabbit loading cohorts, underscore the need for a comprehensive analysis of masticatory tissue plasticity vis-à-vis altered mechanical loads, one in which variation in external and internal structure are considered. Differences in the expression of proteoglycans and type-II collagen in TMJ articular cartilage between the mouse and rabbit comparisons suggest that the duration and magnitude of the loading stimulus will significantly affect patterns of adaptive and degradative responses. These data on mammals subjected to long-term loading conditions offer novel insights regarding variation in ontogeny, life history, and the ecomorphology of the feeding apparatus.
Effects of artificial sweeteners on body weight, food and drink intake.
Polyák, Eva; Gombos, K; Hajnal, B; Bonyár-Müller, K; Szabó, Sz; Gubicskó-Kisbenedek, A; Marton, K; Ember, I
2010-12-01
Artificial sweeteners are widely used all over the world. They may assist in weight management, prevention of dental caries, control of blood glucose of diabetics, and also can be used to replace sugar in foods. In the animal experimentation mice were given oral doses of water solutions of table top artificial sweeteners (saccharin, cyclamate based, acesulfame-K based, and aspartame) the amount of maximum Acceptable Daily Intake (ADI) ad libitum. The controls received only tap water with the same drinking conditions as the treated groups. The mice were fed chow ad libitum.We measured food intake and body weight once a week, water and solutions of artificial sweeteners intake twice a week. The data were analysed by statistical methods (T-probe, regression analysis).Consumption of sweeteners resulted in significantly increased body weight; however, the food intake did not change.These results question the effect of non-caloric artificial sweeteners on weight-maintenance or body weight decrease.
Durg, Sharanbasappa; Veerapur, Veeresh P.; Thippeswamy, B. S.; Ahamed, Syed Mansoor
2015-01-01
Background: Śilājatu (Shilajit; SJ) is claimed in traditional Indian medical practice to be useful in the treatment of nervous disorders, epilepsy and as antistress. Aim: To investigate whether SJ possesses antiepileptic and antipsychotic activities in rodents. Materials and Methods: Isonicotinyl hydrazine (INH), pentylenetetrazole (PTZ), apomorphine, phenytoin, diazepam, haloperidol and other chemicals of analytical grade were procured from standard companies. The antiepileptic activity of SJ was assessed using maximal electro shock (MES)-induced seizures in rats, INH and PTZ-induced seizures in mice. The antipsychotic effect of SJ was evaluated using apomorphine-induced climbing and stereotyped behaviours respectively, in mice and rats. Settings and Designs: SJ (25 and 50 mg/kg, p.o.) was given orally once daily for 15 days in all the rodent models. On the test day, SJ was administered 1 h prior to electric shock or chemical inducers (INH/PTZ/apomorphine) in experimental animals; the animals were then observed for different phases of seizures and psychotic behaviours. In addition, gamma-aminobutyric acid (GABA) content in the brain of rats and mice was estimated in seizure models. Statistical Analysis: The data were expressed as mean ± standard error of mean. Statistical comparisons were performed by one-way ANOVA followed by Tukey's post-test using Graph Pad Prism version 5.0, USA. A P < 0.05 was considered significant. Results and Conclusions: SJ pretreatment significantly inhibited the seizures induced by MES, INH and PTZ in a dose dependent manner. Further, SJ augmented brain GABA levels to normal, decreased by INH and PTZ in mice brain. SJ pretreatment also significantly inhibited the climbing and stereotyped behaviours induced by apomorphine. The present data seems to confirm the antiepileptic activity of SJ which may be because of enhancing the GABAergic system. The antipsychotic activity observed may be due to anti-dopaminergic and/or GABA-mimetic actions. PMID:26865744
Yu, Qing; Sali, Arpana; Van der Meulen, Jack; Creeden, Brittany K; Gordish-Dressman, Heather; Rutkowski, Anne; Rayavarapu, Sree; Uaesoontrachoon, Kitipong; Huynh, Tony; Nagaraju, Kanneboyina; Spurney, Christopher F
2013-01-01
Congenital muscular dystrophy is a distinct group of diseases presenting with weakness in infancy or childhood and no current therapy. One form, MDC1A, is the result of laminin alpha-2 deficiency and results in significant weakness, respiratory insufficiency and early death. Modification of apoptosis is one potential pathway for therapy in these patients. dy(2J) mice were treated with vehicle, 0.1 mg/kg or 1 mg/kg of omigapil daily via oral gavage over 17.5 weeks. Untreated age matched BL6 mice were used as controls. Functional, behavioral and histological measurements were collected. dy(2J) mice treated with omigapil showed improved respiratory rates compared to vehicle treated dy(2J) mice (396 to 402 vs. 371 breaths per minute, p<0.03) and similar to control mice. There were no statistical differences in normalized forelimb grip strength between dy(2J) and controls at baseline or after 17.5 weeks and no significant differences seen among the dy(2J) treatment groups. At 30-33 weeks of age, dy(2J) mice treated with 0.1 mg/kg omigapil showed significantly more movement time and less rest time compared to vehicle treated. dy(2J) mice showed normal cardiac systolic function throughout the trial. dy(2J) mice had significantly lower hindlimb maximal (p<0.001) and specific force (p<0.002) compared to the control group at the end of the trial. There were no statistically significant differences in maximal or specific force among treatments. dy(2J) mice treated with 0.1 mg/kg/day omigapil showed decreased percent fibrosis in both gastrocnemius (p<0.03) and diaphragm (p<0.001) compared to vehicle, and in diaphragm (p<0.013) when compared to 1 mg/kg/day omigapil treated mice. Omigapil treated dy(2J) mice demonstrated decreased apoptosis. Omigapil therapy (0.1 mg/kg) improved respiratory rate and decreased skeletal and respiratory muscle fibrosis in dy(2J) mice. These results support a putative role for the use of omigapil in laminin deficient congenital muscular dystrophy patients.
Yang, Huimin; Han, Shuying; Zhao, Danyang; Wang, Guiyun
2014-08-30
Adjuvant effect mediated by polysaccharide (PPSB) isolated from the fruits of Physalis alkekengi L. in DNA vaccine was evaluated in mice. Recombinant plasmid containing epitope C (LKVIRK) from heat shock protein 90 (HSP90) of Candida albicans (C. albican) was used as DNA vaccine (pD-HSP90C). The results indicated that PPSB significantly enhanced specific antibody titers IgG, IgG1, IgG2b, and concentration of IL-2 and IL-4 in sera of mice immunized with pD-HSP90C (p<0.05). More importantly, it was found that the mice immunized with pD-HSP90C/PPSB not only had fewer CFU (colony forming unites) in the kidneys than mice immunized with pD-HSP90C, but also a statistically significant higher survival rate over PBS-injected group (p<0.05) when the immunized mice were challenged with living C. albican cells. However, no statistically significant difference in survival rate was observed between pD-HSP90C-immunized group and PBS-injected group. Therefore, PPSB can be considered as a promising adjuvant eliciting both Th1 and Th2 responses to enhance the efficacy of DNA vaccines. Copyright © 2014 Elsevier Ltd. All rights reserved.
MetaboLyzer: A Novel Statistical Workflow for Analyzing Post-Processed LC/MS Metabolomics Data
Mak, Tytus D.; Laiakis, Evagelia C.; Goudarzi, Maryam; Fornace, Albert J.
2014-01-01
Metabolomics, the global study of small molecules in a particular system, has in the last few years risen to become a primary –omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzer’s workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography/mass spectrometry (LC/MS) based metabolomic datasets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to gamma radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of 1942. Numerous putative metabolites and pathways were found to be biologically significant from the putative ion identification workflow. PMID:24266674
Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice
NASA Astrophysics Data System (ADS)
Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair
2011-02-01
The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.
Evaluating mononuclear cells as nanoparticle delivery vehicles for the treatment of breast tumors
NASA Astrophysics Data System (ADS)
Murton, Jaclyn K.; Hu, Chelin; Ahmed, Mona M.; Hathaway, Helen J.; Nysus, Monique; Anderson Daniels, Tamara; Norenberg, Jeffrey P.; Adolphi, Natalie L.
2015-08-01
In breast cancer, certain types of circulating immune cells respond to long-range chemical signals from tumors by leaving the blood stream to actively infiltrate tumor tissue. The aim of this study was to evaluate whether immune cells could be used to deliver therapeutic nanoparticles into breast tumors in mice. Mononuclear splenocytes (MS) were harvested from donor mice, labeled with Indium-111, injected intravenously into immune-competent recipient mice (3 tumor-bearing and 3 control), and imaged longitudinally by SPECT/CT. For comparison, the biodistribution of bonemarrow derived macrophages (BMDM) in one pair of mice was also imaged. Quantitative analysis of the SPECT images demonstrates that, after 24 hours, the concentration of MS detected in mammary tumors is more than 3-fold higher than the concentration detected in normal mammary glands. The ratio of MS concentration in mammary tissue to MS concentration in non-target tissues (muscle, lung, heart, liver, spleen, and kidney) was enhanced in tumor-bearing mice (compared to controls), with statistical significance achieved for mammary/muscle (p<0.01), mammary/lung (p<0.05), and mammary/kidney (p<0.05). By contrast, BMDM did not show a different affinity for tumors relative to normal mammary tissue. MS were incubated with 100 nm red fluorescent nanoparticles, and flow cytometry demonstrated that ~35% of the MS population exhibited strong phagocytic uptake of the nanoparticles. After intravenous injection into tumor-bearing mice, fluorescence microscopy images of tumor sections show qualitatively that nanoparticle-loaded MS retain the ability to infiltrate mammary tumors. Taken together, these results suggest that MS carriers are capable of actively targeting therapeutic nanoparticles to breast tumors.
Beracochea, Daniel; Krazem, Ali; Henkouss, Nadia; Haccard, Guillaume; Roller, Marc; Fromentin, Emilie
2016-08-01
The number of Americans older than 65 years old is projected to more than double in the next 40 years. Cognitive changes associated to aging can affect an adult's day-to-day functioning. Among these cognitive changes, reasoning, episodic memory, working memory, and processing speed decline gradually over time. Early memory changes include a decline in both working and episodic memory. The aim of the present study was to determine whether chronic (up to 75 days) daily administration of wild blueberry extract or a wild blueberry full spectrum powder would help prevent memory failure associated with aging in tasks involving various forms of memory. Both blueberry ingredients were used in a study comparing young mice (6 months old) to aged mice (18 months old). At this age, mice exhibit memory decline due to aging, which is exacerbated first by a loss in working and contextual (episodic-like) memory. Contextual memory (episodic-like memory) was evaluated using the contextual serial discrimination test. Working and spatial memory were evaluated using the Morris-Water maze test and the sequential alternation test. Statistical analysis was performed using an ANOVA with the Bonferroni post-hoc test. Supplementation with wild blueberry full spectrum powder and wild blueberry extract resulted in significant improvement of contextual memory, while untreated aged mice experienced a decline in such memory. Only the wild blueberry full spectrum powder significantly contributed to an improvement of spatial and working memory versus untreated aged mice. These improvements of cognitive performance may be related to brain oxidative status, acetylcholinesterase activity, neuroprotection, or attenuation of immunoreactivity. Georg Thieme Verlag KG Stuttgart · New York.
Walker, Michael; Fureix, Carole; Palme, Rupert; Newman, Jonathan A; Ahloy Dallaire, Jamie; Mason, Georgia
2016-01-27
Inefficient experimental designs are common in animal-based biomedical research, wasting resources and potentially leading to unreplicable results. Here we illustrate the intrinsic statistical power of split-plot designs, wherein three or more sub-units (e.g. individual subjects) differing in a variable of interest (e.g. genotype) share an experimental unit (e.g. a cage or litter) to which a treatment is applied (e.g. a drug, diet, or cage manipulation). We also empirically validate one example of such a design, mixing different mouse strains -- C57BL/6, DBA/2, and BALB/c -- within cages varying in degree of enrichment. As well as boosting statistical power, no other manipulations are needed for individual identification if co-housed strains are differentially pigmented, so also sparing mice from stressful marking procedures. The validation involved housing 240 females from weaning to 5 months of age in single- or mixed- strain trios, in cages allocated to enriched or standard treatments. Mice were screened for a range of 26 commonly-measured behavioural, physiological and haematological variables. Living in mixed-strain trios did not compromise mouse welfare (assessed via corticosterone metabolite output, stereotypic behaviour, signs of aggression, and other variables). It also did not alter the direction or magnitude of any strain- or enrichment-typical difference across the 26 measured variables, or increase variance in the data: indeed variance was significantly decreased by mixed- strain housing. Furthermore, using Monte Carlo simulations to quantify the statistical power benefits of this approach over a conventional design demonstrated that for our effect sizes, the split- plot design would require significantly fewer mice (under half in most cases) to achieve a power of 80%. Mixed-strain housing allows several strains to be tested at once, and potentially refines traditional marking practices for research mice. Furthermore, it dramatically illustrates the enhanced statistical power of split-plot designs, allowing many fewer animals to be used. More powerful designs can also increase the chances of replicable findings, and increase the ability of small-scale studies to yield significant results. Using mixed-strain housing for female C57BL/6, DBA/2 and BALB/c mice is therefore an effective, efficient way to promote both refinement and the reduction of animal-use in research.
Zhang, Ying; Xiong, Chi; Kudelko, Mateusz; Li, Yan; Wang, Cheng; Wong, Yuk Lun; Tam, Vivian; Rai, Muhammad Farooq; Cheverud, James; Lawson, Heather A; Sandell, Linda; Chan, Wilson C W; Cheah, Kathryn S E; Sham, Pak C; Chan, Danny
2018-04-09
Intervertebral disc degeneration (IDD) causes back pain and sciatica, affecting quality of life and resulting in high economic/social burden. The etiology of IDD is not well understood. Along with aging and environmental factors, genetic factors also influence the onset, progression and severity of IDD. Genetic studies of risk factors for IDD using human cohorts are limited by small sample size and low statistical power. Animal models amenable to genetic and functional studies of IDD provide desirable alternatives. Despite differences in size and cellular content as compared to human intervertebral discs (IVDs), the mouse is a powerful model for genetics and assessment of cellular changes relevant to human biology. Here, we provide evidence for early onset disc degeneration in SM/J relative to LG/J mice with poor and good tissue healing capacity respectively. In the first few months of life, LG/J mice maintain a relatively constant pool of notochordal-like cells in the nucleus pulposus (NP) of the IVD. In contrast, chondrogenic events are observed in SM/J mice beginning as early as one-week-old, with progressive fibrotic changes. Further, the extracellular matrix changes in the NP are consistent with IVD degeneration. Leveraging on the genomic data of two parental and two recombinant inbred lines, we assessed the genetic contribution to the NP changes and identified processes linked to the regulation of ion transport systems. Significantly, "transport" system is also in the top three gene ontology (GO) terms from a comparative proteomic analysis of the mouse NP. These findings support the potential of the SM/J, LG/J and their recombinant inbred lines for future genetic and biological analysis in mice and validation of candidate genes and biological relevance in human cohort studies. The proteomic data has been deposited to the ProteomeXchange Consortium via the PRIDE [1] partner repository with the dataset identifier PXD008784. Copyright © 2017. Published by Elsevier B.V.
Kalaiselvi, M; Narmadha, R; Ragavendran, P; Vidya, B; Gomathi, D; Raj, C Arul; Starlinraj, T; Gopalakrishnan, V K; Uma, C; Kalaivani, K
2013-02-01
The anticancer activity of the ethanolic extract of Jasminum sambac against Dalton's lymphoma ascites-induced lymphatic cancer in Swiss albino mice was investigated. The anticancer activity of J. sambac was studied against lymphoma using lipid profiles, biochemical parameters, and membrane-bound marker enzymes by standard procedures. A high-performance thin-layer chromatography fingerprinting analysis showed the presence of terpenoids and flavonoids. The levels of cholesterol, triglyceride, VLDL cholesterol, and LDL cholesterol were significantly decreased in tumor-induced mice, while HDL cholesterol showed increased levels compared with those profiles. On treatment with J. sambac, the levels were brought back to near normal. The albumin, creatinine, total protein, urea, and uric acid contents were also approaching normal values. There was s significant increase in the levels of ATPase in group II. These levels were brought back to normal upon plant extract treatment of mice. DNA fragmentation occurred in the tumor-induced group of tissue, and treatment with ethanolic extract reduced the DNA damage caused by lymphoma. Expression of lactate dehydrogenase (LDH) isoenzymes shows an increase in the levels of LDH-4 and LDH-5 in cancer-bearing animals which is brought back to near normal. Histopathological investigation showed normal sections of liver tissues in the treatment group. The results found in mice treated with ethanolic extract 100 mg kg(-1) body weight quite promising and were comparable with the standard drug 5-fluorouracil. The statistically processed results support the conclusion that the ethanolic extract of J. sambac flower (100 mg kg(-1)) possesses a dose-dependent significant anticancer activity against lymphoma.
Ozbilgin, M Kemal; Onal, Tuna; Ozcan, Cemil; Temel, Merve; Aktas, Caner; Gareveran, Manuchehr Salehi; Uluer, Elgin Turkoz; Inan, Sevinc; Kurtman, Cengiz
2016-04-01
To determine the role of cyclooxygenase (COX) expression in the urothelium of the urinary bladder during radiation injury caused by pelvic radiotherapy for cancer therapy. Twenty-four male Swiss Albino mice were separated into 4 groups. The first group was the control group (Group 1) and the second, third, and fourth groups were euthanized after 24 hours (Group 2), 48 hours (Group 3), and 7 days (Group 4), respectively. A single-fractioned 10 Gy of ionizing radiation was applied to all mice's pelvic zone with Co-60. Bladders were removed completely from the pelvic region. Histochemical analysis using hematoxylin and eosin and immunohistochemical analysis using anti-COX-1 and COX-2 antibodies were performed on tissue samples. The immunoreactivities of the urinary bladder were quantified using H-score measurement, and statistical comparison was performed. In the immunohistochemical examination the COX-1 immunoreactivities were found to be higher in the urothelium of the bladder in the radiation exposed groups than in the normal control group (group 1) (p < 0.005). Additionally, high immunoreactivity of COX-2 molecule was established in groups 2, 3, and 4 of radiation groups as compared to group 1 (p < 0.005) in examination of the urothelium. COX-1 and COX-2 immunoreactivities in the submucosa were detected higher in group 4 than in the other groups (p < 0.005). COX-1 and COX-2 expressions in the urothelium and subepithelium of the urinary bladder were investigated in mice during the acute radiation response. The expression of COX-1 and COX-2 in the urothelium seems to prevent bladder damage from radiation, supplying differentiation and restoration of the urothelium.
Kawai, K; Enomoto, T; Fornasier, V; Resetkova, E; Volpé, R
1997-03-01
We have studied the in vivo effects of human interferon alpha (IFN-alpha) and interferon gamma (IFN-gamma) administration on human thyroid tissue xenografted into two mouse strains: severe combined immunodeficient (SCID) mice and nude mice. Human lymphocytes survive in SCID mice but are lysed in nude mice. Thyroid tissues from Graves' disease or Hashimoto's thyroiditis, or paranodular [normal, (N)] tissue was xenografted into SCID mice (0.8 g/mouse) pretreated with anti-asialo GM-1 antiserum and radiation and also into nude mice. One week after xenografting, SCID and nude mice were divided into three groups. Group A was treated with IFN-alpha intraperitoneally (2,000 units/mouse) three times weekly; group B was treated with IFN-gamma similarly; group C was treated with phosphate buffered saline (PBS) only (control). Autologous human peripheral blood mononuclear cells (PBMCs) were added to mice receiving N xenografts. Blood was taken every 2 weeks for levels of IgG and thyroid antibodies (TAb). After 6 weeks of treatment, mice were sacrificed, and xenograft thyrocyte histocompatibility leukocyte antigen (HLA-DR) and intercellular adhesion molecule (ICAM-1) expression were measured. In addition, thyrocyte cultures were stimulated in vitro with 200 units/ml of either IFN-alpha or IFN-gamma or PBS (control). SCID mice xenografted with autoimmune thyroid disease (AITD) in group A showed a significantly higher TAb production than group C, whereas in group B, TAb production was not statistically increased compared to control (group C). SCID mice xenografted with N did not produce TAb in any group, nor did nude mice xenografted with AITD. Thyrocyte HLA-DR expression was markedly increased in group A and B in SCID mice xenografted with Graves' disease, Hashimoto's thyroiditis, and N tissue compared to group C. In contrast, only group B (IFN-gamma) showed an increase in thyrocyte HLA-DR in nude mice. In the in vitro studies, only IFN-gamma (not IFN-alpha) stimulated thyrocyte HLA-DR and ICAM-1 expression in Graves' disease, Hashimoto's thyroiditis, and N tissues. We concluded that in SCID mice, IFN-alpha causes TAB production in AITD xenografts but not in N xenografts, while increasing thyrocyte HLA-DR expression in both. Also, IFN-gamma does not cause a statistically increased TAb in AITD xenografts in SCID mice, despite a sharp rise in thyrocyte HLA-DR expression. In addition, because IFN-alpha has no effect in nude mice or in vitro on thyrocyte HLA-DR expression, its effects in SCID mice must be mediated via local infiltrating lymphocytes. Finally, IFN-gamma has a direct effect on thyrocytes to increase HLA-DR expression (and, in vitro, ICAM-1 expression) but may not stimulate TAb production.
[Mechanisms of myeloid cell RelA/p65 in cigarette smoking-induced lung cancer growth in mice].
Yao, Yiwen; Wu, Junlu; Quan, Wenqiang; Zhou, Hong; Zhang, Yu; Wan, Haiying; Li, Dong
2014-06-01
The aim of this study was to investigate the mechanism of cigarette smoking (CS)-induced lung cancer growth in mice. RelA/p65⁻/⁻ mice and WT mice were used to establish mouse models of lung cancer. Both mice were divided into two groups: air group and CS group, respectively. Tumor number on the lung surface was counted and maximal tumor size was evaluated using HE staining. Kaplan Meier (K-M) survival curve was used to analyze the survival rate of the mice. Expression of Ki-67, TNF-α and CD68 in the tumor tissue was determined by immunohistochemical analysis, and cyclin D1 and c-myc proteins were examined by Western blot. Apoptosis of tumor cells was analyzed using TUNEL staining. The concentrations of inflammatory cytokines TNF-α, IL-6 and KC in the mouse lung tissues were evaluated by ELISA. Compared with the WT air group, the lung weight, lung tumor multiplicity, as well as maximum tumor size in the WT mice exposed to CS were (1.5 ± 0.1)g, (64.8 ± 4.1) and (7.6 ± 0.2) mm, respectively, significantly increased than those in the WT mice not exposed to CS (P < 0.05 for all). However, there were no statistically significant differences between RelA/p65⁻/⁻ mice before and after CS exposure (P > 0.05 for all). Kaplan-Meier survival analysis showed that CS exposure significantly shortened the life time of WT mice (P < 0.05), and deletion of RelA/p65 in myeloid cells resulted in an increased survival compared with that of the WT mice (P < 0.05 for all). The ratios of Ki-67 positive tumor cells were (43.4 ± 2.9)%, (60.6 ± 5.4)%, (12.8 ± 3.6)% and (15.0 ± 4.2)% in the WT air group, WT CS groups, RelA/p65⁻/⁻ air groups and RelA/p65⁻/⁻ CS groups, respectively. After smoking, the number of Ki-67-positive cells was significantly increased in the WT mice (P < 0.05). However, there was no significant difference between the RelA/p65⁻/⁻ groups before and after smoking (P > 0.05). The apoptosis rate of WT air, WT CS, RelA/p65⁻/⁻ air and RelA/p65⁻/⁻ CS groups were (11.6 ± 1.7)%, (13.0 ± 2.0)%, (13.2 ± 2.0)% and (11.0 ± 1.4)%, respectively, with no significant difference among them (P > 0.05). Expression of cyclin D1 and c-myc was induced in response to CS exposure in lung tumor cells of WT mice. In contrast, their expressions were not significantly changed in the RelA/p65⁻/⁻ mice after smoke exposure. CS exposure was associated with an increased number of macrophages infiltrating in the tumor tissue, in both WT and RelA/p65⁻/⁻ mice (P < 0.05). The concentrations of IL-6, KC and TNF-α were significantly increased after CS exposure in the lungs of WT mice (P < 0.05). Cigarette smoking promotes the lung cancer growth in mice. Myeloid cell RelA/p65 mediates CS-induced tumor growth. TNFα regulated by RelA/p65 may be involved in the lung cancer development.
2009-01-01
Background Ozone is a major component of air pollution. Exposure to this powerful oxidizing agent can cause or exacerbate many lung conditions, especially those involving innate immunity. Surfactant protein-A (SP-A) plays many roles in innate immunity by participating directly in host defense as it exerts opsonin function, or indirectly via its ability to regulate alveolar macrophages and other innate immune cells. The mechanism(s) responsible for ozone-induced pathophysiology, while likely related to oxidative stress, are not well understood. Methods We employed 2-dimensional difference gel electrophoresis (2D-DIGE), a discovery proteomics approach, coupled with MALDI-ToF/ToF to compare the bronchoalveolar lavage (BAL) proteomes in wild type (WT) and SP-A knockout (KO) mice and to assess the impact of ozone or filtered air on the expression of BAL proteins. Using the PANTHER database and the published literature most identified proteins were placed into three functional groups. Results We identified 66 proteins and focused our analysis on these proteins. Many of them fell into three categories: defense and immunity; redox regulation; and protein metabolism, modification and chaperones. In response to the oxidative stress of acute ozone exposure (2 ppm; 3 hours) there were many significant changes in levels of expression of proteins in these groups. Most of the proteins in the redox group were decreased, the proteins involved in protein metabolism increased, and roughly equal numbers of increases and decreases were seen in the defense and immunity group. Responses between WT and KO mice were similar in many respects. However, the percent change was consistently greater in the KO mice and there were more changes that achieved statistical significance in the KO mice, with levels of expression in filtered air-exposed KO mice being closer to ozone-exposed WT mice than to filtered air-exposed WT mice. Conclusion We postulate that SP-A plays a role in reactive oxidant scavenging in WT mice and that its absence in the KO mice in the presence or absence of ozone exposure results in more pronounced, and presumably chronic, oxidative stress. PMID:19323824
2010-01-01
Background Interactions between fractalkine (CX3CL1) and fractalkine receptor (CX3CR1) regulate microglial activation in the CNS. Recent findings indicate that age-associated impairments in CX3CL1 and CX3CR1 are directly associated with exaggerated microglial activation and an impaired recovery from sickness behavior after peripheral injection of lipopolysaccharide (LPS). Therefore, the purpose of this study was to determine the extent to which an acute LPS injection causes amplified and prolonged microglial activation and behavioral deficits in CX3CR1-deficient mice (CX3CR1-/-). Methods CX3CR1-/- mice or control heterozygote mice (CX3CR1+/-) were injected with LPS (0.5 mg/kg i.p.) or saline and behavior (i.e., sickness and depression-like behavior), microglial activation, and markers of tryptophan metabolism were determined. All data were analyzed using Statistical Analysis Systems General Linear Model procedures and were subjected to one-, two-, or three-way ANOVA to determine significant main effects and interactions. Results LPS injection caused a prolonged duration of social withdrawal in CX3CR1-/- mice compared to control mice. This extended social withdrawal was associated with enhanced mRNA expression of IL-1β, indolamine 2,3-dioxygenase (IDO) and kynurenine monooxygenase (KMO) in microglia 4 h after LPS. Moreover, elevated expression of IL-1β and CD14 was still detected in microglia of CX3CR1-/- mice 24 h after LPS. There was also increased turnover of tryptophan, serotonin, and dopamine in the brain 24 h after LPS, but these increases were independent of CX3CR1 expression. When submitted to the tail suspension test 48 and 72 h after LPS, an increased duration of immobility was evident only in CX3CR1-/- mice. This depression-like behavior in CX3CR1-/- mice was associated with a persistent activated microglial phenotype in the hippocampus and prefrontal cortex. Conclusions Taken together, these data indicate that a deficiency of CX3CR1 is permissive to protracted microglial activation and prolonged behavioral alterations in response to transient activation of the innate immune system. PMID:21167054
McCombie, Gregor; Medina-Gomez, Gema; Lelliott, Christopher J; Vidal-Puig, Antonio; Griffin, Julian L
2012-06-18
The peroxisome proliferator-activated receptor-γ coactivators (PGC-1) are transcriptional coactivators with an important role in mitochondrial biogenesis and regulation of genes involved in the electron transport chain and oxidative phosphorylation in oxidative tissues including cardiac tissue. These coactivators are thought to play a key role in the development of obesity, type 2 diabetes and the metabolic syndrome. In this study we have used a combined metabolomic and lipidomic analysis of cardiac tissue from the PGC-1β null mouse to examine the effects of a high fat diet on this organ. Multivariate statistics readily separated tissue from PGC-1β null mice from their wild type controls either in gender specific models or in combined datasets. This was associated with an increase in creatine and a decrease in taurine in the null mouse, and an increase in myristic acid and a reduction in long chain polyunsaturated fatty acids for both genders. The most profound changes were detected by liquid chromatography mass spectrometry analysis of intact lipids with the tissue from the null mouse having a profound increase in a number of triglycerides. The metabolomic and lipodomic changes indicate PGC-1β has a profound influence on cardiac metabolism.
Evaluating Cellular Polyfunctionality with a Novel Polyfunctionality Index
Larsen, Martin; Sauce, Delphine; Arnaud, Laurent; Fastenackels, Solène; Appay, Victor; Gorochov, Guy
2012-01-01
Functional evaluation of naturally occurring or vaccination-induced T cell responses in mice, men and monkeys has in recent years advanced from single-parameter (e.g. IFN-γ-secretion) to much more complex multidimensional measurements. Co-secretion of multiple functional molecules (such as cytokines and chemokines) at the single-cell level is now measurable due primarily to major advances in multiparametric flow cytometry. The very extensive and complex datasets generated by this technology raise the demand for proper analytical tools that enable the analysis of combinatorial functional properties of T cells, hence polyfunctionality. Presently, multidimensional functional measures are analysed either by evaluating all combinations of parameters individually or by summing frequencies of combinations that include the same number of simultaneous functions. Often these evaluations are visualized as pie charts. Whereas pie charts effectively represent and compare average polyfunctionality profiles of particular T cell subsets or patient groups, they do not document the degree or variation of polyfunctionality within a group nor does it allow more sophisticated statistical analysis. Here we propose a novel polyfunctionality index that numerically evaluates the degree and variation of polyfuntionality, and enable comparative and correlative parametric and non-parametric statistical tests. Moreover, it allows the usage of more advanced statistical approaches, such as cluster analysis. We believe that the polyfunctionality index will render polyfunctionality an appropriate end-point measure in future studies of T cell responsiveness. PMID:22860124
Wip1 and p53 contribute to HTLV-1 Tax-induced tumorigenesis
2012-01-01
Background Human T-cell Leukemia Virus type 1 (HTLV-1) infects 20 million individuals world-wide and causes Adult T-cell Leukemia/Lymphoma (ATLL), a highly aggressive T-cell cancer. ATLL is refractory to treatment with conventional chemotherapy and fewer than 10% of afflicted individuals survive more than 5 years after diagnosis. HTLV-1 encodes a viral oncoprotein, Tax, that functions in transforming virus-infected T-cells into leukemic cells. All ATLL cases are believed to have reduced p53 activity although only a minority of ATLLs have genetic mutations in their p53 gene. It has been suggested that p53 function is inactivated by the Tax protein. Results Using genetically altered mice, we report here that Tax expression does not achieve a functional equivalence of p53 inactivation as that seen with genetic mutation of p53 (i.e. a p53−/− genotype). Thus, we find statistically significant differences in tumorigenesis between Tax+p53+/+versus Tax+p53−/− mice. We also find a role contributed by the cellular Wip1 phosphatase protein in tumor formation in Tax transgenic mice. Notably, Tax+Wip1−/− mice show statistically significant reduced prevalence of tumorigenesis compared to Tax+Wip1+/+ counterparts. Conclusions Our findings provide new insights into contributions by p53 and Wip1 in the in vivo oncogenesis of Tax-induced tumors in mice. PMID:23256545
Shanmugasamy, Kathirvelu; Anbalagan, Jayaram; Rajanarayanan, Swamynathan; Meenachi, Swamynathan
2016-01-01
Introduction The advancement in the telecommunications technology with multi-functional added features in mobile phone, attracts more users of all age group. It is alarming to note that, the mobile phone use has increased amongst children and they are exposed to potentially harmful radiofrequency radiation in their lifetime. Aim To investigate the long term exposure of 900 to 1800 MHz radiations emitted from 2G mobile phone in mice hippocampus at histomorphometric level. Materials and Methods With due approval from institutional animal ethics committee, 36 mice were exposed to 2G mobile phone radiation, 48 minutes per day for a period of 30-180 days. The control group was kept under similar conditions without 2G exposure. Mice were sacrificed and the brain was removed from the first month to six months period. Brain was removed from the cranial cavity and hippocampus region was dissected out carefully and processed for routine histological study. Random serial sections were analysed under microscope for histomorphometric changes. For statistical analysis, independent t-test was used for comparing control and 2G exposed groups. Results The mean density of neurons in the hippocampus regions CA1, CA2 and DGDB from first to sixth month was significantly lower in the 2G exposed groups; however, in CA3 and DGVB, the 2G exposed mice showed significantly higher density of neurons. The mean nuclear diameter of neurons in the hippocampus region of CA1, CA2, CA3, DGDB and DGVB from first to sixth months showed lower nuclear diameter in 2G exposed mice. Conclusion The long term exposure to 900-1800 MHz frequency radiations emitted from 2G mobile phone could cause significantly reduced neuron density and decreased nuclear diameter in the hippocampus neurons of mice. PMID:27656427
Luszczki, Jarogniew J; Czuczwar, Stanislaw J
2004-11-01
The anticonvulsant effects of lamotrigine (LTG) and clonazepam (CZP) and combinations thereof against maximal electroshock (MES)-induced seizures in mice were investigated using three-dimensional (3D) isobolographic analysis. With this method, the doses of fixed-ratio combinations of the drugs (1:3, 1:1 and 3:1) that elicited 16, 50 and 84% of the maximum anticonvulsant effect were determined. Additionally, to evaluate the characteristics of interactions observed with 3D isobolography, the brain concentrations of both drugs were verified pharmacokinetically. The 3D isobolographic analysis showed that LTG and CZP combined at the fixed ratios of 3:1 and 1:1 interacted synergistically in the MES test for all anticonvulsant effects between 16% and 84% of maximum. In contrast, the combination of LTG and CZP at the fixed ratio of 1:3 showed only pure additivity for all estimated effects in 3D isobolography. Moreover, none of the examined antiepileptic drugs altered the brain concentrations of the coadministered drug, so the observed interactions in the MES test are of a pharmacodynamic nature. The 3D isobolographic findings suggest that in epilepsy therapy, increased efficacy of seizure control (synergistic interaction) might be achieved by using LTG and CZP in combination. In this study, some important problems and assumptions related to statistical analysis of data in 3D isobolography are discussed.
Sex-related differential susceptibility to doxorubicin-induced cardiotoxicity in B6C3F{sub 1} mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jenkins, G. Ronald
Sex is a risk factor for development of cardiotoxicity, induced by the anti-cancer drug, doxorubicin (DOX), in humans. To explore potential mechanisms underlying differential susceptibility to DOX between sexes, 8-week old male and female B6C3F{sub 1} mice were dosed with 3 mg/kg body weight DOX or an equivalent volume of saline via tail vein once a week for 6, 7, 8, and 9 consecutive weeks, resulting in 18, 21, 24, and 27 mg/kg cumulative DOX doses, respectively. At necropsy, one week after each consecutive final dose, the extent of myocardial injury was greater in male mice compared to females asmore » indicated by higher plasma concentrations of cardiac troponin T at all cumulative DOX doses with statistically significant differences between sexes at the 21 and 24 mg/kg cumulative doses. A greater susceptibility to DOX in male mice was further confirmed by the presence of cytoplasmic vacuolization in cardiomyocytes, with left atrium being more vulnerable to DOX cardiotoxicity. The number of TUNEL-positive cardiomyocytes was mostly higher in DOX-treated male mice compared to female counterparts, showing a statistically significant sex-related difference only in left atrium at 21 mg/kg cumulative dose. DOX-treated male mice also had an increased number of γ-H2A.X-positive (measure of DNA double-strand breaks) cardiomyocytes compared to female counterparts with a significant sex effect in the ventricle at 27 mg/kg cumulative dose and right atrium at 21 and 27 mg/kg cumulative doses. This newly established mouse model provides a means to identify biomarkers and access potential mechanisms underlying sex-related differences in DOX-induced cardiotoxicity. - Highlights: • Doxorubicin caused greater heart injury in male mice than females. • Doxorubicin caused vacuolization in cardiomyocytes only in male mice. • TUNEL-positive cardiomyocytes was higher in DOX-treated male mice. • γ-H2A.X-positive cardiomyocytes was greater in DOX-treated male mice.« less
Gender differences in cerebral metabolism for color processing in mice: A PET/MRI Study.
Njemanze, Philip C; Kranz, Mathias; Amend, Mario; Hauser, Jens; Wehrl, Hans; Brust, Peter
2017-01-01
Color processing is a central component of mammalian vision. Gender-related differences of color processing revealed by non-invasive functional transcranial Doppler ultrasound suggested right hemisphere pattern for blue/yellow chromatic opponency by men, and a left hemisphere pattern by women. The present study measured the accumulation of [18F]fluorodeoxyglucose ([18F]FDG) in mouse brain using small animal positron emission tomography and magnetic resonance imaging (PET/MRI) with statistical parametric mapping (SPM) during light stimulation with blue and yellow filters compared to darkness condition. PET revealed a reverse pattern relative to dark condition compared to previous human studies: Male mice presented with left visual cortex dominance for blue through the right eye, while female mice presented with right visual cortex dominance for blue through the left eye. We applied statistical parametric mapping (SPM) to examine gender differences in activated architectonic areas within the orbital and medial prefrontal cortex and related cortical and sub-cortical areas that lead to the striatum, medial thalamus and other brain areas. The metabolic connectivity of the orbital and medial prefrontal cortex evoked by blue stimulation spread through a wide range of brain structures implicated in viscerosensory and visceromotor systems in the left intra-hemispheric regions in male, but in the right-to-left inter-hemispheric regions in female mice. Color functional ocular dominance plasticity was noted in the right eye in male mice but in the left eye in female mice. This study of color processing in an animal model could be applied in the study of the role of gender differences in brain disease.
Marciniak, B; Lopaczyńska, D; Kowalczyk, E; Skośkiewicz, J; Witczak, M; Majczyk, M; Grabowicz, W; Ferenc, T
2013-03-01
α-Amanitin, the main toxic substance from mushroom species (Amanita genus), blocks the activity of RNA polymerase II (Pol II) in mammalian cells causing inhibition of transcription and subsequent synthesis of structural and enzymatic proteins. It has been postulated that α-amanitin generates the increase of reactive oxygen species (ROS) concentration. The micronucleus (MN) test was used on an animal experimental model to evaluate possible potential genotoxic effect of α-amanitin on mice bone marrow cells. At the same time the activity of antioxidant enzymes: superoxide dismutase (SOD) and catalase (CAT) as well as concentration of thiobarbituric acid reactive substance (TBARS) were investigated in the lysate of mice erythrocytes. α-Amanitin was administered intraperitoneally at the doses: 0.1, 0.15, and 0.25 mg/kg bw (LD(50) for mice) 48 h prior to sacrification. A statistically significant increase of SOD activity was observed in the hemolysate for all the investigated α-amanitin doses as compared to the negative control (p < 0.05). CAT activity for α-amanitin doses 0.1 and 0.15 mg/kg was higher in comparison to the negative control but the differences were not statistically significant (p > 0.05). However, for the dose 0.25 mg/kg the activity of CAT was statistically significantly higher (p < 0.001). All the tested α-amanitin doses decreased TBARS concentration in the hemolysate as compared to the negative control but the differences were not statistically significant (p > 0.05). A statistically significant increase of mean values of MN percent was found in polychromatic erythrocytes (PCEs) as compared to the negative control for α-amanitin dose 0.1 and 0.25 mg/kg (p < 0.05). For the dose 0.15 mg/kg the mean value of MN percent was higher but it did not demonstrate statistical significance (p > 0.1). The observed disturbances in the activity of the examined antioxidant enzymes in cells exposed in vivo to α-amanitin suggest indirect genotoxic effect of α-amanitin through ROS generation. Copyright © 2012 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willse, Alan R.; Belcher, Ann; Preti, George
2005-04-15
Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MSmore » profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.« less
[Reproduction,genotype identification and evaluation of APP/PS1 transgenic mice].
Tan, Long; Li, Hai-Qiang; Li, Yi-Bo; Liu, Wei; Pang, Wei; Jiang, Yu-Gang
2018-02-08
To identify the genotype of (APP/PS1) transgenic mice and evaluate the changing of cognitive and behavioral fu nctions, provide an effective animal model for the Alzheimer's disease (AD) research. Male APP/PS1 transgenic mice mated with female APP/PS1 transgenic mice, and the genotype of their filial mice was identified by PCR. The APP +/PS1 + mice were assigned into AD model group (AD group, n =8), and the APP/PS1 mice were assigned into control group (CT group, n =8). The Morris water maze test was carried out to detect the capacity of learning and memory of mice. After that, the mice were sacrificed and the brain tissues were sampled and stained by HE and congo red for the pathological examination. ①A APP/PS1 genome DNA about 360 bp size was detected. The methods of feeding and breeding were successful to attain APP/PS1 transgenic mice.②Statistical significance was found in the differences of the capacity of learning and memory between 7-month-old APP/PS1 positive mice and negative mice ( P <0.05).③The results of HE stain showed that the structure and cellular morphology of hippocampus of AD mice were obviously abnormal. The results of congo red stain showed that positive amyloid plaque was observed in brains of AD mice. APP/PS1 transgenic mice present typical symptoms and behaviors of Alzheimer's disease. The transgenic mouse is an effective tool for the research and prevention of AD.
Koscielny, Gautier; Yaikhom, Gagarine; Iyer, Vivek; Meehan, Terrence F.; Morgan, Hugh; Atienza-Herrero, Julian; Blake, Andrew; Chen, Chao-Kung; Easty, Richard; Di Fenza, Armida; Fiegel, Tanja; Grifiths, Mark; Horne, Alan; Karp, Natasha A.; Kurbatova, Natalja; Mason, Jeremy C.; Matthews, Peter; Oakley, Darren J.; Qazi, Asfand; Regnart, Jack; Retha, Ahmad; Santos, Luis A.; Sneddon, Duncan J.; Warren, Jonathan; Westerberg, Henrik; Wilson, Robert J.; Melvin, David G.; Smedley, Damian; Brown, Steve D. M.; Flicek, Paul; Skarnes, William C.; Mallon, Ann-Marie; Parkinson, Helen
2014-01-01
The International Mouse Phenotyping Consortium (IMPC) web portal (http://www.mousephenotype.org) provides the biomedical community with a unified point of access to mutant mice and rich collection of related emerging and existing mouse phenotype data. IMPC mouse clinics worldwide follow rigorous highly structured and standardized protocols for the experimentation, collection and dissemination of data. Dedicated ‘data wranglers’ work with each phenotyping center to collate data and perform quality control of data. An automated statistical analysis pipeline has been developed to identify knockout strains with a significant change in the phenotype parameters. Annotation with biomedical ontologies allows biologists and clinicians to easily find mouse strains with phenotypic traits relevant to their research. Data integration with other resources will provide insights into mammalian gene function and human disease. As phenotype data become available for every gene in the mouse, the IMPC web portal will become an invaluable tool for researchers studying the genetic contributions of genes to human diseases. PMID:24194600
Li, Jung-Miao; Lee, Yu-Chen; Li, Chia-Cheng; Lo, Hsin-Yi; Chen, Feng-Yuan; Chen, Yi-Siou; Hsiang, Chien-Yun; Ho, Tin-Yun
2018-06-06
Vanillin is a natural dietary flavoring widely used in the food industry. Colorectal cancer (CRC) is one of the common malignancies in the world. Chronic intestinal inflammation is a risk factor for the development of CRC. We have previously found that vanillin improves and prevents colitis in mice. Here we evaluated the inhibitory activities of vanillin on a mouse model of colitis-induced CRC. Mice were challenged intraperitoneally with azoxymethane (AOM) and orally with dextran sodium sulfate (DSS). Various dosages of vanillin were orally administered for 13 consecutive weeks. Vanillin alleviated the development of tumors in AOM/DSS-induced mice. The total number of tumors in 100 mg/kg vanillin group was significantly reduced by 57.14 ± 7.67%, compared with sham group. Gene expression analysis showed that vanillin downregulated the expression levels of proteasome genes in colon tissues. Moreover, vanillin at 10 mM significantly suppressed proteasome activities in HCT-116 cells by 41.27 ± 0.41%. Furthermore, vanillin diminished the phosphorylation of mitogen-activated protein kinases (MAPKs) and reduced the number of p65-positive cells, proliferating cells, and granulocytes in colon tissues with statistical significance. In conclusion, our data suggested that vanillin was a bioactive compound that ameliorated the development of AOM/DSS-induced colon cancer in mice. Moreover, the amelioration of vanillin might be associated with the downregulation of proteasome, nuclear factor-κB, and MAPK pathways.
Gao, Haoxue; Yu, Xiaoyi; Sun, Runbin; Yang, Na; He, Jun; Tao, Mingxue; Gu, Huilin; Yan, Caixia; Aa, Jiye; Wang, Guangji
2018-03-01
The early diagnosis of diabetic nephropathy (DN) is rather challenging. Our previous study suggested that citric acid is a potential marker for the early diagnosis of diabetic nephropathy in db/db mice. For the first time, in this study, a surrogate analyte of 13 C 6 -citric acid was employed to generate calibration curves for the quantitative measurement of the endogenous citric acid in the sera of db/db mice and diabetic nephropathy patients by GC/MS after the analytes were extracted, methoximated and trimethylsilylated. The constant response factor of 13 C 6 -citric acid versus citric acid over the linear range indicated the identical ionization efficiency of these two compounds. The full validation assessments suggested that the method is sensitive, specific, reliable, reproducible and has acceptable parameters. Statistical analysis revealed cut-off citric acid concentrations of 29.24 μg/mL with a 95% confidence interval between 32.75 and 39.16 μg/mL in the diabetic nephropathy patients and 16.74 and 22.57 μg/mL in the normal controls. The areas under the receiver operating characteristic curves indicated accuracies of over 90% for the diagnoses of early diabetic nephropathy in both humans and db/db mice, which suggests that the serum citric acid level is potentially a biomarker that could assist in the diagnosis of diabetic nephropathy. Copyright © 2018 Elsevier B.V. All rights reserved.
Gu, Yan; Zhang, Xuan; Yang, Qian; Wang, Jian-mei; He, Ya-ping; Sun, Zhao-gui; Zhang, Hui-qin; Wang, Jian
2015-05-27
N-myc down-regulated gene 2 (NDRG2) is a tumor suppressor involved in cell proliferation and differentiation. The aim of this study was to determine the uterine expression pattern of this gene during early pregnancy in mice. Uterine NDRG2 mRNA and protein expression levels were determined by RT-PCR and Western blot analyses, respectively, during the peri-implantation period in mice. Immunohistochemical (IHC) analysis was performed to examine the spatial localization of NDRG2 expression in mouse uterine tissues. The in vitro decidualization model of mouse endometrial stromal cells (ESCs) was used to evaluate decidualization of ESCs following NDRG2 knock down by small interfering RNA (siRNA). Statistical significance was analyzed by one-way ANOVA using SPSS 19.0 software. Uterine NDRG2 gene expression was significantly up-regulated and was predominantly localized to the secondary decidual zone on days 5 and 8 of pregnancy in mice. Its increased expression was associated with artificial decidualization as well as the activation of delayed implantation. Furthermore, uterine NDRG2 expression was induced by estrogen and progesterone treatments. The in vitro decidualization of mouse ESCs was accompanied by up-regulation of NDRG2 expression, and knock down of its expression in these cells by siRNA inhibited the decidualization process. These results suggest that NDRG2 might play an important role in the process of decidualization during early pregnancy.
Howlader, Md Amran; Alam, Mahmudul; Ahmed, Kh Tanvir; Khatun, Farjana; Apu, Apurba Sarker
2011-10-01
The ethanol leaf extract of Cymbidium aloifolium (L.) was evaluated for its analgesic and antiinflammatory activities. The extract, at the dose of 200 and 400 mg kg(-1) body weight, exerted the analgesic activity by observing the number of abdominal contractions and anti-inflammatory activity against Carrageenin induced paw edema in mice by measuring the paw volume. The ethanolic extract of Cymbidium aloifolium (L.) showed statistically significant (p < 0.05) reduction of percentage of writhing of 33.57 and 61.31% at 200 and 400 mg kg(-1) oral dose, respectively, when compared to negative control. The Ethanolic plant extract also showed significant (p < 0.05) dose dependent reduction of mean increase of formation of paw edema. The results of the experiment and its statistical analysis showed that the ethanolic plant extract had shown significant (p < 0.05) dose dependent analgesic and anti-inflammatory activities when compared to the control.
Optic nerve regeneration in the mouse is a complex trait modulated by genetic background
Wang, Jiaxing; Li, Ying; King, Rebecca; Struebing, Felix L.
2018-01-01
Purpose The present study is designed to identify the influences of genetic background on optic nerve regeneration using the two parental strains (C57BL/6J and DBA/2J) and seven BXD recombinant inbred mouse strains. Methods To study regeneration in the optic nerve, Pten was knocked down in the retinal ganglion cells using adenoassociated virus (AAV) delivery of shRNA, and a mild inflammatory response was induced with an intravitreal injection of zymosan with CPT-cAMP. The axons of the retinal ganglion cells were damaged by optic nerve crush (ONC). Following a 12-day survival period, regenerating axons were labeled by cholera toxin B, and 2 days later, the regenerating axons within the optic nerve were examined. The number of axons at 0.5 mm and 1 mm from the crush site were counted. In addition, we measured the distance that five axons had grown down the nerve and the longest distance a single axon reached. Results The analysis revealed a considerable amount of differential axonal regeneration across the seven BXD strains and the parental strains. There was a statistically significant difference (p=0.014 Mann–Whitney U test) in the regenerative capacity in the number of axons reaching 0.5 mm from a low of 236.1±24.4 axons in the BXD102 mice to a high of 759.8±79.2 axons in the BXD29 mice. There were also statistically significant differences (p=0.014 Mann–Whitney U test) in the distance axons traveled. Looking at a minimum of five axons, the shortest distance was 787.2±46.5 µm in the BXD102 mice, and the maximum distance was 2025.5±223.3 µm in the BXD29 mice. Conclusions Differences in genetic background can have a profound effect on axonal regeneration causing a threefold increase in the number of regenerating axons at 0.5 mm from the crush site and a 2.5-fold increase in the distance traveled by at least five axons in the damaged optic nerve. PMID:29463955
No evidence for a direct role of HLA-B27 in pathological bone formation in axial SpA
Neerinckx, Barbara; Kollnberger, Simon; Shaw, Jacqueline; Lories, Rik
2017-01-01
Objective The strong genetic association between HLA-B27 and ankylosing spondylitis has been known for over 40 years. HLA-B27 positivity is possibly associated with severity of ankylosis. We studied the in vitro and in vivo impact of HLA-B27 in models of chondrogenesis and osteogenesis. Methods Different in vitro differentiation systems were used to mimic endochondral and direct bone formation. ATDC5 cells and primary human periosteum-derived cells (hPDCs) were transduced with lentiviral vectors expressing HLA-B27 or HLA-B7. These cells and limb bud cells (from HLA-B27 transgenic and wild-type (WT) mice) were cultured in micromasses. To study direct osteogenesis in hPDCs, cells were cultured as monolayers and stimulated with osteogenic media. Chondrogenesis (COL2, ACAN, COL10) and osteogenesis (OSC, ALP, RUNX2) marker expression was studied by quantitative RT-PCR. Colorimetric tests were performed to measure proteoglycans, mineralization and collagens. Collagen antibody-induced arthritis (CAIA) was induced in HLA-B27 transgenic and WT mice. Clinical scoring and µCTs were performed. Statistical analyses were performed by two-way ANOVA. Results There was no difference in chondrogenesis markers or in colorimetric tests between HLA-B27+ and HLA-B7+ micromasses. Expression of osteogenesis markers and Alizarin red staining was comparable in the HLA-B27+ and the HLA-B7+ hPDCs in monolayers. HLA-B27 transgenic mice showed more severe arthritis compared with WT mice in the CAIA model. µCT analysis showed no increased bone formation in HLA-B27 transgenic mice. Conclusion HLA-B27 seems to enhance joint inflammation in the CAIA model. We could not document a direct effect of HLA-B27 on chondrogenesis or osteogenesis. PMID:28879048
Effects of Cage-Change Frequency and Bedding Volume on Mice and Their Microenvironment
Rosenbaum, Matthew D; VandeWoude, Susan; Johnson, Thomas E
2009-01-01
The frequency at which mouse cages are changed has important implications for the animals, animal care personnel, and facility managers. The objective of this study was to determine how bedding volume and the interval between changes affect microenvironmental conditions, health, and behavior of mice housed in individually ventilated cages (IVC). A total of 15 cages (n = 5 cages per bedding volume) housing ICR female mice (n = 5 animals per cage) were monitored for 17 d. Parameters monitored included clinical evaluation of each animal, appearance of the cage, fecal corticosterone levels, bedding weight, and mouse mass. Atmospheric analysis was performed daily to determine intracage ammonia cage humidity and temperature on a daily basis. Mice were videotaped for 10 min on days 1, 8, and 15, and videos were analyzed for abnormal behaviors. On day 17, 1 mouse from each cage was euthanized, and bronchoalveolar lavage was performed. Statistical differences in parameters were most often noted between low- and high-volume bedding groups. Correlation between visual appearance and actual intracage environmental conditions and mouse health and behavior at specific time points indicated cages that appear dirty to most observers did not have measurably adverse effects on the animals for any of the many parameters evaluated in this study. This study demonstrated that a 2-wk interval between cage changes for ICR female mice housed in IVC caging (with approximately 90 air changes per hour) and aspen chip bedding did not significantly affect measures of animal well-being in this study. This lack of effect occurred despite the appearance of excessive soiling by the 2-wk time point. PMID:19930825
NASA Astrophysics Data System (ADS)
Trianto, Agus; Andriyas, Yogi; Ridlo, Ali; Sedjati, Sri; Susilaningsih, Neni; Murwani, Retno
2018-02-01
The gorgonian Isis hippuris contains secondary metabolites gorgosterol and hippuristanol which are capable of inhibiting cancer cells. However, in vivo test of the gorgonian Isis hippuris extract as the anticancer drug has not been conducted. The research to study of the effect of ethanolic extract of the gorgonian on the induced tumor growth in C3H mice. The I. hippuris was obtained from Karimunjawa water in Jepara. The extract was prepared by maceration using ethanol. A total 20, 8-10 moths old of C3H mice with an initial weight of 20-25 gram were assigned into control, Ih-1, Ih-2, and Ih-3 groups. Control, Ih-1, Ih-2, and Ih-3 groups each received 0, 0.15, 1.5, and 15 mg extract per mouse per day respectively for two weeks. Cancer cells were introduced to all groups from a donor cancer mouse by injection via left or right axilla and allowed to grow. The cancer mass was removed and processed for histological examination, and cancer growth was determined according to Elston and Ellis criteria. The result showed that histological grade of cancer mass from the control group was in grade 2 or differentiated moderately. The histological grade of cancer mass from Ih-1, Ih-2, and Ih-3 groups were in grade 1 (low grade) or similar to a normal cell. Statistical analysis by Kruskal-Wallis test showed a significant difference (p<0,05) between control and treated mice. Mann-Whitney test found no significant differences among Ih-1, Ih-2, and Ih-3 treated mice. The results indicated the potential of active substances in the ethanol extract of I. hippuris as an anti-cancer drug.
Nakao, Akito; Miki, Takafumi; Shoji, Hirotaka; Nishi, Miyuki; Takeshima, Hiroshi; Miyakawa, Tsuyoshi; Mori, Yasuo
2015-01-01
Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions. PMID:26136667
Entin-Meer, Michal; Cohen, Lena; Hertzberg-Bigelman, Einat; Levy, Ran; Ben-Shoshan, Jeremy; Keren, Gad
2017-01-01
We have recently shown that the expression of the transient receptor potential vanilloid 2 channel, TRPV2, is upregulated in the peri-infarct zone 3-5 days following an acute myocardial infarction (AMI). Further analysis has demonstrated that invading monocytes maturing to macrophages merely harbor the documented elevated expression of this channel. Assess cardiac function in TRPV2-KO mice compared to TRPV2-WT following AMI and analyze the potential involvement of TRPV2-expressing macrophages in the recovery process. TRPV2-KO or WT mice were induced with AMI by ligation of the left anterior descending artery (LAD). In another set of experiments, TRPV2-KO mice induced with AMI, were intravenously (IV) injected with WT or TRPV2-KO peritoneal macrophages in order to directly assess the potential contribution of TRPV2-expressing macrophages to cardiac healing. Cardiac parameters were obtained by echocardiography 1 day and 30 days post infarction. The relative changes in the ejection fraction (EF) and additional cardiac parameters between baseline (day 1) and day 30 were calculated and statistical significance was determined (SPSS). The in vivo study showed that while EF was significantly decreased in the WT animals between baseline and day 30, EF was only slightly and insignificantly reduced in the KO animals. Likewise LVESD and LVESA were significantly modified exclusively in the WT animals. Moreover, intravenous administration of peritoneal WT macrophages, but not KO macrophages, significantly reduced survival of post-MI TRPV2-KO mice. The data suggest that knockout of the TRPV2 channel may attenuate macrophage-dependent pro-inflammatory processes and result in better cardiac recovery. TRPV2 may thus represent a novel therapeutic target for treatment of patients undergoing an acute MI.
Detecting bacterial lung infections: in vivo evaluation of in vitro volatile fingerprints.
Zhu, Jiangjiang; Bean, Heather D; Wargo, Matthew J; Leclair, Laurie W; Hill, Jane E
2013-03-01
The identification of bacteria by their volatilomes is of interest to many scientists and clinicians as it holds the promise of diagnosing infections in situ, particularly lung infections via breath analysis. While there are many studies reporting various bacterial volatile biomarkers or fingerprints using in vitro experiments, it has proven difficult to translate these data to in vivo breath analyses. Therefore, we aimed to create secondary electrospray ionization-mass spectrometry (SESI-MS) pathogen fingerprints directly from the breath of mice with lung infections. In this study we demonstrated that SESI-MS is capable of differentiating infected versus uninfected mice, P. aeruginosa-infected versus S. aureus-infected mice, as well as distinguish between infections caused by P. aeruginosa strains PAO1 versus FRD1, with statistical significance (p < 0.05). In addition, we compared in vitro and in vivo volatiles and observed that only 25-34% of peaks are shared between the in vitro and in vivo SESI-MS fingerprints. To the best of our knowledge, these are the first breath volatiles measured for P. aeruginosa PAO1, FRD1, and S. aureus RN450, and the first comparison of in vivo and in vitro volatile profiles from the same strains using the murine infection model.
Bell, Marshall T; Puskas, Ferenc; Smith, Phillip D; Agoston, Viktor A; Fullerton, David A; Meng, Xianzhong; Weyant, Michael J; Reece, T Brett
2012-11-01
Despite surgical adjuncts, paralysis remains a devastating complication after thoracoabdominal aortic interventions. Dexmedetomidine, a selective α-2a agonist commonly used for sedation in the critical care setting, has been shown to have protective effects against ischemia-reperfusion injuries in multiple organ systems. We hypothesized that treatment with dexmedetomidine would attenuate spinal cord ischemia-reperfusion injury via α-2a receptor activation. Adult C57BL/6 mice underwent sternotomy, followed by occlusion of the aortic arch for 4 minutes. Eight experimental mice received pretreatment with intraperitoneal dexmedetomidine (25 μg/kg) and at 12-hour intervals after reperfusion. Eight control mice received an equivalent amount of 0.9% normal saline. Five mice underwent the same procedure with dexmedetomidine (25 μg/kg) and atipamezole (250 μg/kg), an α-2a receptor antagonist. Functional analysis of the mice was obtained at 12-hour intervals and scored using the Basso Mouse Scale for Locomotion until 60 hours. All mice were euthanized at 60 hours. Their spinal cords were removed en bloc and were stained with hematoxylin and eosin to assess cytoarchitecture and neuronal viability. Mice treated with the α-2a agonist demonstrated preserved motor function compared with ischemic controls and with mice treated with the α-2a antagonist in addition to the agonist. Functional differences in the dexmedetomidine group were statistically significant from 24 hours through the remainder of the experiment (P < .05). In addition, the treated mice had preserved cytoarchitecture, decreased vacuolization, and improved neuronal viability compared with ischemic control mice and mice concurrently treated with atipamezole, the dexmedetomidine α-2a antagonist. Treatment of mice with the α-2a agonist dexmedetomidine preserves motor function and neuronal viability after aortic cross-clamping. In addition, mice exhibited almost complete reversal of the protective effect with the administration of the α-2a receptor antagonist atipamezole. Dexmedetomidine appears to attenuate spinal cord ischemia-reperfusion injury via α-2a receptor-mediated agonism. There remains a significant risk of paraplegia after thoracoabdominal aortic interventions. This complication is devastating to the patient and the health care system. Pharmacologic adjuncts to further decrease this complication have been studied; however, few viable options exist. The α-2a agonists have been shown to improve outcomes after strokes but have not been studied in spinal cord ischemia. We show that dexmedetomidine, a commonly used α-2a agonist in the operating room, can preserve neurologic function in mice after aortic cross-clamping. Although the protective mechanism of dexmedetomidine remains unknown, it might prove to be beneficial in reducing the incidence of paraplegia after aortic interventions. Copyright © 2012 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.
Characterization of the bout durations of sleep and wakefulness.
McShane, Blakeley B; Galante, Raymond J; Jensen, Shane T; Naidoo, Nirinjini; Pack, Allan I; Wyner, Abraham
2010-11-30
(a) Develop a new statistical approach to describe the microarchitecture of wakefulness and sleep in mice; (b) evaluate differences among inbred strains in this microarchitecture; (c) compare results when data are scored in 4-s versus 10-s epochs. Studies in male mice of four inbred strains: AJ, C57BL/6, DBA and PWD. EEG/EMG were recorded for 24h and scored independently in 4-s and 10-s epochs. Distribution of bout durations of wakefulness, NREM and REM sleep in mice has two distinct components, i.e., short and longer bouts. This is described as a spike (short bouts) and slab (longer bouts) distribution, a particular type of mixture model. The distribution in any state depends on the state the mouse is transitioning from and can be characterized by three parameters: the number of such bouts conditional on the previous state, the size of the spike, and the average length of the slab. While conventional statistics such as time spent in state, average bout duration, and number of bouts show some differences between inbred strains, this new statistical approach reveals more major differences. The major difference between strains is their ability to sustain long bouts of NREM sleep or wakefulness. Scoring mouse sleep/wake in 4-s epochs offered little new information when using conventional metrics but did when evaluating the microarchitecture based on this new approach. Standard statistical approaches do not adequately characterize the microarchitecture of mouse behavioral state. Approaches based on a spike-and-slab provide a quantitative description. Copyright © 2010 Elsevier B.V. All rights reserved.
The Muon Ionization Cooling Experiment User Software
NASA Astrophysics Data System (ADS)
Dobbs, A.; Rajaram, D.;
2017-10-01
The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.
Ali, Nehad Mahmoud; Ibrahim, Ayman Nabil; Ahmed, Naglaa Samier
2016-09-01
The current study was carried out to evaluate the prophylactic and therapeutic effects of Allium sativum on experimental cystic echinococcosis by measuring the serum nitric oxide level and studying hepatic histopathological changes. The experimental animals were divided into five groups, ten mice in each, group (I): prophylactic; group (II): therapeutic; group (III): prophylactic and therapeutic; group (IV): infected nontreated; group (V): non infected non treated. The results showed that serum nitric oxide was significantly increased as a result of infection in all infected groups compared to group V. Statistical significant difference was noted in serum nitrate level in group I at 1st and 8th week post infection compared to the same time interval in group IV. In group II, statistical significance was noticed only at the 1st week post infection. Statistical significant difference was noted in serum nitrate level in group III at 1st, 4th, 6th and 8th week post infection compared to same time interval in group IV. Hydatid cysts developed in livers of mice of group IV as early as 4 weeks of infection while no cysts were found in groups I,II and III. Histopathologically there were moderate pathological changes in group I and group II as hepatocytes showed moderate steatosis, moderate venous congestion and inflammatory cellular infiltrate with foci of degeneration and necrosis. While livers of mice of group III showed mild steatosis, mild venous congestion, mild inflammatory cellular infiltrate, no necrosis and no biliary hyperplasia. Accordingly, that garlic (Allium sativum) may be a promising phototherapeutic agent for cystic echinococcosis.
Open-field behavior of house mice selectively bred for high voluntary wheel-running.
Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T
2001-05-01
Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.
Pravastatin Effects on Placental Prosurvival Molecular Pathways in a Mouse Model of Preeclampsia.
Saad, Antonio F; Diken, Zaid M; Kechichian, Talar B; Clark, Shannon M; Olson, Gayle L; Saade, George R; Costantine, Maged M
2016-11-01
Using an animal model of preeclampsia induced by overexpression of soluble fms-like tyrosine kinase 1 (sFlt-1), we previously showed that pravastatin prevents the development of a preeclampsia phenotype. Our objective is to determine whether pravastatin treatment may be explained by its effects on apoptotic/survival pathways in the placenta. Pregnant CD1 mice at day 8 of gestation (length of gestation 19 days) were randomly allocated to injection via tail vein with either adenovirus carrying sFlt-1 or adenovirus carrying the murine immunoglobulin G2α Fc fragment (mFc virus control group). Mice from the sFlt group were randomly assigned to receive pravastatin (5 mg/kg/d) in their drinking water from day 9 until killing (sFlt-1 + Pravastatin) or water (sFlt-1). The mFc control received water only. Mice were killed on day 18, and the placentas were collected. Protein mitogen-activated protein kinase (MAPK) pathway substrates were assayed using Bioplex Multiplex Immunoassay (Bio-Rad, Hercules, California). Data are reported as mean ± standard error of the mean or median (interquartile range) when appropriate. One-way analysis of variance followed by post hoc analysis was performed. Two-sided P value < .05 was considered statistically significant. The sFlt-1 + Pravastatin mice had significantly higher placental protein concentrations of prosurvival/ antiapoptotic factors (activating transcription factor 2, pp38, phosphorylated c-jun N-terminal kinase, and phosphorylated extracellular signal-regulated kinase) and of heat-shock protein 27 and signal transducer and activator of transcription 3, 2 factors crucial for embryonic and placental development during oxidative stress, compared to sFlt-1 mice (P < .05) and similar to the mFc control group. No differences were noted in substrates of the proapoptotic pp53 pathway. Pravastatin ability to prevent preeclampsia phenotype may be mediated through pleiotropic mechanisms involving a prosurvival/ antiapoptotic MAPK pathway in the placenta. Our results further support continued research in the role for statins in the prevention of preeclampsia. © The Author(s) 2016.
High-energy proton irradiation of C57Bl6 mice under hindlimb unloading
NASA Astrophysics Data System (ADS)
Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul
2012-07-01
Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8.5 Gy proton irradiated hindlimb-unloaded mice indicated that the recovery of the WBC counts appeared delayed compared to 8.5 Gy irradiated controls. However, stocktickerRBC recovery appeared similar in both sets of irradiated mice. Our data indicate that hindlimb-unloaded mice are more radiation sensitive compared to irradiated controls. We thank Brian Allen and Rick Jessup for valuable assistance with dosimetry and physical arrangements at the IU Cyclotron Facility and Midwest Proton Radiotherapy Institute and Alan Constance for design of hindlimb-unloading cages. Research supported in part by NASA Grant NNJ06HE95A.
Chang, Jin-Biou; Lu, Hsu-Feng; Liao, Nien-Chieh; Lee, Ching-Sung; Yeh, Ming-Yang; Liu, Chi-Ming; Chung, Ming-Teng; Man-Kuan, Au; Lin, Jen-Jyh; Wu, Ming-Fang; Chung, Jing-Gung
2012-01-01
This study was conducted in order to assess the safety and tolerability of Agaricus blazei Murrill (ABM) in general toxicological studies by Ames tests in vitro and in 28-day feeding toxicity experiments. There were no dose-dependent increases or decreases in the number of revertant colonies both with and without metabolic activation in Ames tests. Doses of 10, 5 and 0.1 mg/per mouse of ABM daily were administered by oral gavage to mice (n=10) for 28 days. The effects on clinical observations, clinical pathology, and histopathology were evaluated. There were no significant changes in the brain, heart, kidney, liver, spleen, adrenal gland, testes or ovaries visually. With increasing doses, male and female treated mice did not show any gradual elevation of serum concentration in any of the nine items we examined, except for aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in females. The AST levels of the treatment by medium or high dose and the ALT levels of the treatment by high dose in females were abnormal in comparison to those of the baseline control group, with significant differences. On studying the histological changes in mice, tissue sections of negative control and experimental groups exhibited no apparent pathological alterations. In summary, the Ames test, pathology determinations, biochemical analysis and routine blood parameters were all normal, except for AST and ALT in females. Results showed that the statistical differences observed in one sex were not observed in the other and were not dose dependent.
Goudarzi, Maryam; Chauthe, Siddheshwar; Strawn, Steven J; Weber, Waylon M; Brenner, David J; Fornace, Albert J
2016-05-20
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; external γ irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 ((137)Cs) and Strontium-90 ((90)Sr). The multiple reaction monitoring analysis showed that, while exposure to (137)Cs and (90)Sr induced a statistically significant and persistent decrease, similar doses of external γ beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to (90)Sr and (137)Cs and to external γ beam radiation.
Swindell, William R
2017-08-01
Rapamycin has favorable effects on aging in mice and may eventually be applied to encourage "healthy aging" in humans. This study analyzed raw data from 29 survival studies of rapamycin- and control-treated mice, with the goals of estimating summary statistics and identifying factors associated with effect size heterogeneity. Meta-analysis demonstrated significant heterogeneity across studies, with hazard ratio (HR) estimates ranging from 0.22 (95% confidence interval [CI]: 0.06-0.82) to 0.92 (95% CI: 0.65-1.28). Sex was the major factor accounting for effect size variation, and mortality was decreased more in females (HR = 0.41; 95% CI: 0.35-0.48) as compared with males (HR = 0.63; 95% CI: 0.55-0.71). Rapamycin effects were also genotype dependent, however, with stronger survivorship increases in hybrid mice (14.4%; 95% CI: 12.5-16.3%) relative to pure inbred strains (8.8%; 95% CI: 6.2-11.6%). Number needed to treat was applied as an effect size metric, which consistently identified early senescence as the age of peak treatment benefit. These results provide synthesis of existing data to support the potential translation of findings from mouse to primate species. Because rapamycin's effect on survival depends on sex and genotype, further work is justified to understand how these factors shape treatment response. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Goudarzi, Maryam; Chauthe, Siddheshwar; Strawn, Steven J.; Weber, Waylon M.; Brenner, David J.; Fornace, Albert J.
2016-01-01
With the safety of existing nuclear power plants being brought into question after the Fukushima disaster and the increased level of concern over terrorism-sponsored use of improvised nuclear devices, it is more crucial to develop well-defined radiation injury markers in easily accessible biofluids to help emergency-responders with injury assessment during patient triage. Here, we focused on utilizing ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to identify and quantitate the unique changes in the urinary excretion of two metabolite markers, calcitroic acid and citrulline, in mice induced by different forms of irradiation; X-ray irradiation at a low dose rate (LDR) of 3.0 mGy/min and a high dose rate (HDR) of 1.1 Gy/min, and internal exposure to Cesium-137 (137Cs) and Strontium-90 (90Sr). The multiple reaction monitoring analysis showed that, while exposure to 137Cs and 90Sr induced a statistically significant and persistent decrease, similar doses of X-ray beam at the HDR had the opposite effect, and the LDR had no effect on the urinary levels of these two metabolites. This suggests that the source of exposure and the dose rate strongly modulate the in vivo metabolomic injury responses, which may have utility in clinical biodosimetry assays for the assessment of exposure in an affected population. This study complements our previous investigations into the metabolomic profile of urine from mice internally exposed to 90Sr and 137Cs and to X-ray beam radiation. PMID:27213362
An Accumulation-of-Evidence Task Using Visual Pulses for Mice Navigating in Virtual Reality
Pinto, Lucas; Koay, Sue A.; Engelhard, Ben; Yoon, Alice M.; Deverett, Ben; Thiberge, Stephan Y.; Witten, Ilana B.; Tank, David W.; Brody, Carlos D.
2018-01-01
The gradual accumulation of sensory evidence is a crucial component of perceptual decision making, but its neural mechanisms are still poorly understood. Given the wide availability of genetic and optical tools for mice, they can be useful model organisms for the study of these phenomena; however, behavioral tools are largely lacking. Here, we describe a new evidence-accumulation task for head-fixed mice navigating in a virtual reality (VR) environment. As they navigate down the stem of a virtual T-maze, they see brief pulses of visual evidence on either side, and retrieve a reward on the arm with the highest number of pulses. The pulses occur randomly with Poisson statistics, yielding a diverse yet well-controlled stimulus set, making the data conducive to a variety of computational approaches. A large number of mice of different genotypes were able to learn and consistently perform the task, at levels similar to rats in analogous tasks. They are sensitive to side differences of a single pulse, and their memory of the cues is stable over time. Moreover, using non-parametric as well as modeling approaches, we show that the mice indeed accumulate evidence: they use multiple pulses of evidence from throughout the cue region of the maze to make their decision, albeit with a small overweighting of earlier cues, and their performance is affected by the magnitude but not the duration of evidence. Additionally, analysis of the mice's running patterns revealed that trajectories are fairly stereotyped yet modulated by the amount of sensory evidence, suggesting that the navigational component of this task may provide a continuous readout correlated to the underlying cognitive variables. Our task, which can be readily integrated with state-of-the-art techniques, is thus a valuable tool to study the circuit mechanisms and dynamics underlying perceptual decision making, particularly under more complex behavioral contexts. PMID:29559900
Paranjpe, Madhav G; Denton, Melissa D; Vidmar, Tom J; Elbekai, Reem H
2014-10-01
The mechanistic relationship between increased food consumption, increased body weights, and increased incidence of tumors has been well established in 2-year rodent models. Body weight parameters such as initial body weights, terminal body weights, food consumption, and the body weight gains in grams and percentages were analyzed to determine whether such relationship exists between these parameters with the incidence of common spontaneous tumors in Tg.rasH2 mice. None of these body weight parameters had any statistically significant relationship with the incidence of common spontaneous tumors in Tg.rasH2 males, namely lung tumors, splenic hemangiosarcomas, nonsplenic hemangiosarcomas, combined incidence of all hemangiosarcomas, and Harderian gland tumors. These parameters also did not have any statistically significant relationship with the incidence of lung and Harderian gland tumors in females. However, in females, increased initial body weights did have a statistically significant relationship with the nonsplenic hemangiosarcomas, and increased terminal body weights did have a statistically significant relationship with the incidence of splenic hemangiosarcomas, nonsplenic hemangiosarcomas, and the combined incidence of all hemangiosarcomas. In addition, increased body weight gains in grams and percentages had a statistically significant relationship with the combined incidence of all hemangiosarcomas in females, but not separately with splenic and nonsplenic hemangiosarcomas. © 2013 by The Author(s).
Levels of H-ras codon 61 CAA to AAA mutation: response to 4-ABP-treatment and Pms2-deficiency.
Parsons, Barbara L; Delongchamp, Robert R; Beland, Frederick A; Heflich, Robert H
2006-01-01
DNA mismatch repair (MMR) deficiencies result in increased frequencies of spontaneous mutation and tumor formation. In the present study, we tested the hypothesis that a chemically-induced mutational response would be greater in a mouse with an MMR-deficiency than in the MMR-proficient mouse models commonly used to assay for chemical carcinogenicity. To accomplish this, the induction of H-ras codon 61 CAA-->AAA mutation was examined in Pms2 knockout mice (Pms2-/-, C57BL/6 background) and sibling wild-type mice (Pms2+/+). Groups of five or six neonatal male mice were treated with 0.3 micromol 4-aminobiphenyl (4-ABP) or the vehicle control, dimethylsulfoxide. Eight months after treatment, liver DNAs were isolated and analysed for levels of H-ras codon 61 CAA-->AAA mutation using allele-specific competitive blocker-PCR. In Pms2-proficient and Pms2-deficient mice, 4-ABP treatment caused an increase in mutant fraction (MF) from 1.65x10(-5) to 2.91x10(-5) and from 3.40x10(-5) to 4.70x10(-5), respectively. Pooling data from 4-ABP-treated and control mice, the approximately 2-fold increase in MF observed in Pms2-deficient as compared with Pms2-proficient mice was statistically significant (P=0.0207) and consistent with what has been reported previously in terms of induction of G:C-->T:A mutation in a Pms2-deficient background. Pooling data from both genotypes, the increase in H-ras MF in 4-ABP-treated mice, as compared with control mice, did not reach the 95% confidence level of statistical significance (P=0.0606). The 4-ABP treatment caused a 1.76-fold and 1.38-fold increase in average H-ras MF in Pms2-proficient and Pms2-deficient mice, respectively. Furthermore, the levels of induced mutation in Pms2-proficient and Pms2-deficient mice were nearly identical (1.26x10(-5) and 1.30x10(-5), respectively). We conclude that Pms2-deficiency does not result in an amplification of the H-ras codon 61 CAA-->AAA mutational response induced by 4-ABP.
Niazi, Muhammad K. K.; Dhulekar, Nimit; Schmidt, Diane; Major, Samuel; Cooper, Rachel; Abeijon, Claudia; Gatti, Daniel M.; Kramnik, Igor; Yener, Bulent; Gurcan, Metin; Beamer, Gillian
2015-01-01
ABSTRACT Pulmonary tuberculosis (TB) is caused by Mycobacterium tuberculosis in susceptible humans. Here, we infected Diversity Outbred (DO) mice with ∼100 bacilli by aerosol to model responses in a highly heterogeneous population. Following infection, ‘supersusceptible’, ‘susceptible’ and ‘resistant’ phenotypes emerged. TB disease (reduced survival, weight loss, high bacterial load) correlated strongly with neutrophils, neutrophil chemokines, tumor necrosis factor (TNF) and cell death. By contrast, immune cytokines were weak correlates of disease. We next applied statistical and machine learning approaches to our dataset of cytokines and chemokines from lungs and blood. Six molecules from the lung: TNF, CXCL1, CXCL2, CXCL5, interferon-γ (IFN-γ), interleukin 12 (IL-12); and two molecules from blood – IL-2 and TNF – were identified as being important by applying both statistical and machine learning methods. Using molecular features to generate tree classifiers, CXCL1, CXCL2 and CXCL5 distinguished four classes (supersusceptible, susceptible, resistant and non-infected) from each other with approximately 77% accuracy using completely independent experimental data. By contrast, models based on other molecules were less accurate. Low to no IFN-γ, IL-12, IL-2 and IL-10 successfully discriminated non-infected mice from infected mice but failed to discriminate disease status amongst supersusceptible, susceptible and resistant M.-tuberculosis-infected DO mice. Additional analyses identified CXCL1 as a promising peripheral biomarker of disease and of CXCL1 production in the lungs. From these results, we conclude that: (1) DO mice respond variably to M. tuberculosis infection and will be useful to identify pathways involving necrosis and neutrophils; (2) data from DO mice is suited for machine learning methods to build, validate and test models with independent data based solely on molecular biomarkers; (3) low levels of immunological cytokines best indicate a lack of exposure to M. tuberculosis but cannot distinguish infection from disease. PMID:26204894
Ebrahimpour, Soheil; Tabari, Mohaddeseh Abouhosseini; Youssefi, Mohammad Reza; Aghajanzadeh, Hamid; Behzadi, Manijeh Yousefi
2013-01-01
Background: Garlic, a medicinal plant, and Naltrexone (NTX), an opioid receptor antagonist, both have immunomodulatory and antitumor effects. Current study was designed to evaluate synergistic antitumor effects of aged garlic extract (AGE) and NTX. Materials and Methods: WEHI-164 fibrosarcoma cells were implanted subcutaneously on day 0 into right flank of 80 BALB/c mice at age of 8 weeks. Mice were randomly categorized in four separate groups: The first group received AGE (100 mg/kg, i.p.), the second group received NTX (0.5 mg/kg, i.p.), the third group received both of them, and the fourth group received phosphate buffered saline as control group. Treatments were administered three times per week. Tumor growth was measured and morbidity was recorded. Subpopulations of CD4+/CD8+ T cells were determined using flowcytometery. WEHI-164 cell specific cytotoxicity of splenocytes and in vitro production of interferon-gamma (IFN-γ) and interleukin-4 (IL-4) cytokines were measured. All statistical analyses were conducted with SPSS 16 software and P < 0.05 was considered to be statistically significant. Results: The mice who received AGE+NTX had significantly longer survival time compared with the mice treated with AGE or NTX alone. An enhanced inhibitory effect on tumor growth was seen in combination therapy group. The CD4+/CD8+ ratio and in vitro IFN-γ production of splenocytes were significantly increased in AGE+NTX and NTX groups. WEHI-164 specific cytotoxicity of splenocytes was also significantly increased at 25:1 E:T ratio in AGE+NTX treated mice. Coadministration of AGE with NTX resulted in improvement of immune responses against experimentally implanted fibrosarcoma tumors in BALB/c mice. Conclusions: AGE showed synergistic effects with NTX on inhibition of tumor growth and increment of survival times. PMID:23901215
Effect of steady magnetic field on human lymphocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mileva, M.; Ivanov, B.; Bulanova, M.
1983-01-01
Exposure to steady magnetic field (SMF) for different periods of time did not elicit statistically reliable increase in chromosome aberrations in human peripheral blood lymphocytes. Metaphase analysis of Crepis capilaris cells revealed that SMF (9 k0e, 200 0e/cm) for 2 days did not induce chromosome aberrations. Nor were any changes demonstrated in roots of beans, onions and L-fibroblasts of subcutaneous tissue of mice and Chinese hamsters. The obtained data are indicative of absence of cytogenetic effect of SMF. The level and spectrum of chromosome aberrations did not exceed the values for spontaneous chromatic fragments in cultures. Cytogenetic analysis of DEDEmore » cells of the Chinese hamster revealed a mild mutagenic effect of SMF. Chromosomal aberrations were also demonstrated after exposure (5 min) of garlic roots.« less
Adverse factors increase preeclampsia-like changes in pregnant mice with abnormal lipid metabolism.
Ding, Xiaoyan; Yang, Zi; Han, Yiwei; Yu, Huan
2014-01-01
Preeclampsia (PE) is a multifactorial pregnancy complication. Maternal underlying condition and adverse factors both influence the pathogenesis of PE. Abnormal lipid metabolism as a maternal underlying disease may participate in the occurrence and development of PE. This study aimed to observe the effects of adverse factors on PE-like symptoms of pregnant mice with genetic abnormal lipid metabolism. Apolipoprotein C-III (ApoC3) transgenic mice with abnormal lipid metabolism were subcutaneously injected with L-arginine methyl ester (L-NAME) or normal saline (NS) daily starting at Day 7 or 16 of pregnancy (ApoC3+L-NA and ApoC3+NS groups), and wild-type (WT) mice served as a control (WT+L-NA and WT+NS groups). All mice were subdivided into early and late subgroups by injection time. The mean arterial pressure (MAP) and urinary protein were measured. Pregnancy outcomes, including fetal weight, placental weight, live birth rate, and fetal absorption rate, were analyzed. Pathologic changes in the placenta were observed by hematoxylin-eosin staining. One-way analysis of variance, t-test, and χ(2) test were used for statistical analysis. MAP significantly increased for ApoC3+NS groups compared with WT+NS groups (P < 0.05), without significant difference in urine protein. Following L-NAME injection, MAP and urinary protein significantly increased for ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), and the increase for ApoC3+L-NA was more obvious. Urinary protein levels in early ApoC3+L-NA and WT+L-NA significantly increased compared with the corresponding late groups (P < 0.05). Fetal absorption rate significantly increased and fetal and placental weights significantly decreased in early ApoC3+L-NA and WT+L-NA compared with the corresponding NS groups (P < 0.05), without significant difference in late ApoC3+L-NA and WT+L-NA groups. Fetal weight in early ApoC3+L-NA was significantly lower than in early WT+L-NA group (P < 0.05). Morphologic examination of placentas from early ApoC3+L-NA and WT+L-NA groups showed varying degrees of fibrinoid necrosis. ApoC3 transgenic mice with abnormal lipid metabolism showed gestational hypertension. Adverse factors and early effect time could aggravate the PE-like symptoms for ApoC3 transgenic mice.
Masaki, Hidetake; Kim, Namhyo; Nakamura, Hitomi; Kumasawa, Keiichi; Kamata, Eriko; Hirano, Ken-Ichi; Kimura, Tadashi
2017-07-01
Does the deletion of adipose triglyceride lipase (Atgl) gene impair male fertility? The deletion of Atgl gene impaired male fertility but the effect was partially reversed by a low long-chain triglyceride (TG) diet. ATGL specifically hydrolyses long-chain fatty acid TG to diacylglycerol and a high level of expression of ATGL in testes has been reported. However, the role of ATGL in male fertility is unknown. To investigate the effect of deletion of Atgl gene on male fertility, cauda epididymides and testes were collected from wild-type, heterozygous and homozygous Atgl-deficient mice at 10 weeks of age and epididymal sperm analysis and histological analysis of the testes were performed. To investigate whether a medium-chain triglycerides (MCTs) replacement diet mitigated the impaired male fertility by deletion of Atgl gene, homozygous Atgl-deficient mice were fed a MCT replacement diet, or a standard diet including long-chain triglycerides (LCTs) in a control group, for 6 weeks from 5 weeks of age (n = 22). The systematic and local effects of the MCT replacement diet on spermatogenesis and sperm maturation in the epididymis were analyzed at 10 weeks of age. Hematoxylin and eosin staining in paraffin-embedded sections of testes and Oil Red O staining in frozen sections of testes were performed. The epididymal sperm concentrations were analyzed. Statistical analyses were performed using the Student's t-test or Mann-Whitney U test with Shapiro-Wilk Normality test. Although heterozygous mice were fertile and showed a similar number of epididymal total and motile sperm concentrations to wild-type mice, the deletion of Atgl gene in homozygous mice led to accumulation of TG deposits in testes and impaired spermatogenesis. The deletion of Atgl gene also impaired the sperm maturation process required for sperm to acquire the ability to move forward in the epididymis. The MCT replacement diet for 6 weeks increased the plasma level of non-esterified fatty acid (NEFA) (1.5-fold, P = 0.005), but not the plasma total cholesterol (T-Cho) and TG levels. In testes, the MCT replacement diet decreased the number of Oil Red O stain positive vacuoles (-40%, P < 0.001) and increased testis tissue weight (1.1-fold, P = 0.012), total sperm concentration (1.5-fold, P = 0.011) and motile sperm concentration (2.1-fold, P < 0.001) compared to the control group. However, there was no significant change in the sperm survival rate between the two groups. None. One previous study reported that Atgl-deficient male mice were fertile. In most studies heterozygous Atgl(+/-) mice were used to generate homozygous Atgl-deficient Atgl(-/-) mice. Although the same gene targeting mice were used in this study and the formation of vaginal plugs were observed after mating with Atgl(-/-) male mice, there were no pregnant wild-type mice observed after mating with Atgl(-/-) male mice. Local TG metabolism in the male reproductive system could affect spermatogenesis and sperm motility in men. The MCT replacement diet could be an effective therapy for idiopathic non-obstructive oligozoospermia or asthenozoospermia in men with low levels of serum NEFA. This study was supported in part by the Japan Society for the Promotion of Science JSPS KAKENHI Grant (Nos. JP24249080, JP25462557, JP16K11086). The authors declare no conflict of interest. © The Author 2016.Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email:journals.permissions@oup.com
NASA Astrophysics Data System (ADS)
Blaber, Elizabeth; Dvorochkin, Natalya; Almeida, Eduardo; Kaplan, Warren; Burns, Brnedan
2012-07-01
Spaceflight factors, including microgravity and space radiation, have many detrimental short-term effects on human physiology, including muscle and bone degradation, and immune system dysfunction. The long-term progression of these physiological effects is still poorly understood, and a serious concern for long duration spaceflight missions. We hypothesized that some of the degenerative effects of spaceflight may be caused in part by an inability of stem cells to proliferate and differentiate normally resulting in an impairment of tissue regenerative processes. Furthermore, we hypothesized that long-term bone tissue degeneration in space may be mediated by activation of the p53 signaling network resulting in cell cycle arrest and/or apoptosis in osteoprogenitors. In our analyses we found that spaceflight caused significant bone loss in the weight-bearing bones of mice with a 6.3% reduction in bone volume and 11.9% decrease in bone thickness associated with increased osteoclastic activity. Along with this rapid bone loss we also observed alterations in the cell cycle characterized by an increase in the Cdkn1a/p21 cell cycle arrest molecule independent of Trp53. Overexpression of Cdkn1a/p21 was localized to osteoblasts lining the periosteal surface of the femur and chondrocytes in the head of the femur, suggesting an inhibition of proliferation in two key regenerative cell types of the femur in response to spaceflight. Additionally we found overexpression of several matrix degradation molecules including MMP-1a, 3 and 10, of which MMP-10 was localized to osteocytes within the shaft of the femur. This, in conjunction with 40 nm resolution synchrotron nano-Computed Tomography (nano-CT) observations of an increase in osteocyte lacunae cross-sectional area, perimeter and a decrease in circularity indicates a potential role for osteocytic osteolysis in the observed bone degeneration in spaceflight. To further investigate the genetic response of bone to mechanical unloading in spaceflight, we conducted genome wide microarray analysis of total RNA isolated from the mouse pelvis. Specifically, 16 week old mice were subjected to 15 days spaceflight onboard NASA's STS-131 space shuttle mission. The pelvis of the mice was dissected, the bone marrow was flushed and the bones were briefly stored in RNAlater. The pelvii were then homogenized, and RNA was isolated using TRIzol. RNA concentration and quality was measured using a Nanodrop spectrometer, and 0.8% agarose gel electrophoresis. Samples of cDNA were analyzed using an Affymetrix GeneChip\\S Gene 1.0 ST (Sense Target) Array System for Mouse and GenePattern Software. We normalized the ST gene arrays using Robust Multichip Average (RMA) normalization, which summarizes perfectly matched spots on the array through the median polish algorithm, rather than normalizing according to mismatched spots. We also used Limma for statistical analysis, using the BioConductor Limma Library by Gordon Smyth, and differential expression analysis to identify genes with significant changes in expression between the two experimental conditions. Finally we used GSEApreRanked for Gene Set Enrichment Analysis (GSEA), with Kolmogorov-Smirnov style statistics to identify groups of genes that are regulated together using the t-statistics derived from Limma. Preliminary results show that 6,603 genes expressed in pelvic bone had statistically significant alterations in spaceflight compared to ground controls. These prominently included cell cycle arrest molecules p21, and p18, cell survival molecule Crbp1, and cell cycle molecules cyclin D1, and Cdk1. Additionally, GSEA results indicated alterations in molecular targets of cyclin D1 and Cdk4, senescence pathways resulting from abnormal laminin maturation, cell-cell contacts via E-cadherin, and several pathways relating to protein translation and metabolism. In total 111 gene sets out of 2,488, about 4%, showed statistically significant set alterations. These alterations indicate significant impairment of normal cellular function in the mechanically unloaded environment of space and could provide important genetic insight into the observed uncoupling of bone formation and resorption in space.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osychenko, A A; Zalesskii, A D; Krivokharchenko, A S
Using the method of femtosecond laser surgery we study the fusion of two-cell mouse embryos under the action of tightly focused femtosecond laser radiation with the fusion efficiency reaching 60%. The detailed statistical analysis of the efficiency of blastomere fusion and development of the embryo up to the blastocyst stage after exposure of the embryos from different mice to a femtosecond pulse is presented. It is shown that the efficiency of blastocyst formation essentially depends on the biological characteristics of the embryo, namely, the strain and age of the donor mouse. The possibility of obtaining hexaploid embryonal cells using themore » methods of femtosecond laser surgery is demonstrated. (extreme light fields and their applications)« less
Blood pulse wave velocity measured by photoacoustic microscopy
NASA Astrophysics Data System (ADS)
Yeh, Chenghung; Hu, Song; Maslov, Konstantin; Wang, Lihong V.
2013-03-01
Blood pulse wave velocity (PWV) is an important indicator for vascular stiffness. In this letter, we present electrocardiogram-synchronized photoacoustic microscopy for in vivo noninvasive quantification of the PWV in the peripheral vessels of mice. Interestingly, strong correlation between blood flow speed and ECG were clearly observed in arteries but not in veins. PWV is measured by the pulse travel time and the distance between two spot of a chose vessel, where simultaneously recorded electrocardiograms served as references. Statistical analysis shows a linear correlation between the PWV and the vessel diameter, which agrees with known physiology. Keywords: photoacoustic microscopy, photoacoustic spectroscopy, bilirubin, scattering medium.
Nakanishi, S T; Whelan, P J
2010-05-01
During early postnatal development, between birth and postnatal days 8-11, mice start to achieve weight-bearing locomotion. In association with the progression of weight-bearing locomotion there are presumed developmental changes in the intrinsic electrical properties of spinal -motoneurons. However, these developmental changes in the properties of -motoneuron properties have not been systematically explored in mice. Here, data are presented documenting the developmental changes of selected intrinsic motoneuron electrical properties, including statistically significant changes in action potential half-width, intrinsic excitability and diversity (quantified as coefficient of variation) of rheobase current, afterhyperpolarization half-decay time, and input resistance. In various adult mammalian preparations, the maintenance of intrinsic motoneuron electrical properties is dependent on activity and/or transmission-sensitive motoneuron-muscle interactions. In this study, we show that botulinum toxin-induced muscle paralysis led to statistically significant changes in the normal development of intrinsic motoneuron electrical properties in the postnatal mouse. This suggests that muscle activity during early neonatal life contributes to the development of normal motoneuron electrical properties.
Outbred CD1 mice are as suitable as inbred C57BL/6J mice in performing social tasks.
Hsieh, Lawrence S; Wen, John H; Miyares, Laura; Lombroso, Paul J; Bordey, Angélique
2017-01-10
Inbred mouse strains have been used preferentially for behavioral testing over outbred counterparts, even though outbred mice reflect the genetic diversity in the human population better. Here, we compare the sociability of widely available outbred CD1 mice with the commonly used inbred C57BL/6J (C57) mice in the one-chamber social interaction test and the three-chamber sociability test. In the one-chamber task, intra-strain pairs of juvenile, non-littermate, male CD1 or C57 mice display a series of social and aggressive behaviors. While CD1 and C57 pairs spend equal amount of time socializing, CD1 pairs spend significantly more time engaged in aggressive behaviors than C57 mice. In the three-chamber task, sociability of C57 mice was less dependent on acclimation paradigms than CD1 mice. Following acclimation to all three chambers, both groups of age-matched male mice spent more time in the chamber containing a stranger mouse than in the empty chamber, suggesting that CD1 mice are sociable like C57 mice. However, the observed power suggests that it is easier to achieve statistical significance with C57 than CD1 mice. Because the stranger mouse could be considered as a novel object, we assessed for a novelty effect by adding an object. CD1 mice spend more time in the chamber with a stranger mouse than that a novel object, suggesting that their preference is social in nature. Thus, outbred CD1 mice are as appropriate as inbred C57 mice for studying social behavior using either the single or the three-chamber test using a specific acclimation paradigm. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Pereskia aculeata Miller leaves accelerate excisional wound healing in mice.
Pinto, Nícolas de Castro Campos; Cassini-Vieira, Puebla; Souza-Fagundes, Elaine Maria de; Barcelos, Lucíola Silva; Castañon, Maria Christina Marques Nogueira; Scio, Elita
2016-12-24
The leaves of Pereskia aculeata Miller (Cactaceae), known as Barbados gooseberry, are used as emollients and to treat skin wounds and inflammatory process in Brazilian traditional medicine. This study investigated the topical wound healing activity of gels containing the methanol extract (ME) and hexane fraction (HF) of the leaves of this plant in a model of excisional wound healing in mice. Mice were anesthetized and excisional skin wounds were performed using a circular metal punch of 5mm diameter. Next, the animals were treated with 30µL of topical gel formulations containing the gel base (vehicle), HF 5% or ME 5%. The treatments were applied immediately after the injury and every 48h during 14 days. To verify the wound closure kinetics, a digital caliper was used throughout this period. Laser Doppler perfusion image (LDPI) was applied to evaluate the blood flow rate at the injury site. Microscopic examination of the skin tissues was performed by histopathological analysis with hematoxylin and eosin and Gomori trichrome staining. Picrosirius-red staining was also used for morphometric analysis for collagen quantification. Both HF and ME markedly accelerated the closeness of the skin wounds; however the HF activity was more evident, as this fraction induced the increase of blood flow rate and collagen deposition when statistically compared to the vehicle. The mice skin treated with HF and ME also showed less fibroplasia, blood vessels and inflammatory cells on the last day of experiment, which indicated a more advanced wound healing process. As the wound healing process was considerably accelerated, especially by HF gel formulation, the results of this study not only contributed to better understand the ethnopharmacological application of P. acuelata leaves, but also encouraged further investigations on how to explore the potential uses of this plant in skin therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
PyMICE: APython library for analysis of IntelliCage data.
Dzik, Jakub M; Puścian, Alicja; Mijakowska, Zofia; Radwanska, Kasia; Łęski, Szymon
2018-04-01
IntelliCage is an automated system for recording the behavior of a group of mice housed together. It produces rich, detailed behavioral data calling for new methods and software for their analysis. Here we present PyMICE, a free and open-source library for analysis of IntelliCage data in the Python programming language. We describe the design and demonstrate the use of the library through a series of examples. PyMICE provides easy and intuitive access to IntelliCage data, and thus facilitates the possibility of using numerous other Python scientific libraries to form a complete data analysis workflow.
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion.
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-08-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30-60% of normal (CON) and approximately 5-10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake.
2013-01-01
Background It is known that caloric restriction extends lifespan and can minimize age-related dysfunction of the reproductive system. We became interested in how caloric restriction influences apoptosis, which is a crucial process that maintains ovarian cell homeostasis. Methods We examined ovarian cells in: 2.5-year-old wild type mice on caloric restriction (CR) or fed ad libitum (AL) and Laron dwarf mice (GHR-KO) at the same ages on CR or fed AL. Apoptosis was assessed by histochemical analysis on paraffin sections of ovarian tissue. Results Morphological and histochemical analysis revealed that CR improved reproductive potential in 2.5-year-old WT littermates and GHR-KO female mice, as indicated by the increased number of ovarian follicles. The level of apoptosis in ovarian tissue was higher in WT mice on a CR diet compared with WT mice on the AL diet. In GHR-KO mice, the level of apoptosis in ovaries was similar for mice on CR and on AL diets and bigger than in WT mice on CR. Conclusions Morphological and histochemical analysis revealed a younger biological age of the ovaries in 2-year-old WT littermates and GHR-KO female mice on CR compared with animals fed AL. PMID:24063422
NASA Astrophysics Data System (ADS)
Scofield, David C.; Rytlewski, Jeffrey D.; Childress, Paul; Shah, Kishan; Tucker, Aamir; Khan, Faisal; Peveler, Jessica; Li, Ding; McKinley, Todd O.; Chu, Tien-Min G.; Hickman, Debra L.; Kacena, Melissa A.
2018-05-01
This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10.
Differences in trabecular bone of leptin-deficient ob/ob mice in response to biomechanical loading.
Heep, Hansjoerg; Wedemeyer, Christian; Wegner, Alexander; Hofmeister, Sebastian; von Knoch, Marius
2008-06-15
It is known that bone mineral density (BMD) and the strength of bone is predicted by body mass. Fat mass is a significant predictor of bone mineral density which correlates with body weight. This suggests that body fat regulates bone metabolism first by means of hormonal factors and second that the effects of muscle and loading are signaling factors in mechanotransduction. Leptin, a peptide hormone produced predominantly by white fat cells, is one of these hormonal factors. The aim of this study was to investigate and measure by micro-CT the different effects of weight-bearing on trabecular bone formation in mice without the stimulation of leptin. Animals with an ad-libitum-diet (Group A) were found to increase body weight significantly at the age of six weeks in comparison with lean mice (Group B). From this point on, the difference increased constantly. At the age of twenty weeks the obese mice were almost twice as heavy as the lean mice. Significant statistical differences are shown between the two groups for body weight and bone mineral density. Examination of trabecular bone (BV/TV, trabecular number (Tb.N.), trabecular thickness (Tb.Th.)) revealed that the only statistically significant difference between the two groups was the Tb.N. for the proximal femur. High weight-bearing insignificantly improved all trabecular bone parameters in the obese mice. Compared with the control-diet Group B, the BV/TV and Tb.N. were slightly higher in the controlled-diet Group A, but not the Tb.Th.. However, correlation was found between Tb.N. and BMD on the one hand and body weight on the other hand. biomechanical loading led to decreased bone mineral density by a decrease in the number of trabeculae. Trabecular thickness was not increased by biomechanical loading in growing mice. Decreased body weight in leptin-deficient mice protects against bone loss. This finding is consistent with the principle of light-weight construction of bone. Differences in cortical and trabecular bone will be examined in later studies. It is not possible to conclude that these results also apply to human beings.
Scofield, David C; Rytlewski, Jeffrey D; Childress, Paul; Shah, Kishan; Tucker, Aamir; Khan, Faisal; Peveler, Jessica; Li, Ding; McKinley, Todd O; Chu, Tien-Min G; Hickman, Debra L; Kacena, Melissa A
2018-05-01
This study was initiated as a component of a larger undertaking designed to study bone healing in microgravity aboard the International Space Station (ISS). Spaceflight experimentation introduces multiple challenges not seen in ground studies, especially with regard to physical space, limited resources, and inability to easily reproduce results. Together, these can lead to diminished statistical power and increased risk of failure. It is because of the limited space, and need for improved statistical power by increasing sample size over historical numbers, NASA studies involving mice require housing mice at densities higher than recommended in the Guide for the Care and Use of Laboratory Animals (National Research Council, 2011). All previous NASA missions in which mice were co-housed, involved female mice; however, in our spaceflight studies examining bone healing, male mice are required for optimal experimentation. Additionally, the logistics associated with spaceflight hardware and our study design necessitated variation of density and cohort make up during the experiment. This required the development of a new method to successfully co-house male mice while varying mouse density and hierarchical structure. For this experiment, male mice in an experimental housing schematic of variable density (Spaceflight Correlate) analogous to previously established NASA spaceflight studies was compared to a standard ground based housing schematic (Normal Density Controls) throughout the experimental timeline. We hypothesized that mice in the Spaceflight Correlate group would show no significant difference in activity, aggression, or stress when compared to Normal Density Controls. Activity and aggression were assessed using a novel activity scoring system (based on prior literature, validated in-house) and stress was assessed via body weights, organ weights, and veterinary assessment. No significant differences were detected between the Spaceflight Correlate group and the Normal Density Controls in activity, aggression, body weight, or organ weight, which was confirmed by veterinary assessments. Completion of this study allowed for clearance by NASA of our bone healing experiments aboard the ISS, and our experiment was successfully launched February 19, 2017 on SpaceX CRS-10. Copyright © 2018 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Bi, Xiaohong; Grafe, Ingo; Ding, Hao; Flores, Rene; Munivez, Elda; Jiang, Ming Ming; Dawson, Brian; Lee, Brendan; Ambrose, Catherine G
2017-02-01
Osteogenesis imperfecta (OI) is a group of genetic disorders characterized by brittle bones that are prone to fracture. Although previous studies in animal models investigated the mechanical properties and material composition of OI bone, little work has been conducted to statistically correlate these parameters to identify key compositional contributors to the impaired bone mechanical behaviors in OI. Further, although increased TGF-β signaling has been demonstrated as a contributing mechanism to the bone pathology in OI models, the relationship between mechanical properties and bone composition after anti-TGF-β treatment in OI has not been studied. Here, we performed follow-up analyses of femurs collected in an earlier study from OI mice with and without anti-TGF-β treatment from both recessive (Crtap -/- ) and dominant (Col1a2 +/P.G610C ) OI mouse models and WT mice. Mechanical properties were determined using three-point bending tests and evaluated for statistical correlation with molecular composition in bone tissue assessed by Raman spectroscopy. Statistical regression analysis was conducted to determine significant compositional determinants of mechanical integrity. Interestingly, we found differences in the relationships between bone composition and mechanical properties and in the response to anti-TGF-β treatment. Femurs of both OI models exhibited increased brittleness, which was associated with reduced collagen content and carbonate substitution. In the Col1a2 +/P.G610C femurs, reduced hydroxyapatite crystallinity was also found to be associated with increased brittleness, and increased mineral-to-collagen ratio was correlated with increased ultimate strength, elastic modulus, and bone brittleness. In both models of OI, regression analysis demonstrated that collagen content was an important predictor of the increased brittleness. In summary, this work provides new insights into the relationships between bone composition and material properties in models of OI, identifies key bone compositional parameters that correlate with the impaired mechanical integrity of OI bone, and explores the effects of anti-TGF-β treatment on bone-quality parameters in these models. © 2016 American Society for Bone and Mineral Research. © 2016 American Society for Bone and Mineral Research.
Deroost, Katrien; Lays, Natacha; Noppen, Sam; Martens, Erik; Opdenakker, Ghislain; Van den Steen, Philippe E
2012-05-14
Despite intensive research, malaria remains a major health concern for non-immune residents and travelers in malaria-endemic regions. Efficient adjunctive therapies against life-threatening complications such as severe malarial anaemia, encephalopathy, placental malaria or respiratory problems are still lacking. Therefore, new insights into the pathogenesis of severe malaria are imperative. Haemozoin (Hz) or malaria pigment is produced during intra-erythrocytic parasite replication, released in the circulation after schizont rupture and accumulates inside multiple organs. Many in vitro and ex vivo immunomodulating effects are described for Hz but in vivo data are limited. This study aimed to improve methods for Hz quantification in tissues and to investigate the accumulation of Hz in different organs from mice infected with Plasmodium parasites with a varying degree of virulence. An improved method for extraction of Hz from tissues was elaborated and coupled to an optimized, quantitative, microtiter plate-based luminescence assay with a high sensitivity. In addition, a technique for measuring Hz by semi-quantitative densitometry, applicable on transmitted light images, was developed. The methods were applied to measure Hz in various organs of C57BL/6 J mice infected with Plasmodium berghei ANKA, P. berghei NK65 or Plasmodium chabaudi AS. The used statistical methods were the Mann-Whitney U test and Pearsons correlation analysis. Most Hz was detected in livers and spleens, lower levels in lungs and kidneys, whereas sub-nanomolar amounts were observed in brains and hearts from infected mice, irrespectively of the parasite strain used. Furthermore, total Hz contents correlated with peripheral parasitaemia and were significantly higher in mice with a lethal P. berghei ANKA or P. berghei NK65-infection than in mice with a self-resolving P. chabaudi AS-infection, despite similar peripheral parasitaemia levels. The developed techniques were useful to quantify Hz in different organs with a high reproducibility and sensitivity. An organ-specific Hz deposition pattern was found and was independent of the parasite strain used. Highest Hz levels were identified in mice infected with lethal parasite strains suggesting that Hz accumulation in tissues is associated with malaria-related mortality.
Festing, Michael F W
2014-01-01
The safety of chemicals, drugs, novel foods and genetically modified crops is often tested using repeat-dose sub-acute toxicity tests in rats or mice. It is important to avoid misinterpretations of the results as these tests are used to help determine safe exposure levels in humans. Treated and control groups are compared for a range of haematological, biochemical and other biomarkers which may indicate tissue damage or other adverse effects. However, the statistical analysis and presentation of such data poses problems due to the large number of statistical tests which are involved. Often, it is not clear whether a "statistically significant" effect is real or a false positive (type I error) due to sampling variation. The author's conclusions appear to be reached somewhat subjectively by the pattern of statistical significances, discounting those which they judge to be type I errors and ignoring any biomarker where the p-value is greater than p = 0.05. However, by using standardised effect sizes (SESs) a range of graphical methods and an over-all assessment of the mean absolute response can be made. The approach is an extension, not a replacement of existing methods. It is intended to assist toxicologists and regulators in the interpretation of the results. Here, the SES analysis has been applied to data from nine published sub-acute toxicity tests in order to compare the findings with those of the author's. Line plots, box plots and bar plots show the pattern of response. Dose-response relationships are easily seen. A "bootstrap" test compares the mean absolute differences across dose groups. In four out of seven papers where the no observed adverse effect level (NOAEL) was estimated by the authors, it was set too high according to the bootstrap test, suggesting that possible toxicity is under-estimated.
Niven, Ailsa; Thow, Jacqueline; Holroyd, Jack; Turner, Anthony P; Phillips, Shaun M
2018-09-01
This study compared affective responses to low volume high-intensity interval exercise (HIIE), moderate-intensity continuous exercise (MICE) and high-intensity continuous exercise (HICE). Twelve untrained males ([Formula: see text] 48.2 ± 6.7 ml·kg -1 ·min -1 ) completed MICE (30 min cycle at 85% of ventilatory threshold (VT)), HICE (cycle at 105% of VT matched with MICE for total work), and HIIE (10 x 6 s cycle sprints with 60 s recovery). Affective valence and perceived activation were measured before exercise, post warm-up, every 20% of exercise time, and 1, 5, 10, and 15 min post-exercise. Affective valence during exercise declined by 1.75 ± 2.42, 1.17 ± 1.99, and 0.42 ± 1.38 units in HICE, HIIE, and MICE, respectively, but was not statistically influenced by trial (P = 0.35), time (P = 0.06), or interaction effect (P = 0.08). Affective valence during HICE and HIIE was consistently less positive than MICE. Affective valence post-exercise was not statistically influenced by trial (P = 0.10) and at 5 min post-exercise exceeded end-exercise values (P = 0.048). Circumplex profiles showed no negative affect in any trial. Affective responses to low volume HIIE are similar to HICE but remain positive and rebound rapidly, suggesting it may be a potential alternative exercise prescription.
Zhang, Zhong-Lin; Liu, Zhi-Su; Sun, Quan
2005-01-01
AIM: To investigate the effects of thalidomide on angiogenesis, tumor growth and metastasis of hepatocellular carcinoma in nude mice. METHODS: Twenty-four nude mice were randomly divided into therapy group and control group, 12 mice in each group. Thalidomide dissolved in 0.5% sodium carboxyl methyl cellulose (CMC) suspension was administered intraperitoneally once a day at the dose of 200 mg/kg in therapy group, and an equivalent volume of 0.5% CMC in control group. Mice were sacrificed on the 30th d, tumor size and weight and metastases in liver and lungs were measured. CD34 and VEGF mRNA in tumor tissue were detected by immunohistochemistry and semi-quantitative RT-PCR respectively and microvessel density (MVD) was counted. Serum concentrations of TNF-α and ALT and AFP were also tested. RESULTS: MVD and VEGF mRNA in therapy group were less than those in control group (31.08±16.23 vessels/HP vs 80.00±26.27 vessels/HP, 0.0538±0.0165 vs 0.7373±0.1297, respectively, P<0.05). No statistical difference was observed in tumor size and weight and metastases in liver and lungs. TNF-α was significantly lower in therapy group than in control group (28.64±4.64 ng/L vs 42.69±6.99 ng/L, P<0.05). No statistical difference in ALT and AFP was observed between groups. CONCLUSION: Thalidomide can significantly inhibit angiogenesis and metastasis of hepatocellular carcinoma. It also has inhibitory effects on circulating TNF-α. PMID:15633219
Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I
2017-01-15
A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has been conditioned to smaller changes in its metabolic activity with respect to the pathways involving these metabolites compared to the male animals. In conclusion, our study indicated a much subtler AOH effect on the cerebellum metabolic activity of the female compared to the male mice. The leaner metabolic profile of the female mouse cerebellum was suggested as a potential factor contributing to this phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.
Casteels, Cindy; Vunckx, Kathleen; Aelvoet, Sarah-Ann; Baekelandt, Veerle; Bormans, Guy; Van Laere, Koen; Koole, Michel
2013-01-01
Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18)F]FDG) and dopamine transporter ([(18)F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [(18)F]FDG and [(18)F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice. Twenty-three adult C57BL6 mice were scanned with [(18)F]FDG and [(18)F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18)F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [(18)F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18)F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT availability. MRM-based small-animal PET templates facilitate accurate assessment and spatial localization of mouse brain function using VOI or voxel-based analysis. Regional intersubject- and test-retest variations indicate that for these targets accuracy comparable to humans can be achieved.
Yang, Joonhyoung; Min, Sangyeon; Hong, Seungug
2017-01-01
Background . Atopic Dermatitis (AD) is one of the most common chronic inflammatory skin diseases. Objective . This experiment aimed to study the effects of Fermented Flax Seed Oil (FFSO) on symptoms such as redness, eczema, and pruritus induced by AD. Materials and Methods . AD-induced NC/Nga mice were used to observe the immunological and therapeutic effects of FFSO on skin in vivo. Raw 264.7 cells were used to investigate the effects of FFSO in cells. Fc receptor expression and concentration of beta-hexosaminidase were measured. Nitric oxide assay, Western blotting, real-time PCR, image analysis, and statistical analysis were performed in vitro. Results . In the immunohistochemical results, p-ERK 1/2 expression decreased, fibrogenesis strongly increased, and distribution reduction is observed. Distribution of IL-4-positive cells in the corium near the basal portion of the epithelium in the AT group was reduced. FFSO treatment reduced the number of cells showing NF- κ B p65 and iNOS expression. The level of LXR in the AT group was higher than that in the AE group, and elevation of PKC expression was significantly reduced by FFSO treatment. Conclusion . FFSO could alleviate symptoms of AD such as epithelial damage, redness, swelling, and pruritus.
Wang, E; Nam, HK; Liu, J; Hatch, NE
2015-01-01
Objectives Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-nonspecific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Material & Methods Neonatal Crouzon (FGFRC342Y/+) and wild type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at four weeks post-natal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology was assessed by micro-computed tomography. Results Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphologic analysis revealed craniofacial form differences for inferior surface (p=.023) and cranial height (p=.014) regions between TNAP lentivirus injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=.068). Conclusion These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. PMID:25865549
Kim, Min-Seok; Kim, Sung-Hwan; Jeon, Doin; Kim, Hyeon-Young; Lee, Kyuhong
2018-01-15
Inhalation of polyhexamethylene guanidine (PHMG) causes irreversible pulmonary injury, such as pulmonary fibrosis. However, the mechanism underlying PHMG-induced lung injury is unclear. In this study, we compared the difference in time-dependent lung injury between PHMG- and bleomycin (BLM)-treated mice and determined cytokines involved in inducing lung injury by performing cytokine antibody array analysis. Mice were treated once with 1.8mg/kg BLM or 1.2mg/kg PHMG through intratracheal instillation and were sacrificed on days 7 and 28. Bronchoalveolar lavage fluid (BALF) analysis showed that the number of neutrophils was significantly higher in PHMG-treated mice than in BLM-treated mice on day 7. Histopathological analysis showed inflammatory cell infiltration and fibrosis mainly in the terminal bronchioles and alveoli in the lungs of PHMG- and BLM-treated mice. However, continuous macrophage infiltration in the alveolar space and bronchioloalveolar epithelial hyperplasia (BEH) were only observed in PHMG-treated mice. Cytokine antibody array analysis showed that 15 and eight cytokines were upregulated in PHMG- and BLM-treated mice, respectively, on day 7. On day 28, 13 and five cytokines were upregulated in PHMG and BLM-treated mice, respectively. In addition, the expressed cytokines between days 7 and 28 in BLM-treated mice were clearly different, but were similar in PHMG-treated mice. Consequently, between PHMG- and BLM-treated mice, we observed differences in the expression patterns and types of cytokines. These differences are considered to be a result of the inflammatory processes induced by both substances, which may mainly involve macrophage infiltration. Therefore, continuous induction of the inflammatory response by PHMG may play an important role in the development of pulmonary fibrosis. Copyright © 2017 Elsevier B.V. All rights reserved.
Cummings, Brian J; Engesser-Cesar, Christie; Cadena, Gilbert; Anderson, Aileen J
2007-02-27
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing.
Cummings, Brian J.; Engesser-Cesar, Christie; Anderson, Aileen J.
2007-01-01
Locomotor impairments after spinal cord injury (SCI) are often assessed using open-field rating scales. These tasks have the advantage of spanning the range from complete paralysis to normal walking; however, they lack sensitivity at specific levels of recovery. Additionally, most supplemental assessments were developed in rats, not mice. For example, the horizontal ladder beam has been used to measure recovery in the rat after SCI. This parametric task results in a videotaped archival record of the event, is easily administered, and is unambiguously scored. Although a ladder beam apparatus for mice is available, its use in the assessment of recovery in SCI mice is rare, possibly because normative data for uninjured mice and the type of step misplacements injured mice exhibit is lacking. We report the development of a modified ladder beam instrument and scoring system to measure hindlimb recovery in vertebral T9 contusion spinal cord injured mice. The mouse ladder beam allows for the use of standard parametric statistical tests to assess locomotor recovery. Ladder beam performance is consistent across four strains of mice, there are no sex differences, and inter-rater reliability between observers is high. The ladder beam score is proportional to injury severity and can be used to easily separate mice capable of weight-supported stance up to mice with consistent forelimb to hindlimb coordination. Critically, horizontal ladder beam testing discriminates between mice that score identically in terms of stepping frequency in open-field testing. PMID:17197044
SBCDDB: Sleeping Beauty Cancer Driver Database for gene discovery in mouse models of human cancers
Mann, Michael B
2018-01-01
Abstract Large-scale oncogenomic studies have identified few frequently mutated cancer drivers and hundreds of infrequently mutated drivers. Defining the biological context for rare driving events is fundamentally important to increasing our understanding of the druggable pathways in cancer. Sleeping Beauty (SB) insertional mutagenesis is a powerful gene discovery tool used to model human cancers in mice. Our lab and others have published a number of studies that identify cancer drivers from these models using various statistical and computational approaches. Here, we have integrated SB data from primary tumor models into an analysis and reporting framework, the Sleeping Beauty Cancer Driver DataBase (SBCDDB, http://sbcddb.moffitt.org), which identifies drivers in individual tumors or tumor populations. Unique to this effort, the SBCDDB utilizes a single, scalable, statistical analysis method that enables data to be grouped by different biological properties. This allows for SB drivers to be evaluated (and re-evaluated) under different contexts. The SBCDDB provides visual representations highlighting the spatial attributes of transposon mutagenesis and couples this functionality with analysis of gene sets, enabling users to interrogate relationships between drivers. The SBCDDB is a powerful resource for comparative oncogenomic analyses with human cancer genomics datasets for driver prioritization. PMID:29059366
Past, Present and Emerging Toxicity Issues for Jet Fuel
2011-01-01
Statistically significant dominant lethal effects were not observed for either mice or rats (Air Force, 1978). However, because of the small sample...Adams, M.M., 2004. Immunological and hematological effects observed in B6C3F1 mice exposed to JP-8 jet fuel for 14 days. J. Toxicol. Environ. Health A...acute toxicity with the adverse effects being slight dermal irritation and weak dermal sensitization in animals. JP-4 also has low acute toxicity with
Effect of topical ophthalmic epinastine and olopatadine on tear volume in mice.
Villareal, Arturo L; Farley, William; Pflugfelder, Stephen C
2006-12-01
To investigate the effects of topical epinastine and olopatadine on tear volume by using a mouse model. Eighty-five C57BL6 mice (170 eyes) were treated twice daily with topical ophthalmic epinastine 0.05%, olopatadine 0.1%, or atropine 1% or served as untreated controls. A thread-wetting assay was used to measure tear volume at baseline and 15, 45, 90, 120, and 240 minutes after the last instillation of the drug on days 2 and 4 of treatment. After 2 days of treatment, epinastine-treated mice showed greater mean tear volumes than olopatadine-treated mice did at 15, 45, 90, and 240 minutes, with statistical significance at 15 and 45 minutes (P<0.001). Olopatadine significantly reduced tear volume versus untreated controls at 15 and 45 minutes (P<0.001). After 4 days, tear volumes with epinastine treatment exceeded those with olopatadine treatment at all time points, with statistical significance at 45 minutes (P<0.05). Atropine rendered tears undetectable at 15, 45, and 90 minutes; tear volume returned to baseline levels at 240 minutes. Topical epinastine did not inhibit tear secretion, whereas olopatadine caused a significant decrease in tear volume. Because of its neutral impact on the lacrimal functional unit, epinastine may be an especially good choice for the treatment of allergic conjunctivitis in patients with dry eye disease or in those who are at risk for developing dry eye.
Goudarzi, Maryam; Weber, Waylon; Mak, Tytus D.; Chung, Juijung; Doyle-Eisele, Melanie; Melo, Dunstana; Brenner, David J.; Guilmette, Raymond A.; Fornace, Albert J.
2014-01-01
Cesium-137 is a fission product of uranium and plutonium in nuclear reactors and is released in large quantities during nuclear explosions or detonation of an improvised device containing this isotope. This environmentally persistent radionuclide undergoes radioactive decay with the emission of beta particles as well as gamma radiation. Exposure to 137Cs at high doses can cause acute radiation sickness and increase risk for cancer and death. The serious health risks associated with 137Cs exposure makes it critical to understand how it affects human metabolism and whether minimally invasive and easily accessible samples such as urine and serum can be used to triage patients in case of a nuclear disaster or a radiologic event. In this study, we have focused on establishing a time-dependent metabolomic profile for urine collected from mice injected with 137CsCl. The samples were collected from control and exposed mice on days 2, 5, 20 and 30 after injection. The samples were then analyzed by ultra-performance liquid chromatography coupled to time-of-flight mass spectrometry (UPLC/TOFMS) and processed by an array of informatics and statistical tools. A total of 1,412 features were identified in ESI+ and ESI− modes from which 200 were determined to contribute significantly to the separation of metabolomic profiles of controls from those of the different treatment time points. The results of this study highlight the ease of use of the UPLC/TOFMS platform in finding urinary biomarkers for 137Cs exposure. Pathway analysis of the statistically significant metabolites suggests perturbations in several amino acid and fatty acid metabolism pathways. The results also indicate that 137Cs exposure causes: similar changes in the urinary excretion levels of taurine and citrate as seen with external-beam gamma radiation; causes no attenuation in the levels of hexanoylglycine and N-acetylspermidine; and has unique effects on the levels of isovalerylglycine and tiglylglycine. PMID:24377719
Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai
2010-12-01
The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (P<0.05); The levels of IgG2a increased obviously, whereas the levels of IgG1 subtype antibody conspicuous decreased, with a significant difference (P<0.05). Aa immunized group could induce body to produce a strong specific T-cell immune response, but Aa immunized+VAD group had a higher T cell proliferate response compared with Aa immunized+RD group, with a statistically significant difference (P<0.05); The expression of RANKL, IFN-γ and TNF-α supernatant increased, while the expression of IL-10 decreased (P<0.05). The lack of vitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).
The effect of low-frequency mechanical vibration on retention in an orthodontic relapse model.
Yadav, Sumit; Assefnia, Amir; Gupta, Himank; Vishwanath, Meenakshi; Kalajzic, Zana; Allareddy, Veerasathpurush; Nanda, Ravindra
2016-02-01
To investigate the effect of low-frequency mechanical vibration (LFMV) on the prevention of relapse after active orthodontic tooth movement, bone volume fraction (BVF), tissue density, and the integrity of periodontal ligament. Thirty male CD1, 12-week-old mice were used for the study. Mice were randomly divided into three groups: 1. control group, 2. relapse group, and 3. relapse + 30 Hz vibration group. In the control group, first molar was moved mesially for 7 days using nickel-titanium coil spring delivering 10g of force, whereas in relapse and relapse + 30 Hz groups, first molar was moved mesially for 7 days and then orthodontic force was removed and molar was allowed to relapse for 7 days. In relapse + 30 Hz group, LFMVs were applied at 30 Hz. Micro-focus computed tomography (micro-CT) was used for tooth movement measurements (relapse), BVF, and tissue density. Additionally, immunostaining for sclerostin, tartrate-resistant acid phosphatase staining, and picro-sirius red staining were performed on histological sections. LFMV at 30 Hz showed a tendency to decrease relapse but was not statistically significant. Micro-CT analysis showed a trend towards increase in BVF and tissue density with application of LFMV. Sclerostin expression was decreased with 30 Hz vibration. Additionally, the picro-sirius staining showed that LFMV at 30 Hz helped in maintaining the thickness and integrity of collagen fibres in periodontal ligament. This is an animal study and extrapolation of the current findings to the clinical situation must be done with caution, as there is no osteonal remodelling (secondary remodelling) in mice when compared to humans. There was no statistically significant difference in the amount of relapse between the relapse-only and relapse + 30 Hz groups. However, there was a trend of decrease in relapse with 30 Hz mechanical vibration. © The Author 2015. Published by Oxford University Press on behalf of the European Orthodontic Society. All rights reserved. For permissions, please email: journals.permissions@oup.com.
The number of studies involving the analysis of perfluorooctanoic acid (PFOA) has 33 increased recently because PFOA is routinely detected in human blood samples from around the world. Recent studies with mice have shown that dosing pregnant dams with PFOA during gestation gives ...
The 1p-encoded protein stathmin and resistance of malignant gliomas to nitrosoureas.
Ngo, Teri-T B; Peng, Tien; Liang, Xing-Jie; Akeju, Oluwaseun; Pastorino, Sandra; Zhang, Wei; Kotliarov, Yuri; Zenklusen, Jean C; Fine, Howard A; Maric, Dragan; Wen, Patrick Y; De Girolami, Umberto; Black, Peter McL; Wu, Wells W; Shen, Rong-Fong; Jeffries, Neal O; Kang, Dong-Won; Park, John K
2007-04-18
Malignant gliomas are generally resistant to all conventional therapies. Notable exceptions are anaplastic oligodendrogliomas with loss of heterozygosity on chromosome 1p (1p+/-). Patients with 1p+/- anaplastic oligodendroglioma frequently respond to procarbazine, 1-(2-chloroethyl)-3-cyclohexyl-l-nitrosourea, and vincristine. Because the underlying biologic basis for this clinical finding is unclear, we evaluated differentially expressed 1p-encoded proteins in 1p+/- and 1p+/+ malignant glioma cell lines and then examined whether their expression was associated with outcome of patients with anaplastic oligodendroglioma. We used a comparative proteomic screen of A172 (1p+/-) and U251 (1p+/+) malignant glioma cell lines to identify differentially expressed 1p-encoded proteins, including stathmin, a microtubule-associated protein. 1p+/- and 1p+/+ anaplastic oligodendroglioma specimens from 24 patients were assessed for stathmin expression by immunohistochemistry. The relationship between stathmin expression and clinical outcome was assessed with Kaplan-Meier analyses. RNA inhibition and cDNA transfection experiments tested effects of stathmin under- and overexpression, respectively, on the in vitro and in vivo resistance of malignant glioma cells to treatment with nitrosourea. For in vivo resistance studies, 36 mice with intracranial and 16 mice with subcutaneous xenograft tumor implants were used (one tumor per mouse). Flow cytometry was used for cell cycle analysis. Immunoblotting was used to assess protein expression. All statistical tests were two-sided. Decreased stathmin expression in tumors was statistically significantly associated with loss of heterozygosity in 1p (P<.001) and increased recurrence-free survival (P<.001). The median recurrence-free survival times for patients with tumors expressing low, intermediate, or high stathmin levels were 45 months (95% confidence interval [CI] = 0 to 90 months), 17 months (95% CI = 10.6 to 23.4 months), and 6 months (95% CI = 1.7 to 10.3 months), respectively. Expression of stathmin was inversely associated with overall survival of nitrosourea-treated mice carrying xenograft tumors. Median survival of mice with stathmin+/- tumors was 95 days (95% CI = 68.7 to 121.3 days) and that of mice with stathmin+/+ tumors was 64 days (95% CI = 58.2 to 69.8 days) (difference = 31 days, 95% CI = 4.1 to 57.9 days; P<.001, log-rank test). Nitrosoureas induced mitotic arrest in malignant glioma cells, and this effect was greater in cells with decreased stathmin expression. Loss of heterozygosity for the stathmin gene may be associated with improved outcomes of patients with 1p+/- anaplastic oligodendroglioma tumors.
Microarray expression profiling identifies genes with altered expression in HDL-deficient mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Callow, Matthew J.; Dudoit, Sandrine; Gong, Elaine L.
2000-05-05
Based on the assumption that severe alterations in the expression of genes known to be involved in HDL metabolism may affect the expression of other genes we screened an array of over 5000 mouse expressed sequence tags (ESTs) for altered gene expression in the livers of two lines of mice with dramatic decreases in HDL plasma concentrations. Labeled cDNA from livers of apolipoprotein AI (apo AI) knockout mice, Scavenger Receptor BI (SR-BI) transgenic mice and control mice were co-hybridized to microarrays. Two-sample t-statistics were used to identify genes with altered expression levels in the knockout or transgenic mice compared withmore » the control mice. In the SR-BI group we found 9 array elements representing at least 5 genes to be significantly altered on the basis of an adjusted p value of less than 0.05. In the apo AI knockout group 8 array elements representing 4 genes were altered compared with the control group (p < 0.05). Several of the genes identified in the SR-BI transgenic suggest altered sterol metabolism and oxidative processes. These studies illustrate the use of multiple-testing methods for the identification of genes with altered expression in replicated microarray experiments of apo AI knockout and SR-BI transgenic mice.« less
A tracking system for laboratory mice to support medical researchers in behavioral analysis.
Macrì, S; Mainetti, L; Patrono, L; Pieretti, S; Secco, A; Sergi, I
2015-08-01
The behavioral analysis of laboratory mice plays a key role in several medical and scientific research areas, such as biology, toxicology, pharmacology, and so on. Important information on mice behavior and their reaction to a particular stimulus is deduced from a careful analysis of their movements. Moreover, behavioral analysis of genetically modified mice allows obtaining important information about particular genes, phenotypes or drug effects. The techniques commonly adopted to support such analysis have many limitations, which make the related systems particularly ineffective. Currently, the engineering community is working to explore innovative identification and sensing technologies to develop new tracking systems able to guarantee benefits to animals' behavior analysis. This work presents a tracking solution based on passive Radio Frequency Identification Technology (RFID) in Ultra High Frequency (UHF) band. Much emphasis is given to the software component of the system, based on a Web-oriented solution, able to process the raw tracking data coming from a hardware system, and offer 2D and 3D tracking information as well as reports and dashboards about mice behavior. The system has been widely tested using laboratory mice and compared with an automated video-tracking software (i.e., EthoVision). The obtained results have demonstrated the effectiveness and reliability of the proposed solution, which is able to correctly detect the events occurring in the animals' cage, and to offer a complete and user-friendly tool to support researchers in behavioral analysis of laboratory mice.
Yang, Bufan; Posada-Quintero, Hugo F.; Siu, Kin L.; Rolle, Marsha; Brink, Peter; Birzgalis, Aija; Moore, Leon C.
2014-01-01
In this work, we used a sensitive and noninvasive computational method to assess diabetic cardiovascular autonomic neuropathy (DCAN) from pulse oximeter (photoplethysmographic; PPG) recordings from mice. The method, which could be easily applied to humans, is based on principal dynamic mode (PDM) analysis of heart rate variability (HRV). Unlike the power spectral density, PDM has been shown to be able to separately identify the activities of the parasympathetic and sympathetic nervous systems without pharmacological intervention. HRV parameters were measured by processing PPG signals from conscious 1.5- to 5-month-old C57/BL6 control mice and in Akita mice, a model of insulin-dependent type 1 diabetes, and compared with the gold-standard Western blot and immunohistochemical analyses. The PDM results indicate significant cardiac autonomic impairment in the diabetic mice in comparison to the controls. When tail-cuff PPG recordings were collected and analyzed starting from 1.5 months of age in both C57/Bl6 controls and Akita mice, onset of DCAN was seen at 3 months in the Akita mice, which persisted up to the termination of the recording at 5 months. Western blot and immunohistochemical analyses also showed a reduction in nerve density in Akita mice at 3 and 4 months as compared to the control mice, thus, corroborating our PDM data analysis of HRV records. Western blot analysis of autonomic nerve proteins corroborated the PPG-based HRV analysis via the PDM approach. In contrast, traditional HRV analysis (based on either the power spectral density or time-domain measures) failed to detect the nerve rarefaction. PMID:25097056
A comparative study of the characterization of miR-155 in knockout mice
Zhang, Dong; Cui, Yongchun; Li, Bin; Luo, Xiaokang; Li, Bo; Tang, Yue
2017-01-01
miR-155 is one of the most important miRNAs and plays a very important role in numerous biological processes. However, few studies have characterized this miRNA in mice under normal physiological conditions. We aimed to characterize miR-155 in vivo by using a comparative analysis. In our study, we compared miR-155 knockout (KO) mice with C57BL/6 wild type (WT) mice in order to characterize miR-155 in mice under normal physiological conditions using many evaluation methods, including a reproductive performance analysis, growth curve, ultrasonic estimation, haematological examination, and histopathological analysis. These analyses showed no significant differences between groups in the main evaluation indices. The growth and development were nearly normal for all mice and did not differ between the control and model groups. Using a comparative analysis and a summary of related studies published in recent years, we found that miR-155 was not essential for normal physiological processes in 8-week-old mice. miR-155 deficiency did not affect the development and growth of naturally ageing mice during the 42 days after birth. Thus, studying the complex biological functions of miR-155 requires the further use of KO mouse models. PMID:28278287
Brenmoehl, Julia; Walz, Christina; Ponsuksili, Siriluck; Schwerin, Manfred; Fuellen, Georg; Hoeflich, Andreas
2016-01-01
Long-term-selected DUhTP mice represent a non-inbred model for inborn physical high-performance without previous training. Abundance of hepatic mRNA in 70-day male DUhTP and control mice was analyzed using the Affymetrix mouse array 430A 2.0. Differential expression analysis with PLIER corrected data was performed using AltAnalyze. Searching for over-representation in biochemical pathways revealed cholesterol metabolism being most prominently affected in DUhTP compared to unselected control mice. Furthermore, pathway analysis by AltAnalyze plus PathVisio indicated significant induction of glycolysis, fatty acid synthesis and cholesterol biosynthesis in the liver of DUhTP mice versus unselected control mice. In contrast, gluconeogenesis was partially inactivated as judged from the analysis of hepatic mRNA transcript abundance in DUhTP mice. Analysis of mRNA transcripts related to steroid hormone metabolism inferred elevated synthesis of progesterone and reduced levels of sex steroids. Abundance of steroid delta isomerase-5 mRNA (Hsd3b5, FC 4.97) was increased and steroid 17-alpha-monooxygenase mRNA (Cyp17a1, FC -11.6) was massively diminished in the liver of DUhTP mice. Assessment of steroid profiles by LC-MS revealed increased levels of progesterone and decreased levels of sex steroids in serum from DUhTP mice versus controls. Analysis of hepatic mRNA transcript abundance indicates that sterol regulatory element-binding protein-1 (SREBP-1) may play a major role in metabolic pathway activation in the marathon mouse model DUhTP. Thus, results from bioinformatics modeling of hepatic mRNA transcript abundance correlated with direct steroid analysis by mass spectrometry and further indicated functions of SREBP-1 and steroid hormones for endurance performance in DUhTP mice. PMID:26799318
Ketamine-xylazine anesthesia causes hyperopic refractive shift in mice
Tkatchenko, Tatiana V.; Tkatchenko, Andrei V.
2010-01-01
Mice have increasingly been used as a model for studies of myopia. The key to successful use of mice for myopia research is the ability to obtain accurate measurements of refractive status of their eyes. In order to obtain accurate measurements of refractive errors in mice, the refraction needs to be performed along the optical axis of the eye. This represents a particular challenge, because mice are very difficult to immobilize. Recently, ketamine-xylazine anesthesia has been used to immobilize mice before measuring refractive errors, in combination with tropicamide ophthalmic solution to induce mydriasis. Although these drugs have increasingly been used while refracting mice, their effects on the refractive state of the mouse eye have not yet been investigated. Therefore, we have analyzed the effects of tropicamide eye drops and ketamine-xylazine anesthesia on refraction in P40 C57BL/6J mice. We have also explored two alternative methods to immobilize mice, i.e. the use of a restraining platform and pentobarbital anesthesia. We found that tropicamide caused a very small, but statistically significant, hyperopic shift in refraction. Pentobarbital did not have any substantial effect on refractive status, whereas ketamine-xylazine caused a large and highly significant hyperopic shift in refraction. We also found that the use of a restraining platform represents good alternative for immobilization of mice prior to refraction. Thus, our data suggest that ketamine-xylazine anesthesia should be avoided in studies of refractive development in mice and underscore the importance of providing appropriate experimental conditions when measuring refractive errors in mice. PMID:20813132
Hegde, M J; Sujatha, T V
1995-10-01
Pilocarpine nitrate, an alkaloid drug of plant origin induces spindle disfunction in bone marrow cells of mice. Further studies were carried out to investigate its mutagenic effects in somatic and germ cells of mice by assessing chromosome aberrations at mitotic metaphase and as micronuclei in bone marrow cells and sperm-shape abnormality in cauda epididymides. The dose and time yield effects of the drug were investigated. The statistically significant results that were obtained for both chromosomal aberrations and micronucleus test but not for the sperm-shape abnormality test, indicated the genotoxicity of this compound in somatic cells but not in germ cells.
Murine cutaneous leishmaniasis investigated by MALDI mass spectrometry imaging.
Negrão, Fernanda; de O Rocha, Daniele F; Jaeeger, Caroline F; Rocha, Francisca J S; Eberlin, Marcos N; Giorgio, Selma
2017-09-26
Imaging mass spectrometry (IMS) is recognized as a powerful tool to investigate the spatial distribution of untargeted or targeted molecules of a wide variety of samples including tissue sections. Leishmania is a protozoan parasite that causes different clinical manifestations in mammalian hosts. Leishmaniasis is a major public health risk in different continents and represents one of the most important neglected diseases. Cutaneous lesions from mice experimentally infected with Leishmania spp. were investigated by matrix-assisted laser desorption ionization MS using the SCiLS Lab software for statistical analysis. Being applied to cutaneous leishmaniasis (CL) for the first time, MALDI-IMS was used to search for peptides and low molecular weight proteins (2-10 kDa) as candidates for potential biomarkers. Footpad sections of Balb/c mice infected with (i) Leishmania amazonensis or (ii) Leishmania major were imaged. The comparison between healthy and infected skin highlighted a set of twelve possible biomarker proteins for L. amazonenis and four proteins for L. major. Further characterization of these proteins could reveal how these proteins act in pathology progression and confirm their values as biomarkers.
Chemopreventive effect of dietary glutamine on colitis-associated colon tumorigenesis in mice.
Tian, Yun; Wang, Keming; Wang, Zhaoxia; Li, Nan; Ji, Guozhong
2013-07-01
Chronic colonic inflammation is a known risk factor for colorectal cancer (CRC). Glutamine (GLN) supplementation has shown its anti-inflammation benefit in experimental colitis. Whether GLN is effective in preventing colon carcinogenesis remains to be investigated. The chemopreventive activity of GLN was evaluated in the mouse model of dextran sulfate sodium (DSS)/azoxymethane (AOM)-induced colitis-associated CRC in this study. Mice were treated with DSS/AOM and randomized to receive either a control diet or GLN-enriched diet intermittently of the study. The disease activity index was evaluated weekly. On day 80 of the experiment, the entire colon and rectum were processed for histopathologic examination and further evaluation. Pro-inflammatory mediators and cytokines were measured by enzyme-linked immunosorbent assay, real-time-PCR and western blot analysis. Here, we show that after GLN-enriched diet, the colitis presented a statistical improvement and tumors burden decreased significantly. This was accompanied by lower activity of nuclear factor-κB (NF-κB), decreased expression of cyclooxygenase-2 and inducible nitric oxide synthase, lower expression of cytokines and chemokines as well as reduced proliferation and induced apoptosis in the colons of colitis-associated CRC mice. Our data demonstrate the protective/preventive effect of GLN in the progression of colitis-associated CRC, which was correlated with a dampening of inflammation and NF-κB activity and with a decrease of inflammatory protein overexpression.
MALDI MS imaging investigation of the host response to visceral leishmaniasis.
Jaegger, C F; Negrão, F; Assis, D M; Belaz, K R A; Angolini, C F F; Fernandes, A M A P; Santos, V G; Pimentel, A; Abánades, D R; Giorgio, S; Eberlin, M N; Rocha, D F O
2017-09-26
Mass spectrometry imaging (MSI) of animal tissues has become an important tool for in situ molecular analyses and biomarker studies in several clinical areas, but there are few applications in parasitological studies. Leishmaniasis is a neglected tropical disease, and experimental mouse models have been essential to evaluate pathological and immunological processes and to develop diagnostic methods. Herein we have employed MALDI MSI to examine peptides and low molecular weight proteins (2 to 20 kDa) differentially expressed in the liver during visceral leishmaniasis in mice models. We analyzed liver sections of Balb/c mice infected with Leishmania infantum using the SCiLS Lab software for statistical analysis, which facilitated data interpretation and thus highlighted several key proteins and/or peptides. We proposed a decision tree classification for visceral leishmaniasis with distinct phases of the disease, which are named here as healthy, acute infection and chronic infection. Among others, the ion of m/z 4963 was the most important to identify acute infection and was tentatively identified as Thymosin β4. This peptide was previously established as a recovery factor in the human liver and might participate in the response of mice to Leishmania infection. This preliminary investigation shows the potential of MALDI MSI to complement classical compound selective imaging techniques and to explore new features not yet recognized by these approaches.
Paranjpe, Madhav G; Belich, Jessica; Vidmar, Tom J; Elbekai, Reem H; McKeon, Marie; Brown, Caren
Our recent retrospective analysis of data, collected from 29 Tg.rasH2 mouse carcinogenicity studies, determined how successful the strategy of choosing the high dose for the 26-week studies was based on the estimated maximum tolerated dose (EMTD) derived from earlier 28-day dose range finding (DRF) studies conducted in CByB6F1 mice. Our analysis demonstrated that the high doses applied at EMTD in the 26-week Tg.rasH2 studies failed to detect carcinogenic effects. To investigate why the dose selection process failed in the 26-week carcinogenicity studies, the initial body weights, terminal body weights, body weight gains, food consumption, and mortality from the first 4 weeks of 26-week studies with Tg.rasH2 mice were compared with 28-day DRF studies conducted with CByB6F1 mice. Both the 26-week and the earlier respective 28-day studies were conducted with the exact same vehicle, test article, and similar dose levels. The analysis of our results further emphasizes that the EMTD and subsequent lower doses, determined on the basis of the 28-day studies in CByB6F1 mice, may not be an accurate strategy for selecting appropriate dose levels for the 26-week carcinogenicity studies in Tg.rasH2 mice. Based on the analysis presented in this article, we propose that the Tg.rasH2 mice and not the CByB6F1 mice should be used in future DRF studies. The Tg.rasH2 mice demonstrate more toxicity than the CByB6F1 mice, possibly because of their smaller size compared to CByB6F1 mice. Also, the Tg.rasH2 males appear to be more sensitive than the female Tg.rasH2 mice.
Exercise-induced muscle glucose uptake in mice with graded, muscle-specific GLUT-4 deletion
Howlett, Kirsten F; Andrikopoulos, Sofianos; Proietto, Joseph; Hargreaves, Mark
2013-01-01
To investigate the importance of the glucose transporter GLUT-4 for muscle glucose uptake during exercise, transgenic mice with skeletal muscle GLUT-4 expression approximately 30–60% of normal (CON) and approximately 5–10% of normal (KO) were generated using the Cre/Lox system and compared with wild-type (WT) mice during approximately 40 min of treadmill running (KO: 37.7 ± 1.3 min; WT: 40 min; CON: 40 min, P = 0.18). In WT and CON animals, exercise resulted in an overall increase in muscle glucose uptake. More specifically, glucose uptake was increased in red gastrocnemius of WT mice and in the soleus and red gastrocnemius of CON mice. In contrast, the exercise-induced increase in muscle glucose uptake in all muscles was completely abolished in KO mice. Muscle glucose uptake increased during exercise in both red and white quadriceps of WT mice, while the small increases in CON mice were not statistically significant. In KO mice, there was no change at all in quadriceps muscle glucose uptake. No differences in muscle glycogen use during exercise were observed between any of the groups. However, there was a significant increase in plasma glucose levels after exercise in KO mice. The results of this study demonstrated that a reduction in skeletal muscle GLUT-4 expression to approximately 10% of normal levels completely abolished the exercise-induced increase in muscle glucose uptake. PMID:24303141
Gupta, Rajesh K; Reddy, Pooja S
2013-10-01
Jasminum grandiflorum belongs to the family Oleaceae and is known to have anti-inflammatory, antimicrobial, antioxidant, and antiulcer activities. The present study was undertaken to study its analgesic and anticonvulsant effects in rats and mice. The antinociceptive activity of the hydroalcoholic extract of J. grandiflorum leaves (HEJGL) was studied using tail flick and acetic acid - induced writhing method. Similarly, its anticonvulsant activity was observed by maximal electroshock (MES) method and pentylenetetrazol (PTZ) method. Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Dunnett's test. At doses of 50, 100, and 200 mg/kg, HEJGL showed significant analgesic and anticonvulsant effects in experimental animals. In view of its analgesic and anticonvulsant activity, the JGL extract can be used in painful conditions as well as in seizure disorders.
Gupta, Rajesh K.; Reddy, Pooja S.
2013-01-01
Jasminum grandiflorum belongs to the family Oleaceae and is known to have anti-inflammatory, antimicrobial, antioxidant, and antiulcer activities. The present study was undertaken to study its analgesic and anticonvulsant effects in rats and mice. The antinociceptive activity of the hydroalcoholic extract of J. grandiflorum leaves (HEJGL) was studied using tail flick and acetic acid – induced writhing method. Similarly, its anticonvulsant activity was observed by maximal electroshock (MES) method and pentylenetetrazol (PTZ) method. Statistical analysis was performed using one-way analysis of variance (ANOVA) followed by Dunnett's test. At doses of 50, 100, and 200 mg/kg, HEJGL showed significant analgesic and anticonvulsant effects in experimental animals. In view of its analgesic and anticonvulsant activity, the JGL extract can be used in painful conditions as well as in seizure disorders. PMID:24174823
Wang, Yiying; Arlt, Volker M; Roufosse, Candice A; McKim, Karen L; Myers, Meagan B; Phillips, David H; Parsons, Barbara L
2012-08-01
Aristolochic acid (AA) is a strong cytotoxic nephrotoxin and carcinogen, which induces forestomach and kidney tumors in mice and is associated with development of urothelial cancer in humans. This study sought to gain mechanistic insight into AAI-induced carcinogenesis through analysis of a tumor-relevant endpoint. Female Hupki mice were treated daily with 5 mg AAI/kg body weight by gavage for 3, 12, or 21 days. Histopathology and DNA adduct analysis confirmed kidney and forestomach as target tissues for AAI-induced toxicity. H-ras codon 61 CAA→CTA mutations were measured in mouse kidney and forestomach, as well as liver and glandular stomach (nontarget organs) by allele-specific competitive blocker-PCR (ACB-PCR), because A→T transversion is the predominant mutation induced by AA and this particular mutation was found previously in AA-induced rodent forestomach tumors. Treatment-related differences were observed, with the H-ras mutant fraction (MF) of mouse kidney and forestomach exposed to 5 mg AAI/kg body weight for 21 days significantly higher than that of vehicle-treated controls (Fisher's exact test, P < 0.05). Statistically significant correlations between dA-AAI adduct levels (measured previously in the same animals) and induced H-ras MFs were evident in forestomach of mice treated for 21 days (linear regression, P < 0.05). The significant increase in H-ras MF in kidney and forestomach, along with the correlation between DNA adducts, histopathology, and oncogene mutation, provide definitive evidence that AA induces tumors through a directly mutagenic mode of action. Thus, measurement of tumor-associated mutations is a useful tool for elucidating the mechanisms underlying the tissue specificity of carcinogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Strain screen and haplotype association mapping of wheel running in inbred mouse strains.
Lightfoot, J Timothy; Leamy, Larry; Pomp, Daniel; Turner, Michael J; Fodor, Anthony A; Knab, Amy; Bowen, Robert S; Ferguson, David; Moore-Harrison, Trudy; Hamilton, Alicia
2010-09-01
Previous genetic association studies of physical activity, in both animal and human models, have been limited in number of subjects and genetically homozygous strains used as well as number of genomic markers available for analysis. Expansion of the available mouse physical activity strain screens and the recently published dense single-nucleotide polymorphism (SNP) map of the mouse genome (approximately 8.3 million SNPs) and associated statistical methods allowed us to construct a more generalizable map of the quantitative trait loci (QTL) associated with physical activity. Specifically, we measured wheel running activity in male and female mice (average age 9 wk) in 41 inbred strains and used activity data from 38 of these strains in a haplotype association mapping analysis to determine QTL associated with activity. As seen previously, there was a large range of activity patterns among the strains, with the highest and lowest strains differing significantly in daily distance run (27.4-fold), duration of activity (23.6-fold), and speed (2.9-fold). On a daily basis, female mice ran further (24%), longer (13%), and faster (11%). Twelve QTL were identified, with three (on Chr. 12, 18, and 19) in both male and female mice, five specific to males, and four specific to females. Eight of the 12 QTL, including the 3 general QTL found for both sexes, fell into intergenic areas. The results of this study further support the findings of a moderate to high heritability of physical activity and add general genomic areas applicable to a large number of mouse strains that can be further mined for candidate genes associated with regulation of physical activity. Additionally, results suggest that potential genetic mechanisms arising from traditional noncoding regions of the genome may be involved in regulation of physical activity.
Mersalyl: a Diuretic with Antiviral Properties
Kramer, M. J.; Cleeland, R.; Grunberg, E.
1975-01-01
Mersalyl (Salyrgan), an organic mercurial diuretic, was tested against human and animal viruses with in vivo model infections in mice and tissue culture systems. Mersalyl was active against coxsackieviruses A21 and B1 in mice if administered intraperitoneally immediately after infection. No effect was observed if intraperitoneal treatment was delayed 1 or 2 h postinfection, or if treatment was administered either subcutaneously or per os. Topical treatment with a 5% aqueous solution of mersalyl produced a statistically significant effect against herpes simplex dermatitis in mice but the substance was inactive against systemic infections in mice with herpes simplex as well as Columbia SK, influenza, Semliki Forest, and Sendai viruses. Contact inactivation of coxsackieviruses A21 and B1 and herpes simplex virus was observed, but mersalyl was inactive in tissue culture against coxackieviruses A21 and B1, herpes simplex, influenza, rhinovirus, Semliki Forest, Sendai, and vaccinia viruses. PMID:810082
A kind of rd1 mouse in C57BL/6J mice from crossing with a mutated Kunming mouse.
Yan, Weiming; Yao, Lu; Liu, Wei; Sun, Kai; Zhang, ZuoMing; Zhang, Lei
2017-04-05
We occasionally discovered a mouse with spontaneous retinitis pigmentosa (RP) from Kunming (KM) mouse breeding colony, with no obvious waveforms in ERG recordings. The aim of this study is to cross the spontaneously hereditary retinal degeneration mice (temporarily designated as KM/rd mice) derived from KM mice with C57BL/6J mice to establish a congenic inbred strain (temporarily designated as the B6/rd mice), and study the ocular phenotype and genotype of the mice. Fundus photography, tissue morphology, electroretinography (ERG), qRT-PCR, western blot and DNA sequence analysis were performed to observe the ocular phenotype and genotype of KM/rd and B6/rd mice. The fundus photography showed progressive retinal vascular degeneration and depigmentation in KM/rd and B6/rd mice. Compared to wild-type mice, the histological analysis revealed that the outer nuclear layer of the mutated mice was significantly reduced at 14days post born (P14), and almost disappeared by P21. No obvious waveforms were detected at P14 and P21 in the ERG from KM/rd and B6/rd mice. qRT-PCR results showed that the expression quantities of mRNA of pde6b gene in KM/rd and B6/rd mice were significantly lower compared with those of wild-type controls at P21. Western blot results confirmed an abnormal protein expression of pde6b gene in KM/rd and B6/rd mice with no protein products, while there was an obvious protein expression in wild-type mice. The nonsense mutation in exon 7 (a mutation that changes the codon 347 from TAC to TAA) in the pde6b gene of KM/rd and B6/rd mice was identified by genomic DNA sequence analysis. All these findings revealed that the ocular phenotype and genotype of KM/rd and B6/rd mice were similar to those of rd1 mice, which indicates that KM/rd and B6/rd mice can be used as an RP mouse model. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of Hind Limb Unloading on Pharmacokinetics of Procainamide in Mice
NASA Technical Reports Server (NTRS)
Risin, Semyon A.; Dasgupta, Amitava; Ramesh, Govindarajan T.; Risin, Diana
2007-01-01
The pharmacokinetics (PK) of medications administered to astronauts could be altered by the conditions in space. It is prudent to expect that low gravity and free floating (and associated hemodynamic changes) could affect the absorption, distribution, metabolism and excretion of the drugs. Knowledge of these alterations is essential for adjusting the dosage and the regimen of drug administration. Among the medications of special interest are the cardiovascular drugs, especially the antiarrhythmic agents. In this study we used hind limb unloaded (HLU) mice as a model to investigate possible changes in the PK of a common antiarrhythmic drug procainamide (PA). Prior to drug administration the experimental animals were tail suspended for 24 hours and the control animals were kept free. PA (150-250 mg per kg) was given orally by a gavage procedure. After that the experimental mice were kept suspended for additional 1, 2, 3 and 6 hours. At these time points the serum concentration of PA and N-acetyl-procainamide (NAPA), an active metabolite which is formed by N-acetyltransferase in the liver, were measured by the fluorescence polarization immunoassay (FPIA) on the AxSYM autoanalyzer (Abbott Laboratories, Abbott Park, IL). The serum level of PA in HLU mice at 1 hour after administration was almost 40% lower than in controls. At 2-3 hours the difference still maintained, however, it was not statistically significant; at 6 hours no difference was detected. The level of NAPA in HLU mice was slightly lower at 1 and 2 hours but the difference did not reach statistical significance. The estimated PA half-life time in HLU mice was almost 55% longer than in control animals. These results confirm that hind limb unloading and related hemodynamic changes significantly alter the PK of PA. The effects are most likely primarily associated with a decrease in the drug absorption, especially within the first two hours after administration. At the same time prolongation of the PA half-life time in the HLU mice points towards slower drug elimination from the circulation.
Dopamine D3 receptor knockout mice exhibit abnormal nociception in a sex-different manner.
Liu, Peng; Xing, Bo; Chu, Zheng; Liu, Fei; Lei, Gang; Zhu, Li; Gao, Ya; Chen, Teng; Dang, Yong-Hui
2017-07-01
Pain is a complex and subjective experience. Previous studies have shown that mice lacking the dopamine D3 receptor (D3RKO) exhibit hypoalgesia, indicating a role of the D3 receptor in modulation of nociception. Given that there are sex differences in pain perception, there may be differences in responses to nociceptive stimuli between male and female D3RKO mice. In the current study, we examined the role of the D3 receptor in modulating nociception in male and female D3RKO mice. Acute thermal pain was modeled by hot-plate test. This test was performed at different temperatures including 52°C, 55°C, and 58°C. The von Frey hair test was applied to evaluate mechanical pain. And persistent pain produced by peripheral tissue injury and inflammation was modeled by formalin test. In the hot-plate test, compared with wild-type (WT) mice, D3RKO mice generally exhibited longer latencies at each of the three temperatures. Specially, male D3RKO mice showed hypoalgesia compared with male WT mice when the temperature was 55°C, while for the female mice, there was a statistical difference between genotypes when the test condition was 52°C. In the von Frey hair test, both male and female D3RKO mice exhibited hypoalgesia. In the formalin test, the male D3RKO mice displayed a similar nociceptive behavior as their sex-matched WT littermates, whereas significantly depressed late-phase formalin-induced nociceptive behaviors were observed in the female mutants. These findings indicated that the D3 receptor affects nociceptive behaviors in a sex-specific manner and that its absence induces more analgesic behavior in the female knockout mice. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Chronic Toxoplasma gondii in Nurr1-Null Heterozygous Mice Exacerbates Elevated Open Field Activity
Eells, Jeffrey B.; Varela-Stokes, Andrea; Guo-Ross, Shirley X.; Kummari, Evangel; Smith, Holly M.; Cox, Erin; Lindsay, David S.
2015-01-01
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice. PMID:25855987
Chronic Toxoplasma gondii in Nurr1-null heterozygous mice exacerbates elevated open field activity.
Eells, Jeffrey B; Varela-Stokes, Andrea; Guo-Ross, Shirley X; Kummari, Evangel; Smith, Holly M; Cox, Erin; Lindsay, David S
2015-01-01
Latent infection with Toxoplasma gondii is common in humans (approximately 30% of the global population) and is a significant risk factor for schizophrenia. Since prevalence of T. gondii infection is far greater than prevalence of schizophrenia (0.5-1%), genetic risk factors are likely also necessary to contribute to schizophrenia. To test this concept in an animal model, Nurr1-null heterozygous (+/-) mice and wild-type (+/+) mice were evaluate using an emergence test, activity in an open field and with a novel object, response to bobcat urine and prepulse inhibition of the acoustic startle response (PPI) prior to and 6 weeks after infection with T. gondii. In the emergence test, T. gondii infection significantly decreased the amount of time spent in the cylinder. Toxoplasma gondii infection significantly elevated open field activity in both +/+ and +/- mice but this increase was significantly exacerbated in +/- mice. T. gondii infection reduced PPI in male +/- mice but this was not statistically significant. Aversion to bobcat urine was abolished by T. gondii infection in +/+ mice. In female +/- mice, aversion to bobcat urine remained after T. gondii infection while the male +/- mice showed no aversion to bobcat urine. Antibody titers of infected mice were a critical variable associated with changes in open field activity, such that an inverted U shaped relationship existed between antibody titers and the percent change in open field activity with a significant increase in activity at low and medium antibody titers but no effect at high antibody titers. These data demonstrate that the Nurr1 +/- genotype predisposes mice to T. gondii-induced alterations in behaviors that involve dopamine neurotransmission and are associated with symptoms of schizophrenia. We propose that these alterations in murine behavior were due to further exacerbation of the altered dopamine neurotransmission in Nurr1 +/- mice.
Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter A C
2006-04-03
The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523.
Vinciotti, Veronica; Liu, Xiaohui; Turk, Rolf; de Meijer, Emile J; 't Hoen, Peter AC
2006-01-01
Background The identification of biologically interesting genes in a temporal expression profiling dataset is challenging and complicated by high levels of experimental noise. Most statistical methods used in the literature do not fully exploit the temporal ordering in the dataset and are not suited to the case where temporal profiles are measured for a number of different biological conditions. We present a statistical test that makes explicit use of the temporal order in the data by fitting polynomial functions to the temporal profile of each gene and for each biological condition. A Hotelling T2-statistic is derived to detect the genes for which the parameters of these polynomials are significantly different from each other. Results We validate the temporal Hotelling T2-test on muscular gene expression data from four mouse strains which were profiled at different ages: dystrophin-, beta-sarcoglycan and gamma-sarcoglycan deficient mice, and wild-type mice. The first three are animal models for different muscular dystrophies. Extensive biological validation shows that the method is capable of finding genes with temporal profiles significantly different across the four strains, as well as identifying potential biomarkers for each form of the disease. The added value of the temporal test compared to an identical test which does not make use of temporal ordering is demonstrated via a simulation study, and through confirmation of the expression profiles from selected genes by quantitative PCR experiments. The proposed method maximises the detection of the biologically interesting genes, whilst minimising false detections. Conclusion The temporal Hotelling T2-test is capable of finding relatively small and robust sets of genes that display different temporal profiles between the conditions of interest. The test is simple, it can be used on gene expression data generated from any experimental design and for any number of conditions, and it allows fast interpretation of the temporal behaviour of genes. The R code is available from V.V. The microarray data have been submitted to GEO under series GSE1574 and GSE3523. PMID:16584545
Tafesse, Tadesse Bekele; Hymete, Ariaya; Mekonnen, Yalemtsehay; Tadesse, Mekuria
2017-05-02
Ajuga remota Benth is traditionally used in Ethiopia for the management of diabetes mellitus. Since this claim has not been investigated scientifically, the aim of this study was to evaluate the antidiabetic effect and phytochemical screening of the aqueous and 70% ethanol extracts on alloxan-induced diabetic mice. After acute toxicity test, the Swiss albino mice were induced with alloxan to get experimental diabetes animals. The fasting mean blood glucose level before and after treatment for two weeks in normal, diabetic untreated and diabetic mice treated with aqueous and 70% ethanol extracts were performed. Data were statistically evaluated by using Statistical Package for the Social Sciences software version 20. P-value <0.05 was considered statistically significant. The medium lethal doses (LD 50 ) of both extracts were higher than 5000 mg/kg, indicating the extracts are not toxic under the observable condition. Aqueous extracts of A.remota (300 mg/kg and 500 mg/kg body weight) reduced elevated blood glucose levels by 27.83 ± 2.96% and 38.98 ± 0.67% (P < 0.0001), respectively while the 70% ethanol extract caused a reduction of 27.94 ± 1.92% (300 mg/kg) & 28.26 ± 1.82% (500 mg/kg). Treatment with the antidiabetic drug, Glibenclamide (10 mg/kg body weight) lowered blood glucose level by 51.06% (p < 0.05). Phytochemical screening of both extracts indicated the presence of phenolic compounds, flavonoids, saponins, tannins, and steroids, which might contribute to the antidiabetic activity. The extracts, however, did not contain alkaloids and anthraquinones. The aqueous extract (500 mg/kg) showed the highest percentage reduction in blood glucose levels and the ability of A. remota extracts in reducing blood glucose levels presumably due to the presence of antioxidant constituents such as flavonoids. The effect of the extract supported the traditional claim of the plant.
Yu, Jun; Luo, Xiaobin; Xu, Hua; Ma, Quan; Yuan, Jianhui; Li, Xuling; Chang, Raymond Chuen-Chung; Qu, Zhongsen; Huang, Xinfeng; Zhuang, Zhixiong; Liu, Jianjun; Yang, Xifei
2015-01-01
Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by a progressive impairment of cognitive functions including spatial learning and memory. Excess copper exposure accelerates the development of AD; however, the potential mechanisms by which copper exacerbates the symptoms of AD remain unknown. In this study, we explored the effects of chronic copper exposure on cognitive function by treating 6 month-old triple AD transgenic (3xTg-AD) mice with 250 ppm copper sulfate in drinking water for 6 months, and identified several potential key molecules involved in the effects of chronic copper exposure on memory by proteomic analysis. The behavioral test showed that chronic copper exposure aggravated memory impairment of 3xTg-AD mice. Two-dimensional fluorescence difference gel electrophoresis (2D-DIGE) coupled with mass spectrometry revealed a total of 44 differentially expressed proteins (18 upregulated and 26 down-regulated) in hippocampus between the wild-type (WT) mice and non-exposed 3xTg-AD mice. A total of 40 differentially expressed proteins were revealed (20 upregulated and 20 down-regulated) in hippocampus between copper exposed and non-exposed 3xTg-AD mice. Among these differentially expressed proteins, complexin-1 and complexin-2, two memory associated proteins, were significantly decreased in hippocampus of 3xTg-AD mice compared with the WT mice. Furthermore, the expression of these two proteins was further down-regulated in 3xTg-AD mice when exposed to copper. The abnormal expression of complexin-1 and complexin-2 identified by proteomic analysis was verified by western blot analysis. Taken together, our data showed that chronic copper exposure accelerated memory impairment and altered the expression of proteins in hippocampus in 3xTg-AD mice. The functional analysis on the differentially expressed proteins suggested that complexin-1 and complexin-2 may be the key molecules involved in chronic copper exposure-aggravated memory impairment in AD.
Feng, Xin-Hong; Yuan, Wei; Peng, Ying; Liu, Ming-Sheng; Cui, Li-Ying
2012-05-01
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive death of the upper and lower motor neurons. Transgenic mice over-expressing a mutant form of the human SOD1 gene develop an ALS-like phenotype. Currently, there is no effective treatment or drug for the fatal disease. Previous studies reported potent efficacy of dl-3-n-butylphthalide (DL-NBP) for several neurodegenerative disorders and cerebral ischemia. SOD1-G93A mice are a mouse model of ALS. In this study, we investigated the efficacy of DL-NBP on this ALS mouse model. Sixty SOD1-G93A female mice were divided into four groups. The vehicle control group received 0 mg×kg(-1)×d(-1) DL-NBP. The experimental groups received DL-NBP with doses of 30, 60 or 120 mg×kg(-1)×d(-1), respectively. For measurement of motor activity, the hanging wire test and rotarod test were performed. Survival statistics were analyzed by Kaplan-Meier survival curves. The body weight of each mouse was recorded twice per week. The statistical motor unit number estimation (MUNE) technique was used to estimate the number of functioning motor units in gastrocnemius muscle. Muscle morphology was evaluated by hematoxylin and eosin staining. Motor neuron quantitation was performed by Nissl staining and microglia activation was observed by immunohistochemistry. Oral administration of 60 mg×kg(-1)×d(-1)1 DL-NBP significantly prolonged survival ((164.78 ± 16.67) days) of SOD1-G93A mice compared with vehicle control ((140.00 ± 16.89) days). Treating mice with DL-NBP (60 mg×kg(-1)×d(-1)) significantly decreased the progression rate of motor deficits and suppressed body weight reduction. Furthermore, we found that treating SOD1-G93A mice with DL-NBP (60 mg×kg(-1)×d(-1)) slowed the rate of MUNE reduction (P < 0.01). Motor neurons were remarkably preserved in the anterior horns in mice treated with DL-NBP (60 mg×kg(-1)×d(-1)) at the stage of 19 weeks (P < 0.01). Treating mice with DL-NBP (60 mg×kg(-1)×d(-1)) significantly reduced CD11b immunoreactivity compared with vehicle control mice (P < 0.05). No significant effect was observed in mice treated with DL-NBP of 30 or 120 mg×kg(-1)×d(-1). The post-disease-onset administration of DL-NBP significantly prolonged survival and improved motor performance in SOD1-G93A mice. DL-NBP may be a potential therapeutic agent for ALS.
Brahmachary, Priyanka; Wang, Ge; Benoit, Stéphane L; Weinberg, Michael V; Maier, Robert J; Hoover, Timothy R
2008-01-01
Background Helicobacter pylori colonizes the human stomach and is the etiological agent of peptic ulcer disease. All three H. pylori strains that have been sequenced to date contain a potential operon whose products share homology with the subunits of acetone carboxylase (encoded by acxABC) from Xanthobacter autotrophicus strain Py2 and Rhodobacter capsulatus strain B10. Acetone carboxylase catalyzes the conversion of acetone to acetoacetate. Genes upstream of the putative acxABC operon encode enzymes that convert acetoacetate to acetoacetyl-CoA, which is metabolized further to generate two molecules of acetyl-CoA. Results To determine if the H. pylori acxABC operon has a role in host colonization the acxB homolog in the mouse-adapted H. pylori SS1 strain was inactivated with a chloramphenicol-resistance (cat) cassette. In mouse colonization studies the numbers of H. pylori recovered from mice inoculated with the acxB:cat mutant were generally one to two orders of magnitude lower than those recovered from mice inoculated with the parental strain. A statistical analysis of the data using a Wilcoxin Rank test indicated the differences in the numbers of H. pylori isolated from mice inoculated with the two strains were significant at the 99% confidence level. Levels of acetone associated with gastric tissue removed from uninfected mice were measured and found to range from 10–110 μmols per gram wet weight tissue. Conclusion The colonization defect of the acxB:cat mutant suggests a role for the acxABC operon in survival of the bacterium in the stomach. Products of the H. pylori acxABC operon may function primarily in acetone utilization or may catalyze a related reaction that is important for survival or growth in the host. H. pylori encounters significant levels of acetone in the stomach which it could use as a potential electron donor for microaerobic respiration. PMID:18215283
Altschuler, R A; Dolan, D F; Halsey, K; Kanicki, A; Deng, N; Martin, C; Eberle, J; Kohrman, D C; Miller, R A; Schacht, J
2015-04-30
This study compared the timing of appearance of three components of age-related hearing loss that determine the pattern and severity of presbycusis: the functional and structural pathologies of sensory cells and neurons and changes in gap detection (GD), the latter as an indicator of auditory temporal processing. Using UM-HET4 mice, genetically heterogeneous mice derived from four inbred strains, we studied the integrity of inner and outer hair cells by position along the cochlear spiral, inner hair cell-auditory nerve connections, spiral ganglion neurons (SGN), and determined auditory thresholds, as well as pre-pulse and gap inhibition of the acoustic startle reflex (ASR). Comparisons were made between mice of 5-7, 22-24 and 27-29 months of age. There was individual variability among mice in the onset and extent of age-related auditory pathology. At 22-24 months of age a moderate to large loss of outer hair cells was restricted to the apical third of the cochlea and threshold shifts in the auditory brain stem response were minimal. There was also a large and significant loss of inner hair cell-auditory nerve connections and a significant reduction in GD. The expression of Ntf3 in the cochlea was significantly reduced. At 27-29 months of age there was no further change in the mean number of synaptic connections per inner hair cell or in GD, but a moderate to large loss of outer hair cells was found across all cochlear turns as well as significantly increased ABR threshold shifts at 4, 12, 24 and 48 kHz. A statistical analysis of correlations on an individual animal basis revealed that neither the hair cell loss nor the ABR threshold shifts correlated with loss of GD or with the loss of connections, consistent with independent pathological mechanisms. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Ups and Downs of Viagra: Revisiting Ototoxicity in the Mouse Model
Au, Adrian; Stuyt, John Gerka; Chen, Daniel; Alagramam, Kumar
2013-01-01
Sildenafil citrate (Viagra), a phosphodiesterase 5 inhibitor (PDE5i), is a commonly prescribed drug for erectile dysfunction. Since the introduction of Viagra in 1997, several case reports have linked Viagra to sudden sensorineural hearing loss. However, these studies are not well controlled for confounding factors, such as age and noise-induced hearing loss and none of these reports are based on prospective double-blind studies. Further, animal studies report contradictory data. For example, one study (2008) reported hearing loss in rats after long-term and high-dose exposure to sildenafil citrate. The other study (2012) showed vardenafil, another formulation of PDE5i, to be protective against noise-induced hearing loss in mice and rats. Whether or not clinically relevant doses of sildenafil citrate cause hearing loss in normal subjects (animals or humans) is controversial. One possibility is that PDE5i exacerbates age-related susceptibility to hearing loss in adults. Therefore, we tested sildenafil citrate in C57BL/6J, a strain of mice that displays increased susceptibility to age-related hearing loss, and compared the results to those obtained from the FVB/N, a strain of mice with no predisposition to hearing loss. Six-week-old mice were injected with the maximum tolerated dose of sildenafil citrate (10 mg/kg/day) or saline for 30 days. Auditory brainstem responses (ABRs) were recorded pre- and post injection time points to assess hearing loss. Entry of sildenafil citrate in the mouse cochlea was confirmed by qRT-PCR analysis of a downstream target of the cGMP-PKG cascade. ABR data indicated no statistically significant difference in hearing between treated and untreated mice in both backgrounds. Results show that the maximum tolerated dose of sildenafil citrate administered daily for 4 weeks does not affect hearing in the mouse. Our study gives no indication that Viagra will negatively impact hearing and it emphasizes the need to revisit the issue of Viagra related ototoxicity in humans. PMID:24244454
Ups and downs of Viagra: revisiting ototoxicity in the mouse model.
Au, Adrian; Stuyt, John Gerka; Chen, Daniel; Alagramam, Kumar
2013-01-01
Sildenafil citrate (Viagra), a phosphodiesterase 5 inhibitor (PDE5i), is a commonly prescribed drug for erectile dysfunction. Since the introduction of Viagra in 1997, several case reports have linked Viagra to sudden sensorineural hearing loss. However, these studies are not well controlled for confounding factors, such as age and noise-induced hearing loss and none of these reports are based on prospective double-blind studies. Further, animal studies report contradictory data. For example, one study (2008) reported hearing loss in rats after long-term and high-dose exposure to sildenafil citrate. The other study (2012) showed vardenafil, another formulation of PDE5i, to be protective against noise-induced hearing loss in mice and rats. Whether or not clinically relevant doses of sildenafil citrate cause hearing loss in normal subjects (animals or humans) is controversial. One possibility is that PDE5i exacerbates age-related susceptibility to hearing loss in adults. Therefore, we tested sildenafil citrate in C57BL/6J, a strain of mice that displays increased susceptibility to age-related hearing loss, and compared the results to those obtained from the FVB/N, a strain of mice with no predisposition to hearing loss. Six-week-old mice were injected with the maximum tolerated dose of sildenafil citrate (10 mg/kg/day) or saline for 30 days. Auditory brainstem responses (ABRs) were recorded pre- and post injection time points to assess hearing loss. Entry of sildenafil citrate in the mouse cochlea was confirmed by qRT-PCR analysis of a downstream target of the cGMP-PKG cascade. ABR data indicated no statistically significant difference in hearing between treated and untreated mice in both backgrounds. Results show that the maximum tolerated dose of sildenafil citrate administered daily for 4 weeks does not affect hearing in the mouse. Our study gives no indication that Viagra will negatively impact hearing and it emphasizes the need to revisit the issue of Viagra related ototoxicity in humans.
Fu, Qingguo; Meng, Fandong; Shen, Xiaodong; Guo, Renxuan
2003-02-01
To investigate the therapeutic efficacy of compound immunotherapy of tumor-derived heat shock protein 70 (HSP70) and interleukin-2 (IL-2) on tumor-bearing mice, and to provide reference for translating this strategy to human cancer. Cell culture, techniques for protein extraction and purification, SDS-PAGE, Western blot and capillary electrophoresis for HSP70 detection and purity analysis, and animal experiments were used. Mice were treated with HSP70 5 or 10 microg and IL-2 50 kU, 100 kU or 2 kU (maintaining dosage) at previously designated intervals. Both the mono-administration of either HSP70 or IL-2 and the compound immunotherapy of HSP70 and IL-2 obviously inhibited the growth of the implanted tumor and prolonged the life span of the mice to different extents. However, long periods of tumor-free survival (over 90 days) were demonstrated only in HSP70 10 micro g group, HSP70 10 microg-IL-2 50 kU group, and HSP70 10 microg-IL-2 100 kU group (40%, 40%, 60% respectively). On the other hand, none of the mice in the rest groups achieved long-term survival. Statistical significance was apparent in comparison with the groups without long period survival (P < 0.025 - 0.05). Our research revealed that tumor-derived HSP70 immunotherapy was much more effective than IL-2 alone. And in compound immunotherapy, HSP70 was the main factor in delaying or eradicating the tumors. The proper combination of HSP70 and IL-2 (10 microg HSP70 and 100 kU IL-2 in this experimental mouse model) clearly enhanced the immunotherapy efficacy which indicated that the specific immunotherapy as a main part of tumor immunotherapy assisted by cytokine immunotherapy would be a promising strategy in cancer treatment.
Cohen, Lena; Hertzberg-Bigelman, Einat; Levy, Ran; Ben-Shoshan, Jeremy; Keren, Gad
2017-01-01
Background We have recently shown that the expression of the transient receptor potential vanilloid 2 channel, TRPV2, is upregulated in the peri-infarct zone 3–5 days following an acute myocardial infarction (AMI). Further analysis has demonstrated that invading monocytes maturing to macrophages merely harbor the documented elevated expression of this channel. Purpose Assess cardiac function in TRPV2-KO mice compared to TRPV2-WT following AMI and analyze the potential involvement of TRPV2-expressing macrophages in the recovery process. Methods TRPV2-KO or WT mice were induced with AMI by ligation of the left anterior descending artery (LAD). In another set of experiments, TRPV2-KO mice induced with AMI, were intravenously (IV) injected with WT or TRPV2-KO peritoneal macrophages in order to directly assess the potential contribution of TRPV2-expressing macrophages to cardiac healing. Cardiac parameters were obtained by echocardiography 1 day and 30 days post infarction. The relative changes in the ejection fraction (EF) and additional cardiac parameters between baseline (day 1) and day 30 were calculated and statistical significance was determined (SPSS). Results The in vivo study showed that while EF was significantly decreased in the WT animals between baseline and day 30, EF was only slightly and insignificantly reduced in the KO animals. Likewise LVESD and LVESA were significantly modified exclusively in the WT animals. Moreover, intravenous administration of peritoneal WT macrophages, but not KO macrophages, significantly reduced survival of post-MI TRPV2-KO mice. Conclusion The data suggest that knockout of the TRPV2 channel may attenuate macrophage-dependent pro-inflammatory processes and result in better cardiac recovery. TRPV2 may thus represent a novel therapeutic target for treatment of patients undergoing an acute MI. PMID:28481959
Verhein, Kirsten C; McCaw, Zachary; Gladwell, Wesley; Trivedi, Shweta; Bushel, Pierre R; Kleeberger, Steven R
2015-08-01
Ozone is a highly toxic air pollutant and global health concern. Mechanisms of genetic susceptibility to ozone-induced lung inflammation are not completely understood. We hypothesized that Notch3 and Notch4 are important determinants of susceptibility to ozone-induced lung inflammation. Wild-type (WT), Notch3 (Notch3-/-), and Notch4 (Notch4-/-) knockout mice were exposed to ozone (0.3 ppm) or filtered air for 6-72 hr. Relative to air-exposed controls, ozone increased bronchoalveolar lavage fluid (BALF) protein, a marker of lung permeability, in all genotypes, but significantly greater concentrations were found in Notch4-/- compared with WT and Notch3-/- mice. Significantly greater mean numbers of BALF neutrophils were found in Notch3-/- and Notch4-/- mice compared with WT mice after ozone exposure. Expression of whole lung Tnf was significantly increased after ozone in Notch3-/- and Notch4-/- mice, and was significantly greater in Notch3-/- compared with WT mice. Statistical analyses of the transcriptome identified differentially expressed gene networks between WT and knockout mice basally and after ozone, and included Trim30, a member of the inflammasome pathway, and Traf6, an inflammatory signaling member. These novel findings are consistent with Notch3 and Notch4 as susceptibility genes for ozone-induced lung injury, and suggest that Notch receptors protect against innate immune inflammation.
Meadows, Jacqueline R; Parker, Chevonne; Gilbert, Kathleen M; Blossom, Sarah J; DeWitt, Jamie C
2017-12-01
Trichloroethylene (TCE) is a widespread environmental contaminant associated with developmental immunotoxicity and neurotoxicity. Previous studies have shown that MRL +/+ mice exposed to TCE from gestation through early-life demonstrate robust increases in inflammatory markers in peripheral CD4 + T-cells, as well as glutathione depletion and increased oxidative stress in cerebellum-associated with alterations in behavior. Since increased oxidative stress is associated with neuroinflammation, we hypothesized that neuroinflammatory markers could be altered relative to unexposed mice. MRL +/+ mice were given 0.5 mg/ml of TCE in vehicle or vehicle (water with 1% Alkamuls EL-620) from conception through early adulthood via drinking water to dams and then directly to post-weaning offspring. Animals were euthanized at 49 days of age and levels of pro- and anti-inflammatory cytokines, density of T-cell staining, and micro-glial morphology were evaluated in brains to begin to ascertain a neuroinflammatory profile. Levels of IL-6 were decreased in female animals and while not statistically significant, and levels of IL-10 were higher in brains of exposed male and female animals. Supportive of this observation, although not statistically significant, the number of ameboid microglia was higher in exposed relative to unexposed animals. This overall profile suggests the emergence of an anti-inflammatory/neuroprotective phenotype in exposed animals, possibly as a compensatory response to neuroinflammation that is known to be induced by developmental exposure to TCE.
Labots, M; Laarakker, M C; Ohl, F; van Lith, H A
2016-06-29
Selecting chromosome substitution strains (CSSs, also called consomic strains/lines) used in the search for quantitative trait loci (QTLs) consistently requires the identification of the respective phenotypic trait of interest and is simply based on a significant difference between a consomic and host strain. However, statistical significance as represented by P values does not necessarily predicate practical importance. We therefore propose a method that pays attention to both the statistical significance and the actual size of the observed effect. The present paper extends on this approach and describes in more detail the use of effect size measures (Cohen's d, partial eta squared - η p (2) ) together with the P value as statistical selection parameters for the chromosomal assignment of QTLs influencing anxiety-related behavior and locomotion in laboratory mice. The effect size measures were based on integrated behavioral z-scoring and were calculated in three experiments: (A) a complete consomic male mouse panel with A/J as the donor strain and C57BL/6J as the host strain. This panel, including host and donor strains, was analyzed in the modified Hole Board (mHB). The consomic line with chromosome 19 from A/J (CSS-19A) was selected since it showed increased anxiety-related behavior, but similar locomotion compared to its host. (B) Following experiment A, female CSS-19A mice were compared with their C57BL/6J counterparts; however no significant differences and effect sizes close to zero were found. (C) A different consomic mouse strain (CSS-19PWD), with chromosome 19 from PWD/PhJ transferred on the genetic background of C57BL/6J, was compared with its host strain. Here, in contrast with CSS-19A, there was a decreased overall anxiety in CSS-19PWD compared to C57BL/6J males, but not locomotion. This new method shows an improved way to identify CSSs for QTL analysis for anxiety-related behavior using a combination of statistical significance testing and effect sizes. In addition, an intercross between CSS-19A and CSS-19PWD may be of interest for future studies on the genetic background of anxiety-related behavior.
2000-01-01
to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which is chemotactic for... mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be dispensable, other...chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice overproduce B-cells and
2000-01-01
various organs and to sites of inflammation. They may have additional functions. For example analysis of CXCR4 knockout mice show that CXCR4, which...SDF-1 knockout mice had similar phenotypes (195). Homozygous knockout of CXCR4 or SDF-1 results in embyonic lethality. Though CCR5 appears to be...dispensable, other chemokine receptors have vital functions. CXCR5 knockout mice have B-cell homing defects (118), and CXCR2 knockout mice
Wang, E; Nam, H K; Liu, J; Hatch, N E
2015-04-01
Craniosynostosis, the premature fusion of cranial bones, has traditionally been described as a disease of increased bone mineralization. However, multiple mouse models of craniosynostosis display craniosynostosis simultaneously with diminished cranial bone volume and/or density. We propose an alternative hypothesis that craniosynostosis results from abnormal tissue mineralization through the downregulation of tissue-non-specific alkaline phosphatase (TNAP) enzyme downstream of activating mutations in FGFRs. Neonatal Crouzon (FGFRC342Y/+) and wild-type (FGFR+/+) mice were injected with lentivirus to deliver a recombinant form of TNAP. Mice were sacrificed at 4 weeks postnatal. Serum was collected to test for alkaline phosphatase (AP), phosphorus, and calcium levels. Craniofacial bone fusion and morphology were assessed by micro-computed tomography. Injection with the TNAP lentivirus significantly increased serum AP levels (increased serum AP levels are indicative of efficient transduction and production of the recombinant protein), but results were variable and dependent upon viral lot and the litter of mice injected. Morphological analysis revealed craniofacial form differences for inferior surface (p=0.023) and cranial height (p=0.014) regions between TNAP lentivirus-injected and vehicle-injected Crouzon mice. With each unit increase in AP level, the odds of lambdoid suture fusion decreased by 84.2% and these results came close to statistical significance (p=0.068). These results suggest that TNAP deficiency may mediate FGFR2-associated craniosynostosis. Future studies should incorporate injection of recombinant TNAP protein, to avoid potential side effects and variable efficacy of lentiviral gene delivery. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Akhoundzadeh, Kobra; Vakili, Abedin; Shadnoush, Mahdi; Sadeghzadeh, Jafar
2018-01-01
Background: Probiotics are microorganisms that may influence brain function via altering brain neurochemistry. New research evidence suggests that probiotic bacteria might protect tissue damage through diminishing the production of free radicals and/or inflammatory cytokines. Therefore, this study was designed to evaluate the effects of probiotic bacteria on the prevention or reduction of brain damage in an experimental model of stroke in mice. Methods: In this study, 30 male BLC57 mice were randomly divided into 6 equal groups. Focal cerebral ischemia was induced via middle cerebral artery occlusion for 45 minutes, followed by 24 hours of reperfusion, in the mice. Probiotics at a concentration of 107 CFU/mL were administered by oral gavage daily for 14 days before ischemia. Infarct size, neurological outcome, and biochemical markers were measured 24 hours after brain ischemia. Statistical analysis were performed using the one-way ANOVA and/or Kruskal–Wallis ANOVA on rank by Sigma Stat (2.0; Jandel Scientific) software. Results: Our results indicated that pretreatment with probiotics significantly reduced infarct size by 52% (P=0.001) but could not improve neurological function (P=0.26). Moreover, the administration of probiotics significantly decreased the malondialdehyde content (P=0.001) and the tumor necrosis factor-alpha level (P=0.004) in the ischemic brain tissue. Conclusion: The findings of the present study showed that probiotic supplements might be useful in the prevention or attenuation of brain ischemic injury in patients at risk of stroke. Probiotics may open new therapeutic alternatives for the prevention of stroke. More preclinical and clinical studies are, however, needed to clarify their efficacy in cerebral stroke. PMID:29398750
Bo, E; Farinetti, A; Marraudino, M; Sterchele, D; Eva, C; Gotti, S; Panzica, G
2016-07-01
Tributyltin (TBT), a pesticide used in antifouling paints, is toxic for aquatic invertebrates. In vertebrates, TBT may act in obesogen- inducing adipogenetic gene transcription for adipocyte differentiation. In a previous study, we demonstrated that acute administration of TBT induces c-fos expression in the arcuate nucleus. Therefore, in this study, we tested the hypothesis that adult exposure to TBT may alter a part of the nervous pathways controlling animal food intake. In particular, we investigated the expression of neuropeptide Y (NPY) immunoreactivity. This neuropeptide forms neural circuits dedicated to food assumption and its action is mediated by Y1 receptors that are widely expressed in the hypothalamic nuclei responsible for the regulation of food intake and energy homeostasis. To this purpose, TBT was orally administered at a dose of 0.025 mg/kg/day/body weight to adult animals [male and female C57BL/6 (Y1-LacZ transgenic mice] for 4 weeks. No differences were found in body weight and fat deposition, but we observed a significant increase in feed efficiency in TBT-treated male mice and a significant decrease in circulating leptin in both sexes. Computerized quantitative analysis of NPY immunoreactivity and Y1-related β-galactosidase activity demonstrated a statistically significant reduction in NPY and Y1 transgene expression in the hypothalamic circuit controlling food intake of treated male mice in comparison with controls. In conclusion, the present results indicate that adult exposure to TBT is profoundly interfering with the nervous circuits involved in the stimulation of food intake. © 2016 American Society of Andrology and European Academy of Andrology.
Effect of clozapine and molindone on plasma and brain levels of mescaline in mice.
Shah, N S; Gulati, O D
1984-01-01
Levels of unchanged mescaline were examined in the plasma and brain of albino Swiss-Webster mice pretreated with various doses of either clozapine or molindone. In clozapine treated mice, the mescaline levels were statistically significantly higher at 2 and 3 h with 7.5 and 15.0 mg/kg and at 1, 2 and 3 h with 30 mg/kg. Molindone at 4.0 and 8.0 mg/kg produced no significant effect; at 16.0 and 48.0 mg/kg, the levels were significantly higher at 1 and 2 h. Elevated brain levels of mescaline by clozapine and molindone indicate an adverse metabolic interaction between a hallucinogen and drugs that are commonly used to treat mescaline-induced psychosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheu, C.W.; Cain, K.T.; Rushbrook, C.J.
1986-01-01
Ammoniated glycyrrhizin, butylated hydroxytoluene, and gum Arabic are generally recognized as safe (GRAS) substances that are used primarily as additives in foods. These substances were incorporated into rodent diets and fed to male rats and mice for 10 and 8 wk, respectively. The treated male mice and rats were then tested for dominant lethal effects. The mice were also tested for induced heritable translocation. Results of the rat studies indicated a statistically significant dominant lethal effect of each of the compounds tested; however, the biological significance of this response is not known. Results of the mouse dominant lethal and heritablemore » translocation studies, on the other hand, indicated no adverse effects of the compounds tested.« less
Oxidative Stress Level in the Testes of Mice and Rats during Nickel Intoxication
Murawska-Ciałowicz, Eugenia; Bal, Wojciech; Januszewska, Lidia; Zawadzki, Marcin; Rychel, Joanna; Zuwała-Jagiełło, Jolanta
2012-01-01
The genotioxic and carcinogenic effect of nickel probably results from its capacity to produce reactive oxygen species (ROS) and disturb the redox balance. The aim of the study was to find out if rats lacking spermatic protamine 2 are less susceptible to Ni(II) than mice. Consequently, the levels of malondialdehyde + 4 hydroxynonenal (MDA+4HDA) − markers of lipid peroxidation, as well as the level of reduced glutathione (GSH) were measured within the rat and mouse testes. Our results showed that the levels of lipid peroxidation markers were elevated in testicular homogenates of intoxicated mice without any changes in rats. GSH level was lower in the group of intoxicated mice comparing to the control without statistically significant changes in rats' homogenates. Moreover, the level of GSH in the testes of intoxicated mice was lower than in rats. On the basis of our results, it appears that Ni(II) can initiate oxidative stress in the testes of mice but not of rats and can reduce GSH level. Consequently, the antioxidative defense of the testes is reduced. Ni(II) that causes oxidative stress in the testes may also contribute to infertility. PMID:22448131
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chan, P.
1992-03-01
Inhalation toxicology studies of ethylbenzene (99% pure) were conducted by exposing groups of F344/N rats and B6C3F1 mice of each sex to ethylbenzene vapor at chamber concentrations of 0 to 1000 ppm, 6 hours per day, 5 days per week for 13 weeks. No rats or mice died during the 13-week exposure. Body weight gains were slightly lower in the high dose groups of male and female rats, but the differences were not statistically significant. Absolute and relative kidney, liver, and lung weights were increased in the exposed rats, while weight increases occurred only in the livers of exposed mice.more » No changes were observed in the evaluation of sperm or vaginal cytology in rats or mice. Ethylbenzene was not mutagenic in Salmonella and did not induce chromosomal aberrations or sister chromatid exchanges in Chinese hamster ovary (CHO) cells in vitro, though it did induce trifluorothymidine resistance in mouse lymphoma cells at the highest concentration tested. Micronuclei assays in peripheral blood of mice were negative.« less
Zink, M; Schmitt, A; Henn, F A; Gass, P
2004-12-01
Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.
Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.
Carter, P A; Swallow, J G; Davis, S J; Garland, T
2000-03-01
Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.
Powolny, Anna A.; Bommareddy, Ajay; Hahm, Eun-Ryeong; Normolle, Daniel P.; Beumer, Jan H.; Nelson, Joel B.
2011-01-01
Background This study was undertaken to determine the chemopreventative efficacy of phenethyl isothiocyanate (PEITC), a bioactive constituent of many edible cruciferous vegetables, in a mouse model of prostate cancer, and to identify potential biomarker(s) associated with PEITC response. Methods The chemopreventative activity of dietary PEITC was investigated in Transgenic Adenocarcinoma of Mouse Prostate mice that were fed a control diet or one containing 3 μmol PEITC/g (n = 21 mice per group) for 19 weeks. Dorsolateral prostate tissue sections were stained with hematoxylin and eosin for histopathologic evaluations and subjected to immunohistochemistry for analysis of cell proliferation (Ki-67 expression), autophagy (p62 and LC3 protein expression), and E-cadherin expression. Autophagosomes were visualized by transmission electron microscopy. Apoptotic bodies were detected by terminal deoxynucleotidyl transferase–mediated dUTP nick-end labeling. Plasma proteomics was performed by two-dimensional gel electrophoresis followed by mass spectrometry to identify potential biomarkers of PEITC activity. All statistical tests were two-sided. Results Administration of PEITC (3 μmol/g diet) decreased incidence (PEITC diet vs control diet, mean = 21.65 vs 57.58%, difference = −35.93%, 95% confidence interval = −45.48% to −13.10%, P = .04) as well as burden (affected area) (PEITC diet vs control diet, mean = 18.53% vs 45.01%, difference = −26.48%, 95% confidence interval = −49.78% to −3.19%, P = .02) of poorly differentiated tumors in the dorsolateral prostate of transgenic mice compared with control mice, with no toxic effects. PEITC-mediated inhibition of prostate carcinogenesis was associated with induction of autophagy and overexpression of E-cadherin in the dorsolateral prostate. However, PEITC treatment was not associated with a decrease in cellular proliferation, apoptosis induction, or inhibition of neoangiogenesis. Plasma proteomics revealed distinct changes in the expression of several proteins (eg, suppression of clusterin protein) in the PEITC-treated mice compared with control mice. Conclusions In this transgenic model, dietary PEITC suppressed prostate cancer progression by induction of autophagic cell death. Potential biomarkers to assess the response to PEITC treatment in plasma were identified. PMID:21330634
Kissling, Grace E; Haseman, Joseph K; Zeiger, Errol
2015-09-02
A recent article by Gaus (2014) demonstrates a serious misunderstanding of the NTP's statistical analysis and interpretation of rodent carcinogenicity data as reported in Technical Report 578 (Ginkgo biloba) (NTP, 2013), as well as a failure to acknowledge the abundant literature on false positive rates in rodent carcinogenicity studies. The NTP reported Ginkgo biloba extract to be carcinogenic in mice and rats. Gaus claims that, in this study, 4800 statistical comparisons were possible, and that 209 of them were statistically significant (p<0.05) compared with 240 (4800×0.05) expected by chance alone; thus, the carcinogenicity of Ginkgo biloba extract cannot be definitively established. However, his assumptions and calculations are flawed since he incorrectly assumes that the NTP uses no correction for multiple comparisons, and that significance tests for discrete data operate at exactly the nominal level. He also misrepresents the NTP's decision making process, overstates the number of statistical comparisons made, and ignores the fact that the mouse liver tumor effects were so striking (e.g., p<0.0000000000001) that it is virtually impossible that they could be false positive outcomes. Gaus' conclusion that such obvious responses merely "generate a hypothesis" rather than demonstrate a real carcinogenic effect has no scientific credibility. Moreover, his claims regarding the high frequency of false positive outcomes in carcinogenicity studies are misleading because of his methodological misconceptions and errors. Published by Elsevier Ireland Ltd.
Kissling, Grace E.; Haseman, Joseph K.; Zeiger, Errol
2014-01-01
A recent article by Gaus (2014) demonstrates a serious misunderstanding of the NTP’s statistical analysis and interpretation of rodent carcinogenicity data as reported in Technical Report 578 (Ginkgo biloba) (NTP 2013), as well as a failure to acknowledge the abundant literature on false positive rates in rodent carcinogenicity studies. The NTP reported Ginkgo biloba extract to be carcinogenic in mice and rats. Gaus claims that, in this study, 4800 statistical comparisons were possible, and that 209 of them were statistically significant (p<0.05) compared with 240 (4800 × 0.05) expected by chance alone; thus, the carcinogenicity of Ginkgo biloba extract cannot be definitively established. However, his assumptions and calculations are flawed since he incorrectly assumes that the NTP uses no correction for multiple comparisons, and that significance tests for discrete data operate at exactly the nominal level. He also misrepresents the NTP’s decision making process, overstates the number of statistical comparisons made, and ignores that fact that that the mouse liver tumor effects were so striking (e.g., p<0.0000000000001) that it is virtually impossible that they could be false positive outcomes. Gaus’ conclusion that such obvious responses merely “generate a hypothesis” rather than demonstrate a real carcinogenic effect has no scientific credibility. Moreover, his claims regarding the high frequency of false positive outcomes in carcinogenicity studies are misleading because of his methodological misconceptions and errors. PMID:25261588
Stimulus control by 5methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice
Winter, J. C.; Amorosi, D. J.; Rice, Kenner C.; Cheng, Kejun; Yu, Ai-Ming
2011-01-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. PMID:21624387
Mori, V; Oliveira, M A; Vargas, M H M; da Cunha, A A; de Souza, R G; Pitrez, P M; Moriya, H T
2017-06-01
Objective and approach: In this study, we estimated the constant phase model (CPM) parameters from the respiratory impedance of male BALB/c mice by performing the forced oscillation technique (FOT) in a control group (n = 8) and in a murine model of asthma (OVA) (n = 10). Then, we compared the results obtained by two different methods, using a commercial equipment (flexiVent-flexiWare 7.X; SCIREQ, Montreal, Canada) (FXV) and a wavetube method equipment (Sly et al 2003 J. Appl. Physiol. 94 1460-6) (WVT). We believe that the results from different methods may not be comparable. First, we compared the results performing a two-way analysis of variance (ANOVA) for the resistance, elastance and tissue damping. We found statistically significant differences in all CPM parameters, except for resistance, when comparing Control and OVA groups. When comparing devices, we found statistically significant differences in resistance, while differences in elastance were not observed. For tissue damping, the results from WVT were observed to be higher than those from FXV. Finally, when comparing the relative variation between the CPM parameters of the Control and OVA groups in both devices, no significant differences were observed for all parameters. We then conclude that this assessment can compensate the effect of using different cannulas. Furthermore, tissue damping differences between groups can be compensated, since bronchoconstrictors were not used. Therefore, we believe that relative variations in the results between groups can be a comparing parameter when using different equipment without bronchoconstrictor administration.
Estrogen Receptor Alpha (ESR1)-Dependent Regulation of the Mouse Oviductal Transcriptome.
Cerny, Katheryn L; Ribeiro, Rosanne A C; Jeoung, Myoungkun; Ko, CheMyong; Bridges, Phillip J
2016-01-01
Estrogen receptor-α (ESR1) is an important transcriptional regulator in the mammalian oviduct, however ESR1-dependent regulation of the transcriptome of this organ is not well defined, especially at the genomic level. The objective of this study was therefore to investigate estradiol- and ESR1-dependent regulation of the transcriptome of the oviduct using transgenic mice, both with (ESR1KO) and without (wild-type, WT) a global deletion of ESR1. Oviducts were collected from ESR1KO and WT littermates at 23 days of age, or ESR1KO and WT mice were treated with 5 IU PMSG to stimulate follicular development and the production of ovarian estradiol, and the oviducts collected 48 h later. RNA extracted from whole oviducts was hybridized to Affymetrix Genechip Mouse Genome 430-2.0 arrays (n = 3 arrays per genotype and treatment) or reverse transcribed to cDNA for analysis of the expression of selected mRNAs by real-time PCR. Following microarray analysis, a statistical two-way ANOVA and pairwise comparison (LSD test) revealed 2428 differentially expressed transcripts (DEG's, P < 0.01). Genotype affected the expression of 2215 genes, treatment (PMSG) affected the expression of 465 genes, and genotype x treatment affected the expression of 438 genes. With the goal of determining estradiol/ESR1-regulated function, gene ontology (GO) and bioinformatic pathway analyses were performed on DEG's in the oviducts of PMSG-treated ESR1KO versus PMSG-treated WT mice. Significantly enriched GO molecular function categories included binding and catalytic activity. Significantly enriched GO cellular component categories indicated the extracellular region. Significantly enriched GO biological process categories involved a single organism, modulation of a measurable attribute and developmental processes. Bioinformatic analysis revealed ESR1-regulation of the immune response within the oviduct as the primary canonical pathway. In summary, a transcriptomal profile of estradiol- and ESR1-regulated gene expression and related bioinformatic analysis is presented to increase our understanding of how estradiol/ESR1 affects function of the oviduct, and to identify genes that may be proven as important regulators of fertility in the future.
Salty taste deficits in CALHM1 knockout mice.
Tordoff, Michael G; Ellis, Hillary T; Aleman, Tiffany R; Downing, Arnelle; Marambaud, Philippe; Foskett, J Kevin; Dana, Rachel M; McCaughey, Stuart A
2014-07-01
Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein-coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste-related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH(4)Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000 mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH(4)Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Fahrenkrug, Jan; Georg, Birgitte; Hannibal, Jens; Jørgensen, Henrik Løvendahl
2018-04-01
The intraocular pressure of mice displays a daily rhythmicity being highest during the dark period. The present study was performed to elucidate the role of the circadian clock and light in the diurnal and the circadian variations in intraocular pressure in mice, by using animals with disrupted clock function (VPAC2 receptor knockout mice) or impaired light information to the clock (PACAP knockout mice). In wildtype mice, intraocular pressure measured under light/dark conditions showed a statistically significant 24 h sinusoidal rhythm with nadir during the light phase and peak during the dark phase. After transfer of the wildtype mice into constant darkness, the intraocular pressure increased, but the rhythmic changes in intraocular pressure continued with a pattern identical to that obtained during the light/dark cycle. The intraocular pressure in VPAC2 receptor deficient mice during light/dark conditions also showed a sinusoidal pattern with significant changes as a function of a 24 h cycle. However, transfer of the VPAC2 receptor knockout mice into constant darkness completely abolished the rhythmic changes in intraocular pressure. The intraocular pressure in PACAP deficient mice oscillated significantly during both 24 h light and darkness and during constant darkness. During LD conditions, the amplitude of PACAP deficient was significantly lower compared to wildtype mice, resulting in higher daytime and lower nighttime values. In conclusion, by studying the VPAC2 receptor knockout mouse which lacks circadian control and the PACAP knockout mouse which displays impaired light signaling, we provided evidence that the daily intraocular pressure rhythms are primarily generated by the circadian master clock and to a lesser extent by environmental light and darkness. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ye, Yi; Bernabé, Daniel G; Salvo, Elizabeth; Viet, Chi T; Ono, Kentaro; Dolan, John C; Janal, Malvin; Aouizerat, Brad E; Miaskowski, Christine; Schmidt, Brian L
2017-11-05
Widespread pain and anxiety are commonly reported in cancer patients. We hypothesize that cancer is accompanied by attenuation of endogenous opioid-mediated inhibition, which subsequently causes widespread pain and anxiety. To test this hypothesis we used a mouse model of oral squamous cell carcinoma (SCC) in the tongue. We found that mice with tongue SCC exhibited widespread nociceptive behaviors in addition to behaviors associated with local nociception that we reported previously. Tongue SCC mice exhibited a pattern of reduced opioid receptor expression in the spinal cord; intrathecal administration of respective mu (MOR), delta (DOR), and kappa (KOR) opioid receptor agonists reduced widespread nociception in mice, except for the fail flick assay following administration of the MOR agonist. We infer from these findings that opioid receptors contribute to widespread nociception in oral cancer mice. Despite significant nociception, mice with tongue SCC did not differ from sham mice in anxiety-like behaviors as measured by the open field assay and elevated maze. No significant differences in c-Fos staining were found in anxiety-associated brain regions in cancer relative to control mice. No correlation was found between nociceptive and anxiety-like behaviors. Moreover, opioid receptor agonists did not yield a statistically significant effect on behaviors measured in the open field and elevated maze in cancer mice. Lastly, we used an acute cancer pain model (injection of cancer supernatant into the mouse tongue) to test whether adaptation to chronic pain is responsible for the absence of greater anxiety-like behavior in cancer mice. No changes in anxiety-like behavior were observed in mice with acute cancer pain. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Salty Taste Deficits in CALHM1 Knockout Mice
Ellis, Hillary T.; Aleman, Tiffany R.; Downing, Arnelle; Marambaud, Philippe; Foskett, J. Kevin; Dana, Rachel M.; McCaughey, Stuart A.
2014-01-01
Genetic ablation of calcium homeostasis modulator 1 (CALHM1), which releases adenosine triphosphate from Type 2 taste cells, severely compromises the behavioral and electrophysiological responses to tastes detected by G protein–coupled receptors, such as sweet and bitter. However, the contribution of CALHM1 to salty taste perception is less clear. Here, we evaluated several salty taste–related phenotypes of CALHM1 knockout (KO) mice and their wild-type (WT) controls: 1) In a conditioned aversion test, CALHM1 WT and KO mice had similar NaCl avoidance thresholds. 2) In two-bottle choice tests, CALHM1 WT mice showed the classic inverted U-shaped NaCl concentration-preference function but CALHM1 KO mice had a blunted peak response. 3) In brief-access tests, CALHM1 KO mice showed less avoidance than did WT mice of high concentrations of NaCl, KCl, NH4Cl, and sodium lactate (NaLac). Amiloride further ameliorated the NaCl avoidance of CALHM1 KO mice, so that lick rates to a mixture of 1000mM NaCl + 10 µM amiloride were statistically indistinguishable from those to water. 4) Relative to WT mice, CALHM1 KO mice had reduced chorda tympani nerve activity elicited by oral application of NaCl, NaLac, and sucrose but normal responses to HCl and NH4Cl. Chorda tympani responses to NaCl and NaLac were amiloride sensitive in WT but not KO mice. These results reinforce others demonstrating that multiple transduction pathways make complex, concentration-dependent contributions to salty taste perception. One of these pathways depends on CALHM1 to detect hypertonic NaCl in the mouth and signal the aversive taste of concentrated salt. PMID:24846212
In vivo screening of candidate pretreatment compounds against cyanide using mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiser, R.C.; Olson, C.T.; Menton, R.G.
1993-05-13
An in vivo screening procedure was established at Battelle's Medical Research and Evaluation Facility (MREF) to evaluate the efficacy of candidate pretreatment compounds in mice challenged with the blood agent, sodium cyanide (NaCN). Male albino mice of ICR outbred stock weighing between 22.5 and 27.5 g are challenged by intramuscular (i.m.) injection, at a volume of 0.5 mL/kg, of a dose of NaCN twice the LD50 of untreated mice as determined on that day of testing. Candidate drugs are tested at fractions of their LD50 or their limit of solubility in the most optimum vehicle and given intraperitoneally (i.p.) tomore » separate groups of mice at either 60 or 15 min prior to NaCN challenge. Sodium thiosulfate (1000 mg/kg)/sodium nitrite (100 mg/kg) controls are injected i.p. only at 60 min prior to challenge. A test compound is deemed effective if, at any of three concentrations tested, or at either pretreatment time, it is statistically more efficacious in preventing lethality than is a negative control substance (candidate compound vehicle).« less
Basak, Kausik; Dey, Goutam; Mahadevappa, Manjunatha; Mandal, Mahitosh; Sheet, Debdoot; Dutta, Pranab Kumar
2016-09-01
Laser speckle contrast imaging (LSCI) provides a noninvasive and cost effective solution for in vivo monitoring of blood flow. So far, most of the researches consider changes in speckle pattern (i.e. correlation time of speckle intensity fluctuation), account for relative change in blood flow during abnormal conditions. This paper introduces an application of LSCI for monitoring wound progression and characterization of cutaneous wound regions on mice model. Speckle images are captured on a tumor wound region at mice leg in periodic interval. Initially, raw speckle images are converted to their corresponding contrast images. Functional characterization begins with first segmenting the affected area using k-means clustering, taking wavelet energies in a local region as feature set. In the next stage, different regions in wound bed are clustered based on progressive and non-progressive nature of tissue properties. Changes in contrast due to heterogeneity in tissue structure and functionality are modeled using LSCI speckle statistics. Final characterization is achieved through supervised learning of these speckle statistics using support vector machine. On cross evaluation with mice model experiment, the proposed approach classifies the progressive and non-progressive wound regions with an average sensitivity of 96.18%, 97.62% and average specificity of 97.24%, 96.42% respectively. The clinical information yield with this approach is validated with the conventional immunohistochemistry result of wound to justify the ability of LSCI for in vivo, noninvasive and periodic assessment of wounds. Copyright © 2016 Elsevier Inc. All rights reserved.
The Need for Speed in Rodent Locomotion Analyses
Batka, Richard J.; Brown, Todd J.; Mcmillan, Kathryn P.; Meadows, Rena M.; Jones, Kathryn J.; Haulcomb, Melissa M.
2016-01-01
Locomotion analysis is now widely used across many animal species to understand the motor defects in disease, functional recovery following neural injury, and the effectiveness of various treatments. More recently, rodent locomotion analysis has become an increasingly popular method in a diverse range of research. Speed is an inseparable aspect of locomotion that is still not fully understood, and its effects are often not properly incorporated while analyzing data. In this hybrid manuscript, we accomplish three things: (1) review the interaction between speed and locomotion variables in rodent studies, (2) comprehensively analyze the relationship between speed and 162 locomotion variables in a group of 16 wild-type mice using the CatWalk gait analysis system, and (3) develop and test a statistical method in which locomotion variables are analyzed and reported in the context of speed. Notable results include the following: (1) over 90% of variables, reported by CatWalk, were dependent on speed with an average R2 value of 0.624, (2) most variables were related to speed in a nonlinear manner, (3) current methods of controlling for speed are insufficient, and (4) the linear mixed model is an appropriate and effective statistical method for locomotion analyses that is inclusive of speed-dependent relationships. Given the pervasive dependency of locomotion variables on speed, we maintain that valid conclusions from locomotion analyses cannot be made unless they are analyzed and reported within the context of speed. PMID:24890845
Zhou, Chun-Xue; Cong, Wei; Chen, Xiao-Qing; He, Shen-Yi; Elsheikha, Hany M.; Zhu, Xing-Quan
2018-01-01
Toxoplasma gondii is an obligate intracellular parasite causing severe diseases in immunocompromised individuals and congenitally infected neonates, such as encephalitis and chorioretinitis. This study aimed to determine whether serum metabolic profiling can (i) identify metabolites associated with oocyst-induced T. gondii infection and (ii) detect systemic metabolic differences between T. gondii-infected mice and controls. We performed the first global metabolomics analysis of mice serum challenged with 100 sporulated T. gondii Pru oocysts (Genotype II). Sera from acutely infected mice (11 days post-infection, dpi), chronically infected mice (33 dpi) and control mice were collected and analyzed using LC-MS/MS platform. Following False Discovery Rate filtering, we identified 3871 and 2825 ions in ESI+ or ESI− mode, respectively. Principal Component Analysis (PCA) and Partial Least Squares Discriminant Analysis (PLS-DA) identified metabolomic profiles that clearly differentiated T. gondii-infected and -uninfected serum samples. Acute infection significantly influenced the serum metabolome. Our results identified common and uniquely perturbed metabolites and pathways. Acutely infected mice showed perturbations in metabolites associated with glycerophospholipid metabolism, biosynthesis of amino acid, and tyrosine metabolism. These findings demonstrated that acute T. gondii infection induces a global perturbation of mice serum metabolome, providing new insights into the mechanisms underlying systemic metabolic changes during early stage of T. gondii infection. PMID:29354104
Steroid-induced osteoporosis monitored by Raman spectroscopy
NASA Astrophysics Data System (ADS)
Maher, Jason R.; Takahata, Masahiko; Awad, Hani A.; Berger, Andrew J.
2011-03-01
Glucocorticoids are frequently used to treat inflammatory disorders such as rheumatoid arthritis. Unfortunately, extended exposure to this steroid is the leading cause of physician-induced osteoporosis, leaving patients susceptible to fractures at rates of 30-50%. In this presentation, we report correlations between Raman spectra and biomechanical strength tests on bones of glucocorticoid- and placebo- treated mice. Both wild-type mice and a transgenic model of rheumatoid arthritis have been studied. A two-way ANOVA model reveals statistically significant spectral differences as influenced by glucocorticoid treatment and mouse type.
Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl MJ; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie
2015-01-01
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse ES cell knockout resource provides a basis for characterisation of relationships between gene and phenotype. The EUMODIC consortium developed and validated robust methodologies for broad-based phenotyping of knockouts through a pipeline comprising 20 disease-orientated platforms. We developed novel statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no prior functional annotation. We captured data from over 27,000 mice finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. Novel phenotypes were uncovered for many genes with unknown function providing a powerful basis for hypothesis generation and further investigation in diverse systems. PMID:26214591
Functionally improved bone in Calbindin-D28k knockout mice
Margolis, David S.; Kim, Devin; Szivek, John A.; Lai, Li-Wen; Lien, Yeong-Hau H.
2008-01-01
In vitro studies indicate that Calbindin-D28k, a calcium binding protein, is important in regulating the life span of osteoblasts as well as the mineralization of bone extracellular matrix. The recent creation of a Calbindin-D28k knockout mouse has provided the opportunity to study the physiological effects of the Calbindin-D28k protein on bone remodeling in vivo. In this experiment, histomorphometry, μCT, and bend testing were used to characterize bones in Calbindin-D28k KO (knockout) mice. The femora of Calbindin-D28k KO mice had significantly increased cortical bone volume (60.4% ± 3.1) compared to wild-type (WT) mice (45.4% ± 4.6). The increased bone volume was due to a decrease in marrow cavity area, and significantly decreased endosteal perimeters (3.397 mm ± 0.278 in Calbindin-D28k KO mice, and 4.046 mm ± 0.450 in WT mice). Similar changes were noted in the analysis of the tibias in both mice. The bone formation rates were similar in the femoral and tibial cortical bones of both mice. μCT analysis of the trabecular bone in the tibial plateau indicated that Calbindin-D28k KO mice had an increased bone volume (35.2% ± 3.1) compared to WT mice (24.7% ± 4.9) which was primarily due to increased trabecular number (8.99 mm−1 ± 0.94 in Calbindin-D28k KO mice compared to 6.75 mm−1 ± 0.85 in WT mice). Bone mineral content analysis of the tibias indicated that there is no difference in the calcium or phosphorus content between the Calbindin-D28k KO and WT mice. Cantilever bend testing of the femora demonstrated significantly lower strains in the bones of Calbindin-D28k KO mice (4135 μstrain/kg ± 1266) compared to WT mice (6973 μstrain/kg ± 998) indicating that the KO mice had stiffer bones. Three-point bending demonstrated increased failure loads in bones of Calbindin-D28k KO mice (31.6 N ± 2.1) compared to WT mice (15.0 N ± 1.7). In conclusion, Calbindin-D28k KO mice had increased bone volume and stiffness indicating that Calbindin-D28k plays an important role in bone remodeling. PMID:16631426
2013-01-01
Background Metabolic alteration is one of the hallmarks of carcinogenesis. We aimed to identify certain metabolic biomarkers for the early detection of pancreatic cancer (PC) using the transgenic PTEN-null mouse model. Pancreas-specific deletion of PTEN in mouse caused progressive premalignant lesions such as highly proliferative ductal metaplasia. We imaged the mitochondrial redox state of the pancreases of the transgenic mice approximately eight months old using the redox scanner, i.e., the nicotinamide adenine dinucleotide/oxidized flavoproteins (NADH/Fp) fluorescence imager at low temperature. Two different approaches, the global averaging of the redox indices without considering tissue heterogeneity along tissue depth and the univariate analysis of multi-section data using tissue depth as a covariate were adopted for the statistical analysis of the multi-section imaging data. The standard deviations of the redox indices and the histogram analysis with Gaussian fit were used to determine the tissue heterogeneity. Results All methods show consistently that the PTEN deficient pancreases (Pdx1-Cre;PTENlox/lox) were significantly more heterogeneous in their mitochondrial redox state compared to the controls (PTENlox/lox). Statistical analysis taking into account the variations of the redox state with tissue depth further shows that PTEN deletion significantly shifted the pancreatic tissue to an overall more oxidized state. Oxidization of the PTEN-null group was not seen when the imaging data were analyzed by global averaging without considering the variation of the redox indices along tissue depth, indicating the importance of taking tissue heterogeneity into account for the statistical analysis of the multi-section imaging data. Conclusions This study reveals a possible link between the mitochondrial redox state alteration of the pancreas and its malignant transformation and may be further developed for establishing potential metabolic biomarkers for the early diagnosis of pancreatic cancer. PMID:24252270
2011-01-01
Introduction In Sjögren's syndrome, keratoconjunctivitis sicca (dry eye) is associated with infiltration of lacrimal glands by leukocytes and consequent losses of tear-fluid production and the integrity of the ocular surface. We investigated the effect of blockade of the lymphotoxin-beta receptor (LTBR) pathway on lacrimal-gland pathology in the NOD mouse model of Sjögren's syndrome. Methods Male NOD mice were treated for up to ten weeks with an antagonist, LTBR-Ig, or control mouse antibody MOPC-21. Extra-orbital lacrimal glands were analyzed by immunohistochemistry for high endothelial venules (HEV), by Affymetrix gene-array analysis and real-time PCR for differential gene expression, and by ELISA for CXCL13 protein. Leukocytes from lacrimal glands were analyzed by flow-cytometry. Tear-fluid secretion-rates were measured and the integrity of the ocular surface was scored using slit-lamp microscopy and fluorescein isothiocyanate (FITC) staining. The chemokine CXCL13 was measured by ELISA in sera from Sjögren's syndrome patients (n = 27) and healthy controls (n = 30). Statistical analysis was by the two-tailed, unpaired T-test, or the Mann-Whitney-test for ocular integrity scores. Results LTBR blockade for eight weeks reduced B-cell accumulation (approximately 5-fold), eliminated HEV in lacrimal glands, and reduced the entry rate of lymphocytes into lacrimal glands. Affymetrix-chip analysis revealed numerous changes in mRNA expression due to LTBR blockade, including reduction of homeostatic chemokine expression. The reduction of CXCL13, CCL21, CCL19 mRNA and the HEV-associated gene GLYCAM-1 was confirmed by PCR analysis. CXCL13 protein increased with disease progression in lacrimal-gland homogenates, but after LTBR blockade for 8 weeks, CXCL13 was reduced approximately 6-fold to 8.4 pg/mg (+/- 2.7) from 51 pg/mg (+/-5.3) in lacrimal glands of 16 week old control mice. Mice given LTBR blockade exhibited an approximately two-fold greater tear-fluid secretion than control mice (P = 0.001), and had a significantly improved ocular surface integrity score (P = 0.005). The mean CXCL13 concentration in sera from Sjögren's patients (n = 27) was 170 pg/ml, compared to 92.0 pg/ml for sera from (n = 30) healthy controls (P = 0.01). Conclusions Blockade of LTBR pathways may have therapeutic potential for treatment of Sjögren's syndrome. PMID:22044682
Karpec, Diana; Rudys, Romualdas; Leonaviciene, Laima; Mackiewicz, Zygmunt; Bradunaite, Ruta; Kirdaite, Gailute; Venalis, Algirdas
2017-08-01
The main purpose of the present study was to define the impact of high-dose of 365±5nm ultraviolet A1 (UVA1) on dermal fibrosis in the pre-established, bleomycin-induced mouse model of scleroderma. DBA/2 strain mice with the pre-established, bleomycin-induced scleroderma were irradiated with cumulative UVA1 dose of 1200J/cm 2 and in parallel were challenged with prolonged administration of bleomycin. Non-treated groups served as the control. Light source emitting a narrow band UVA1 light of 365±5nm and 21mW/cm 2 power density was used in the study. Histological analysis was performed for the evaluation of dermal thickness. The expressions of matrix-metalloproteinase-1 (MMP-1), matrix-metalloproteinase-3 (MMP-3), collagen types I and III were evaluated by immunohistochemical analyses. The Mann - Whitney U test was used for statistical analysis. Dermal thickness in mice injected with bleomycin during all the experiment (8weeks) and irradiated with UVA1 for the last 5weeks was significantly lower than that in mice challenged only with bleomycin for 8weeks (253.96±31.83μm and 497.43±57.83μm, respectively; P=0.002). The dermal thickness after phototherapy was lower as compared with the pre-existing fibrotic changes observed after 3weeks of bleomycin injections (253.96±31.83μm and 443.87±41.76μm, respectively; P=0.002). High-dose of UVA1 induced the 5.8- and 5.2-fold increase in MMP-1 and MMP-3 expressions, respectively, and the 1.2- and 1.4-fold decrease in collagen type I and collagen type III expressions in the pre-established, bleomycin-induced scleroderma model as compared to that in the control non-irradiated mice (P=0.002). Our study has demonstrated that a cumulative 365±5nm UVA1 radiation dosage of 1200J/cm 2 not only prevents the progression of dermal fibrosis, but also induces a regression of pre-existing fibrotic changes. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zgoda-Pols, Joanna R., E-mail: joanna.pols@merck.com; Chowdhury, Swapan; Wirth, Mark
2011-08-15
An investigative renal toxicity study using metabolomics was conducted with a potent nicotinic acid receptor (NAR) agonist, SCH 900424. Liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) techniques were used to identify small molecule biomarkers of acute kidney injury (AKI) that could aid in a better mechanistic understanding of SCH 900424-induced AKI in mice. The metabolomics study revealed 3-indoxyl sulfate (3IS) as a more sensitive marker of SCH 900424-induced renal toxicity than creatinine or urea. An LC-MS assay for quantitative determination of 3IS in mouse matrices was also developed. Following treatment with SCH 900424, 3IS levels were markedly increasedmore » in murine plasma and brain, thereby potentially contributing to renal- and central nervous system (CNS)-related rapid onset of toxicities. Furthermore, significant decrease in urinary excretion of 3IS in those animals due to compromised renal function may be associated with the elevation of 3IS in plasma and brain. These data suggest that 3IS has a potential to be a marker of renal and CNS toxicities during chemically-induced AKI in mice. In addition, based on the metabolomic analysis other statistically significant plasma markers including p-cresol-sulfate and tryptophan catabolites (kynurenate, kynurenine, 3-indole-lactate) might be of toxicological importance but have not been studied in detail. This comprehensive approach that includes untargeted metabolomic and targeted bioanalytical sample analyses could be used to investigate toxicity of other compounds that pose preclinical or clinical development challenges in a pharmaceutical discovery and development. - Research Highlights: > Nicotinic acid receptor agonist, SCH 900424, caused acute kidney injury in mice. > MS-based metabolomics was conducted to identify potential small molecule markers of renal toxicity. > 3-indoxyl-sulfate was found to be as a more sensitive marker of renal toxicity than creatinine or urea. > 3-IS levels were increased not only in murine plasma but also in the brain. > 3-IS potentially contributes to renal-and CNS-related rapid onset of toxicities.« less
Yeung, Tsz-Lun; Sheng, Jianting; Leung, Cecilia S; Li, Fuhai; Kim, Jaeyeon; Ho, Samuel Y; Matzuk, Martin M; Lu, Karen H; Wong, Stephen T C; Mok, Samuel C
2018-05-31
Bulk tumor tissue samples are used for generating gene expression profiles in most research studies, making it difficult to decipher the stroma-cancer crosstalk networks. In the present study, we describe the use of microdissected transcriptome profiles for the identification of cancer-stroma crosstalk networks with prognostic value, which presents a unique opportunity for developing new treatment strategies for ovarian cancer. Transcriptome profiles from microdissected ovarian cancer-associated fibroblasts (CAFs) and ovarian cancer cells from patients with high-grade serous ovarian cancer (n = 70) were used as input data for the computational systems biology program CCCExplorer to uncover crosstalk networks between various cell types within the tumor microenvironment. The crosstalk analysis results were subsequently used for discovery of new indications for old drugs in ovarian cancer by computational ranking of candidate agents. Survival analysis was performed on ovarian tumor-bearing Dicer/Pten double-knockout mice treated with calcitriol, a US Food and Drug Administration-approved agent that suppresses the Smad signaling cascade, or vehicle control (9-11 mice per group). All statistical tests were two-sided. Activation of TGF-β-dependent and TGF-β-independent Smad signaling was identified in a particular subtype of CAFs and was associated with poor patient survival (patients with higher levels of Smad-regulated gene expression by CAFs: median overall survival = 15 months, 95% confidence interval [CI] = 12.7 to 17.3 months; vs patients with lower levels of Smad-regulated gene expression: median overall survival = 26 months, 95% CI = 15.9 to 36.1 months, P = .02). In addition, the activated Smad signaling identified in CAFs was found to be targeted by repositioning calcitriol. Calcitriol suppressed Smad signaling in CAFs, inhibited tumor progression in mice, and prolonged the median survival duration of ovarian cancer-bearing mice from 36 to 48 weeks (P = .04). Our findings suggest the feasibility of using novel multicellular systems biology modeling to identify and repurpose known drugs targeting cancer-stroma crosstalk networks, potentially leading to faster and more effective cures for cancers.
Lyte, Mark; Chapel, Ashley; Lyte, Joshua M; Ai, Yongfeng; Proctor, Alexandra; Jane, Jay-Lin; Phillips, Gregory J
2016-01-01
The increasing recognition that the gut microbiota plays a central role in behavior and cognition suggests that the manipulation of microbial taxa through diet may provide a means by which behavior may be altered in a reproducible and consistent manner in order to achieve a beneficial outcome for the host. Resistant starch continues to receive attention as a dietary intervention that can benefit the host through mechanisms that include altering the intestinal microbiota. Given the interest in dietary approaches to improve health, the aim of this study was to investigate whether the use of dietary resistant starch in mice to alter the gut microbiota also results in a change in behavior. Forty-eight 6 week-old male Swiss-Webster mice were randomly assigned to 3 treatment groups (n = 16 per group) and fed either a normal corn starch diet (NCS) or diets rich in resistant starches HA7 diet (HA7) or octenyl-succinate HA7 diet (OS-HA7) for 6 week and monitored for weight, behavior and fecal microbiota composition. Animals fed an HA7 diet displayed comparable weight gain over the feeding period to that recorded for NCS-fed animals while OS-HA7 displayed a lower weight gain as compared to either NCS or HA7 animals (ANOVA p = 0.0001; NCS:HA7 p = 0.244; HA7:OS-HA7 p<0.0001; NCS:OS-HA7 p<0.0001). Analysis of fecal microbiota using 16s rRNA gene taxonomic profiling revealed that each diet corresponded with a unique gut microbiota. The distribution of taxonomic classes was dynamic over the 6 week feeding period for each of the diets. At the end of the feeding periods, the distribution of taxa included statistically significant increases in members of the phylum Proteobacteria in OS-HA7 fed mice, while the Verrucomicrobia increased in HA7 fed mice over that of mice fed OS-HA7. At the class level, members of the class Bacilli decreased in the OS-HA7 fed group, and Actinobacteria, which includes the genus Bifidobacteria, was enriched in the HA7 fed group compared to the control diet. Behavioral analysis revealed that animals demonstrated profound anxiety-like behavior as observed by performance on the elevated-plus maze with time spent by the mice in the open arm (ANOVA p = 0.000; NCS:HA7 p = 0.004; NCS:OS-HA7 p = 1.000; HA7:OS-HA7 p = 0.0001) as well as entries in the open arm (ANOVA p = 0.039; NCS:HA7 p = 0.041; HA7:OS-HA7 p = 0.221; NCS:OS-HA7 p = 1.000). Open-field behavior, a measure of general locomotion and exploration, revealed statistically significant differences between groups in locomotion as a measure of transitions across quadrant boundaries. Additionally, the open-field assay revealed decreased exploration as well as decreased rearing in HA7 and OS-HA7 fed mice demonstrating a consistent pattern of increased anxiety-like behavior among these groups. Critically, behavior was not correlated with weight. These results indicate that diets based on resistant starch can be utilized to produce quantifiable changes in the gut microbiota and should be useful to "dial-in" a specific microbiome that is unique to a particular starch composition. However, undesirable effects can also be associated with resistant starch, including lack of weight gain and increased anxiety-like behaviors. These observations warrant careful consideration when developing diets rich in resistant starch in humans and animal models.
[Effect of dexamethasone contamination in drinking water on intestinal flora in mice].
Yang, Xi; Li, Xiao-Yu; Si, Dan; Yang, Zhi-Bang; He, Zhong-Yuan; Zhang, Nan-Chen; Zhang, Shan-Shan; Shi, Zhong-Quan
2016-02-01
To evaluate the effect of water pollution with dexamethasone on intestinal flora in mice. Twenty Balb/c mice were randomly divided into control group and low-, moderate- and high-dose dexamethasone groups. The mice in dexamethasone groups were exposed to dexamethasone sodium phosphate in drinking water at doses of 0.035, 0.225, and 2.25 ng for 36 days. The changes in behaviors, fur condition, and feces of the mice were observed daily. All the mice were sacrificed at 36 days and the tissues in the ileocecal region was collected for denaturant gradient gel electrophoresis (DGGE) of 16S rDNA V6 variable regions of microbes and sequence analysis with BLAST. The mice in the 3 dexamethasone groups all showed aggressive behaviors. Cluster analysis of DGGE graph showed relatively stable floras in the ileocecal region in all the mice, but principal component analysis identified differences in the dominating flora among the groups. Diversity analysis of the flora revealed significantly increased amount and types of bacteria in the intestinal flora in all the 3 dexamethasone groups (P<0.05 or 0.01) compared with the control group. Sequence analysis of 16S rDNA V6 regions showed 15 common bacterial species and 2 differential species between the dexamethasone groups and the control group with changes in the type and proportion of the dominating bacterium in the dexamethasone groups. Lactobacillus colonization was detected in the control group but not in moderate- and high-dose dexamethasone groups, and Shigella species were found in the latter two groups. Water contamination with dexamethasone can affect the nervous system of mice, cause changes in the types and amounts of intestinal bacteria and the dominating bacteria, and inhibit the colonization of probiotics in the intestinal floras to increase the risk of invasion by intestinal pathogenic bacteria.
Liu, Ya-Li; Wang, Ying; Yi, Jia-Li; Jing, Huan; Liu, Chun-Ying
2014-05-01
To explore the effect of Buzhong Yiqi decoction on PI3K/AKT signaling pathway in spleen, stomach and lung of nude mice with lung adenocarcinoma transplantation tumor. Totally 60 nude mice were randomly divided into the blank control group, the tumor-bearing control group, the cisplatin group, the low-dose Buzhong Yiqi decoction group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. After the corresponding interventions, efforts were made to measure the transplanted tumor volume and calculate the tumor inhibiting rate. The immunohistochemical method and real time PCR were used to detect the expression of PI3K and AKT level in nude mice spleen, stomach and lung. Buzhong Yiqi decoction of different concentrations combined with cisplatin could inhibit the growth of the transplanted tumor, with the strongest inhibitory effect in the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group. All of the expressions of PI3K and AKT protein and gene in the spleen, stomach and lung increased, with the most significant increase in the tumor-bearing group. Along with the increase of the concentration of cisplatin and Buzhong Yiqi decoction, the expressions of PI3K and AKT gradually reduced. Compared with the tumor-bearing control group, there were statistical differences in spleen and stomach tissues (P < 0.05). Compared with the cisplatin group, the middle-dose Buzhong Yiqi decoction group and the high-dose Buzhong Yiqi decoction group showed statistical differences (P < 0.05), but without statistical difference compared with the blank control group. Among nude mice with lung adenocarcinoma transplantation tumor, the PI3K and AKT protein and gene expressions in spleen, stomach and lung tissues increased, which might indicated the effect of cisplatin and Buzhong Yiqi decoction in reducing PI3K and AKT expressions and the relations between the reduction degree and the concentrations of Buzhong Yiqi decoction. Cisplatin combined with Buzhong Yiqi decoction could decrease the PI3K and AKT protein and gene expression in spleen, stomach and lung, and make the pathway closer to normal, so as to protect the functions of spleen, stomach and lung, there may be target spots of Buzhong Yiqi decoction in PI3K/AKT signal pathway.
NASA Technical Reports Server (NTRS)
Solomides, P.; Moyer, E. L.; Talyansky, Y.; Choi, S.; Gong, C.; Globus, R. K.; Ronca, A. E.
2016-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. A handful of papers have previously reported behavior of mice and rats in the weightless environment of space. The Rodent Research Hardware and Operations Validation (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS (International Space Station). Ten adult (16-week-old) female C57BL/6 mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in microgravity. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the Rodent Habitat (RH) during this long-duration flight. Video was recorded for 33 days on the ISS, permitting daily assessments of overall health and well-being of the mice, and providing a valuable repository for detailed behavioral analysis. We previously reported that, as compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allo-grooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized 'circling' or 'race-tracking' behavior that emerged within the first few days of flight following a common developmental sequence, and comprised the primary dark cycle activity persisting throughout the remainder of the experiment. Participation by individual mice increased dramatically over the course of the flight. Here we present a detailed analysis of 'race-tracking' behavior in which we quantified: (1) Complete lap rotations by individual mice; (2) Numbers of collisions between circling mice; (3) Lap directionality; and (4) Recruitment of mice into a group phenotype. This analysis contributes to the first NASA long-duration study of rodent behavior, providing evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment.
Abnormal gut microbiota composition contributes to cognitive dysfunction in SAMP8 mice.
Zhan, Gaofeng; Yang, Ning; Li, Shan; Huang, Niannian; Fang, Xi; Zhang, Jie; Zhu, Bin; Yang, Ling; Yang, Chun; Luo, Ailin
2018-06-10
Alzheimer's disease is characterized by cognitive dysfunction and aging is an important predisposing factor; however, the pathological and therapeutic mechanisms are not fully understood. Recently, the role of gut microbiota in Alzheimer's disease has received increasing attention. The cognitive function in senescence-accelerated mouse prone 8 (SAMP8) mice was significantly decreased and the Chao 1 and Shannon indices, principal coordinates analysis, and principal component analysis results were notably abnormal compared with that of those in senescence-accelerated mouse resistant 1 (SAMR1) mice. Moreover, 27 gut bacteria at six phylogenetic levels differed between SAMP8 and SAMR1 mice. In a separate study, we transplanted fecal bacteria from SAMP8 or SAMR1 mice into pseudo germ-free mice. Interestingly, the pseudo germ-free mice had significantly lower cognitive function prior to transplant. Pseudo germ-free mice that received fecal bacteria transplants from SAMR1 mice but not from SAMP8 mice showed improvements in behavior and in α-diversity and β-diversity indices. In total, 14 bacteria at six phylogenetic levels were significantly altered by the gut microbiota transplant. These results suggest that cognitive dysfunction in SAMP8 mice is associated with abnormal composition of the gut microbiota. Thus, improving abnormal gut microbiota may provide an alternative treatment for cognitive dysfunction and Alzheimer's disease.
Upregulation of MAOA in the hippocampus results in delayed depressive-like behaviors in burn mice.
Wang, Zhen; Chen, Lu; Rong, Xinzhou; Wang, Xuemin
2017-04-14
To observe depressive-like behavior and hippocampus monoamine oxidase A (MAOA) changes in burned mice. We tested depression and anxiety like behaviors of burn C57 mice with the sucrose preference test, forced swimming test (FST), open field test and elevated plus maze test and then detected the MAOA content and MAOA gene transcriptional levels in the hippocampus with western blot analysis and real-time quantitative PCR analysis. We then sought to reverse depressive-like behavior of burned mice with an MAOA inhibitor. (1) Mice showed depressive and anxiety like behaviors one week after they were burned; (2) The content of MAOA in the hippocampus of burned mice was significantly higher than that in control mice (P<0.05); (3) MAOA gene transcription in the hippocampus of burned mice was significantly increased (MAOA mRNA was increased, P<0.05); (4) treatment with a MAOA inhibitor (phenelzine) significantly increased the sucrose preference rate and decreased FST immobility time in burned mice, and also decreased elevated expression of MAOA in the hippocampus of burned mice. Burned mice showed "delayed" depressive-like behavior combined with a degree of anxiety; this phenomenon is likely associated with the increase in MAOA expression in the hippocampus. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.
Ovarian and uterine alterations following forced swimming: An immunohistochemical study.
Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol
2016-10-01
Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10 o C); and C, swimming in water (23 o C). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Swimming in both groups reduced the serum FSH and estradiol levels (p<0.01) without having a significant effect on the serum testosterone level or percentage of apoptosis in ovarian and uterine tissues (p<0.01) compared with controls. A significant reduction in the number of ERs in the uterus and ovaries, and secondary and graafian follicles were observed in groups B and C compared with controls (p<0.01); however the number of primordial and primary follicles were not significantly changed in the ovaries. Forced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility.
Ovarian and uterine alterations following forced swimming: An immunohistochemical study
Seyed Saadat, Seyedeh Nazanin; Mohammadghasemi, Fahimeh; Ebrahimi, Hannan; Rafati Sajedi, Hanieh; Chatrnour, Gelayol
2016-01-01
Background: Physical exercise is known to be a stressor stimulus that leads to reproductive disruption. Objective: The aim of this study was to evaluate the effect of forced swimming on the uterus and ovaries in mice. Materials and Methods: Adult mice (N=24) were divided into the following three groups: A, control; B, swimming in water (10oC); and C, swimming in water (23oC). Swimmers swam for 5 min daily for 5 consecutive days/ wk during 2 wks. An enzyme linked immunosorbent assay was used to determine serum estradiol, follicle stimulating hormone (FSH) and testosterone levels. Immunohistochemistry was performed to study apoptotic cells or estrogen receptor (ER) expression in uterine epithelial cells and ovaries. ANOVA was used for statistical analysis. Results: Swimming in both groups reduced the serum FSH and estradiol levels (p<0.01) without having a significant effect on the serum testosterone level or percentage of apoptosis in ovarian and uterine tissues (p<0.01) compared with controls. A significant reduction in the number of ERs in the uterus and ovaries, and secondary and graafian follicles were observed in groups B and C compared with controls (p<0.01); however the number of primordial and primary follicles were not significantly changed in the ovaries. Conclusion: Forced swimming of 2 wks duration reduces the serum levels of FSH and estradiol without having effects on apoptosis in the ovaries or uteri of mice. Over a long period of time, forced swimming may have an adverse effect on fertility. PMID:27921086
NASA Astrophysics Data System (ADS)
Jelvehgaran, Pouya; de Bruin, Daniel Martijn; Salguero, F. Javier; Borst, Gerben Roelof; Song, Ji-Ying; van Leeuwen, Ton G.; de Boer, Johannes F.; Alderliesten, Tanja; van Herk, Marcel
2018-04-01
Lung cancer survival is poor, and radiation therapy patients often suffer serious treatment side effects. The esophagus is particularly sensitive leading to acute radiation-induced esophageal damage (ARIED). We investigated the feasibility of optical coherence tomography (OCT) for minimally invasive imaging of the esophagus with high resolution (10 μm) to detect ARIED in mice. Thirty mice underwent cone-beam computed tomography imaging for initial setup assessment and dose planning followed by a single-dose delivery of 4.0, 10.0, 16.0, and 20.0 Gy on 5.0-mm spots, spaced 10.0 mm apart in the esophagus. They were repeatedly imaged using OCT up to three months postirradiation. We compared OCT findings with histopathology obtained three months postirradiation qualitatively and quantitatively using the contrast-to-background-noise ratio (CNR). Histopathology mostly showed inflammatory infiltration and edema at higher doses; OCT findings were in agreement with most of the histopathological reports. We were able to identify the ARIED on OCT as a change in tissue scattering and layer thickness. Our statistical analysis showed significant difference between the CNR values of healthy tissue, edema, and inflammatory infiltration. Overall, the average CNR for inflammatory infiltration and edema damages was 1.6-fold higher and 1.6-fold lower than for the healthy esophageal wall, respectively. Our results showed the potential role of OCT to detect and monitor the ARIED in mice, which may translate to humans.
Kim, Hyo Yeol; Kim, Joon Ho; Dhong, Hun-Jong; Kim, Ki Ryung; Chung, Seung-Kyu; Chung, Soo-Chan; Kang, Jeong Min; Jung, Yong Gi; Jang, Seong Yun; Hong, Sang Duk
2012-01-01
Despite the importance of olfactory function, no effective medications have been identified to treat olfactory disorders. This study was performed to evaluate the functional recovery of olfaction damaged by 3-methylindole (3MI) in a mouse model with hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins). In a randomized placebo-controlled trial, 24 healthy female BALB/c mice (aged 9-10 weeks and weighing 18-20 g each) were randomly allocated to statin-treated or control groups. Olfactory loss was induced by i.p. injections of 3MI. Atorvastatin (10 mg/kg) or normal saline was then administered per os with a gastric tube for 3 weeks. The effects of treatment were evaluated by food-finding tests and Western blot analysis. Both groups showed complete losses of olfactory function 1 week after 3MI injection. Three weeks after 3MI injection, 9 of the 12 mice in the statin-treated group (75%) passed a food-finding test, in which they were able to find the food within 3 minutes, at least two times out of three trials. However, only two mice in the control group (16.6%) passed the food-finding test, and this difference was statistically significant (p = 0.004; chi-square test). The expression level of the olfactory marker protein was also elevated in the statin-treated group (p = 0.030; Wilcoxon rank sum test). Statins are associated with recovery of olfaction after 3MI injection in a mouse model.
A genetic map of mouse chromosome 1 near the Lsh-Ity-Bcg disease resistance locus.
Mock, B; Krall, M; Blackwell, J; O'Brien, A; Schurr, E; Gros, P; Skamene, E; Potter, M
1990-05-01
Isozyme and restriction fragment length polymorphism (RFLP) analyses of backcross progeny, recombinant inbred strains, and congenic strains of mice positioned eight genetic markers with respect to the Lsh-Ity-Bcg disease resistance locus. Allelic isoforms of Idh-1 and Pep-3 and RFLPs detected by Southern hybridization for Myl-1, Cryg, Vil, Achrg, bcl-2, and Ren-1,2, between BALB/cAnPt and DBA/2NPt mice, were utilized to examine the cosegregation of these markers with the Lsh-Ity-Bcg resistance phenotype in 103 backcross progeny. An additional 47 backcross progeny from a cross between C57BL/10ScSn and B10.L-Lshr/s mice were examined for the cosegregation of Myl-1 and Vil RFLPs with Lsh phenotypic differences. Similarly, BXD recombinant inbred strains were typed for RFLPs upon hybridization with Vil and Achrg. Recombination frequencies generated in the different test systems were statistically similar, and villin (Vil) was identified as the molecular marker closest (1.7 +/- 0.8 cM) to the Lsh-Ity-Bcg locus. Two other DNA sequences, nebulin (Neb) and an anonymous DNA fragment (D2S3), which map to a region of human chromosome 2q that is homologous to proximal mouse chromosome 1, were not closely linked to the Lsh-Ity-Bcg locus. This multipoint linkage analysis of chromosome 1 surrounding the Lsh-Ity-Bcg locus provides a basis for the eventual isolation of the disease gene.
[Effects of caspase-1 inhibitor VX765 on cold-restraint stress-induced acute gastric ulcer in mice].
Zheng, S Q; Hong, X D; Chen, T S; Luo, P F; Xiao, S C
2017-11-20
Objective: To investigate the protective effects of caspase-1 inhibitor VX765 on gastric mucosa of mice with cold-restraint stress-induced acute gastric ulcer. Methods: Twenty-four specific pathogen free male C57BL/6J mice were divided into normal control group (NC), cold restrain group (CR), VX765 pre-treatment+ cold restrain group (VCR), and rabeprazole pre-treatment+ cold restrain group (RCR) according to the random number table, with 6 mice in each group. Mice in group NC were injected intraperitoneally with solution of 10 mL/kg dimethylsulfoxide (DMSO) and phosphate buffer solution (PBS). Mice in group CR were inflicted with acute gastric ulcer induced by cold-restraint stress 30 minutes after intraperitoneal injection of solution of DMSO and PBS. Mice in groups VCR and RCR were inflicted with acute gastric ulcer as above 30 minutes after intraperitoneal injection of solution of DMSO and PBS with dose of 12.5 μmol/kg containing 10 mg VX765 and 40 mg/kg containing 20 mg rabeprazole, respectively. Four hour after cold-restraint stress, serum content of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6)was determined by enzyme-linked immunosorbent assay. Gross condition of gastric tissue was observed. Ulcer index was evaluated. Pathological change of gastric tissue was observed with HE staining. The relative expression of IL-1β, IL-18, and cleaved-caspase-1 in gastric tissue were detected by Western blotting. Mice in group NC were detected as above at the same time point. Data were processed with one-way analysis of variance and Bonferroni test. Results: The serum content of TNF-α and IL-6 and the relative expression of cleaved-caspase-1, IL-1β, and IL-18 in gastric tissue of mice in group NC were significantly lower than those in group CR (with P values below 0.01). The content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice in group VCR was significantly lower than that in group CR (with P values below 0.01). There were no statistically significant differences in content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice between groups RCR and CR (with P values above 0.05). The content of the above-mentioned inflammatory indexes in serum and gastric tissue of mice in group VCR was significantly lower than that in group RCR (with P values below 0.01). Surface of gastric mucosa was smooth and morphology of mucosal cells was normal with clear structure of mice in group NC. Multiple hemorrhage of gastric mucosa, disorderly arrangement of mucosal cells, and large number of inflammatory cell infiltration around necrotic tissue were observed in mice of group CR. Decreased number of gastric mucosa bleeding, intact mucosal structure, and small amount of inflammatory cell infiltration around necrotic tissue were observed in mice of groups VCR and RCR. The ulcer indexes of mice in groups NC, CR, VCR, and RCR were 0, 18.7±1.1, 6.3±1.5, and 8.2±1.3, respectively. The ulcer index of mice in group NC was significantly lower than that in the other 3 groups (with P values below 0.05). The ulcer indexes of mice in groups VCR and RCR were close ( P >0.05), which were significantly lower than ulcer index of mice in group CR (with P values below 0.05). Conclusions: VX765 can effectively inhibit the activation of caspase-1, reduce production of inflammatory factor, and alleviate inflammatory response, which have protective effects on gastric mucosa of mice with cold-restraint stress-induced acute gastric ulcer.
Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice
Horie, Masanori; Miura, Takamasa; Hirakata, Satomi; Hosoyama, Akira; Sugino, Sakiko; Umeno, Aya; Murotomi, Kazutoshi; Yoshida, Yasukazu; Koike, Taisuke
2017-01-01
A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes. PMID:28701620
Comparative analysis of the intestinal flora in type 2 diabetes and nondiabetic mice.
Horie, Masanori; Miura, Takamasa; Hirakata, Satomi; Hosoyama, Akira; Sugino, Sakiko; Umeno, Aya; Murotomi, Kazutoshi; Yoshida, Yasukazu; Koike, Taisuke
2017-10-30
A relationship between type 2 diabetes mellitus (T2DM) and intestinal flora has been suggested since development of analysis technology for intestinal flora. An animal model of T2DM is important for investigation of T2DM. Although there are some animal models of T2DM, a comparison of the intestinal flora of healthy animals with that of T2DM animals has not yet been reported. The intestinal flora of Tsumura Suzuki Obese Diabetes (TSOD) mice was compared with that of Tsumura, Suzuki, Non Obesity (TSNO) mice in the present study. The TSOD mice showed typical type 2 diabetes symptoms, which were high-fat diet-independent. The TSOD and the TSNO mouse models were derived from the same strain, ddY. In this study, we compared the intestinal flora of TSOD mice with that if TSNO mice at 5 and 12 weeks of age. We determined that that the number of operational taxonomic units (OTUs) was significantly higher in the cecum of TSOD mice than in that of TSNO mice. The intestinal flora of the cecum and that of the feces were similar between the TSNO and the TSOD strains. The dominant bacteria in the cecum and feces were of the phyla Firmicutes and Bacteroidetes. However, the content of some bacterial species varied between the two strains. The percentage of Lactobacillus spp. within the general intestinal flora was higher in TSOD mice than in TSNO mice. In contrast, the percentages of order Bacteroidales and family Lachnospiraceae were higher in TSNO mice than in TSOD mice. Some species were observed only in TSOD mice, such as genera Turicibacter and SMB53 (family Clostridiaceae), the percentage of which were 3.8% and 2.0%, respectively. Although further analysis of the metabolism of the individual bacteria in the intestinal flora is essential, genera Turicibacter and SMB53 may be important for the abnormal metabolism of type 2 diabetes.
Deficiency of the Bax gene attenuates denervation-induced apoptosis
Siu, P. M.; Alway, S. E.
2015-01-01
Apoptosis has been implicated in mediating denervation-induced muscle wasting. In this study we determined the effect of interference of apoptosis on muscle wasting during denervation by using mice genetically deficient in pro-apoptotic Bax. After denervation, muscle wasting was evident in both wild-type and Bax−/− muscles but reduction of muscle weight was attenuated in Bax−/− mice. Apoptotic DNA fragmentation increased in wild-type denervated muscles whereas there was no statistical increase in DNA fragmentation in denervated muscles from Bax−/− mice. Mitochondrial AIF and Smac/DIABLO releases and Bcl-2, p53 and HSP27 increased whereas XIAP and MnSOD decreased to a similar extent in muscles from wild-type and Bax−/− mice following denervation. Mitochondrial cytochrome c release was elevated in denervated muscles from wild-type mice but the increase was suppressed in muscles from Bax−/− mice. Increases in caspase-3 and -9 activities and oxidative stress markers H2O2, MDA/4-HAE and nitrotyrosine were all evident in denervated muscles from wild-type mice but these changes were absent in muscles from Bax−/− mice. Moreover, ARC increased exclusively in denervated Bax−/− muscle. Our data indicate that under conditions of denervation, pro-apoptotic signalling is suppressed and muscle wasting is attenuated when the Bax gene is lacking. These findings suggest that interventions targeting apoptosis may be valuable in ameliorating denervation-associated pathologic muscle wasting in certain neuromuscular disorders that involve partial or full denervation. PMID:16763784
Defour, Merel; Dijk, Wieneke; Ruppert, Philip; Nascimento, Emmani B M; Schrauwen, Patrick; Kersten, Sander
2018-04-01
Chronic cold exposure causes white adipose tissue (WAT) to adopt features of brown adipose tissue (BAT), a process known as browning. Previous studies have hinted at a possible role for the transcription factor Peroxisome Proliferator-Activated Receptor alpha (PPARα) in cold-induced browning. Here we aimed to investigate the importance of PPARα in driving transcriptional changes during cold-induced browning in mice. Male wildtype and PPARα-/- mice were housed at thermoneutrality (28 °C) or cold (5 °C) for 10 days. Whole genome expression analysis was performed on inguinal WAT. In addition, other analyses were carried out. Whole genome expression data of livers of wildtype and PPARα-/- mice fasted for 24 h served as positive control for PPARα-dependent gene regulation. Cold exposure increased food intake and decreased weight of BAT and WAT to a similar extent in wildtype and PPARα-/- mice. Except for plasma non-esterified fatty acids, none of the cold-induced changes in plasma metabolites were dependent on PPARα genotype. Histological analysis of inguinal WAT showed clear browning upon cold exposure but did not reveal any morphological differences between wildtype and PPARα-/- mice. Transcriptomics analysis of inguinal WAT showed a marked effect of cold on overall gene expression, as revealed by principle component analysis and hierarchical clustering. However, wildtype and PPARα-/- mice clustered together, even after cold exposure, indicating a similar overall gene expression profile in the two genotypes. Pathway analysis revealed that cold upregulated pathways involved in energy usage, oxidative phosphorylation, and fatty acid β-oxidation to a similar extent in wildtype and PPARα-/- mice. Furthermore, cold-mediated induction of genes related to thermogenesis such as Ucp1, Elovl3, Cox7a1, Cox8, and Cidea, as well as many PPAR target genes, was similar in wildtype and PPARα-/- mice. Finally, pharmacological PPARα activation had a minimal effect on expression of cold-induced genes in murine WAT. Cold-induced changes in gene expression in inguinal WAT are unaltered in mice lacking PPARα, indicating that PPARα is dispensable for cold-induced browning. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Preferences of group-housed female mice regarding structure of softwood bedding.
Kirchner, J; Hackbarth, H; Stelzer, H D; Tsai, P-P
2012-04-01
Bedding influences various parameters in the housing of laboratory mice, such as health, physiology and behaviour (often considered as being integral parts of welfare). Notwithstanding existent studies about bedding preferences of individually tested mice, data about group-housed mice are still lacking. The aim of this study was to find out the structure preference for softwood bedding of group-housed mice. One hundred and eight 8-week-old female mice (C57BL6/JOlaHsd and BALB/cOlaHsd) were housed in groups of three and were given one-week free access to two different bedding structures at a time. In three test combinations, softwood shaving bedding was tested versus softwood chip bedding products of three different particle sizes (fine/medium/coarse-grained). The preference test was performed in a DoubleCage system composed of two Makrolon type IIL cages, connected by a perspex tunnel. This validated system was able to detect the crossings of each individual animal with correct crossing time and direction. On the basis of these data, dwelling times on the particular bedding structures were statistically analysed as a parameter for bedding preferences. In all three test combinations, a highly significant shaving preference was detected. On average, mice spent 70% of their dwelling time on the shavings. This preference was more explicit during the light period and in C57BL/6J mice. The relative ranking of the bedding structures was: shavings > coarse-grained chips > medium chips = fine chips. By means of these results, a shaving structure as bedding can be recommended for laboratory mice, whereas fine chip structures should be avoided.
Chae, Yun Jeong; Zhang, Jianan; Au, Paul; Sabbadini, Marta; Xie, Guo-Xi; Yost, C Spencer
2010-12-01
We investigated the role of tandem pore potassium ion channel (K2P) TRESK in neurobehavioral function and volatile anesthetic sensitivity in genetically modified mice. Exon III of the mouse TRESK gene locus was deleted by homologous recombination using a targeting vector. The genotype of bred mice (wild type, knockout, or heterozygote) was determined using polymerase chain reaction. Morphologic and behavioral evaluations of TRESK knockout mice were compared with wild-type littermates. Sensitivity of bred mice to isoflurane, halothane, sevoflurane, and desflurane were studied by determining the minimum alveolar concentration preventing movement to tail clamping in 50% of each genotype. With the exception of decreased number of inactive periods and increased thermal pain sensitivity (20% decrease in latency with hot plate test), TRESK knockout mice had healthy development and behavior. TRESK knockout mice showed a statistically significant 8% increase in isoflurane minimum alveolar concentration compared with wild-type littermates. Sensitivity to other volatile anesthetics was not significantly different. Spontaneous mortality of TRESK knockout mice after initial anesthesia testing was nearly threefold higher than that of wild-type littermates. TRESK alone is not critical for baseline central nervous system function but may contribute to the action of volatile anesthetics. The inhomogeneous change in anesthetic sensitivity corroborates findings in other K2P knockout mice and supports the theory that the mechanism of volatile anesthetic action involves multiple targets. Although it was not shown in this study, a compensatory effect by other K2P channels may also contribute to these observations.
Effects of the food additive, citric acid, on kidney cells of mice.
Chen, Xg; Lv, Qx; Liu, Ym; Deng, W
2015-01-01
Citric acid is a food additive that is widely used in the food and drink industry. We investigated the effects of citric acid injection on mouse kidney. Forty healthy mice were divided into four groups of 10 including one control group and three citric acid-treated groups. Low dose, middle dose and high dose groups were given doses of 120, 240 and 480 mg/kg of citric acid, respectively. On day 7, kidney tissues were collected for histological, biochemical and molecular biological examination. We observed shrinkage of glomeruli, widened urinary spaces and capillary congestion, narrowing of the tubule lumen, edema and cytoplasmic vacuolated tubule cells, and appearance of pyknotic nuclei. The relation between histopathological changes and citric acid was dose dependent. Compared to the control, T-SOD and GSH-Px activities in the treated groups decreased with increasing doses of citric acid, NOS activity tended to increase, and H2O2 and MDA contents gradually decreased, but the differences between any treated group and the control were not statistically significant. The apoptosis assay showed a dose-dependent increase of caspase-3 activity after administering citrate that was statistically significant. DNA ladder formation occurred after treatment with any dose of citric acid. We concluded that administration of citric acid may cause renal toxicity in mice.
Evaluation of the genotoxicity of alpha-amanitin in mice bone marrow cells.
Marciniak, B; Łopaczyńska, D; Ferenc, T
2017-10-01
Alpha-amanitin is a known cytotoxic substance found in some mushroom species including Amanita phalloides. Its main mechanism of action is to block the transcription, which can lead to cell death. Lack of reports on the genotoxicity of this toxin was an inspiration for undertaking this experiment. Genotoxic effect of α-amanitin on balb/c mice bone marrow cells was tested using: comet assay and chromosomal aberration test. The tested substance was given once by intraperitoneal administration to animals at doses: 0.1 mg/kg, 0.15 mg/kg and 0.25 mg/kg (LD 50 ) body weight with 48 h exposure. The comet assay demonstrated a statistically significant increase in DNA damage for all the investigated α-amanitin doses compared to the negative control (p < 0.0001). The exposure to 0.15 and 0.25 mg/kg doses of α-amanitin also generated a statistically significant increase in the frequency of chromosomal aberrations in bone marrow cells of mice compared to the negative control (p < 0.05). The genotoxic effect induced by α-amanitin in mammalian cells can result in genome instability and its functional consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Chien-Kai; Chen, Hsiao-Chien; Fang, Sheng-Uei; Ho, Chia-Wen; Tai, Cheng-Jeng; Yang, Chih-Ping; Liu, Yu-Chuan
2018-04-20
Many human diseases are inflammation-related, such as cancer and those associated with aging. Previous studies demonstrated that plasmon-induced activated (PIA) water with electron-doping character, created from hot electron transfer via decay of excited Au nanoparticles (NPs) under resonant illumination, owns reduced hydrogen-bonded networks and physchemically antioxidative properties. In this study, it is demonstrated PIA water dramatically induced a major antioxidative Nrf2 gene in human gingival fibroblasts which further confirms its cellular antioxidative and anti-inflammatory properties. Furthermore, mice implanted with mouse Lewis lung carcinoma (LLC-1) cells drinking PIA water alone or together with cisplatin treatment showed improved survival time compared to mice which consumed only deionized (DI) water. With the combination of PIA water and cisplatin administration, the survival time of LLC-1-implanted mice markedly increased to 8.01 ± 0.77 days compared to 6.38 ± 0.61 days of mice given cisplatin and normal drinking DI water. This survival time of 8.01 ± 0.77 days compared to 4.62 ± 0.71 days of mice just given normal drinking water is statistically significant (p = 0.009). Also, the gross observations and eosin staining results suggested that LLC-1-implanted mice drinking PIA water tended to exhibit less metastasis than mice given only DI water.
Yuan, Huaibo; Shi, Fangfang; Meng, Lina; Wang, Wenjuan
2018-02-01
This study investigated the intestinal microbial community distribution of Type 2 diabetic mice and discussed the effects of the sea buckthorn protein on the regulation of gut microbes. Date was collected for 12 cases of normal mice (NC group), 12 cases of Type 2 diabetic mice (DC group), and 12 cases of highly concentrated sea buckthorn seed protein dosed mice (SSPH group). This study analysed fecal samples, measured faecal pH value, and cultivated and determined intestinal bacteria count. This investigation also included the extraction of faecal samples for genomic DNA, PCR amplification of bacterial V3 16S rDNA products by denaturing gradient gel electrophoresis, DGGE map analysis of intestinal flora, determination of intestinal bacteria richness, Shannon-Wiener index and evenness index, and image similarity cluster analysis with UPGMA clustering. This study analysed and elucidated differences between the normal mice group, diabetic mice group, and sea buckthorn protein supplemented group, and the structures of respective intestinal flora. The mice supplemented with sea buckthorn protein exhibited an obvious drop in body weight and blood glucose levels. The Bifidobacterium, Lactobacillus, Bacteroides, and Clostridium coccoides populations recovered. The amplification of the 16S rDNA gene V3 region revealed that the species of intestinal microbes in the treatment group were adjusted to a certain extent. Analysis by ARDRA confirmed that sea buckthorn protein could increase type 2 diabetes in mice intestinal microorganism diversity (H) and simpson (E). Copyright © 2017 Elsevier B.V. All rights reserved.
Melendez, Roberto I.; McGinty, Jacqueline F.; Kalivas, Peter W.; Becker, Howard C.
2014-01-01
Neuroadaptations that participate in the ontogeny of alcohol dependence are likely a result of altered gene expression in various brain regions. The present study investigated brain region-specific changes in the pattern and magnitude of gene expression immediately following chronic intermittent ethanol (CIE) exposure and 8 hours following final ethanol exposure [i.e. early withdrawal (EWD)]. High-density oligonucleotide microarrays (Affymetrix 430A 2.0, Affymetrix, Santa Clara, CA, USA) and bioinformatics analysis were used to characterize gene expression and function in the prefrontal cortex (PFC), hippocampus (HPC) and nucleus accumbens (NAc) of C57BL/6J mice (Jackson Laboratories, Bar Harbor, ME, USA). Gene expression levels were determined using gene chip robust multi-array average followed by statistical analysis of microarrays and validated by quantitative real-time reverse transcription polymerase chain reaction and Western blot analysis. Results indicated that immediately following CIE exposure, changes in gene expression were strikingly greater in the PFC (284 genes) compared with the HPC (16 genes) and NAc (32 genes). Bioinformatics analysis revealed that most of the transcriptionally responsive genes in the PFC were involved in Ras/MAPK signaling, notch signaling or ubiquitination. In contrast, during EWD, changes in gene expression were greatest in the HPC (139 genes) compared with the PFC (four genes) and NAc (eight genes). The most transcriptionally responsive genes in the HPC were involved in mRNA processing or actin dynamics. Of the few genes detected in the NAc, the most representatives were involved in circadian rhythms. Overall, these findings indicate that brain region-specific and time-dependent neuroadaptive alterations in gene expression play an integral role in the development of alcohol dependence and withdrawal. PMID:21812870
Peroni, Cibele N.; Hayashida, Cesar Y.; Nascimento, Nancy; Longuini, Viviane C.; Toledo, Rodrigo A.; Bartolini, Paolo; Bowers, Cyril Y.; Toledo, Sergio P.A.
2012-01-01
OBJECTIVE: To investigate a possible direct, growth hormone-releasing, hormone-independent action of a growth hormone secretagogue, GHRP-2, in pituitary somatotroph cells in the presence of inactive growth hormone-releasing hormone receptors. MATERIALS AND METHODS: The responses of serum growth hormone to acutely injected growth hormone-releasing P-2 in lit/lit mice, which represent a model of GH deficiency arising from mutated growth hormone-releasing hormone-receptors, were compared to those observed in the heterozygous (lit/+) littermates and wild-type (+/+) C57BL/6J mice. RESULTS: After the administration of 10 mcg of growth hormone-releasing P-2 to lit/lit mice, a growth hormone release of 9.3±1.5 ng/ml was observed compared with 1.04±1.15 ng/ml in controls (p<0.001). In comparison, an intermediate growth hormone release of 34.5±9.7 ng/ml and a higher growth hormone release of 163±46 ng/ml were induced in the lit/+ mice and wild-type mice, respectively. Thus, GHRP-2 stimulated growth hormone in the lit/lit mice, and the release of growth hormone in vivo may be only partially dependent on growth hormone-releasing hormone. Additionally, the plasma leptin and ghrelin levels were evaluated in the lit/lit mice under basal and stimulated conditions. CONCLUSIONS: Here, we have demonstrated that lit/lit mice, which harbor a germline mutation in the Growth hormone-releasing hormone gene, maintain a limited but statistically significant growth hormone elevation after exogenous stimulation with GHRP-2. The present data probably reflect a direct, growth hormone-independent effect on Growth hormone S (ghrelin) stimulation in the remaining pituitary somatotrophs of little mice that is mediated by growth hormone S-R 1a. PMID:22473409
Stimulus control by 5-methoxy-N,N-dimethyltryptamine in wild-type and CYP2D6-humanized mice.
Winter, J C; Amorosi, D J; Rice, Kenner C; Cheng, Kejun; Yu, Ai-Ming
2011-09-01
In previous studies we have observed that, in comparison with wild type mice, Tg-CYP2D6 mice have increased serum levels of bufotenine [5-hydroxy-N,N-dimethyltryptamine] following the administration of 5-MeO-DMT. Furthermore, following the injection of 5-MeO-DMT, harmaline was observed to increase serum levels of bufotenine and 5-MeO-DMT in both wild-type and Tg-CYP2D6 mice. In the present investigation, 5-MeO-DMT-induced stimulus control was established in wild-type and Tg-CYP2D6 mice. The two groups did not differ in their rate of acquisition of stimulus control. When tested with bufotenine, no 5-MeO-DMT-appropriate responding was observed. In contrast, the more lipid soluble analog of bufotenine, acetylbufotenine, was followed by an intermediate level of responding. The combination of harmaline with 5-MeO-DMT yielded a statistically significant increase in 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice; a comparable increase occurred in wild-type mice. In addition, it was noted that harmaline alone was followed by a significant degree of 5-MeO-DMT-appropriate responding in Tg-CYP2D6 mice. It is concluded that wild-type and Tg-CYPD2D6 mice do not differ in terms of acquisition of stimulus control by 5-MeO-DMT or in their response to bufotenine and acetylbufotenine. In both groups of mice, harmaline was found to enhance the stimulus effects of 5-MeO-DMT. Copyright © 2011 Elsevier Inc. All rights reserved.
Takeyoshi, Masahiro; Sawaki, Masakuni; Yamasaki, Kanji; Kimber, Ian
2003-09-30
The murine local lymph node assay (LLNA) is used for the identification of chemicals that have the potential to cause skin sensitization. However, it requires specific facility and handling procedures to accommodate a radioisotopic (RI) endpoint. We have developed non-radioisotopic (non-RI) endpoint of LLNA based on BrdU incorporation to avoid a use of RI. Although this alternative method appears viable in principle, it is somewhat less sensitive than the standard assay. In this study, we report investigations to determine the use of statistical analysis to improve the sensitivity of a non-RI LLNA procedure with alpha-hexylcinnamic aldehyde (HCA) in two separate experiments. Consequently, the alternative non-RI method required HCA concentrations of greater than 25% to elicit a positive response based on the criterion for classification as a skin sensitizer in the standard LLNA. Nevertheless, dose responses to HCA in the alternative method were consistent in both experiments and we examined whether the use of an endpoint based upon the statistical significance of induced changes in LNC turnover, rather than an SI of 3 or greater, might provide for additional sensitivity. The results reported here demonstrate that with HCA at least significant responses were, in each of two experiments, recorded following exposure of mice to 25% of HCA. These data suggest that this approach may be more satisfactory-at least when BrdU incorporation is measured. However, this modification of the LLNA is rather less sensitive than the standard method if employing statistical endpoint. Taken together the data reported here suggest that a modified LLNA in which BrdU is used in place of radioisotope incorporation shows some promise, but that in its present form, even with the use of a statistical endpoint, lacks some of the sensitivity of the standard method. The challenge is to develop strategies for further refinement of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kasprzak, Kazimierz S.; Diwan, Bhalchandra A.; Kaczmarek, Monika Z.
2011-11-15
The aim of this study was to test a hypothesis that ascorbate depletion could enhance carcinogenicity and acute toxicity of nickel. Homozygous L-gulono- < gamma > -lactone oxidase gene knock-out mice (Gulo-/- mice) unable to produce ascorbate and wild-type C57BL mice (WT mice) were injected intramuscularly with carcinogenic nickel subsulfide (Ni{sub 3}S{sub 2}), and observed for the development of injection site tumors for 57 weeks. Small pieces of one of the induced tumors were transplanted subcutaneously into separate groups of Gulo-/- and WT mice and the growth of these tumors was measured for up to 3 months. The two strainsmore » of mice differed significantly with regard to (1) Ni{sub 3}S{sub 2} carcinogenesis: Gulo-/- mice were 40% more susceptible than WT mice; and (2) transplanted tumors development: Gulo-/- mice were more receptive to tumor growth than WT mice, but only in terms of a much shorter tumor latency; later in the exponential phase of growth, the growth rates were the same. And, with adequate ascorbate supplementation, the two strains were equally susceptible to acute toxicity of Ni{sub 3}S{sub 2}. Statistically significant effects of dietary ascorbate dosing levels were the following: (1) reduction in ascorbate supplementation increased acute toxicity of Ni{sub 3}S{sub 2} in Gulo-/- mice; (2) ascorbate supplementation extended the latency of transplanted tumors in WT mice. In conclusion, the lack of endogenous ascorbate synthesis makes Gulo-/- mice more susceptible to Ni{sub 3}S{sub 2} carcinogenesis. Dietary ascorbate tends to attenuate acute toxicity of Ni{sub 3}S{sub 2} and to extend the latency of transplanted tumors. The latter effects may be of practical importance to humans and thus deserve further studies. -- Highlights: Black-Right-Pointing-Pointer Ascorbate depletion enhances carcinogenicity and acute toxicity of nickel. Black-Right-Pointing-Pointer Gulo-/- mice unable to synthesize ascorbate were used in this study. Black-Right-Pointing-Pointer The reduction in ascorbate levels in Gulo-/- mice increased acute toxicity induced by Ni{sub 3}S{sub 2}. Black-Right-Pointing-Pointer Gulo-/- mice were found to be 40% more susceptible than WT mice to nickel-induced carcinogenesis.« less
Bugelski, Peter J; Martin, Pauline L
2012-01-01
Monoclonal antibodies (mAbs) and fusion proteins directed towards cell surface targets make an important contribution to the treatment of disease. The purpose of this review was to correlate the clinical and preclinical data on the 15 currently approved mAbs and fusion proteins targeted to the cell surface. The principal sources used to gather data were: the peer reviewed Literature; European Medicines Agency ‘Scientific Discussions’; and the US Food and Drug Administration ‘Pharmacology/Toxicology Reviews’ and package inserts (United States Prescribing Information). Data on the 15 approved biopharmaceuticals were included: abatacept; abciximab; alefacept; alemtuzumab; basiliximab; cetuximab; daclizumab; efalizumab; ipilimumab; muromonab; natalizumab; panitumumab; rituximab; tocilizumab; and trastuzumab. For statistical analysis of concordance, data from these 15 were combined with data on the approved mAbs and fusion proteins directed towards soluble targets. Good concordance with human pharmacodynamics was found for mice receiving surrogates or non-human primates (NHPs) receiving the human pharmaceutical. In contrast, there was poor concordance for human pharmacodynamics in genetically deficient mice and for human adverse effects in all three test systems. No evidence that NHPs have superior predictive value was found. PMID:22168282
Oxaliplatin but Not Irinotecan Impairs Posthepatectomy Liver Regeneration in a Murine Model
Soriano, Perry A.; Liu, Nian; Castillo, Erick; Foster, Brock; Artinyan, Avo; Kim, Joseph; Huang, Wendong; Wagman, Lawrence D.
2011-01-01
Introduction. We examined the murine hepatectomy model of liver regeneration (LR) in the setting of neoadjuvant chemotherapy. Methods. C57BL/6 mice were randomized to receive neoadjuvant intraperitoneal (IP) injections of a control, oxaliplatin (15 mg/kg), or irinotecan (100 mg/Kg or 250 mg/Kg) solution. Hepatectomy (70%) was performed 14 days after the final IP treatment. Animals were sacrificed at postoperative day (D) 0, 1, 2, 3, and 7. Liver remnants and serum were collected for analysis. T-tests for independent samples were used for statistical comparisons. Results. For oxaliplatin, percent LR did not differ at D1 or D2 but was significantly less at D3 (89.0% versus 70.0%, P = 0.048) with no difference on D7 (P = 0.21). Irinotecan-treated mice at both dose levels (100 mg/Kg and 250 mg/Kg) showed no significant differences in LR. BrdU incorporation was significantly decreased in oxaliplatin-treated animals (D1,2,3). Conclusions. Neoadjuvant oxaliplatin but not irinotecan impairs early LR in a posthepatectomy murine model which correlates with decreased DNA synthesis. PMID:22164336
Chatel, Benjamin; Messonnier, Laurent A; Bendahan, David
2017-06-01
While sickle cell disease (SCD) is characterized by frequent vaso-occlusive crisis (VOC), no direct observation of such an event in skeletal muscle has been performed in vivo. The present study reported exacerbated in vivo metabolic changes suggestive of a spontaneous muscular VOC in exercising muscle of a sickle cell mouse. Using magnetic resonance spectroscopy of phosphorus 31, phosphocreatine and inorganic phosphate concentrations and intramuscular pH were measured throughout two standardized protocols of rest - exercise - recovery at two different intensities in ten SCD mice. Among these mice, one single mouse presented divergent responses. A statistical analysis (based on confidence intervals) revealed that this single mouse presented slower phosphocreatine resynthesis and inorganic phosphate disappearance during the post-stimulation recovery of one of the protocols, what could suggest an ischemia. This study described, for the first time in a sickle cell mouse in vivo, exacerbated metabolic changes triggered by an exercise session that would be suggestive of a live observation of a muscular VOC. However, no evidence of a direct cause-effect relationship between exercise and VOC has been put forth. Copyright © 2017 Elsevier Inc. All rights reserved.
Linkov, Gary; Branski, Ryan C.; Amin, Milan; Chernichenko, Natalya; Chen, Chun-Hao; Alon, Gad; Langmore, Susan; Wong, Richard J.; Kraus, Dennis H.
2013-01-01
Background Dysphagia is a potential consequence of treatment for head and neck cancer. Neuromuscular electrical stimulation (NMES) has evolved as a treatment option, with the goal of improved swallow function in patients with chronic dysphagia. However, the effects of NMES on tumorigenicity are unknown and often confound the initiation of this therapy, potentially limiting its efficacy in treating patients with head and neck cancer. Methods Squamous cell carcinoma was grown in the flank of athymic, nude mice. Mice were randomized into treatment and control groups; the experimental group received daily NMES directly to the flank for 8 days. Results Tumor volumes, recorded on days 0, 3, 7, and 10, demonstrated no significant differences between groups on each day of measurement. Immunohistochemical analysis of apoptosis, proliferation, and vascularization also failed to demonstrate statistically significant differences between treated and untreated groups. Conclusions NMES does not promote the growth of underlying tumor in our model. These data may provide preliminary evidence that applying electrical stimulation over the muscles of the anterior neck does not increase the risk of tumorigenicity. Early initiation of NMES in this challenging population may be feasible from an oncologic standpoint. PMID:22083666
Protective effect of rutin on cognitive impairment caused by phenytoin
Dubey, Shagun; Ganeshpurkar, Aditya; Bansal, Divya; Dubey, Nazneen
2015-01-01
Objective: To study the effect of the co-administration of phenytoin (PHT) and rutin in comparison with PHT and piracetam (PIM) on seizure control, cognitive, and motor functions in mice. Materials and Methods: Increasing current electroshock seizure (ICES) test was used to evaluate the effect of the co-administration of PHT and PIM on convulsions. Cognitive functions in mice were assessed by a spontaneous alternation in behavior on a plus maze while motor functions were screened using rolling roller apparatus and by counting the number of arms entries on a plus maze. Brain acetyl-cholinesterase (AChE) activity was also estimated. Statistical Analysis: The expression of data was done as mean ± standard error of the mean. The normally distributed data were subjected to one-way ANOVA followed by Dunnett's test. P < 0.05 was considered significant. Results: The study showed that rutin when co-administered with PHT, significantly reversed PHT-induced reduction in spontaneous alternation without altering the efficacy of PHT against ICES, in both acute and chronic studies. Further, it also reversed PHT-induced increase in AChE activity. Conclusion: Rutin alleviated the PHT-induced cognitive impairment without compromising its antiepileptic efficacy. PMID:26729954
Dansky, Hayes M; Shu, Pei; Donavan, M; Montagno, Jill; Nagle, Deborah L; Smutko, John S; Roy, Natalie; Whiteing, S; Barrios, Judith; McBride, T J; Smith, Jonathan D; Duyk, Geoffrey; Breslow, Jan L; Moore, Karen J
2002-01-01
Therapeutic intervention for atherosclerosis has predominantly concentrated on regulating cholesterol levels; however, these therapeutics are not efficacious for all patients, suggesting that other factors are involved. This study was initiated to identify mechanisms that regulate atherosclerosis predisposition in mice other than cholesterol level regulation. To do so we performed quantitative trait locus analysis using two inbred strains that each carry the atherosclerosis phenotype-sensitizing Apoe deficiency and that have been shown to have widely disparate predilection to atherosclerotic lesion formation. One highly significant locus on chromosome 10 (LOD = 7.8) accounted for 19% of the variance in lesion area independent of cholesterol. Two additional suggestive loci were identified on chromosomes 14 (LOD = 3.2) and 19 (LOD = 3.2), each accounting for 7-8% of the lesion variance. In all, five statistically significant and suggestive loci affecting lesion size but not lipoprotein levels were identified. Many of these were recapitulated in an independent confirmatory cross. In summary, two independently performed crosses between C57BL/6 and FVB/N Apoe-deficient mice have revealed several previously unreported atherosclerosis susceptibility loci that are distinct from loci linked to lipoprotein levels. PMID:11973313
Feldman, Lisa A.; Fabre, Marie-Sophie; Grasso, Carole; Reid, Dana; Broaddus, William C.; Lanza, Gregory M.; Spiess, Bruce D.; Garbow, Joel R.; McConnell, Melanie J.
2017-01-01
Background Tumour hypoxia limits the effectiveness of radiation therapy. Delivering normobaric or hyperbaric oxygen therapy elevates pO2 in both tumour and normal brain tissue. However, pO2 levels return to baseline within 15 minutes of stopping therapy. Aim To investigate the effect of perfluorocarbon (PFC) emulsions on hypoxia in subcutaneous and intracranial mouse gliomas and their radiosensitising effect in orthotopic gliomas in mice breathing carbogen (95%O2 and 5%CO2). Results PFC emulsions completely abrogated hypoxia in both subcutaneous and intracranial GL261 models and conferred a significant survival advantage orthotopically (Mantel Cox: p = 0.048) in carbogen breathing mice injected intravenously (IV) with PFC emulsions before radiation versus mice receiving radiation alone. Carbogen alone decreased hypoxia levels substantially and conferred a smaller but not statistically significant survival advantage over and above radiation alone. Conclusion IV injections of PFC emulsions followed by 1h carbogen breathing, radiosensitises GL261 intracranial tumors. PMID:28873460
Clonal Structure of Carcinogen-induced Intestinal Tumors in Mice
Thliveris, Andrew T.; Clipson, Linda; White, Alanna; Waggoner, Jesse; Plesh, Lauren; Skinner, Bridget L.; Zahm, Christopher D.; Sullivan, Ruth; Dove, William F.; Newton, Michael A.; Halberg, Richard B.
2011-01-01
Previous studies have demonstrated that intestinal tumors from ApcMin/+ (Min) mice and Familial adenomatous polyposis (FAP) patients are often polyclonal. We sought to determine whether polyclonality is unique to tumors arising from hereditary predispositions or, instead, is a common feature of intestinal tumorigenesis in other pathways to tumorigenesis. Ethylnitrosourea-induced intestinal tumors from mice wildtype at the Apc locus and chimeric for the Rosa26 lineage marker were analyzed. Many were overtly polyclonal, being composed of a mixture of Rosa26+ and Rosa26− neoplastic cells. Statistical analyses revealed that polyclonality could be explained by interactions between two initiated clones separated by a very short distance. The frequency of overtly polyclonal tumors and the range of interactions estimated in this model are similar to those observed when analyzing familial tumors from Min mice. Thus, polyclonality does not depend on the familial pathway to tumorigenesis. Interactions between two initiated clones might provide a selective advantage during the early stages of intestinal tumorigenesis. PMID:21636550
Wang, Yong; Yu, Xing; Zhao, Qun-zi; Zheng, Shu; Qing, Wen-jie; Miao, Chun-di; Sanjay, Jaiswal
2016-01-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis. PMID:27381728
Wang, Yong; Yu, Xing; Zhao, Qun-Zi; Zheng, Shu; Qing, Wen-Jie; Miao, Chun-di; Sanjay, Jaiswal
2016-07-01
We have investigated comprehensively the effects of thyroid function on gallstone formation in a mouse model. Gonadectomized gallstone-susceptible male C57BL/6 mice were randomly distributed into three groups each of which received an intervention to induce hyperthyroidism, hypothyroidism, or euthyroidism. After 5 weeks of feeding a lithogenic diet of 15% (w/w) butter fat, 1% (w/w) cholesterol, and 0.5% (w/w) cholic acid, mice were killed for further experiments. The incidence of cholesterol monohydrate crystal formation was 100% in mice with hyperthyroidism, 83% in hypothyroidism, and 33% in euthyroidism, the differences being statistically significant. Among the hepatic lithogenic genes, Trβ was found to be up-regulated and Rxr down-regulated in the mice with hypothyroidism. In contrast, Lxrα, Rxr, and Cyp7α1 were up-regulated and Fxr down-regulated in the mice with hyperthyroidism. In conclusion, thyroid dysfunction, either hyperthyroidism or hypothyroidism, promotes the formation of cholesterol gallstones in C57BL/6 mice. Gene expression differences suggest that thyroid hormone disturbance leads to gallstone formation in different ways. Hyperthyroidism induces cholesterol gallstone formation by regulating expression of the hepatic nuclear receptor genes such as Lxrα and Rxr, which are significant in cholesterol metabolism pathways. However, hypothyroidism induces cholesterol gallstone formation by promoting cholesterol biosynthesis.
Spencer, Pamela J; Crissman, James W; Stott, William T; Corley, Richard A; Cieszlak, Frank S; Schumann, Alan M; Hardisty, Jerry F
2002-01-01
A series of inhalation studies with propylene glycol monomethyl ether (PGME) vapor were undertaken to characterize its subchronic toxicity in mice and chronic toxicity/oncogenicity in rats and mice. Groups of male and female Fischer 344 rats and B6C3F1 mice were exposed to 0, 300, 1,000, or 3,000 ppm vapor from 1 week to 2 years. Primary treatment-related effects included: initial sedation of animals exposed to 3,000 ppm and its subsequent resolution correlating with induction of hepatic mixed function oxidase activity and S-phase DNA synthesis; elevated mortality in high-exposure male rats and mice (chronic study); elevated deposition of alpha2u-globulin (alpha2U-G) and associated nephropathy and S-phase DNA synthesis in male rat kidneys; accelerated atrophy of the adrenal gland X-zone in female mice (subchronic study only); and increased occurrence and/or severity of eosinophilic foci of altered hepatocytes in male rats. No toxicologically relevant statistically significant increases in neoplasia occurred in either species. A numerical increase in the incidence of kidney adenomas occurred in intermediate-exposure male rats; however, the association with alpha2U-G nephropathy, a male rat specific effect, indicated a lack of relevance for human risk assessment.
Organ weight changes in mice after long-term inhalation exposure to manganese oxides nanoparticles
NASA Astrophysics Data System (ADS)
Zeman, T.; Buchtová, M.; Dočekal, B.; Míšek, I.; Navrátil, J.; Mikuška, P.; Šerý, O.; Večeřa, Z.
2015-05-01
Recently, it has been proven that manganese from inhaled particles of manganese compounds can accumulate in the internal organs of laboratory animals. Nevertheless, there were only a few researches dealing with changes in body morphology induced by inhalation of these particles, even though results of some studies indicate existence of such changes. The aim of our research was to assess the effect of inhaled manganese oxides nanoparticles on weight of internal organs. For this purpose a long-term inhalation experiment on laboratory mice was performed, during which the mice were exposed to MnO.Mn2O3 nanoparticles in concentration 2 × 106 particles/cm3 for 17 weeks, 24 hours a day, 7 days a week. Manganese oxides nanoparticles were synthesized continuously via aerosol route in a hot wall tube flow reactor using thermal decomposition of metal organic precursor manganese(II)acetylacetonate in the flow tube reactor at temperature 750 °C in the presence of 30 vol% of oxygen. It was proven that inhaled nanoparticles can influence the weight of internal organs of mice. Moreover, it was discovered that the resulting change in weight of selected organs is disproportional. The mice from the experimental group had statistically significantly lighter kidneys, liver and spleen and heavier pancreas compared to the mice from the control group.
Ishikawa, Akira
2017-11-27
Large numbers of quantitative trait loci (QTL) affecting complex diseases and other quantitative traits have been reported in humans and model animals. However, the genetic architecture of these traits remains elusive due to the difficulty in identifying causal quantitative trait genes (QTGs) for common QTL with relatively small phenotypic effects. A traditional strategy based on techniques such as positional cloning does not always enable identification of a single candidate gene for a QTL of interest because it is difficult to narrow down a target genomic interval of the QTL to a very small interval harboring only one gene. A combination of gene expression analysis and statistical causal analysis can greatly reduce the number of candidate genes. This integrated approach provides causal evidence that one of the candidate genes is a putative QTG for the QTL. Using this approach, I have recently succeeded in identifying a single putative QTG for resistance to obesity in mice. Here, I outline the integration approach and discuss its usefulness using my studies as an example.
Most, D; Efron, D T; Shi, H P; Tantry, U S; Barbul, A
2001-10-01
Inducible nitric oxide synthase (iNOS) and its product, nitric oxide, have been shown to play important roles in wound biology. The present study was performed to investigate the role of iNOS in modulating the cytokine cascade during the complex process of skin graft wound healing.Fifteen iNOS-knockout mice and 15 wild-type C57BL/6J mice were subjected to autogenous 1-cm2 intrascapular full-thickness skin grafts. Three animals in each group were killed on postoperative days 3, 5, 7, 10, and 14. Specimens were then analyzed using nonisotopic in situ hybridization versus mRNA of tumor growth factor-beta1, vascular endothelial growth factor, iNOS, endothelial nitric oxide synthase (eNOS), tumor necrosis factor-alpha, and basic fibroblast growth factor, as well as positive and negative control probes. Positive cells in both grafts and wound beds were counted using a Leica microgrid. Scar thickness was measured with a Leica micrometer. Data were analyzed using the unpaired Student's t test. Expression of iNOS was 2- to 4-fold higher in knockout mice than in wild-type mice on postoperative days 5, 7, and 14. Expression of eNOS was 2- to 2.5-fold higher in knockout mice than in wild-type mice on postoperative days 5 and 7. Tumor necrosis factor-alpha expression was 2- to 7-fold higher in knockout mice than in wild-type mice on all postoperative days. In contrast, expression levels of angiogenic/fibrogenic cytokines (vascular endothelial growth factor, basis fibroblast growth factor, and tumor growth factor-beta1) were 2.5- to 4-fold higher in wild-type mice than in knockout mice. Scars were 1.5- to 2.5-fold thicker in knockout mice than in wild-type mice at all time points. All of the above results represent statistically significant differences (p < 0.05). Significantly different patterns of cytokine expression were seen in knockout and wild-type mice. Although the scar layer was thicker in knockout mice, it showed much greater infiltration with inflammatory cells. These data further delineate the modulatory effect of iNOS and nitric oxide in healing skin grafts.
Lee, Jue-Hee; Lee, Ju Young; Park, Ji Hye; Jung, Hye Sil; Kim, Ju Sun; Kang, Sam Sik; Kim, Yeong Shik; Han, Yongmoon
2007-05-10
In the present study, we investigated immunomodulatory effect of daucosterol, a beta-sitosterol glycoside, against disseminated candidiasis caused by Candida albicans. Results showed that direct interaction of daucosterol with C. albicans yeast cells resulted in no growth-inhibition by in vitro susceptibility analysis. In contrast, mice given daucosterol (DS) intraperitoneally before intravenous challenge with live C. albicans yeast cells survived longer than DS-untreated control mice against disseminated candidiasis (P<0.05). By assessment of the fungal CFU in kidneys, DS-treated mice before the challenge developed about 81% fewer kidney CFU than untreated controls. This protection was removable by pretreatment of mice with anti-CD4+ antibody before the DS-treatment and challenge with the yeast. However, the protection was transferable by the CD4+ T cells from DS-treated mice not infected with the yeast. ELISA analysis revealed there were predominant production of IFNgamma and IL-2 cytokines as compared to IL-4, and IL-10 productions in DS-treated mice. By treatment of DS-given mice with anti-mouse IFNgamma, the protection was also abolished. Our studies show that DS protects mice against disseminated candidiasis by the CD4+ Th1 immune response.
Dannenberger, Dirk; Nuernberg, Gerd; Renne, Ulla; Nuernberg, Karin; Langhammer, Martina; Huber, Korinna; Breier, Bernhard
2013-05-01
The aim of the study is to determine the response of muscle lipid peroxidation and the fatty-acid profile of three groups of mice-high body weight (DU6) obesity-prone mice, high treadmill performance (DUhTP) lean mice, and unselected control mice (DUK) fed high-fat diets (HFDs) rich in ω-3 or ω-6 polyunsaturated fatty acids (PUFA). The isocaloric HFDs were enriched with either ω-3 PUFA (27% fish oil, ω-3 HFD) or ω-6 PUFA (27% sunflower oil, ω-6 HFD), and the control group was fed standard chow (7.2% fat). Statistical calculations were done with procedure GLM of SAS. As expected, the ω-3 and ω-6 PUFA-rich HFDs showed significant effects on fatty-acid concentrations of skeletal muscle in all three lines of mice compared with the standard chow. The investigations of muscle lipid peroxidation revealed that the ω-3 PUFA-rich HFD caused the highest lipid peroxidation values in muscle of lean DUhTP mice and unselected control DUK mice. However, lower lipid peroxidation levels were observed in the obesity-prone DU6 mice. In contrast, the ω-6 PUFA-rich HFD did not influence lipid peroxidation in muscle of any of the different lines of mice. The present study suggests that a higher overall antioxidant capacity in the muscle tissue of obesity-prone DU6 mice may lead to lower levels of reactive oxygen species formation by ω-3 PUFA-rich HFDs in comparison with lean DUhTP mice. These studies raise the possibility that obesity per se may be protective against oxidative damage when high ω-3 PUFA diets are used. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Lam, Chiu-Wing; James, John T.; Latch, Judith N.; Hamilton, Raymond F Jr; Holian, Andrij
2002-01-01
Volcanic ashes from Arizona and Hawaii, with chemical and mineral properties similar to those of lunar and Martian soils, respectively, are used by the National Aeronautics and Space Administration (NASA) to simulate lunar and Martian environments for instrument tests. NASA needs toxicity data on these volcanic soils to assess health risks from potential exposures of workers in facilities where these soil simulants are used. In this study we investigated the acute effects of lunar soil simulant (LSS) and Martian soil simulant (MSS), as a complement to a histopathological study assessing their subchronic effects (Lam et al., 2002). Fine dust of LSS, MSS, TiO(2), or quartz suspended in saline was intratracheally instilled into C57Bl/6J mice (4/group) in single doses of 0.1 mg/mouse or 1 mg/mouse. The mice were euthanized 4 or 24 h after the dust treatment, and bronchoalveolar lavage fluid (BALF) was obtained. Statistically significant lower cell viability and higher total protein concentration in the BALF were seen only in mice treated with the high dose of quartz for 4 h and with the high dose of MSS or quartz for 24 h, compared to mice treated only with saline. A significant increase in the percentage of neutrophils was not observed with any dust-treated group at 4 h after the instillation, but was observed after 24 h in all the dust-treated groups. This observation indicates that these dusts were not acutely toxic and the effects were gradual; it took some time for neutrophils to be recruited into and accumulate significantly in the lung. A statistically significant increase in apoptosis of lavaged macrophages from mice 4 h after treatment was found only in the high-dose silica group. The overall results of this study on the acute effects of these dusts in the lung indicate that LSS is slightly more toxic than TiO(2), and that MSS is comparable to quartz. These results were consistent with the subchronic histopathological findings in that the order of severity of lung toxicity was TiO(2) < LSS < MSS < quartz.
Lau, Annette; Belanger, Christine Lea; Winn, Louise M
2009-05-31
Benzene, a ubiquitous pollutant, has been identified as a human leukemogen and early exposure to environmental carcinogens such as benzene has been linked to childhood leukemia. It is known that genotoxic agents can increase the frequency of DNA double-strand breaks (DSBs), which can initiate DNA recombinational repair mechanisms. In this study we investigated the induction of micronuclei, the formation of gamma-H2A.X as a marker of DNA DSBs, and the induction of somatic DNA recombination events in hematopoietic tissue from pKZ1 transgenic mice exposed acutely or in utero to benzene. Adult male C57Bl/6N mice were treated with a single i.p. injection of benzene, and timed-pregnant females pKZ1 were treated with daily i.p. injections of 200 mg/kg or 400 mg/kg benzene through gestational days 7-15. Acute exposure to 400 mg/kg benzene resulted in a statistically significant increase in the percentage of micronucleated cells in adult male bone marrow cells and in fetal liver and post-natal day 9 bone marrow cells of mice exposed in utero. Immunoblotting techniques did not detect benzene-induced increases in the formation of gamma-H2A.X in bone marrow cells of adult male mice and in maternal bone marrow, fetal liver, and post-natal bone marrow cells after specific time-point exposures. Finally, no recombination events were detected in adult pKZ1 mouse tissue; however, in post-natal day 9 pups in utero exposure to 400 mg/kg of benzene caused a trend towards increasing recombination frequency although this did not reach statistical significance. These results demonstrate that in utero exposure increases the frequency of micronuclei and DNA recombination events in hematopoietic tissue of fetal and post-natal mice and may be an initiating event in the etiology of childhood leukemias. Further investigations into different types of DNA damage and repair pathways are warranted to fully elucidate the role of genotoxic mechanisms in the etiology of benzene-induced childhood leukemias.
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming,and social interactions at similar or greater levels of occurrence. Overallactivity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within thefirst few days of flight following a common developmental sequence, comprising theprimary dark cycle activity of FLT mice. Circling participation by individual micepersisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive,organized group behavior unique to the weightless space environment.
Ola, M. Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B.
2013-01-01
Summary The type 1 sigma receptor (σR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for σR1 have been shown to afford neuroprotective against overstimulation of the NMDA receptor. σR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express σ1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. σR1 was analyzed in cells using semiquantitative RT-PCR and in tissues σR1 by semiquantitative RT-PCR, in situ hybridization, western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that σR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding σR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of σR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of σR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of σR1 showed a similar pattern of σR1 protein expression between control and diabetic retina. These studies demonstrate that σR1 is expressed under hyperglycemic conditions in vitro and in vivo. PMID:12425939
Ola, M Shamsul; Moore, Pamela; Maddox, Dennis; El-Sherbeny, Amira; Huang, Wei; Roon, Penny; Agarwal, Neeraj; Ganapathy, Vadivel; Smith, Sylvia B
2002-11-15
The type 1 sigma receptor (sigmaR1) is a nonopiate and nonphencyclidine binding site that has numerous pharmacological and physiological functions. In some studies, agonists for sigmaR1 have been shown to afford neuroprotection against overstimulation of the NMDA receptor. sigmaR1 expression has been demonstrated recently in retinal ganglion cells (RGC). RGCs undergo apoptosis early in diabetic retinopathy via NMDA receptor overstimulation. In the present study we asked whether RGCs cultured under hyperglycemic conditions and RGCs of diabetic mice continue to express sigmaR1. RGCs were cultured 48 h in RPMI medium containing either 45 mM glucose or 11 mM glucose plus 34 mM mannitol (osmolar control). C57BL/6 mice were made diabetic using streptozotocin. The retina was dissected from normal and streptozotocin-induced diabetic mice 3, 6 and 12 weeks post-onset of diabetes. sigmaR1 was analyzed in cells using semiquantitative RT-PCR and in tissues by semiquantitative RT-PCR, in situ hybridization, Western blot analysis and immunolocalization. The RT-PCR analysis of cultured RGCs showed that sigmaR1 mRNA is expressed under hyperglycemic conditions at levels similar to control cells. Similarly, analysis of retinas of diabetic mice showed no difference in levels of mRNA encoding sigmaR1 compared to retinas of control mice. In situ hybridization analysis showed that expression patterns of sigmaR1 mRNA in the ganglion cell layer were similar between diabetic and control mice. Western blot analysis suggested that levels of sigmaR1 in retina were similar between diabetic and control retinas. Immunohistochemical analysis of sigmaR1 showed a similar pattern of sigmaR1 protein expression between control and diabetic retina. These studies demonstrate that sigmaR1 is expressed under hyperglycemic conditions in vitro and in vivo.
Inhibition of DNA methylation and reactivation of silenced genes by zebularine.
Cheng, Jonathan C; Matsen, Cindy B; Gonzales, Felicidad A; Ye, Wei; Greer, Sheldon; Marquez, Victor E; Jones, Peter A; Selker, Eric U
2003-03-05
Gene silencing by abnormal methylation of promoter regions of regulatory genes is commonly associated with cancer. Silenced tumor suppressor genes are obvious targets for reactivation by methylation inhibitors such as 5-azacytidine (5-Aza-CR) and 5-aza-2'-deoxycytidine (5-Aza-CdR). However, both compounds are chemically unstable and toxic and neither can be given orally. We characterized a new demethylating agent, zebularine [1-(beta-D-ribofuranosyl)-1,2-dihydropyrimidin-2-one], which is a chemically stable cytidine analog. We tested the ability of zebularine to reactivate a silenced Neurospora crassa gene using a hygromycin gene reactivation assay. We then analyzed the ability of zebularine to inhibit DNA methylation in C3H 10T1/2 Cl8 (10T1/2) mouse embryo cells as assayed by induction of a myogenic phenotype and in T24 human bladder carcinoma cells, using the methylation-sensitive single nucleotide primer extension (Ms-SNuPE) assay. We also evaluated the effects of zebularine (administered orally or intraperitoneally) on growth of EJ6 human bladder carcinoma cells grown in BALB/c nu/nu mice (five mice per group) and the in vivo reactivation of a methylated p16 gene in these cells. All statistical tests were two-sided. In N. crassa, zebularine inhibited DNA methylation and reactivated a gene previously silenced by methylation. Zebularine induced the myogenic phenotype in 10T1/2 cells, which is a phenomenon unique to DNA methylation inhibitors. Zebularine reactivated a silenced p16 gene and demethylated its promoter region in T24 bladder carcinoma cells in vitro and in tumors grown in mice. Zebularine was only slightly cytotoxic to T24 cells in vitro (1 mM zebularine for 48 hours decreased plating efficiency by 17% [95% confidence interval (CI) = 12.8% to 21.2%]) and to tumor-bearing mice (average maximal weight change in mice treated with 1000 mg/kg zebularine = 11% [95% CI = 4% to 19%]). Compared with those in control mice, tumor volumes were statistically significantly reduced in mice treated with high-dose zebularine administered by intraperitoneal injection (P<.001) or by oral gavage (P<.001). Zebularine is a stable DNA demethylating agent and the first drug in its class able to reactivate an epigenetically silenced gene by oral administration.
Wang, Liang; Shen, Tong; Zhou, Cheng-fan; Yu, Jun-feng; Zhu, Qi-xing
2009-04-01
To study the changes of nitric oxide (NO) in the BALB/c hairless mice skin after trichloroethylene (TCE) irritation and the protection of ginkgo biloba extract (GbE) and vitamin E (VE). 132 BALB/c hairless mice were randomly divided into blank control group, solvent group (olive oil), TCE groups (20%TCE, 40%TCE, 80%TCE and 100%TCE), GbE groups (0.1%GbE, 1%GbE and 10%GbE) and VE groups (5%VE, 10% VE and 20% VE), with 11 animals in each group, 5 for acute irritation test and 6 for the cumulative irritation test. The skin irritation was observed, and the levels of NO in the dorsal skin of BALB/C hairless mice were detected. The kit of NO was used to detect the levels of NO in the dorsal skin of BALB/c hairless mice. (1) The skin presented erythema and edema after TCE irritation both in acute irritation and cumulative irritation test and the skin inflammation showed time-dose effect relationship; the mice skin was protected in GbE or VE groups. (2) In the acute stimulation test, the levels of NO in 80%TCE group (69.895 +/- 9.605 micromol/mg pro) and 100%TCE group (77.273 +/- 9.290 micromol/mg pro) were significantly different compared with blank control group and solvent control group (P < 0.05 or P < 0.01). In the protection group, the NO level were reduced, with the statistically significant differences. (3) In acute irritation test, the levels of NO in 80%TCE group (60.362 +/- 9.817 micromol/mg pro) and 100%TCE group (68.027 +/- 9.354 micromol/mg pro) were significantly different compared with blank control group and solvent control group, (P < 0.05 or P < 0.01); In the protection group, 1% GbE, 10% GbE, 10% VE and 20%VE could reduce the levels of NO, with statistically significant differences. TCE can produce the irritation on the dorsal skin of BALB/c hairless mice and induce the significant increase of the NO levels. GbE and VE can protect the skin from TCE irritation damage.
Wang, Bin; Zhang, Sicong; Wang, Xiaoya; Yang, Shuo; Jiang, Qixing; Xu, Yanshun; Xia, Wenshui
2017-09-01
Transcriptome analysis was performed to investigate the alterations in gene expression after chitosan (CS) treatment on the liver of mice fed with high-fat diet (HFD). The results showed that the body weight, the liver weight and the epididymal fat mass of HFD mice, which were 62.98%, 46.51% and 239.37%, respectively, higher than those of control mice, could be significantly decreased by chitosan supplementation. Also, high-fat diet increased both plasma lipid and liver lipid as compared with the control mice. Chitosan supplementation decreased the plasma lipid and liver lipid, increased the lipoprotein lipase (LPL) and hepatic lipase (HL) activity, increased T-AOC and decreased MDA in the liver and the epididymis adipose as compared with the HFD mice. Transcriptome analysis indicated that increased Mups, Lcn2, Gstm3 and CYP2E1 expressions clearly indicated HFD induced lipid metabolism disorder and oxidative damage. Especially, chitosan treatment decreased the Mup17 and Lcn2 expressions by 64.32% and 82.43% respectively as compared with those of HFD mice. These results indicated that chitosan possess the ability to improve the impairment of lipid metabolism as strongly associated with increased Mups expressions and gene expressions related to oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, L C; Liu, C; Jiang, M R; Jiang, Y M; Wang, Q H; Lu, Z Y; Wang, S J; Yang, W L; Shao, Y X
2016-08-26
Development of the eyelid requires coordination of the cellular processes involved in proliferation, cell size alteration, migration, and cell death. C57BL/6J-corneal opacity (B6-Co) mice are mutant mice generated by the administration of N-ethyl-N-nitrosourea (100 mg/kg). They exhibit the eyelids open at birth phenotype, abnormal round cell shape from tightened F-actin bundles in leading edge keratinocytes at E16.5, and gradual corneal opacity with neovessels. The tip of the leading edge in B6-Co mice did not move forward, and demonstrated a sharp peak shape without obvious directionality. Analysis of the biological characteristics of B6-Co mice demonstrated that abnormal migration of keratinocytes could affect eyelid development, but proliferation and apoptosis in B6-Co mice had no effect. Mutant gene mapping and sequence analysis demonstrated that in B6-Co mice, adenosine was inserted into the untranslated regions, between 3030 and 3031, in the mRNA 3'-terminal of Fgf10. In addition, guanine 7112 was substituted by adenine in the Mtap1B mRNA, and an A2333T mutation was identified in Mtap1B. Quantitative real-time polymerase chain reaction analysis showed that expression of the Hbegf gene was significantly down-regulated in the eyelids of B6- Co mice at E16.5, compared to B6 mice. However, the expression of Rock1, Map3k1, and Jnk1 genes did not show any significant changes. Abnormal keratinocyte migration and down-regulated expression of the Hbegf gene might be associated with impaired eyelid development in B6-Co mice.
McConnell, Bradley K; Singh, Sonal; Fan, Qiying; Hernandez, Adriana; Portillo, Jesus P; Reiser, Peter J; Tikunova, Svetlana B
2015-01-01
The physiological consequences of aberrant Ca(2+) binding and exchange with cardiac myofilaments are not clearly understood. In order to examine the effect of decreasing Ca(2+) sensitivity of cTnC on cardiac function, we generated knock-in mice carrying a D73N mutation (not known to be associated with heart disease in human patients) in cTnC. The D73N mutation was engineered into the regulatory N-domain of cTnC in order to reduce Ca(2+) sensitivity of reconstituted thin filaments by increasing the rate of Ca(2+) dissociation. In addition, the D73N mutation drastically blunted the extent of Ca(2+) desensitization of reconstituted thin filaments induced by cTnI pseudo-phosphorylation. Compared to wild-type mice, heterozygous knock-in mice carrying the D73N mutation exhibited a substantially decreased Ca(2+) sensitivity of force development in skinned ventricular trabeculae. Kaplan-Meier survival analysis revealed that median survival time for knock-in mice was 12 weeks. Echocardiographic analysis revealed that knock-in mice exhibited increased left ventricular dimensions with thinner walls. Echocardiographic analysis also revealed that measures of systolic function, such as ejection fraction (EF) and fractional shortening (FS), were dramatically reduced in knock-in mice. In addition, knock-in mice displayed electrophysiological abnormalities, namely prolonged QRS and QT intervals. Furthermore, ventricular myocytes isolated from knock-in mice did not respond to β-adrenergic stimulation. Thus, knock-in mice developed pathological features similar to those observed in human patients with dilated cardiomyopathy (DCM). In conclusion, our results suggest that decreasing Ca(2+) sensitivity of the regulatory N-domain of cTnC is sufficient to trigger the development of DCM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muchir, Antoine, E-mail: a.muchir@institut-myologie.org; Department of Pathology and Cell Biology, College of Physicians and Surgeons, Columbia University, New York, NY; Wu, Wei
Highlights: • Both ACE and MEK1/2 inhibition are beneficial on cardiac function in Lmna cardiomyopathy. • MEK1/2 inhibitor has beneficial effects beyond ACE inhibition for Lmna cardiomyopathy. • These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor. - Abstract: Background: Mutations in the LMNA gene encoding A-type nuclear lamins can cause dilated cardiomyopathy with or without skeletal muscular dystrophy. Previous studies have shown abnormally increased extracellular signal-regulated kinase 1/2 activity in hearts of Lmna{sup H222P/H222P} mice, a small animal model. Inhibition of this abnormal signaling activity with a mitogen-activated protein kinase kinase 1/2 (MEK1/2) inhibitormore » has beneficial effects on heart function and survival in these mice. However, such treatment has not been examined relative to any standard of care intervention for dilated cardiomyopathy or heart failure. We therefore examined the effects of an angiotensin II converting enzyme (ACE) inhibitor on left ventricular function in Lmna{sup H222P/H222P} mice and assessed if adding a MEK1/2 inhibitor would provide added benefit. Methods: Male Lmna{sup H222P/H222P} mice were treated with the ACE inhibitor benazepril, the MEK1/2 inhibitor selumetinib or both. Transthoracic echocardiography was used to measure left ventricular diameters and fractional shortening was calculated. Results: Treatment of Lmna{sup H222P/H222P} mice with either benazepril or selumetinib started at 8 weeks of age, before the onset of detectable left ventricular dysfunction, lead to statistically significantly increased fractional shortening compared to placebo at 16 weeks of age. There was a trend towards a great value for fractional shortening in the selumetinib-treated mice. When treatment was started at 16 weeks of age, after the onset of left ventricular dysfunction, the addition of selumetinib treatment to benazepril lead to a statistically significant increase in left ventricular fractional shortening at 20 weeks of age. Conclusions: Both ACE inhibition and MEK1/2 inhibition have beneficial effects on left ventricular function in Lmna{sup H222P/H222P} mice and both drugs together have a synergistic benefit when initiated after the onset of left ventricular dysfunction. These results provide further preclinical rationale for a clinical trial of a MEK1/2 inhibitor in addition to standard of care in patients with dilated cardiomyopathy caused by LMNA mutations.« less
Hormone replacement therapy diminishes hearing in peri-menopausal mice.
Price, Katharine; Zhu, Xiaoxia; Guimaraes, Patricia F; Vasilyeva, Olga N; Frisina, Robert D
2009-06-01
We recently discovered that progestin in hormone replacement therapy (HRT) for post-menopausal women has detrimental effects on the ear and central auditory system [Guimaraes, P., Frisina, S.T., Mapes, F., Tadros, S.F., Frisina, D.R., Frisina, R.D., 2006. Progestin negatively affects hearing in aged women. Proc. Natl. Acad. Sci. - PNAS 103, 14246-14249]. To start determining the generality and neural bases of these human findings, the present study examined the effects of combination HRT (estrogen+progestin) and estrogen alone on hearing in peri-menopausal mice. Specifically, auditory brainstem responses (ABRs-sensitivity of the auditory system) and distortion-product otoacoustic emissions (DPOAEs-cochlear outer hair cell system) were employed. Middle age female CBA mice received either a time-release, subcutaneous implanted pellet of estrogen+progestin, estrogen alone, or placebo. Longitudinal comparisons of ABR threshold data obtained at 4 months of treatment revealed statistically significant declines in auditory sensitivity over time for the combined estrogen+progestin treatment group, with the estrogen only group revealing milder changes at 3, 6 and 32 kHz. DPOAE testing revealed statistically significant differences for the estrogen+progestin treatment group in the high and middle frequency ranges (15-29 and 30-45 kHz) after as early as 2 months of treatment (p<0.01 and p<0.001, respectively). Statistically significant changes were also seen at 4 months of treatment across all frequencies for the combined HRT group. These data suggest that estrogen+progestin HRT therapy of 4 months duration impairs outer hair cell functioning and overall auditory sensitivity. These findings indicate that estrogen+progestin HRT may actually accelerate age-related hearing loss, relative to estrogen monotherapy; findings that are consistent with the clinical hearing loss observed in aging women that have taken combination HRT.
Cui, Xuezhi; Weng, Ying-Qi; Frappé, Isabelle; Burgess, Alison; Girão da Cruz, M Teresa; Schachner, Melitta; Aubert, Isabelle
2011-01-01
Mutations in the L1 gene cause severe brain malformations and mental retardation. We investigated the potential roles of L1 in the regulation of choline acetyltransferase (ChAT) and in the development of septal cholinergic neurons, which are known to project to the hippocampus and play key roles in cognitive functions. Using stereological approaches, we detected significantly fewer ChAT-positive cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB) of 2-week-old L1-deficient mice compared to wild-type littermates (1644 ± 137 vs. 2051 ± 165, P = 0.038). ChAT protein levels in the septum were 53% lower in 2-week-old L1-deficient mice compared to wild-type littermates. ChAT activity in the septum was significantly reduced in L1-deficient mice compared to wild-type littermates at 1 (34%) and 2 (40%) weeks of age. In vitro, increasing doses of L1-Fc induced ChAT activity in septal neurons with a significant linear trend (*P = 0.0065). At 4 weeks of age in the septum and at all time points investigated in the caudate-putamen (CPu), the number of ChAT-positive neurons and the levels of ChAT activity were not statistically different between L1-deficient mice and wild-type littermates. The total number of cells positive for the neuronal nuclear antigen (NeuN) in the MS/VDB and CPu was not statistically different in L1-deficient mice compared to wild-type littermates, and comparable expression of the cell cycle marker Ki67 was observed. Our results indicate that L1 is required for the timely maturation of septal cholinergic neurons and that L1 promotes the expression and activity of ChAT in septal neurons. PMID:22399087
Choi, Jong-Il; Kim, Sang-Dae; Kim, Se-Hoon; Lim, Dong-Jun; Ha, Sung-Kon
2014-06-01
We investigated the expression of hippocampal heat shock protein 70 (HSP-70) infarction volume after different durations of experimental ischemic stroke in mice. Focal cerebral ischemia was induced in mice by occluding the middle cerebral artery with the modified intraluminal filament technique. Twenty-four hours after ischemia induction, both hippocampi were extracted for HSP-70 protein analyses. Slices from each hemisphere were stained with 2,3,5-triphenyltetrazolium chloride (2%), and infarction volumes were calculated. HSP-70 levels were evaluated using western blot and enzyme-linked immunosorbent assay (ELISA). HSP-70 subtype (hsp70.1, hspa1a, hspa1b) mRNA levels in the hippocampus were measured using reverse transcription-polymerase chain reaction (RT-PCR). Cerebral infarctions were found ipsilateral to the occlusion in 10 mice exposed to transient ischemia (5 each in the 30-min and 60-min occlusion groups), whereas no focal infarctions were noted in any of the sham mice. The average infarct volumes of the 2 ischemic groups were 22.28±7.31 mm(3) [30-min group±standard deviation (SD)] and 38.06±9.53 mm(3) (60-min group±SD). Western blot analyses and ELISA showed that HSP-70 in hippocampal tissues increased in the infarction groups than in the sham group. However, differences in HSP-70 levels between the 2 infarction groups were statistically insignificant. Moreover, RT-PCR results demonstrated no relationship between the mRNA expression of HSP-70 subtypes and occlusion time or infarction volume. Our results indicated no significant difference in HSP-70 expression between the 30- and 60-min occlusion groups despite the statistical difference in infarction volumes. Furthermore, HSP-70 subtype mRNA expression was independent of both occlusion duration and cerebral infarction volume.
Experimental re-evaluation of flunarizine as add-on antiepileptic therapy.
Thakur, Anamika; Sahai, A K; Thakur, J S
2011-04-01
Experimental studies have found several calcium channel blockers with anticonvulsant property. Flunarizine is one of the most potent calcium channel blockers, which has shown anticonvulsant effect against pentylenetetrazole (PTZ) and maximal electroshock (MES)-induced seizures. However, further experimental and clinical trials have shown varied results. We conducted a PTZ model experimental study to re-evaluate the potential of flunarizine for add-on therapy in the management of refractory epilepsy. Experiments were conducted in PTZ model involving Swiss strain mice. Doses producing seizures in 50% and 99% mice, i.e. CD(50) and CD(99) values of PTZ were obtained from the dose-response study. Animals received graded, single dose of sodium valproate (100-300 mg/kg), lamotrigine (3-12 mg/kg) and flunarizine (5-20 mg/kg), and then each group of mice was injected with CD(99) dose of PTZ (65mg/kg i.p.). Another group of mice received single ED(50) dose (dose producing seizure protection in 50% mice) of sodium valproate and flunarizine separately in left and right side of abdomen. Results were analysed by Kruskal-Wallis ANOVA on Ranks test. As compared to control, sodium valproate at 250 mg/kg and 300 mg/kg produced statistical significant seizure protection. At none of the pre-treatment dose levels of lamotrigine, the seizure score with PTZ differed significantly from that observed in the vehicle-treated group. Pre-treatment with flunarizine demonstrated dose-dependent decrease in the seizure score to PTZ administration. As compared to control group, flunarizine at 20 mg/kg produced statistical significant seizure protection. As combined use of sodium valproate and flunarizine has shown significant seizure protection in PTZ model, flunarizine has a potential for add-on therapy in refractory cases of partial seizures. It is therefore, we conclude that further experimental studies and multicenter clinical trials involving large sample size are needed to establish flunarizine as add-on therapy in refractory epilepsy.
Automated Video Analysis System Reveals Distinct Diurnal Behaviors in C57BL/6 and C3H/HeN Mice
Adamah-Biassi, E. B.; Stepien, I.; Hudson, R.L.; Dubocovich, M.L.
2013-01-01
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in activity-like behaviors (i.e. walk, hang, jump, come down) (ALB), exploration-like behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), ingestion-like behaviors (i.e. drink, eat) (ILB) and resting-like behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 hr magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. PMID:23337734
NASA Technical Reports Server (NTRS)
Kogan, B. I.; Antipov, Y. S.
1980-01-01
Inbred 1 month old males of C57B 1/6, CBA, CC57Br/Mw interlinear hybrid mice of the first generation and rats of the August and Wistar lines were subjected to conditions of hypo-, normo- and hyperdynamia for 2 months. The statistically reliable dependence is shown between mechanical underloadings and overloadings and macro microscopic changes in the hind limb skeleton of animals. Genetic determination of growth and formation of the forelimb skeleton is established. Hereditary susceptibility and the phenomenon of heterosis are preserved under all motor conditions.
Investigating the Role of FIP200 in Mammary Carcinogenesis Using a Transgenic Mouse Model
2007-04-01
analysis of virgin and lactating female mice in which FAK was specifically deleted in the mammary epithelium. No morphological abnormalities were found in...the mammary gland of virgin mice however, lactating mice have severe lobulo-alveolar hypoplasia in the mammary gland. After completing the analysis...were collected to prepare protein extracts. Organs were first snap-frozen in liquid nitrogen and then were ground using a mortar and a pestle
Urinary tract infection in iNOS-deficient mice with focus on bacterial sensitivity to nitric oxide.
Poljakovic, Mirjana; Persson, Katarina
2003-01-01
Inducible nitric oxide synthase (iNOS)-deficient mice were used to examine the role of iNOS in Escherichia coli-induced urinary tract infection (UTI). The toxicity of nitric oxide (NO)/peroxynitrite to bacteria and host was also investigated. The nitrite levels in urine of iNOS+/+ but not iNOS/ mice increased after infection. No differences in bacterial clearance or persistence were noted between the genotypes. In vitro, the uropathogenic E. coli 1177 was sensitive to 3-morpholinosydnonimine, whereas the avirulent E. coli HB101 was sensitive to both NO and 3-morpholinosydnonimine. E. coli HB101 was statistically (P < 0.05) more sensitive to peroxynitrite than E. coli 1177. Nitrotyrosine immunoreactivity was observed in infected bladders of both genotypes and in infected kidneys of iNOS+/+ mice. Myeloperoxidase, neuronal (n)NOS, and endothelial (e)NOS immunoreactivity was observed in inflammatory cells of both genotypes. Our results indicate that iNOS/ and iNOS+/+ mice are equally susceptible to E. coli-induced UTI and that the toxicity of NO to E. coli depends on bacterial virulence. Furthermore, myeloperoxidase and nNOS/eNOS may contribute to nitrotyrosine formation in the absence of iNOS.
Yimam, Mesfin; Jiao, Ping; Hong, Mei; Brownell, Lidia; Lee, Young-Chul; Hyun, Eu-Jin; Kim, Hyun-Jin; Nam, Jeong-Bum; Kim, Mi-Ran; Jia, Qi
2017-02-16
The prevalence of obesity is surging in an alarming rate all over the world. Pharmaceutical drugs are considered potential adjunctive therapy to lifestyle modification. However, for most, besides being too expensive, their long term usages are hindered by their severe adverse effects. Here we describe the effect of UP601, a standardized blend of extracts from Morus alba, Yerba mate and Magnolia officinalis, in modulating a number of obesity-related phenotypic and biochemical markers in a high-fat high-fructose (HFF)-induced C57BL/6J mouse model of obesity. Adipogenesis activity of the composition was assessed in 3T3-L1 cells in vitro. Effects of UP601 on body weight and metabolic markers were evaluated. It was administered at oral doses of 300 mg/kg, 450 mg/kg and 600 mg/kg for 7 weeks. Orlistat (40 mg/kg/day) was used as a positive control. Body compositions of mice were assessed using dual energy X-ray absorptiometry (DEXA). Serum biomarkers were measured for liver function and lipid profiling. Relative organ weights were determined. Histopathological analysis was performed for non-alcoholic steatohepatitis (NASH) scoring. UP601 at 250 μg/ml resulted in 1.8-fold increase in lipolysis. Statistically significant changes in body weight (decreased by 9.1, 19.6 and 25.6% compared to the HFF group at week-7) were observed for mice treated with UP601 at 300, 450 and 600 mg/kg, respectively. Reductions of 9.1, 16.9, and 18.6% in total cholesterol; 45.0, 55.0, 63.6% in triglyceride; 34.8, 37.1 and 41.6% in LDL; 3.2, 21.6 (P = 0.03) and 33.7% (P = 0.005) in serum glucose were observed for UP601 at 300, 450 and 600 mg/kg, respectively. Body fat distribution was found reduced by 31.6 and 17.2% for the 450 mg/kg UP601 and orlistat, respectively, from the DEXA scan analysis. Up to an 89.1% reduction in mesenteric fat deposit was observed for UP601 in relative organ weight. Statistically significant improvements in NASH scores were observed for mice treated with UP601. UP601, a standardized botanical composition from Morus alba, Yerba mate and Magnolia officinalis could potentially be used for achieving healthy weight loss and maintenance.
Roth, Lynn; Van Dam, Debby; Van der Donckt, Carole; Schrijvers, Dorien M; Lemmens, Katrien; Van Brussel, Ilse; De Deyn, Peter P; Martinet, Wim; De Meyer, Guido R Y
2015-02-01
Apolipoprotein E deficient (ApoE(-/-)) mice with a heterozygous mutation in the fibrillin-1 gene (Fbn1(C1039G+/-)) show spontaneous atherosclerotic plaque ruptures, disturbances in cerebral flow and sudden death when fed a Western-type diet (WD). The present study focused on motor coordination and spatial learning of ApoE(-/-) Fbn1(C1039G+/-) mice on WD for 20 weeks (n=21). ApoE(-/-) mice on WD (n=24) and ApoE(-/-) Fbn1(C1039G+/-) mice on normal diet (ND, n=21) served as controls. Starting from 10 weeks of diet, coordination was assessed every two weeks by the following tests: gait analysis, stationary beam, wire suspension and accelerating rotarod. The Morris water maze test was performed after 13 weeks of diet to study spatial learning. At the end of the experiment (20 weeks of WD), the mice were sacrificed and the brachiocephalic artery and brain were isolated. From 12 weeks onward, gait analysis of ApoE(-/-) Fbn1(C1039G+/-) mice on WD revealed a progressive increase in track width as compared to ApoE(-/-) mice on WD and ApoE(-/-) Fbn1(C1039G+/-) mice on ND (at 20 weeks: 29.8±0.6 mm vs. 25.8±0.4 mm and 26.0±0.5 mm). Moreover, the stationary beam test showed a decrease in motor coordination of ApoE(-/-) Fbn1(C1039G+/-) mice on WD at 18 and 20 weeks. The wire suspension test and accelerating rotarod could not detect signs of motor impairment. Spatial learning was also not affected. Histological analysis of the brachiocephalic artery showed larger and more stenotic plaques in ApoE(-/-) Fbn1(C1039G+/-) mice on WD. Furthermore, the parietal cortex of ApoE(-/-) Fbn1(C1039G+/-) mice on WD showed pyknotic nuclei as a sign of hypoxia and the percentage of pyknosis correlated with track width. In conclusion, gait analysis may be an efficient method for analyzing hypoxic brain damage in the ApoE(-/-) Fbn1(C1039G+/-) mouse model. This test could be of value to assess the effect of potential anti-atherosclerotic therapies in mice. Copyright © 2014 Elsevier Inc. All rights reserved.
Szabo, R; Samson, A L; Lawrence, D A; Medcalf, R L; Bugge, T H
2016-08-01
Essentials C57BL/6J-tissue plasminogen activator (tPA)-deficient mice are widely used to study tPA function. Congenic C57BL/6J-tPA-deficient mice harbor large 129-derived chromosomal segments. The 129-derived chromosomal segments contain gene mutations that may confound data interpretation. Passenger mutation-free isogenic tPA-deficient mice were generated for study of tPA function. Background The ability to generate defined null mutations in mice revolutionized the analysis of gene function in mammals. However, gene-deficient mice generated by using 129-derived embryonic stem cells may carry large segments of 129 DNA, even when extensively backcrossed to reference strains, such as C57BL/6J, and this may confound interpretation of experiments performed in these mice. Tissue plasminogen activator (tPA), encoded by the PLAT gene, is a fibrinolytic serine protease that is widely expressed in the brain. A number of neurological abnormalities have been reported in tPA-deficient mice. Objectives To study genetic contamination of tPA-deficient mice. Materials and methods Whole genome expression array analysis, RNAseq expression profiling, low- and high-density single nucleotide polymorphism (SNP) analysis, bioinformatics and genome editing were used to analyze gene expression in tPA-deficient mouse brains. Results and conclusions Genes differentially expressed in the brain of Plat(-/-) mice from two independent colonies highly backcrossed onto the C57BL/6J strain clustered near Plat on chromosome 8. SNP analysis attributed this anomaly to about 20 Mbp of DNA flanking Plat being of 129 origin in both strains. Bioinformatic analysis of these 129-derived chromosomal segments identified a significant number of mutations in genes co-segregating with the targeted Plat allele, including several potential null mutations. Using zinc finger nuclease technology, we generated novel 'passenger mutation'-free isogenic C57BL/6J-Plat(-/-) and FVB/NJ-Plat(-/-) mouse strains by introducing an 11 bp deletion into the exon encoding the signal peptide. These novel mouse strains will be a useful community resource for further exploration of tPA function in physiological and pathological processes. © 2016 International Society on Thrombosis and Haemostasis.
Viaggi, Cristina; Gerace, Claudio; Pardini, Carla; Corsini, Giovanni U; Vaglini, Francesca
2015-08-01
Autism spectrum disorder (ASD) is a congenital neurodevelopmental behavioral disorder that appears in early childhood. Recent human genetic studies identified the homeobox transcription factor, Engrailed 2 (EN2), as a possible ASD susceptibility gene. En2 knockout mice (En2-/-) display subtle cerebellar neuropathological changes and reduced levels of tyrosine hydroxylase, noradrenaline and serotonin in the hippocampus and cerebral cortex similar to those ones which have been observed in the ASD brain. Furthermore other similarities link En2 knockout mice to ASD patients. Several lines of evidence suggest that serotonin may play an important role in the pathophysiology of the disease. In the present study we measured, by using an HPLC, the 5-HT levels in different brain areas and at different ages in En2-/- mice. In the frontal and occipital cortex, the content of 5HT was reduced in En2-/- 1 and 3 months old mice; in 6 month old mice, the difference was still present, but it was not statistically significant. The 5-HT content of cerebellar cortex was significantly reduced at 1 month old but significantly high when the KO mice reached 3 months of age. The increase was present even at 6 months of age. A similar trend was highlighted by SERT immunolabeling in En2-/- mice compared to control in the same areas and age analyzed. Our findings, in agreement with the current knowledge on the 5-HT system alterations in ASD, confirm the early neurotransmitter deficit with a late compensatory recovery in En2 KO-mice further suggesting that this experimental animal may be considered a good predictive model for the human disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Iwaniec, Urszula T; Turner, Russell T
2013-03-01
A reciprocal association between bone marrow fat and bone mass has been reported in ovariectomized rodents, suggesting that bone marrow adipogenesis has a negative effect on bone growth and turnover balance. Mice with loss of function mutations in kit receptor (kit(W/W-v)) have no bone marrow adipocytes in tibia or lumbar vertebra. We therefore tested the hypothesis that marrow fat contributes to the development of osteopenia by comparing the skeletal response to ovariectomy (ovx) in growing wild type (WT) and bone marrow adipocyte-deficient kit(W/W-v) mice. Mice were ovx at 4 weeks of age and sacrificed 4 or 10 weeks post-surgery. Body composition was measured at necropsy by dual-energy X-ray absorptiometry. Cortical (tibia) and cancellous (tibia and lumbar vertebra) bone architecture were evaluated by microcomputed tomography. Bone marrow adipocyte size and density, osteoblast- and osteoclast-lined bone perimeters, and bone formation were determined by histomorphometry. Ovx resulted in an increase in total body fat mass at 10 weeks post-ovx in both genotypes, but the response was attenuated in the in kit(W/W-v) mice. Adipocytes were present in bone marrow of tibia and lumbar vertebra in WT mice and bone marrow adiposity increased following ovx. In contrast, marrow adipocytes were not detected in either intact or ovx kit(W/W-v) mice. However, ovx in WT and kit(W/W-v) mice resulted in statistically indistinguishable changes in cortical and cancellous bone mass, cortical and cancellous bone formation rate, and cancellous osteoblast and osteoclast-lined bone perimeters. In conclusion, our findings do not support a causal role for increased bone marrow fat as a mediator of ovx-induced osteopenia in mice. Copyright © 2012 Elsevier Inc. All rights reserved.
Assessment of genotoxic effects of flumorph by the comet assay in mice organs.
Zhang, T; Zhao, Q; Zhang, Y; Ning, J
2014-03-01
The present study investigated the genotoxic effects of flumorph in various organs (brain, liver, spleen, kidney and sperm) of mice. The DNA damage, measured as comet tail length (µm), was determined using the alkaline comet assay. The comet assay is a sensitive assay for the detection of genotoxicity caused by flumorph using mice as a model. Statistically significant increases in comet assay for both dose-dependent and duration-dependent DNA damage were observed in all the organs assessed. The organs exhibited the maximum DNA damage in 96 h at 54 mg/kg body weight. Brain showed maximum DNA damage followed by spleen > kidney > liver > sperm. Our data demonstrated that flumorph had induced systemic genotoxicity in mammals as it caused DNA damage in all tested vital organs, especially in brain and spleen.
Correlation between Mitochondrial Reactive Oxygen and Severity of Atherosclerosis.
Dorighello, Gabriel G; Paim, Bruno A; Kiihl, Samara F; Ferreira, Mônica S; Catharino, Rodrigo R; Vercesi, Anibal E; Oliveira, Helena C F
2016-01-01
Atherosclerosis has been associated with mitochondria dysfunction and damage. Our group demonstrated previously that hypercholesterolemic mice present increased mitochondrial reactive oxygen (mtROS) generation in several tissues and low NADPH/NADP+ ratio. Here, we investigated whether spontaneous atherosclerosis in these mice could be modulated by treatments that replenish or spare mitochondrial NADPH, named citrate supplementation, cholesterol synthesis inhibition, or both treatments simultaneously. Robust statistical analyses in pooled group data were performed in order to explain the variation of atherosclerosis lesion areas as related to the classic atherosclerosis risk factors such as plasma lipids, obesity, and oxidative stress, including liver mtROS. Using three distinct statistical tools (univariate correlation, adjusted correlation, and multiple regression) with increasing levels of stringency, we identified a novel significant association and a model that reliably predicts the extent of atherosclerosis due to variations in mtROS. Thus, results show that atherosclerosis lesion area is positively and independently correlated with liver mtROS production rates. Based on these findings, we propose that modulation of mitochondrial redox state influences the atherosclerosis extent.
William, Basem M.; An, Wei; Feng, Dan; Nadeau, Scott; Mohapatra, Bhopal C; Storck, Matthew A.; Band, Vimla; Band, Hamid
2017-01-01
Objectives Mutations in Cbl or Cbl-b gene occur in 10% of MPD patients and are associated with poor prognosis. Hematopoietic Cbl/Cbl-b double knockout (DKO) leads to a disease in mice phenotypically similar to human MPDs. The aim of this study was to evaluate the anti-MPD activity of a clinical safe drug, Fasudil identified in an in vitro kinase inhibitor as an inhibitor of proliferation of DKO mouse hematopoietic stem/progenitor cells (HSPCs). Methods Fasudil exhibited relatively selective anti-proliferative activity against Cbl/Cbl-b DKO vs. control murine bone marrow HSPCs. We established a mouse model with uniform time of MPD onset by transplanting Cbl/Cbl-b DKO HSPCs into busulfan-conditioned NOD/SCID/gamma chain-deficient mice. Four weeks post-transplant, mice were treated with 100 mg/kg fasudil (13 mice) or water (control, 8 mice) daily by oral gavage, followed by blood cell count every two weeks. Results By two weeks of treatment, total white cell and monocyte counts were significantly lower in mice treated with fasudil. We observed a trend towards improved survival in fasudil-treated mice that didn’t reach statistical significance. Notably, prolonged survival beyond 27 weeks was observed in 2 fasudil-treated mice, nearly twice the 16-week average life-span in the Cbl/Cbl-b DKO MPD model. Conclusions Our results suggest a therapeutic potential for fasudil, a clinically-safe drug with promising results in vascular diseases, in the treatment of MPDs or other mutant Cbl-driven myeloid disorders. PMID:26177294
Transgenic Mouse Model for Reducing Oxidative Damage in Bone
NASA Technical Reports Server (NTRS)
Schreurs, Ann-Sofie; Torres, S.; Truong, T.; Moyer, E. L.; Kumar, A.; Tahimic, Candice C. G.; Alwood, J. S.; Limoli, C. L.; Globus, R. K.
2016-01-01
Bone loss can occur due to many challenges such age, radiation, microgravity, and Reactive Oxygen Species (ROS) play a critical role in bone resorption by osteoclasts (Bartell et al. 2014). We hypothesize that suppression of excess ROS in skeletal cells, both osteoblasts and osteoclasts, regulates skeletal growth and remodeling. To test our hypothesis, we used transgenic mCAT mice which overexpress the human anti-oxidant catalase gene targeted to the mitochondria, the main site for endogenous ROS production. mCAT mice have a longer life-span than wildtype controls and have been used to study various age-related disorders. To stimulate remodeling, 16 week old mCAT mice or wildtype mice were exposed to treatment (hindlimb-unloading and total body-irradiation) or sham treatment conditions (control). Tissues were harvested 2 weeks later for skeletal analysis (microcomputed tomography), biochemical analysis (gene expression and oxidative damage measurements), and ex vivo bone marrow derived cell culture (osteoblastogenesis and osteoclastogenesis). mCAT mice expressed the transgene and displayed elevated catalase activity in skeletal tissue and marrow-derived osteoblasts and osteoclasts grown ex vivo. In addition, when challenged with treatment, bone tissues from wildtype mice showed elevated levels of malondialdehyde (MDA), indicating oxidative damage) whereas mCAT mice did not. Correlation analysis revealed that increased catalase activity significantly correlated with decreased MDA levels and that increased oxidative damage correlated with decreased percent bone volume (BVTV). In addition, ex-vivo cultured osteoblast colony growth correlated with catalase activity in the osteoblasts. Thus, we showed that these transgenic mice can be used as a model to study the relationship between markers of oxidative damage and skeletal properties. mCAT mice displayed reduced BVTV and trabecular number relative to wildtype mice, as well as increased structural model index in the cancellous tibia. Treatment caused bone loss in wildtype mice, as expected. Treatment also caused deficits in microarchitecture of mCAT mice, although less severe than wildtype mice in some parameters (percent bone volume, structural model index and cortical area). In conclusion, our results indicate that endogenous ROS signaling in both osteoblast and osteoclast lineage cells contributes to skeletal growth and remodeling, and quenching oxidative damage could play a role in bone loss prevention.
Alkhouli, Mohammed; Gerard-O'Riley, Rita L.; Wright, Weston B.; Acton, Dena; Gray, Amie K.; Patel, Bhavmik; Reilly, Austin M.; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.
2016-01-01
Previous genome-wide association studies have identified common variants in genes associated with bone mineral density (BMD) and risk of fracture. Recently, we identified single nucleotide polymorphisms (SNPs) in Wingless-type mouse mammary tumor virus integration site (WNT)16 that were associated with peak BMD in premenopausal women. To further identify the role of Wnt16 in bone mass regulation, we created transgenic (TG) mice overexpressing human WNT16 in osteoblasts. We compared bone phenotypes, serum biochemistry, gene expression, and dynamic bone histomorphometry between TG and wild-type (WT) mice. Compared with WT mice, WNT16-TG mice exhibited significantly higher whole-body areal BMD and bone mineral content (BMC) at 6 and 12 weeks of age in both male and female. Microcomputer tomography analysis of trabecular bone at distal femur revealed 3-fold (male) and 14-fold (female) higher bone volume/tissue volume (BV/TV), and significantly higher trabecular number and trabecular thickness but lower trabecular separation in TG mice compared with WT littermates in both sexes. The cortical bone at femur midshaft also displayed significantly greater bone area/total area and cortical thickness in the TG mice in both sexes. Serum biochemistry analysis showed that male TG mice had higher serum alkaline phosphatase, osteocalcin, osteoprotegerin (OPG), OPG to receptor activator of NF-kB ligand (tumor necrosis family ligand superfamily, number 11; RANKL) ratio as compared with WT mice. Also, lower carboxy-terminal collagen cross-link (CTX) to tartrate-resistant acid phosphatase 5, isoform b (TRAPc5b) ratio was observed in TG mice compared with WT littermates in both male and female. Histomorphometry data demonstrated that both male and female TG mice had significantly higher cortical and trabecular mineralizing surface/bone surface and bone formation rate compared with sex-matched WT mice. Gene expression analysis demonstrated higher expression of Alp, OC, Opg, and Opg to Rankl ratio in bone tissue in the TG mice compared with WT littermates. Our data indicate that WNT16 is critical for positive regulation of both cortical and trabecular bone mass and structure and that this molecule might be targeted for therapeutic interventions to treat osteoporosis. PMID:26584014
NASA Technical Reports Server (NTRS)
Ronca, A. E.; Moyer, E. L.; Talyansky, Y.; Solomides, P.; Choi, S.; Gong, C.; Globus, R. K.
2017-01-01
As interest in long duration effects of space habitation increases, understanding the behavior of model organisms living within the habitats engineered to fly them is vital for designing, validating, and interpreting future spaceflight studies. Only a handful of papers have previously reported behavior of mice and rats in the weightless environment of space (Andreev-Andrievskiy, et al., 2013; Cancedda et al., 2012; Ronca et al., 2008). The Rodent Research Hardware and Operations Validation Mission (Rodent Research-1; RR1) utilized the Rodent Habitat (RH) developed at NASA Ames Research Center to fly mice on the ISS. Ten adult (16-week-old) female C57BL6J mice were launched on September 21st, 2014 in an unmanned Dragon Capsule, and spent 37 days in flight. Here we report group behavioral phenotypes of the RR1 Flight (FLT) and environment-matched Ground Control (GC) mice in the RH during this long duration flight. Video was recorded for 34 days on the ISS, permitting daily assessments of overall health and well being of the mice, and providing a valuable repository for detailed behavioral analysis. As compared to GC mice, RR1 FLT mice exhibited the same range of behaviors, including eating, drinking, exploration, self- and allogrooming, and social interactions at similar or greater levels of occurrence. Overall activity was greater in FLT as compared to GC mice, with spontaneous ambulatory behavior, including organized circling or race-tracking behavior that emerged within the first few days of flight following a common developmental sequence, comprising the primary dark cycle activity of FLT mice. Circling participation by individual mice persisted throughout the mission. Analysis of group behavior over mission days revealed recruitment of mice into the group phenotype, coupled with decreasing numbers of collisions between circling mice. This analysis provides insights into the behavior of mice in microgravity, and clear evidence for the emergence of a distinctive, organized group behavior unique to the weightless space environment. Supported by the NASA Rodent Research Project, Space Biology Program, and Space Life Sciences Training Program.
Misuno, Kaori; Tran, Simon D; Khalili, Saeed; Huang, Junwei; Liu, Younan; Hu, Shen
2014-01-01
Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Whole BM cells were lysed and soluble intracellular contents ("BM Soup") were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment.
Misuno, Kaori; Khalili, Saeed; Huang, Junwei; Liu, Younan
2014-01-01
Background Bone marrow cell extract (termed as BM Soup) has been demonstrated to repair irradiated salivary glands (SGs) and restore saliva secretion in our previous study. In the present study, we aim to investigate if the function of damaged SGs in non-obese diabetic (NOD) mice can be restored by BM Soup treatment and the molecular alterations associated with the treatment. Methods Whole BM cells were lysed and soluble intracellular contents (“BM Soup”) were injected I.V. into NOD mice. Tandem mass tagging with 2-D liquid chromatography-mass spectrometry was used to quantify proteins in the submandibular glands (SMGs) between untreated and BM Soup-treated mice. Quantitative PCR was used to identify genes with altered expression in the treated mice. Results BM Soup restored salivary flow rates to normal levels and significantly reduced the focus scores of SMGs in NOD mice. More than 1800 proteins in SMG cells were quantified by the proteomic approach. Many SMG proteins involved in inflammation and apoptosis were found to be down-regulated whereas those involved in salivary gland biology and development/regeneration were up-regulated in the BM Soup-treated mice. qPCR analysis also revealed expression changes of growth factors and cytokines in the SMGs of the treated NOD mice. Conclusion BM Soup treatment is effective to restore the function of damaged SGs in NOD mice. Through gene/protein expression analysis, we have found that BM Soup treatment might effectuate via inhibiting apoptosis, focal adhesion and inflammation whereas promoting development, regeneration and differentiation of the SG cells in NOD mice. These findings provide important insights on the potential mechanisms underlying the BM Soup treatment for functional restoration of damaged SGs in NOD mice. Additional studies are needed to further confirm the identified target genes and their related signaling pathways that are responsible for the BM Soup treatment. PMID:24489858
De Pasquale, Valeria; Cocchiaro, Pasquale; Paciello, Orlando; Avallone, Luigi; Belfiore, Maria Paola; Iacobellis, Francesca; Di Napoli, Daniele; Magliulo, Fabio; Perrino, Cinzia; Trimarco, Bruno; Esposito, Giovanni; Di Natale, Paola; Pavone, Luigi Michele
2015-01-01
Mucopolysaccharidosis (MPS) IIIB is a lysosomal disease due to the deficiency of the enzyme α-N-acetylglucosaminidase (NAGLU) required for heparan sulfate (HS) degradation. The disease is characterized by mild somatic features and severe neurological disorders. Very little is known on the cardiac dysfunctions in MPS IIIB. In this study, we used the murine model of MPS IIIB (NAGLU knockout mice, NAGLU-/-) in order to investigate the cardiac involvement in the disease. Echocardiographic analysis showed a marked increase in left ventricular (LV) mass, reduced cardiac function and valvular defects in NAGLU-/- mice as compared to wild-type (WT) littermates. The NAGLU-/- mice exhibited a significant increase in aortic and mitral annulus dimension with a progressive elongation and thickening of anterior mitral valve leaflet. A severe mitral regurgitation with reduction in mitral inflow E-wave-to-A-wave ratio was observed in 32-week-old NAGLU-/- mice. Compared to WT mice, NAGLU-/- mice exhibited a significantly lower survival with increased mortality observed in particular after 25 weeks of age. Histopathological analysis revealed a significant increase of myocardial fiber vacuolization, accumulation of HS in the myocardial vacuoles, recruitment of inflammatory cells and collagen deposition within the myocardium, and an increase of LV fibrosis in NAGLU-/- mice compared to WT mice. Biochemical analysis of heart samples from affected mice showed increased expression levels of cardiac failure hallmarks such as calcium/calmodulin-dependent protein kinase II, connexin43, α-smooth muscle actin, α-actinin, atrial and brain natriuretic peptides, and myosin heavy polypeptide 7. Furthermore, heart samples from NAGLU-/- mice showed enhanced expression of the lysosome-associated membrane protein-2 (LAMP2), and the autophagic markers Beclin1 and LC3 isoform II (LC3-II). Overall, our findings demonstrate that NAGLU-/- mice develop heart disease, valvular abnormalities and cardiac failure associated with an impaired lysosomal autophagic flux. PMID:26147524
The controlled-environment chamber: a new mouse model of dry eye.
Barabino, Stefano; Shen, Linling; Chen, Lu; Rashid, Saadia; Rolando, Maurizio; Dana, M Reza
2005-08-01
To develop a controlled-environment chamber (CEC) for mice and verify the effects of a low-humidity setting on ocular surface signs in normal mice. Eight- to 12-week-old BALB/c mice were used in a controlled-environment chamber (CEC) where relative humidity (RH), temperature (T), and airflow (AF) are regulated and monitored. Mice were placed into the CEC and exposed to specific environmentally controlled conditions (RH = 18.5% +/- 5.1%, AF = 15 L/min, T = 21-23 degrees C) for 3, 7, 14, and 28 days. Control mice were kept in a normal environment (RH = 50%-80%, no AF, T = 21-23 degrees C) for the same duration. Aqueous tear production by means of the cotton thread test, corneal fluorescein staining (score, 0-15), and goblet cell density in the superior and inferior conjunctiva were measured by a masked observer. No statistically significant differences between the groups were found at baseline. Decreased tear secretion and increased corneal fluorescein staining were significantly present on day 3, 7, 14, and 28 in animals kept in the CEC. Goblet cell density was significantly decreased in the superior conjunctiva on day 7, and on day 3, 7, and 14 in the inferior conjunctiva in the CEC-kept mice compared with control animals. This study indicates that exposure of normal mice to a low-humidity environment in a CEC can lead to significant alterations in tear secretion, goblet cell density, and acquisition of dry eye-related ocular surface signs.
Khan, Adnan; Pan, Jeong Hoon; Cho, Seongha; Lee, Sojung; Kim, Young Jun; Park, Youngja H
2017-08-01
This study aimed to identify the changes in the metabolomics profile of liver damage caused by alcohol consumption and verify the beneficial effect of Prunus mume Sieb. et Zucc extract (PME) in protection of alcohol-induced injury by attenuating the level of identified metabolites. Mice were treated with PME and saline or untreated once daily for 5 days, followed by alcohol injection. The plasma samples were analyzed using liquid chromatography-mass spectrometry-based high-resolution metabolomics followed by a multivariate statistical analysis using MetaboAnalyst 3.0 to obtain significantly expressed metabolites, using a false discovery rate threshold of q = 0.05. Metabolites were annotated using Metlin database and mapped through Kyoto Encyclopedia of Genes and Genomes (KEGG). Among 4999 total features, 101 features were significant among alcohol- and PME-treated mice groups. All the samples cluster showed a clear separation in the heat map, and the scores plot of orthogonal partial least squares-discriminant analysis (OPLS-DA) model discriminated the three groups. Phosphatidylcholine, Saikosaponin BK1, Ganoderiol I, and N-2-[4-(3,3-dimethylallyloxy) phenyl] ethylcinnamide were among the significant compounds with a low intensity in alcohol group compared to PME group, suggesting that these compounds have a relation in the development of PME's protective effect. The study confirms the hepatoprotective, antioxidant, and anti-inflammatory effects of PME against alcohol-induced liver steatosis, inflammation, and apoptosis.
Vazquez, Bruna Perez; Vazquez, Thaís Perez; Miguel, Camila Botelho; Rodrigues, Wellington Francisco; Mendes, Maria Tays; de Oliveira, Carlo José Freire; Chica, Javier Emílio Lazo
2015-04-03
Chagas disease is caused by the protozoan Trypanosoma cruzi and is characterized by cardiac, gastrointestinal, and nervous system disorders. Although much about the pathophysiological process of Chagas disease is already known, the influence of the parasite burden on the inflammatory process and disease progression remains uncertain. We used an acute experimental disease model to evaluate the effect of T. cruzi on intestinal lesions and assessed correlations between parasite load and inflammation and intestinal injury at 7 and 14 days post-infection. Low (3 × 10(2)), medium (3 × 10(3)), and high (3 × 10(4)) parasite loads were generated by infecting C57BL/6 mice with "Y"-strain trypomastigotes. Statistical analysis was performed using analysis of variance with Tukey's multiple comparison post-test, Kruskal-Wallis test with Dunn's multiple comparison, χ2 test and Spearman correlation. High parasite load-bearing mice more rapidly and strongly developed parasitemia. Increased colon width, inflammatory infiltration, myositis, periganglionitis, ganglionitis, pro-inflammatory cytokines (e.g., TNF-α, INF-γ, IL-2, IL-17, IL-6), and intestinal amastigote nests were more pronounced in high parasite load-bearing animals. These results were remarkable because a positive correlation was observed between parasite load, inflammatory infiltrate, amastigote nests, and investigated cytokines. These experimental data support the idea that the parasite load considerably influences the T. cruzi-induced intestinal inflammatory response and contributes to the development of the digestive form of the disease.
Ramos-Hryb, Ana B; Harris, Cari; Aighewi, Omorose; Lino-de-Oliveira, Cilene
2018-06-07
This commentary aims to discuss the impact of publication bias on the estimated effect of prototypic antidepressants in the forced swim test (FST). A systematic review and meta-analysis (SRMA) recently reported by Kara et al. (2018) showed that selected prototypic antidepressants reduced immobility time of mice in the FST across a variety of experimental designs. Despite differences in the procedures for SRMA, these results resemble the interim data collected by our research group according to a protocol deposited in the Systematic Review Facility and Open Science Framework (osf.io/9kxm4). Both studies detected a high amount of publications reporting statistically significant results and agreement with the primary hypothesis raising the possibility of publication bias in the field of FST. In our preliminary analysis, no evidence for publication bias was observed. However, the present work was limited to the effects of imipramine (doses ranging from 4 to 64 mg/kg) in different strains of mice. Therefore, more comprehensive studies are required to evaluate the risk of publication bias in the field of basic antidepressant research. We see the need to expand the current preliminary studies to evaluate the risk of publication bias within the preclinical research using the FST. Appraisal of the risk of publication bias may avoid misestimated effects of drugs in the FST providing better bases for the discovery of new antidepressants. Copyright © 2018. Published by Elsevier Ltd.
Green, Leeta Alison; Nguyen, Khoi; Berenji, Bijan; Iyer, Meera; Bauer, Eileen; Barrio, Jorge R; Namavari, Mohammad; Satyamurthy, Nagichettiar; Gambhir, Sanjiv S
2004-09-01
Reporter probe 9-(4-18F-fluoro-3-[hydroxymethyl]butyl)guanine (18F-FHBG) and reporter gene mutant herpes simplex virus type 1 thymidine kinase (HSV1-sr39tk) have been used for imaging reporter gene expression with PET. Current methods for quantitating the images using the percentage injected dose per gram of tissue do not distinguish between the effects of probe transport and subsequent phosphorylation. We therefore investigated tracer kinetic models for 18F-FHBG dynamic microPET data and noninvasive methods for determining blood time-activity curves in an adenoviral gene delivery model in mice. 18F-FHBG (approximately 7.4 MBq [approximately 200 microCi]) was injected into 4 mice; 18F-FHBG concentrations in plasma and whole blood were measured from mouse heart left ventricle (LV) direct sampling. Replication-incompetent adenovirus (0-2 x 10(9) plaque-forming units) with the E1 region deleted (n = 8) or replaced by HSV1-sr39tk (n = 18) was tail-vein injected into mice. Mice were dynamically scanned using microPET (approximately 7.4 MBq [approximately 200 microCi] 18F-FHBG) over 1 h; regions of interest were drawn on images of the heart and liver. Serial whole blood 18F-FHBG concentrations were measured in 6 of the mice by LV sampling, and 1 least-squares ratio of the heart image to the LV time-activity curve was calculated for all 6 mice. For 2 control mice and 9 mice expressing HSV1-sr39tk, heart image (input function) and liver image time-activity curves (tissue curves) were fit to 2- and 3-compartment models using Levenberg-Marquardt nonlinear regression. The models were compared using an F statistic. HSV1-sr39TK enzyme activity was determined from liver samples and compared with model parameter estimates. For another 3 control mice and 6 HSV1-sr39TK-positive mice, the model-predicted relative percentage of metabolites was compared with high-performance liquid chromatography analysis. The ratio of 18F-FHBG in plasma to whole blood was 0.84 +/- 0.05 (mean +/- SE) by 30 s after injection. The least-squares ratio of the heart image time-activity curve to the LV time-activity curve was 0.83 +/- 0.02, consistent with the recovery coefficient for the partial-volume effect (0.81) based on independent measures of heart geometry. A 3-compartment model best described 18F-FHBG kinetics in mice expressing HSV1-sr39tk in the liver; a 2-compartment model best described the kinetics in control mice. The 3-compartment model parameter, k3, correlated well with the HSV1-sr39TK enzyme activity (r2 = 0.88). 18F-FHBG equilibrates rapidly between plasma and whole blood in mice. Heart image time-activity curves corrected for partial-volume effects well approximate LV time-activity curves and can be used as input functions for 2- and 3-compartment models. The model parameter k3 from the 3-compartment model can be used as a noninvasive estimate for HSV1-sr39TK reporter protein activity and can predict the relative percentage of metabolites.
Deol, Poonamjot; Evans, Jane R; Dhahbi, Joseph; Chellappa, Karthikeyani; Han, Diana S; Spindler, Stephen; Sladek, Frances M
2015-01-01
The obesity epidemic in the U.S. has led to extensive research into potential contributing dietary factors, especially fat and fructose. Recently, increased consumption of soybean oil, which is rich in polyunsaturated fatty acids (PUFAs), has been proposed to play a causal role in the epidemic. Here, we designed a series of four isocaloric diets (HFD, SO-HFD, F-HFD, F-SO-HFD) to investigate the effects of saturated versus unsaturated fat, as well as fructose, on obesity and diabetes. C57/BL6 male mice fed a diet moderately high in fat from coconut oil and soybean oil (SO-HFD, 40% kcal total fat) showed statistically significant increases in weight gain, adiposity, diabetes, glucose intolerance and insulin resistance compared to mice on a diet consisting primarily of coconut oil (HFD). They also had fatty livers with hepatocyte ballooning and very large lipid droplets as well as shorter colonic crypt length. While the high fructose diet (F-HFD) did not cause as much obesity or diabetes as SO-HFD, it did cause rectal prolapse and a very fatty liver, but no balloon injury. The coconut oil diet (with or without fructose) increased spleen weight while fructose in the presence of soybean oil increased kidney weight. Metabolomics analysis of the liver showed an increased accumulation of PUFAs and their metabolites as well as γ-tocopherol, but a decrease in cholesterol in SO-HFD. Liver transcriptomics analysis revealed a global dysregulation of cytochrome P450 (Cyp) genes in SO-HFD versus HFD livers, most notably in the Cyp3a and Cyp2c families. Other genes involved in obesity (e.g., Cidec, Cd36), diabetes (Igfbp1), inflammation (Cd63), mitochondrial function (Pdk4) and cancer (H19) were also upregulated by the soybean oil diet. Taken together, our results indicate that in mice a diet high in soybean oil is more detrimental to metabolic health than a diet high in fructose or coconut oil.
Marcolin, Eder; Forgiarini, Luiz Felipe; Tieppo, Juliana; Dias, Alexandre Simões; Freitas, Luiz Antonio Rodrigues de; Marroni, Norma Possa
2011-01-01
Non-alcoholic steatohepatitis is a disease with a high incidence, difficult diagnosis, and as yet no effective treatment. So, the use of experimental models for non-alcoholic steatohepatitis induction and the study of its routes of development have been studied. This study was designed to develop an experimental model of non-alcoholic steatohepatitis based on a methionine- and choline-deficient diet that is manufactured in Brazil so as to evaluate the liver alterations resulting from the disorder. Thirty male C57BL6 mice divided in two groups (n = 15) were used: the experimental group fed a methionine- and choline-deficient diet manufactured by Brazilian company PragSoluções®, and the control group fed a normal diet, for a period of 2 weeks. The animals were then killed by exsanguination to sample blood for systemic biochemical analyses, and subsequently submitted to laparotomy with total hepatectomy and preparation of the material for histological analysis. The statistical analysis was done using the Student's t-test for independent samples, with significance level of 5%. The mice that received the methionine- and choline-deficient diet showed weight loss and significant increase in hepatic damage enzymes, as well as decreased systemic levels of glycemia, triglycerides, total cholesterol, HDL and VLDL. The diagnosis of non-alcoholic steatohepatitis was performed in 100% of the mice that were fed the methionine- and choline-deficient diet. All non-alcoholic steatohepatitis animals showed some degree of macrovesicular steatosis, ballooning, and inflammatory process. None of the animals which were fed the control diet presented histological alterations. All non-alcoholic steatohepatitis animals showed significantly increased lipoperoxidation and antioxidant enzyme GSH activity. The low cost and easily accessible methionine- and choline-deficient diet explored in this study is highly effective in inducing steatosis and steatohepatitis in animal model, alterations that are similar to those observed in human livers.
Hu, Weiping; Niu, Guodong; Li, Hongbo; Gao, Hanyuan; Kang, Rudian; Chen, Xiaoqing; Lin, Ling
2016-11-22
Renal damage is the major cause of SLE associated mortality, and IFIT1expression was elevated in SLE cases in accordance of previous studies. Therefore, we conducted an animal study to identify the role of IFIT1 expression in renal pathological changes.18 female MRL/lpr mice and same number of female BALB/c mice were enrolled in present study. Quantitative analysis of urine protein, Complement C3 and C4, and anti-ds DNA antibody were conducted. HE and PAS staining and TEM analysis were employed to observe the pathological changes in renal tissue. Significant elevation on urine protein and anti-dsDNA and reduction on Complement C3 and C4 were observed in MRL/lpr mice when comparing the controls in same age. Staining and TEM analysis observed several pathological changes in glomerulus among MRL/lpr mice, including cellular enlargement, basement membrane thickening, and increased cellularcasts. The linear regression analysis found the optical density of IFIT1 was inversely associated with F-actin, Nephrin, and Podocin, but not Synatopodin. In summary, IFIT1 expression is associated with podocytes damage, and capable of suppressing some proteins essential to glomerular filtration.
Analysis of tau post-translational modifications in rTg4510 mice, a model of tau pathology.
Song, Lixin; Lu, Sherry X; Ouyang, Xuesong; Melchor, Jerry; Lee, Julie; Terracina, Giuseppe; Wang, Xiaohai; Hyde, Lynn; Hess, J Fred; Parker, Eric M; Zhang, Lili
2015-03-26
Microtubule associated protein tau is the major component of the neurofibrillary tangles (NFTs) found in the brains of patients with Alzheimer's disease and several other neurodegenerative diseases. Tau mutations are associated with frontotemperal dementia with parkinsonism on chromosome 17 (FTDP-17). rTg4510 mice overexpress human tau carrying the P301L FTDP-17 mutation and develop robust NFT-like pathology at 4-5 months of age. The current study is aimed at characterizing the rTg4510 mice to better understand the genesis of tau pathology and to better enable the use of this model in drug discovery efforts targeting tau pathology. Using a panel of immunoassays, we analyzed the age-dependent formation of pathological tau in rTg4510 mice and our data revealed a steady age-dependent accumulation of pathological tau in the insoluble fraction of brain homogenates. The pathological tau was associated with multiple post-translational modifications including aggregation, phosphorylation at a wide variety of sites, acetylation, ubiquitination and nitration. The change of most tau species reached statistical significance at the age of 16 weeks. There was a strong correlation between the different post-translationally modified tau species in this heterogeneous pool of pathological tau. Total tau in the cerebrospinal fluid (CSF) displayed a multiphasic temporal profile distinct from the steady accumulation of pathological tau in the brain. Female rTg4510 mice displayed significantly more aggressive accumulation of pathological tau in the brain and elevation of total tau in CSF than their male littermates. The immunoassays described here were used to generate the most comprehensive description of the changes in various tau species across the lifespan of the rTg4510 mouse model. The data indicate that development of tauopathy in rTg4510 mice involves the accumulation of a pool of pathological tau that carries multiple post-translational modifications, a process that can be detected well before the histological detection of NFTs. Therapeutic treatment targeting tau should therefore aim to reduce all tau species associated with the pathological tau pool rather than reduce specific post-translational modifications. There is still much to learn about CSF tau in physiological and pathological processes in order to use it as a translational biomarker in drug discovery.
Ryan, Zachary C.; Craig, Theodore A.; Filoteo, Adelaida G.; Westendorf, Jennifer J.; Cartwright, Elizabeth J.; Neyses, Ludwig; Strehler, Emanuel E.; Kumar, Rajiv
2016-01-01
The physiological importance of the intestinal plasma membrane calcium pump, isoform 1, (Pmca1, Atp2b1), in calcium absorption and homeostasis has not been previously demonstrated in vivo. Since global germ-line deletion of the Pmca1 in mice is associated with embryonic lethality, we selectively deleted the Pmca1 in intestinal absorptive cells. Mice with loxP sites flanking exon 2 of the Pmca1 gene (Pmca1fl/fl) were crossed with mice expressing Cre recombinase in the intestine under control of the villin promoter to give mice in which the Pmca1 had been deleted in the intestine (Pmca1EKO mice). Pmca1EKO mice were born at a reduced frequency and were small at the time of birth when compared to wild-type (Wt) litter mates. At two months of age, Pmca1EKO mice fed a 0.81% calcium, 0.34% phosphorus, normal vitamin D diet had reduced whole body bone mineral density (P <0.037), and reduced femoral bone mineral density (P <0.015). There was a trend towards lower serum calcium and higher serum parathyroid hormone (PTH) and 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3) concentrations in Pmca1EKO mice compared to Wt mice but the changes were not statistically significant. The urinary phosphorus/creatinine ratio was increased in Pmca1EKO mice (P <0.004). Following the administration of 200 ng of 1α,25(OH)2D3 intraperitoneally to Wt mice, active intestinal calcium transport increased ∼2-fold, whereas Pmca1EKO mice administered an equal amount of 1α,25(OH)2D3 failed to show an increase in active calcium transport. Deletion of the Pmca1 in the intestine is associated with reduced growth and bone mineralization, and a failure to up-regulate calcium absorption in response to 1α,25(OH)2D3. PMID:26392310
Recovery of damaged skeletal muscle in mdx mice through low-intensity endurance exercise.
Frinchi, M; Macaluso, F; Licciardi, A; Perciavalle, V; Coco, M; Belluardo, N; Morici, G; Mudò, G
2014-01-01
The lack of dystrophin in mdx mice leads to cycles of muscle degeneration and regeneration processes. Various strategies have been proposed in order to reduce the muscle-wasting component of muscular dystrophy, including implementation of an exercise programme. The aim of this study was to examine how low-intensity endurance exercise affects the degeneration-regeneration process in dystrophic muscle of male mdx mice. Mice were subjected to low-intensity endurance exercise by running on a motorized Rota-Rod for 5 days/week for 6 weeks. Histomorphological analysis showed a significant reduction of measured inflammatory-necrotic areas in both gastrocnemius and quadriceps muscle of exercised mdx mice as compared to matched sedentary mdx mice. The degenerative-regenerative process was also evaluated by examining the protein levels of connexin 39 (Cx39), a specific gene expressed in injured muscles. Cx39 was not detected in sedentary wild type mice, whereas it was found markedly increased in sedentary mdx mice, revealing active muscle degeneration-regeneration process. These Cx39 protein levels were significantly reduced in muscles of mdx mice exercised for 30 and 40 days, revealing together with histomorphological analysis a strong reduction of degeneration process in mice subjected to low-intensity endurance exercise. Muscles of exercised mdx mice did not show significant changes in force and fatigue resistance as compared to sedentary mdx mice. Overall in this study we found that specific low-intensity endurance exercise induces a beneficial effect probably by reducing the degeneration of dystrophic muscle. © Georg Thieme Verlag KG Stuttgart · New York.
Photoacoustic spectroscopic imaging of intra-tumor heterogeneity and molecular identification
NASA Astrophysics Data System (ADS)
Stantz, Keith M.; Liu, Bo; Cao, Minsong; Reinecke, Dan; Miller, Kathy; Kruger, Robert
2006-02-01
Purpose. To evaluate photoacoustic spectroscopy as a potential imaging modality capable of measuring intra-tumor heterogeneity and spectral features associated with hemoglobin and the molecular probe indocyanine green (ICG). Material and Methods. Immune deficient mice were injected with wildtype and VEGF enhanced MCF-7 breast cancer cells or SKOV3x ovarian cancer cells, which were allowed to grow to a size of 6-12 mm in diameter. Two mice were imaged alive and after euthanasia for (oxy/deoxy)-hemoglobin content. A 0.4 mL volume of 1 μg/mL concentration of ICG was injected into the tail veins of two mice prior to imaging using the photoacoustic computed tomography (PCT) spectrometer (Optosonics, Inc., Indianapolis, IN 46202) scanner. Mouse images were acquired for wavelengths spanning 700-920 nm, after which the major organs were excised, and similarly imaged. A histological study was performed by sectioning the organ and optically imaging the fluorescence distribution. Results. Calibration of PCT-spectroscopy with different samples of oxygenated blood reproduced a hemoglobin dissociation curve consistent with empirical formula with an average error of 5.6%. In vivo PCT determination of SaO II levels within the tumor vascular was measurably tracked, and spatially correlated to the periphery of the tumor. Statistical and systematic errors associated with hypoxia were estimated to be 10 and 13%, respectively. Measured ICG concentrations determined by contrast-differential PCT images in excised organs (tumor, liver) were approximately 0.8 μg/mL, consistent with fluorescent histological results. Also, the difference in the ratio of ICG concentration in the gall bladder-to-vasculature between the mice was consistent with excretion times between the two mice. Conclusion. PCT spectroscopic imaging has shown to be a noninvasive modality capable of imaging intra-tumor heterogeneity of (oxy/deoxy)-hemoglobin and ICG in vivo, with an estimated error in SaO II at 17% and in ICG at 0.8 μg/mL in excised tissue. Ongoing development of spectroscopic analysis techniques, probe development, and calibration techniques are being developed to improve sensitivity to both exogenous molecular probes and (oxy/deoxy)-hemoglobin fraction.
Kieffer, Dorothy A; Piccolo, Brian D; Marco, Maria L; Kim, Eun Bae; Goodson, Michael L; Keenan, Michael J; Dunn, Tamara N; Knudsen, Knud Erik Bach; Adams, Sean H; Martin, Roy J
2016-01-01
Background: Enzyme-treated wheat bran (ETWB) contains a fermentable dietary fiber previously shown to decrease liver triglycerides (TGs) and modify the gut microbiome in mice. It is not clear which mechanisms explain how ETWB feeding affects hepatic metabolism, but factors (i.e., xenometabolites) associated with specific microbes may be involved. Objective: The objective of this study was to characterize ETWB-driven shifts in the cecal microbiome and to identify correlates between microbial changes and diet-related differences in liver metabolism in diet-induced obese mice that typically display steatosis. Methods: Five-week-old male C57BL/6J mice fed a 45%-lard–based fat diet supplemented with ETWB (20% wt:wt) or rapidly digestible starch (control) (n = 15/group) for 10 wk were characterized by using a multi-omics approach. Multivariate statistical analysis was used to identify variables that were strong discriminators between the ETWB and control groups. Results: Body weight and liver TGs were decreased by ETWB feeding (by 10% and 25%, respectively; P < 0.001), and an index of liver reactive oxygen species was increased (by 29%; P < 0.01). The cecal microbiome showed an increase in Bacteroidetes (by 42%; P < 0.05) and a decrease in Firmicutes (by 16%; P < 0.05). Metabolites that were strong discriminators between the ETWB and control groups included decreased liver antioxidants (glutathione and α-tocopherol); decreased liver carbohydrate metabolites, including glucose; lower hepatic arachidonic acid; and increased liver and plasma β-hydroxybutyrate. Liver transcriptomics revealed key metabolic pathways affected by ETWB, especially those related to lipid metabolism and some fed- or fasting-regulated genes. Conclusions: Together, these changes indicate that dietary fibers such as ETWB regulate hepatic metabolism concurrently with specific gut bacteria community shifts in C57BL/6J mice. It is proposed that these changes may elicit gut-derived signals that reach the liver via enterohepatic circulation, ultimately affecting host liver metabolism in a manner that mimics, in part, the fasting state. PMID:27798344
The effect of low dose rate on metabolomic response to radiation in mice
Goudarzi, Maryam; Mak, Tytus D.; Chen, Congju; Smilenov, Lubomir B.; Brenner, David J.
2014-01-01
Metabolomics has been shown to have utility in assessing responses to exposure by ionizing radiation (IR) in easily accessible biofluids such as urine. Most studies to date from our laboratory and others have employed γ-irradiation at relatively high dose rates (HDR), but many environmental exposure scenarios will probably be at relatively low dose rates (LDR). There are well-documented differences in the biologic responses to LDR compared to HDR, so an important question is to assess LDR effects at the metabolomics level. Our study took advantage of a modern mass spectrometry approach in exploring the effects of dose rate on the urinary excretion levels of metabolites 2 days after IR in mice. A wide variety of statistical tools were employed to further focus on metabolites, which showed responses to LDR IR exposure (0.00309 Gy/min) distinguishable from those of HDR. From a total of 709 detected spectral features, more than 100 were determined to be statistically significant when comparing urine from mice irradiated with 1.1 or 4.45 Gy to that of sham-irradiated mice 2 days post-exposure. The results of this study show that LDR and HDR exposures perturb many of the same pathways such as TCA cycle and fatty acid metabolism, which also have been implicated in our previous IR studies. However, it is important to note that dose rate did affect the levels of particular metabolites. Differences in urinary excretion levels of such metabolites could potentially be used to assess an individual's exposure in a radiobiological event and thus would have utility for both triage and injury assessment. PMID:25047638
Mortazavi, SMJ; Mosleh-Shirazi, MA; Tavassoli, AR; Taheri, M; Mehdizadeh, AR; Namazi, SAS; Jamali, A; Ghalandari, R; Bonyadi, S; Haghani, M; Shafie, M
2013-01-01
The aim of this study was to investigate the effect of pre-irradiation with microwaves on the induction of radioadaptive response. In the 1st phase of the study, 110 male mice were divided into 8 groups. The animals in these groups were exposed/sham-exposed to microwave, low dose rate gamma or both for 5 days. On day six, the animals were exposed to a lethal dose (LD). In the 2nd phase, 30 male rats were divided into 2 groups of 15 animals. The 1st group received microwave exposure. The 2nd group (controls) received the same LD but there was no treatment before the LD. On day 5, all animals were whole-body irradiated with the LD. Statistically significant differences between the survival rate of the mice only exposed to lethal dose of gamma radiation before irradiation with a lethal dose of gamma radiation with those of the animals pre-exposed to either microwave (p=0.02), low dose rate gamma (p=0.001) or both of these physical adapting doses (p=0.003) were observed. Likewise, a statistically significant difference between survival rates of the rats in control and test groups was observed. Altogether, these experiments showed that exposure to microwave radiation may induce a significant survival adaptive response. PMID:23930107
Mcdonald, Jacob D; Doyle-Eisele, Melanie; Gigliotti, Andrew; Miller, Rodney A; Seilkop, Steve; Mauderly, Joe L; Seagrave, JeanClare; Chow, Judith; Zielinska, Barbara
2012-09-01
The Health Effects Institute and its partners conceived and funded a program to characterize the emissions from heavy-duty diesel engines compliant with the 2007 and 2010 on-road emissions standards in the United States and to evaluate indicators of lung toxicity in rats and mice exposed repeatedly to diesel exhaust (DE*) from 2007-compliant engines. The preliminary hypothesis of this Advanced Collaborative Emissions Study (ACES) was that 2007-compliant on-road diesel emissions ". . . will not cause an increase in tumor formation or substantial toxic effects in rats and mice at the highest concentration of exhaust that can be used . . . although some biological effects may occur." This hypothesis is being tested at the Lovelace Respiratory Research Institute (LRRI) by exposing rats by chronic inhalation as a carcinogenicity bioassay, measuring indicators of pulmonary toxicity in rats after 1, 3, 12, and 24-30 months of exposure (final time point depends on the survival of animals), and measuring similar indicators of pulmonary toxicity in mice after 1 and 3 months of exposure. This report provides results of exposures through 3 months in rats and mice. Emissions from a 2007-compliant, 500-horsepower-class engine and aftertreatment system operated on a variable-duty cycle were used to generate the animal inhalation test atmospheres. Four treatment groups were exposed to one of three concentrations (dilutions) of exhaust combined with crankcase emissions, or to clean air as a negative control. Dilutions of exhaust were set to yield average integrated concentrations of 4.2, 0.8, and 0.1 ppm nitrogen dioxide (NO2). Exposure atmospheres were analyzed by daily measurements of key components and periodic detailed physical-chemical characterizations. Exposures were conducted 16 hr/dy (overnight), 5 dy/wk. Rats were evaluated for hematology, serum chemistry, bronchoalveolar lavage (BAL), lung cell proliferation, and histopathology after 1 month of exposure, and the same indicators plus pulmonary function after 3 months. Mice were evaluated for BAL, lung cell proliferation, and respiratory tract histopathology after 1 month of exposure, and the same indicators plus hematology and serum chemistry after 3 months. Samples from both species were collected for ancillary studies performed by investigators who were not at LRRI and were funded separately. Exposures were accomplished as planned, with average integrated exposure concentrations within 20% of the target dilutions. The major components were the gaseous inorganic compounds, nitrogen monoxide (NO), NO2, and carbon monoxide (CO). Minor components included low concentrations of diesel particulate matter (DPM) and volatile and semivolatile organic compounds (VOCs and SVOCs). There were no exposure-related differences in mortality or clinically evident morbidity. Among the more than 100 biologic response variables evaluated, the majority showed no significant difference from control as a result of exposure to DE. There was evidence of early lung changes in the rats, accompanied by a number of statistically significant increases in inflammatory and oxidative stress indicators, and some evidence of subtle changes in pulmonary function. In general, statistically significant effects were observed only at the highest exposure level. The mice did not have the same responses as the rats, but did have small but statistically significant increases in lavage neutrophils and the cytokine IL-6 at 1 month (but not at 3 months). These findings suggest that the rats were more sensitive than mice to the subchronic exposures.
Suto, Jun-ichi; Satou, Kunio
2013-05-04
Mice carrying the A(y) allele at the agouti locus become obese and are heavier than their non-A(y) littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-A(y) females are heavier than DDD females, whereas DDD.Cg-A(y) males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-A(y) males. Growth curves of DDD.Cg-A(y) mice were analyzed and compared with those of B6.Cg-A(y) mice from 5 to 25 weeks. In DDD.Cg-A(y) males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-A(y)) F(1)-A(y) mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the A(y) allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC A(y) males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-A(y) males. The lower body weight of DDD.Cg-A(y) male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males.
2013-01-01
Background Mice carrying the Ay allele at the agouti locus become obese and are heavier than their non-Ay littermates. However, this does not hold true for the genetic background of the DDD mouse strain. At 22 weeks of age, DDD.Cg-Ay females are heavier than DDD females, whereas DDD.Cg-Ay males are lighter than DDD males. This study aimed to determine the possible cause and identify the genes responsible for the lower body weight of DDD.Cg-Ay males. Results Growth curves of DDD.Cg-Ay mice were analyzed and compared with those of B6.Cg-Ay mice from 5 to 25 weeks. In DDD.Cg-Ay males, body weight gain stopped between 16 and 17 weeks and the body weight gradually decreased; thus, the lower body weight was a consequence of body weight loss. Quantitative trait locus (QTL) mapping was performed in backcrossed (BC) males of DDD × (B6 × DDD.Cg-Ay) F1-Ay mice. For the body weight at 25 weeks, significant QTLs were identified on chromosomes 1 and 4. The DDD allele was associated with a lower body weight at both loci. In particular, the QTL on chromosome 4 interacted with the Ay allele. Furthermore, suggestive QTLs for plasma glucose and high molecular weight adiponectin levels were coincidentally mapped to chromosome 4. The DDD allele was associated with increased glucose and decreased adiponectin levels. When the body weight at 25 weeks and plasma glucose levels were considered as dependent and independent variables, respectively, BC Ay males were classified into two groups according to statistical analysis using the partition method. Mice of one group had significantly higher glucose and lower adiponectin levels than those of the other group and exhibited body weight loss as observed with DDD-Ay males. Conclusions The lower body weight of DDD.Cg-Ay male mice was a consequence of body weight loss. Diabetes mellitus has been suggested to be a possible contributory factor causing body weight loss. The QTL on distal chromosome 4 contained the major responsible genes. This QTL interacted with the Ay allele, implying the reason why body weight loss occurs in DDD.Cg-Ay but not in DDD males. PMID:23641944
DSS-induced acute colitis in C57BL/6 mice is mitigated by sulforaphane pre-treatment.
Wagner, Anika E; Will, Olga; Sturm, Christine; Lipinski, Simone; Rosenstiel, Philip; Rimbach, Gerald
2013-12-01
The Brassica-derived isothiocyanate sulforaphane (SFN) is known to induce factor erythroid 2-related factor 2 (Nrf2), a transcription factor centrally involved in chemoprevention. Furthermore, SFN exhibits anti-inflammatory properties in vitro and in vivo. However, little is known regarding the anti-inflammatory properties of SFN in severe inflammatory phenotypes. In the present study, we tested if pre-treatment with SFN protects mice from dextran sodium sulphate (DSS)-induced colitis. C57BL/6 mice received either phosphate-buffered saline (control) or 25 mg/kg body weight (BW) SFN per os for 7 days. Subsequently, acute colitis was induced by administering 4% DSS via drinking water for 5 days and BWs, stool consistency and faecal blood loss were recorded. Following endoscopic colonoscopy, mice were sacrificed, the organs excised and spleen weights and colon lengths measured. For histopathological analysis, distal colon samples were fixed in 4% para-formaldehyde, sectioned and stained with hematoxylin/eosin. Inflammatory biomarkers were also measured in distal colon. Treatment with SFN prior to colitis induction significantly minimised both BW loss and the disease activity index compared to control mice. Furthermore, colon lengths in SFN pre-treated mice were significantly longer than in control mice. Both macroscopic and microscopic analysis of the colon revealed attenuated inflammation in SFN pre-treated animals. mRNA analysis of distal colon samples confirmed reduced expression of inflammatory markers and increased expression of Nrf2-dependent genes in SFN pre-treated mice. Our results indicate that pre-treating mice with SFN confers protection from DSS-induced colitis. These protective effects were corroborated macroscopically, microscopically and at the molecular level. © 2013.
Secreted Phosphoprotein 1 Is a Determinant of Lung Function Development in Mice
Martin, Timothy M.; Concel, Vincent J.; Upadhyay, Swapna; Bein, Kiflai; Brant, Kelly A.; George, Leema; Mitra, Ankita; Thimraj, Tania A.; Fabisiak, James P.; Vuga, Louis J.; Fattman, Cheryl; Kaminski, Naftali; Schulz, Holger; Leikauf, George D.
2014-01-01
Secreted phosphoprotein 1 (Spp1) is located within quantitative trait loci associated with lung function that was previously identified by contrasting C3H/HeJ and JF1/Msf mouse strains that have extremely divergent lung function. JF1/Msf mice with diminished lung function had reduced lung SPP1 transcript and protein during the peak stage of alveologenesis (postnatal day [P]14–P28) as compared with C3H/HeJ mice. In addition to a previously identified genetic variant that altered runt-related transcription factor 2 (RUNX2) binding in the Spp1 promoter, we identified another promoter variant in a putative RUNX2 binding site that increased the DNA protein binding. SPP1 induced dose-dependent mouse lung epithelial-15 cell proliferation. Spp1(−/−) mice have decreased specific total lung capacity/body weight, higher specific compliance, and increased mean airspace chord length (Lm) compared with Spp1(+/+) mice. Microarray analysis revealed enriched gene ontogeny categories, with numerous genes associated with lung development and/or respiratory disease. Insulin-like growth factor 1, Hedgehog-interacting protein, wingless-related mouse mammary tumor virus integration site 5A, and NOTCH1 transcripts decreased in the lung of P14 Spp1(−/−) mice as determined by quantitative RT-PCR analysis. SPP1 promotes pneumocyte growth, and mice lacking SPP1 have smaller, more compliant lungs with enlarged airspace (i.e., increased Lm). Microarray analysis suggests a dysregulation of key lung developmental transcripts in gene-targeted Spp1(−/−) mice, particularly during the peak phase of alveologenesis. In addition to its known roles in lung disease, this study supports SPP1 as a determinant of lung development in mice. PMID:24816281
Qi, Yunpeng; Jiang, Changtao; Cheng, Jie; Krausz, Kristopher W.; Li, Tiangang; Ferrell, Jessica M.; Gonzalez, Frank J.; Chiang, John Y.L.
2014-01-01
Bile acid synthesis is the major pathway for catabolism of cholesterol. Cholesterol 7α-hydroxylase (CYP7A1) is the rate-limiting enzyme in the bile acid biosynthetic pathway in the liver and plays an important role in regulating lipid, glucose and energy metabolism. Transgenic mice overexpressing CYP7A1 (CYP7A1-tg mice) were resistant to high-fat diet (HFD)-induced obesity, fatty liver, and diabetes. However the mechanism of resistance to HFD-induced obesity of CYP7A1-tg mice has not been determined. In this study, metabolomic and lipidomic profiles of CYP7A1-tg mice were analyzed to explore the metabolic alterations in CYP7A1-tg mice that govern the protection against obesity and insulin resistance by using ultra-performance liquid chromatography-coupled with electrospray ionization quadrupole time-of-flight mass spectrometry combined with multivariate analyses. Lipidomics analysis identified seven lipid markers including lysophosphatidylcholines, phosphatidylcholines, sphingomyelins and ceramides that were significantly decreased in serum of HFD-fed CYP7A1-tg mice. Metabolomics analysis identified 13 metabolites in bile acid synthesis including taurochenodeoxycholic acid, taurodeoxycholic acid, tauroursodeoxycholic acid, taurocholic acid, and tauro-β-muricholic acid (T-β-MCA) that differed between CYP7A1-tg and wild-type mice. Notably, T-β-MCA, an antagonist of the farnesoid X receptor (FXR) was significantly increased in intestine of CYP7A1-tg mice. This study suggests that reducing 12α-hydroxylated bile acids and increasing intestinal T-β-MCA may reduce high fat diet-induced increase of phospholipids, sphingomyelins and ceramides, and ameliorate diabetes and obesity. PMID:24796972
Automated video analysis system reveals distinct diurnal behaviors in C57BL/6 and C3H/HeN mice.
Adamah-Biassi, E B; Stepien, I; Hudson, R L; Dubocovich, M L
2013-04-15
Advances in rodent behavior dissection using automated video recording and analysis allows detailed phenotyping. This study compared and contrasted 15 diurnal behaviors recorded continuously using an automated behavioral analysis system for a period of 14 days under a 14/10 light/dark cycle in single housed C3H/HeN (C3H) or C57BL/6 (C57) male mice. Diurnal behaviors, recorded with minimal experimental interference and analyzed using phenotypic array and temporal distribution analysis showed bimodal and unimodal profiles in the C57 and C3H mice, respectively. Phenotypic array analysis revealed distinct behavioral rhythms in Activity-Like Behaviors (i.e. walk, hang, jump, come down) (ALB), Exploration-Like Behaviors (i.e. dig, groom, rear up, sniff, stretch) (ELB), Ingestion-Like Behaviors (i.e. drink, eat) (ILB) and Resting-Like Behaviors (i.e. awake, remain low, rest, twitch) (RLB) of C3H and C57 mice. Temporal distribution analysis demonstrated that strain and time of day affects the magnitude and distribution of the spontaneous homecage behaviors. Wheel running activity, water and food measurements correlated with timing of homecage behaviors. Subcutaneous (3 mg/kg, sc) or oral (0.02 mg/ml, oral) melatonin treatments in C57 mice did not modify either the total 24 h magnitude or temporal distribution of homecage behaviors when compared with vehicle treatments. We conclude that C3H and C57 mice show different spontaneous activity and behavioral rhythms specifically during the night period which are not modulated by melatonin. Copyright © 2013 Elsevier B.V. All rights reserved.
Nam, Jae-Hui; Min, Joon Hong; Kim, Wang-Kyun; Yim, Sunmin; Kim, Won-Serk
2017-07-01
A low-fluence 1064-nm Q-switched neodymium-doped yttrium aluminum garnet laser, or laser toning, has yielded favorable outcomes in various benign pigmented disorders. However, the exact mechanism of action of laser toning has not been fully elucidated. We sought to determine the inhibitory effect of laser toning on melanogenesis and to assess how laser passes influence the outcomes. To produce perceptible pigmentation, nine HRM-2 melanin-possessing hairless mice were treated with ultraviolet (UV) B radiation on the dorsal skin. This was followed by zero, two, four, or six passes of laser toning twice in 2 weeks on each designated quadrant. The spectrophotometric values and pigmentation-related protein expressions were measured. Pigment changes were found in the mice skin using the Fontana-Masson stain for histopathological analysis. Four- and six-pass laser toning significantly improved the lightness compared to that in the unirradiated control (p < 0.002). The Fontana-Masson stain showed that melanin was considerably decreased in laser-irradiated skin. As the number of laser passes increased, the expression of tyrosinase decreased (p < 0.008). The following parameters also decreased in proportion to the number of laser passes: MITF, TRP-1, TRP-2, p-ERK, and p-Akt. In contrast, TGF-β increased in proportion to the number of laser passes. However, the changes in these six proteins were not statistically significant. Our study demonstrates that laser toning improves skin pigmentation with increased number of passes in a dose-dependent manner. This effect is mediated by tyrosinase inhibition.
Verimli, Ural; Sehirli, Umit S
2016-09-01
The septum is a basal forebrain region located between the lateral ventricles in rodents. It consists of lateral and medial divisions. Medial septal projections regulate hippocampal theta rhythm whereas lateral septal projections are involved in processes such as affective functions, memory formation, and behavioral responses. Gamma-aminobutyric acidergic neurons of the septal region possess the 65 and 67 isoforms of the enzyme glutamic acid decarboxylase. Although data on the glutamic acid decarboxylase isoform distribution in the septal region generally appears to indicate glutamic acid decarboxylase 67 dominance, different studies have given inconsistent results in this regard. The aim of this study was therefore to obtain information on the distributions of both of these glutamic acid decarboxylase isoforms in the septal region in transgenic mice. Two animal groups of glutamic acid decarboxylase-green fluorescent protein knock-in transgenic mice were utilized in the experiment. Brain sections from the region were taken for anti-green fluorescent protein immunohistochemistry in order to obtain estimated quantitative data on the number of gamma-aminobutyric acidergic neurons. Following the immunohistochemical procedures, the mean numbers of labeled cells in the lateral and medial septal nuclei were obtained for the two isoform groups. Statistical analysis yielded significant results which indicated that the 65 isoform of glutamic acid decarboxylase predominates in both lateral and medial septal nuclei (unpaired two-tailed t-test p < 0.0001 for LS, p < 0.01 for MS). This study is the first to reveal the dominance of glutamic acid decarboxylase isoform 65 in the septal region in glutamic acid decarboxylase-green fluorescent protein transgenic mice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bassuk, James; Lendvay, Thomas S.; Sweet, Robert
Diseases and conditions affecting the lower urinary tract are a leading cause of dysfunctional sexual health, incontinence, infection, and kidney failure. The growth, differentiation, and repair of the bladder's epithelial lining are regulated, in part, by fibroblast growth factor (FGF)-7 and -10 via a paracrine cascade originating in the mesenchyme (lamina propria) and targeting the receptor for FGF-7 and -10 within the transitional epithelium (urothelium). The FGF-7 gene is located at the 15q15-q21.1 locus on chromosome 15 and four exons generate a 3.852-kb mRNA. Five duplicated FGF-7 gene sequences that localized to chromosome 9 were predicted not to generate functionalmore » protein products, thus validating the use of FGF-7-null mice as an experimental model. Recombinant FGF-7 and -10 induced proliferation of human urothelial cells in vitro and transitional epithelium of wild-type and FGF-7-null mice in vivo.To determine the extent that induction of urothelial cell proliferation during the bladder response to injury is dependent on FGF-7, an animal model of partial bladder outlet obstruction was developed. Unbiased stereology was used to measure the percentage of proliferating urothelial cells between obstructed groups of wild-type and FGF-7-null mice. The stereological analysis indicated that a statistical significant difference did not exist between the two groups, suggesting that FGF-7 is not essential for urothelial cell proliferation in response to partial outlet obstruction. In contrast, a significant increase in FGF-10 expression was observed in the obstructed FGF-7-null group, indicating that the compensatory pathway that functions in this model results in urothelial repair.« less
Effects of Low Doses of Bisphenol A on the Metabolome of Perinatally Exposed CD-1 Mice
Cabaton, Nicolas J.; Canlet, Cécile; Wadia, Perinaaz R.; Tremblay-Franco, Marie; Gautier, Roselyne; Molina, Jérôme; Sonnenschein, Carlos; Cravedi, Jean-Pierre; Rubin, Beverly S.; Soto, Ana M.
2013-01-01
Background: Bisphenol A (BPA) is a well-known endocrine disruptor used to manufacture polycarbonate plastics and epoxy resins. Exposure of pregnant rodents to low doses of BPA results in pleiotropic effects in their offspring. Objective: We used metabolomics—a method for determining metabolic changes in response to nutritional, pharmacological, or toxic stimuli—to examine metabolic shifts induced in vivo by perinatal exposure to low doses of BPA in CD-1 mice. Methods: Male offspring born to pregnant CD-1 mice that were exposed to vehicle or to 0.025, 0.25, or 25 µg BPA/kg body weight/day, from gestation day 8 through day 16 of lactation, were examined on postnatal day (PND) 2 or PND21. Aqueous extracts of newborns (PND2, whole animal) and of livers, brains, and serum samples from PND21 pups were submitted to 1H nuclear magnetic resonance spectroscopy. Data were analyzed using partial least squares discriminant analysis. Results: Examination of endogenous metabolic fingerprints revealed remarkable discrimination in whole extracts of the four PND2 newborn treatment groups, strongly suggesting changes in the global metabolism. Furthermore, statistical analyses of liver, serum, and brain samples collected on PND21 successfully discriminated among treatment groups. Variations in glucose, pyruvate, some amino acids, and neurotransmitters (γ-aminobutyric acid and glutamate) were identified. Conclusions: Low doses of BPA disrupt global metabolism, including energy metabolism and brain function, in perinatally exposed CD-1 mouse pups. Metabolomics can be used to highlight the effects of low doses of endocrine disruptors by linking perinatal exposure to changes in global metabolism. PMID:23425943
Polarization Raman spectroscopy to explain rodent models of brittle bone
NASA Astrophysics Data System (ADS)
Makowski, Alexander J.; Nyman, Jeffry S.; Mahadevan-Jansen, Anita
2013-03-01
Activation Transcription Factor 4 (Atf-4) is essential for osteoblast maturation and proper collagen synthesis. We recently found that these bones demonstrate a rare brittleness phenotype, which is independent of bone strength. We utilized a confocal Renishaw Raman microscope (50x objective; NA=.75) to evaluate embedded, polished cross-sections of mouse tibia from both wild-type and knockout mice at 8 weeks of age (24 mice, n<=8 per group). Analysis of peak ratios indicated statistically significant changes in both mineral and collagen; however, compositional changes did not fully encompass biomechanical differences. To investigate the impact of material organization, we acquired colocalized spectra aligning the polarization angle parallel and perpendicular to the long bone axis from wet intact femurs. To validate our results, we used MMP9-/- mice, which have a brittleness phenotype that is not explained by compositional Raman measures. Polarization angle difference spectra show marked significant changes in orientation of these compositional differences when comparing wild type to knockout bones. Relative to wild-type, Atf4 -/- and MMP9 -/- bones show significant differences (t-test; p<0.05) in prominent collagen peaks. Further investigation of known peak ratios illustrates that this physical anisotropy of molecular organization is tightly clustered in brittle knockout bones. Such findings could have alternate interpretations about net collagen orientation or the angular distribution of collagen molecules. Use of polarization specific Raman measurements has implicated a structural profile that furthers our understanding of models of bone brittleness. Polarization content of Raman spectra may prove significant in future studies of brittle fracture and human fracture risk.
Mauderly, J L; Kracko, D; Brower, J; Doyle-Eisele, M; McDonald, J D; Lund, A K; Seilkop, S K
2014-09-01
An experiment was conducted to test the hypothesis that a mixture of five inorganic gases could reproduce certain central vascular effects of repeated inhalation exposure of apolipoprotein E-deficient mice to diesel or gasoline engine exhaust. The hypothesis resulted from preceding multiple additive regression tree (MART) analysis of a composition-concentration-response database of mice exposed by inhalation to the exhausts and other complex mixtures. The five gases were the predictors most important to MART models best fitting the vascular responses. Mice on high-fat diet were exposed 6 h/d, 7 d/week for 50 d to clean air or a mixture containing 30.6 ppm CO, 20.5 ppm NO, 1.4 ppm NO₂, 0.5 ppm SO₂, and 2.0 ppm NH₃ in air. The gas concentrations were below the maxima in the preceding studies but in the range of those in exhaust exposure levels that caused significant effects. Five indicators of stress and pro-atherosclerotic responses were measured in aortic tissue. The exposure increased all five response indicators, with the magnitude of effect and statistical significance varying among the indicators and depending on inclusion or exclusion of an apparent outlying control. With the outlier excluded, three responses approximated predicted values and two fell below predictions. The results generally supported evidence that the five gases drove the effects of exhaust, and thus supported the potential of the MART approach for identifying putative causal components of complex mixtures.
Evaluation of cage micro-environment of mice housed on various types of bedding materials
Smith, E.; Stockwell, J.D.; Schweitzer, I.; Langley, S.H.; Smith, A.L.
2004-01-01
A variety of environmental factors can affect the outcomes of studies using laboratory rodents. One such factor is bedding. Several new bedding materials and processing methods have been introduced to the market in recent years, but there are few reports of their performance. In the studies reported here, we have assessed the cage micro-environment (in-cage ammonia levels, temperature, and humidity) of mice housed on various kinds of bedding and their combinations. We also compared results for bedding supplied as Nestpaks versus loose bedding. We studied C57BL/6J mice (commonly used) and NOD/LtJ mice (heavy soilers) that were maintained, except in one study, in static duplex cages. In general, we observed little effect of bedding type on in-cage temperature or humidity; however, there was considerable variation in ammonia concentrations. The lowest ammonia concentrations occurred in cages housing mice on hardwood bedding or a mixture of corncob and alpha cellulose. In one experiment comparing the micro-environments of NOD/LtJ male mice housed on woodpulp fiber bedding in static versus ventilated caging, we showed a statistically significant decrease in ammonia concentrations in ventilated cages. Therefore, our data show that bedding type affects the micro-environment in static cages and that effects may differ for ventilated cages, which are being used in vivaria with increasing frequency.
Selection for increased voluntary wheel-running affects behavior and brain monoamines in mice
Waters, R.Parrish; Pringle, R.B.; Forster, G.L.; Renner, K.J.; Malisch, J.L.; Garland, T.; Swallow, J.G.
2013-01-01
Selective-breeding of house mice for increased voluntary wheel-running has resulted in multiple physiological and behavioral changes. Characterizing these differences may lead to experimental models that can elucidate factors involved in human diseases and disorders associated with physical inactivity, or potentially treated by physical activity, such as diabetes, obesity, and depression. Herein, we present ethological data for adult males from a line of mice that has been selectively bred for high levels of voluntary wheel-running and from a non-selected control line, housed with or without wheels. Additionally, we present concentrations of central monoamines in limbic, striatal, and midbrain regions. We monitored wheel-running for 8 weeks, and observed home-cage behavior during the last 5 weeks of the study. Mice from the selected line accumulated more revolutions per day than controls due to increased speed and duration of running. Selected mice exhibited more active behaviors than controls, regardless of wheel access, and exhibited less inactivity and grooming than controls. Selective-breeding also influenced the longitudinal patterns of behavior. We found statistically significant differences in monoamine concentrations and associated metabolites in brain regions that influence exercise and motivational state. These results suggest underlying neurochemical differences between selected and control lines that may influence the observed differences in behavior. Our results bolster the argument that selected mice can provide a useful model of human psychological and physiological diseases and disorders. PMID:23352668
Dukkipati, S Shekar; Chihi, Aouatef; Wang, Yiwen; Elbasiouny, Sherif M
2017-01-01
The possible presence of pathological changes in cholinergic synaptic inputs [cholinergic boutons (C-boutons)] is a contentious topic within the ALS field. Conflicting data reported on this issue makes it difficult to assess the roles of these synaptic inputs in ALS. Our objective was to determine whether the reported changes are truly statistically and biologically significant and why replication is problematic. This is an urgent question, as C-boutons are an important regulator of spinal motoneuron excitability, and pathological changes in motoneuron excitability are present throughout disease progression. Using male mice of the SOD1-G93A high-expresser transgenic ( G93A ) mouse model of ALS, we examined C-boutons on spinal motoneurons. We performed histological analysis at high statistical power, which showed no difference in C-bouton size in G93A versus wild-type motoneurons throughout disease progression. In an attempt to examine the underlying reasons for our failure to replicate reported changes, we performed further histological analyses using several variations on experimental design and data analysis that were reported in the ALS literature. This analysis showed that factors related to experimental design, such as grouping unit, sampling strategy, and blinding status, potentially contribute to the discrepancy in published data on C-bouton size changes. Next, we systematically analyzed the impact of study design variability and potential bias on reported results from experimental and preclinical studies of ALS. Strikingly, we found that practices such as blinding and power analysis are not systematically reported in the ALS field. Protocols to standardize experimental design and minimize bias are thus critical to advancing the ALS field.
Bruns, Michael; Wanger, Jara; Utermöhlen, Olaf; Deppert, Wolfgang
2015-01-01
In Simian virus 40 (SV40) transgenic BALB/c WAP-T mice tumor development and progression is driven by SV40 tumor antigens encoded by inducible transgenes. WAP-T mice constitute a well characterized mouse model for breast cancer with strong similarities to the corresponding human disease. BALB/c mice mount only a weak cellular immune response against SV40 T-antigen (T-Ag). For studying tumor antigen specific CD8+ T-cell responses against transgene expressing cells, we created WAP-TNP mice, in which the transgene additionally codes for the NP118–126-epitope contained within the nucleoprotein of lymphocytic choriomeningitis virus (LCMV), the immune-dominant T-cell epitope in BALB/c mice. We then investigated in WAP-TNP mice the immune responses against SV40 tumor antigens and the NP-epitope within the chimeric T-Ag/NP protein (T-AgNP). Analysis of the immune-reactivity against T-Ag in WAP-T and of T-AgNP in WAP-TNP mice revealed that, in contrast to wild type (wt) BALB/c mice, WAP-T and WAP-TNP mice were non-reactive against T-Ag. However, like wtBALB/c mice, WAP-T as well as WAP-TNP mice were highly reactive against the immune-dominant LCMV NP-epitope, thereby allowing the analysis of NP-epitope specific cellular immune responses in WAP-TNP mice. LCMV infection of WAP-TNP mice induced a strong, LCMV NP-epitope specific CD8+ T-cell response, which was able to specifically eliminate T-AgNP expressing mammary epithelial cells both prior to tumor formation (i.e. in cells of lactating mammary glands), as well as in invasive tumors. Elimination of tumor cells, however, was only transient, even after repeated LCMV infections. Further studies showed that already non-infected WAP-TNP tumor mice contained LCMV NP-epitope specific CD8+ T-cells, albeit with strongly reduced, though measurable activity. Functional impairment of these ‘endogenous’ NP-epitope specific T-cells seems to be caused by expression of the programmed death-1 protein (PD1), as anti-PD1 treatment of splenocytes from WAP-TNP tumor mice restored their activity. These characteristics are similar to those found in many tumor patients and render WAP-TNP mice a suitable model for analyzing parameters to overcome the blockade of immune checkpoints in tumor patients. PMID:26513294
Wu, Pu; Shen, Qian; Dong, Suzhen; Xu, Zhiliang; Tsien, Joe Z; Hu, Yinghe
2008-10-01
Conditional double knockout of presenilin-1 and presenilin-2 (cDKO) in forebrain of mice led to brain atrophy, tau hyperphosphorylation, synaptic dysfunction and cognitive deficit. These brain changes recapitulated most of the neurodegenerative phenotypes of Alzheimer's disease (AD). In this report, we have investigated the effects of 4-month calorie restriction (CR) regimen on different phenotypes in cDKO mice. We found that CR improved novel object recognition and contextual fear conditioning memory in the cDKO mice. Histological and biochemical analysis showed that CR attenuated ventricle enlargement, caspase-3 activation and astrogliosis. In addition, the induction of tau hyperphosphorylation in the cDKO mice was reduced by CR, possibly through reduction of p25 accumulation and aberrant CDK5 activation. Finally, DNA microarray analysis demonstrated that CR could increase the expression of neurogenesis related genes and decrease the expression of inflammation related genes in the hippocampus of cDKO mice. The possible molecular mechanisms of the CR effects on alleviating AD pathogenesis have been discussed.
Zhang, Nianhui; Peng, Zechun; Tong, Xiaoping; Lindemeyer, A Kerstin; Cetina, Yliana; Huang, Christine S; Olsen, Richard W; Otis, Thomas S; Houser, Carolyn R
2017-11-01
While numerous changes in the GABA system have been identified in models of Fragile X Syndrome (FXS), alterations in subunits of the GABA A receptors (GABA A Rs) that mediate tonic inhibition are particularly intriguing. Considering the key role of tonic inhibition in controlling neuronal excitability, reduced tonic inhibition could contribute to FXS-associated disorders such as hyperactivity, hypersensitivity, and increased seizure susceptibility. The current study has focused on the expression and function of the δ subunit of the GABA A R, a major subunit involved in tonic inhibition, in granule cells of the dentate gyrus in the Fmr1 knockout (KO) mouse model of FXS. Electrophysiological studies of dentate granule cells revealed a marked, nearly four-fold, decrease in tonic inhibition in the Fmr1 KO mice, as well as reduced effects of two δ subunit-preferring pharmacological agents, THIP and DS2, supporting the suggestion that δ subunit-containing GABA A Rs are compromised in the Fmr1 KO mice. Immunohistochemistry demonstrated a small but statistically significant decrease in δ subunit labeling in the molecular layer of the dentate gyrus in Fmr1 KO mice compared to wildtype (WT) littermates. The discrepancy between the large deficits in GABA-mediated tonic inhibition in granule cells in the Fmr1 KO mice and only modest reductions in immunolabeling of the δ subunit led to studies of surface expression of the δ subunit. Cross-linking experiments followed by Western blot analysis demonstrated a small, non-significant decrease in total δ subunit protein in the hippocampus of Fmr1 KO mice, but a four-fold decrease in surface expression of the δ subunit in these mice. No significant changes were observed in total or surface expression of the α4 subunit protein, a major partner of the δ subunit in the forebrain. Postembedding immunogold labeling for the δ subunit demonstrated a large, three-fold, decrease in the number of symmetric synapses with immunolabeling at perisynaptic locations in Fmr1 KO mice. While α4 immunogold particles were also reduced at perisynaptic locations in the Fmr1 KO mice, the labeling was increased at synaptic sites. Together these findings suggest that, in the dentate gyrus, altered surface expression of the δ subunit, rather than a decrease in δ subunit expression alone, could be limiting δ subunit-mediated tonic inhibition in this model of FXS. Finding ways to increase surface expression of the δ subunit of the GABA A R could be a novel approach to treatment of hyperexcitability-related alterations in FXS. Copyright © 2017 Elsevier Inc. All rights reserved.
Laron, Zvi
2005-02-01
Present knowledge on the effects of growth hormone (GH) and insulin-like growth factor-I (IGF-I) deficiency on aging and lifespan are controversial. Studying untreated patients with either isolated GH deficiency due to GH gene deletion, patients with multiple pituitary hormone deficiency due to PROP-1 gene mutation and patients with isolated IGF-I deficiency due to deletions or mutations of the GH receptor gene (Laron syndrome); it was found, that these patients despite signs of early aging (wrinkled skin, obesity, insulin resistance and osteopenia) have a long life span reaching ages of 80-90 years. Animal models of genetic GH deficiencies such as Snell mice (Pit-1 gene mutations) the Ames mice (PROP-1 gene mutation) and the Laron mice (GH receptor gene knock-out) have a statistically significant higher longevity compared to normal controls. On the contrary, mice transgenic for GH and acromegalic patients secreting high amounts of GH have premature death. Those data raise the question whether pharmacological GH administration to adults is deleterious, in contrast to policies advocating such therapies.
Tahara, Atsuo; Takasu, Toshiyuki; Yokono, Masanori; Imamura, Masakazu; Kurosaki, Eiji
2017-08-15
In this study, we investigated and compared the effects of all six sodium-glucose cotransporter (SGLT) 2 inhibitors commercially available in Japan on diabetes-related diseases and complications in type 2 diabetic mice. Following 4-week repeated administration to diabetic mice, all SGLT2 inhibitors showed significant improvement in diabetes-related diseases and complications, including obesity; abnormal lipid metabolism; steatohepatitis; inflammation; endothelial dysfunction; and nephropathy. While all SGLT2 inhibitors exerted comparable effects in reducing hyperglycemia, improvement of these diabetes-related diseases and complications was more potent with the two long-acting drugs (ipragliflozin and dapagliflozin) than with the four intermediate-acting four drugs (tofogliflozin, canagliflozin, empagliflozin, and luseogliflozin), albeit without statistical significance. These findings demonstrate that SGLT2 inhibitors alleviate various diabetic pathological conditions in type 2 diabetic mice, and suggest that SGLT2 inhibitors, particularly long-acting drugs, might be useful not only for hyperglycemia but also in diabetes-related diseases and complications, including nephropathy in type 2 diabetes. Copyright © 2017 Elsevier B.V. All rights reserved.
Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R; Radden, Taylor; Dunson, David B; Fisher, Simon E; Jarvis, Erich D
2016-01-01
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.
Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.
2016-01-01
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans. PMID:27812326
Ghasem, Saki; Majid, Jasemi; Shiva, Razi
2013-07-01
To assess developmental capacity of fertilised oocytes by sperm of mouse exposed to forced swimming stress. The experimental study was conducted at the Physiology Research Center of Ahvaz Jundishapur University of Medical Sciences, from August 2011 to January 2012. It comprised 20 adult male and 10 female mice. The male mice were randomly divided into two equal groups (n=10): control and experimental. Animals of the experimental group were submitted to forced swimming stress. All male mice were euthanised and the cauda epididymis removed before contents were squeezed out. A pre-incubated capacitated sperm was gently added to the freshly collected ova of the two groups of study. The combined sperm-oocyte suspension was incubated for 4-6 hours under a condition of 5% Carbon dioxide and 37 degreeC temperature. The ova were then washed through several changes of medium and finally incubated. Fertilisation was assessed by recording the number of 1-cell embryos 4-6 hours after insemination. The 1-cell embryos were allowed to further develop in vitro for about 120 hours. Development of embryos everyday and during 5 days of culture was observed by using inverted microscope. SPSS 13.0.1 was used for statistical analysis. The percentage of oocytes fertilised was 75:96 (78.12+/-4.8%) and 50:10 (49.5+/-3.9%) in the control and experimental groups, respectively. The difference was significant (p <0.001). At 24 hours after insemination, 70:75 (93.33+/-2.7%) and 39:50 (78+/-3.5%)of fertilized oocytes developed to two=cell embryos in control and experimental groups respectively.The difference was significant (p <0.02).There were not significant differences (p>0.05) between the two groups in terms of speed and developmental capacity of blastocysts. Fertilisation capacity of male mice affected by forced swimming stress and also the developmental capacity of oocyte fertilised by sperm of mouse exposed to forced swimming stress decreased.
Li, Li-Li; Wang, He-Rong; Zhou, Zhi-Yi; Luo, Jing; Wang, Xiao-Li; Xiao, Xiang-Qian; Zhou, Yu-Bai; Zeng, Yi
2016-01-01
C3 and TC-1 are the two model cell lines most commonly used in studies of vaccines and drugs against human papillomavirus (HPV) infection. Because C3 cells contain both the HPV16 E and L genes, but TC-1 cells contain only the HPV16 E genes, C3 cells are usually used as the model cell line in studies targeting the HPV16 L protein. However, expression of the L1 protein is difficult to detect in C3 cells using common methods. In our study, Short tandem repeat analysis (STR) was used to demonstrate that C3 cells are indeed derived from mice, PCR results show that HPV16 L1, E6 and E7 genes were detected in C3 genomic DNA, and RT-PCR results demonstrated that L1 transcription had occurred in C3 cells. However, the expression of C3 protein was not found in the results of western blot and immunohistochemistry (IHC). Growth and proliferation of C3 were inhibited by mice spleen lymphocytes that had been immunized with a vaccine against HPV16L1. The luciferase gene was integrated into C3 cells, and it was confirmed that addition of the exogenous gene had no effect on C3 cells by comparing cell growth and tumor formation with untransformed cells. Cells stably expressing luciferase (C3-luc) were screened and subcutaneously injected into the mice. Tumors became established and were observed using a Spectrum Pre-clinical in Vivo Imaging System. Tumor size of mice in the different groups at various time points was calculated by counting photons. The sensitivity of the animals to the vaccine was quantified by statistical comparison. Ten or 30 days following injection of the C3-luc cells, tumor size differed significantly between the PBS and vaccine groups, indicating that C3 cells were susceptible to vaccination even after tumors were formed in vivo.
Wang, Ping; Schuetz, Christian; Ross, Alana; Dai, Guangping; Markmann, James F.
2013-01-01
Purpose: To detect adoptively transferred immune attack in a mouse model of islet cell transplantation by using a long-circulating paramagnetic T1 contrast agent, a protected graft copolymer (PGC) that is covalently linked to gadolinium–diethylenetriaminepentaacetic acid with fluorescein isothiocyanate (Gd-DTPA-F), which accumulates in the sites of inflammation that are characterized by vascular disruption. Materials and Methods: All animal experiments were performed in compliance with institutional guidelines and approved by the subcommittee on research animal care. Six nonobese diabetic severe combined immunodeficiency mice received transplanted human islet cells under the kidney capsule and adoptively transferred 5 × 106 splenocytes from 6-week-old nonobese diabetic mice. These mice also served as control subjects for comparison of pre- and postadoptive transfer MR imaging results. Mice that received phosphate-buffered saline solution only were included as nonadoptive-transfer control subjects (n = 2). In vivo magnetic resonance (MR) imaging was performed before and 17 hours after intravenous injections of PGC-Gd-DTPA-F, followed by histologic examination. Statistical differences were analyzed by means of a paired Student t test and repeated two-way analysis of variance. Results: MR imaging results showed significantly greater accumulation of PGC-Gd-DTPA-F in the graft area after immune attack initiated by adoptive transfer of splenocytes compared with that of the same area before the transfer (T1, 137.2 msec ± 39.3 and 239.5 msec ± 17.6, respectively; P < .001). These results were confirmed at histologic examination, which showed considerable leakage of the contrast agent into the islet cell interstitium. Conclusion: PGC-Gd-DTPA-F–enhanced MR imaging allows for the in vivo assessment of vascular damage of the graft T cell challenge. © RSNA, 2012 Supplemental material: http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12121129/-/DC1 PMID:23264346
Intravital imaging of osteocytes in mouse calvaria using third harmonic generation microscopy
Cisek, Richard; Wein, Marc N.; Turcotte, Raphaël; Haase, Christa; Yeh, Shu-Chi A.; Bharadwaj, Srinidhi; Raphael, Anthony P.; Paudel, Hari; Alt, Clemens; Liu, Tzu-Ming; Kronenberg, Henry M.; Lin, Charles P.
2017-01-01
Osteocytes are the most abundant cell in the bone, and have multiple functions including mechanosensing and regulation of bone remodeling activities. Since osteocytes are embedded in the bone matrix, their inaccessibility makes in vivo studies problematic. Therefore, a non-invasive technique with high spatial resolution is desired. The purpose of this study is to investigate the use of third harmonic generation (THG) microscopy as a noninvasive technique for high-resolution imaging of the lacunar-canalicular network (LCN) in live mice. By performing THG imaging in combination with two- and three-photon fluorescence microscopy, we show that THG signal is produced from the bone-interstitial fluid boundary of the lacuna, while the interstitial fluid-osteocyte cell boundary shows a weaker THG signal. Canaliculi are also readily visualized by THG imaging, with canaliculi oriented at small angles relative to the optical axis exhibiting stronger signal intensity compared to those oriented perpendicular to the optical axis (parallel to the image plane). By measuring forward- versus epi-detected THG signals in thinned versus thick bone samples ex vivo, we found that the epi-collected THG from the LCN of intact bone contains a superposition of backward-directed and backscattered forward-THG. As an example of a biological application, THG was used as a label-free imaging technique to study structural variations in the LCN of live mice deficient in both histone deacetylase 4 and 5 (HDAC4, HDAC5). Three-dimensional analyses were performed and revealed statistically significant differences between the HDAC4/5 double knockout and wild type mice in the number of osteocytes per volume and the number of canaliculi per lacunar surface area. These changes in osteocyte density and dendritic projections occurred without differences in lacunar size. This study demonstrates that THG microscopy imaging of the LCN in live mice enables quantitative analysis of osteocytes in animal models without the use of dyes or physical sectioning. PMID:29065178
Lifetime Increased Cancer Risk in Mice Following Exposure to Clinical Proton Beam–Generated Neutrons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerweck, Leo E., E-mail: lgerweck@mgh.harvard.edu; Huang, Peigen; Lu, Hsiao-Ming
2014-05-01
Purpose: To evaluate the life span and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical spread-out Bragg peak (SOBP) proton beam. Methods and Materials: Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid-SOBP of a 165-MeV, clinical proton beam. The average distance from the edge of the mid-SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once-daily fractions of 25 Gy,more » 4 days per week, for 6 weeks. The age at death and cause of death (ie, cancer and type vs noncancer causes) were assessed over the life span of the mice. Results: Exposure of mice to a dose of 600 Gy of proton beam–generated neutrons, reduced the median life span of the mice by 4.2% (Kaplan-Meier cumulative survival, P=.053). The relative risk of death from cancer in neutron exposed versus control mice was 1.40 for cancer of all types (P=.0006) and 1.22 for solid cancers (P=.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions: Exposure of mice to neutrons generated by a proton dose that exceeds a typical course of radiation therapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field second solid cancers from SOBP proton-generated neutrons and typical treatment schedules, is 6 to 10 times less than is suggested by current neutron risk estimates.« less
Huang, Jinhong; Yang, Jicheng; Ling, Chunhua; Zhao, Daguo; Xie, Yufeng; You, Zhenhua
2014-02-01
The inhibitor of growth 4 (ING4) is an important tumor suppressive gene.It has been proven that ING4 could inhibite the proliferation of many tumors. e aim of this study is to investigate the inhibitory effect and anti-cancer mechanism of adenovirus-mediated ING4 gene on SPC-A1 human lung adenocarcinoma in nude mice. A human lung adenocarcinoma xenograft model was established with SPC-A1 cells in nude mice. A total of 15 tumor-bearing nude mice were randomly divided into three groups, namely, PBS, Ad-GFP, and Ad-ING4. e mice in the three groups were intratumorally injected every other day. Their tumor volumes were continually recorded. The treatment tumors were then removed from the mice and weighed. Tumor inhibition rates were calculated. Cell apoptosis was examined by TUNEL method. Caspase-3, COX-2, Fas, and FasL expressions were investigated by immunohistochemistry SP assay. Both tumor weight and volume in the Ad-ING4 group were significantly decreased. The tumor inhibition rate of the mice in the Ad-ING4 group (33.17% ± 5.24%) was statistically different from that of the mice in the Ad-GFP group (1.31% ± 0.31%; P<0.05). The apoptotic index of the mice in the Ad-ING4 group (69.23% ± 6.53%) was also significantly different from those in PBS (17.04% ± 1.10%) and Ad-GFP groups (18.81% ± 1.93%; P<0.05). Based on immunohistochemistry SP assay, the results showed that Ad-ING4 may not only upregulate the expressions of caspase-3, Fas, and FasL but also downregulate the expression of COX-2. ING4 gene elicited a remarkable growth inhibitory e-ect on human lung adenocarcinoma xenografts in nude mice. e mechanism is possibly related to an increase in tumor cell apoptosis.
Lifetime increased cancer risk in mice following exposure to clinical proton beam generated neutrons
Gerweck, Leo E.; Huang, Peigen; Lu, Hsiao-Ming; Paganetti, Harald; Zhou, Yenong
2014-01-01
Purpose To evaluate the lifespan and risk of cancer following whole-body exposure of mice to neutrons generated by a passively scattered clinical SOBP proton beam. Methods and Materials Three hundred young adult female FVB/N mice, 152 test and 148 control, were entered into the experiment. Mice were placed in an annular cassette around a cylindrical phantom, which was positioned lateral to the mid SOBP of a 165 MeV, clinical proton beam. The average distance from the edge of the mid SOBP to the conscious active mice was 21.5 cm. The phantom was irradiated with once daily fractions of 25 Gy, 4 days per week, for 6 weeks. The age at death and cause of death, i.e., cancer and type vs. non-cancer causes, were assessed over the lifespan of the mice. Results Exposure of mice to a dose of 600 Gy of proton beam generated neutrons, reduced the median lifespan of the mice by 4.2% (Kaplan-Meier cumulative survival, P = 0.053). The relative risk of death from cancer in neutron exposed vs. control mice was 1.40 for cancer of all types (P = 0.0006) and 1.22 for solid cancers (P = 0.09). For a typical 60 Gy dose of clinical protons, the observed 22% increased risk of solid cancer would be expected to decrease by a factor of 10. Conclusions Exposure of mice to neutrons generated by a proton dose which exceeds a typical course of radiotherapy by a factor of 10, resulted in a statistically significant increase in the background incidence of leukemia and a marginally significant increase in solid cancer. The results indicate that the risk of out-of-field 2nd solid cancers from SOBP proton generated neutrons and typical treatment schedules, is 6 - 10 times less than is suggested by current neutron risk estimates. PMID:24725699
Liu, Taotao; He, Zhigang; Tian, Xuebi; Kamal, Ghulam Mustafa; Li, Zhixiao; Liu, Zeyuan; Liu, Huili; Xu, Fuqiang; Wang, Jie; Xiang, Hongbing
2017-06-01
The mechanism behind itching is not well understood. Proton nuclear magnetic resonance ( 1 H-NMR) spectroscopic analysis of spinal cord extracts provides a quick modality for evaluating the specific metabolic activity of α-Me-5-HT-evoked pruritus mice. In the current study, four groups of young adult male C57Bl/6 mice were investigated; one group treated with saline, while the other groups intradermally injected with α-Me-5-HT (histamine independent pruritogen), histamine (histamine dependent pruritogen) and capsaicin (algogenic substance), respectively. The intradermal microinjection of α-Me-5-HT and histamine resulted in a dramatic increase in the itch behavior. Furthermore, the results of NMR studies of the spinal cord extracts revealed that the metabolites show very different patterns for these different drugs, especially when comparing α-Me-5-HT and capsaicin. All the animals in the groups of α-Me-5-HT and capsaicin were completely separated using the metabolite parameters and principal component analysis. For α-Me-5-HT, the concentrations of glutamate, GABA, glycine and aspartate increased significantly, especially for GABA (increased 17.2%, p=0.008). Furthermore, the concentration of NAA increased, but there was no significant difference (increased 11.3%, p=0.191) compared to capsaicin (decreased 29.1%, p=0.002). Thus the application of magnetic resonance spectroscopy technique, coupled with statistical analysis, could further explain the mechanism behind itching evoked by α-Me-5-HT or other drugs. It can thus improve our understanding of itch pathophysiology and pharmacological therapies which may contribute to itch relief. Copyright © 2017 Elsevier B.V. All rights reserved.
Mendes, Maria Carolina S; Paulino, Daiane Sm; Brambilla, Sandra R; Camargo, Juliana A; Persinoti, Gabriela F; Carvalheira, José Barreto C
2018-05-14
To investigate the effect of probiotic supplementation during the development of an experimental model of colitis associated colon cancer (CAC). C57BL/6 mice received an intraperitoneal injection of azoxymethane (10 mg/kg), followed by three cycles of sodium dextran sulphate diluted in water (5% w/v). Probiotic group received daily a mixture of Lactobacillus acidophilus , Lactobacillus rhamnosus and Bifidobacterium bifidum . Microbiota composition was assessed by 16S rRNA Illumina HiSeq sequencing. Colon samples were collected for histological analysis. Tumor cytokines was assessed by Real Time-PCR (Polymerase Chain Reaction); and serum cytokines by Multiplex assay. All tests were two-sided. The level of significance was set at P < 0.05. Graphs were generated and statistical analysis performed using the software GraphPad Prism 5.0. The project was approved by the institutional review board committee. At day 60 after azoxymethane injection, the mean number of tumours in the probiotic group was 40% lower than that in the control group, and the probiotic group exhibited tumours of smaller size (< 2 mm) ( P < 0.05). There was no difference in richness and diversity between groups. However, there was a significant difference in beta diversity in the multidimensional scaling analysis. The abundance of the genera Lactobacillus , Bifidobacterium , Allobaculum , Clostridium XI and Clostridium XVIII increased in the probiotic group ( P < 0.05). The microbial change was accompanied by reduced colitis, demonstrated by a 46% reduction in the colon inflammatory index; reduced expression of the serum chemokines RANTES and Eotaxin; decreased p-IKK and TNF-α and increased IL-10 expression in the colon. Our results suggest a potential chemopreventive effect of probiotic on CAC. Probiotic supplementation changes microbiota structure and regulates the inflammatory response, reducing colitis and preventing CAC.
Lagged association between geomagnetic activity and diminished nocturnal pain thresholds in mice.
Galic, M A; Persinger, M A
2007-10-01
A wide variety of behaviors in several species has been statistically associated with the natural variations in geomagnetism. To examine whether changes in geomagnetic activity are associated with pain thresholds, adult mice were exposed to a hotplate paradigm once weekly for 52 weeks during the dark cycle. Planetary A index values from the previous 6 days of a given hotplate session were correlated with the mean response latency for subjects to the thermal stimulus. We found that hotplate latency was significantly (P < 0.05) and inversely correlated (rho = -0.25) with the daily geomagnetic intensity 3 days prior to testing. Therefore, if the geomagnetic activity was greater 3 days before a given hotplate trial, subjects tended to exhibit shorter response latencies, suggesting lower pain thresholds or less analgesia. These results are supported by related experimental findings and suggest that natural variations in geomagnetic intensity may influence nociceptive behaviors in mice. (c) 2007 Wiley-Liss, Inc.
Maksiutov, R A; Shchelkunov, S N
2011-01-01
Efficacy of candidate DNA-vaccines based on the variola virus natural gene A30L and artificial gene A30Lopt with modified codon usage, optimized for expression in mammalian cells, was tested. The groups of mice were intracutaneously immunized three times with three-week intervals with candidate DNA-vaccines: pcDNA_A30L or pcDNA_A30Lopt, and in three weeks after the last immunization all mice in the groups were intraperitoneally infected by the ectromelia virus K1 strain in 10 LD50 dose for the estimation of protection. It was shown that the DNA-vaccines based on natural gene A30L and codon-optimized gene A30Lopt elicited virus, thereby neutralizing the antibody response and protected mice from lethal intraperitoneal challenge with the ectromelia virus with lack of statistically significant difference.
Yan, Wenjun; Wei, Jianchao; Deng, Xufang; Shi, Zixue; Zhu, Zixiang; Shao, Donghua; Li, Beibei; Wang, Shaohui; Tong, Guangzhi; Ma, Zhiyong
2015-08-18
p53 is a tumor suppressor that contributes to the host immune response against viral infections in addition to its well-established protective role against cancer development. In response to influenza A virus (IAV) infection, p53 is activated and plays an essential role in inhibiting IAV replication. As a transcription factor, p53 regulates the expression of a range of downstream responsive genes either directly or indirectly in response to viral infection. We compared the expression profiles of immune-related genes between IAV-infected wild-type p53 (p53WT) and p53-deficient (p53KO) mice to gain an insight into the basis of p53-mediated antiviral response. p53KO and p53WT mice were infected with influenza A/Puerto Rico/8/1934 (PR8) strain. Clinical symptoms and body weight changes were monitored daily. Lung specimens of IAV-infected mice were collected for analysis of virus titers and gene expression profiles. The difference in immune-related gene expression levels between IAV-infected p53KO and p53WT mice was comparatively determined using microarray analysis and confirmed by quantitative real-time reverse transcription polymerase chain reaction. p53KO mice showed an increased susceptibility to IAV infection compared to p53WT mice. Microarray analysis of gene expression profiles in the lungs of IAV-infected mice indicated that the increased susceptibility was associated with significantly changed expression levels in a range of immune-related genes in IAV-infected p53KO mice. A significantly attenuated expression of Ifng (encoding interferon (IFN)-gamma), Irf7 (encoding IFN regulator factor 7), and antiviral genes, such as Mx2 and Eif2ak2 (encoding PKR), were observed in IAV-infected p53KO mice, suggesting an impaired IFN-mediated immune response against IAV infection in the absence of p53. In addition, dysregulated expression levels of proinflammatory cytokines and chemokines, such as Ccl2 (encoding MCP-1), Cxcl9, Cxcl10 (encoding IP-10), and Tnf, were detected in IAV-infected p53KO mice during early IAV infection, reflecting an aberrant inflammatory response. Lack of p53 resulted in the impaired expression of genes involved in IFN signaling and the dysregulated expression of cytokine and chemokine genes in IAV-infected mice, suggesting an essential role of p53 in the regulation of antiviral and inflammatory responses during IAV infection.
Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition.
Paul, Bidisha; Royston, Kendra J; Li, Yuanyuan; Stoll, Matthew L; Skibola, Christine F; Wilson, Landon S; Barnes, Stephen; Morrow, Casey D; Tollefsbol, Trygve O
2017-01-01
Since dietary polyphenols can have beneficial effects in prevention and treatment of cancer, we tested the hypothesis that breast cancer patients' intestinal microbiota is modulated by genistein (GE), an isoflavone found in soy, and that microbial alterations may offset the side effects brought about by chemotherapy. We demonstrated successful humanization of germ-free mice by transplanting fecal samples from breast cancer patients before and after chemotherapy. Mice were then grouped based on chemotherapy status and GE or control diet. We did not find any significant differences between pre-chemotherapy and post-chemotherapy bacterial composition and abundances. Germ-free mice on a GE diet showed differences in microbial composition as compared to mice on control diet. Four weeks after introduction of the customized GE diet, there was distinct clustering of GE-fed mice as compared to the control-fed group. In the gut microbiome of GE-treated humanized mice, there was an increase in abundance of genera Lactococcus and Eubacterium. Phylum Verrucomicrobia showed statistically significant (p = 0.02) differences in abundances between the GE-fed and control-fed groups. There was an increase in bacteria belonging to family Lachnospiraceae and Ruminococcaceae in GE-fed mice. Marked changes were observed in GE catabolism in mice humanized with fecal material from two of three patients' post-chemotherapy with complete disappearance of 4-ethylphenol and 2-(4-hydroxyphenol) propionic acid conjugates. The post-tumor samples did not show any distinct clustering of the gut microbiota between the two diet groups. There was an increase in latency of about 25% for tumor growth of the humanized mice that were on a GE diet as compared to humanized mice on a control diet. The average tumor size for the GE group was significantly decreased compared to the non-GE group. Collectively, our results suggest that the intestinal microbiota becomes altered with a GE diet before induction of tumor. Our findings indicate that GE modulates the microbiome in humanized mice that may contribute to its effects on increasing the latency of breast tumor and reducing tumor growth.
Impact of genistein on the gut microbiome of humanized mice and its role in breast tumor inhibition
Paul, Bidisha; Royston, Kendra J.; Li, Yuanyuan; Stoll, Matthew L.; Skibola, Christine F.; Wilson, Landon S.; Barnes, Stephen; Morrow, Casey D.
2017-01-01
Since dietary polyphenols can have beneficial effects in prevention and treatment of cancer, we tested the hypothesis that breast cancer patients’ intestinal microbiota is modulated by genistein (GE), an isoflavone found in soy, and that microbial alterations may offset the side effects brought about by chemotherapy. We demonstrated successful humanization of germ-free mice by transplanting fecal samples from breast cancer patients before and after chemotherapy. Mice were then grouped based on chemotherapy status and GE or control diet. We did not find any significant differences between pre-chemotherapy and post-chemotherapy bacterial composition and abundances. Germ-free mice on a GE diet showed differences in microbial composition as compared to mice on control diet. Four weeks after introduction of the customized GE diet, there was distinct clustering of GE-fed mice as compared to the control-fed group. In the gut microbiome of GE-treated humanized mice, there was an increase in abundance of genera Lactococcus and Eubacterium. Phylum Verrucomicrobia showed statistically significant (p = 0.02) differences in abundances between the GE-fed and control-fed groups. There was an increase in bacteria belonging to family Lachnospiraceae and Ruminococcaceae in GE-fed mice. Marked changes were observed in GE catabolism in mice humanized with fecal material from two of three patients’ post-chemotherapy with complete disappearance of 4-ethylphenol and 2-(4-hydroxyphenol) propionic acid conjugates. The post-tumor samples did not show any distinct clustering of the gut microbiota between the two diet groups. There was an increase in latency of about 25% for tumor growth of the humanized mice that were on a GE diet as compared to humanized mice on a control diet. The average tumor size for the GE group was significantly decreased compared to the non-GE group. Collectively, our results suggest that the intestinal microbiota becomes altered with a GE diet before induction of tumor. Our findings indicate that GE modulates the microbiome in humanized mice that may contribute to its effects on increasing the latency of breast tumor and reducing tumor growth. PMID:29267377
Ishiguro, Akio; Inagaki, Masumi; Kaga, Makiko
2007-07-01
Bronx Waltzer (bv) mouse, which has been used as a model of hearing and vestibular dysfunction, shows remarkable repetitive circling behavior. This study investigated whether the behavior is caused by the asymmetry of striatal function by observing the behavior of the bv mice following microinjection of dopamine D1 agonist, A68930 into the striatum ipsilaterally and contralaterally to the preferred direction of rotation separately. High dose of the drug induced opposite effects on ipsilateral rotations by the side of injections with statistical significance (p = .0026). These results suggested that the stereotypic circling behavior involves striatum and is based on striatal asymmetry.
Comprehensive Behavioral Analysis of Activating Transcription Factor 5-Deficient Mice
Umemura, Mariko; Ogura, Tae; Matsuzaki, Ayako; Nakano, Haruo; Takao, Keizo; Miyakawa, Tsuyoshi; Takahashi, Yuji
2017-01-01
Activating transcription factor 5 (ATF5) is a member of the CREB/ATF family of basic leucine zipper transcription factors. We previously reported that ATF5-deficient (ATF5-/-) mice demonstrated abnormal olfactory bulb development due to impaired interneuron supply. Furthermore, ATF5-/- mice were less aggressive than ATF5+/+ mice. Although ATF5 is widely expressed in the brain, and involved in the regulation of proliferation and development of neurons, the physiological role of ATF5 in the higher brain remains unknown. Our objective was to investigate the physiological role of ATF5 in the higher brain. We performed a comprehensive behavioral analysis using ATF5-/- mice and wild type littermates. ATF5-/- mice exhibited abnormal locomotor activity in the open field test. They also exhibited abnormal anxiety-like behavior in the light/dark transition test and open field test. Furthermore, ATF5-/- mice displayed reduced social interaction in the Crawley’s social interaction test and increased pain sensitivity in the hot plate test compared with wild type. Finally, behavioral flexibility was reduced in the T-maze test in ATF5-/- mice compared with wild type. In addition, we demonstrated that ATF5-/- mice display disturbances of monoamine neurotransmitter levels in several brain regions. These results indicate that ATF5 deficiency elicits abnormal behaviors and the disturbance of monoamine neurotransmitter levels in the brain. The behavioral abnormalities of ATF5-/- mice may be due to the disturbance of monoamine levels. Taken together, these findings suggest that ATF5-/- mice may be a unique animal model of some psychiatric disorders. PMID:28744205
2014-01-01
Reduced signaling through the IGF type 1 (IGF-1) receptor increases life span in multiple invertebrate organisms. Studies on mammalian longevity suggest that reducing levels of IGF-1 may also increase life span. However, the data are conflicting and complicated by the physiology of the mammalian neuroendocrine system. We have performed life-span analysis on mice homozygous for an insertion in the Igf1 gene. These mice produce reduced levels of IGF-1 and display a phenotype consistent with a significant decrease in IGF-1. Life-span analysis was carried out at three independent locations. Although the life-span data varied between sites, the maximum life span of the IGF-1-deficient mice was significantly increased and age-specific mortality rates were reduced in the IGF-1-deficient mice; however, mean life span did not differ except at one site, where mean life span was increased in female IGF-1-deficient animals. Early life mortality was noted in one cohort of IGF-1-deficient mice. The results are consistent with a significant role for IGF-1 in the modulation of life span but contrast with the published life-span data for the hypopituitary Ames and Snell dwarf mice and growth hormone receptor null mice, indicating that a reduction in IGF-1 alone is insufficient to increase both mean and maximal life span in mice. PMID:23873963
Altered intestinal epithelium-associated lymphocyte repertoires and function in ApcMin/+ mice.
Marsh, Lorraine; Coletta, P Louise; Hull, Mark A; Selby, Peter J; Carding, Simon R
2012-01-01
ApcMin/+ mice spontaneously develop multiple intestinal adenomas along the length of the small intestine and colon. Currently little is known about the role of the immune system in regulating intestinal tumorigenesis in these animals. This study characterised small intestinal intraepithelial lympho-- cyte (IEL) populations in C56BL/6J ApcMin/+ mice and wild-type (Apc+/+) mice. We also determined the effect that T cells expressing either γδ or αβ encoded T cell receptors (TcR) exert on intestinal tumorigenesis. ApcMin/+ mice had significantly lower numbers of CD3+ IELs compared with Apc+/+ littermates and displayed reduced cytotoxicity against tumour target cells. Further analysis of IEL cytotoxicity revealed differences in the cytotoxic pathways utilised by IELs in ApcMin/+ and Apc+/+ mice with ApcMin/+ IELs displaying an absence of perforin/granzyme-mediated killing and increased levels of Fas-FasL-mediated cytotoxicity compared with wild-type IELs. Analysis of ApcMin/+ mice crossed with αβ T-cell deficient (TcRβ-/-) or γδ T-cell deficient (TcRδ-/-) mice on the same genetic background revealed decreased tumour multiplicity in the absence of both αβ and γδ T-cells. This study demonstrates that altered T-cell subsets play important roles in promoting tumorigenesis in ApcMin/+ mice and forms the basis for future mechanistic studies.
Voordouw, Maarten J; Tupper, Haley; Önder, Özlem; Devevey, Godefroy; Graves, Christopher J; Kemps, Brian D; Brisson, Dustin
2013-04-01
Vaccinating wildlife is becoming an increasingly popular method to reduce human disease risks from pathogens such as Borrelia burgdorferi, the causative agent of Lyme disease. To successfully limit human disease risk, vaccines targeting the wildlife reservoirs of B. burgdorferi must be easily distributable and must effectively reduce pathogen transmission from infected animals, given that many animals in nature will be infected prior to vaccination. We assessed the efficacy of an easily distributable oral bait vaccine based on the immunogenic outer surface protein A (OspA) to protect uninfected mice from infection and to reduce transmission from previously infected white-footed mice, an important reservoir host of B. burgdorferi. Oral vaccination of white-footed mice effectively reduces transmission of B. burgdorferi at both critical stages of the Lyme disease transmission cycle. First, oral vaccination of uninfected white-footed mice elicits an immune response that protects mice from B. burgdorferi infection. Second, oral vaccination of previously infected mice significantly reduces the transmission of B. burgdorferi to feeding ticks despite a statistically nonsignificant immune response. We used the estimates of pathogen transmission to and from vaccinated and unvaccinated mice to model the efficacy of an oral vaccination campaign targeting wild white-footed mice. Projection models suggest that the effects of the vaccine on both critical stages of the transmission cycle of B. burgdorferi act synergistically in a positive feedback loop to reduce the nymphal infection prevalence, and thus human Lyme disease risk, well below what would be expected from either effect alone. This study suggests that oral immunization of wildlife with an OspA-based vaccine can be a promising long-term strategy to reduce human Lyme disease risk.
NASA Astrophysics Data System (ADS)
Blottner, Dieter; Vico, Laurence; Jamon, D. Berckmansp L. Vicop Y. Liup R. Canceddap M.
Background: Environmental conditions likely affect physiology and behaviour of mice used for Life Sciences Research on Earth and in Space. Thus, mice habitats with sufficient statistical numbers should be developed for adequate life support and care and that should meet all nesces-sary ethical and scientific requirements needed to successfully perform animal experimentation in Space. Aim of study: We here analysed the effects of cage confinement on the weightbear-ing musculoskeletal system, behaviour and stress of wild-type mice (C57BL/6JRj, 30 g b.wt., total n = 24) housed for 25 days in a prototypical ground-based MSRM (modular science ref-erence module) in the frame of breadboard activities for a fully automated life support habitat called "Mice in Space" (MIS) at the Leuven University, Belgium. Results: Compared with control housing (individually ventilated cages, IVC-mice) the MIS mice revealed no significant changes in soleus muscle size and myofiber distribution (type I vs. II) and quality of bone (3-D microarchitecture and mineralisation of calvaria, spine and femur) determined by confocal and micro-computed tomography. Corticosterone metabolism measured non-invasively (faeces) monitored elevated adrenocortical activity at only start of the MIS cage confinement (day 1). Behavioural tests (i.e., grip strength, rotarod, L/D box, elevated plus-maze, open field, ag-gressiveness) performed subsequently revealed only minor changes in motor performance (MIS vs. controls). Conclusions: The MIS habitat will not, on its own, produce major effects that could confound interpretation of data induced by microgravity exposure on orbit as planned for future biosatellite programmes. Sponsors: ESA-ESTEC, Noordwijk, NL
Schönig, Sarah; Recke, Andreas; Hirose, Misa; Ludwig, Ralf J; Seeger, Karsten
2013-06-26
Epidermolysis bullosa acquisita (EBA) is a rare skin blistering disease with a prevalence of 0.2/ million people. EBA is characterized by autoantibodies against type VII collagen. Type VII collagen builds anchoring fibrils that are essential for the dermal-epidermal junction. The pathogenic relevance of antibodies against type VII collagen subdomains has been demonstrated both in vitro and in vivo. Despite the multitude of clinical and immunological data, no information on metabolic changes exists. We used an animal model of EBA to obtain insights into metabolomic changes during EBA. Sera from mice with immunization-induced EBA and control mice were obtained and metabolites were isolated by filtration. Proton nuclear magnetic resonance (NMR) spectra were recorded and analyzed by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and random forest. The metabolic pattern of immunized mice and control mice could be clearly distinguished with PCA and PLS-DA. Metabolites that contribute to the discrimination could be identified via random forest. The observed changes in the metabolic pattern of EBA sera, i.e. increased levels of amino acid, point toward an increased energy demand in EBA. Knowledge about metabolic changes due to EBA could help in future to assess the disease status during treatment. Confirming the metabolic changes in patients needs probably large cohorts.
Shon, Jong Cheol; Shin, Hwa-Soo; Seo, Yong Ki; Yoon, Young-Ran; Shin, Heungsop; Liu, Kwang-Hyeon
2015-03-25
The serum lipid metabolites of lean and obese mice fed normal or high-fat diets were analyzed via direct infusion nanoelectrospray-ion trap mass spectrometry followed by multivariate analysis. In addition, lipidomic biomarkers responsible for the pharmacological effects of compound K-reinforced ginsenosides (CK), thus the CK fraction, were evaluated in mice fed high-fat diets. The obese and lean groups were clearly discriminated upon principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) score plot, and the major metabolites contributing to such discrimination were triglycerides (TGs), cholesteryl esters (CEs), phosphatidylcholines (PCs), and lysophosphatidylcholines (LPCs). TGs with high total carbon number (>50) and low total carbon number (<50) were negatively and positively associated with high-fat diet induced obesity in mice, respectively. When the CK fraction was fed to obese mice that consumed a high-fat diet, the levels of certain lipids including LPCs and CEs became similar to those of mice fed a normal diet. Such metabolic markers can be used to better understand obesity and related diseases induced by a hyperlipidic diet. Furthermore, changes in the levels of such metabolites can be employed to assess the risk of obesity and the therapeutic effects of obesity management.
Role of Carbonyl Modifications on Aging-Associated Protein Aggregation
Tanase, Maya; Urbanska, Aleksandra M.; Zolla, Valerio; Clement, Cristina C.; Huang, Liling; Morozova, Kateryna; Follo, Carlo; Goldberg, Michael; Roda, Barbara; Reschiglian, Pierluigi; Santambrogio, Laura
2016-01-01
Protein aggregation is a common biological phenomenon, observed in different physiological and pathological conditions. Decreased protein solubility and a tendency to aggregate is also observed during physiological aging but the causes are currently unknown. Herein we performed a biophysical separation of aging-related high molecular weight aggregates, isolated from the bone marrow and splenic cells of aging mice and followed by biochemical and mass spectrometric analysis. The analysis indicated that compared to younger mice an increase in protein post-translational carbonylation was observed. The causative role of these modifications in inducing protein misfolding and aggregation was determined by inducing carbonyl stress in young mice, which recapitulated the increased protein aggregation observed in old mice. Altogether our analysis indicates that oxidative stress-related post-translational modifications accumulate in the aging proteome and are responsible for increased protein aggregation and altered cell proteostasis. PMID:26776680
Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah
2017-01-01
Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383
Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes.
Alam, Imranul; Reilly, Austin M; Alkhouli, Mohammed; Gerard-O'Riley, Rita L; Kasipathi, Charishma; Oakes, Dana K; Wright, Weston B; Acton, Dena; McQueen, Amie K; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G; Econs, Michael J
2017-04-01
Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice overexpressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole-body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions.
Bone Mass and Strength are Significantly Improved in Mice Overexpressing Human WNT16 in Osteocytes
Alam, Imranul; Reilly, Austin M.; Alkhouli, Mohammed; Gerard-O’Riley, Rita L.; Kasipathi, Charishma; Oakes, Dana K.; Wright, Weston B.; Acton, Dena; McQueen, Amie K.; Patel, Bhavmik; Lim, Kyung-Eun; Robling, Alexander G.; Econs, Michael J.
2017-01-01
Recently, we demonstrated that osteoblast-specific overexpression of human WNT16 increased both cortical and trabecular bone mass and structure in mice. To further identify the cell-specific role of Wnt16 in bone homeostasis, we created transgenic (TG) mice over-expressing human WNT16 in osteocytes using Dmp1 promoter (Dmp1-hWNT16 TG) on C57BL/6 (B6) background. We analyzed bone phenotypes and serum bone biomarkers, performed gene expression analysis and measured dynamic bone histomorphometry in Dmp1-hWNT16 TG and wild-type (WT) mice. Compared to WT mice, Dmp1-hWNT16 TG mice exhibited significantly higher whole body, spine and femoral aBMD, BMC and trabecular (BV/TV, Tb.N, and Tb.Th) and cortical (bone area and thickness) parameters in both male and female at 12 weeks of age. Femur stiffness and ultimate force were also significantly improved in the Dmp1-hWNT16 TG female mice, compared to sex-matched WT littermates. In addition, female Dmp1-hWNT16 TG mice displayed significantly higher MS/BS, MAR and BFR/BS compared to the WT mice. Gene expression analysis demonstrated significantly higher mRNA level of Alp in both male and female Dmp1-hWNT16 TG mice and significantly higher levels of Osteocalcin, Opg and Rankl in the male Dmp1-hWNT16 TG mice in bone tissue compared to sex-matched WT mice. These results indicate that WNT16 plays a critical role for acquisition of both cortical and trabecular bone mass and strength. Strategies designed to use WNT16 as a target for therapeutic interventions will be valuable to treat osteoporosis and other low bone mass conditions. PMID:28013361
McGuiness, Barry; Gibney, Sinead M; Beumer, Wouter; Versnel, Marjan A; Sillaber, Inge; Harkin, Andrew; Drexhage, Hemmo A
2016-01-01
The non-obese diabetic (NOD) mouse, an established model for autoimmune diabetes, shows an exaggerated reaction of pancreas macrophages to inflammatory stimuli. NOD mice also display anxiety when immune-stimulated. Chronic mild brain inflammation and a pro-inflammatory microglial activation is critical in psychiatric behaviour. To explore brain/microglial activation and behaviour in NOD mice at steady state and after systemic lipopolysaccharide (LPS) injection. Affymetrix analysis on purified microglia of pre-diabetic NOD mice (8-10 weeks) and control mice (C57BL/6 and CD1 mice, the parental non-autoimmune strain) at steady state and after systemic LPS (100 μg/kg) administration. Quantitative PCR was performed on the hypothalamus for immune activation markers (IL-1β, IFNγ and TNFα) and growth factors (BDNF and PDGF). Behavioural profiling of NOD, CD1, BALB/c and C57BL/6 mice at steady state was conducted and sickness behaviour/anxiety in NOD and CD1 mice was monitored before and after LPS injection. Genome analysis revealed cell cycle/cell death and survival aberrancies of NOD microglia, substantiated as higher proliferation on BrdU staining. Inflammation signs were absent. NOD mice had a hyper-reactive response to novel environments with some signs of anxiety. LPS injection induced a higher expression of microglial activation markers, a higher brain pro-inflammatory set point (IFNγ, IDO) and a reduced expression of BDNF and PDGF after immune stimulation in NOD mice. NOD mice displayed exaggerated and prolonged sickness behaviour after LPS administration. After stimulation with LPS, NOD mice display an increased microglial proliferation and an exaggerated inflammatory brain response with reduced BDNF and PDGF expression and increased sickness behaviour as compared to controls. © 2016 S. Karger AG, Basel.
Proteomic analysis of the renal effects of simulated occupational jet fuel exposure.
Witzmann, F A; Bauer, M D; Fieno, A M; Grant, R A; Keough, T W; Lacey, M P; Sun, Y; Witten, M L; Young, R S
2000-03-01
We analyzed protein expression in the cytosolic fraction prepared from whole kidneys in male Swiss-Webster mice exposed 1 h/day for five days to aerosolized JP-8 jet fuel at a concentration of 1000 mg/m3, simulating military occupational exposure. Kidney cytosol samples were solubilized and separated via large-scale, high-resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant changes in soluble kidney proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass finger-printing and related to ultrastructural abnormalities, altered protein processing, metabolic effects, and paradoxical stress protein/detoxification system responses. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression in the kidney and provide novel molecular evidence of JP-8 nephrotoxicity. Human risk is suggested by these data but conclusive assessment awaits a noninvasive search for biomarkers in JP-8 exposed humans.
Systematic Characterization and Comparative Analysis of the Rabbit Immunoglobulin Repertoire
Lavinder, Jason J.; Hoi, Kam Hon; Reddy, Sai T.; Wine, Yariv; Georgiou, George
2014-01-01
Rabbits have been used extensively as a model system for the elucidation of the mechanism of immunoglobulin diversification and for the production of antibodies. We employed Next Generation Sequencing to analyze Ig germline V and J gene usage, CDR3 length and amino acid composition, and gene conversion frequencies within the functional (transcribed) IgG repertoire of the New Zealand white rabbit (Oryctolagus cuniculus). Several previously unannotated rabbit heavy chain variable (VH) and light chain variable (VL) germline elements were deduced bioinformatically using multidimensional scaling and k-means clustering methods. We estimated the gene conversion frequency in the rabbit at 23% of IgG sequences with a mean gene conversion tract length of 59±36 bp. Sequencing and gene conversion analysis of the chicken, human, and mouse repertoires revealed that gene conversion occurs much more extensively in the chicken (frequency 70%, tract length 79±57 bp), was observed to a small, yet statistically significant extent in humans, but was virtually absent in mice. PMID:24978027
Lilja, Anna M; Rodilla, Veronica; Huyghe, Mathilde; Hannezo, Edouard; Landragin, Camille; Renaud, Olivier; Leroy, Olivier; Rulands, Steffen; Simons, Benjamin D; Fre, Silvia
2018-06-01
Recent lineage tracing studies have revealed that mammary gland homeostasis relies on unipotent stem cells. However, whether and when lineage restriction occurs during embryonic mammary development, and which signals orchestrate cell fate specification, remain unknown. Using a combination of in vivo clonal analysis with whole mount immunofluorescence and mathematical modelling of clonal dynamics, we found that embryonic multipotent mammary cells become lineage-restricted surprisingly early in development, with evidence for unipotency as early as E12.5 and no statistically discernable bipotency after E15.5. To gain insights into the mechanisms governing the switch from multipotency to unipotency, we used gain-of-function Notch1 mice and demonstrated that Notch activation cell autonomously dictates luminal cell fate specification to both embryonic and basally committed mammary cells. These functional studies have important implications for understanding the signals underlying cell plasticity and serve to clarify how reactivation of embryonic programs in adult cells can lead to cancer.
RNA-Seq Mouse Brain Regions Expression Data Analysis: Focus on ApoE Functional Network
Babenko, Vladimir N; Smagin, Dmitry A; Kudryavtseva, Natalia N
2017-09-13
ApoE expression status was proved to be a highly specific marker of energy metabolism rate in the brain. Along with its neighbor, Translocase of Outer Mitochondrial Membrane 40 kDa (TOMM40) which is involved in mitochondrial metabolism, the corresponding genomic region constitutes the neuroenergetic hotspot. Using RNA-Seq data from a murine model of chronic stress a significant positive expression coordination of seven neighboring genes in ApoE locus in five brain regions was observed. ApoE maintains one of the highest absolute expression values genome-wide, implying that ApoE can be the driver of the neighboring gene expression alteration observed under stressful loads. Notably, we revealed the highly statistically significant increase of ApoE expression in the hypothalamus of chronically aggressive (FDR < 0.007) and defeated (FDR < 0.001) mice compared to the control. Correlation analysis revealed a close association of ApoE and proopiomelanocortin (Pomc) gene expression profiles implying the putative neuroendocrine stress response background of ApoE expression elevation therein.
de Angelis, Martin Hrabě; Nicholson, George; Selloum, Mohammed; White, Jacqui; Morgan, Hugh; Ramirez-Solis, Ramiro; Sorg, Tania; Wells, Sara; Fuchs, Helmut; Fray, Martin; Adams, David J; Adams, Niels C; Adler, Thure; Aguilar-Pimentel, Antonio; Ali-Hadji, Dalila; Amann, Gregory; André, Philippe; Atkins, Sarah; Auburtin, Aurelie; Ayadi, Abdel; Becker, Julien; Becker, Lore; Bedu, Elodie; Bekeredjian, Raffi; Birling, Marie-Christine; Blake, Andrew; Bottomley, Joanna; Bowl, Mike; Brault, Véronique; Busch, Dirk H; Bussell, James N; Calzada-Wack, Julia; Cater, Heather; Champy, Marie-France; Charles, Philippe; Chevalier, Claire; Chiani, Francesco; Codner, Gemma F; Combe, Roy; Cox, Roger; Dalloneau, Emilie; Dierich, André; Di Fenza, Armida; Doe, Brendan; Duchon, Arnaud; Eickelberg, Oliver; Esapa, Chris T; El Fertak, Lahcen; Feigel, Tanja; Emelyanova, Irina; Estabel, Jeanne; Favor, Jack; Flenniken, Ann; Gambadoro, Alessia; Garrett, Lilian; Gates, Hilary; Gerdin, Anna-Karin; Gkoutos, George; Greenaway, Simon; Glasl, Lisa; Goetz, Patrice; Da Cruz, Isabelle Goncalves; Götz, Alexander; Graw, Jochen; Guimond, Alain; Hans, Wolfgang; Hicks, Geoff; Hölter, Sabine M; Höfler, Heinz; Hancock, John M; Hoehndorf, Robert; Hough, Tertius; Houghton, Richard; Hurt, Anja; Ivandic, Boris; Jacobs, Hughes; Jacquot, Sylvie; Jones, Nora; Karp, Natasha A; Katus, Hugo A; Kitchen, Sharon; Klein-Rodewald, Tanja; Klingenspor, Martin; Klopstock, Thomas; Lalanne, Valerie; Leblanc, Sophie; Lengger, Christoph; le Marchand, Elise; Ludwig, Tonia; Lux, Aline; McKerlie, Colin; Maier, Holger; Mandel, Jean-Louis; Marschall, Susan; Mark, Manuel; Melvin, David G; Meziane, Hamid; Micklich, Kateryna; Mittelhauser, Christophe; Monassier, Laurent; Moulaert, David; Muller, Stéphanie; Naton, Beatrix; Neff, Frauke; Nolan, Patrick M; Nutter, Lauryl Mj; Ollert, Markus; Pavlovic, Guillaume; Pellegata, Natalia S; Peter, Emilie; Petit-Demoulière, Benoit; Pickard, Amanda; Podrini, Christine; Potter, Paul; Pouilly, Laurent; Puk, Oliver; Richardson, David; Rousseau, Stephane; Quintanilla-Fend, Leticia; Quwailid, Mohamed M; Racz, Ildiko; Rathkolb, Birgit; Riet, Fabrice; Rossant, Janet; Roux, Michel; Rozman, Jan; Ryder, Ed; Salisbury, Jennifer; Santos, Luis; Schäble, Karl-Heinz; Schiller, Evelyn; Schrewe, Anja; Schulz, Holger; Steinkamp, Ralf; Simon, Michelle; Stewart, Michelle; Stöger, Claudia; Stöger, Tobias; Sun, Minxuan; Sunter, David; Teboul, Lydia; Tilly, Isabelle; Tocchini-Valentini, Glauco P; Tost, Monica; Treise, Irina; Vasseur, Laurent; Velot, Emilie; Vogt-Weisenhorn, Daniela; Wagner, Christelle; Walling, Alison; Weber, Bruno; Wendling, Olivia; Westerberg, Henrik; Willershäuser, Monja; Wolf, Eckhard; Wolter, Anne; Wood, Joe; Wurst, Wolfgang; Yildirim, Ali Önder; Zeh, Ramona; Zimmer, Andreas; Zimprich, Annemarie; Holmes, Chris; Steel, Karen P; Herault, Yann; Gailus-Durner, Valérie; Mallon, Ann-Marie; Brown, Steve Dm
2015-09-01
The function of the majority of genes in the mouse and human genomes remains unknown. The mouse embryonic stem cell knockout resource provides a basis for the characterization of relationships between genes and phenotypes. The EUMODIC consortium developed and validated robust methodologies for the broad-based phenotyping of knockouts through a pipeline comprising 20 disease-oriented platforms. We developed new statistical methods for pipeline design and data analysis aimed at detecting reproducible phenotypes with high power. We acquired phenotype data from 449 mutant alleles, representing 320 unique genes, of which half had no previous functional annotation. We captured data from over 27,000 mice, finding that 83% of the mutant lines are phenodeviant, with 65% demonstrating pleiotropy. Surprisingly, we found significant differences in phenotype annotation according to zygosity. New phenotypes were uncovered for many genes with previously unknown function, providing a powerful basis for hypothesis generation and further investigation in diverse systems.
Automated classification of self-grooming in mice using open-source software.
van den Boom, Bastijn J G; Pavlidi, Pavlina; Wolf, Casper J H; Mooij, Adriana H; Willuhn, Ingo
2017-09-01
Manual analysis of behavior is labor intensive and subject to inter-rater variability. Although considerable progress in automation of analysis has been made, complex behavior such as grooming still lacks satisfactory automated quantification. We trained a freely available, automated classifier, Janelia Automatic Animal Behavior Annotator (JAABA), to quantify self-grooming duration and number of bouts based on video recordings of SAPAP3 knockout mice (a mouse line that self-grooms excessively) and wild-type animals. We compared the JAABA classifier with human expert observers to test its ability to measure self-grooming in three scenarios: mice in an open field, mice on an elevated plus-maze, and tethered mice in an open field. In each scenario, the classifier identified both grooming and non-grooming with great accuracy and correlated highly with results obtained by human observers. Consistently, the JAABA classifier confirmed previous reports of excessive grooming in SAPAP3 knockout mice. Thus far, manual analysis was regarded as the only valid quantification method for self-grooming. We demonstrate that the JAABA classifier is a valid and reliable scoring tool, more cost-efficient than manual scoring, easy to use, requires minimal effort, provides high throughput, and prevents inter-rater variability. We introduce the JAABA classifier as an efficient analysis tool for the assessment of rodent self-grooming with expert quality. In our "how-to" instructions, we provide all information necessary to implement behavioral classification with JAABA. Copyright © 2017 Elsevier B.V. All rights reserved.
Kumagai, Katsuyoshi; Takanashi, Masakatsu; Ohno, Shin-Ichiro; Kuroda, Masahiko; Sudo, Katsuko
2017-05-03
Targeted mutant mice generated on a C57BL/6 background are powerful tools for analysis of the biological functions of genes, and gene targeting technologies using mouse embryonic stem (ES) cells have been used to generate such mice. Recently, a bacterial artificial chromosome (BAC) recombineering system was established for the construction of targeting vectors. However, gene retrieval from BACs for the generation of gene targeting vectors using this system remains difficult. Even when construction of a gene targeting vector is successful, the efficiency of production of targeted mutant mice from ES cells derived from C57BL/6 mice are poor. Therefore, in this study, we first improved the strategy for the retrieval of genes from BACs and their transfer into a DT-A plasmid, for the generation of gene targeting vectors using the BAC recombineering system. Then, we attempted to generate targeted mutant mice from ES cell lines derived from C57BL/6 mice, by culturing in serum-free medium. In conclusion, we established an improved strategy for the efficient generation of targeted mutant mice on a C57BL/6 background, which are useful for the in vivo analysis of gene functions and regulation.
Comparison of body weight and gene expression in amelogenin null and wild-type mice.
Li, Yong; Yuan, Zhi-An; Aragon, Melissa A; Kulkarni, Ashok B; Gibson, Carolyn W
2006-05-01
Amelogenin (AmelX) null mice develop hypomineralized enamel lacking normal prism structure, but are healthy and fertile. Because these mice are smaller than wild-type mice prior to weaning, we undertook a detailed analysis of the weight of mice and analyzed AmelX expression in non-dental tissues. Wild-type mice had a greater average weight each day within the 3-wk period. Using reverse transcription-polymerase chain reaction (RT-PCR), products of approximately 200 bp in size were generated from wild-type teeth, brain, eye, and calvariae. DNA sequence analysis of RT-PCR products from calvariae indicated that the small amelogenin leucine-rich amelogenin peptide (LRAP), both with and without exon 4, was expressed. No products were obtained from any of the samples from the AmelX null mice. We also isolated mRNAs that included AmelX exons 8 and 9, and identified a duplication within the murine AmelX gene with 91% homology. Our results add additional support to the hypothesis that amelogenins are multifunctional proteins, with potential roles in non-ameloblasts and in non-mineralizing tissues during development. The smaller size of AmelX null mice could potentially be explained by the lack of LRAP expression in some of these tissues, leading to a delay in development.
Matsushita, Masaki; Mishima, Kenichi; Esaki, Ryusaku; Ishiguro, Naoki; Ohno, Kinji; Kitoh, Hiroshi
2017-01-01
OBJECTIVE Achondroplasia (ACH) is the most common short-limbed skeletal dysplasia caused by gain-of-function mutations in the fibroblast growth factor receptor 3 (FGFR3) gene. Foramen magnum stenosis (FMS) is one of the serious neurological complications in ACH. Through comprehensive drug screening, the authors identified that meclozine, an over-the-counter drug for motion sickness, inhibited activation of FGFR3 signaling. Oral administration of meclozine to the growing ACH mice promoted longitudinal bone growth, but it did not prevent FMS. In the current study, the authors evaluated the effects of maternal administration of meclozine on FMS in ACH mice. METHODS The area of the foramen magnum was measured in 17-day-old Fgfr3 ach mice and wild-type mice using micro-CT scanning. Meclozine was administered to the pregnant mice carrying Fgfr3 ach offspring from embryonic Day (ED) 14.5 to postnatal Day (PD) 4.5. Spheno-occipital and anterior intraoccipital synchondroses were histologically examined, and the bony bridges were scored on PD 4.5. In wild-type mice, tissue concentrations of meclozine in ED 17.5 fetuses and PD 6.5 pups were investigated. RESULTS The area of the foramen magnum was significantly smaller in 17-day-old Fgfr3 ach mice than in wild-type mice (p < 0.005). There were no bony bridges in the spheno-occipital and anterior intraoccipital synchondroses in wild-type mice, while some of the synchondroses prematurely closed in untreated Fgfr3 ach mice at PD 4.5. The average bony bridge score in the cranial base was 7.053 ± 1.393 in untreated Fgfr3 ach mice and 6.125 ± 2.029 in meclozine-treated Fgfr3 ach mice. The scores were not statistically significant between mice with and those without meclozine treatment (p = 0.12). The average tissue concentration of meclozine was significantly higher (508.88 ± 205.16 ng/g) in PD 6.5 mice than in ED 17.5 mice (56.91 ± 20.05 ng/g) (p < 0.005). CONCLUSIONS Maternal administration of meclozine postponed premature closure of synchondroses in some Fgfr3 ach mice, but the effect on preventing bony bridge formation was not significant, probably due to low placental transmission of the drug. Meclozine is likely to exhibit a marginal effect on premature closure of synchondroses at the cranial base in ACH.
Wang, Tianli; Baron, Kyle; Zhong, Wei; Brundage, Richard; Elmquist, William
2014-03-01
The current study presents a Bayesian approach to non-compartmental analysis (NCA), which provides the accurate and precise estimate of AUC 0 (∞) and any AUC 0 (∞) -based NCA parameter or derivation. In order to assess the performance of the proposed method, 1,000 simulated datasets were generated in different scenarios. A Bayesian method was used to estimate the tissue and plasma AUC 0 (∞) s and the tissue-to-plasma AUC 0 (∞) ratio. The posterior medians and the coverage of 95% credible intervals for the true parameter values were examined. The method was applied to laboratory data from a mice brain distribution study with serial sacrifice design for illustration. Bayesian NCA approach is accurate and precise in point estimation of the AUC 0 (∞) and the partition coefficient under a serial sacrifice design. It also provides a consistently good variance estimate, even considering the variability of the data and the physiological structure of the pharmacokinetic model. The application in the case study obtained a physiologically reasonable posterior distribution of AUC, with a posterior median close to the value estimated by classic Bailer-type methods. This Bayesian NCA approach for sparse data analysis provides statistical inference on the variability of AUC 0 (∞) -based parameters such as partition coefficient and drug targeting index, so that the comparison of these parameters following destructive sampling becomes statistically feasible.
Laffaire, Julien; Rivals, Isabelle; Dauphinot, Luce; Pasteau, Fabien; Wehrle, Rosine; Larrat, Benoit; Vitalis, Tania; Moldrich, Randal X; Rossier, Jean; Sinkus, Ralph; Herault, Yann; Dusart, Isabelle; Potier, Marie-Claude
2009-01-01
Background Down syndrome is a chromosomal disorder caused by the presence of three copies of chromosome 21. The mechanisms by which this aneuploidy produces the complex and variable phenotype observed in people with Down syndrome are still under discussion. Recent studies have demonstrated an increased transcript level of the three-copy genes with some dosage compensation or amplification for a subset of them. The impact of this gene dosage effect on the whole transcriptome is still debated and longitudinal studies assessing the variability among samples, tissues and developmental stages are needed. Results We thus designed a large scale gene expression study in mice (the Ts1Cje Down syndrome mouse model) in which we could measure the effects of trisomy 21 on a large number of samples (74 in total) in a tissue that is affected in Down syndrome (the cerebellum) and where we could quantify the defect during postnatal development in order to correlate gene expression changes to the phenotype observed. Statistical analysis of microarray data revealed a major gene dosage effect: for the three-copy genes as well as for a 2 Mb segment from mouse chromosome 12 that we show for the first time as being deleted in the Ts1Cje mice. This gene dosage effect impacts moderately on the expression of euploid genes (2.4 to 7.5% differentially expressed). Only 13 genes were significantly dysregulated in Ts1Cje mice at all four postnatal development stages studied from birth to 10 days after birth, and among them are 6 three-copy genes. The decrease in granule cell proliferation demonstrated in newborn Ts1Cje cerebellum was correlated with a major gene dosage effect on the transcriptome in dissected cerebellar external granule cell layer. Conclusion High throughput gene expression analysis in the cerebellum of a large number of samples of Ts1Cje and euploid mice has revealed a prevailing gene dosage effect on triplicated genes. Moreover using an enriched cell population that is thought responsible for the cerebellar hypoplasia in Down syndrome, a global destabilization of gene expression was not detected. Altogether these results strongly suggest that the three-copy genes are directly responsible for the phenotype present in cerebellum. We provide here a short list of candidate genes. PMID:19331679
Does vitamin E prevent tubal damage caused by smoking? A light microscopy and animal study.
Duran, Muzeyyen; Ustunyurt, Emin; Kosus, Aydin; Kosus, Nermin; Turhan, Nilgun; Hızlı, Deniz; Sarac, Gulce Naz; Erdogan, Deniz
2014-04-01
To assess the histomorphological effects of smoking on the cilia of fallopian tubes in mice and the effect of vitamin E on the negative effects of smoke. Eighteen 12-14 week-old Swiss albino type female mice were randomly divided into three groups, each consisting of six mice: Group A: control group; Group B: mice exposed to cigarette smoke; Group C: mice exposed to cigarette smoke together with vitamin E. Groups B and C were exposed to cigarette smoke for 10 weeks. After 10 weeks, tubal excision was performed in all animals. Histopathologic examination of excised tubal tissue was conducted under light microscopy. The number of cilia was significantly lower in Group B. Although not statistically significant, the median number of cilia in Group C was measured to be higher than in Group B but lower than in Group A. Based on the results, it can be concluded that smoking decreases tubal cilia numbers. Supplementation by vitamin E may treat or at least help to slow down the decrease in number of cilia caused by smoking; therefore it could be used therapeutically in the treatment of smoking-related tubal damage. Crown Copyright © 2014. Published by Elsevier Ireland Ltd. All rights reserved.
Early Changes of Articular Cartilage and Subchondral Bone in The DMM Mouse Model of Osteoarthritis.
Fang, Hang; Huang, Lisi; Welch, Ian; Norley, Chris; Holdsworth, David W; Beier, Frank; Cai, Daozhang
2018-02-12
To examine the early changes of articular cartilage and subchondral bone in the DMM mouse model of osteoarthritis, mice were subjected to DMM or SHAM surgery and sacrificed at 2-, 5- and 10-week post-surgery. Catwalk gait analyses, Micro-Computed Tomography, Toluidine Blue, Picrosirius Red and Tartrate-Resistant Acid Phosphatase (TRAP) staining were used to investigate gait patterns, joint morphology, subchondral bone, cartilage, collagen organization and osteoclasts activity, respectively. Results showed OA progressed over 10-week time-course. Gait disparity occurred only at 10-week post-surgery. Osteophyte formed at 2-week post-surgery. BMDs of DMM showed no statistical differences comparing to SHAM at 2 weeks, but BV/TV is much higher in DMM mice. Increased BMD was clearly found at 5- and 10-week post-surgery in DMM mice. TRAP staining showed increased osteoclast activity at the site of osteophyte formation of DMM joints at 5- and 10-week time points. These results showed that subchondral bone turnover might occurred earlier than 2 weeks in this mouse DMM model. Gait disparity only occurred at later stage of OA in DMM mice. Notably, patella dislocation could occur in some of the DMM mice and cause a different pattern of OA in affected knee.
Shi, Shujing; Tang, Anzhou; Yin, Shaolin; Wang, Lisheng; Xie, Mao; Yi, Xiang
2014-11-01
To evaluate the inhibitive effect of matrine modification X on the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice. Tumor model was established by subcutaneous inoculation of nasopharyngeal carcinoma cell CNE2 into nude mice, which was used to evaluate the antitumor effect of matrine modification X in vivo. The expression levels of Bax, Bcl-2, Caspase3 were detected by real-time PCR and western blot. The growth of xenografts in nude mice was significantly suppressed after application of matrine modification X in a dose-dependent manner. The inhibition rates were 32.55% and 44.89% when treated at medium and high dose respectively. Real-time fluorescence quantitative-PCR and Western Blot results showed that the expression of Bax and Caspase3 increased, while the expression of Bcl-2 decreased in a dose-dependent manner. The change of high dose group was obvious, and the difference was statistically significant (P < 0.05). Matrine modification X could significantly inhibit the growth of human nasopharyngeal carcinoma CNE2 cell xenografts in nude mice, probably by inducing the apoptosis of nasopharyngeal carcinoma cells, and the possible mechanism is related to regulating the expression level of Bax/Bcl-2 and Casepase3.
A 90-day subchronic toxicity study of neem oil, a Azadirachta indica oil, in mice.
Wang, C; Cao, M; Shi, D-X; Yin, Z-Q; Jia, R-Y; Wang, K-Y; Geng, Y; Wang, Y; Yao, X-P; Yang, Z-R; Zhao, J
2013-09-01
To determine the no-observed-adverse-effect level (NOAEL) of exposure and target organs of neem oil for establishing safety criteria for human exposure, the subchronic toxicity study with neem oil in mice was evaluated. The mice (10 per sex for each dose) was orally administered with neem oil with the doses of 0 (to serve as a control), 177, 533 and 1600 mg/kg/day for 90 days. After the treatment period, observation of reversibility or persistence of any toxic effects, mice were continuously fed without treatment for the following 30 days. During the two test periods, the serum biochemistry, organ weight and histopathology were examined. The results showed that the serum biochemistry and organ coefficient in experimental groups had no statistical difference compared with those of the control group. At the 90th day, the histopathological examinations showed that the 1600 mg/kg/day dose of neem oil had varying degrees of damage on each organ except heart, uterus and ovarian. After 30-day recovery, the degree of lesions to the tissues was lessened or even restored. The NOAEL of neem oil was 177 mg/kg/day for mice and the target organs of neem oil were determined to be testicle, liver and kidneys.
NASA Astrophysics Data System (ADS)
Mukai, Chiaki
Introduction: To understand the effect of space environment characterized by microgravity and radiation on protein and mineral metabolisms is important for developing the countermeasures to the adverse effects happening on the astronauts who stay long-term in space. Thus JAXA has started a human research to study the effects of long-term exposure in space flight on gene expression and mineral metabolism by analyzing astronaut's hair grown in space since December 2009 (Experiment nicknamed "HAIR"). Ten human subjects who are the crew of the International Space Station (ISS) will be expected to complete this experiment. Thanks to the tissue sharing program of space-flown mice which is presented and organized by AGI(Italian Space Agency), we can also have an opportunity to analyze rodents samples which will greatly compliment human hair experiment by enable us to conduct more detailed analysis with the expansion of skin analysis which is not include in human experiment. The purpose of this flown-mice experiment is to study the effects of long-term exposure to space environment such as microgravity and space radiation on mineral and protein metabolism, the biological responses to the stress levels, and the initial process of skin carcinogenesis by analyzing hair shaft, its root cells, and skin. Approach and Method In this experiment, we analyzed hair shaft, hair root and skin. Hair samples with skin were taken from 3-month space-flown mice and ground-control mice in the AGI's tissue sharing program in 2009. The sample numbers of space-flown mice and control-mice were three and six, respectively. And they were at the Mice Drawer System (MDS) in ISS and in the laboratory of Geneva University. For the hair shaft, the mineral balance is investi-gated by energy dispersive X-ray spectroscopy (SEM-EDX). For hair root, the extracted RNA undergoes DNA microarray analysis, and will be further examined particular interests of gene-expression by real time Reverse Transcription Polymerase Chain Reaction (RT-PCR) method. DNA is also extracted from the same samples and mitochondrial DNA copy numbers are ex-amined. For mice skin, the examination of the mutation was performed to investigate whether the space flight will cause the visible mutation which may reflect an evidence of promotion step of carcinogenesis by space radiation. Result: Analysis on the specimen is in progress. A brief results will be introduced during the COSPAR meeting. The mice body hair analysis will give us basic information to understand how space environment such as microgravity and radiation affect on the living organisms.
Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing.
Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin
2017-12-01
Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10-6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10-4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10-4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10-5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene.
Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing
Artomov, Mykyta; Stratigos, Alexander J; Kim, Ivana; Kumar, Raj; Lauss, Martin; Reddy, Bobby Y; Miao, Benchun; Daniela Robles-Espinoza, Carla; Sankar, Aravind; Njauw, Ching-Ni; Shannon, Kristen; Gragoudas, Evangelos S; Marie Lane, Anne; Iyer, Vivek; Newton-Bishop, Julia A; Timothy Bishop, D; Holland, Elizabeth A; Mann, Graham J; Singh, Tarjinder; Daly, Mark J; Tsao, Hensin
2017-01-01
Abstract Background Extraordinary progress has been made in our understanding of common variants in many diseases, including melanoma. Because the contribution of rare coding variants is not as well characterized, we performed an exome-wide, gene-based association study of familial cutaneous melanoma (CM) and ocular melanoma (OM). Methods Using 11 990 jointly processed individual DNA samples, whole-exome sequencing was performed, followed by large-scale joint variant calling using GATK (Genome Analysis ToolKit). PLINK/SEQ was used for statistical analysis of genetic variation. Four models were used to estimate the association among different types of variants. In vitro functional validation was performed using three human melanoma cell lines in 2D and 3D proliferation assays. In vivo tumor growth was assessed using xenografts of human melanoma A375 melanoma cells in nude mice (eight mice per group). All statistical tests were two-sided. Results Strong signals were detected for CDKN2A (Pmin = 6.16 × 10-8) in the CM cohort (n = 273) and BAP1 (Pmin = 3.83 × 10‐6) in the OM (n = 99) cohort. Eleven genes that exhibited borderline association (P < 10‐4) were independently validated using The Cancer Genome Atlas melanoma cohort (379 CM, 47 OM) and a matched set of 3563 European controls with CDKN2A (P = .009), BAP1 (P = .03), and EBF3 (P = 4.75 × 10‐4), a candidate risk locus, all showing evidence of replication. EBF3 was then evaluated using germline data from a set of 132 familial melanoma cases and 4769 controls of UK origin (joint P = 1.37 × 10‐5). Somatically, loss of EBF3 expression correlated with progression, poorer outcome, and high MITF tumors. Functionally, induction of EBF3 in melanoma cells reduced cell growth in vitro, retarded tumor formation in vivo, and reduced MITF levels. Conclusions The results of this large rare variant germline association study further define the mutational landscape of hereditary melanoma and implicate EBF3 as a possible CM predisposition gene. PMID:29522175
Differential expression of thymic DNA repair genes in low-dose-rate irradiated AKR/J mice
Bong, Jin Jong; Kang, Yu Mi; Shin, Suk Chul; Choi, Seung Jin
2013-01-01
We previously determined that AKR/J mice housed in a low-dose-rate (LDR) (137Cs, 0.7 mGy/h, 2.1 Gy) γ-irradiation facility developed less spontaneous thymic lymphoma and survived longer than those receiving sham or high-dose-rate (HDR) (137Cs, 0.8 Gy/min, 4.5 Gy) radiation. Interestingly, histopathological analysis showed a mild lymphomagenesis in the thymus of LDR-irradiated mice. Therefore, in this study, we investigated whether LDR irradiation could trigger the expression of thymic genes involved in the DNA repair process of AKR/J mice. The enrichment analysis of Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways showed immune response, nucleosome organization, and the peroxisome proliferator-activated receptors signaling pathway in LDR-irradiated mice. Our microarray analysis and quantitative polymerase chain reaction data demonstrated that mRNA levels of Lig4 and RRM2 were specifically elevated in AKR/J mice at 130 days after the start of LDR irradiation. Furthermore, transcriptional levels of H2AX and ATM, proteins known to recruit DNA repair factors, were also shown to be upregulated. These data suggest that LDR irradiation could trigger specific induction of DNA repair-associated genes in an attempt to repair damaged DNA during tumor progression, which in turn contributed to the decreased incidence of lymphoma and increased survival. Overall, we identified specific DNA repair genes in LDR-irradiated AKR/J mice. PMID:23820165
Pildervasser, João V. N.; Abrahao, Karina P.; Souza-Formigoni, Maria L. O.
2014-01-01
Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties. PMID:25152719
Ye, Min; Sun, Da-Zhi; Wei, Pin-kang
2014-05-01
To study the inhibitory effect of Xiaotan Sanjie Recipe (XSR) on the microsatellite instability of orthotopic transplantation tumor in MKN-45 human gastric cancer nude mice. The 3rd passage subcutaneous transplantation tumor was taken as the origin of the model by using MKN-45 human gastric cancer cell lines. MKN-45 human gastric cancer nude mouse model was established using OB glue adhesive method. Then 30 nude mice were divided into the model group, the XSR group, and the chemotherapy group. Mice in the XSR group were intragastrically given XSR at the daily dose of 0.4 mL. Mice in the chemotherapy group were intragastrically given Fluorouracil at the daily dose of 0.4 mL. No intervention was given to mice in the model group. After 6 weeks of medication, the tumor weight was measured, and the tumor inhibition rate calculated. The size, the peak height, and the peak area of 5 microsatellite instability sites were detected. The tumor inhibition rate was 40. 84% in the XSR group. The tumor weight was significantly lower in the XSR group than in the model group (P < 0.01), showing no statistical difference when compared with the chemotherapy group (P >0.05). The incidence of high microsatellite instability (MSI-H) in the model group was 70%, and the incidence of low microsatellite instability (MSI-L) was 30%. Microsatellite stable site tended be stable after 6 weeks of XSR treatment. XSR showed inhibition on microsatellite instable orthotopic transplantation tumor in MKN-45 human gastric cancer nude mice.
Fitzpatrick, Collin J.; Suschak, John J.; Richards, Michelle J.; Badger, Catherine V.; Six, Carolyn M.; Martin, Jacqueline D.; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W.; Schmaljohn, Connie S.
2017-01-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7–10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV. PMID:28922426
Garrison, Aura R; Shoemaker, Charles J; Golden, Joseph W; Fitzpatrick, Collin J; Suschak, John J; Richards, Michelle J; Badger, Catherine V; Six, Carolyn M; Martin, Jacqueline D; Hannaman, Drew; Zivcec, Marko; Bergeron, Eric; Koehler, Jeffrey W; Schmaljohn, Connie S
2017-09-01
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus capable of causing a severe hemorrhagic fever disease in humans. There are currently no licensed vaccines to prevent CCHFV-associated disease. We developed a DNA vaccine expressing the M-segment glycoprotein precursor gene of CCHFV and assessed its immunogenicity and protective efficacy in two lethal mouse models of disease: type I interferon receptor knockout (IFNAR-/-) mice; and a novel transiently immune suppressed (IS) mouse model. Vaccination of mice by muscle electroporation of the M-segment DNA vaccine elicited strong antigen-specific humoral immune responses with neutralizing titers after three vaccinations in both IFNAR-/- and IS mouse models. To compare the protective efficacy of the vaccine in the two models, groups of vaccinated mice (7-10 per group) were intraperitoneally (IP) challenged with a lethal dose of CCHFV strain IbAr 10200. Weight loss was markedly reduced in CCHFV DNA-vaccinated mice as compared to controls. Furthermore, whereas all vector-control vaccinated mice succumbed to disease by day 5, the DNA vaccine protected >60% of the animals from lethal disease. Mice from both models developed comparable levels of antibodies, but the IS mice had a more balanced Th1/Th2 response to vaccination. There were no statistical differences in the protective efficacies of the vaccine in the two models. Our results provide the first comparison of these two mouse models for assessing a vaccine against CCHFV and offer supportive data indicating that a DNA vaccine expressing the glycoprotein genes of CCHFV elicits protective immunity against CCHFV.
Pildervasser, João V N; Abrahao, Karina P; Souza-Formigoni, Maria L O
2014-01-01
Conditioned place preference (CPP) is a model to study the role of drug conditioning properties. In outbred strains, individual variability may affect some behavioral measures. However, there are few studies focusing on understanding how different phenotypes of ethanol conditioned behavior may influence its extinction, reinstatement, and behavioral adaptation measures. We used male Swiss Webster mice to study different phenotypes related to ethanol conditioning strength, reinstatement and behavioral sensitization. Mice went through a CPP procedure with ethanol (2.2 g/kg, i.p.). After that, one group of mice was submitted to repeated extinction sessions, while another group remained in their home cages without any drug treatment. Mice went through environmental and ethanol priming (1.0 g/kg, i.p.) reinstatement tests. Ethanol priming test reinstated the conditioned behavior only in the animals kept in the home-cage during the abstinence period. Besides, the ethanol conditioned behavior strength was positively correlated with the time required to be extinguished. In the second set of experiments, some mice went through a CPP protocol followed by behavioral sensitization (five i.p. administrations of ethanol 2.2 g/kg or saline per week, for 3 weeks) and another group of mice went through sensitization followed by CPP. No positive correlation was observed between ethanol CPP strength and the intensity of behavioral sensitization. Considering that different phenotypes observed in CPP strength predicted the variability in other CPP measures, we developed a statistics-based method to classify mice according to CPP strength to be used in the evaluation of ethanol conditioning properties.
Ma, Wenjie; Nomura, Masaaki; Takahashi-Nishioka, Tatsuo; Kobayashi, Shinjiro
2007-11-01
The anti-hyperglycemic action of Stephania tetrandra Radix (Stephania) is potentiated by Astragalus membranaceus BUNGE Radix (Astragali) in streptozotocin (STZ)-diabetic ddY mice (Tsutsumi et al., Biol. Pharm. Bull., 26, 313 (2003)). Fangchinoline (0.3-3 mg/kg), a main constituent of Stephania, decreased the high level of blood glucose and increased the low level of blood insulin in STZ-diabetic mice. Here, we investigated the combined effects of fangchinoline with isoflavone or isoflavonoid components (formononetin, calycosin and ononin) of Astragali on the hyperglycemia and hypoinsulinemia of STZ-diabetic mice. Formononetin, calycosin and ononin (0.03-0.1 mg/kg) alone did not affect the blood glucose or blood insulin level of the diabetic mice. Formononetin and calycosin (0.03-0.1 mg/kg) potentiated the anti-hyperglycemic action of fangchinoline (0.3 mg/kg), but ononin did not. Formononetin (0.1 mg/kg) facilitated the fangchinoline-induced insulin release, and calycosin (0.1 mg/kg) also facilitated it, though without statistical significance. In conclusion, the combined effect of fangchinoline with formononetin and calycosin on hyperglycemia in the diabetic mice accounted well for the therapeutic effect of the combination of Stephania with Astragali in Boi-ogi-to. The anti-hyperglycemic action of formononetin appeared to be due to its potentiating action on insulin release. Our strategy for studying combinations of crude drugs and their components in Kampo medicine has uncovered new potentiating effects of formononetin and calycosin on the anti-hyperglycemic action of fangchinoline in STZ-diabetic mice.
Effects of suspension-induced osteopenia on the mechanical behaviour of mouse long bones
NASA Technical Reports Server (NTRS)
Simske, S. J.; Greenberg, A. R.; Luttges, M. W.; Spooner, B. S. (Principal Investigator)
1991-01-01
Whereas most studies of tail-suspension induced osteopenia have utilized rat femora, the present study investigated the effects of a 14 day tail-suspension on the mechanical behaviour of mice femora, tibiae and humeri. Force-deflection properties were obtained via three-point bending for long bones from suspended and control mice. Whole bone behaviour was characterized by converting the force-deflection values to stiffness, strength, ductility and energy parameters which were not normalized for specimen geometry. The effects of a systematic variation in the deflection rate over the range 0.1-10 mm min-1 were also evaluated. Statistical analysis indicated that the primary effect of the tail-suspension period was lowered bone mass which was manifested mechanically through lower values of the bone strength parameters. These effects were similar in the bones of both the fore and hind limbs. The results also demonstrated that the stiffness, ductility and energy characteristics were much less influenced by the tail-suspension. Whereas a significant dependence of the bone strength values upon deflection rate was observed for the femora and humeri, the other mechanical parameters were less sensitive. Based upon the nature of the physical and mechanical changes observed in the long bones following tail-suspension, the mouse appears to be a suitable animal model for the study of osteopenia.
Sandoval, Claudia Magaly; Medone, Paula; Nieves, Elsa Evelia; Jaimes, Diego Alexander; Ortiz, Nelcy; Rabinovich, Jorge Eduardo
2013-01-01
Triatominae are widely recognised for their role as vectors of Trypanosoma cruzi. One of the main biological characteristics of this subfamily is their obligate haematophagous condition. However, previous studies on Belminus herreri and Belminus ferroae suggested that cockroaches are their principal hosts in domiciles. Due to this peculiar behaviour, the aim of this study was to analyse several demographic and reproductive parameters of B. ferroae fed on three different hosts (mice, cockroaches and Rhodnius prolixus) and relate B. ferroae fitness to these alternative hosts. The cohorts were reared under constant conditions. The egg hatching rate was similar for cohorts fed on cockroaches (69.4%) and R. prolixus (63.8%), but was much lower for the cohort fed on mice (16%). The development time from the nymph to adult stage and the average age of first reproduction (α) presented lower values in the cohort fed on cockroaches, which is consistent with the higher population growth rate associated with this host. Demographic parameters [intrinsic rate of natural increase, finite rate of population growth, net reproductive rate and damping ratio] showed statistically significant differences between the cohorts. Analysis of the life history of B. ferroae revealed a higher fitness related to the cockroach. The implications of these results for the origin of the subfamily are discussed. PMID:24141961
Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline.
Aitken, R J; Bennetts, L E; Sawyer, D; Wiklendt, A M; King, B V
2005-06-01
Concern has arisen over human exposures to radio frequency electromagnetic radiation (RFEMR), including a recent report indicating that regular mobile phone use can negatively impact upon human semen quality. These effects would be particularly serious if the biological effects of RFEMR included the induction of DNA damage in male germ cells. In this study, mice were exposed to 900 MHz RFEMR at a specific absorption rate of approximately 90 mW/kg inside a waveguide for 7 days at 12 h per day. Following exposure, DNA damage to caudal epididymal spermatozoa was assessed by quantitative PCR (QPCR) as well as alkaline and pulsed-field gel electrophoresis. The treated mice were overtly normal and all assessment criteria, including sperm number, morphology and vitality were not significantly affected. Gel electrophoresis revealed no gross evidence of increased single- or double-DNA strand breakage in spermatozoa taken from treated animals. However, a detailed analysis of DNA integrity using QPCR revealed statistically significant damage to both the mitochondrial genome (p < 0.05) and the nuclear beta-globin locus (p < 0.01). This study suggests that while RFEMR does not have a dramatic impact on male germ cell development, a significant genotoxic effect on epididymal spermatozoa is evident and deserves further investigation.
Genetic Analysis of Mice Skin Exposed by Hyper-Gravity
NASA Astrophysics Data System (ADS)
Takahashi, Rika; Terada, Masahiro; Seki, Masaya; Higashibata, Akira; Majima, Hideyuki J.; Ohira, Yoshinobu; Mukai, Chiaki; Ishioka, Noriaki
2013-02-01
In the space environment, physiological alterations, such as low bone density, muscle weakness and decreased immunity, are caused by microgravity and cosmic radiation. On the other hand, it is known that the leg muscles are hypertrophy by 2G-gravity. An understanding of the effects on human body from microgravity to hyper-gravity is very important. Recently, the Japan Aerospace Exploration Agency (JAXA) has started a project to detect the changes on gene expression and mineral metabolism caused by microgravity by analyzing the hair of astronauts who stay in the international Space Station (ISS) for a long time. From these results of human hair’s research, the genetic effects of human hair roots by microgravity will become clear. However, it is unclear how the gene expression of hair roots was effected by hypergravity. Therefore, in this experiment, we analyzed the effect on mice skin contained hair roots by comparing microgravity or hypergravity exposed mice. The purpose of this experiment is to evaluate the genetic effects on mice skin by microgravity or 2G-gravity. The samples were taken from mice exposed to space flight (FL) or hypergravity environment (2G) for 3-months, respectively. The extracted and amplified RNA from these mice skin was used to DNA microarray analysis. in this experiment, we analyzed the effect of gravity by using mice skin contained hair roots, which exposed space (FL) and hyper-gravity (2G) for 3 months and each control. By DNA microarray analysis, we found the common 98 genes changed in both FL and 2G. Among these 98 genes, the functions and pathways were identified by Gene Ontology (GO) analysis and Ingenuity Pathways Analysis (IPA) software. Next, we focused the one of the identified pathways and compared the effects on each molecules in this pathways by the different environments, such as FL and 2G. As the results, we could detect some interesting molecules, which might be depended on the gravity levels. In addition, to investigate the relationships between genes and protein expression, the proteome analysis was performed. From the result of 2-dimentional electrophoresis, we could detect the some different spots between FL and 2G. These identifications are now in progress using by MALDI-TOF-MS/MS. These results suggested that many genes or proteins on the mice skin might be effected by the different gravity levels.
NASA Astrophysics Data System (ADS)
Poyatos, Rafael; Sus, Oliver; Badiella, Llorenç; Mencuccini, Maurizio; Martínez-Vilalta, Jordi
2018-05-01
The ubiquity of missing data in plant trait databases may hinder trait-based analyses of ecological patterns and processes. Spatially explicit datasets with information on intraspecific trait variability are rare but offer great promise in improving our understanding of functional biogeography. At the same time, they offer specific challenges in terms of data imputation. Here we compare statistical imputation approaches, using varying levels of environmental information, for five plant traits (leaf biomass to sapwood area ratio, leaf nitrogen content, maximum tree height, leaf mass per area and wood density) in a spatially explicit plant trait dataset of temperate and Mediterranean tree species (Ecological and Forest Inventory of Catalonia, IEFC, dataset for Catalonia, north-east Iberian Peninsula, 31 900 km2). We simulated gaps at different missingness levels (10-80 %) in a complete trait matrix, and we used overall trait means, species means, k nearest neighbours (kNN), ordinary and regression kriging, and multivariate imputation using chained equations (MICE) to impute missing trait values. We assessed these methods in terms of their accuracy and of their ability to preserve trait distributions, multi-trait correlation structure and bivariate trait relationships. The relatively good performance of mean and species mean imputations in terms of accuracy masked a poor representation of trait distributions and multivariate trait structure. Species identity improved MICE imputations for all traits, whereas forest structure and topography improved imputations for some traits. No method performed best consistently for the five studied traits, but, considering all traits and performance metrics, MICE informed by relevant ecological variables gave the best results. However, at higher missingness (> 30 %), species mean imputations and regression kriging tended to outperform MICE for some traits. MICE informed by relevant ecological variables allowed us to fill the gaps in the IEFC incomplete dataset (5495 plots) and quantify imputation uncertainty. Resulting spatial patterns of the studied traits in Catalan forests were broadly similar when using species means, regression kriging or the best-performing MICE application, but some important discrepancies were observed at the local level. Our results highlight the need to assess imputation quality beyond just imputation accuracy and show that including environmental information in statistical imputation approaches yields more plausible imputations in spatially explicit plant trait datasets.
Liu, G Y; Gao, Z H; Li, L; Song, T T; Sheng, X G
2016-06-25
To investigate the expression of Jagged1 in human epithelial ovarian carcinoma tissues and the effect of Jagged1 on growth of xenograft in nude mice. (1) Forty-eight cases of ovarian cancer and 30 cases of patients with benign epithelial ovarian tumor in the Henan Province Xinxiang Central Hospital during Feb. 2011 to Mar. 2014 were enrolled in this study. The mRNA expression of Jagged1, Notch1 and the downstream target genes Hes1, Hey1 were analyzed by using realtime PCR method. (2) The ovarian cancer xenograft models in nude mice were constructed by injecting SKOV3 cells in axillary subcutaneouswere. The nude mice were randomly divided into Jagged1 interference group, blank plasmid group and control group. Each group had 10 mice. They were transfected with pcDNA3.1(+)-siRNA-Jagged1, blank plasmid pDC3.1 and phosphate buffer, respectively. The tumor volumes and tumor masses were measured 14 days after transfection and the inhibition rate was calculated. The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues after transfection in each group was detected by using realtime PCR technique and the relative protein expression of Jagged1, Notch1, Hes1 and Hey1 in xenograft tissues was detected by utilizing western blot method. (1) The relative mRNA expression of Jagged1, Notch1, Hes1 and Hey1 in ovarian cancer tissues were higher than benign ovarian tumor tissues, the differences were statistically significant (P<0.01). (2) The tumor volume was (491± 68) mm(3) and tumor mass was (2.6±0.4) g in Jagged1 interference group, which were significantly lower than that in the blank plasmid group [(842±88) mm(3) and (4.4±0.8) g, respectively] and that in the control group [(851±90) mm(3) and (4.5±0.9) g, respectively; P<0.05], the tumor inhibition rate was 42.2% in Jagged1 interference group, which was significantly higher than that in the blank plasmid group and that in the control group (2.2% and 0, respectively), the differences were statistically significant (P<0.05). The relative mRNA and protein expression of Jagged1, Hes1 and Hey1 in xenograft tissues of nude micein Jagged1 interference group were lower than that in the other two groups, the differences were statistically significant (P<0.05). There were no differences of relative mRNA and protein expression of Notch1 in xenograft tissues of nude mice among the three groups (P>0.05). Jagged1 is highly expressed in epithelial ovarian carcinoma. Jagged1 gene interference in xenograft tumor can inhibit ovarian cancer cell growth and improve tumor suppressor rate, which probably play roles by inhibiting Notch1 signaling pathway.
IgG3 deficiency extends lifespan and attenuates progression of glomerulonephritis in MRL/lpr mice
2012-01-01
Background Antibodies of the IgG3 subclass have been implicated in the pathogenesis of the spontaneous glomerulonephritis observed in mice of the MRL/MpJ-Tnfrsf6lpr (MRL/lpr) inbred strain which have been widely studied as a model of systemic lupus erythematosus We have produced IgG3-deficient (-/-) mice with the MRL/lpr genetic background to determine whether IgG3 antibodies are necessary for or at least contributory to MRL/lpr-associated nephritis. Results The gamma3 genotype (+/+ vs. +/- vs. -/-) did not appear to significantly affect serum titers of IgG auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin. However, while substantial serum titers of IgG3 auto-antibodies specific for double-stranded DNA (dsDNA) or α-actinin were seen in gamma3 +/+ mice, somewhat lower serum titers of these IgG3 auto-antibodies were found in gamma3 +/- mice, and gamma3 -/- mice exhibited baseline concentrations of these auto-antibodies. Analysis of immunoglobulins eluted from snap-frozen kidneys obtained from mice of all three gamma3 genotypes at ~18 weeks of age revealed much higher quantities of IgG in the kidneys from gamma3 +/+ than gamma3 -/- mice, and most IgG eluted from +/+ mice was IgG3. The serum creatinine levels in gamma3 +/+ mice substantially exceeded those of age-matched gamma3 -/- mice after ~21 weeks of age. Histopathological examination of kidneys from mice sacrificed at pre-determined ages also revealed more extensive glomerulosclerosis in gamma3 +/+ or +/- mice than in -/- mice beginning at 21 weeks of age. Survival analysis for IgG3-deficient and IgG3-producing MRL/lpr mice revealed that gamma3 -/- mice lived significantly longer (p = 0.0006) than either gamma3 +/- or +/+ mice. Spontaneous death appeared to be due to irreversible renal failure, because > 85% of glomeruli in kidneys from mice that died spontaneously were obliterated by glomerulosclerosis. Conclusions The available evidence suggests that IgG3 deficiency partially protects MRL/lpr mice against glomerulonephritis-associated morbidity and mortality by slowing or arresting the progression to glomerulosclerosis. Reviewers This article was reviewed by Pushpa Pandiyan, Irun Cohen, and Etienne Joly. PMID:22248284
Shen, Liming; Chen, Youjiao; Yang, Aochu; Chen, Cheng; Liao, Liping; Li, Shuiming; Ying, Ming; Tian, Jing; Liu, Qiong; Ni, Jiazuan
2016-04-12
Oxidative stress is a key event in the onset and progression of neurodegenerative diseases, including Alzheimer's disease (AD). To investigate the role of oxidative stress in AD and to search for potential biomarkers in peripheral blood, serums were collected in this study from the 3-, 6-, and 12-month-old triple transgenic AD mice (3×Tg-AD mice) and the age- and sex-matched non-transgenic (non-Tg) littermates. The serum oxidized proteins were quantified by slot-blot analysis and enzyme-linked immunosorbent assay (ELISA) to investigate the total levels of serum protein carbonyl groups. Western blotting, in conjunction with two-dimensional gel electrophoresis (2D-Oxyblot), was employed to identify and quantify the specifically-carbonylated proteins in the serum of 3×Tg-AD mice. The results showed that the levels of serum protein carbonyls were increased in the three month old 3×Tg-AD mice compared with the non-Tg control mice, whereas no significant differences were observed in the six and 12 months old AD mice, suggesting that oxidative stress is an early event in AD progression. With the application of 2D-Oxyblot analysis, (immunoglobin) Ig gamma-2B chain C region (IGH-3), Ig lambda-2 chain C region (IGLC2), Ig kappa chain C region (IGKC), and Ig kappa chain V-V region HP R16.7 were identified as significantly oxidized proteins compared with the control. Among them IGH-3 and IGKC were validated via immunoprecipitation and Western blot analysis. Identification of oxidized proteins in the serums of 3×Tg-AD mice can not only reveal potential roles of those proteins in the pathogenesis of AD but also provide potential biomarkers of AD at the early stage.
Dynamic association rules for gene expression data analysis.
Chen, Shu-Chuan; Tsai, Tsung-Hsien; Chung, Cheng-Han; Li, Wen-Hsiung
2015-10-14
The purpose of gene expression analysis is to look for the association between regulation of gene expression levels and phenotypic variations. This association based on gene expression profile has been used to determine whether the induction/repression of genes correspond to phenotypic variations including cell regulations, clinical diagnoses and drug development. Statistical analyses on microarray data have been developed to resolve gene selection issue. However, these methods do not inform us of causality between genes and phenotypes. In this paper, we propose the dynamic association rule algorithm (DAR algorithm) which helps ones to efficiently select a subset of significant genes for subsequent analysis. The DAR algorithm is based on association rules from market basket analysis in marketing. We first propose a statistical way, based on constructing a one-sided confidence interval and hypothesis testing, to determine if an association rule is meaningful. Based on the proposed statistical method, we then developed the DAR algorithm for gene expression data analysis. The method was applied to analyze four microarray datasets and one Next Generation Sequencing (NGS) dataset: the Mice Apo A1 dataset, the whole genome expression dataset of mouse embryonic stem cells, expression profiling of the bone marrow of Leukemia patients, Microarray Quality Control (MAQC) data set and the RNA-seq dataset of a mouse genomic imprinting study. A comparison of the proposed method with the t-test on the expression profiling of the bone marrow of Leukemia patients was conducted. We developed a statistical way, based on the concept of confidence interval, to determine the minimum support and minimum confidence for mining association relationships among items. With the minimum support and minimum confidence, one can find significant rules in one single step. The DAR algorithm was then developed for gene expression data analysis. Four gene expression datasets showed that the proposed DAR algorithm not only was able to identify a set of differentially expressed genes that largely agreed with that of other methods, but also provided an efficient and accurate way to find influential genes of a disease. In the paper, the well-established association rule mining technique from marketing has been successfully modified to determine the minimum support and minimum confidence based on the concept of confidence interval and hypothesis testing. It can be applied to gene expression data to mine significant association rules between gene regulation and phenotype. The proposed DAR algorithm provides an efficient way to find influential genes that underlie the phenotypic variance.
Zhang, Youcai; Lickteig, Andrew J; Csanaky, Iván L; Klaassen, Curtis D
2018-01-01
Fibrates are hypolipidemic drugs that act as activators of peroxisome proliferator-activated receptor α (PPARα). In both humans and rodents, females were reported to be less responsive to fibrates than males. Previous studies on fibrates and PPARα usually involved male mice, but little has been done in females. The present study aimed to provide the first comprehensive analysis of the effects of clofibrate (CLOF) and PPARα on bile acid (BA) homeostasis in female mice. Study in WT male mice showed that a 4-day CLOF treatment increased liver weight, bile flow, and biliary BA excretion, but decreased total BAs in both serum and liver. In contrast, WT female mice were less susceptible to these CLOF-mediated responses observed in males. In WT female mice, CLOF decreased total BAs in the liver, but had little effect on the mRNAs of hepatic BA-related genes. Next, a comparative analysis between WT and PPARα-null female mice showed that lack of PPARα in female mice decreased total BAs in serum, but had little effect on total BAs in liver or bile. However, lack of PPARα in female mice increased mRNAs of BA synthetic enzymes (Cyp7a1, Cyp8b1, Cyp27a1, and Cyp7b1) and transporters (Ntcp, Oatp1a1, Oatp1b2, and Mrp3). Furthermore, the increase of Cyp7a1 in PPARα-null female mice was associated with an increase in liver Fxr-Shp-Lrh-1 signaling. In conclusion, female mice are resistant to CLOF-mediated effects on BA metabolism observed in males, which could be attributed to PPARα-mediated suppression in females on genes involved in BA synthesis and transport. Copyright © 2017 Elsevier Inc. All rights reserved.
Curcumin reduces trabecular and cortical bone in naive and Lewis lung carcinoma-bearing mice
USDA-ARS?s Scientific Manuscript database
The present study investigated the effects of dietary supplementation with curcumin on bone microstructural changes in female C57BL/6 mice in the presence or absence of Lewis lung carcinoma. Morphometric analysis showed that in tumor-bearing mice curcumin at 2% and 4% dietary levels (w/w) significa...
Pate, Kathryn M; Sherk, Vanessa D; Carpenter, R Dana; Weaver, Michael; Crapo, Silvia; Gally, Fabienne; Chatham, Lillian S; Goldstrohm, David A; Crapo, James D; Kohrt, Wendy M; Bowler, Russell P; Oberley-Deegan, Rebecca E; Regan, Elizabeth A
2015-03-15
Osteoarthritis (OA) is associated with increased mechanical damage to joint cartilage. We have previously found that extracellular superoxide dismutase (ECSOD) is decreased in OA joint fluid and cartilage, suggesting oxidant damage may play a role in OA. We explored the effect of forced running as a surrogate for mechanical damage in a transgenic mouse with reduced ECSOD tissue binding. Transgenic mice heterozygous (Het) for the human ECSOD R213G polymorphism and 129-SvEv (wild-type, WT) mice were exposed to forced running on a treadmill for 45 min/day, 5 days/wk, over 8 wk. At the end of the running protocol, knee joint tissue was obtained for histology, immunohistochemistry, and protein analysis. Sedentary Het and WT mice were maintained for comparison. Whole tibias were studied for bone morphometry, finite element analysis, and mechanical testing. Forced running improved joint histology in WT mice. However, when ECSOD levels were reduced, this beneficial effect with running was lost. Het ECSOD runner mice had significantly worse histology scores compared with WT runner mice. Runner mice for both strains had increased bone strength in response to the running protocol, while Het mice showed evidence of a less robust bone structure in both runners and untrained mice. Reduced levels of ECSOD in cartilage produced joint damage when joints were stressed by forced running. The bone tissues responded to increased loading with hypertrophy, regardless of mouse strain. We conclude that ECSOD plays an important role in protecting cartilage from damage caused by mechanical loading. Copyright © 2015 the American Physiological Society.
Sugimoto, Yumi; Kajiwara, Yoshinobu; Hirano, Kazufumi; Yamada, Shizuo; Tagawa, Noriko; Kobayashi, Yoshiharu; Hotta, Yoshihiro; Yamada, Jun
2008-09-11
Strain differences in immobility time in the forced swimming test were investigated in five strains of mice, namely, ICR, ddY, C57BL/6, DBA/2 and BALB/c mice. There were significant strain differences. The immobility times of ICR, ddY and C57BL/6 mice were longer than those of DBA/2 and BALB/c mice. Immobility times were not significantly related to locomotor activity in these strains. There were also differences in sensitivity to the selective serotonin reuptake inhibitor (SSRI) fluvoxamine. In ICR, ddY and C57BL/6 mice, fluvoxamine did not affect immobility time, while it reduced the immobility time of DBA/2 and BALB/c mice dose-dependently. The noradrenaline reuptake inhibitor desipramine decreased immobility time in all strains of mice. Serotonin (5-HT) transporter binding in the brains of all five strains of mice was also investigated. Analysis of 5-HT transporter binding revealed significant strain differences, being lower in DBA/2 and BALB/c mice than in other strains of mice. The amount of 5-HT transporter binding was correlated to baseline immobility time. However, there was no significant relation between noradrenaline transporter binding and immobility time. These results suggest that the duration of baseline immobility depends on the levels of 5-HT transporter binding, leading to apparent strain differences in immobility time in the forced swimming test. Furthermore, differences in 5-HT transporter binding may cause variations in responses to fluvoxamine.
NASA Astrophysics Data System (ADS)
Sun, Taohua; Zhang, Xinhui; Miao, Ying; Zhou, Yang; Shi, Jie; Yan, Meixing; Chen, Anjin
2018-06-01
The antiviral activity in vitro and in vivo and the effect of the immune system of two fucoidan fractions with low molecular weight and different sulfate content from Laminaria japonica (LMW fucoidans) were investigated in order to examine the possible mechanism. In vitro, I-type influenza virus, adenovirus and Parainfluenza virus I were used to infect Hep-2, Hela and MDCK cells, respectively. And 50% tissue culture infective dose was calculated to detect the antiviral activity of two LMW fucoidans. The results indicated that compared with the control group, 2 kinds of LMW fucoidans had remarkable antiviral activity in vitro in middle and high doses, while at low doses, the antiviral activity of 2 kinds of LMW fucoidans was not statistically different from that in the blank control group. And there was no statistically difference between two LMW fucoidans in antiviral activity. In vivo, LMW fucoidans could prolong the survival time of virus-infected mice, and could improve the lung index of virus-infected mice significantly, which have statistical differences with the control group significantly ( p < 0.01). However, the survival time of the two LMW fucoidans was not statistically significant ( p > 0.05). In this study, it was shown that both of two LMW fucoidans (LF1, LF2) could increase the thymus index, spleen index, phagocytic index, phagocytosis coefficient and half hemolysin value in middle and high doses, which suggested that LMW fucoidans could play an antiviral role by improving the quality of immune organs, improving immune cell phagocytosis and humoral immunity.
BRODY, DAVID L.; DONALD, CHRISTINE Mac; KESSENS, CHAD C.; YUEDE, CARLA; PARSADANIAN, MAIA; SPINNER, MIKE; KIM, EDDIE; SCHWETYE, KATHERINE E.; HOLTZMAN, DAVID M.; BAYLY, PHILIP V.
2008-01-01
Genetically modified mice represent useful tools for traumatic brain injury (TBI) research and attractive preclinical models for the development of novel therapeutics. Experimental methods that minimize the number of mice needed may increase the pace of discovery. With this in mind, we developed and characterized a prototype electromagnetic (EM) controlled cortical impact device along with refined surgical and behavioral testing techniques. By varying the depth of impact between 1.0 and 3.0 mm, we found that the EM device was capable of producing a broad range of injury severities. Histologically, 2.0-mm impact depth injuries produced by the EM device were similar to 1.0-mm impact depth injuries produced by a commercially available pneumatic device. Behaviorally, 2.0-, 2.5-, and 3.0-mm impacts impaired hidden platform and probe trial water maze performance, whereas 1.5-mm impacts did not. Rotorod and visible platform water maze deficits were also found following 2.5- and 3.0-mm impacts. No impairment of conditioned fear performance was detected. No differences were found between sexes of mice. Inter-operator reliability was very good. Behaviorally, we found that we could statistically distinguish between injury depths differing by 0.5 mm using 12 mice per group and between injury depths differing by 1.0 mm with 7-8 mice per group. Thus, the EM impactor and refined surgical and behavioral testing techniques may offer a reliable and convenient framework for preclinical TBI research involving mice. PMID:17439349
Attenuation coefficient of the light in skin of BALB/c and C57BL/6 mice
NASA Astrophysics Data System (ADS)
Silva, C. R.; Camargo, C. F. M.; Aureliano, D. P.; De Pretto, L. R.; Freitas, A. Z.; Ribeiro, M. S.
2015-06-01
Optical properties of the biological tissue play an important role to a correct use of optical techniques for therapy and diagnosis. The mice skin presents morphological differences due to characteristics such as gender, body mass and age. Murine models are frequently used in pre-clinical trials in optical therapy and diagnosis. Therefore, the assessment of the skin tissue in animal models is needed for a proper understanding of how light interacts with skin. Noninvasive techniques such as optical coherence tomography (OCT) have been used to obtain optical information of the tissue, as the attenuation coefficient, with the advantage of obtaining sectional images in real time. In this study, eight female BALB/c albino mice (twenty-four weeks old) and eight male C57BL/6 black mice (eight weeks old) were used to measure the attenuation coefficient of the light in the skin, utilizing the OCT technique, aiming to check for influence of the aging process. Two moments were assessed twenty-two weeks apart from each other. Our data show that the aging process significantly affects the light attenuation coefficient in mice skin. Twenty-two weeks after, statistical significant differences were observed between groups within a same strain. We conclude that light attenuation coefficient of mice skin may be influenced by factors such as disorganization of the dermis. Morphological aspects of skin should be taken into account in studies that involve optical strategies in murine models.
Campbell, Joan I A; Mortensen, Alicja; Mølgaard, Per
2006-04-06
The toxicity and anti-diabetic properties of an aqueous plant extract made by boiling Rauwolfia vomitoria foilage and Citrus aurantium fruits were evaluated in mice. A single dosage corresponding to 70x the human-daily-dose was non-toxic when administered to 6-week-old NMRI lean mice or 6- or 11-week-old C57BL/6J lean mice. Daily treatment of 11-week-old C57BL/KsBom-db (db/db) genetic diabetic mice with a dose corresponding to 10x human-daily-dose for 6 weeks facilitated a significant weight loss as compared to the untreated controls. During treatment, the db/db mice were maintained on the carbohydrate-deficient Altromin C1009 diet. Although the food intake in the treated mice was not statistically significant from that in the controls, the treated animals had significantly higher serum triglyceride contents, suggesting that the treatment induced lipid mobilization from internal stores. Moreover, the fatty acid profile of the eyes from the treated animals showed a significant reduction in total fatty acid content accompanied by a 33% reduction in estimated Stearoyl-CoA desaturase activity (p = 0.039) as compared with controls. The fatty acid mobilization and a protection of the brittle C57BL/KsBom-db pancreas were observed 5 weeks after cessation of treatment when the treated animals were maintained on the poorer Altromin C1009 diet.
Fureix, Carole; Walker, Michael; Harper, Laura; Reynolds, Kathryn; Saldivia-Woo, Amanda; Mason, Georgia
2016-05-15
Depressive-like forms of waking inactivity have been recently observed in laboratory primates and horses. We tested the hypotheses that being awake but motionless within the home-cage is a depression-like symptom in mice, and that in impoverished housing, it represents an alternative response to stereotypic behaviour. We raised C57BL/6 ('C57') and DBA/2 ('DBA') females to adulthood in non-enriched (n=62 mice) or enriched (n=60 mice) cages, observing home-cage behaviour during the active (dark) phases. We predicted that being still but awake would be reduced by environmental enrichment; more pronounced in C57s, as the strain most prone to learned helplessness; negatively related to stereotypic behaviour; and positively related to immobility in Forced Swim Tests (FST). Compared to enriched mice, non-enriched subjects did spend more time spent being inactive but awake, especially if they displayed relatively little stereotypic behaviour. C57 mice also spent more time awake but motionless than DBAs. Furthermore, even after statistically controlling for housing type and strain, this behaviour very strongly tended to predict increased immobility in the FST, while high levels of stereotypic behaviours in contrast predicted low immobility in the FST. Being awake but motionless is thus a reaction to non-enriched housing that seems to be an alternative to stereotypic behaviour, and could reflect depression-like states. Copyright © 2016 Elsevier B.V. All rights reserved.
Cao, M; Zhang, J B; Dong, D D; Mou, Y; Li, K; Fang, J; Wang, Z Y; Chen, C; Zhao, J; Yie, S M
2015-10-16
Cells isolated from human first trimester umbilical cord perivascular layer (hFTM-PV) tissues display the pluripotent characteristics of stem cells. In this study, we examined whether hFTM-PV cells can differentiate into islet-like clusters (ILCs) in vitro, and whether transplantation of the hFTM-PV cells with and without differentiation in vitro can alleviate diabetes in nude mice. The hFTM-PV cells were differentiated into ILCs in vitro through a simple stepwise culture protocol. To examine the in vivo effects of the cells, the hFTM-PV cells with and without differentiation in vitro were transplanted into the abdominal cavity of nude mice with streptozotocin (STZ)-induced diabetes. Blood glucose levels, body weight, and the survival probability of the diabetic nude mice were then statistically analyzed. The hFTM-PV cells were successfully induced into ILCs that could release insulin in response to elevated concentrations of glucose in vitro. In transplantation experiments, we observed that mice transplanted with the undifferentiated hFTM-PV cells, embryonic body-like cell aggregations, or ILCs all demonstrated normalized hyperglycemia and showed improved survival rate compared with those without cell transplantation. The hFTM-PV cells have the ability to differentiate into ILCs in vitro and transplantations of undifferentiated and differentiated cells can alleviate STZ-induced diabetes in nude mice. This may offer a potential cell source for stem cell-based therapy for treating diabetes in the future.
Azuma, Kotaro; Shiba, Sachiko; Hasegawa, Tomoka; Ikeda, Kazuhiro; Urano, Tomohiko; Horie-Inoue, Kuniko; Ouchi, Yasuyoshi; Amizuka, Norio; Inoue, Satoshi
2015-07-01
Vitamin K is a fat-soluble vitamin that is necessary for blood coagulation. In addition, it has bone-protective effects. Vitamin K functions as a cofactor of γ-glutamyl carboxylase (GGCX), which activates its substrates by carboxylation. These substrates are found throughout the body and examples include hepatic blood coagulation factors. Furthermore, vitamin K functions as a ligand of the nuclear receptor known as steroid and xenobiotic receptor (SXR) and its murine ortholog, pregnane X receptor (PXR). We have previously reported on the bone-protective role of SXR/PXR signaling by demonstrating that systemic Pxr-knockout mice displayed osteopenia. Because systemic Ggcx-knockout mice die shortly after birth from severe hemorrhage, the GGCX-mediated effect of vitamin K on bone metabolism has been difficult to evaluate. In this work, we utilized Ggcx-floxed mice to generate osteoblast-specific GGCX-deficient (Ggcx(Δobl/Δobl)) mice by crossing them with Col1-Cre mice. The bone mineral density (BMD) of Ggcx(Δobl/Δobl) mice was significantly higher than that of control Col1-Cre (Ggcx(+/+)) mice. Histomorphometrical analysis of trabecular bones in the proximal tibia showed increased osteoid volume and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Histomorphometrical analysis of cortical bones revealed a thicker cortical width and a higher rate of bone formation in Ggcx(Δobl/Δobl) mice. Electron microscopic examination revealed disassembly of mineralized nodules and aberrant calcification of collagen fibers in Ggcx(Δobl/Δobl) mice. The mechanical properties of bones from Ggcx(Δobl/Δobl) mice tended to be stronger than those from control Ggcx(+/+) mice. These results suggest that GGCX in osteoblasts functions to prevent abnormal mineralization in bone formation, although this function may not be a prerequisite for the bone-protective effect of vitamin K. © 2015 American Society for Bone and Mineral Research.
Fecal microbiota manipulation prevents dysbiosis and alcohol-induced liver injury in mice.
Ferrere, Gladys; Wrzosek, Laura; Cailleux, Frédéric; Turpin, Williams; Puchois, Virginie; Spatz, Madeleine; Ciocan, Dragos; Rainteau, Dominique; Humbert, Lydie; Hugot, Cindy; Gaudin, Françoise; Noordine, Marie-Louise; Robert, Véronique; Berrebi, Dominique; Thomas, Muriel; Naveau, Sylvie; Perlemuter, Gabriel; Cassard, Anne-Marie
2017-04-01
Alcoholic liver disease (ALD) is a leading cause of liver failure and mortality. In humans, severe alcoholic hepatitis is associated with key changes to intestinal microbiota (IM), which influences individual sensitivity to develop advanced ALD. We used the different susceptibility to ALD observed in two distinct animal facilities to test the efficiency of two complementary strategies (fecal microbiota transplantation and prebiotic treatment) to reverse dysbiosis and prevent ALD. Mice were fed alcohol in two distinct animal facilities with a Lieber DeCarli diet. Fecal microbiota transplantation was performed with fresh feces from alcohol-resistant donor mice to alcohol-sensitive receiver mice three times a week. Another group of mice received pectin during the entire alcohol consumption period. Ethanol induced steatosis and liver inflammation, which were associated with disruption of gut homeostasis, in alcohol-sensitive, but not alcohol resistant mice. IM analysis showed that the proportion of Bacteroides was specifically lower in alcohol-sensitive mice (p<0.05). Principal coordinate analysis showed that the IM of sensitive and resistant mice clustered differently. We targeted IM using two different strategies to prevent alcohol-induced liver lesions: (1) pectin treatment which induced major modifications of the IM, (2) fecal microbiota transplantation which resulted in an IM very close to that of resistant donor mice in the sensitive recipient mice. Both methods prevented steatosis, liver inflammation, and restored gut homeostasis. Manipulation of IM can prevent alcohol-induced liver injury. The IM should be considered as a new therapeutic target in ALD. Sensitivity to alcoholic liver disease (ALD) is driven by intestinal microbiota in alcohol fed mice. Treatment of mice with alcohol-induced liver lesions by fecal transplant from alcohol fed mice resistant to ALD or with prebiotic (pectin) prevents ALD. These findings open new possibilities for treatment of human ALD through intestinal microbiota manipulation. Copyright © 2016 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.
Dubrovina, N I; Zinov'ev, D R; Zinov'eva, D V; Kulikov, A V
2009-06-01
This report presents results obtained from comparative analysis of learning and the dynamics of extinction of a conditioned passive avoidance response in ASC mice, which were bred for a high level of predisposition to catalepsy, and in CBA and AKR mice. The following findings were obtained: 1) impairments to the extinction of the memory of fear represent an important symptom of depression in ASC mice; 2) extinction is delayed in CBA mice; and 3) new inhibitory learning occurs quickly in AKR mice. Prolonged retention of the fear memory in ASC mice appears to be related to increased anxiety on prolonged testing without a punishment. The deficit of inhibition of the fear reaction in ASC mice allows this strain to be regarded as a genetic model of depression.
DMAV is an organoarsenical pesticide registered for use on certain citrus crops and as a cotton defoliant. In lifetime oral route studies in rodents, DMAV causes statistically significant increases in bladder tumors in rats, but not in mice. We have developed a PBPK model for D...
Andrade, C U B; Perazzo, F F; Maistro, E L
2008-01-01
Plants are a source of many biologically active products and nowadays they are of great interest to the pharmaceutical industry. In the present study, the mutagenic potential of the Musa paradisiaca fruit peel extract was assessed by the single-cell gel electrophoresis (SCGE) and micronucleus assays. Animals were treated orally with three different concentrations of the extract (1000, 1500, and 2000 mg/kg body weight). Peripheral blood cells of Swiss mice were collected 24 h after treatment for the SCGE assay and 48 and 72 h for the micronucleus test. The results showed that the two higher doses of the extract of M. paradisiaca induced statistically significant increases in the average numbers of DNA damage in peripheral blood leukocytes for the two higher doses and a significant increase in the mean of micronucleated polychromatic erythrocytes in the three doses tested. The polychromatic/normochromatic erythrocyte ratio scored in the treated groups was not statistically different from the negative control. The data obtained indicate that fruit peel extract from M. paradisiaca showed mutagenic effect in the peripheral blood cells of Swiss albino mice.
Parlee, Sebastian D.; Simon, Becky R.; Scheller, Erica L.; Alejandro, Emilyn U.; Learman, Brian S.; Krishnan, Venkatesh; Bernal-Mizrachi, Ernesto
2014-01-01
Nutritional or pharmacological perturbations during perinatal growth can cause persistent effects on the function of white adipose tissue, altering susceptibility to obesity later in life. Previous studies have established that saccharin, a nonnutritive sweetener, inhibits lipolysis in mature adipocytes and stimulates adipogenesis. Thus, the current study tested whether neonatal exposure to saccharin via maternal lactation increased susceptibility of mice to diet-induced obesity. Saccharin decreased body weight of female mice beginning postnatal week 3. Decreased liver weights on week 14 corroborated this diminished body weight. Initially, saccharin also reduced male mouse body weight. By week 5, weights transiently rebounded above controls, and by week 14, male body weights did not differ. Body composition analysis revealed that saccharin increased lean and decreased fat mass of male mice, the latter due to decreased adipocyte size and epididymal, perirenal, and sc adipose weights. A mild improvement in glucose tolerance without a change in insulin sensitivity or secretion aligned with this leaner phenotype. Interestingly, microcomputed tomography analysis indicated that saccharin also increased cortical and trabecular bone mass of male mice and modified cortical bone alone in female mice. A modest increase in circulating testosterone may contribute to the leaner phenotype in male mice. Accordingly, the current study established a developmental period in which saccharin at high concentrations reduces adiposity and increases lean and bone mass in male mice while decreasing generalized growth in female mice. PMID:24456165
Global analysis of 1H-NMR spectra of serum is an appealing approach for the rapid detection of cancer. To evaluate the usefulness of this method in distinguishing between mammary tumor-bearing mice and healthy controls, we conducted 1H-NMR metabonomic analyses on serum samples ob...
A biologically based mathematical model for the induction of liver tumors in mice by dichloroacetic acid (DCA) has been developed from histopathologic analysis of the livers of exposed mice. This analysis suggests that following chronic exposure to DCA, carcinomas can arise dire...
Analysis of p21-Activated Kinase Function in Neurofibromatosis Type 2
2009-01-01
SchΔ(39-121) Pak1+/+ mice developed NF2-related pathologies ( schwannomatosis , nerve sheath tumors, sarcomas), whereas 2/34 P0- SchΔ(39-121) Pak1...for analysis (M.G., personal communication), as schwannomatosis develops in all the transgenic mice by three months of age. We have therefore
Analysis of p21-Activated Kinase Function in Neurofibromatosis Type 2
2008-01-01
SchΔ(39-121) Pak1+/+ mice developed NF2-related pathologies ( schwannomatosis , nerve sheath tumors, sarcomas), whereas 1/33 P0-SchΔ(39-121) Pak1...much more favorable for analysis (M.G., personal communication), as schwannomatosis develops in all the transgenic mice by three months of age. We
Anderson, Nicholas J; King, Matthew R; Delbruck, Lina; Jolivalt, Corinne G
2014-06-01
One of the tissues or organs affected by diabetes is the nervous system, predominantly the peripheral system (peripheral polyneuropathy and/or painful peripheral neuropathy) but also the central system with impaired learning, memory and mental flexibility. The aim of this study was to test the hypothesis that the pre-diabetic or diabetic condition caused by a high-fat diet (HFD) can damage both the peripheral and central nervous systems. Groups of C57BL6 and Swiss Webster mice were fed a diet containing 60% fat for 8 months and compared to control and streptozotocin (STZ)-induced diabetic groups that were fed a standard diet containing 10% fat. Aspects of peripheral nerve function (conduction velocity, thermal sensitivity) and central nervous system function (learning ability, memory) were measured at assorted times during the study. Both strains of mice on HFD developed impaired glucose tolerance, indicative of insulin resistance, but only the C57BL6 mice showed statistically significant hyperglycemia. STZ-diabetic C57BL6 mice developed learning deficits in the Barnes maze after 8 weeks of diabetes, whereas neither C57BL6 nor Swiss Webster mice fed a HFD showed signs of defects at that time point. By 6 months on HFD, Swiss Webster mice developed learning and memory deficits in the Barnes maze test, whereas their peripheral nervous system remained normal. In contrast, C57BL6 mice fed the HFD developed peripheral nerve dysfunction, as indicated by nerve conduction slowing and thermal hyperalgesia, but showed normal learning and memory functions. Our data indicate that STZ-induced diabetes or a HFD can damage both peripheral and central nervous systems, but learning deficits develop more rapidly in insulin-deficient than in insulin-resistant conditions and only in Swiss Webster mice. In addition to insulin impairment, dyslipidemia or adiponectinemia might determine the neuropathy phenotype. © 2014. Published by The Company of Biologists Ltd.
McCaw, Zachary; Gladwell, Wesley; Trivedi, Shweta; Bushel, Pierre R.; Kleeberger, Steven R.
2015-01-01
Background Ozone is a highly toxic air pollutant and global health concern. Mechanisms of genetic susceptibility to ozone-induced lung inflammation are not completely understood. We hypothesized that Notch3 and Notch4 are important determinants of susceptibility to ozone-induced lung inflammation. Methods Wild-type (WT), Notch3 (Notch3–/–), and Notch4 (Notch4–/–) knockout mice were exposed to ozone (0.3 ppm) or filtered air for 6–72 hr. Results Relative to air-exposed controls, ozone increased bronchoalveolar lavage fluid (BALF) protein, a marker of lung permeability, in all genotypes, but significantly greater concentrations were found in Notch4–/– compared with WT and Notch3–/– mice. Significantly greater mean numbers of BALF neutrophils were found in Notch3–/– and Notch4–/– mice compared with WT mice after ozone exposure. Expression of whole lung Tnf was significantly increased after ozone in Notch3–/– and Notch4–/– mice, and was significantly greater in Notch3–/– compared with WT mice. Statistical analyses of the transcriptome identified differentially expressed gene networks between WT and knockout mice basally and after ozone, and included Trim30, a member of the inflammasome pathway, and Traf6, an inflammatory signaling member. Conclusions These novel findings are consistent with Notch3 and Notch4 as susceptibility genes for ozone-induced lung injury, and suggest that Notch receptors protect against innate immune inflammation. Citation Verhein KC, McCaw Z, Gladwell W, Trivedi S, Bushel PR, Kleeberger SR. 2015. Novel roles for Notch3 and Notch4 receptors in gene expression and susceptibility to ozone-induced lung inflammation in mice. Environ Health Perspect 123:799–805; http://dx.doi.org/10.1289/ehp.1408852 PMID:25658374
Knott, Thomas K; Madany, Pasil A; Faden, Ashley A; Xu, Mei; Strotmann, Jörg; Henion, Timothy R; Schwarting, Gerald A
2012-07-04
The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2(-/-) mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2(-/-) neurons. Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2(-/-) mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2(-/-) olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2(-/-) mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2(-/-) olfactory neurons. Results presented here show that many odorant receptors are under-expressed in β3GnT2(-/-) mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2(-/-) mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2(-/-) mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact.
TCDD causes stimulation of c-ras expression in the hepatic plasma membranes in vivo and in vitro.
Tullis, K; Olsen, H; Bombick, D W; Matsumura, F; Jankun, J
1992-01-01
A series of in vivo and in vitro experiments were conducted to determine the effects of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) administered on the expression of c-ras. Differences in c-ras expression between control and TCDD treated groups were determined by immunoassay of p21ras protein, or indirectly measured by the specific binding of 3H-GTP to hepatic plasma membrane preparations. Intraperitoneal injection of sublethal doses of TCDD significantly elevated (P less than 0.05, Student t test) levels of hepatic p21ras protein in Sprague-Dawley rats and TCDD sensitive C57BL/6J mice. Such an increase occurred at an early stage of poisoning in the C57BL/6J mice. The earliest increase was detectable 6 hr after dosing, and the difference became statistically significant by 12 and 24 hr after dosing. In contrast, TCDD tolerant DBA/2J mice had only a marginal increase in hepatic p21ras protein which did not become statistically significant even at 24 hr host-dosing. TCDD evoked increases in hepatic p21ras protein of C57BL/6J mice were accompanied by the increase in the specific binding of GTP to hepatic plasma membranes. Column chromatography of solubilized rat hepatic membrane proteins on sephadex G-50 showed TCDD administration increased levels of a 3H-GTP binding protein with MW of approximately 21 Kd. 3H-GTP binding in total hepatic membranes was also elevated (P less than 0.05, Fisher PLSD multiple comparison test) 6 hr and 24 hr after dosing of C57BL/6J mice, but as expected the effect of TCDD was not as conspicuous as that found in the plasma membrane. TCDD treatment increased levels of a 21 Kd protein found in the in vitro translation products of RNA purified from guinea pig liver. This protein was identified as a c-ras protein based upon its ability to bind GTP, precipitation by a polyclonal antibody against the rasHa and Ki proteins and subsequent SDS-PAGE which showed a single protein band of approximately 21 Kd.
Moerth, Corinna; Schneider, Marlon R; Renner-Mueller, Ingrid; Blutke, Andreas; Elmlinger, Martin W; Erben, Reinhold G; Camacho-Hübner, Cecilia; Hoeflich, Andreas; Wolf, Eckhard
2007-01-01
This study tested whether elevated levels of IGF-II in the postnatal period can rescue the dwarfism in IGF-I-deficient mice. Heterozygous Igf1 mutant mice [I(+/-) II(wt)] were crossed with heterozygous Igf1 mutant, phosphoenolpyruvate carboxykinase promoter IGF-II transgenic mice [I(+/-) II(tg)], and [I(+/+) II(wt)], [I(+/+) II(tg)], [I(-/-) II(wt)], and [I(-/-) II(tg)] offspring were investigated. IGF-II levels were 11- and 6-fold higher in male and female [I(-/-) II(tg)] vs. [I(-/-) II(wt)] animals. Western ligand blot analysis revealed markedly reduced activities of 30- and 32-kDa IGF binding proteins (IGFBPs) (most likely IGFBP-1 and IGFBP-2) and the 39- to 43-kDa IGFBP-3 double band in serum from IGF-I-deficient mice. These binding proteins were partially restored by overexpression of IGF-II. Analysis of weight data from the early postnatal period until d 60 showed that, in the absence of IGF-I, elevated levels of IGF-II have no effect on body weight gain. A detailed analysis of body proportions, bone parameters, and organ weights of 60-d-old mice also failed to show effects of IGF-II with one important exception: in Igf1 mutant and also Igf1 intact male mice, IGF-II overexpression significantly increased absolute (+32.4 and +28.6%; P < 0.01) and relative kidney weights (+29.0 and +22.4%; P < 0.001). These changes in kidney weight were associated with reduced phosphorylation of p38 MAPK. In summary, our genetic model shows that substantial amounts of IGF-II in the circulation do not rescue the postnatal growth deficit of IGF-I-deficient mice but increase absolute and relative kidney weights of normal and IGF-I-deficient male mice, suggesting a gender-specific role of IGF-II for kidney growth.
Wang, Chao; Xie, Wei; Zhu, Jinfeng; Dang, Rui; Wang, Decai
2014-01-01
To observe the early prevention effect of the compound nutrients recipe for cognitive dysfunction of Alzheimer' s disease model-APP-PSN transgenic mouse. 36 APP-PSN transgenic mice aged two months randomly were divided into the intervention group supplied with compound recipe in the diet and the control group fed based feed, the former had high dose and low dose, 12 APP-PSN transgenic negative mice aged two months as the negative control were fed based feed. After 3 months' intervention, four groups' cognitive functions were evaluated using the Morris water maze, active avoidance experiment and jumping stair experiment. There was not statistically different between all the four groups for the weight and food intake. Compared with the control group, Morris water maze's incubation period of the intervention group was lower obviously, and jumping stair experiment's incubation period of the intervention group was higher obviously. In the active avoidance experiment, the high and low dose intervention group' s conditioned response accounted about 46.67% and 45.00% respectively, and the control group's conditioned response accounted about 20.83%. The differences of the three behavioral experiments between control group and intervention group had the statistical significance (P < 0.05), so the same as between control group and negative control group (P < 0.05). And there was no difference between intervention group and negative control group for the three behavioral experiments. The early supplementation with compound nutrition could postpone the occurrence and development of Alzheimer' s disease mice model's cognitive dysfunction.
Inhalation developmental toxicology studies: Teratology study of n-hexane in mice: Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mast, T.J.; Decker, J.R.; Stoney, K.H.
Gestational exposure to n-hexane resulted in an increase in the number of resorbed fetuses for exposure groups relative to the control group; however, the increases were not directly correlated to exposure concentration. The differences were statistically significant for the 200-ppM with respect to total intrauterine death (early plus late resorptions), and with respect to late resorptions for the 5000-ppM group. A small, but statistically significant, reduction in female (but not male) fetal body weight relative to the control group was observed at the 5000-ppM exposure level. There were no exposure-related increases in any individual fetal malformation or variation, nor wasmore » there any increase in the incidence of combined malformations or variations. Gestational exposure of CD-1 mice to n-hexane vapors appeared to cause a degree of concentration-related developmental toxicity in the absence of overt maternal toxicity, but the test material was not found to be teratogenic. This developmental toxicity was manifested as an increase in the number of resorptions per litter for all exposure levels, and as a decrease in the uterine: extra-gestational weight gain ratio at the 5000-ppM exposure level. Because of the significant increase in the number of resorptions at the 200-ppM exposure level, a no observable effect level (NOEL) for developmental toxicity was not established for exposure of mice to 200, 1000 or 5000-ppM n-hexane vapors. 21 refs., 3 figs., 9 tabs.« less
Molecular imaging assessment of periodontitis lesions in an experimental mouse model.
Ideguchi, Hidetaka; Yamashiro, Keisuke; Yamamoto, Tadashi; Shimoe, Masayuki; Hongo, Shoichi; Kochi, Shinsuke; Yoshihara-Hirata, Chiaki; Aoyagi, Hiroaki; Kawamura, Mari; Takashiba, Shogo
2018-06-06
We aimed to evaluate molecular imaging as a novel diagnostic tool for mice periodontitis model induced by ligature and Porphyromonas gingivalis (Pg) inoculation. Twelve female mice were assigned to the following groups: no treatment as control group (n = 4); periodontitis group induced by ligature and Pg as Pg group (n = 4); and Pg group treated with glycyrrhizinic acid (GA) as Pg + GA group (n = 4). All mice were administered a myeloperoxidase (MPO) activity-specific luminescent probe and observed using a charge-coupled device camera on day 14. Image analysis on all mice was conducted using software to determine the signal intensity of inflammation. Additionally, histological and radiographic evaluation for periodontal inflammation and bone resorption at the site of periodontitis, and quantitative enzyme-linked immunosorbent assay (ELISA) were conducted on three mice for each group. Each experiment was performed three times. Levels of serum IgG antibody against P. gingivalis were significantly higher in the Pg than in the Pg + GA group. Histological analyses indicated that the number of osteoclasts and neutrophils were significantly lower in the Pg + GA than in the Pg group. Micro-CT image analysis indicated no difference in bone resorption between the Pg and Pg + GA groups. The signal intensity of MPO activity was detected on the complete craniofacial image; moreover, strong signal intensity was localized specifically at the periodontitis site in the ex vivo palate, with group-wise differences. Molecular imaging analysis based on MPO activity showed high sensitivity of detection of periodontal inflammation in mice. Molecular imaging analysis based on MPO activity has potential as a diagnostic tool for periodontitis.
Metabolite analysis distinguishes between mice with epidermolysis bullosa acquisita and healthy mice
2013-01-01
Background Epidermolysis bullosa acquisita (EBA) is a rare skin blistering disease with a prevalence of 0.2/ million people. EBA is characterized by autoantibodies against type VII collagen. Type VII collagen builds anchoring fibrils that are essential for the dermal-epidermal junction. The pathogenic relevance of antibodies against type VII collagen subdomains has been demonstrated both in vitro and in vivo. Despite the multitude of clinical and immunological data, no information on metabolic changes exists. Methods We used an animal model of EBA to obtain insights into metabolomic changes during EBA. Sera from mice with immunization-induced EBA and control mice were obtained and metabolites were isolated by filtration. Proton nuclear magnetic resonance (NMR) spectra were recorded and analyzed by principal component analysis (PCA), partial least squares discrimination analysis (PLS-DA) and random forest. Results The metabolic pattern of immunized mice and control mice could be clearly distinguished with PCA and PLS-DA. Metabolites that contribute to the discrimination could be identified via random forest. The observed changes in the metabolic pattern of EBA sera, i.e. increased levels of amino acid, point toward an increased energy demand in EBA. Conclusions Knowledge about metabolic changes due to EBA could help in future to assess the disease status during treatment. Confirming the metabolic changes in patients needs probably large cohorts. PMID:23800341
Molecular exploration of fecal microbiome in quinoa-supplemented obese mice.
Garcia-Mazcorro, Jose F; Mills, David; Noratto, Giuliana
2016-07-01
Diet affects gut microorganisms and dietary interventions can help treat obesity and overweight. Our aim was to investigate the effect of quinoa supplementation on fecal microbial ecology of obese diabetic mice. Obese db/db mice were fed commercial diets with and without quinoa supplementation for eight weeks; non-obese mice consuming non-supplemented diet served as lean-control. Fecal bacterial communities were analyzed using marker gene sequencing of 16S rRNA genes. Over 300 000 good-quality sequences were studied and assigned to 5774 different bacterial species (Operational Taxonomic Units at 97% similarity). Significant differences in bacterial abundances were found among the treatment groups, including some associated specifically with quinoa consumption. Analysis of weighted UniFrac distances revealed a distinctive clustering of lean microbial communities independently from obese-control and quinoa-supplemented mice (Analysis of Similarities, P < 0.01). Predicted functional profiles showed significant differences in 38 metabolic functions but most were due to a difference between lean samples compared to both obese-control and quinoa. Quinoa supplementation was associated with lower butyrate and succinic acid concentrations in cecum that were not necessarily more similar to those concentrations in lean mice. This study provides insight into the complex interactions between nutritional supplements and the gut microbiota thus informing future molecular analysis of the health benefits. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Haseman, Joseph K.; Strickland, Judy; Allen, David; Salicru, Eleni; Paris, Michael; Tice, Raymond R.; Stokes, William S.
2011-01-01
The original Organisation for Economic Co-operation and Development Test Guideline 429 (OECD TG 429) for the murine local lymph node assay (LLNA) required five mice/group if mice were processed individually. We used data from 83 LLNA tests (275 treated groups) to determine the impact on the LLNA outcome of reducing the group size from five to four. From DPM measurements, we formed all possible four-mice and five-mice combinations for the treated and control groups. Stimulation index (SI) values from each four-mice combination were compared with those from five-mice combinations, and agreement (both SI < 3 or both SI ≥ 3) determined. Average agreement between group sizes was 97.5% for the 275 treated groups. Compared test-by-test, 90% (75/83) of the tests had 100% agreement; agreement was 83% for the remaining eight tests. Disagreement was due primarily to variability in animal responses and closeness of the SI to three (positive response threshold) rather than to group size reduction. We conclude that using four rather than five mice per group would reduce animal use by 20% without adversely impacting LLNA performance. This analysis supported the recent update to OECD TG 429 allowing a minimum of four mice/group when each mouse is processed individually. PMID:20974208
Effect of Global ATGL Knockout on Murine Fasting Glucose Kinetics.
Coelho, Margarida; Nunes, Patricia; Mendes, Vera M; Manadas, Bruno; Heerschap, Arend; Jones, John G
2015-01-01
Mice deficient in adipose triglyceride lipase (ATGL(-/-)) present elevated ectopic lipid levels but are paradoxically glucose-tolerant. Measurement of endogenous glucose production (EGP) and Cori cycle activity provide insights into the maintenance of glycemic control in these animals. These parameters were determined in 7 wild-type (ATGL(+/-)) and 6 ATGL(-/-) mice by a primed-infusion of [U-(13)C6]glucose followed by LC-MS/MS targeted mass-isotopomer analysis of blood glucose. EGP was quantified by isotope dilution of [U-(13)C6]glucose while Cori cycling was estimated by analysis of glucose triose (13)C-isotopomers. Fasting plasma free fatty-acids were significantly lower in ATGL(-/-) versus control mice (0.43 ± 0.05 mM versus 0.73 ± 0.11 mM, P < 0.05). Six-hour fasting EGP rates were identical for both ATGL(-/-) and control mice (79 ± 11 versus 71 ± 7 μmol/kg/min, resp.). Peripheral glucose metabolism was dominated by Cori cycling (80 ± 2% and 82 ± 7% of glucose disposal for ATGL(-/-) and control mice, resp.) indicating that peripheral glucose oxidation was not significantly upregulated in ATGL(-/-) mice under these conditions. The glucose (13)C-isotopomer distributions in both ATGL(-/-) and control mice were consistent with extensive hepatic pyruvate recycling. This suggests that gluconeogenic outflow from the Krebs cycle was also well compensated in ATGL(-/-) mice.
Inhibition of elastase-pulmonary emphysema in dominant-negative MafB transgenic mice.
Aida, Yasuko; Shibata, Yoko; Abe, Shuichi; Inoue, Sumito; Kimura, Tomomi; Igarashi, Akira; Yamauchi, Keiko; Nunomiya, Keiko; Kishi, Hiroyuki; Nemoto, Takako; Sato, Masamichi; Sato-Nishiwaki, Michiko; Nakano, Hiroshi; Sato, Kento; Kubota, Isao
2014-01-01
Alveolar macrophages (AMs) play important roles in the pathogenesis of chronic obstructive pulmonary disease (COPD). We previously demonstrated upregulation of the transcription factor MafB in AMs of mice exposed to cigarette smoke. The aim of this study was to elucidate the roles of MafB in the development of pulmonary emphysema. Porcine pancreatic elastase was administered to wild-type (WT) and dominant-negative (DN)-MafB transgenic (Tg) mice in which MafB activity was suppressed only in macrophages. We measured the mean linear intercept and conducted cell differential analysis of bronchoalveolar lavage (BAL) cells, surface marker analysis using flow cytometry, and immunohistochemical staining using antibodies to matrix metalloproteinase (MMP)-9 and MMP-12. Airspace enlargement of the lungs was suppressed significantly in elastase-treated DN-MafB Tg mice compared with treated WT mice. AMs with projected pseudopods were decreased in DN-MafB Tg mice. The number of cells intermediately positive for F4/80 and weakly or intermediately positive for CD11b, which are considered cell subsets of matured AMs, decreased in the BAL of DN-MafB Tg mice. Furthermore, MMP-9 and -12 were significantly downregulated in BAL cells of DN-MafB Tg mice. Because MMPs exacerbate emphysema, MafB may be involved in pulmonary emphysema development through altered maturation of macrophages and MMP expression.
Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Vulule, John; Kazura, James W; Moormann, Ann M; Davenport, Miles P
2013-11-01
Recent studies of Plasmodium berghei malaria in mice show that high blood-stage parasitemia levels inhibit the development of subsequent liver-stage infections. Whether a similar inhibitory effect on liver-stage Plasmodium falciparum by blood-stage infection occurs in humans is unknown. We have analyzed data from a treatment-time-to-infection cohort of children < 10 years of age residing in a malaria holoendemic area of Kenya where people experience a new blood-stage infection approximately every 2 weeks. We hypothesized that if high parasitemia blocked the liver stage, then high levels of parasitemia should be followed by a "skipped" peak of parasitemia. Statistical analysis of "natural infection" field data and stochastic simulation of infection dynamics show that the data are consistent with high P. falciparum parasitemia inhibiting liver-stage parasite development in humans.
[Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions].
Li, Jing; Chen, Feng-feng; Chen, Xiang-dong; Zhou, Cheng
2014-11-01
To investigate the roles of hyperolarization-actived cyclic nucleotide-gated channels 1 (HCN1) in antidepressant actions of ketamine (KET). Male HCN1 knock out (HCN1-/- ) and wildtype (HCN1+/+ ) C57BL6 mice (8-12 weeks, 20-25 g) were chosen. The depression model of mice was developed by continuously oral administration of low dosage of corticosterone (CORT). The immobility time in forced swimming tests (FST) was used to assess the depressive state of mice. Then the two genotype depressive mice were treated with single intraperitoneal injection of 5 mg/kg ketamine (KET group, n=7) or same volume of normal saline (NS group, n=7) respectively. After treatment, the immobility time at 30 min, 24 h and 7 d after the intraperitoneal injection of ketamine or normal saline in CORT-treated mice were compared. In addition, normal HCN1-/- and HCN1+/+ mice were intraperitoneally injected of BrdU and then treated with 5 mg/kg ketamine (KET group, n=5) or same volume of normal saline (NS group, n= 5) by single intraperitoneal injection. Each group was euthanized for immunohistochemical processing of 5-Bromo-2-deoxyuridine (BrdU)-labeled cells in hippocampus at 24 h after the intraperitoneal injection of saline or ketamine. The immobility time in FST of HCN1-/- mice was less than the HCN1+/+ mice before administration of CORT. It shows that the depressive state of HCN1-/- mice is less intensive than that of HCN1+/+ mice. And the immoblility time in both HCN1-/- and HCN1+/+ mice was increased after oral administration of low dose corticosterone, with an increase in depression. In addition, the comparisons were also made to the reduction of immobility time within 30 min, 24 h and 7 d. At any time point, the reduction of immobility time in HCN1+/+ KET group was higher than those in the other three groups (P<0. 05). Furthermore, there were no statistical significances among the three groups including HCN1-/- KET group, HCN1+/+ NS group, HCN1-/- NS group at any point. The number of newborn neurons were more in HCN1 mice than HCN1+/+ mice after the treatment of normal saline. Compared with the NS group, the number of neonatal neurons labeled by BrdU were increased after the intraperitoneal injection of ketamine in HCN1+/+ mice but not in HCN1-/- mice. Inhibition of HCN1 channels by ketamine accounts for its antidepressant actions.
Östergren, Caroline; Shim, Jeong; Larsen, Jens Vinther; Nielsen, Lars Bo; Bentzon, Jacob F.
2015-01-01
Objective Proliferation and migration of vascular smooth muscle cells (SMCs) are central for arterial diseases including atherosclerosis and restenosis. We hypothesized that the underlying mechanisms may be modeled by carotid ligation in mice. In FVB/N inbred mice, ligation leads to abundant neointima formation with proliferating media-derived SMCs, whereas in C57BL/6 mice hardly any neointima is formed. In the present study, we aimed to identify the chromosomal location of the causative gene variants in an F2 intercross between these two mouse strains. Methods and Results The neointimal cross-sectional area was significantly different between FVB/N, C57BL/6 and F1 female mice 4 weeks after ligation. Carotid artery ligation and a genome scan using 800 informative SNP markers were then performed in 157 female F2 mice. Using quantitative trait loci (QTL) analysis, we identified suggestive, but no genome-wide significant, QTLs on chromosomes 7 and 12 for neointimal cross-sectional area and on chromosome 14 for media area. Further analysis of the cross revealed 4 QTLs for plasma cholesterol, which combined explained 69% of the variation among F2 mice. Conclusions We identified suggestive QTLs for neointima and media area after carotid ligation in an intercross of FVB/N and C57BL/6 mice, but none that reached genome-wide significance indicating a complex genetic architecture of the traits. Genome-wide significant QTLs for total cholesterol levels were identified on chromosomes 1, 3, 9, and 12. PMID:25875831
Chaze, Thibault; Hornez, Louis; Chambon, Christophe; Haddad, Iman; Vinh, Joelle; Peyrat, Jean-Philippe; Benderitter, Marc; Guipaud, Olivier
2013-07-10
The finding of new diagnostic and prognostic markers of local radiation injury, and particularly of the cutaneous radiation syndrome, is crucial for its medical management, in the case of both accidental exposure and radiotherapy side effects. Especially, a fast high-throughput method is still needed for triage of people accidentally exposed to ionizing radiation. In this study, we investigated the impact of localized irradiation of the skin on the early alteration of the serum proteome of mice in an effort to discover markers associated with the exposure and severity of impending damage. Using two different large-scale quantitative proteomic approaches, 2D-DIGE-MS and SELDI-TOF-MS, we performed global analyses of serum proteins collected in the clinical latency phase (days 3 and 7) from non-irradiated and locally irradiated mice exposed to high doses of 20, 40 and 80 Gy which will develop respectively erythema, moist desquamation and necrosis. Unsupervised and supervised multivariate statistical analyses (principal component analysis, partial-least square discriminant analysis and Random Forest analysis) using 2D-DIGE quantitative protein data allowed us to discriminate early between non-irradiated and irradiated animals, and between uninjured/slightly injured animals and animals that will develop severe lesions. On the other hand, despite a high number of animal replicates, PLS-DA and Random Forest analyses of SELDI-TOF-MS data failed to reveal sets of MS peaks able to discriminate between the different groups of animals. Our results show that, unlike SELDI-TOF-MS, the 2D-DIGE approach remains a powerful and promising method for the discovery of sets of proteins that could be used for the development of clinical tests for triage and the prognosis of the severity of radiation-induced skin lesions. We propose a list of 15 proteins which constitutes a set of candidate proteins for triage and prognosis of skin lesion outcomes.
Chaze, Thibault; Hornez, Louis; Chambon, Christophe; Haddad, Iman; Vinh, Joelle; Peyrat, Jean-Philippe; Benderitter, Marc; Guipaud, Olivier
2013-01-01
The finding of new diagnostic and prognostic markers of local radiation injury, and particularly of the cutaneous radiation syndrome, is crucial for its medical management, in the case of both accidental exposure and radiotherapy side effects. Especially, a fast high-throughput method is still needed for triage of people accidentally exposed to ionizing radiation. In this study, we investigated the impact of localized irradiation of the skin on the early alteration of the serum proteome of mice in an effort to discover markers associated with the exposure and severity of impending damage. Using two different large-scale quantitative proteomic approaches, 2D-DIGE-MS and SELDI-TOF-MS, we performed global analyses of serum proteins collected in the clinical latency phase (days 3 and 7) from non-irradiated and locally irradiated mice exposed to high doses of 20, 40 and 80 Gy which will develop respectively erythema, moist desquamation and necrosis. Unsupervised and supervised multivariate statistical analyses (principal component analysis, partial-least square discriminant analysis and Random Forest analysis) using 2D-DIGE quantitative protein data allowed us to discriminate early between non-irradiated and irradiated animals, and between uninjured/slightly injured animals and animals that will develop severe lesions. On the other hand, despite a high number of animal replicates, PLS-DA and Random Forest analyses of SELDI-TOF-MS data failed to reveal sets of MS peaks able to discriminate between the different groups of animals. Our results show that, unlike SELDI-TOF-MS, the 2D-DIGE approach remains a powerful and promising method for the discovery of sets of proteins that could be used for the development of clinical tests for triage and the prognosis of the severity of radiation-induced skin lesions. We propose a list of 15 proteins which constitutes a set of candidate proteins for triage and prognosis of skin lesion outcomes. PMID:28250398
Ntzouni, Maria P; Skouroliakou, Aikaterini; Kostomitsopoulos, Nikolaos; Margaritis, Lukas H
2013-03-01
This study was designed to investigate the transient and cumulative impairments in spatial and non-spatial memory of C57Bl/6J mice exposed to GSM 1.8 GHz signal for 90 min daily by a typical cellular (mobile) phone at a specific absorption rate value of 0.11 W/kg. Free-moving male mice 2 months old were irradiated in two experimental protocols, lasting for 66 and for 148 days respectively. Each protocol used three groups of animals (n = 8 each for exposed, sham exposed and controls) in combination with two behavioural paradigms, the object recognition task and the object location task sequentially applied at different time points. One-way analysis of variance revealed statistically significant impairments of both types of memory gradually accumulating, with more pronounced effects on the spatial memory. The impairments persisted even 2 weeks after interruption of the 8 weeks daily exposure, whereas the memory of mice as detected by both tasks showed a full recovery approximately 1 month later. Intermittent every other day exposure for 1 month had no effect on both types of memory. The data suggest that visual information processing mechanisms in hippocampus, perirhinal and entorhinal cortex are gradually malfunctioning upon long-term daily exposure, a phenotype that persists for at least 2 weeks after interruption of radiation, returning to normal memory performance levels 4 weeks later. It is postulated that cellular repair mechanisms are operating to eliminate the memory affecting molecules. The overall contribution of several possible mechanisms to the observed cumulative and transient impairments in spatial and non-spatial memory is discussed.
Neo, Jaclyn H; Ager, Eleanor I; Angus, Peter W; Zhu, Jin; Herath, Chandana B; Christophi, Christopher
2010-04-10
Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade.
Changes in the renin angiotensin system during the development of colorectal cancer liver metastases
2010-01-01
Background Blockade of the renin angiotensin system (RAS) via angiotensin I converting enzyme (ACE) inhibition reduces growth of colorectal cancer (CRC) liver metastases in a mouse model. In this work we defined the expression of the various components of the RAS in both tumor and liver during the progression of this disease. Methods Immunohistochemistry and quantitative RT-PCR was used to examine RAS expression in a mouse CRC liver metastases model. CRC metastases and liver tissue was assessed separately at key stages of CRC liver metastases development in untreated (control) mice and in mice treated with the ACE inhibitor captopril (750 mg/kg/day). Non-tumor induced (sham) mice indicated the effect of tumors on normal liver RAS. The statistical significance of multiple comparisons was determined using one-way analysis of variance followed by Bonferroni adjustment with SAS/STAT software. Results Reduced volume of CRC liver metastases with captopril treatment was evident. Local RAS of CRC metastases differed from the surrounding liver, with lower angiotensin II type 1 receptor (AT1R) expression but increased ANG-(1-7) receptor (MasR) compared to the liver. The AT1R localised to cancer and stromal infiltrating cells, while other RAS receptors were detected in cancer cells only. Tumor induction led to an initial increase in AT1R and ACE expression while captopril treatment significantly increased ACE expression in the final stages of tumor growth. Conversely, captopril treatment decreased expression of AT1R and angiotensinogen. Conclusions These results demonstrate significant changes in RAS expression in the tumor-bearing captopril treated liver and in CRC metastases. The data suggests the existence of a tumor-specific RAS that can be independently targeted by RAS blockade. PMID:20380732
Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P.; Al-Hendy, Ayman
2016-01-01
Background: Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. Study design: An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Materials and methods: Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. Results: In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Conclusion: Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. PMID:26884457
Abdelaziz, Mohamed; Sherif, Lotfy; ElKhiary, Mostafa; Nair, Sanjeeta; Shalaby, Shahinaz; Mohamed, Sara; Eziba, Noura; El-Lakany, Mohamed; Curiel, David; Ismail, Nahed; Diamond, Michael P; Al-Hendy, Ayman
2016-04-01
Gene therapy is a potentially effective non-surgical approach for the treatment of uterine leiomyoma. We demonstrated that targeted adenovirus vector, Ad-SSTR-RGD-TK/GCV, was highly effective in selectively inducing apoptosis and inhibiting proliferation of human leiomyoma cells in vitro while sparing normal myometrial cells. An in-vivo study, to compare efficacy and safety of modified adenovirus vector Ad-SSTR-RGD-TK/GCV versus untargeted vector for treatment of leiomyoma. Female nude mice were implanted with rat leiomyoma cells subcutaneously. Then mice were randomized into three groups. Group 1 received Ad-LacZ (marker gene), Group 2 received untargeted Ad-TK, and Group 3 received the targeted Ad-SSTR-RGD-TK. Tumors were measured weekly for 4 weeks. Then mice were sacrificed and tissue samples were collected. Evaluation of markers of apoptosis, proliferation, extracellular matrix, and angiogenesis was performed using Western Blot & Immunohistochemistry. Statistical analysis was done using ANOVA. Dissemination of adenovirus was assessed by PCR. In comparison with the untargeted vector, the targeted adenoviral vector significantly shrank leiomyoma size (P < 0.05), reduced expression of proliferation marker (PCNA) (P < 0.05), induced expression of apoptotic protein, c-PARP-1, (P < 0.05) and inhibited expression of extracellular matrix-related genes (TGF beta 3) and angiogenesis-related genes (VEGF & IGF-1) (P < 0.01). There were no detectable adenovirus in tested tissues other than leiomyoma lesions with both targeted and untargeted adenovirus. Targeted adenovirus, effectively reduces tumor size in leiomyoma without dissemination to other organs. Further evaluation of this localized targeted strategy for gene therapy is needed in appropriate preclinical humanoid animal models in preparation for a future pilot human trial. © The Author(s) 2016.
Fish oil improves gene targets of Down syndrome in C57BL and BALB/c mice.
Zmijewski, Peter A; Gao, Linda Y; Saxena, Abhinav R; Chavannes, Nastacia K; Hushmendy, Shazaan F; Bhoiwala, Devang L; Crawford, Dana R
2015-05-01
We have considered a novel gene targeting approach for treating pathologies and conditions whose genetic bases are defined using diet and nutrition. One such condition is Down syndrome, which is linked to overexpression of RCAN1 on human chromosome 21 for some phenotypes. We hypothesize that a decrease in RCAN1 expression with dietary supplements in individuals with Down syndrome represents a potential treatment. Toward this, we used in vivo studies and bioinformatic analysis to identify potential healthy dietary RCAN1 expression modulators. We observed Rcan1 isoform 1 (Rcan1-1) protein reduction in mice pup hippocampus after a 4-week curcumin and fish oil supplementation, with only fish oil reduction being statistically significant. Focusing on fish oil, we observed a 17% Rcan1-1 messenger RNA (mRNA) and 19% Rcan1-1 protein reduction in BALB/c mice after 5 weeks of fish oil supplementation. Fish oil supplementation starting at conception and in a different mouse strain (C57BL) led to a 27% reduction in hippocampal Rcan1-1 mRNA and a 34% reduction in spleen Rcan1-1 mRNA at 6 weeks of age. Hippocampal protein results revealed a modest 11% reduction in RCAN1-1, suggesting translational compensation. Bioinformatic mining of human fish oil studies also revealed reduced RCAN1 mRNA expression, consistent with the above studies. These results suggest the potential use of fish oil in treating Down syndrome and support our strategy of using select healthy dietary agents to treat genetically defined pathologies, an approach that we believe is simple, healthy, and cost-effective. Copyright © 2015 Elsevier Inc. All rights reserved.
Yadav, Monu; Parle, Milind; Sharma, Nidhi; Dhingra, Sameer; Raina, Neha; Jindal, Deepak Kumar
2017-11-01
To develop statistically optimized brain targeted Tween 80 coated chitosan nanoparticulate formulation for oral delivery of doxycycline hydrochloride for the treatment of psychosis and to evaluate its protective effect on ketamine induced behavioral, biochemical, neurochemical and histological alterations in mice. 3 2 full factorial design was used to optimize the nanoparticulate formulation to minimize particle size and maximize entrapment efficiency, while independent variables chosen were concentration of chitosan and Tween 80. The optimized formulation was characterized by particle size, drug entrapment efficiency, Fourier transform infrared, Transmission electron microscopy analysis and drug release behavior. Pure doxycycline hydrochloride (25 and 50 mg/kg, p.o.) and optimized doxycycline hydrochloride encapsulated Tween 80 coated chitosan nanoparticles (DCNP opt ) (equivalent to 25 mg/kg doxycycline hydrochloride, p.o.) were explored against ketamine induced psychosis in mice. The experimental studies for DCNP opt , with mean particle size 237 nm and entrapment efficiency 78.16%, elucidated that the formulation successfully passed through blood brain barrier and exhibited significant antipsychotic activity. The underlying mechanism of action was further confirmed by behavioral, biochemical, neurochemical estimations and histopathological study. Significantly enhanced GABA and GSH level and diminished MDA, TNF-α and dopamine levels were observed after administration of DCNP opt at just half the dose of pure doxycycline hydrochloride, showing better penetration of doxycyline hydrochloride in the form of Tween 80 coated nanoparticles through blood brain barrier. This study demonstrates the hydrophilic drug doxycycline hydrochloride, loaded in Tween 80 coated chitosan nanoparticles, can be effectively brain targeted through oral delivery and therefore represents a suitable approach for the treatment of psychotic symptoms.
Curcumin Inhibits The Adverse Effects of Sodium Arsenite in Mouse Epididymal Sperm
Momeni, Hamid Reza; Eskandari, Najmeh
2016-01-01
Background The aim of this study was to investigate the effects of curcumin on epididy- mal sperm parameters in adult male Navel Medical Research Institute (NMRI) mice ex- posed to sodium arsenite. Materials and Methods In this experimental study, we divided the animals into four groups: control, sodium arsenite (5 mg/kg), curcumin (100 mg/kg) and curcumin+sodium arsenite. Exposures were performed by intraperitoneal injections for a 5-week period. After the exposure period, we recorded the animals’ body and left testes weights. The left caudal epididymis was used to count the sperm number and analyze motility, viability, morphological abnormalities, acrosome reaction, DNA integrity, and histone-protamine replacement in the spermatozoa. One-way analysis of variance (ANOVA) followed by the Tukey’s test was used to assess the statistical significance of the data with SPSS 16.0. P<0.05 was considered significant. Results Mice exposed to sodium arsenite showed a significant decrease in the num- ber, motility, viability, normal sperm morphology and acrosome integrity of spermato- zoa compared to the control group. In the curcumin+sodium arsenite group, curcumin significantly reversed these adverse effects to the point where they approximated the control. In addition, the application of curcumin alone had no significant difference in these parameters compared to the control and curcumin+sodium arsenite groups. However, we observed no significant differences in the body and the testis weight as well as the DNA integrity and histone-protamine replacement in the spermatozoa of the four groups. Conclusion Curcumin compensated for the toxic effects of sodium arsenite on a number of sperm parameters in adult mice. PMID:27441059
Trehalose prevents adipocyte hypertrophy and mitigates insulin resistance.
Arai, Chikako; Arai, Norie; Mizote, Akiko; Kohno, Keizo; Iwaki, Kanso; Hanaya, Toshiharu; Arai, Shigeyuki; Ushio, Simpei; Fukuda, Shigeharu
2010-12-01
Trehalose has been shown to evoke lower insulin secretion than glucose in oral saccharide tolerance tests in humans. Given this hypoinsulinemic effect of trehalose, we hypothesized that trehalose suppresses adipocyte hypertrophy by reducing storage of triglyceride and mitigates insulin resistance in mice fed a high-fat diet (HFD). Mice were fed an HFD and given drinking water containing 2.5% saccharide (glucose [Glc], trehalose [Tre], maltose [Mal], high-fructose corn syrup, or fructose [Fru]) ad libitum. After 7 weeks of HFD and saccharide intake, fasting serum insulin levels in the Tre/HFD group were significantly lower than in the Mal/HFD and Glc/HFD groups (P < .05). Furthermore, the Tre/HFD group showed a significantly suppressed elevation of homeostasis model assessment-insulin resistance compared with the Mal/HFD group (P < .05) and showed a trend toward lower homeostasis model assessment-insulin resistance than the Glc/HFD group. After 8 weeks of feeding, mesenteric adipocyte size in the Tre/HFD group showed significantly less hypertrophy than the Glc/HFD, Mal/HFD, high-fructose corn syrup/HFD, or Fru/HFD group. Analysis of gene expression in mesenteric adipocytes showed that no statistically significant difference in the expression of monocyte chemoattractant protein-1 (MCP-1) messenger RNA (mRNA) was observed between the Tre/HFD group and the distilled water/standard diet group, whereas a significant increase in the MCP-1 mRNA expression was observed in the Glc/HFD, Mal/HFD, Fru/HFD, and distilled water/HFD groups. Thus, our data indicate that trehalose prevents adipocyte hypertrophy and mitigates insulin resistance in HFD-fed mice by reducing insulin secretion and down-regulating mRNA expression of MCP-1. These findings further suggest that trehalose is a functional saccharide that mitigates insulin resistance. Copyright © 2010 Elsevier Inc. All rights reserved.
2008-04-01
designed in this study: Mg4718-F: 5’-GCA TTT TGA TCC CTT ATA ATA CA-3’ Mg4718-R: 5’- GTG GAA GAC CCT TGA ATG G-3’ Mg4723-F: 5’-GCA TAG CCA ACA AAA...GAA ATC TAA TG-3’ Mg4723-R: 5’-GCA GTG TAG CTC AGT GGT AGA TCA C-3’ After each cross, the progenies were genotyped as described above. We have also...mutant F2 mice. PPD is a likelihood statistic that gives rise to the 95% confidence intervals, which is indicated by gray horizontal bars. cM
Previous studies in mice with multiple gestational exposures to perfluorooctanoic acid (PFOA) demonstrate numerous dose dependent growth and developmental effects which appeared to worsen if offspring exposed in utero nursed from PFOA-exposed dams. To evaluate the disposition of ...
Massadeh, A M; Al-Safi, S A; Momani, I F; Alomary, A A; Jaradat, Q M; AlKofahi, A S
2007-01-01
Analysis and distribution of Pb and Cd in different mice organs including liver, kidney, spleen, heart and blood were evaluated after treatment with different aqueous concentrations of garlic (12.5-100 mg/l). Atomic absorption spectrometry (AAS) was used for analysis of Pb and Cd in these organs. Treatment of Cd-Pb exposed mice with garlic (12.5-100 mg/l) reduced Pb concentrations by 44.65, 42.61, 38.4, 47.56, and 66.62% in liver, kidney, heart, spleen and blood respectively. Moreover, garlic reduced Cd levels by 72.5, 87.7, 92.6, 95.6, and 71.7% in liver, kidney, heart, spleen and blood respectively. The suppressed immune responses in mice pretreated with Cd-Pb mixture were reversed by 48.85, 55.82, 81.4 and 90.7 in the presence of 100, 50, 25, and 12.5 mg/ml of garlic extract.
Low-cost three-dimensional gait analysis system for mice with an infrared depth sensor.
Nakamura, Akihiro; Funaya, Hiroyuki; Uezono, Naohiro; Nakashima, Kinichi; Ishida, Yasumasa; Suzuki, Tomohiro; Wakana, Shigeharu; Shibata, Tomohiro
2015-11-01
Three-dimensional (3D) open-field gait analysis of mice is an essential procedure in genetic and nerve regeneration research. Existing gait analysis systems are generally expensive and may interfere with the natural behaviors of mice because of optical markers and transparent floors. In contrast, the proposed system captures the subjects shape from beneath using a low-cost infrared depth sensor (Microsoft Kinect) and an opaque infrared pass filter. This means that we can track footprints and 3D paw-tip positions without optical markers or a transparent floor, thereby preventing any behavioral changes. Our experimental results suggest with healthy mice that they are more active on opaque floors and spend more time in the center of the open-field, when compared with transparent floors. The proposed system detected footprints with a comparable performance to existing systems, and precisely tracked the 3D paw-tip positions in the depth image coordinates. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
A 1-bp deletion in the gammaC-crystallin leads to dominant cataracts in mice.
Zhao, Liya; Li, Kai; Bao, Shimin; Zhou, Yuxun; Liang, Yinming; Zhao, Guoji; Chen, Ye; Xiao, Junhua
2010-08-01
To date around 140 genetic alleles have been identified as being responsible for mouse cataract pathology, including Crya, Cryb, Cryg, Maf, Pax6, Pitx3, Sox, Connexins, MIP, and Lim-2. We obtained a dominant cataract mouse model from a spontaneous mutation in the F1 hybrids of outbred strain ICR mice crossed to the inbred strain BALB/cJ mice. Heterozygous and homozygous mutants expressed a nuclear cataract in both eyes. In 8-day-old mice, histological analysis showed that polygon epithelial cells were in the equatorial region and cortex underneath, and vacuole and sponge-like degeneration were in the cortical area underneath the posterior lens capsule. The nucleus of the lens was a deeply stained pink, with the shorter fibers losing their normal arrangement. For the entire eye, there was a blank zone in the equatorial region in 8-day-old mice; however, there was a certain degree of atrophy in cornea tension and retina in the lens in 3-month-old mice. The lens had been serious damaged in the homozygous mutants. For mutation mapping, heterozygous carriers were mated to wild-type C3H/HeJ mice, and offspring (F1 generation) with cataracts were backcrossed to the wild-type C3H/HeJ mice again. N2 mice with cataracts were used for genotyping. Using genome-wide linkage analysis, the mutation was mapped to chromosome 1 and the Cryg gene cluster between two markers was confirmed as the candidate gene. After direct sequencing the cDNA of the Cryg gene cluster, a 1-bp deletion was found in exon 3 of the Crygc gene, leading to a stop codon at the 76th amino acid of exon 3 which results in production of a truncated protein in mutant mice (Leu160Stop). Bioinformatic analysis of the mutant gammaC-crystallin reveals that the COOH-terminal of the mutant protein deletes a beta-sheet, which affects the function of the lens proteins and leads to the development of cataracts.
Neurochemistry in shiverer mouse depicted on MR spectroscopy.
Takanashi, Jun-ichi; Nitta, Nobuhiro; Iwasaki, Nobuaki; Saito, Shigeyoshi; Tanaka, Ryuta; Barkovich, A James; Aoki, Ichio
2014-06-01
To evaluate the neurochemical changes associated with hypomyelination, especially to clarify whether increased total N-acetylaspartate (tNAA) with decreased choline (Cho) observed in the thalamus of msd mice with the plp1 mutation is a common finding for hypomyelinating disorders. We performed magnetic resonance imaging (MRI) and proton MR spectroscopy ((1) H-MRS) of the thalamus and cortex of postnatal 12-week shiverer mice devoid of myelin basic protein (mbp), heterozygous and wild-type mice with a 7.0T magnet. Luxol Fast Blue staining and immunohistochemical analysis with anti-Mbp, Gfap, Olig2, and NeuN antibodies were also performed. In the thalamus, decreased Cho and normal tNAA were observed in shiverer mice. In the cortex, tNAA, Cho, and glutamate were decreased in shiverer mice. Histological and immunohistochemical analysis of shiverer mice brains revealed hypomyelination in the thalamus, white matter, and cortex; astrogliosis and an increased number of total oligodendrocytes in the white matter; and a decreased number of neurons in the cortex. The reduction of Cho on (1) H-MRS might be a common marker for hypomyelinating disorders. A normal tNAA level in the thalamus of shiverer mice might be explained by the presence of mature oligodendrocytes, which enable neuron-to-oligodendrocyte NAA transport or NAA catabolism. Copyright © 2013 Wiley Periodicals, Inc.
Critical Role of CD8 T Cells in Mediating Sex-Based Differences in a Murine Model of Lupus
2009-08-21
into female transfers (fF) mice that was reduced in CD8 depleted fF mice. Flow cytometry analysis showed increased numbers of splenic...splenocytes were first analyzed by flow cytometry for CD4 and CD8 T cells and F1 mice received either: a) unfractionated splenocytes (CD8 intactF1...using magnetic beads purchased from Invitrogen (Carlsbad, CA) according to the manufacturer’s instructions. Flow cytometry analysis before cell
Rollins, Derrick K; Teh, Ailing
2010-12-17
Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA) has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR) and statistical power (SP) which is the ability to correctly identify important genes. This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i) exposing E. coli cells to two different ethanol levels; (ii) application of myostatin to two groups of mice; and (iii) a simulated data study derived from the properties of (ii). The proposed method (PM) effectively identified critical genes in these studies based on comparison with the current method (CM). The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.
Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes
2011-01-01
Background Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Results Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). Conclusions OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo. PMID:21864415
Banda, Malathi; Recio, Leslie; Parsons, Barbara L
2013-10-01
Furan is a rodent liver carcinogen, but the mode of action for furan hepatocarcinogenicity is unclear. H-ras codon 61 mutations have been detected in spontaneous liver tumors of B6C3F1 mice, and the fraction of liver tumors carrying H-ras codon 61 CAA to AAA mutation increased in furan-treated mice. Allele-specific competitive blocker PCR (ACB-PCR) has been used previously to quantify early, carcinogen-induced increases in tumor-associated mutations. The present pilot study investigated whether furan drives clonal expansion of pre-existing H-ras mutant cells in B6C3F1 mouse liver. H-ras codon 61 CAA to CTA and CAA to AAA mutations were measured in DNA isolated from liver tissue of female mice treated with 0, 1, 2, 4, or 8 mg furan/kg body weight, five days per week for three weeks, using five mice per treatment group. Spontaneous levels of mutation were low, with two of five control mice having an H-ras codon 61 CTA or AAA mutant fraction (MF) greater than 10(-5) . Several furan-treated mice had H-ras codon 61 AAA or CTA MFs greater than those measured in control mice and lower bound estimates of induced MF were calculated. However, no statistically-significant differences were observed between treatment groups. Therefore, while sustained exposure to furan is carcinogenic, at the early stage of carcinogenesis examined in this study (three weeks), there was not a significant expansion of H-ras mutant cells. Copyright © 2013 Wiley Periodicals, Inc.
Yatawara, Lalani; Wickramasinghe, Susiji; Nagataki, Mitsuru; Takamoto, Misa; Nomura, Haruka; Ikeue, Yasunori; Watanabe, Yoshiya
2009-01-01
The β-glucans derived from yeast cell walls have been reported for having many immunomodulatory activities in vivo and in vitro. In this study, Aureobasidium-derived soluble branched (1,3-1,6) β-glucan (Sophy β-glucan) was checked for natural killer (NK) activity and for the production of IFN-γ and IL-4 in Leishmania amazonensis infection. The main experiment was performed with a group of female C57BL/6 and BALB/c mice, orally supplemented with 5% of Sophy β-glucan and infected with promastogotes of L. amazonensis (1 × 107) into the footpad. Increase in the footpad thickness with time was observed in BALB/c mice in spite of the oral Sophy β-glucan supplement, but it was less in C57BL/6 mice. The difference in overall mean footpad thickness between 'infection only' versus 'infection + glucan' groups was statistically significant (P < 0.001). High NK activity in C57BL/6 than BALB/c mice was observed in 'glucan only' group compared to the control group and also in 'infection + glucan' group compared to 'infection only' group. The difference in the NK activity among these groups was significant (P < 0.05). The IFN-γ level increased at weeks 7 and 8 post-infection in C57BL/6 mice and was significantly high in 'infection + glucan' group compared to the 'infection only' group (P < 0.05). IL-4 levels did not increase up to detectable levels throughout the study. The results led a conclusion that Sophy β-glucan enhances NK activity and cellular immunity in L. amazonensis-infected mice. PMID:19967081
Experimental Helicobacter marmotae infection in A/J mice causes enterohepatic disease
Patterson, Mary M.; Rogers, Arlin B.; Fox, James G.
2010-01-01
Helicobacter marmotae has been identified in the inflamed livers of Eastern woodchucks (Marmota monax) infected with woodchuck hepatitis virus (WHV), as well as from the livers of WHV-negative woodchucks. Because the majority of WHV-positive woodchucks with hepatic tumours were culture or PCR positive for this helicobacter, and WHV-negative woodchucks with H. marmotae had hepatitis, the bacterium may have a role in tumour promotion related to chronic inflammation. In this study, the type strain of H. marmotae was inoculated intraperitoneally into 48 male and female A/J mice, a strain noted to be susceptible to Helicobacter hepaticus-induced liver tumours. Sixteen mice served as mock-dosed controls. At 6, 12 and 18 months post-inoculation (p.i.), there were statistically significant (P<0.05) differences in mean inflammation scores for the caecum and proximal colon between experimentally infected and control mice. Differences in hepatic inflammation were significant (P<0.05) at 6 and 12 months p.i. between the two groups but not at the 18 month time point. Two infected male mice had livers with severe hepatitis, and the liver samples were culture positive for H. marmotae. Serum IgG levels in the mice dosed with H. marmotae were elevated for the duration of the study. These results demonstrate that the woodchuck helicobacter can successfully colonize mice and cause enterohepatic disease. In the future, a mouse-adapted strain of H. marmotae could be selected to maximize colonization and lesion development. Such a woodchuck helicobacter-infected mouse model could be used to dissect potential mechanisms of microbial co-carcinogenesis involved in tumour development in woodchucks with WHV and in humans with hepatitis B virus. PMID:20616187
Differential transcriptomic profiles effected by oil palm phenolics indicate novel health outcomes.
Leow, Soon-Sen; Sekaran, Shamala Devi; Sundram, Kalyana; Tan, YewAi; Sambanthamurthi, Ravigadevi
2011-08-25
Plant phenolics are important nutritional antioxidants which could aid in overcoming chronic diseases such as cardiovascular disease and cancer, two leading causes of death in the world. The oil palm (Elaeis guineensis) is a rich source of water-soluble phenolics which have high antioxidant activities. This study aimed to identify the in vivo effects and molecular mechanisms involved in the biological activities of oil palm phenolics (OPP) during healthy states via microarray gene expression profiling, using mice supplemented with a normal diet as biological models. Having confirmed via histology, haematology and clinical biochemistry analyses that OPP is not toxic to mice, we further explored the gene expression changes caused by OPP through statistical and functional analyses using Illumina microarrays. OPP showed numerous biological activities in three major organs of mice, the liver, spleen and heart. In livers of mice given OPP, four lipid catabolism genes were up-regulated while five cholesterol biosynthesis genes were down-regulated, suggesting that OPP may play a role in reducing cardiovascular disease. OPP also up-regulated eighteen blood coagulation genes in spleens of mice. OPP elicited gene expression changes similar to the effects of caloric restriction in the hearts of mice supplemented with OPP. Microarray gene expression fold changes for six target genes in the three major organs tested were validated with real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR), and the correlation of fold changes obtained with these two techniques was high (R2 = 0.9653). OPP showed non-toxicity and various pleiotropic effects in mice. This study implies the potential application of OPP as a valuable source of wellness nutraceuticals, and further suggests the molecular mechanisms as to how dietary phenolics work in vivo.